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Using artificial intelligence to reduce
diagnostic workload without compromising
detection of urinary tract infections
Ross J. Burton1,2* , Mahableshwar Albur1, Matthias Eberl2,3† and Simone M. Cuff2†

Abstract

Background: A substantial proportion of microbiological screening in diagnostic laboratories is due to suspected
urinary tract infections (UTIs), yet approximately two thirds of urine samples typically yield negative culture results.
By reducing the number of query samples to be cultured and enabling diagnostic services to concentrate on those
in which there are true microbial infections, a significant improvement in efficiency of the service is possible.

Methodology: Screening process for urine samples prior to culture was modelled in a single clinical microbiology
laboratory covering three hospitals and community services across Bristol and Bath, UK. Retrospective analysis of all
urine microscopy, culture, and sensitivity reports over one year was used to compare two methods of classification:
a heuristic model using a combination of white blood cell count and bacterial count, and a machine learning
approach testing three algorithms (Random Forest, Neural Network, Extreme Gradient Boosting) whilst factoring in
independent variables including demographics, historical urine culture results, and clinical details provided with the
specimen.

Results: A total of 212,554 urine reports were analysed. Initial findings demonstrated the potential for using
machine learning algorithms, which outperformed the heuristic model in terms of relative workload reduction
achieved at a classification sensitivity > 95%. Upon further analysis of classification sensitivity of subpopulations, we
concluded that samples from pregnant patients and children (age 11 or younger) require independent evaluation.
First the removal of pregnant patients and children from the classification process was investigated but this
diminished the workload reduction achieved. The optimal solution was found to be three Extreme Gradient
Boosting algorithms, trained independently for the classification of pregnant patients, children, and then all other
patients. When combined, this system granted a relative workload reduction of 41% and a sensitivity of 95% for
each of the stratified patient groups.

Conclusion: Based on the considerable time and cost savings achieved, without compromising the diagnostic
performance, the heuristic model was successfully implemented in routine clinical practice in the diagnostic
laboratory at Severn Pathology, Bristol. Our work shows the potential application of supervised machine learning
models in improving service efficiency at a time when demand often surpasses resources of public healthcare
providers.
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Background
For routine clinical microbiology diagnostic laboratories,
the highest workload is generated by urine samples from
patients with suspected urinary tract infection (UTI) [1].
According to the UK Standards of Microbiological
Investigations, UTIs are defined as the ‘presence and
multiplication of microorganisms, in one or more struc-
tures of the urinary tract, with associated tissue inva-
sion’. The most common causative pathogen is E. coli
followed by other members of the Enterobacteriaceae
family. The incidence of UTIs varies with age, gender,
and comorbidities. Women experience a higher inci-
dence than men, with 10–20% suffering from at least
one symptomatic UTI throughout their lifetime. Most
UTIs that occur in men are associated to physiological
abnormalities of the urinary tract. In children, UTIs are
common but often difficult to diagnose due to non-spe-
cific symptoms. Where a UTI is suspected, a urine sample
is collected for processing by a centralised diagnostic la-
boratory. Upon arrival, the sample receives microscopic
analysis, microbiological culture, and where necessary,
antimicrobial sensitivity testing [2]. However, many urine
samples will yield a negative culture result, no significant
bacterial isolate or mixed culture results suggesting sample
contamination. Such ambiguous and diagnostically unhelp-
ful outcomes typically occur in approximately 70–80% of
urine samples cultured [3–8]. This creates opportunities
for significant cost savings. At the same time, diagnostic
microbiology laboratories in the UK and elsewhere are
undergoing transition to full laboratory automation [9–11].
With a view to assist with the consolidation of services [12]
and changes in laboratory practice, appropriate pre-pro-
cessing and classification of urine samples prior to culture
might be required to reduce the number of unnecessary
cultures performed.
In many hospitals, automated urine microscopy is per-

formed prior to culture using automated urine sediment
analysers. This is a common precursor to culture and in-
forms on the cellular content of the urine sample, where
evidence of pyuria results in direct antimicrobial sensitiv-
ity testing accompanying culture; in addition to culture on
chromogenic agar, urine is applied directly to nutrient
agar for sensitivity testing by Kirby–Bauer method. The
use of microscopic analysis, biochemical dip-stick testing,
and flow cytometry for predicting urinary tract infection
are well documented in the literature. The current con-
sensus is that WBC count and bacterial count correlate
with culture outcome [3, 4, 13] but not well enough to
replace culture entirely. We here explored the potential
for a machine learning solution to reduce the burden
of culturing the large number of culture-negative sam-
ples without reducing detection of culture-positive
samples, with concessions made for particularly vulnerable
patient groups.

We speculated that the application of a statistical ma-
chine learning model that accounts not just for current
diagnostic results but also for historical culture outcome,
as well as clinical details and demographical data, could
potentially reduce laboratory workload without com-
promising the detection of UTIs. We contrast the classi-
fication performance of heuristic microscopy thresholds
with three machine learning algorithms: A Random Forest
classifier, a Neural Network with a single hidden layer,
and the Extreme Gradient Boosting algorithm XGBoost.
Random Forest classifiers are one of many ensemble
methods, where the predictions of multiple base estima-
tors are used to improve classification. In a Random For-
est multiple ‘trees’ are constructed, each from a bootstrap
sample of the training data and a random subset of fea-
tures. The resulting classification is a result of the average
of all the ‘trees’, hence the name ‘Random Forest’ [14].
Neural Networks are supervised learning algorithms made
up of multiple layers of ‘perceptrons’ with assigned
weights, which when summed and provided to a step
function, produce a classification output. By optimising
a loss function and adjusting the weights through a
process called ‘backpropagation’, Neural Networks can
learn non-linear relationships [14]. Boosting algorithms,
such as the XGBoost algorithm in this study, generate a
decision tree using a sample of the training data. The
performance of the trained classifier, when tested using
all the training data, is used to generate sample weights
that influence the next classifier. An iterative process then
occurs, each time generating a new classifier that is in-
formed by the misclassification of the prior classifier [15].

Methods
Patient samples and data pre-processing
This project was performed as part of a service improve-
ment measure on anonymised retrospective data at South-
mead Hospital Bristol, North Bristol NHS Trust, UK, and
was approved locally by the service manager and head of
department. Urine samples with specimen date between
1st October 2016 and 1st October 2017 (n = 225,207) were
extracted from the Severn Pathology infectious science
services laboratory information management system
(LIMS), Winpath Enterprise. Additional file 2: Figure S1
details pre-processing steps taken prior to investigation of
microscopy thresholds and machine learning algorithms.
Samples that received manual microscopy (often due to
excessive haematuria or pyuria) and those from cathe-
terised patients were excluded from the study. All pre-
processing was performed in the Python programming
language (version 3.5) utilising the Pandas library (ver-
sion 0.23). The dependent variable, the culture result,
was classified using regular expression to create a
binary outcome; positive outcome was denoted as
any significant bacterial isolate with accompanying
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antimicrobial sensitivities, whereas a negative outcome
was a culture result of ‘no growth’, ‘no significant growth’,
or ‘mixed growth’.
Microscopy counts for white blood cells (WBCs) and

red blood cells (RBC) were artificially capped at 100/μl
due to the interface between SediMAX and Winpath
Enterprise implemented in the laboratory. For the same
reason, epithelial cell count was capped at 25/μl. No ad-
justments are made here as the data set represents ‘real-
world’ data and the type of data a model would encounter
in practice. The bacterial cell count was heavily positively
skewed. To counteract the effect of outliers without devi-
ating from a representation of typical data, bacterial
counts that exceeded the 0·99 percentile were classed as
outliers and removed. Two additional features were
engineered from the microscopy cell counts: ‘haema-
turia with no WBCs’ and ‘pyuria with no RBCs’. Pyuria
was defined as a WBC count > = 10/μl and haematuria
as ≥3/μl, as described in the UK Standards for Micro-
biology Investigations [12].

Patient groupings by clinical indicators
We defined several significant patient groups with a
higher incidence of UTI based on clinical advice and
prior published work [2, 16, 17]. For each of these
groups we created a list of keywords for association
(Additional file 1: Table S1). Using the Levenshtein dis-
tance algorithm implemented in the Natural Language
Toolkit library (NLTK, version 3.3) [18] with an edit dis-
tance threshold of one or less, keywords were compared
to clinical details provided with urine specimens, to
classify specimens into significant patient groups. This
implementation was chosen to negate errors in spelling
and grammar in the clinical details provided, and as a re-
sult of its ease of use and popularity in text mining and
bioinformatics applications [18, 19].
To increase the accuracy of patient grouping, clinical

details were consolidated where multiple samples were
received from the same patient; approximately 58% of
patients in the data set studied had multiple samples.
For acute kidney infection, occurrence of keywords
within a two-week timeframe resulted in allocation of a
patient to this group. In the case of pregnancy, this time-
frame was increased to nine months. When allocating
patients to the pre-operative group, only the clinical
details unique to a sample were considered. For all other
groups the assumption was made that conditions are
chronic and keyword search was conducted on the con-
solidation of all clinical details.
Using the same methodology as the patient grouping,

two additional variables were engineered from the clin-
ical details: the reported presence of nitrates in the urine
and descriptive qualities of the sample such offensive
smell and/or appearance.

Exploratory data analysis and implementation of heuristic
models and machine learning algorithms
Heuristic models using microscopy thresholds, as well as
the machine learning algorithms, were developed in the
Python programming language (version 3.5) utilising the
Pandas (version 0.23) [20] and Sci-kit learn (version 0.19)
[14] libraries. Exploratory data analysis was performed in
R (version 3.4.3) utilising the TidyVerse packages (version
1.2.1) [21] and base functions. Data visualisation and
graphical plots were created using the Python library
Seaborn (version 0.9.0) [22]. Three machine learning algo-
rithms were assessed: multi-layer feed-forward Neural
Network, Random Forest Classifier, and XGBoost Gradi-
ent Boosted Tree Classifier. Random Forests, Neural
Networks, and Boosting Ensembles have been noted as
having the best performance in terms of accuracy
amongst 17 ‘families’ investigated [23]. Data was ran-
domly split into training (70%, n = 157,645) and hold-
out data (30%, n = 67,562). Holdout data was used for
model validation. Model training and parameter opti-
misation was performed using a grid-search algorithm
with k-fold (k = 10) cross-validation, where the model
parameters where chosen based on area under receiver
operator curve (AUC Score). Performance of models were
measured as a balance between classification sensitivity
and relative workload reduction when tested on holdout
data; classification sensitivity took precedent in the choice
of model, but once an optimal sensitivity of 95% was met,
workload reduction was the deciding metric. Classification
sensitivity and specificity were calculated as described in
Additional file 3: Figure S2. 95% confidence intervals were
calculated using the normal approximation method. Due
to the size of the data-set studied and following guidance
published by Raschka S [24], the Cochran’s Q test was se-
lected to formally test for statistically significant difference
in accuracy amongst models (p < 0.05). Where this condi-
tion is met, the McNemar test was used post hoc for indi-
vidual model comparison with Bonferroni’s correction for
multiple comparisons; McNemar and Cochran’s Q test
implemented using the MLXtend python library [25].

Results
Patient characteristics
Around 20% of the samples in the data belonged to
inpatients, with an incidence of significant culture of
20·8% (Table 1). The ratio of female to males was
approximately 3:1, but the incidence of significant cul-
ture was similar with 21·6% and 26·8% for males and fe-
males, respectively. Amongst the groupings generated
from clinical details ‘Pregnant’ and ‘Persistent/Recurrent
Infection’ contributed to the largest proportion of the
overall data, with all other groups consisting of less than
12% of the data set. Samples categorised as ‘Persistent/
Recurrent Infection’ showed an incidence of significant
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growth of almost 40%. The small number of samples
whose clinical details included offensive smell or testing
positive for nitrates showed the highest incidence of sig-
nificant culture. Additionally, the presence of pyuria in
the absence of red blood cells, a condition reported in
11·6% of samples, showed in excess of 50% bacterial cul-
ture-positive results. The age distribution for female pa-
tients was multimodal, with a peak between 20- and 40-
years accounting for the pregnant women (Add-
itional file 4: Figure S3). For males, the distribution was
bimodal, with most samples coming from elderly
individuals.

Exploratory data analysis
Exploratory data analysis revealed that among the four
microscopic cell counts performed, WBC and bacterial
counts per μl showed the strongest correlation with the
probability of significant bacterial growth on culture (Fig. 1).
RBC and epithelial cell count were not significantly associ-
ated with culture outcome. To confirm the relationships
observed in Fig. 1, an individual Logistic Regression model
trained using cellular counts showed that inclusion of WBC
and bacterial counts exhibited a higher reduction in re-
sidual deviance when compared to RBC and epithelial cell

count. Age of the patient also positively correlated with the
probability of significant growth, albeit to a lesser extent
when compared to WBC and bacterial counts.
With regards to the distribution of automated micros-

copy cell counts, the patient population split into those
with significant bacterial culture results and those with-
out (Fig. 2). WBC counts demonstrated the greatest dis-
tinction between the population with significant culture
results and the population without. Bacterial counts
showed significant overlap between the two populations.
Both were positively skewed, but to a greater extent for
the population with significant culture results, which
also displayed a lower kurtosis. A high WBC count was
associated with an increase in significant bacterial
growth, as were bacterial counts about 500 cells/μl. Low
counts of WBC or bacteria were, however, not diagnos-
tic of a negative culture result.
Patient groups were ranked and compared using the

Chi-squared test for independence (implemented in Sci-
kit-Learn feature selection module). Pyuria in the ab-
sence of RBCs, pregnancy, positive testing for nitrate,
persistent/recurrent infection, and being an inpatient
ranked the highest, showing they were the least likely to
be independent of class, and therefore more valuable for
classification. Additionally, gender, smell, and being pre-

Table 1 Description of categorical variables

n Proportion of
entire dataset (%)

Incidence of significant
bacterial growth (%)

Variance

Positive culture 57,857 27·19

Negative culture 154,771 72·81

Patient groups

Persistent/recurrent infection 47,348 22·28 37·68 0·17

Pregnant 28,222 13·28 7·16 0·12

Renal inpatient/outpatient 11,755 5·55 26·20 0·05

Pre-operative patient 9463 4·45 21·84 0·04

Acute kidney disease 3891 1·83 31·23 0·02

Immunocompromised 2114 0·66 23·18 0·01

Multiple Sclerosis 1046 0·49 24·38 0·005

Inpatient 43,349 20·40 20·81 0·16

Positive for nitrates 5895 2·80 59·73 0·03

Offensive smell 270 0·10 55·19 0·001

Pyuria, no RBCs 24,587 11·60 52·27 0·10

Haematuria, no WBCs 368 0·002 0·06 0·002

Age

< 11 years old 14,594 6·87 17·23

Gender

Males 54,070 25·40 21·58

Females (total) 158,422 74·60 26·76

Females (not pregnant) 130,200 61·29 33·85

Burton et al. BMC Medical Informatics and Decision Making          (2019) 19:171 Page 4 of 11



operative ranked higher than other categorical variables,
such as whether the patient was immunocompromised
(Additional file 1: Table S2). While these were the most
highly ranked of the clinical indicators, they were not in
themselves enough for classification of the bulk of pa-
tients due to the low numbers existing in the population.
As an example, while being noted as being positive for
nitrates was associated with a high probability of cultur-
able bacteria (59·7%), this occurred in only 6·09% of the

patients founds positive for bacterial culture. Hence, we
examined the potential of heuristic and machine learn-
ing models that could include variables that were applic-
able to large numbers of patients.

Performance of heuristic microscopy thresholds for
predicting urine culture outcome
Given their strong association with positive bacterial
culture, WBC counts and bacterial counts were
chosen in combination to create a microscopy
threshold for predicting culture outcome. Micros-
copy thresholds were compared using classification
sensitivity, with 95% being chosen as the acceptable
minimum. At the same time specificity, positive pre-
dictive value, negative predictive value, and the rela-
tive reduction in workload were calculated. By
iterating over permutations from a range of WBC
and bacterial counts, the effect of applied thresholds
was simulated (Additional file 1: Tables S3 and S4).
Following simulation of microscopy thresholds, the

optimum minimum thresholds for WBC and bacterial
counts were found to be 30/μl and 100/μl, respectively.
With these criteria it was simulated that there would be
a 39·1% reduction in the number of samples needing
culture and a classification sensitivity of 96·0 ± 0·1%
(95% CI) for culture-positive urines (Table 3). Despite
achieving the optimal sensitivity, the specificity of using
a microscopy threshold was only 52·1 ± 0·4% (95% CI). The
potential for an improved solution that reduced the num-
ber of false positive classifications resulted in exploration
of supervised machine learning solutions incorporating
additional variables.

Integration of additional variables into machine learning
algorithms
To measure the effectiveness of the machine learning
algorithms, a Logistic Regression Classifier based on
WBC and bacterial counts was used as a baseline.
This algorithm exhibited similar performance to the
use of microscopy threshold, as was to be expected
as Logistic Regression classifiers are sensitive to
non-linear relationships between independent and
dependent variables; a condition suspected during
exploratory data analysis.
The data exhibited a natural class imbalance in that only

27% of samples resulted in a positive culture outcome.
Given that the purpose of this study was to create a screen-
ing method which would reduce the incidence of culture
without compromising sensitivity, class weights were ap-
plied in such a way that false negative classifications were
more heavily penalised than false positives. Initial class
weights were chosen through grid search parameter opti-
misation and then adjusted manually to improve sensitiv-
ity. In the case of the neural network, resampling (without

Fig. 1 5th Order Polynomial describing the probability of a
significant bacterial culture result as determined by logistic
regression, in relation to a WBC counts, b RBC counts, c Age,
d epithelial cell counts, and e bacterial counts

Fig. 2 Distribution of microscopic cell count, for sample populations
with and without significant bacterial growth on culture, for WBCs
(a), bacterial cells (b), epithelial cells (c) and RBCs (d)
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replacement) was used to eliminate class imbalance from
the training data. Table 2 details the results of feature se-
lection, performed using recursive feature elimination
(RFE) to generate a list of optimal features; feature import-
ance and AUC score in a Random Forest Classifier were
used to eliminate features recursively. RFE suggested 16
optimal features (features with a ranking of 1).
The results of the supervised machine learning

models when trained on the optimal features (those
with an RFE ranking of 1) are shown in Table 3,
with an accompanying ROC curve in Fig. 3. All ma-
chine learning algorithms outperformed the heuristic
model (microscopy threshold of 30 WBC/μl and 100
bacteria/μl) in terms of accuracy. The Random For-
est Classifier provided the best performance with a
sensitivity of 95·95 ± 0·23% (95% CI) and a reduction
in the number of necessary cultures by 47·58%.
Cochran’s Q test found a statistically significant dif-
ference between models and post-hoc comparison to
the heuristic model by McNemar’s test showed all
models to be significantly different in terms of clas-
sification accuracy.

Classification of pregnant patients
When observing the classification sensitivity for different
patient demographics, it was noted that the sensitivity for
pregnant patients was in the range of 56–86% across all
models, below the sensitivity for the general population.
Asymptomatic bacteriuria is a condition known to occur
in 2–10% of pregnancies and is associated with adverse
outcomes such as increased risk of preterm birth, low
birth weight, and perinatal mortality [26]. Figure 4 com-
pares the kernel density estimate for WBC and bacterial
counts, where there was significant bacterial growth on
culture, for pregnant patients and all other patients. For
pregnant patients there was a greater prevalence of
samples with increased bacterial count in the absence of
WBCs, which may explain the poor classification sensitiv-
ity in comparison to other patient groups.
Considering that all samples from pregnant patients

and children under 11 years of age should be cultured
routinely according to the recommendations by the UK
Standards for Microbiology Investigations [2], the heur-
istic model was re-examined and microscopy thresholds
analysed with those patients removed (Table 4). The
new optimal microscopy threshold was found to be 30
WBC/μl and 150 bacteria/μl. This threshold performed
with a sensitivity of 95·0 ± 0·1% (95% CI) and a relative
workload reduction of 33·7% (Table 4, Fig. 5). Due to
the considerable cost savings without compromising
diagnostic performance, this model went on to be imple-
mented into clinical practice at the Severn Pathology
service in Bristol, UK.

In response to this finding, machine learning algorithms
were revisited with the removal of pregnant patients and
children less than 11 years old from the classification
process. Since the Random Forest classifier provided the
best performance previously, a new implementation of this
algorithm was trained on a randomly selected cohort of
70% of the remaining data; 30% was kept as holdout for
evaluation of model performance. Parameter optimisation
was performed using grid search with a reduced class
weight of 1:8 for positive culture when considering samples
other than pregnant patients. As shown in Table 4, a Ran-
dom Forest Classifier that considers additional variables
could achieve a specificity of 68·8% compared with the spe-
cificity of the heuristic model of 44·6%. However, given that
samples from pregnant women and children under 11 to-
gether comprise 29.2% of samples entering the pipeline, the
overall, workload reduction only improved by around 4%.
The alternative approach was to separate pregnant

patients and children from all other samples, creating
three separate datasets. Training and validation data
was generated for each dataset following the same

Table 2 Feature selection by recursive feature elimination using
a Random Forest Classifier. Feature importance is shown as well
as the individual AUC score

RFE Ranking RF Feature
Importance

Individual AUCa

WBC count 1 0·30 0·82

Bacterial count 1 0·30 0·71

Age 1 0·12 0·63

Epithelial cell count 1 0·07 0·49

RBC count 1 0·06 0·56

# of positive cultures
to date

1 0·03 0·60

Pyuria, no RBCs 1 0·02 0·57

Pregnant 1 0·02 0·57

Inpatient 1 0·01 0·53

Gender 1 0·01 0·53

Persistent/recurrent
infection

1 0·01 0·55

# of positive cultures
month prior

1 0·009 0·53

Positive for nitrates 1 0·008 0·52

Renal inpatient/outpatient 1 0·005 0·50

Pre-operative patient 1 0·004 0·51

Acute kidney disease 1 0·003 0·50

Immunocompromised 2 0·002 0·50

# of positive cultures
week prior

3 0·002 0·51

Multiple Sclerosis 4 0·001 0·50

Offensive smell 5 0·0007 0·50

Haematuria, no WBCs 6 0·0001 0·50
aIndividual AUC score is calculated from a Logistic Regression classifier,
where the feature in question is the sole independent variable
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methodology as previously described. Three independ-
ent XGBoost models were trained, one for each dataset.
XGBoost is a resource efficient algorithm that exhibits
greater computational performance [15]. For this reason,
combined with good classification performance in prior
experiments, it was chosen over all other machine learn-
ing models going forward. The algorithms were trained in-
dependently of one another and evaluated on holdout
data from their separate populations (pregnant, children,
and everyone else). Classification sensitivity for pregnant
patients, children, and samples from all other patients was

95·4%, 94·9% and 95·3% respectively. When tested on the
validation data, the combined workload reduction from
the three independent models was 41.2%, a significant im-
provement over the performance of the heuristic model.
This combination of XGBoost models gives optimal per-
formance in terms of classification sensitivity and relative
workload reduction and is summarised in Fig. 6.

Discussion
To our knowledge, there are no other observational
studies of this magnitude for the study of urine analysis
for the diagnosis of UTIs. Most previous studies with
the objective of predicting urine culture based on vari-
ables generated from sediment analysis, flow cytometry,
and/or dip-stick testing have been controlled studies of a
few hundred patients, with little consistency in the inclu-
sion criteria [3, 4, 6, 13, 27–29]. Prior efforts to establish
a heuristic model based on microscopy thresholds gener-
ated conflicting results. Falbo et al. [4] and Inigo et al.
[3] reported a sensitivity and specificity in the range of
96–98% and 59–63% respectively, with microscopy
thresholds on sample populations of less than 1000.
Both studies reported an optimum WBC count (cells/μl)
of 18 but differing bacterial counts (44/μl and 97/μl re-
spectively). Variation in results between the two studies
is likely to be due to small sample size. It should also be
noted that neither study adjusted for pregnant patients
or children under the age of 11, and the sensitivity of
classification for vulnerable demographics was not
shared. Additionally, greater than 50% of samples in the
study by Inigo et al. originated from inpatients and both
studies included specimens from catheterised patients
[3, 4]. In contrast to those findings, Sterry-Blunt et al.
[6] reported from a study of 1411 samples that the high-
est achievable negative predictive value when using
white blood cell and bacterial count thresholds was

Table 3 Comparison of performance for heuristic and machine learning models tested on holdout data
Model Name AUC

Score
Accuracy (%) p-value** PPV NPV Sensitivity (%) Specificity (%) Relative

Workload
Reduction (%)

All Patients Pregnant Children < 11 Yrs

Heuristic model
(30 WBC/μl or
100 bacteria/μl)

63·92 NA 42.73 [± 0.51] 97.01 [±0.28] 95·70 [± 0·15] 85·9 [± 0·72] 91·5 [± 0·92] 52·10 [± 0·36] 39·06 [± 0·38]

Random Forest
(Class weight - 1:20)

0·908 71·96 < 0.001 40.47 [± 0.54] 97.67 [± 0.25] 95·95 [± 0·23] 70·5 [± 2·14] 89·8 [± 1·49] 63·40 [± 0·54] 47·58 [± 0·39]

Neural Network 0·906 85·00 < 0.001 71.70 [± 0.46] 90.18 [± 0.50] 74·03 [± 0·64] 27·6 [± 5·74] 69·3 [± 3·38] 89·09 [± 0·29] 71·98 [± 0·35]

Neural Network
(with resampling*)

0·904 79·35 < 0.001 57.66 [± 0.74] 95.54 [± 0.19] 90·60 [± 0·35] 56·6 [± 3·43] 84·8 [± 2·04] 75·16 [± 0·44] 57·33 [± 0·38]

XGBoost (Class
weight - 1:20)

0·910 65·68 < 0.001 44.05 [± 0.74] 97.77 [± 0.13] 96·70 [± 0·18] 77·1 [± 1·65] 93·1 [± 1·13] 54·14 [± 0·61] 40·36 [± 0·38]

[95% Confidence Interval]
*Resampling (without replacement) at a ratio of 2:1 for positive samples to offset class imbalance
** p-values obtained by comparison to heuristic model by McNemar test

Fig. 3 ROC curve for supervised machine learning models trained
using the list of optimal features, in comparison to a Logistic
Regression classifier trained solely using WBC count and bacterial
count. Random Forest (class weight 1:20), AUC = 0·909; Neural
Network (resample 1:2), AUC = 0·905; XGBoost (class weight 1:20),
AUC = 0·910; Logistic Regression, AUC = 0·882. The red point
indicates the performance of a heuristic model based on 30 WBC/μl
and 100 bacteria/μl
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89·1% and concluded that the SediMAX should not be
used as a screening method prior to culture.
The use of flow cytometry for urine analysis prior to cul-

ture has been gaining popularity as a replacement to auto-
mated urine microscopy and shows good performance in the
literature. Multiple studies have now shown that the use of
flow cytometry with optimised cell count thresholds provides
greater specificity without compromising sensitivity when
classifying urine samples [3, 27, 30–32]. Future work should
investigate the benefit of using machine learning algorithms
that include cellular counts generated using flow cytometry
methods as opposed to automated microscopy.

Taking advantage of recent developments in ‘big
data’ technologies, our observational study analysed
data representing an entire year of urine analysis at a
large pathology service that covers sample processing
for multiple hospitals as well as the community in
the Bristol/Bath region in the Southwest of the UK.
To our knowledge there have been no attempts to
apply machine learning techniques for the purpose of
predicting urine culture outcome in a laboratory set-
ting. Taylor et al. [5] applied supervised machine

Fig. 4 Bivariate kernel density estimates for samples with significant
bacterial growth on culture. Pregnant patients exhibit a greater
proportion of culture positive samples with a reduced white cell
count despite an increased bacterial count. It should be noted that
the lowest contour is not shown for visual clarity

Table 4 Comparison of performance for heuristic and machine learning models with additional consideration for pregnant patients
and children less than 11 years old

Model Name AUC Score Accuracy (%) p-value*** PPV NPV Sensitivity (%) Specificity (%) Relative Workload
Reduction (%)

Removal of pregnant patients and children (< 11 yrs)*

Heuristic mode (30 WBC/μl
or 150 bacteria/μl)

58·40 NA 39.14 [± 0.73] 96.29 [± 0.17] 95·4 [± 0·14] 44·60 [± 0·34] 33·74 [± 0·39]

Random Forest
(Class weight - 1:8)

0·920 77·09 < 0.001 53.25 [± 0.50] 97.46 [± 0.26] 95·2 [± 0·26] 68·79 [± 0·58] 38·92 [± 0·42]

Combined XGBoost**

Pregnant patients 0·828 26·94 94·6 [± 0·56] 26·84 [± 1·88] 25·29 [± 0·92]

Children (< 11 yrs) 0·913 62·00 94·8 [± 0·88] 55·00 [± 2·12] 46·24 [± 1·48]

Pregnant patients 0·894 71·65 95·3 [± 0·24] 60·93 [± 0·65] 43·38 [± 0·41]

Combined performance 0.749 65·65 < 0.001 47.64 [± 0.51] 97.14 [± 0.28] 95·2 [± 0·22] 60·93 [± 0·60] 41·18 [± 0·39]

[95% Confidence Interval]
*Pregnant patients and children (< 11 yrs) are not included in the classification process. It is assumed that all patients in these populations will receive culture and
this is reflected in the reported relative workload reduction
** Independent classification algorithms trained and tested on stratified patient populations
*** p-values obtained by comparison to heuristic model by McNemar test

Fig. 5 ROC curve for varying WBC count and varying bacterial
count, calculated after the removal of pregnant patients and
children less than 11 years old. The red point indicates the
combined threshold chosen for optimal performance
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learning to predict UTIs in symptomatic emergency
department patients. An observational study of 80,387
adult patients, using 211 variables of both clinical and
laboratory data, was used to develop 6 machine learn-
ing algorithms that were then compared to documen-
tation of UTI diagnosis and antibiotic administration.
The study concluded that the XGBoost algorithm out-
performed all other classifiers and when compared to
the documented diagnosis, application of the algo-
rithm would approximate to 1 in 4 patients being re-
categorised from false positive to true negative, and 1
in 11 patients being re-categorised from false negative
to true positive. The XGBoost algorithm presented
has similar performance to the one trained on our
dataset, with an AUC score of 0·904. The sensitivity
was poor however, at 61·7%, and a corresponding spe-
cificity of 94·9%. It is suspected that the difference in
sensitivity between our models is the result of the ap-
plication of class weights. Taylor et al. [5] did not
disclose any parameter tuning of this sort and the
sensitivity reported was likely a result of class

imbalance (only 23% of their training consists of posi-
tive samples). Here, we applied class weights to direct
a classification algorithm that favored a high sensitiv-
ity and met the criteria expected of a screening test.
Our study made considerations for the high risk

groups of pregnant patients and children under the age
of 11, with the objective to generate a predictive algo-
rithm that would conform to the UK standards of
microbiological investigations. We also classified pa-
tients into groups based on identification of key words
in clinical details provided by the requesting clinician.
Although methods were put into place to increase the
accuracy of these classifications (employment of a
Levenshtein distance algorithm and consolidation of
clinical details from patients with multiple samples) the
free-form nature of the notes means that key words
would not always be included even when applicable.
This has likely led to an underestimation of some
groups, but it is possible that this may be addressed in
future by more advanced text mining of clinical notes,
such as the use of deep learning techniques that can

Fig. 6 Performance of the optimal model, with independent classification algorithms for stratified patient groups, as predicted from
validation data. The top four features are ranked by average feature importance for all decision trees in the model. Performance is shown
as sensitivity ±95% confidence interval
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classify patients into medical subdomains, as shown
successfully by Weng et al. [33].
In our dataset, when observing samples that have gener-

ated a positive bacterial culture, there is a clear difference
in the distribution of white cell counts in pregnant patients
compared to all other patients. The changes in the immune
response during pregnancy are not fully understood but it
is agreed that modulation of the immune system is signifi-
cantly changed [26]. This could explain the differences ob-
served in our dataset, but we must also consider the
contribution from the screening for asymptomatic bacteri-
uria in pregnant patients during the middle trimester. Al-
though asymptomatic bacteriuria is cited as an associated
with adverse outcomes [26, 27], a randomised control study
of 5132 pregnant patients in the Netherlands reported a
low risk of pyelonephritis in untreated asymptomatic bac-
teriuria, question the use of such screening [7].
Our study demonstrates the power of machine learn-

ing algorithms in defining critical variables for clinical
diagnosis of suspected UTIs. Given increasing demand
due to ageing populations in most developed and devel-
oping countries, radical change is needed to improve
cost efficiency and optimise capacity in diagnostic la-
boratories. At a time when antimicrobial resistance is
dramatically on the rise amongst Gram-negative bac-
teria, including the two most common urinary patho-
gens, E. coli and Klebsiella pneumoniae, any significant
reduction in inappropriate sample processing will have a
positive impact on the turn-around time for clinically
relevant infection and improve time to appropriate ther-
apy and antimicrobial stewardship.
Extrapolating our estimated workload reduction on a

national scale, the savings made in reduction of pur-
chases of culture agar alone (without considering the
time cost and additional expenses involved in perform-
ing bacterial culture), the implementation of the three
XGBoost algorithms as described in Fig. 6 would result
in savings of £800,000–5 million per year across the UK
(estimates are based on local purchasing data and online
sources [34]).
There are several limitations of this study. Firstly, the

retrospective nature of the study makes it difficult to
clarify some of the details such as potential mis-labelling
of samples. However, the use of over 200,000 samples
archived with a state-of-the-art LIMS system should en-
sure the data are relatively robust to random individual
errors in labelling. Secondly, the clinical details provided
by the requesting clinicians were relatively sparse. This
is true for most diagnostic requests in a busy and pub-
licly-funded hospital, where doctors must prioritise their
limited time. Hence, the dataset represents the “real life”
scenario. Thirdly, it should be remembered that the out-
come we have studied is a culture predictability rather
than clinical/therapeutic outcome.

Conclusion
The work presented here shows that supervised machine
learning models can be of significant utility in predicting
whether urine samples are likely to require bacterial cul-
ture. We also highlight the importance of identifying vul-
nerable patient groups and propose a combination of
independent algorithms targeted at each group separately.
When using a methodology such as this, we demonstrate a
potential reduction in culture workload of around 41%
while detecting 95·2 ± 0·22% of culture positive samples
successfully. This could potentially improve service effi-
ciency at a time when demand is surpassing the resources
of public healthcare providers.
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