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Abstract 
 
Schizophrenia is a debilitating psychiatric disorder with approximately 1% lifetime risk globally. 
Large-scale schizophrenia genetic studies reported primarily on European ancestry samples, 
potentially missing important biological insights. Here, we report the largest study of East Asian 
participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide 
significant associations in 19 genetic loci. Common genetic variants that confer risk for 
schizophrenia have highly similar effects between East Asian and European ancestries (rg= 0.98 
± 0.03), indicating that the genetic basis of schizophrenia and its biology are broadly shared 
across world populations. A fixed-effect meta-analysis including individuals from East Asian and 
European ancestries revealed 208 significant associations in 176 genetic loci (53 novel). Trans-
ancestry fine-mapping reduced the sets of candidate causal variants in 44 loci. Polygenic risk 
score has reduced performance when transferred across ancestries, highlighting the importance 
of including sufficient samples of major ancestral groups to ensure its generalizability across 
populations. 
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Schizophrenia is an often-disabling psychiatric disorder which occurs worldwide with a 

lifetime risk of about 1%1. It is well-established that genetic factors contribute to the 

susceptibility of schizophrenia. Recently, 145 genetic loci have been associated with 

schizophrenia in samples of primarily European ancestry2,3 (EUR) but this still represents the tip 

of the iceberg with respect to common variant liability to the disorder: the highly polygenic 

nature of common variation underlying this disorder predicts that there are hundreds more loci 

to be discovered4.  

Most genetic studies of schizophrenia have been in EUR samples with relatively few 

studies in other populations5–8. This is a significant deficiency for multiple reasons, particularly 

as it greatly limits the discovery of biological clues about schizophrenia. For some causal 

variants, ancestry-related heterogeneity yields varying allele frequency and linkage 

disequilibrium (LD) patterns such that associations that can be detected in one population may 

not be readily detected in others. Examples include a nonsense variant in TBC1D4, which 

confers muscle insulin resistance and increases the risk for type 2 diabetes, common in 

Greenland but rare or absent in other populations9 several Asian-specific coding variants which 

influence blood lipids10 a variant highly protective against alcoholism that is common in Asian 

populations but uncommon elsewhere11 and two loci associated with major depression12 that 

are more common in the Chinese populations than EUR12,13 (rs12415800: 45% versus 2%, and 

rs35936514: 28% versus 6%).  

Even if alleles have similar frequencies across populations, the effects of alleles on risk 

might be specific to certain populations if there are prominent but local contributions of clinical 

heterogeneity, gene-environment (GxE) or gene-gene (GxG) interactions. In addition, there 

have been debates about differences in prevalence, symptomatology, etiology, outcome, and 

course of illness across geographical regions14–19. Understanding the genetic architecture of 

schizophrenia across populations provides insights into whether any differences represent 

etiologic heterogeneity on the illness. 
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Finally, polygenic risk score (PRS) prediction is emerging as a useful tool for studying 

the effects of genetic liability, identifying more homogeneous phenotypes, and stratifying 

patients. However, previous studies have shown that prediction accuracy decays with 

increasing genetic divergence between the risk allele discovery and target datasets20,21. The risk 

predicted, measured as R2, was only 45% as accurately in EAS as in EUR individuals when 

computed from GWAS of Europeans22. These differences can be explained by ancestry-related 

differences in allele frequencies, LD, and other factors22. Importantly, the applicability of training 

data from EUR studies to those of non-European ancestry has not been fully assessed, leaving 

us with an uncertainty as to the biological relevance of the findings made in EUR samples for 

non-Europeans21. 

Schizophrenia genetic associations in the East Asian populations 

This is the first study to combine multiple samples with schizophrenia across East Asia 

(EAS) to systematically examine the genetic architecture of schizophrenia in individuals of EAS 

ancestry. We compiled 22,778 schizophrenia cases and 35,362 controls from 20 samples from 

East Asia (Supplementary Table 1). Individual-level genotypes were available from 16 samples 

(Supplementary Table 1), on which we performed quality control, imputation and association 

tests (Methods and Supplementary Table 2). Two samples (TAI-1 and TAI-2) were trio-based 

and pseudo-controls were used. Four samples made available summary statistics for 22K-31K 

selected variants (Methods) which had been analyzed in published studies7,8. Compared with 

the latest study using only Chinese individuals8, our study has about twice the sample size, and 

is much more diverse.   

We used a two-stage study design (Supplementary Table 1a). Stage 1 included 13 

samples for which we had individual genotype data (13,305 cases and 16,244 controls after 

quality control). Stage 2 incorporated the remaining 7 samples: full genotype data from 3 

samples that arrived after the Stage 1 data freeze and summary statistics (for selected variants) 

from 4 samples (Supplementary Table 1). Meta-analyses across Stage 1 samples and across 
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all EAS samples were conducted using a fixed-effect model with inverse-variance weighting. 

QQ plots (Supplementary Figure 1) showed no inflation of test statistics (particularly that 

ancestry effects have been well controlled) with λgc=1.14, λ1000=1.01 and LD Score regression23 

(LDSC) intercept=1.0145±0.011 using Stage 1 samples.  

Combining Stages 1 and 2, we found 21 genome-wide significant associations at 19 loci 

(Table 1, Fig. 1a and Supplementary Table 3), an additional 14 associations over the most 

recent schizophrenia genetic study of Chinese ancestry8. Most associations were characterized 

by marked differences in allele frequencies between the EAS and EUR samples: for 15 of 21 

loci, the index variants had a higher minor allele frequencies (MAF) in EAS than EUR. The 

higher allele frequency potentially confers better power to detect associations in EAS. For 

example, we identified a locus (Fig. 1b) with the top association (rs374528934) having strong 

evidence in EAS (P = 5 x 10-11) but not in EUR using the Stage 1 samples. rs374528934 has 

MAF of 45% in EAS but only 0.7% in EUR. No other variant in this locus is significantly 

associated with schizophrenia in EUR. This locus contains CACNA2D2 (the calcium channel 

α2δ-2 subunit) associated with childhood epilepsy24,25, and to which the anticonvulsant 

medication gabapentin binds, suggesting a path for further therapeutic investigation25. This 

finding also adds new evidence to the calcium signaling pathway suggested to be implicated in 

psychiatric disorders26,27.  

Genetic effects are consistent across populations 

For causal variants, heterogeneity of genetic effects across populations could arise from 

clinical heterogeneity, differences in pathophysiology, environmental differences that change the 

genetic effects (GxE interaction), or interaction with other genetic factors which may differ in 

frequency across populations (GxG interaction). Heterogeneity in estimating genetic effect sizes 

may also be a consequence of differential correlation across genetic markers in a region, when 

investigate variants that are tagging the causal variant, but do not exert any influence on the 

trait in question. Such heterogeneity does not reflect biological differences, but are rather 
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statistical in nature. While it is assumed that biological pathways underlying complex human 

disorders are generally consistent across populations, genetic heterogeneity has been observed 

in other genetically complex disorders28. The large EAS sample allowed us to systematically 

explore the heterogeneity of genetic effects influencing liability to schizophrenia across two 

major world populations.  

Using LDSC23 and common variants (MAF> 5%) outside of the MHC region, we found 

the SNP-heritability of schizophrenia is very similar in EAS (0.23±0.03) and EUR (0.24±0.02) 

(Methods and Supplementary Figure 2a). Using the same set of variants, we found that the 

genetic correlation for schizophrenia between EAS and EUR was indistinguishable from 1 

(rg=0.98±0.03) (using POPCORN29, a method designed for cross-ancestry comparisons). This 

finding indicates that the common variant genetic architecture of schizophrenia outside of the 

MHC region is highly consistent across EAS and EUR.  

Genetic correlations between schizophrenia and 11 other psychiatric disorders and 

behavior traits also showed no significant differences when estimated within EUR and across 

EAS-EUR (Supplementary Figure 2b). In agreement with recent reports30–33, we observed 

significant positive genetic correlations for schizophrenia with bipolar disorder, major depressive 

disorder, anorexia nervosa, neuroticism, autism spectrum disorder, and educational attainment. 

We observed significant negative correlations with general intelligence, fluid intelligence score, 

prospective memory, and subjective well-being. 

We used partitioned LDSC23 to look for heritability enrichment in diverse functional 

genomic annotations defined and used in previous publications34,35 (Methods and 

Supplementary Figure 2c,d). Using EAS Stage 1 samples, we observed significant enrichment 

(after Bonferroni correction) in regions conserved across 29 mammals (Conserved 

LindbladToh36). No other annotations were significantly enriched, and there were no significant 

differences between EUR-only and EAS-only enrichments (P=0.16, two-sided paired t test).  
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We identified gene-sets that are enriched for schizophrenia genetic associations using 

MAGMA37 and gene-set definitions from a recent schizophrenia exome sequencing study38 

(Methods). Despite large differences in sample size and genetic background, the gene-sets 

implicated in EAS and EUR samples were highly consistent: we observed no significant 

differences between gene-set ranks using the EAS samples from the ranks using EUR samples 

(P = 0.72, Wilcoxon test, two-sided). In addition, 9 of the top 10 gene-sets identified using the 

EAS samples are also among the top 10 gene-sets identified using EUR samples 

(Supplementary Figure 3).  

A study of EUR individuals suggested that common schizophrenia alleles are under 

strong background selection3. We performed two analyses and found that the natural selection 

signatures, including positive and background selections, are consistent in schizophrenia-

associated loci across EAS and EUR populations. First, we compared the signatures in the top 

100 associated loci in EAS to those in EUR. Among the selection signatures we calculated 

(Methods), none showed a significant difference across populations (Supplementary Figure 4a, 

P > 0.05 for all panels, two-sided t test). We next asked whether the population differentiation 

drives schizophrenia variants to have different effects in different populations. Using 295 

autosomal variants that are genome-wide significant in EAS, EUR or EAS-EUR combined 

samples, we did not observe a correlation (R2=0.003, Supplementary Figure 4b) between the 

population differentiation (measured by Fst) and the heterogeneity of effect size (measured by 

log10P-value from the heterogeneity test across EAS and EUR).  

As a further test, we examined whether the effect size estimates from EUR differ from 

those from EAS. We performed the heterogeneity test (Cochran's Q) for the most significant 

variants in the 108 published schizophrenia-associated loci2. Among them, 7 variants showed 

significant heterogeneity after Bonferroni correction (Supplementary Table 4). Postulating that 

this might in part be driven by the inflation of EUR estimates as a result of the winner’s curse, 

we applied a correction for the winner’s curse39, after which none of the variants showed 
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evidence for significant heterogeneity, and the P-values from the heterogeneity test follow a 

uniform distribution (P=0.10, Kolmogorov–Smirnov test, two-tailed).  

Lastly, we evaluated the heterogeneity of schizophrenia genetic effects within EAS 

samples. None of the EAS associations showed significant heterogeneity across EAS samples 

(Supplementary Table 3). Using their principal components (PC), we further grouped the 

samples into the Northeast Asian, Southeast Asian and Indonesian subpopulations (Methods). 

We then performed the heterogeneity test (Cochran's Q) and found no significant heterogeneity 

among the three subpopulations (Supplementary Figure 5).  

Schizophrenia genetic associations from the meta-analysis of EAS and EUR  

As the genetic effects observed in EAS are largely consistent with those observed in 

EUR, we performed a meta-analysis including the EUR and EAS samples (Stages 1 and 2) 

using a fixed-effect model with inverse-variance weighting40. The EUR + EAS samples in this 

analysis (56,418 cases and 78,818 controls) included all samples of EUR ancestry (33,640 

cases and 43,456 controls) from the previous publication2 with the exclusion of three samples of 

EAS ancestry and the deCODE samples (1,513 cases and 66,236 controls) which only had 

summary statistics for selected variants. The three EAS samples (IMH-1, HNK-1 and JPN-1) 

excluded from EUR samples were included in our EAS Stage 1.  

We identified 208 independent (both in EAS and EUR) variants associated with 

schizophrenia across 176 genetic loci (Fig. 2b and Supplementary Tables 5 and 6), among 

which 53 loci were novel (not reported in ref 2,3,7,8). Of the 108 schizophrenia-associated loci 

reported in the previous EUR study2, 89 remained significant in this study (Supplementary Table 

4). Using simulations with a correction for winner’s curse39, we found this is consistent with an 

expected over-estimation of the effect sizes due to the winner's curse in the previous study, 

rather than implying the 19 loci no longer significant in this study were false-positives 

(Supplementary Notes). In addition, the deCODE samples (1,513 cases and 66,236 controls) 
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were not included in the present study, causing the power for loci that had low MAF in EAS to 

drop.  

Population diversity improves fine-mapping  

Causal variants in complex genetic disorders are defined as those that mechanistically 

contribute to the disorders, but this does not imply that variant in isolation, is likely to result in 

the disorder41,42. Due to LD, disease-associated loci from genome-wide association studies 

usually implicate genomic regions containing many associated variants. A number of 

approaches allow for the associated variants to be refined to a smaller set of the most plausible 

(or credible) candidate causal variants43–46. Loci implicated in psychiatric disorders usually have 

small effect sizes and as a result, have generally poor performance using such approaches2,3.  

Diversity in genetic background across populations can be used to improve fine-mapping 

resolution47. Here we demonstrate that resolution can be improved by exploiting differences in 

the patterns of LD between causal (directly associated) and LD (indirectly) associated variants. 

Based on the premise that genetic effects are highly consistent across populations, the causal 

variants will have consistent effects across populations whereas non-causal variants can have 

inconsistent effects due to population-specific LD patterns. We therefore expect causal variants 

to have greater statistical significance and less heterogeneity in trans-ancestry meta-analysis 

compared to other alleles that are indirectly associated via LD (Supplementary Figure 6). Using 

an algorithm based on this expectation (Methods), we fine-mapped 59 schizophrenia 

associations that reached genome-wide significance in the EUR and Stage-1 EAS combined 

meta-analysis, had MAF > 0.01 in both EAS and EUR, and for which we had >95% coverage of 

common variants (MAF > 1%) with imputation INFO > 0.6 (Supplementary Table 7). The MHC 

region was excluded from the fine-mapping analysis due to its long range LD. Stage 2 EAS 

samples were excluded because not all had full genome coverage, which confounds the fine-

mapping outcome (Methods).  
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Results from this EAS-EUR trans-ancestry approach improved upon those using only 

EUR, with 44 out of 59 loci mapped to a smaller number of candidate causal variants 

(Supplementary Table 7). For example, a locus on chromosome 1 (238.8-239.4 Mb) which 

initially contained 7 potentially causal variants based on a published fine-mapping method43 and 

EUR samples was only resolved to a single variant, rs11587347, with 97.6% probability (Fig. 

3a). This variant showed strong association in both populations, while the other 6 variants are 

equally associated in EUR but not in EAS (Fig. 3b, c). Over all associations, the median size of 

the 95% credible set, defined as the minimum list of variants that were >95% likely to contain 

the causal variant, dropped from 49 to 30; and the number of associations mapped to ≤5 

variants increased from 2 to 7 (Fig. 3d). The number of associations mapped to a single variant 

with greater than 50% probability increased from 5 to 8, and median size of the genomic regions 

the associations mapped decreased from 154Kb to 94Kb.  

  

Transferability of genetics across populations   

For genome-wide significant loci which individually explain >0.05% of the variance in 

schizophrenia liability in either ancestry, we compared the variance explained across EAS and 

EUR. Variance was approximated as 2f(1 − 𝑓) log(𝑂𝑅)- /(π-/3) (ref 48) (Supplementary Figure 

7). Although these variants most often have comparable odds ratio across populations, their 

allele frequencies can differ. Variance explained, combining the effect size (OR) and prevalence 

of the risk allele (f), can be regarded as an approximate measure of the importance of a causal 

variant in a population. In our analysis, most of the trans-ancestry differences in variance 

explained is explained by allele frequency differences. One of the implications of this 

observation, as suggested in recent studies21,49,50, is that even if the risk alleles and effect sizes 

are primarily shared across populations, the disease predictive power of individual alleles, and 

of composite measures of those risk alleles such as PRS, may not be equivalent across 

populations.  
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Here we evaluate this empirically. We assessed how much variation in schizophrenia 

risk can be explained in EAS using both EAS Stage 1 and EUR training data. Using a standard 

clumping approach, we first computed PRS using a leave-one-out meta-analysis approach with 

EAS summary statistics (Methods), which explained ~3% of schizophrenia risk using genome-

wide variants on the liability scale (R2 = 0.029 at P=0.5). In contrast, when EUR summary 

statistics were used to calculate PRS in the EAS samples, a maximum of only ~2% of 

schizophrenia risk was explained (R2 = 0.022 at P=0.1) despite a greater than 3-fold larger EUR 

effective sample size (Fig. 4 and Supplementary Figure 8). The variance explained across 

various P-value thresholds provides a proxy for the signal-to-noise ratio, which differs by training 

population--relative to the EUR training data, variants from the EAS training data with more 

permissive P-values improve the EAS prediction accuracy. These results indicate that larger 

EAS studies will be needed to explain similar case/control variance as currently explained in 

EUR individuals. Further, although individual loci typically have the same direction and similar 

magnitude across populations, aggregating variants that differentially tag causal loci across 

populations for genetic risk prediction results in considerable variability in prediction accuracy.  

DISCUSSION 

To date, most large-scale psychiatric genetics studies have been based on samples of 

primarily EUR ancestry6. To increase global coverage, we compiled the largest non-European 

psychiatric genetics cohort to date and leveraged its size and diversity to provide new insights 

into the genetic architecture of schizophrenia. This study included all available major genotyped 

schizophrenia samples of East Asia ancestry, and presented analyses that had never been 

performed with sufficient power in psychiatric genetics. Although the first schizophrenia genetic 

associations from two much smaller studies of Chinese ancestry51,52 were not genome-wide 

significant in the present EAS analysis, several loci from their subsequent better powered 

studies7,8 reached genome-wide significance. Consistent with a study using EUR samples3, we 
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noted that this is consistent with the expected inflation of effect size from small studies rather 

than suggesting loci in previous studies are false positives.  

When a single population is used to identify the disease-associated loci, the discovery is 

skewed towards disease-associated variants that have greater allele frequency in that 

population (Supplementary Figure 9). When multiple populations are used, disease-associated 

variants are equally represented across the allele frequency spectrum in these populations 

(Supplementary Figure 9). This demonstrates that including global samples improves power to 

find disease associations for which the power varies across populations. In this study, for 

example, more EUR than EAS samples would be required to detect around half of the new loci, 

as the MAF is higher in EAS than in EUR in these loci.  

For traits like body mass index and autoimmune diseases, we observed heterogeneity 

across populations in genetic effects28,53, which may point to interactions between genetic 

associations and environment factors and/or other genetic loci. In contrast, for schizophrenia, 

we did not find significant heterogeneity across EAS and EUR ancestries. Analyses of genetic 

heritability, genetic correlation, gene-set enrichment and natural selection signatures converge 

on the conclusion that the schizophrenia biology is substantially shared across EAS and EUR 

ancestries (with MHC as a potential exception, discussed later). This remarkable genetic 

correlation (rg=0.98) demonstrates that schizophrenia risk alleles operate consistently across 

different ethnic and cultural backgrounds - at least across EAS and EUR ancestries. Given that 

the main putative environmental risk factors (migration, urbanicity and substance misuse) differ 

across populations, this finding also suggests any specific genetic liability to schizophrenia 

acting via these routes is minimal. 

We note that a direct comparison of the effect sizes estimated in EAS with those 

estimated in EUR has reduced accuracy as we do not know the exact schizophrenia causal 

variants. This is further complicated by inflation in effect size estimates due to the winner’s 

curse, which are of different magnitudes due to the sample size. Increasing the sample size, 
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especially in those of non-European ancestries, will reduce the bias and enable a better 

isolation of causal variants, leading to a more precise comparison of the genetic effect size 

across populations. 

The major histocompatibility complex (MHC) hosts the strongest schizophrenia 

association in EUR54. In this study, we did not find a significant schizophrenia association in 

MHC in EAS. An earlier EUR study55 mapped the MHC associations to a set of variants (in LD) 

at both distal ends of the extended MHC (lead variant: rs13194504) and the complement 

component 4 (C4). None of these associations was significant in EAS in this study, which is 

consistent with previous studies of the Chinese ancestry7,8,51,52. This, however, does not 

necessarily suggest population heterogeneity in their pathophysiological effect, as we attribute 

the disappearance of MHC signals partially to low frequencies. rs13194504 has MAF < 1% in 

EAS compared with 9% in EUR, and the C4-BS allele is extremely uncommon in samples from 

China and Korea56,57. Another reason may be the EUR-specific LD. In EUR, multiple protective 

alleles that contribute to the MHC associations are all on the same haplotype across about 6 

Mb, due to an extremely long and EUR-specific haplotype that generates LD patterns at 5-Mb 

scale. This may also be the reason that association signals span so many Mb of genome, and 

the aggregate association signal (at variants that are in partial LD to multiple signals) is stronger 

than the signals at the individual associations. 

Two recent studies using much smaller samples with individuals of Chinese ancestries7,8 

reported variants in MHC significantly associated with schizophrenia (rs115070292 and 

rs111782145 respectively. The two studies did not replicate each other’s findings as the 

reported risk alleles are in very weak LD (R2=0.07) and are not in LD with the EUR MHC 

associations. rs115070292, from Yu et al.7, is more frequent in EAS (12%) than in EUR (2%) 

with P = 10-9 using 4,384 cases and 5,770 controls of Chinese ancestry. This variant was not 

significantly associated in our study (P = 0.44) even though some samples from that earlier 

study were included in the current study (BJM-1, 1,312 cases and 1,987 controls). The OR 
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estimated from these shared samples marginally differs from that estimated using all EAS 

samples (P=0.018), and this association showed marginally significant heterogeneity across all 

EAS samples (P=0.039). Similarly, we did not replicate the association at rs111782145 from Li 

et al.8 (P = 0.47), again despite sample overlap (2,555 cases and 3,952 controls). 

The lack of replication across all these studies reflects the complexity of the MHC region 

and the limited power for the MHC signals in EAS. As demonstrated in previous studies of 

complex disorders, it is still possible that when sample size increases for the EAS, genome-wide 

association within the MHC region could emerge. A study designed for the MHC region, such as 

in ref 55, will be necessary to delineate the contribution of MHC to schizophrenia in EAS 

individuals. 

Genetic associations usually implicate a large genomic region and thus it can be 

challenging to map their molecular functions. We designed a novel algorithm to leverage the 

population diversity to fine-map schizophrenia associations to precise sets of variants. Using 

this algorithm, we reduced the number of candidate variants associated with schizophrenia and 

facilitated the functional interpretation of these associations. Our algorithm only maps the 

primary association signals in a locus because the power to fine-map signals beyond that, 

especially in the EAS samples, is still limited at the current sample size for schizophrenia. We 

also made an assumption that there is only one causal variant driving the primary association 

signal. In the scenario that there is a haplotypic effect driven by multiple variants in strong LD, 

our approach will split the posterior probability among these variants. We expect the causal 

variants to have non-trivial probability so that they will still be reported in the credible set for 

future studies. Imputation quality plays a key role in fine-mapping as the power to map the 

causal variant decreases if it is poorly imputed. We restricted our study to genetic associations 

that have MAF > 1% in both EAS and EUR populations to ensure the imputation quality. For 

these associations, we found no major change in the size of the credible sets when the EUR 

samples were imputed using the more powerful Haplotype Reference Consortium (HRC) 
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panel58. However, the HRC reference panel, with its much larger sample size and better 

characterization of low frequency and rare variants, could improve fine-mapping resolution for 

variants with MAF ≤ 1%59. 

Finally, this large-scale EAS sample allowed us to empirically evaluate the congruence 

of the genetic basis of schizophrenia between EAS and EUR. In spite of a cross-population 

common variant genetic correlation being highly consistent, we found that polygenic risk models 

trained in one population have reduced performance in the other population due to different 

allele frequency distributions and LD structures. This highlights the importance of including all 

major ancestral groups in genomic studies both as a strategy to improve power to find disease 

associations and to ensure the findings have maximum relevance for all populations. 

 

METHODS 

Overview of samples 

The following samples were used in this study: 

EAS samples, full-genome: genome-wide genotype data was obtained from 16 samples 

from East Asia (Supplementary Table 1). Two of these samples (TAI-1 and TAI-2) had parents 

off-spring trios and were processed as case/pseudo-controls. DSM-IV was used for diagnosing 

all schizophrenia cases in these samples except for the trios (TAI-1 and TAI-2), for which DIGS 

was used. All samples were processed according to quality control (QC) procedures reported in 

ref 2, with details reported in following sections. After QC, genotypes were phased and imputed 

against the 1000 Genomes Project Phase 3 reference panel6. Principal component analysis 

(PCA) was conducted across samples via imputed best guess genotypes to identify and remove 

overlapping samples across datasets, cryptic related samples and population outliers. Eight 

PCs that are associated to the case-control status were included in univariate logistic regression 

to control for the population stratification in each sample.  
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EAS samples, selected variants: summary statistics was obtained for a set of variants 

from four EAS samples (BJM-2, BJM-3, BJM-4, BIX-5) which had been analyzed in published 

studies7,8. The summary statistics included odds ratio, standard error, reference and tested 

alleles for variants that have P<10-5 in either Stage 1 or the meta-analysis combining Stage 1 

and EUR samples. Between 22,156 and 31,626 variants were available after the exclusion of 

strand ambiguous60 variants (Supplementary Table 2). 

EUR samples: Genotypes for EUR schizophrenia patients and controls were obtained 

from the Psychiatric Genomics Consortium as reported in ref 2. All samples of EUR ancestry 

were included in this study except for the deCODE samples (1,513 cases and 66,236 controls). 

We also like to note that three samples of EAS ancestry reported in this publication were not 

included in the EUR samples in our analysis but were included in the EAS samples (IMH-1, 

HNK-1 and JPN-1). The same procedures used in processing EAS samples were applied to the 

EUR samples. 

EAS subpopulations: To investigate the heterogeneity of schizophrenia genetics effects 

within EAS, we grouped the samples based on their principal components. Other than 

Indonesians (UWA-1) which fall into their own subpopulation, samples were grouped into 

Northeast Asian subpopulation if their average PC2 is significantly greater than 0 (BIX-2, BJM-1, 

XJU-1, JPN-1 and KOR-1) and into Southeast Asian subpopulation if their average PC2 is 

significantly less than 0 (TAI-1, TAI-2, IMH-1, IMH-2, HNK-1, BIX-3). The remaining samples 

(UMC-1, SIX-1, BIX-1 and BIX-4) were not included in subpopulations. The heterogeneity test 

(Cochran’s Q) across subpopulations, calculated pairwise and in three-way, was conducted 

using the RICOPILI pipeline61.  

 

 

Quality control  
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Quality control procedures were carried out as part of the RICOPILI pipeline61 

(https://sites.google.com/a/broadinstitute.org/ricopili/home) with the following steps and 

parameters: 1) Excluding variants with call rate below 95%; 2) Excluding subjects with call rate 

below 98%; 3) Excluding monomorphic variants; 4) Excluding subjects with inbred coefficient 

above 0.2 and below -0.2; 5) Excluding subjects with mismatch in reported gender and 

chromosome X computed gender; 6) Excluding variants with missing rate differences greater 

than 2% between cases and controls; 7) Subsequent to step 6, exclude variants with call rate 

below 98%; and 8) Exclude variants in violation of Hardy-Weinberg equilibrium (P < 10-6 for 

controls or P < 10-10 for cases). Numbers of variants or subjects removed in each step were 

reported in Supplementary Table 2.  

Phasing and imputation 

All datasets were phased using SHAPEIT62 and IMPUTE263 using regular steps and 

parameters. Additional processing for trios (TAI-1 and TAI-2) was carried out such that 

case/pseudo-controls were identified and imputed. All samples were imputed to the 1000 

Genomes Project Phase 3 reference panel64 (2504 subjects, including 504 EAS subjects). 

Imputation procedures resulted in dosage files and best guess genotypes in PLINK65 binary 

format. The former was used for subsequent association analysis and the latter was used in the 

PCA and PRS analyses. 

Sample overlaps, population outliers and population stratification 

We used Eigenstrat66 to calculate the principal components for all the samples using the 

best guess genotypes from imputation (Supplementary Figure 10b). We computed the identity-

by-descent matrix to identify intra- and inter- dataset sample overlaps. Samples with pi-hat > 0.2 

were extracted, followed by Fisher-Yates shuffle on all samples. The number of times with 

which each sample was related to another sample was tracked and samples that were related 

to more than 25 samples were removed. When deciding which samples to retain, trio were 
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preferred, followed by cases, and thereafter a random sample for each related pair was 

removed, 704 individuals were removed.  

To identify population outliers, k-means clustering was conducted using the first 20 PCs 

from PCA and covariates representing each of the 13 Stage 1 samples. Guided by results of k-

means clustering and visual inspection of PCA plots, 46 individuals were identified as outliers 

and were excluded. Further population-level inspection was carried out by merging the 1000 

Genomes Project Phase 1 reference samples with Stage 1 samples and conducting PCA 

(Supplementary Figure 10a). Using similar approaches reported above, no further samples were 

excluded as population outliers.  

Eight PCs that are associated with case/control status with P < 0.2 were used as 

covariates for association analysis in each sample (PCs 1, 4, 5, 6, 8, 9, 15, and 19). QQ plots 

(Supplementary Figure 1) showed that the population structure has been well controlled.  

Association analysis and meta-analysis 

Association analysis was carried out for each sample using PLINK65 and genotype 

dosage from imputation. Only variants having imputation INFO ≥ 0.6 and MAF ≥ 1% were 

included in the analysis. We performed logistic regression with PCs identified in the prior 

subsection as covariates to control for population stratification within each study. Fixed-effect 

meta-analysis67, weighted by inverse-variance, was then used to combine association results 

across samples. Meta-analysis for European samples were conducted in the same matter. In 

order to find independent schizophrenia associations in both EUR and EAS populations 

(Supplementary Table 5), we performed LD clumping twice using the 1000 Genomes Project 

Phase 3 EUR and EAS reference panels respectively (with default parameters in RICOPILI).  

Chromosome X analysis  

Chromosome X genotypes were processed separately from autosomal variants. Quality 

control was conducted separately for males and females, using similar quality control 

parameters as above. Cases and pseudo-controls were built out of the trios. Phasing and 
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imputation were then performed on males and females separately for each sample, followed by 

logistic regression with the same PCs, and meta-analysis combining samples (same parameters 

as the autosomal analyses). Results were generated for EAS Stage 1 samples and EUR-EAS 

combined samples (excluding BIX1, BIX2 and BIX3). EAS Stage 2, BIX1, BIX2 and BIX3 

samples do not have chromosome X data and were therefore not analyzed.    

Genetic correlation and heritability 

Schizophrenia heritabilities in the observed scale for samples of EUR and EAS ancestry 

were estimated from their summary statistics using the LDSC23. We converted the heritabilities 

in the observed scale to liability scale assuming the schizophrenia population prevalence at 1%. 

The LD scores were pre-computed from the 1000 Genomes Project Phase 3 reference panel in 

EUR and EAS respectively (https://github.com/bulik/ldsc). Only autosomal variants having MAF 

greater than 5% in their respective population were included in the analysis, and variants in the 

MHC region were not included due to the long-range LD.  

We computed the genetic correlations between schizophrenia and other traits within 

EUR and across EUR and EAS. EUR and EAS (Stage 1 only) summary statistics for autosomal 

variants from this study were used as schizophrenia genetic association inputs for their 

respective populations. Traits tested included schizophrenia2, bipolar68, major depression69, 

anorexia nervosa70, neuroticism & subjective well-being (SWB)71, autism spectrum disorder 

(PGC 2015 release, available at http://www.med.unc.edu/pgc), attention deficit hyperactivity 

disorder (with samples of non-European ancestry removed, available at 

http://www.med.unc.edu/pgc)72, education attainment73, general intelligence74, fluid intelligence 

score and prospective memory result (using individuals from UK Biobank; 

http://www.nealelab.is/uk-biobank). Only variants having MAF greater than 5% were available 

and included. Variants in the MHC region were excluded from the analysis. Genetic correlations 

within EUR were computed using LDSC with LD scores pre-computed on the 1000 Genomes 

Project Phase 3 reference panel (503 EUR subjects). Genetic correlations across EUR and EAS 
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were computed using POPCORN29. POPCORN uses a Bayesian approach which assumes that 

genotypes are drawn separately from each population and effect sizes follow the infinitesimal 

model. The inflation of z scores could then be modelled and a weighted likelihood function 

which was maximized to find heritability and genetic correlation. Genetic correlations in 

POPCORN were computed in the “genetic effect” mode, which estimates the correlation based 

on the LD covariance scores and effect sizes from summary statistics.  

Partitioned heritability 

Partitioned LDSC34 was conducted to look for heritability enrichment in diverse 

annotations using EAS (Stage 1) and EUR autosomal variants (summary statistics) respectively. 

LD scores for each annotation were computed using a combination of PLINK65 and LDSC23 

using the 1000 Genomes Project EAS and EUR subjects respectively. We used baseline 

annotations34 and additional annotations including chromatin accessibility in brain dorso-lateral 

prefrontal cortex through the Assay for Transposase-Accessible Chromatin using sequencing 

peaks (ATAC Bryois)35, conserved regions located in “ATAC Bryois” (ATAC Bryois & Conserved 

LindbladToh)35, and introgressed regions from Neanderthal (Neanderthal Vernot)75. Variants 

can be included in multiple annotations. Multi-allelic variants were removed.  

Gene-set analysis 

We performed gene and gene-set based tests using MAGMA37. Genome-wide summary 

statistics for autosomal variants from EAS, EUR and EAS+EUR meta-analyses were used in 

this analysis. Variant-to-gene annotation was performed using RefSeq NCBI37.3 with a window 

of 5 Kb upstream and 1.5 Kb downstream. LD was taken from 1000 Genomes Project EAS, 

EUR and EUR-EAS panels respectively. The gene-based P-values were computed using F-test 

and multivariate linear model, and competitive tests were used for gene-set analysis. Seventy 

gene-sets were selected and tested in this study (Supplementary Table 8) including those from 

the Molecular Signatures Database76, related to psychiatric diseases38,77,78 and from 

‘gwaspipeline’(https://github.com/freeseek/gwaspipeline/blob/master/makegenes.sh). Gene-sets 
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were ranked for EUR, EAS and EAS+EUR analyses respectively. The top-ranking gene-sets 

were compared across analyses to identify common schizophrenia pathways. Additionally, 

Wilcoxon sign rank tests was conducted to compare the ranking of gene-sets between the EUR 

and EAS datasets.  

Natural selection analysis 

We used the CHB and CEU panels from the 1000 Genomes Project Phase 3 to 

investigate the natural selection signatures in schizophrenia-associated loci for EAS and EUR 

populations respectively. We used the following selection signatures, with their sensitivity to 

timeframes discussed in ref 3. integrated Haplotype Score (iHS): iHS captures the haplotype 

homozygosity at a given variant. We calculated iHS using the R rehh package79. Genetic 

distance between variants was determined using HapMap phase II genetic map. Ancestral and 

derived alleles were obtained from the 1000 Genome project, which inferred the ancestral state 

using six primates on the EPO (Enredo-Pecan-Ortheus) pipeline. Only bi-allelic variants that 

have MAF ≥ 5% were included in the analysis. Cross Population Extended Haplotype 

Homozygosity (XPEHH)80: XPEHH detects variants under selection in one population but not 

the other. We used CEU as the reference panel when calculating XPEHH for CHB and vice 

versa. Fixation index (Fst): Fst measures the population differentiation due to genetic structure. 

We estimated Fst using the Weir and Cockerham approach81, which is robust to sample size 

effects. Absolute derived allele frequency difference (|ΔDAF|): |ΔDAF| measures population 

differentiation between CHB and CEU populations. Composite of Multiple signals (CMS)82-85: 

CMS combines iHS, XPEHH, Fst and |ΔDAF|. As a result, CMS potentially has better power to 

detect the selection signature. For each variant, CMS = ∏678
9 𝑝6	, in which 𝑝6 is the rank of the 

variant using method 𝑖, sorted by increasing P-values, divided by the total number of variants. B 

statistic: B statistic measures the background selection. We calculated the B statistic as in ref 84. 

 

Trans-ethnicity fine-mapping 
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For a disease-associated genetic locus, fine-mapping defines a “credible set” of variants 

that contains the causal variant with certain probability (e.g., 99% or 95%). The Bayesian fine-

mapping approaches2,43,86,87 have been widely used for studies of a single ancestry. Here, we 

extended a Bayesian fine-mapping approach85 (Defining credible sets, Methods) to studies of 

more than one ancestry. Intuitively, the extension was achieved through a prior calculated from 

the heterogeneity across ancestries, such that variants that have different odds ratio across 

populations will have a smaller prior probability to be the causal variant.  

As in several previous studies2,86, we restricted our fine-mapping analysis to the primary 

association signal in each locus. This is done by taking 𝑃 variants that are in LD with the lead 

variant (the variant having the most significant P-value) with R2 > 0.1 in EUR or EAS. Assume 𝐷  

represents the data including the genotype matrix 𝑋 for the 𝑃 variants and disease 𝑌 for 𝑁 

individuals, and β represents a collection of model parameters. We define the model, denoted 

by 𝐴, as the causal status for the 𝑃 variants in locus: A ≡ {𝑎H}, in which 𝑎H is the causal status for 

variant j. 𝑎H = 1 if the variant j is causal, and 𝑎H = 0  if it is not. For the primary association signal 

and under the presumption that the causal variant is the same across all ancestries, one and 

only one of the P variants is causal: ∑ 𝑎HN = 1. For convenience, we define 𝐴H as the model in 

which only variant j is causal, and 𝐴O as the model in which no variant is causal (null model). 

The probability of model 𝐴H (where variant j is the only causal variant in the locus) given the data 

(D) can be calculated using Bayes’s rule: 

 PrR𝐴HS𝐷T = PrR𝐷S𝐴HT
UVRWXT
YZ([)

. 

With the steepest descent approximation, the assumption of a flat prior on the model 

parameters (β), and the assumption of one causal variant per locus (equation 2 in ref 86), 

PrR𝐴HS𝐷T can be approximated as: 

 PrR𝐴HS𝐷T ≈ PrR𝐷S𝐴H, β̂HT 𝑁_8/- UVRWXT
YZ([)

, (1) 
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 in which N is the sample size. We denote χH- as the χ- test statistic for variant j, which 

can be calculated from the P-value from the meta-analysis combining EAS and EUR samples.  

Using equation 3 in ref 86, we have  

 PrR𝐷S𝐴H, 𝛽bHT ≈ exp f
gX
h

- i PrR𝐷S𝐴O, β̂OT. (2) 

PrR𝐴HT is the prior probability that variant j is causal. We have shown that schizophrenia 

causal variants have consistent genetic effect across populations. Therefore, we model the prior 

probability as a function of the heterogeneity measured in  𝐼-:  

 PrR𝐴HT = 1 − 𝐼H-. (3) 

 Using equations 2 and 3, 𝑃𝑟R𝐴HS𝐷T in equation 1 can be calculated as 

PrR𝐴HS𝐷T ≈ exp l
χH-

2
m R1 − 𝐼H-T

𝑁_8/-

Pr(𝐷)
PrR𝐷S𝐴O, β̂OT 

We only use Stage 1 samples in fine-mapping so the variants have the same sample 

size (assuming all variants have good imputation quality). Therefore, 𝑁_8/-, 𝑃𝑟(𝐷) 

and  PrR𝐷S𝐴O, β̂OT can be regarded as constants,  

PrR𝐴HS𝐷T ∝ exp f
gX
h

- i R1 − 𝐼H
-T. 

 The normalized causal probability for variant 𝑗 is then 

𝑃R𝐴HT = PrR𝐴HS𝐷T /p
q

Pr(𝐴q|𝐷) 

And the 95% credible set of variants is defined as the smallest set of variants, , such that   

 ∑ 𝑃R𝐴HTWX∈t ≥ 95%. 

Polygenic risk score analysis  

We constructed PRS using a pruning and thresholding approach in a study set of EAS 

individuals with training summary statistics from either EUR or EAS individuals. In the former 



25 

case, we used summary statistics from all EUR individuals in this study; in the latter case, we 

used a leave-one-out meta-analysis approach across the 13 Stage 1 samples to build PRS.  

For the EUR training data, we extracted EUR individuals (FIN, GBR, CEU, IBS, TSI) 

from 1000 Genomes Project64 Phase 3 as an LD reference panel to greedily clump variants. For 

the EAS LD reference panel, we created two panels: 1) an analogous EAS panel (CDX, CHB, 

CHS, JPT, KHV) from 1000 Genome Project64 Phase 3 (Fig. 4 and Supplementary Figure 7c 

and d), and 2) an LD panel from best guess genotypes from each cohort in the study 

(Supplementary Figure 7a,b,e,f). For both EAS and EUR prediction sets, we filtered to variants 

with a MAF greater than 1% in each respective population and removed indels and strand 

ambiguous variants. We subset each list of variants to those in the summary statistics with an 

imputation INFO > 0.9. We then selected approximately independent loci at varying P-value 

thresholds or top-ranking n variants using an LD threshold of R2 ≤ 0.1 in a window of 500 

kilobase pairs in PLINK65 with the --clump flag. We treated the MHC with additional caution to 

minimize overfitting in this region, selecting only the most significant variant from the HLA 

region. To profile variants, we multiplied the log odds ratio for selected variants by genotypes 

and summed these values across the genome in PLINK65 using the --score flag for each of the 

13 EAS Stage 1 samples. We assessed case/control variance explained by computing 

Nagelkerke’s and a liability-scale pseudo-R2 as in Lee et al.88 by comparing a full model with the 

PRS and 10 principal components with a model excluding the PRS. Results of PRS were 

presented in two ways the first we selected SNP based on GWAS P-value thresholds (PT) (i.e. 

5e-8, 1e-6, 1e-4, 0.001, 0.001, 0.05, 0.1, 0.2, 0.5, 1) and P-value ranks. In the latter, top ranked 

SNPs that exist between both EUR and EAS summary statistics were selected based on the 

SNP rank thresholds (i.e. top 100, 1500, 5000, 15000, 25000, 35000, 50000, all).  
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Data availability     
Genome-wide summary statistics from EAS samples, EUR samples (“49 EUR samples”) and all 
samples (EAS and EUR combined) in this study can be downloaded from 
https://www.med.unc.edu/pgc/results-and-downloads/. Individual-level genotype data for EAS 
samples are available upon request to contact authors (Supplementary Information). Alternately, 
requests can be made to the Psychiatric Genomics Consortium (PGC). In this case, access to 
individual-level genotypes from samples recruited outside of mainland China will go through the 
PGC “fast-track” approval. Access to individual-level genotypes from samples recruited within 
mainland China has to be approved by the individual Chinese contact authors (Supplementary 
Information), and are subject to the policies and approvals from the Human Genetic Resource 
Administration, Ministry of Science and Technology of the People’s Republic of China. 
Individual-level genotypes from samples recruited within mainland China have been stored and 
kept in a server physically located in mainland China. Analyses were performed on these 
samples using the same computer codes as those used for other EAS and EUR samples, which 
are available in the Code availability section.  
 
Code availability 
Computer code used in this manuscript: RICOPILI (quality control, principal component 
analysis, pre-phasing, imputation, association test and meta-analysis) 
https://github.com/Nealelab/ricopili/wiki; embedded within RICOPILI (Eigenstrat 
https://github.com/DReichLab/EIG/tree/master/EIGENSTRAT; SHAPEIT 
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html; EAGLE 
https://github.com/poruloh/Eagle; IMPUTE 
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; Minimac 
https://genome.sph.umich.edu/wiki/Minimac); POPCORN (trans-ancestry genetic correlation): 
https://github.com/brielin/Popcorn; LDSC (heritability, partitioned heritability and within-ancestry 
genetic correlation): https://github.com/bulik/ldsc; MAGMA (pathway analysis): 
https://ctg.cncr.nl/software/magma; Fine-mapping (Fine-mapping and PAINTOR):  
https://github.com/hailianghuang/FM-summary, https://github.com/gkichaev/PAINTOR_V3.0; 
REHH (selection): https://cran.r-project.org/web/packages/rehh/index.html; B score (background 
selection): http://www.phrap.org/othersoftware.html; PRS analyses: 
https://github.com/armartin/pgc_scz_asia  
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Figure Captions 
 
Figure 1. Genetic associations in East Asian populations. Manhattan plot for schizophrenia 
genetic associations using East Asian samples (Stages 1 and 2; N = 22,778 cases; 35,362 
controls).  

 
Figure 2. Schizophrenia associations in EUR and EAS samples. Manhattan plot for the 
schizophrenia genetic associations from the EAS (Stages 1 and 2) + EUR meta-analysis (N = 
56,418 cases; 78,818 controls).  
 
Figure 3. Trans-ethnicity fine-mapping maps improves resolution. a, an association was 
mapped to a single variant (rs11587347) after adding EAS samples and using the trans-
ancestry fine-mapping approach. Regional association plots were generated using 
http://locuszoom.org/ and LD from 1000 Genomes Project Phase 3 EUR subjects. b, LD with 
the lead variant (rs11587347).. c, The lead variant (rs11587347) has strong association 
significance in both populations and low heterogeneity across populations. a-c, N (EAS Stage 1) 
= 13,305 cases; 35,362 controls; N (EUR PGC2) = 33,640 cases; 43,456 controls. d, Number of 
variants in the 95% credible set using the trans-ancestry (EAS+EUR) and published fine-
mapping approaches (EUR only).  
 
Figure 4. Genetic risk prediction accuracy in EAS from EAS or EUR training data. 
Polygenic risk scores were computed with GWAS summary statistics from EAS and EUR 
populations as training sets. EAS risk alleles and weights were computed with a leave-one-out 
meta-analysis approach across the 13 Stage 1 samples. Error bars indicate the 95% confidence 
interval. LD panel for clumping is from EUR and EAS 1000 Genomes Phase 3 samples. a, 
Case/control variance explained in EAS samples by variants from EAS and EUR training data 
with a P-value more significant than the threshold. b, Case/control variance explained by the n 
most significant independent variants. a-b, N (EAS Stage 1) = 13,305 cases; 35,362 controls; N 
(EUR PGC2) = 33,640 cases; 43,456 controls.  
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Table 1. Genome-wide significant loci in the East Asian populations. 
        Stage 1 Stage 2 Combined 

SNP Chr BP AL P OR P OR P OR 

rs4660761 1 44440146 A/G 3.6E-06 0.91 3.53E-04 0.92 5.08E-09 0.91 

rs848293 2 58382490 A/G 3.7E-10 0.90 3.10E-09 0.87 9.87E-18 0.89 

rs17592552 2 201176071 T/C 8.4E-10 0.86 2.68E-05 0.89 1.50E-13 0.88 

rs2073499 3 50374293 A/G 1.1E-09 0.89 2.14E-05 0.91 1.33E-13 0.90 

rs76442143 3 51043599 T/C 6.9E-09 1.14 1.03E-02 1.08 6.40E-10 1.12 

rs10935182 3 136137422 A/G 1.3E-06 0.90 1.33E-04 0.90 7.08E-10 0.90 

rs4856763 3 161831675 A/G 3.9E-06 0.92 8.54E-06 0.91 1.73E-10 0.92 

rs13096176 3 180752138 T/C 3.1E-07 0.88 2.21E-03 0.90 3.35E-09 0.89 

rs6832165 4 24270210 C/G 3.7E-08 1.12 3.70E-01 1.08 2.79E-08 1.12 

rs13142920 4 176728614 A/C 9.5E-05 0.93 5.85E-06 0.89 4.85E-09 0.92 

rs4479913 6 165075210 A/G 3.6E-07 1.13 9.98E-05 1.12 1.53E-10 1.12 

rs320696 7 137047137 A/C 5.5E-08 0.90 1.07E-02 0.93 2.81E-09 0.91 

rs11986274 8 38259481 T/C 5.1E-04 1.07 2.73E-06 1.11 1.44E-08 1.08 

rs2612614 8 65310836 A/G 2.2E-08 1.14 4.51E-02 1.06 1.62E-08 1.11 

rs4147157 10 104536360 A/G 6.6E-10 0.90 3.87E-07 0.89 1.32E-15 0.89 

rs10861879 12 108609634 A/G 4.8E-07 1.09 5.00E-03 1.07 1.18E-08 1.08 

rs1984658 12 123483426 A/G 5.1E-11 0.89 2.14E-04 0.92 8.62E-14 0.90 

rs9567393 13 32763757 A/G 3.5E-08 1.11 4.37E-03 1.07 1.13E-09 1.09 

rs9890128 17 1273646 T/C 3.5E-08 0.90 2.44E-02 0.91 2.61E-09 0.90 

rs11665111 18 77622996 T/C 5.2E-06 1.08 6.89E-04 1.09 1.46E-08 1.09 

rs55642704 18 77688124 T/C 1.1E-06 1.09 7.11E-06 1.10 3.76E-11 1.09 

 
BP: genomic position in HG19. AL: Reference and non-reference alleles, OR: Odds-ratio, P: P-
value. N (EAS Stage 1) = 13,305 cases; 35,362 controls; N (EAS Stage 1+2) = 22,778 cases; 
35,362 controls. Fixed effect inverse variance meta-analysis was utilized to generate p-values.    
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