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ABSTRACT 

 

The common patatin-like phospholipase domain-containing protein 3 (PNPLA3) 

variant I148M predisposes to non-alcoholic liver disease but not its metabolic sequelae. 

We compared the handling of labeled polyunsaturated and saturated fatty acids (PUFA 

and SFA) in vivo in humans and in cells harboring different PNPLA3 genotypes. In 

148M homozygous individuals, triglycerides (TGs) in very low-density lipoproteins 

(VLDL) were depleted of PUFA both under fasting and postprandial conditions 

compared to 148I homozygotes, and the PUFA/SFA ratio in VLDL-TGs was lower 

relative to the chylomicron precursor pool. In human PNPLA3-148M and PNPLA3-

knockout cells, PUFA but not SFA incorporation into TGs was increased at the expense 

of phosphatidylcholines, and under lipolytic conditions PUFA containing 

diacylglycerols (DAGs) accumulated compared to PNPLA3-148I cells. 

Polyunsaturated TGs were increased while PCs were decreased in the human liver in 

148M homozygous individuals as compared to 148I homozygotes. We conclude that 

human PNPLA3-I148M is a loss of function allele that remodels liver TGs in a 

polyunsaturated direction by impairing hydrolysis/transacylation of PUFA from DAGs 

to feed phosphatidylcholine synthesis.  

 

KEYWORDS: Non-alcoholic fatty liver disease, triglycerides, lipids, lipase 
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INTRODUCTION 

 

The I148M variant in patatin-like phospholipase domain-containing protein 3 

(PNPLA3) is found worldwide in 30-50% of all subjects (1). It increases 

intrahepatocellular triglycerides (IHTGs) and risks of non-alcoholic steatohepatitis 

(NASH), alcoholic and non-alcoholic cirrhosis and hepatocellular carcinoma (2). 

Unlike in non-alcoholic fatty liver disease (NAFLD) associated with obesity and 

metabolic syndrome, carriers with NAFLD due to the I148M gene variant are neither 

insulin resistant nor predisposed to develop metabolic sequelae such as cardiovascular 

disease compared to non-carriers (1). Indeed, several studies have recently shown the 

gene variant to be protective against cardiovascular disease (3, 4). 

 

In humans, hepatic TGs are markedly enriched in polyunsaturated fatty acids (PUFA) 

in carriers of the PNPLA3 I148M variant compared to non-carriers (5). This lipidome 

differs from the NAFLD lipidome associated with insulin resistance, in which liver is 

enriched in predominantly saturated or monounsaturated TGs (5). The human lipidomic 

data of NAFLD in PNPLA3 variant carriers closely resemble the hepatic lipidomic 

profile of PNPLA3 knock-out (ko) mice (6, 7). In the latter study, PNPLA3 was 

proposed to act as a transacylase transferring PUFAs from TG to lyso-phospholipids or 

as a TG hydrolase hydrolyzing PUFAs from TGs in a remodeling pathway for lipid 

droplet phospholipids (7).  

 

However, data from mouse models are not easy to reconcile with the human data. 

PNPLA3-ko mice accumulate polyunsaturated TGs but do not develop hepatic steatosis 

(6-8). Opposite to humans and knock-in mice expressing a catalytically inactive 
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PNPLA3 (PNPLA3-S47A-ki), PUFAs are depleted in hepatic TGs in I148M knock-in 

mice, i.e. in mice in which the I148M has been introduced to the endogenous mouse 

PNPLA3 gene (7). Mouse PNPLA3 is approximately 68% homologous with human 

PNPLA3 (9). This difference could contribute to the discrepant results in mice as 

compared to humans. Regarding cell models, hepatic cell lines such as HuH7 and 

HepG2 are not ideal for studying the function of the PNPLA3 I148M variant as both 

cell lines are homozygous for the variant allele (10, 11). There are no studies addressing 

the function of the PNPLA3 I148M variant in humans in vivo or in vitro in human cells 

that do not endogenously express the I148M variant and in which the variant has been 

knocked-in rather than overexpressed.      

 

In the present study, we wished to determine why PUFAs are enriched in TGs in the 

human liver. This is important for understanding the pathogenesis of the most important 

genetic risk factor of NAFLD. To this end, we compared the hepatic handling of labeled 

PUFAs (13C-18:2) and saturated fatty acids (SFAs, 13C-16:0) and the composition of 

VLDL in homozygous carriers and non-carriers of the PNPLA3 I148M variant. 

Furthermore, by using CRISPR-Cas9 we engineered human cells homozygous for the 

PNPLA3 148I allele (PNPLA3-148I, wt) to generate cell lines with a homozygous 

I148M substitution (PNPLA3-148M-ki) or a homozygous PNPLA3 deletion 

(PNPLA3-ko). In these cells we employed “click” chemistry of alkyne-labeled C-18:2 

and C-16:0 FAs to analyze rapid fatty acid fluxes during lipogenesis and lipolysis. 

Finally, we compared the lipid composition of human liver biopsies between 

homozygous carriers and non-carriers of the I148M variant. 

 

  



 

   
 

13 

RESULTS  

Increased IHTGs in homozygous 148M variant allele carriers (PNPLA3148MM) 

compared to non-carriers (PNPLA3148II)  

Characteristics of the PNPLA3148II and PNPLA3148MM groups are shown in Table 1. 

The PNPLA3148MM group had a significantly and 3.5-fold higher IHTG content than the 

PNPLA3148II group (6.3 [4.5 – 14.6] vs. 1.8 [1.0 – 6.7] %) (Table 1). The PNPLA3148II 

and PNPLA3148MM groups were similar with respect to age, gender, glucose and insulin 

concentrations and BMI (Table 1). There were no significant differences between the 

groups in physical activity or dietary intake as determined by 1-week accelerometer 

data and analysis of 3-day dietary records (Table S1).  

 

Deficiency of polyunsaturated TGs in VLDL in the PNPLA3148MM as compared to 

the PNPLA3148II group 

Total concentrations of plasma TG, free fatty acids (FFA), VLDL-TG and chylomicron-

TG and glucose and serum insulin concentrations were similar between the 

PNPLA3148MM and PNPLA3148II groups in the fasting state and postprandially at every 

time point (Figure 1). Lipidomic analysis of VLDL was performed for detailed 

characterization of VLDL-TGs in the fasting state and postprandially. The relationship 

between the number of double bonds in VLDL-TGs and the ratio of the mean absolute 

concentrations of corresponding VLDL-TGs in the PNPLA3148MM as compared to the 

PNPLA3148II group are shown in Figure 2. The number of double bonds was inversely 

related to the ratios of VLDL-TGs in PNPLA3148MM vs. PNPLA3148II in the fasting state 

and at 120 min, 300 min and 420 min postprandially (Figure 2). Thus, although total 

concentrations of VLDL-TGs were similar (Figure 1), the TGs secreted from the liver 
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in VLDL before and during the meal were deficient in polyunsaturated TGs in the 

PNPLA3148MM as compared to the PNPLA3148II group. 

 

Deficiency of PUFA in VLDL-TG fatty acids in the PNPLA3148MM as compared to 

the PNPLA3148II group 

The percentage of distinct fatty acids of total fatty acids in VLDL-TGs in the 

PNPLA3148MM as compared to the PNPLA3148II group in the fasting state are shown in 

Figure 3A. Saturated palmitate (16:0), monounsaturated oleate (18:1) and 

polyunsaturated linoleate (18:2) were the most abundant FAs in VLDL-TGs in both 

groups (Figure 3A). The percentage of 18:2 fatty acid in VLDL-TG fatty acids was 

significantly lower in the PNPLA3148MM as compared to the PNPLA3148II group in the 

fasting state (Figure 3A) and during the entire postprandial period (Figure 3B-C). In 

contrast, the percentage of SFA 16:0 in VLDL-TG fatty acids was significantly higher 

in the PNPLA3148MM as compared to the PNPLA3148II group in the fasting state (Figure 

3A) and during the postprandial period (Figure 3B, D).  

  

The relationship between the number of double bonds in VLDL-TG fatty acids and the 

ratio of the mean absolute concentrations of corresponding VLDL-TG fatty acids in the 

PNPLA3148MM as compared to the PNPLA3148II group are shown in Figure 3E. The 

number of double bonds was inversely related to the ratios of VLDL-TG fatty acids in 

homozygous carriers vs. non-carriers during the postprandial period (Figure 3E). These 

data show that there is polyunsaturated fatty acid deficiency in VLDL-TG in 148M 

carriers and support the hypothesis that PUFAs are retained in the liver in 

PNPLA3148MM as compared to the PNPLA3148II group.  
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In vivo evidence of retention of labeled 13C-18:2 PUFA in the human liver in 

PNPLA3148MM compared to PNPLA3148II group 

Dietary fatty acids are transported from the intestinal lumen to the circulation in 

chylomicron-TGs, which then undergo hydrolysis and are taken up by the liver (12). 

VLDL-TGs are produced exclusively by the liver (12). Thus, to compare handling of 

PUFAs and SFAs in the liver, we calculated their ratio in VLDL-TGs and chylomicron-

TGs. The PNPLA3148MM group had a significantly lower 13C-18:2/13C-16:0 ratio in 

VLDL-TGs compared to the PNPLA3148II group (p<0.01) when related to the 

corresponding ratio in the chylomicron precursor pool (Figure 3F). There were no 

differences in enrichment of either of the fatty acids in the chylomicron precursor pools 

between the PNPLA3148MM and the PNPLA3148II (data not shown).  

 

Increased storage of neutral lipids in homozygous PNPLA3 148M-ki human cells 

We used human epidermoid carcinoma A431 cells that are readily amenable for genetic 

manipulation and homozygous for the PNPLA3-148I allele. PNPLA3 is expressed in 

the skin (13) and in A431 cells at levels roughly comparable to HepG2 cells (Human 

Protein Atlas). We have used these cells in our earlier studies on lipid processing and 

storage (14, 15). Starting from the wt PNPLA3 cells, we engineered PNPLA3-ko cells 

as well as cells expressing the 148M allele as homozygous (PNPLA3-148M-ki) and 

generated stable cell lines. Under basal culture conditions, the PNPLA3-148M-ki cells 

exhibited, as expected, elevated neutral lipid levels (TGs and cholesteryl esters, CEs) 

compared to wt cells (30.67±4.7 [SEM] ng lipid/ µg protein versus 18.27±2.4 [SEM], 

N=6). We also engineered cells stably expressing GFP-tagged PNPLA3-148I or 

PNPLA3-148M on a PNPLA3-ko background. In these cells, both forms of PNPLA3 
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are expressed at similar levels (Figure S2A) and associate with lipid droplets (Figure 

S2B). These results are in keeping with our previous findings in hepatoma cells (16).  

 

Increased storage of PUFAs but not SFAs in PNPLA3 148M-ki and PNPLA3-ko 

cells 

We then studied how addition of saturated or increasingly unsaturated exogenous fatty 

acids affects lipid storage in A431 cells. Fluorescence microscopy revealed that all three 

cell lines generated lipid droplets when exposed to fatty acids for 24 h. Expectedly, 

oleic and palmitic acid were potent inducers of lipid droplets, and PUFAs were less 

efficient (Figure 4). However, lipid droplet accumulation induced by PUFAs was 

strikingly increased in PNPLA3-148M-ki and PNPLA3-ko cells. This effect was not 

observed with saturated or monounsaturated FA. These results show that lack of 

PNPLA3 activity results in preferential sequestering of PUFAs to neutral lipids. 

 

Increased incorporation of PUFAs to TGs and decreased incorporation to PCs in 

PNPLA3-148M-ki and PNPLA3-ko cells   

Click chemistry is powerful for tracing rapid fatty acid metabolism (15, 17). Using this 

approach, we compared how alkyne-palmitate and alkyne-linoleate are metabolized 

into major cellular lipid species during 15 min of labeling. The partitioning of alkyne-

palmitate to phosphatidylcholines (PCs), diacylglycerols (DAGs) and TGs was similar 

between PNPLA3 genotypes (Figure 5A). At this time point the majority of alkyne-

linoleate was found in PCs in all cell lines (Figure 5B). However, in PNPLA3-148M-

ki and PNPLA3-ko cells, the fraction of alkyne-linoleate in PC was significantly 

reduced and in TGs concomitantly increased as compared to wt (Figure 5B). Moreover, 

the percentage of FFA was higher in PNPLA3-148M-ki and PNPLA3-ko cells 
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(29.6%±2.4 and 29.1%±2.5 respectively, N=9) compared to wt cells (21.3%±3.7, N=9), 

implying defects in incorporation of PUFAs into PC.  

 

Accumulation of DAGs in PNPLA3-148M-ki and PNPLA3-ko cells in lipolytic 

conditions  

Due to the observed differences between PNPLA3 genotypes in PUFA metabolism and 

the reported PNPLA3 lipase activity (18, 19), we next measured release of linoleic acid 

from TG stores. To this end, we incubated wt A431 cells with alkyne-linoleate for 1 h 

in the presence of a cholesterol esterification inhibitor (PKF-035; to ensure maximal 

neutral lipid deposition as TGs). The cells were then either immediately harvested (0 

min chase) or incubated for 15, 30 or 60 min (chase) in the presence of diacylglycerol 

O-acyltransferase (DGAT) 1 and 2 inhibitors that prevent TG synthesis as well as a 

cholesterol esterification inhibitor. As the inhibitors prevent fatty acid re-esterification 

to neutral lipids, under these conditions, cells start to hydrolyze the generated TGs. As 

expected, alkyne-linoleate containing TGs and DAGs decreased during chase and this 

was paralleled by increased partitioning of alkyne-linoleate into phospholipids, with 

marginal levels of FFAs (Figure S3A). 

 

When the effect of PNPLA3 genotype on TG hydrolysis was investigated, we found 

that both PNPLA3-148M-ki and PNPLA3-ko cells had elevated TG levels at the end of 

alkyne-linoleate labeling as compared to PNPLA3-148I (Figure 5C). The increase in 

TGs in PNPLA3-ko and 148M-ki cells is consistent with the idea that the human gene 

variant increases TGs because it acts as a loss-of function variant. During the 1 h chase, 

TGs started to diminish but stayed elevated in both genotypes relative to PNPLA3-148I 

cells (Figure 5C). Of note, although TGs stayed elevated in PNPLA3-ko and 148M-ki 
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cells compared to wt PNPLA3-148I cells, we did not observe major differences in the 

hydrolysis rate of TGs under lipolytic conditions between these cells. This does not 

favor the idea that PNPLA3 functions mainly in TG hydrolysis. 

 

Strikingly, under lipolytic conditions we observed a pronounced increase in DAGs in 

both PNPLA3-148M-ki and PNPLA3-ko cells as compared to wt (Figure 5C). This 

effect was not observed during the 15 min labeling (Figure 5B), suggesting that the 

increase was not due to increased generation of DAGs but rather to their impaired 

hydrolysis. In PNPLA3-148M-ki and PNPLA3-ko cells, there was also a tendency for 

decreased incorporation of alkyne-linoleate into PCs, but the difference was not 

significant (Figure S3B). This is not surprising, because during the course of hour(s) 

linoleic acid can end up in the PC pool via several pathways.  

 

Polyunsaturated TGs are enriched while PCs are deficient in the human liver in 

homozygous carriers of the PNPLA3 I148M variant compared to non-carriers  

Since polyunsaturated TGs accumulated in the PNPLA3-148 cells at the expense of 

PCs, we next asked whether the enrichment of polyunsaturated TGs would be 

associated with a decrease in PCs in the human liver in homozygous carriers of the 

PNPLA3 I148M variant as compared to non-carriers. To this end, we re-analyzed 

previously described data of human liver lipidome (5) in homozygous I148M variant 

carriers and non-carriers. As previously reported, the livers of the I148M variant 

carriers were enriched in polyunsaturated TGs, such as TG(56:6) and TG(58:6) 

(p<0.05) (Figure 6). Consistent with the in vitro data, the livers of homozygous I148M 

variant carriers were deficient in multiple PCs such as PC(36:6) and PC(32:2) as 

compared to non-carriers (p<0.05) (Figure 6). 
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DISCUSSION 

Liver TGs in human liver biopsies are markedly polyunsaturated in PNPLA3148M gene 

variant carriers as compared to non-carriers (5). The present data show, using a 

combination of GC, UHPLC-MS and stable isotope techniques that this reflects 

increased retention of PUFAs in the liver and results in PUFA deficiency in VLDL-TG 

secreted by the liver. The evidence from the in vivo studies can be summarized as 

follows. In the PNPLA3148MM as compared to the PNPLA3148II group both in the fasting 

state and postprandially: i) the number of double bonds in VLDL-TGs measured by 

UHPLC-MS (Figure 2) and ii) the proportion of polyunsaturated linoleate (18:2) fatty 

acid (GC) in VLDL-TGs (Figure 3C) were lower and iii) PUFAs in VLDL-TGs (GC) 

were deficient (Figure 3E). When the subjects ingested equal amounts of a saturated 

(16:0) and a polyunsaturated (18:2) fatty acid in a meal labeled with respective stable 

isotope tracers, the ratio of labeled 18:2 vs. 16:0 was lower in the PNPLA3148MM than 

the PNPLA3148II group (Figure 3F). There are no previous studies comparing 

composition of VLDL-TG either in the fasting state or postprandially between 

PNPLA3148MM and PNPLA3148II groups or kinetic studies addressing function of the 

148M variant in humans. 

 

To explore the mechanism explaining retention of PUFAs in the human liver, we 

engineered PNPLA3-ko cells as well as cells expressing the 148M allele as 

homozygous (PNPLA3-148M-ki) and generated stable cell lines. This knock-in model 

of the PNPLA3 variant is the first to examine the impact of endogenous levels of the 

human PNPLA3 variant on lipid composition and metabolism. In previous studies using 

human cell lines (16, 20, 21) the gene variant was overexpressed, potentially causing 

artefacts.  
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Lipid droplet accumulation induced by PUFAs but not by saturated or monounsaturated 

FA was strikingly increased in PNPLA3-148M-ki and PNPLA3-ko cells. These results 

suggest that lack of PNPLA3 activity results in preferential sequestering of PUFAs to 

neutral lipids and that the 148M variant resembles loss of PNPLA3 function in human 

cells.  

 

Studies using click chemistry allow tracing of rapid changes in fatty acid metabolism 

(17). In PNPLA3-148M-ki and PNPLA3-ko cells, the fraction of alkyne-linoleate in 

PC was significantly reduced and in TGs increased as compared to wt cells. In human 

liver samples, concentrations of polyunsaturated PCs were significantly decreased 

while TGs were increased in the livers of homozygous carriers of the PNPLA3 I148M 

variant as compared to non-carriers (Figure 6). These data closely resemble those of 

knock-in mice expressing a catalytically inactive PNPLA3 variant (PNPLA3-S47A-ki 

mice)  but oppose those characterizing PNPLA3-148M-ki mice (7). In these mice, very 

long chain PUFAs are enriched in TGs and depleted in phospholipids. Therefore, the 

human PNPLA3-148M variant resembles human and mouse PNPLA3 loss of function.  

 

In PNPLA3-148M and PNPLA3-ko cells, PUFA containing DAGs accumulated under 

lipolytic conditions compared to PNPLA3-148I cells. This was paralleled by a tendency 

for decreased incorporation of PUFA into PCs in PNPLA3-148M and PNPLA3-ko 

cells. These data suggest that PNPLA3 promotes transfer of PUFAs from DAGs to 

generate polyunsaturated PCs, thus refining the model proposed by Mitsche et al. (7). 

It is conceivable that PNPLA3 acts as a PUFA-specific transacylase, catalyzing the 

transfer of PUFAs in DAGs generated from TG hydrolysis (such as 2,3-DAGs), to yield 
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DAGs compatible with PC generation (1,2-DAGs). Alternatively, PNPLA3 may act as 

a PUFA-specific lipase hydrolyzing PUFAs from DAGs, to be used for the synthesis 

of PUFA-containing PCs. Importantly, the PNPLA3-148M-variant had similar effects 

to lipid metabolism as PNPLA3 deletion. While we cannot exclude the possibility that 

I148M substitution results in altered substrate specificity of the enzyme, the data 

strongly suggest that the I148M substitution results in loss of PNPLA3 activity in 

human cells. Either way, I148M remodels liver TGs in the human liver in a 

polyunsaturated direction (22). This lipid composition opposes the saturated TG 

composition characterizing liver in NAFLD associated with insulin resistance 

(‘Metabolic NAFLD’) (5, 23). The retention of polyunsaturated TGs in the liver may 

explain why carriers of the PNPLA3 gene variant are protected against cardiovascular 

disease despite having an increase in liver fat content (3, 4). 
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METHODS 

 

Subjects  

A total of 26 subjects who were homozygous for either the C or the G allele at rs738409 

and fulfilled the inclusion and exclusion criteria (vide infra) were recruited among non-

diabetic individuals who had previously been genotyped for PNPLA3 at rs738409 in 

our laboratory (24) or in the population-based National FINRISK 2007 (25).  

 

Inclusion criteria included: (a) age 18 to 65 years; (b) PNPLA3 genotype CC or GG at 

rs738409; (c) alcohol consumption less than 20 g per day for women and less than 30 

g per day for men. Exclusion criteria included: (a) known acute or chronic disease other 

than obesity, NAFLD or hypertension on the basis of medical history, physical 

examination and standard laboratory tests (complete blood count, serum creatinine, 

electrolyte concentrations); (b) clinical or biochemical evidence of liver disease other 

than NAFLD, or clinical signs or symptoms of inborn errors of metabolism; (c) history 

or current use of toxins or drugs associated with liver steatosis, (d) history or current 

use of lipid lowering medications; (e) pregnancy or lactation.  

 

Clinical study design 

The study consisted of i) a screening visit, ii) a metabolic study visit and iii) a visit to 

the imaging center for quantification of IHTG using proton magnetic resonance 

spectroscopy (1H-MRS).  

 

The screening visit was performed after an overnight fast. A history and physical 

examination were performed to review the inclusion and exclusion criteria. Blood 
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samples were obtained for measurement of circulating blood count, glucose, HbA1c, 

serum insulin, thyroid stimulating hormone, hepatitis C virus antibody, plasma glucose, 

low density lipoprotein (LDL)- and high density lipoprotein (HDL)-cholesterol, 

triglyceride, albumin, thromboplastin time, C-reactive protein, sodium, potassium, 

aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline 

phosphatase (ALP) and gamma glutamyltransferase (GGT) concentrations as described 

(24).  

 

After the screening visit, the subjects wore portable accelerometers (GT3X, Actigraph, 

Pensacola, FL) for 7 days to estimate their physical activity. The subjects were asked 

to collect a 3-day dietary record to determine their baseline dietary composition. The 

dietary records were analyzed using the AivoDiet software (version 2.0.2.3; Aivo 

Finland, Turku, Finland). 

 

Metabolic study visit. For 3 days prior to the metabolic study day, the subjects were 

asked to avoid foods naturally enriched in 13C (such as sea food, corn, and sugar), 

alcohol, and strenuous exercise. In the previous evening before the metabolic study, the 

subjects consumed a standardized meal (a vegetarian sandwich, 330 kcal, 21 g fat, 25 

g carbohydrate and 9 g protein, produced by Ravioli, Helsinki, Finland). The subjects 

came to the clinical research center after an overnight fast. Body composition (InBody 

720; BioSpace, Seoul, Korea), weight, height and waist circumference were measured 

as described (5). A cannula was inserted into an antecubital vein, and baseline blood 

samples were taken to measure plasma albumin, AST, ALT, ALP, GGT, bilirubin, C-

peptide, glucose, LDL and HDL cholesterol and triglyceride concentrations as well as 

serum insulin concentrations. Participants were then fed a mixed test meal containing 
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44 g carbohydrate, 10 g protein and 37 g fat, with 100 mg of [U13C]palmitic acid and 

100 mg of [U13C]linoleic acid (both from Cambridge Isotopes, UK) added to trace the 

fate of the dietary fatty acids (26). The meal consisted of 40 g Kellogg’s Rice Krispies 

with 200 g skimmed milk, and a chocolate milkshake containing 20 g butter, 20 g 

rapeseed oil, sweetener and cocoa powder.  

 

Blood samples were taken at 0, 60, 120, 180, 240, 300, 360, and 420 min after the 

consumption of the test meal for measurement of plasma glucose, TG, free fatty acids 

(FFA), and serum insulin concentrations, and at 0, 120, 180, 240, 300, 360 and 420 min 

for isolation of very-low density lipoprotein (VLDL) and chylomicrons by 

ultracentrifugation as described (27). The fatty acid composition and concentrations of 

13C-18:2 and 13C-16:0 FAs were determined in total plasma, plasma FFA and the VLDL 

and chylomicron fractions (vide infra). Lipidomics analyses (vide infra) were 

performed of the VLDL fraction using UHPLC-MS at the time points of 0, 120 and 420 

min. 

 

Imaging visit. Before the metabolic study visit, the subjects underwent 1H-MRS to 

quantify IHTG content (vide infra). 

 

Isolation of VLDL and chylomicron fractions 

Separations of chylomicron of Svedberg flotation rate (Sf) >400 and VLDL-rich 

fraction (Sf20-400) were made by sequential flotation using density gradient 

ultracentrifugation (Beckman L-80, Beckman Coulter, Brea, CA) as previously 

described (23).  
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FA isotopic enrichment   

To determine the specific FA composition and isotopic enrichment, total lipids were 

extracted from plasma, and VLDL and chylomicrons and FA methyl esters (FAMEs) 

prepared (28, 29). The FA compositions (µmol/100 µmol total FA) of these fractions 

were determined by gas chromatography (GC), and the fatty acid concentrations 

calculated (27). [U-13C]palmitate and [U-13C]linoleate enrichments were measured in 

plasma FFA, TG, Sf >400 (chylomicron-TG), Sf20-400–TG and VLDL-TG FAMEs 

derivatives using a Δ Plus XP GC-combustion isotope ratio mass spectrometer (Thermo 

Electron, Bremen, Germany) (30). The tracer-to-tracee ratio (TTR) of a baseline 

measurement before administration of [U-13C]palmitate was subtracted from the TTR 

of each sample to account for natural abundance. The TTRs for [U13C]palmitate and 

[U-13C]linoleate were multiplied by the corresponding unlabeled concentrations to give 

plasma and lipoprotein tracer concentrations (26). 

 

Lipidomic analysis of VLDL-TG using UHPLC-MS  

The UHPLC-QTOFMS analyses were done in a similar manner than described earlier 

with some modifications (31).  UHPLC-QTOFMS system was from Agilent 

Technologies (Santa Clara, CA, USA) combining 1290 Infinity system and 6545 

quadrupole time of flight mass spectrometer (QTOFMS), interfaced with a dual jet 

stream electrospray (dual ESI) ion source. MassHunter B.06.01 software (Agilent 

Technologies, Santa Clara, CA, USA) was used for all data acquisition and MZmine 2 

was used for data processing (32). ACQUITY UPLC® BEH C18 column (2.1 mm × 

100 mm, particle size 1.7 µm) by Waters Corporation (Milford, MA, USA) was used 

for the UHPLC separation. The lipidomics methods are described in detail in 

Supplementary Information. The analyses covered most of the main molecular lipids, 
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including ceramides, dihydroceramides, TGs, DAGs, sphingomyelins, 

hexosylceramides, phosphatidylcholines (PC), phosphatidylethanolamines (PE), 

phosphatidylserines (PS), and lysophosphosphatidylcholines. The lipid identification 

was based on an internal library which had been constructed based on accurate mass 

measurements in combination with tandem mass measurements. For specific lipids, the 

composition of fatty acid chains had been determined with separate measurements, and 

for those the fatty acid composition was specified, e.g. TG(14:0/16:0/18:0). 

 

Measurement of IHTG content by 1H-MRS  

IHTG content was measured by proton magnetic resonance spectroscopy (1H-MRS) 

performed on a clinical 1.5T Siemens Avantofit imager. MRS data was analyzed using 

jMRUI v5.2 software with AMARES algorithm as described (33).  

 

Lipidomic analysis of the human liver 

We performed re-analysis of TGs and PCs in homozygous carriers (n=7) and non-

carriers (n=64) of the PNPLA3 I148M variant in previously described data of human 

liver lipidome of a separate cohort (5). Briefly, human liver biopsies were obtained 

during laparoscopic surgery and immediately frozen in liquid nitrogen. Subsequently, 

molecular lipids were measured using a Q-TOF Premier (Waters, Milford, MA) 

quadrupole time-of-flight mass spectrometer combined with an Acquity Ultra 

Performance LC (Waters, Milford, MA) liquid chromatography as previously described 

(5). 
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Other analyses from human samples 

The fasting plasma glucose was measured using the hexokinase method on an 

autoanalyzer (Roche Diagnostics Hitachi 917, Hitachi Ltd., Tokyo, Japan).  Serum 

insulin concentration was determined by time-resolved fluoroimmunoassay using an 

Insulin Kit (AUTOdelfia, Wallac, Turku, Finland). HbA1c was measured with 

immunoturbidometric method (Abbott Laboratories) and plasma ALT, AST, and GGT 

concentrations using photometric International Federation of Clinical Chemistry 

methods (Abbott Laboratories). Serum ALT, AST and GGT activities were determined 

as recommended by the European Committee for Clinical Laboratory Standards and 

serum TG, total, LDL and HDL cholesterol concentrations using enzymatic kits and an 

autoanalyzer (Roche Diagnostics Hitachi 917, Hitachi Ltd., Tokyo, Japan). Plasma 

albumin was measured using a photometric method on an autoanalyzer (Modular 

Analytics EVO; Hitachi High-Technologies Corporation, Tokyo, Japan). 

 

Cell culture and generation of CRISPR cell lines 

Human epidermoid carcinoma A431 cells (ATCC) were cultured in DMEM 

(Dulbecco's Modified Eagle's Medium) with 10% FBS containing L-Glutamine (2mM) 

and streptomycin/penicillin (100 U/ml each). Cell culture reagents and solvents were 

from Gibco/Thermo Fisher, Lonza and Sigma. PNPLA3-ko and I148M -ki cell lines 

were constructed CRISPR/Cas9-mediated genome editing (34). Briefly, a homology-

directed repair template was generated by PCR (primer sequences 

ATACACGCGTCCAGTCCAAGGAACCTGTCC and 

ATACGTCGACGCAGTAAGTTTTGCTGCCCG), by using Huh7 genomic DNA as 

a template, and ligated into pGL3-Basic vector. The construct was transfected into 

A431 cells together with a vector encoding Cas9, sgRNA targets flanking the mutation 
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site (sense: CACCGTAGAAGGGGATGAAGC; antisense: 

AAACGCTTCATCCCCTTCTAC), and a puromycin selection marker. Clones were 

isolated after transient selection with puromycin by limiting dilution. Homozygous 

mutations were validated by genomic PCR. With this protocol, we obtained a 

homozygous PNPLA3 I148M –ki cell line, as well as a homozygous PNPLA3-ko cell 

line with a 2-bp deletion after 146C, resulting in a frameshift and premature termination 

of translation (PNPLA3-ko).  

 

Lipid analyses from cells  

For the determination of unlabeled lipids, cells were extracted and lipids analysed by 

high-performance thin layer chromatography as in (35). Click labeling and analyses 

were performed essentially as described (15, 17). Briefly, for alkyne-FA labeling, cells 

grown in 12-well plates were incubated at +37°C, 5% CO2 for 15 min in loading 

medium containing serum-free DMEM supplemented with 1% fatty acid free BSA, and 

100 µM alkyne-linoleate (Cayman Chemical) or alkyne-palmitate (Avanti Polar 

Lipids). In lipolysis experiments, a cholesterol esterification inhibitor (Sandoz PKF 58-

035, 2 µg/ml) was added and the labeling was performed for 1 h. For chase, cells were 

incubated with serum-free DMEM containing 5% LPDS [lipoprotein-deficient serum, 

prepared as described in Goldstein et al (1983)], PKF 58-035 (2 µg/ml) and diglyceride 

acyltransferase (DGAT)-1 and DGAT-2 inhibitors (5 µM each, Sigma PZ0207 and 

PZ0233) for 15, 30 or 60 min. Lipid extraction, click reaction and analysis of alkyne 

fatty acid incorporation into selected lipids (TG, 1,2/2,3-DAG, 

Phosphatidylethanolamine [PE] and PC) by thin layer chromatography was performed 

as in (17).  
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Microscopy 

For lipid droplet analyses, cells were incubated for 24 h with BSA-complexed 100 µM 

palmitate, oleate, linoleate or a mixture of docosahexaenoic acid [DHA, 22:6(n-3)] and 

eicosapentaenoic acid [EPA, 20:5(n-3)] (50 µM each) (Sigma Aldrich) for 24 h. The 

cells were fixed with 4% PFA, stained with lipid droplet stain LD540 (36) (Princeton 

BioMolecular Research), and imaged with Nikon Eclipse Ti-E N-STORM 

epifluorescence microscope. Thresholded lipid droplet area as % of total cell area was 

analysed from micrographs with ImageJ FIJI. 

 

Statistics 

Continuous variables were tested for normality using the Kolmogorov-Smirnov test. 

The independent two-sample Student’s t and Mann-Whitney U tests were used to 

compare normally and non-normally distributed data, respectively. Normally 

distributed data were reported in means ± standard error of means while non-normally 

distributed were reported in medians and interquartile ranges. Pearson χ2 test was used 

to evaluate if the distributions of categorical variables differ between the groups. The 

fatty acid composition of VLDL-TG data was analyzed by a two-way analysis of 

variance (ANOVA). Areas under the curves (AUC) for 13C-18:2/13C-16:0 fatty acids in 

chylomicron-TG and VLDL-TG were calculated using the trapezoid method. The 

former AUC was analyzed with respect to the latter AUC using linear regression. The 

UHPLC-MS data were analyzed by relating the ratio of a given VLDL-TG in the 

PNPLA3148MM vs. the PNPLA3148II group to the number of double bonds in that VLDL-

TG using linear regression. Statistical analyses were performed by using IBM SPSS 

Statistics 23.0.0.0 version (IBM, Armonk, NY) and GraphPad Prism 7.0d for Mac OS 

X (GraphPad Software, La Jolla, CA). A p value of less than 0.05 indicated statistical 
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significance. For in vitro experiments, statistical significance was determined by a two-

tailed Student's t-test using Microsoft Excel. 

 

Study approval 

The study protocols were approved by the ethics committee of the Hospital District of 

Helsinki and Uusimaa, Helsinki, Finland. The studies were conducted in accordance 

with the Declaration of Helsinki. Each participant provided written informed consent 

after being explained the nature and potential risks of the study. 
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FIGURES AND FIGURE LEGENDS 

 

Figure 1. Concentrations of (A) plasma TGs, (B) free fatty acids, (C) VLDL-TG, 

(D) chylomicron-TG, (E) glucose and (F) serum insulin in the PNPLA3148MM and 

PNPLA3148II groups in the fasting state (0 min) and during the postprandial 

period. Data are shown as mean±SEM. The blue lines and circles denote the 

PNPLA3148II (n=14) group and the red lines and squares the PNPLA3148MM (n=12) 

group. There were no significant differences between the groups as determined using 

2-way ANOVA. 
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Figure 2. Differences between distinct VLDL-TGs in the PNPLA3148MM vs. 

PNPLA3148II groups according to the number of double bonds. Panels show linear 

regression lines between the number of double bonds in VLDL-TGs and the log2 fold-

change of absolute concentrations of corresponding VLDL-TGs in the PNPLA3148MM 

(n=12) vs. the PNPLA3148II (n=14) group (A) in the fasting state (0 min), (B) 120 min, 

(C) 300 min and (D) 420 min following the meal. Each circle denotes a distinct VLDL-

TG species. Significance was determined using linear regression analysis. 
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Figure 3. Differences in the composition and handling of VLDL-TG fatty acids in 

the PNPLA3148MM vs. the PNPLA3148II groups. (A) Percentage of distinct fatty acids 

of total unlabelled fatty acids in VLDL-TG in the PNPLA3148MM (red bars, n=12) and 

PNPLA3148II (blue bars, n=14) groups in the fasting state. (B) Fold change in the 

percentage of distinct fatty acids of total unlabeled fatty acids in VLDL-TGs in the 

PNPLA3148MM (n=12) vs. the PNPLA3148II (n=14) group in the fasting state (0 min) and 

during the postprandial period. X-axis denotes distinct fatty acids and y-axis denotes 

postprandial time. Each square represents log2 fold-change of the percentage of a 

distinct fatty acid of total fatty acids in VLDL-TG in the PNPLA3148MM (n=12) vs. the 

PNPLA3148II (n=14) group in that time point.  (C-D) Percentage of unlabeled 
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polyunsaturated fatty acid linoleate (18:2) (C) and saturated fatty acid palmitate (16:0) 

(D) of total fatty acids in VLDL-TG in the PNPLA3148MM (red squares and lines, n=12) 

and PNPLA3148II (blue circles and lines, n=14) groups in the fasting state and during 

the 420 min postprandial period. (E) Linear regression lines between the number of 

double bonds in VLDL-TG fatty acids and the log2 fold-change of absolute 

concentrations of corresponding VLDL-TG fatty acid in the PNPLA3148MM (n=12) vs. 

the PNPLA3148II (n=14) group in the fasting state (0 min; black circles), 120 min (red 

squares), 180 min (green triangles pointing up), 240 min (blue triangles pointing 

down), 300 min (purple diamonds), 360 min (orange circles) and 420 min (turquoise 

squares). (F) Ratio of 13C-18:2 to 13C-16:0 fatty acids in plasma VLDL-TG related to 

the corresponding ratio in the chylomicron precursor pool in the PNPLA3148MM (red 

squares and lines, n=12) and the PNPLA3148II (blue circles and lines, n=14) groups. 

Data are shown as mean±SEM. * p < 0.05. Significance was determined using 2-tailed 

Student’s t test for unpaired data, 2-way ANOVA and linear regression as appropriate. 

  

 
 

 

 

 

 



 

   
 

38 

 

Figure 4. Characterization of lipid storage in homozygous PNPLA3-148I, 

PNPLA3-148M and PNPLA3-ko A431 cells. Cells were incubated for 24 h in the 

presence of 100 µM palmitate, oleate, linoleate or mixture of DHA and EPA (50 µM 

each), fixed and stained with lipid droplet dye LD540. Scale bar: 10 µm. Bars: % of 

cell area occupied by lipid droplets ± SEM. N of cells 62-76. * p < 0.05 (two-tailed 

Student’s t-test). 



 

   
 

39 

 

 

Figure 5. Partitioning of alkyne-labeled fatty acid in homozygous PNPLA3-148I, 

PNPLA3-148M and PNPLA3-ko A431 cells. (A) Cells were incubated for 15 min 

with 100 µM alkyne-palmitate, then extracted, click-reacted and analyzed by TLC. 

Bars: % of incorporated alkyne-palmitate in indicated lipid species ± SEM. N=9 from 
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3 individual experiments. (B) Cells were incubated for 15 min with 100 µM alkyne-

linoleate and analyzed as in (A).  Bars: % of incorporated alkyne-linoleate in indicated 

lipid species ± SEM. N=9-17 from 4-6 individual experiments,* p < 0.05 (two-tailed 

Student’s t-test) (C) Cells were incubated for 1h min with 100 µM alkyne-linoleate in 

the presence of cholesterol esterification inhibitor. After labeling, cells were either 

collected (0 min chase) or further incubated in lipoprotein-deficient medium 

supplemented with cholesterol esterification and DGAT inhibitors for 15, 30 or 60 min, 

then analysed as in (A). Bars: % of incorporated alkyne-linoleate in indicated lipid 

species, normalized to PNPLA3-148I cells at 0 min chase ± SEM. N=5-8 from 3-4 

individual experiments,* p < 0.05 (two-tailed Student’s t-test). 
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Figure 6. Polyunsaturated TGs are enriched while PCs are deficient in the human 

liver in homozygous carriers (PNPLA3148MM) as compared to non-carriers 

(PNPLA3148II) of the PNPLA3 I148M variant. X-axis denotes log2 fold-change in 

hepatic concentration of a given lipid in PNPLA3148MM (n=7) as compared to 

PNPLA3148II (n=64) group. Y-axis denotes negative logarithm of p-value of t-test 

comparing hepatic concentrations of a given lipid in PNPLA3148MM as compared to 

PNPLA3148II group. Red squares denote TGs and blue circles PCs. Horizontal dashed 

line represents -log10(0.05). Each symbol represents distinct hepatic lipid species. Lipid 

species that were significantly decreased in the PNPLA3148MM as compared to the 

PNPLA3148II group are listed on the left side of the figure, while those that were 

increased are listed on the right side in the order of significance. Data in this figure are 

from separate liver biopsy cohort described earlier (5). 
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Table 1. Clinical characteristics of the subjects. 

 PNPLA3148II PNPLA3148MM 

Group size (n) 14 12 

Age (years) 52.4 ± 1.8 53.1 ± 2.2 

Gender (%, women/men) 79/21 83/17 

BMI (kg/m2) 31.8 ± 1.5 31.8 ± 2.0 

Waist circumference (cm) 99.0 (92.8 – 109.5) 98.0 (89.1 – 114.3) 

fP-Glucose (mmol/l) 5.7 (5.3 – 6.0) 6.0 (5.5 –6.2) 

fS-Insulin (mU/l) 6.2 (3.4 – 9.1) 6.0 (4.4 – 11.7) 

fP-Triglycerides (mmol/l) 0.9 (0.8 – 1.1) 0.9 (0.6 – 1.4) 

fP-HDL cholesterol (mmol/l) 1.49 ± 0.08 1.58 ± 0.16 

fP-LDL cholesterol (mmol/l) 3.3 ± 0.2 3.4 ± 0.2 

P-AST (IU/l) 25 (20 – 31) 27 (24 – 30) 

P-ALT (IU/l) 21 (16 – 35) 24 (19 – 33) 

P-GGT (U/l) 17 (13 – 48) 24 (21 – 35) 

P-Albumin (g/l) 36.6 ± 0.6 35.7 ± 0.7 

IHTG (1H-MRS, %) 1.8 (1.0 – 6.7) 6.3 (4.5 – 14.6)* 

Data are in n, %, means ± SEM or median (25th-75th percentile), and statistical tests are 
Student t-test, Mann-Whitney U-test and Pearson χ2-test, as appropriate. *p ≤ 0.05 
compared to the PNPLA3148II group. IHTG, intrahepatic triglycerides. 


