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Abstract

Lexical taxonomies are graph-like hierarchi-
cal structures that provide a formal representa-
tion of knowledge. Most knowledge graphs to
date rely on is-a (hypernymic) relations as the
backbone of their semantic structure. In this
paper, we propose a supervised distributional
framework for hypernym discovery which op-
erates at the sense level, enabling large-scale
automatic acquisition of disambiguated tax-
onomies. By exploiting semantic regularities
between hyponyms and hypernyms in embed-
dings spaces, and integrating a domain clus-
tering algorithm, our model becomes sensi-
tive to the target data. We evaluate several
configurations of our approach, training with
information derived from a manually created
knowledge base, along with hypernymic rela-
tions obtained from Open Information Extrac-
tion systems. The integration of both sources
of knowledge yields the best overall results ac-
cording to both automatic and manual evalua-
tion on ten different domains.

1 Introduction

Lexical taxonomies (taxonomies henceforth) are
graph-like hierarchical structures where terms are
nodes, and are typically organized over a predefined
merging or splitting criterion (Hwang et al., 2012).
By embedding cues about how we perceive con-
cepts, and how these concepts generalize in a do-
main of knowledge, these resources bear a capacity
for generalization that lies at the core of human cog-
nition (Yu et al., 2015) and have become key in Nat-
ural Language Processing (NLP) tasks where infer-
ence and reasoning have proved to be essential. In

fact, taxonomies have enabled a remarkable number
of novel NLP techniques, e.g. the contribution of
WordNet (Miller, 1995) to lexical semantics (Pile-
hvar et al., 2013; Yu and Dredze, 2014) as well
as various tasks, from word sense disambiguation
(Agirre et al., 2014) to information retrieval (Vare-
las et al., 2005), question answering (Harabagiu et
al., 2003) and textual entailment (Glickman et al.,
2005). To date, the application of taxonomies in
NLP has consisted mainly of, on one hand, formally
representing a domain of knowledge (e.g. Food),
and, on the other hand, constituting the semantic
backbone of large-scale knowledge repositories such
as ontologies or Knowledge Bases (KBs).

In domain knowledge formalization, prominent
work has made use of the web (Kozareva and Hovy,
2010), lexico-syntactic patterns (Navigli and Ve-
lardi, 2010), syntactic evidence (Luu Anh et al.,
2014), graph-based algorithms (Fountain and Lap-
ata, 2012; Velardi et al., 2013; Bansal et al., 2014) or
popularity of web sources (Luu Anh et al., 2015). As
for enabling large-scale knowledge repositories, this
task often tackles the additional problem of disam-
biguating word senses and entity mentions. Notable
approaches of this kind include Yago (Suchanek et
al., 2007), WikiTaxonomy (Ponzetto and Strube,
2008), and the Wikipedia Bitaxonomy (Flati et al.,
2014). In addition, while not being taxonomy learn-
ing systems per se, semi-supervised systems for In-
formation Extraction such as NELL (Carlson et al.,
2010) rely crucially on taxonomized concepts and
their relations within their learning process.

Taxonomy learning is roughly based on a two-
step process, namely is-a (hypernymic) relation de-
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tection, and graph induction. The hypernym detec-
tion phase has gathered much interest not only for
taxonomy learning but also for lexical semantics. It
has been addressed by means of pattern-based meth-
ods1 (Hearst, 1992; Snow et al., 2004; Kozareva
and Hovy, 2010; Carlson et al., 2010; Boella and
Di Caro, 2013; Espinosa-Anke et al., 2016), clus-
tering (Yang and Callan, 2009) and graph-based ap-
proaches (Fountain and Lapata, 2012; Velardi et
al., 2013). Moreover, work stemming from dis-
tributional semantics introduced notions of linguis-
tic regularities found in vector representations such
as word embeddings (Mikolov et al., 2013d). In
this area, supervised approaches, arguably the most
popular nowadays, learn a feature vector between
term-hypernym vector pairs and train classifiers to
predict hypernymic relations. These pairs may be
represented either as a concatenation of both vec-
tors (Baroni et al., 2012), difference (Roller et al.,
2014), dot-product (Mikolov et al., 2013c), or in-
cluding additional linguistic information for LSTM-
based learning (Shwartz et al., 2016).

In this paper we propose TAXOEMBED2, a hy-
pernym detection algorithm based on sense em-
beddings, which can be easily applied to the con-
struction of lexical taxonomies. It is designed to
discover hypernymic relations by exploiting linear
transformations in embedding spaces (Mikolov et
al., 2013b) and, unlike previous approaches, lever-
ages this intuition to learn a specific semantically-
aware transformation matrix for each domain of
knowledge. Our best configuration (ranking first
in two thirds of the experiments conducted) consid-
ers two training sources: (1) Manually curated pairs
from Wikidata (Vrandečić and Krötzsch, 2014); and
(2) Hypernymy relations from a KB which inte-
grates several Open Information Extraction (OIE)
systems (Delli Bovi et al., 2015a). Since our method
uses a very large semantic network as reference
sense inventory, we are able to perform jointly hy-
pernym extraction and disambiguation, from which

1The terminology is not entirely unified in this respect. In
addition to pattern-based (Fountain and Lapata, 2012; Bansal et
al., 2014; Yu et al., 2015), other terms like path-based (Shwartz
et al., 2016) or rule-based (Navigli and Velardi, 2010) are also
used.

2Data and source code available from the following link:
www.taln.upf.edu/taxoembed.

expanding existing ontologies becomes a trivial task.
Compared to word-level taxonomy learning, TAXO-
EMBED results in more refined and unambiguous
hypernymic relations at the sense level, with a direct
application in tasks such as semantic search. Eval-
uation (both manual and automatic) shows that we
can effectively replicate the Wikidata is-a branch,
and capture previously unseen relations in other ref-
erence taxonomies (YAGO or WIBI).

2 Related Work

Pattern-based methods for hypernym identification
exploit the joint co-ocurrence of term and hyper-
nym in text corpora. Building up on Hearst’s pat-
terns (Hearst, 1992), these approaches have focused
on, for instance, exploiting templates for harvesting
candidate instances which are ranked via mutual in-
formation (Etzioni et al., 2005), training a classi-
fier with WordNet hypernymic relations combined
with syntactic dependencies (Snow et al., 2006),
or applying a doubly-anchored method (Kozareva
and Hovy, 2010), which queries the web with two
semantically related terms for collecting domain-
specific corpora. Syntactic information is also used
for supervised definition and hypernym extraction
(Navigli and Velardi, 2010; Boella and Di Caro,
2013), or together with Wikipedia-specific heuris-
tics (Flati et al., 2014). One of the main drawbacks
of these methods is that they require both term and
hypernym to co-occur in text within a certain win-
dow, which strongly hinders their recall. Higher re-
call can be achieved thanks to distributional meth-
ods, as they do not have co-occurrence requirements.
In addition, they can be tailored to cover any num-
ber of predefined semantic relations such as co-
hyponymy or meronymy (Baroni and Lenci, 2011),
but also cause-effect or entity-origin (Hendrickx et
al., 2009). However, they are often more imprecise
and seem to perform best in discovering broader se-
mantic relations (Shwartz et al., 2016).

One way to surmount the issue of generality was
proposed by Fu et al. (2014), who explored the pos-
sibility to learn a hypernymic transformation matrix
over a word embeddings space. As shown empiri-
cally in Fu et al.’s original work, the hypernymic re-
lation that holds for the pair (dragonfly, insect) dif-
fers from the one of e.g. (carpenter, man). Prior to
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training, their system addresses this discrepancy via
k-means clustering using a held-out development set
for tuning.

The previously described methods for hypernym
and taxonomy learning operate inherently at the sur-
face level. This is partly due to the way evaluation
is conducted, which is often limited to very spe-
cific domains with no integrative potential (e.g. tax-
onomies in food, science or equipment from
Bordea et al. (2015)), or restricted to lists of word
pairs. Hence, a drawback of surface-level taxonomy
learning, apart from ambiguity issues, is that they
require additional and error-prone steps to identify
semantic clusters (Fu et al., 2014).

Alternatively, recent advances in OIE based
on disambiguation and deeper semantic analysis
(Nakashole et al., 2012; Grycner and Weikum, 2014;
Delli Bovi et al., 2015b) have shown their potential
to construct taxonomized disambiguated resources
both at node and at relation level. However, in ad-
dition to their inherently broader scope, OIE ap-
proaches are designed to achieve high coverage, and
hence they tend to produce noisier data compared to
taxonomy learning systems.

In our sense-based approach, instead, not only
do we leverage an unambiguous vector representa-
tion for hypernym discovery, but we also take ad-
vantage of a domain-wise clustering strategy to di-
rectly obtain specific term-hypernym training pairs,
thereby substantially refining this step. Additionally,
we exploit the complementary knowledge of OIE
systems by incorporating high-confidence relation
triples drawn from OIE-derived resources, yielding
the best average configuration as evaluated on ten
different domains of knowledge.

3 Preliminaries

TAXOEMBED leverages the vast amounts of train-
ing data available from structured and unstructured
knowledge resources, along with the mapping
among these resources and a state-of-the-art vector
representation of word senses.

BabelNet3 (Navigli and Ponzetto, 2012) con-
stitutes our sense inventory, as it is currently the
largest single multilingual repository of named en-

3http://babelnet.org

tities and concepts, integrating various resources
such as WordNet, Wikipedia or Wikidata. As in
WordNet, BabelNet is structured in synsets. Each
synset is composed of a set of words (lexicaliza-
tions or senses) representing the same meaning. For
instance, the synset referring to the members of a
business organization is represented by the set of
senses firm, house, business firm. BabelNet contains
around 14M synsets in total. We exploit BabelNet4

as (1) A repository for the manually-curated hyper-
nymic relations included in Wikidata; (2) A seman-
tic pivot of the integration of several OIE systems
into one single resource, namely KB-UNIFY; and
(3) A sense inventory for the SENSEMBED vector
representations. In the following we provide further
details about each of these resources.

3.1 Training Data
Wikidata5 (Vrandečić and Krötzsch, 2014) is a
document-oriented semantic database operated
by the Wikimedia Foundation with the goal of
providing a common source of data that can be
used by other Wikimedia projects. Our initial
training set W consists of the hypernym branch
of Wikidata, specifically the version included in
BabelNet. Each term-hypernym ∈ W is in fact a
pair of BabelNet synsets, e.g. the synset for Apple
(with the company sense), and the concept company.

KB-UNIFY6 (Delli Bovi et al., 2015a) (KB-U) is
a knowledge-based approach, based on BabelNet,
for integrating the output of different OIE systems
into a single unified and disambiguated knowledge
repository. The unification algorithm takes as input
a set K of OIE-derived resources, each of which is
modeled as a set of 〈entity, relation, entity〉 triples,
and comprises two subsequent stages: in the first
disambiguation stage, each KB in K is linked to the
sense inventory of BabelNet by disambiguating its
relation argument pairs; in the following alignment
stage, equivalent relations across different KB in K
are merged together. As a result, KB-U generates
a KB of triples where arguments are linked to
the corresponding BabelNet synsets, and relations
are replaced by relation synsets of semantically

4We use BabelNet 3.0 release version in our experiments.
5https://www.wikidata.org
6http://lcl.uniroma1.it/kb-unify
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similar OIE-derived relation patterns. The original
experimental setup of KB-UNIFY included NELL

(Carlson et al., 2010) as one of its input resources:
since NELL features its own manually-built taxo-
nomic structure and relation type inventory (hence
its own is-a relation type), we identified the relation
synset containing NELL’s is-a7 and then drew from
the unified KB all the corresponding triples, which
we denote as K. These triples constitute, similarly
as in the previous case, a set of term-hypernym
pairs automatically extracted from OIE-derived
resources, with a disambiguation confidence of
above 0.9 according to the disambiguation strategy
described in the original paper.

Initially, |W| = 5,301,867 and |K| = 1,358,949.

3.2 Sense vectors

SENSEMBED (Iacobacci et al., 2015)8 constitutes
the sense embeddings space that we use for train-
ing our hypernym detection algorithm. Vectors in
the SENSEMBED space, denoted as S, are latent
continuous representations of word senses based on
the Word2Vec architecture (Mikolov et al., 2013a),
which was applied on a disambiguated Wikipedia
corpus. Each vector ~v ∈ S represents a BabelNet
sense, i.e. a synset along with one of its lexical-
izations (e.g. album_chart_bn:00002488n). This
differs from unsupervised approaches (Huang et al.,
2012; Tian et al., 2014; Neelakantan et al., 2014)
that learn sense representations from text corpora
only and are not mapped to any lexical resource, lim-
iting their application in our task.

4 Methodology

Our approach can be summarized as follows. First,
we take advantage of a clustering algorithm for allo-
cating each BabelNet synset of the training set into
a domain cluster C (Section 4.1). Then, we expand
the training set by exploiting the different lexical-
izations available for each BabelNet synset (Section
4.2). Finally, we learn a cluster-wise linear pro-
jection (a hypernym transformation matrix) over all
pairs (term-hypernym) of the expanded training set
(Section 4.3).

7represented by the relation generalizations.
8http://lcl.uniroma1.it/sensembed

4.1 Domain Clustering
Fu et al. (2014) induced semantic clusters via k-
means, where k was tuned on a development set.
Instead, we aim at learning a function sensitive to
a predefined knowledge domain, under the assump-
tion that vectors clustered with this criterion are
likely to exhibit similar semantic properties (e.g.
similarity). First, we allocate each synset into its
most representative domain, which is achieved by
exploiting the set of thirty four domains available
in the Wikipedia featured articles page9. Warfare,
transport, or music are some of these domains.
In the Wikipedia featured articles page each domain
is composed of 128 Wikipedia pages on average.
Then, in order to expand the set of concepts as-
sociated with each domain, we leverage NASARI10

(Camacho-Collados et al., 2015), a distributional ap-
proach that has been used to construct explicit vector
representations of BabelNet synsets.

Our goal is to associate BabelNet synsets with do-
mains. To this end, we follow Camacho-Collados
et al. (2016) and build a lexical vector for each
Wikipedia domain by concatenating all Wikipedia
pages representing the given domain into a single
text. Finally, given a BabelNet synset b, we calculate
the similarity between its corresponding NASARI

lexical vector and all the domain vectors, selecting
the domain leading to the highest similarity score:

d̂(b) = max
d∈D

WO(~d,~b) (1)

whereD is the set of all thirty-three domains, ~d is the
vector of the domain d ∈ D, ~b is the vector of the
BabelNet synset b, and WO refers to the Weighted
Overlap comparison measure (Pilehvar et al., 2013),
which is defined as follows:

WO(~v1, ~v2) =

√√√√
∑

w∈O
(
rankw, ~v1 + rankw, ~v2

)−1
∑|O|

i=1(2i)−1

(2)
where rankw,~vi is the rank of the word w in the vec-
tor ~vi according to its weight, and O is the set of
overlapping words between the two vectors. In order
to have a highly reliable set of domain labels, those

9https://en.wikipedia.org/wiki/
Wikipedia:Featured_articles

10http://lcl.uniroma1.it/nasari
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synsets whose maximum similarity score is below
a certain threshold are not annotated with any do-
main. We fixed the threshold to 0.35, which pro-
vided a fine balance between precision (estimated in
around 85%) and recall in our development set. By
following this approach almost 2 million synsets are
labelled with a domain.

4.2 Training Data Expansion

Prior to training our model, we benefit from the
fact that a given BabelNet synset may be associ-
ated with a fixed number of lexicalizations or senses,
i.e. different ways of referring to the same con-
cept, to expand our set of training pairs. For in-
stance, the synset b associated with the concept mu-
sic_album is represented by the set of lexicalizations
Lb = {album, music_album . . . album_project}.
We take advantage of this synset representation to
expand each term-hypernym synset pair. For each
term-hypernym pair, both concepts are expanded to
their given lexicalizations and thus, each synset pair
term-hypernym in the training data is expanded to a
set of |Lt|.|Lh| sense training pairs.

This expansion step results in much larger sets
W∗ and K∗, where |W∗| = 18,291,330 and |K∗| =
15,362,268. Specifically, they are 3 and 11 times
bigger than the original training sets described in
Section 3.1. These numbers are higher than those re-
ported in recent approaches for hypernym detection,
which exploited Chinese semantic thesauri along
with manual validation of hypernym pairs (Fu et al.,
2014) (obtaining a total of 1,391 instances), or pairs
from knowledge resources such as Wikidata, Yago,
WordNet and DBpedia (Shwartz et al., 2016), where
the maximum reported split for training data (70%)
amounted to 49,475 pairs.

4.3 Learning a Hypernym Detection Matrix

The gist of our approach lies on the property of cur-
rent semantic vector space models to capture rela-
tions between vectors, in our case hypernymy. This
can be found even in disjoint spaces, where this
property has been exploited for machine translation
(Mikolov et al., 2013b) or language normalization
(Tan et al., 2015). For our purposes, however, in-
stead of learning a global linear transformation func-
tion in two spaces over a broad relation like hyper-
nymy, we learn a function sensitive to a given do-

main of knowledge. Thus, our training data becomes
restricted to those term-hypernym BabelNet sense
pairs

(
xd, yd

)
∈ Cd×Cd, where Cd is the cluster of

BabelNet synsets labelled with the domain d.
For each domain-wise expanded training set T d,

we construct a hyponym matrix Xd = [~xd1 . . . ~x
d
n]

and a hypernym matrix Yd = [~ydi . . . ~y
d
n], which are

composed by the corresponding SENSEMBED vec-
tors of the training pairs

(
xdi , y

d
i

)
∈ Cd × Cd, 0 ≤

i ≤ n.
Under the intuition that there exists a matrix Ψ so

that ~yd = Ψ~xd, we learn a transformation matrix for
each domain cluster Cd by minimizing:

min
ΨC

|T d|∑

i=1

‖ΨC~xdi − ~ydi ‖2 (3)

Then, for any unseen term xd, we obtain a ranked
list of the most likely hypernyms of its lexicalization
vectors ~xjd, using as measure cosine similarity:

argmax~v∈S
~v ·ΨC ~xj

d

||~v||||ΨC ~xj
d||

(4)

At this point, we have associated with each sense
vector a ranked list of candidate hypernym vectors.
However, in the (frequent) cases in which one synset
has more than one lexicalization, we need to con-
dense the results into one single list of candidates,
which we achieve with a simple ranking function
λ(·), which we compute as λ(~v) = cos(~v,ΨC~xd)

rank(~v) ,
where rank(~v) is the rank of ~v according to its co-
sine similarity with ΨC~xd.

The above operations allow us to cast the hyper-
nym detection task as a ranking problem. This is
also particularly interesting to enable a flexible eval-
uation framework where we can combine highly de-
manding metrics for the quality of the candidate
given at a certain rank, as well as other measures
which consider the rank of the first valid retrieved
candidate.

5 Evaluation

The performance of TAXOEMBED is evaluated by
conducting several experiments, both automatic and
manual. Specifically, we assess its ability to re-
turn valid hypernyms for a given unseen term with
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a held-out evaluation dataset of 250 Wikidata term-
hypernym pairs (Section 5.1). In addition, we as-
sess the extent to which TAXOEMBED is able to cor-
rectly identify hypernyms outside of Wikidata (Sec-
tion 5.2).

5.1 Experiment 1: Automatic Evaluation
5.1.1 Experimental setting

For each domain, we retain 5k, 10k, 15k, 20k and
25k Wikidata term-hypernym training pairs for dif-
ferent experiments, and evaluate on 250 test pairs
for each of the 10 domains. Moreover, we aim at
improving TAXOEMBED by including 1k and 25k
extra OIE-derived training pairs per domain (gen-
erating two more systems, namely 25k+Kd

1k and
25k+Kd

25k). These OIE-derived instances are those
contained in KB-U (see Section 3.1). Moreover, in
order to quantify the empirically grounded intuition
of the need to train a cluster-wise transformation ma-
trix (Fu et al., 2014), we also introduce an additional
configuration at 25k (25k+Kr

50k), where we include
50k additional pairs randomly from KB-U, and two
more settings with only random pairs coming from
Wikidata (100krwd) and KB-U (100k+r

kbu).
We also include a distributional supervised base-

line11 based on word analogies (Mikolov et al.,
2013a), computed as follows. First, we calculate the
difference vector of each training SENSEMBED vec-
tor pair (~xd,~yd) of a given domain d. Then, we aver-
age all the difference vectors of all training pairs to
obtain a global vector ~Vd for the domain d. Finally,
given a test term t we calculate the closest vector of
the sum of the corresponding term vector and ~Vd:

t̂ = argmax~v∈S ~Vd + ~t (5)

This baseline has shown to capture different se-
mantic relations and to improve as training data in-
creases (Mikolov et al., 2013a).

Evaluation metrics. We computed, for each do-
main and for the above configurations, the follow-
ing metrics: Mean Reciprocal Rank (MRR), Mean
Average Precision (MAP), and R-Precision (R-P).
These measures provide insights on different aspects
of the outcome of the task, e.g. how often valid hy-
pernyms were retrieved in the first positions of the

11Using the 25k domain-filtered expanded Wikidata pairs as
training set.

rank (MRR), and if there were more than one valid
hypernym, whether this set was correctly retrieved,
(MAP and R-P)12.

5.1.2 Results and discussion
We summarize the main outcome of our experi-

ments in Table 1. Results suggest that the perfor-
mance of TAXOEMBED increases as training data
expands. This is consistent with the findings shown
in Mikolov et al. (2013b), who showed a substantial
improvement in accuracy in the machine translation
task by gradually increasing the training set. Ad-
ditionally, the improvement of TAXOEMBED over
the baseline is consistent across most evaluation do-
main clusters and metrics, with domain-filtered data
from KB-U contributing to the learning process in
about two thirds of the evaluated configurations.
These are very encouraging results considering the
noisy nature of OIE systems, and that the resource
we obtained from KB-U is the result of error-prone
steps such as Word Sense Disambiguation and En-
tity Linking, as well as relation clustering.

As far as the individual domains are concerned,
the biology domain seems to be easier to model
than the rest, likely due to the fact that fauna and
flora are areas where hierarchical division of species
is a field of study in itself, which traces back to Aris-
totelian times (Mayr, 1982), and therefore has been
constantly refined over the years. Also, it is no-
table how well the 100krwd configuration performs
on this domain. This is the only domain in which
training with no semantic awareness gives good re-
sults. We argue that this is highly likely due to
the fact that a vast amount of synsets are allocated
into the biology cluster (60% of them, and up
to 80% in hypernym position). This produces the
so-called lexical memorization phenomenon (Levy
et al., 2015), as the system memorizes prototypical
biology-related hypernyms like taxon as valid hy-
pernyms for many concepts. This contrasts with the
lower presence of other domains, e.g. 5% in media,
4% in music, or 2% in transport.

Another remarkable case involves the
education and media domains, which ex-
perience the highest improvement when training
with KB-U (5 and 6 MRR points, respectively).

12See Bian et al. (2008) for an in-depth analysis of these met-
rics.
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art biology education geography health

Train MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P

5k 0.12 0.12 0.12 0.63 0.63 0.59 0.00 0.00 0.00 0.08 0.07 0.07 0.08 0.08 0.07
15k 0.21 0.20 0.18 0.84 0.72 0.79 0.22 0.22 0.21 0.15 0.14 0.14 0.08 0.07 0.07
25k 0.29 0.27 0.26 0.84 0.83 0.81 0.33 0.32 0.30 0.23 0.22 0.21 0.09 0.09 0.08
25k+Kd

1k 0.29 0.28 0.26 0.84 0.80 0.79 0.32 0.29 0.27 0.22 0.22 0.21 0.09 0.09 0.08
25k+Kd

25k 0.26 0.24 0.22 0.70 0.63 0.56 0.38 0.36 0.33 0.15 0.13 0.12 0.11 0.11 0.10
25k+Kr

50k 0.28 0.26 0.24 0.82 0.77 0.72 0.36 0.33 0.30 0.17 0.16 0.16 0.12 0.11 0.10

100kr
wd 0.00 0.00 0.00 0.84 0.81 0.77 0.00 0.00 0.00 0.01 0.01 0.01 0.07 0.06 0.06

100kr
kbu 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.12 0.12 0.11

Baseline 0.13 0.12 0.10 0.58 0.57 0.57 0.10 0.10 0.09 0.12 0.09 0.05 0.07 0.13 0.14
media music physics transport warfare

Train MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P

5k 0.28 0.28 0.27 0.10 0.10 0.09 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
15k 0.14 0.13 0.12 0.08 0.07 0.07 0.36 0.35 0.34 0.25 0.23 0.21 0.01 0.01 0.01
25k 0.46 0.45 0.43 0.30 0.28 0.26 0.41 0.40 0.38 0.46 0.43 0.39 0.05 0.05 0.04
25k+Kd

1k 0.43 0.42 0.41 0.32 0.30 0.28 0.39 0.38 0.37 0.47 0.44 0.40 0.04 0.04 0.01
25k+Kd

25k 0.52 0.51 0.49 0.26 0.25 0.23 0.37 0.36 0.34 0.48 0.45 0.41 0.04 0.03 0.03
25k+Kr

50k 0.46 0.45 0.43 0.29 0.28 0.25 0.31 0.30 0.29 0.52 0.49 0.46 0.05 0.04 0.04
100kr

wd 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01
100kr

kbu 0.08 0.07 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.00 0.00

Baseline 0.57 0.43 0.52 0.03 0.03 0.03 0.05 0.04 0.04 0.29 0.25 0.21 0.04 0.04 0.04

Table 1: Overview of the performance of TAXOEMBED using different training data samples.

One of the main sources for is-a relations in KB-U
is NELL, which contains a vast amount of relation
triples between North American academic entities
(professors, sports teams, alumni, donators; as
well as media celebrities). Many of these entities
are missing in Wikidata, and relations among
them encoded in NELL are likely to be correct
because in most cases these are unambiguous
entities which occur in the same communicative
contexts. For example, leveraging KB-U we were
able to include the pair (university_of_north_wales,
four_year_college), which is absent in Wikidata. In
fact, many high quality is-a pairs like this can be
found in KB-U for these two domains.

We also computed P@k (number of valid hyper-
nyms on the first k returned candidates), where k
ranges from 1 to 5. Numbers are on the line of the re-
sults shown in Table 1 and therefore are not provided
in detail. The main trend we found is showcased in
Figure 1, which shows an illustrative example from
the transport domain. As we can see, all val-
ues of k exhibit a similar performance curve, with a

gradual increase of performance as the training set
becomes larger.

Figure 1: P@k scores for the transport domain.

False positives. We complement this experiment
with a manual evaluation of theoretical false posi-
tives. Our intuition is that due to the nature of the
task, some domains may be more flexible in allow-
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ing two terms to encode an is-a relation, while others
may be more restrictive. We asked human judges to
manually validate a sample of 200 wrong pairs from
our best run in each domain, and estimated precision
over them. As expected, hard science domains like
physics obtain very low results (about 1% preci-
sion). In contrast, other domains like education
(12% precision), or transport (16% precision),
probably due to their multidisciplinary nature, allow
more valid hypernyms for a given term than what is
currently encoded in Wikidata.

5.2 Experiment 2: Extra-Coverage

In this experiment we evaluate the performance of
TAXOEMBED on instances not included in Wiki-
data. We describe the experimental setting in Sec-
tion 5.2.1 and present the results in Section 5.2.2.

5.2.1 Experimental setting

For this experiment we use two configurations of
TAXOEMBED: the first one includes 25k domain-
wise expanded training pairs (TaxE25k), whereas the
second one adds 1k pairs from KB-U (TaxE25k+Kd).
We randomly extract 200 test BabelNet synsets (20
per domain) whose hypernyms are missing in Wiki-
data. We compare against a number of taxon-
omy learning and Information Extraction systems,
namely Yago (Suchanek et al., 2007), WiBi (Flati
et al., 2014) and DefIE (Delli Bovi et al., 2015b).
Yago and WiBi are used as upper bounds due to the
nature of their hypernymic relations. They include
a great number of manually-encoded taxonomies
(e.g. exploiting WordNet and Wikipedia categories).
Yago derives its taxonomic relations from an au-
tomatic mapping between WordNet and Wikipedia
categories. WiBi, on the other hand, exploits, among
a number of different Wikipedia-specific heuristics,
categories and the syntactic structure of the intro-
ductory sentence of Wikipedia pages. Finally, DefIE
is an automaic OIE system relying on the syntactic
structure of pre-disambiguated definitions13. Three
annotators manually evaluated the validity of the hy-
pernyms extracted by each system (one per test in-
stance).

13For this experiment, we included DefIE’s is-a relations
only.

5.2.2 Results and discussion
Table 2 shows the results of TAXOEMBED and all

comparison systems. As expected, Yago and WiBi
achieve the best overall results. However, TAXOEM-
BED, based solely on distributional information, per-
formed competitively in detecting new hypernyms
when compared to DefIE, improving its recall in
most domains, and even surpassing Yago in techni-
cal areas like biology or health. However, our
model does not perform particularly well on media
and physics. In most domains our model is able
to discover novel hypernym relations that are not
captured by any other system (e.g. therapy for ra-
diation treatment planning in the health domain
or decoration for molding in the art domain)14.

In fact, the overlap between our approach and the
remaining systems is actually quite small (on aver-
age less than 25% with all of them on the Extra-
Coverage experiment). This is mainly due to the fact
that TAXOEMBED only exploits distributional infor-
mation and does not make use of predefined syntac-
tic heuristics, suggesting that the information it pro-
vides and the rule-based comparison systems may
be complementary. We foresee a potential avenue
focused on combining a supervised distributional
approach such as TAXOEMBED with syntactically-
motivated systems such as Wibi or Yago. This
combination of a distributional system and manual
patterns was already introduced by Shwartz et al.
(2016) on the hypernym detection task with highly
encouraging results.

6 Conclusion

We have presented TAXOEMBED, a supervised tax-
onomy learning framework exploiting the property
that was observed in Fu et al. (2014), namely
that there exists, for a given domain-specific ter-
minology, a shared linear projection among term-
hypernym pairs. We showed how this can be used
to learn a hypernym transformation matrix for dis-
covering novel is-a relations, which are the back-
bone of lexical taxonomies. First, we allocate al-
most 2M BabelNet synsets into a predefined domain
of knowledge. Then, we collect training data both
from a manually constructed knowledge base (Wiki-

14For simplicity, we use the word surface form to refer to
BabelNet synsets.
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art biology education geography health

P R F P R F P R F P R F P R F

TaxE25k 0.45 0.45 0.45 0.40 0.40 0.40 0.60 0.60 0.60 0.35 0.35 0.35 0.45 0.45 0.45
TaxE25k+Kd 0.50 0.50 0.50 0.40 0.40 0.40 0.55 0.55 0.55 0.35 0.35 0.35 0.45 0.45 0.45
DefIE 0.63 0.35 0.45 0.36 0.20 0.25 0.57 0.20 0.29 0.66 0.40 0.50 0.25 0.15 0.18

Yago 0.88 0.75 0.81 0.62 0.25 0.36 0.94 0.80 0.86 0.79 0.75 0.77 0.28 0.10 0.15
Wibi 0.70 0.70 0.70 0.58 0.50 0.54 0.94 0.80 0.86 0.75 0.75 0.75 0.66 0.50 0.57

media music physics transport warfare

P R F P R F P R F P R F P R F

TaxE25k 0.10 0.10 0.10 0.45 0.45 0.45 0.15 0.15 0.15 0.35 0.35 0.35 0.25 0.25 0.25
TaxE25k+Kd 0.10 0.10 0.10 0.40 0.40 0.40 0.15 0.15 0.15 0.25 0.25 0.25 0.45 0.45 0.45
DefIE 0.81 0.45 0.58 0.71 0.50 0.58 0.42 0.15 0.22 0.54 0.30 0.38 0.60 0.30 0.40

Yago 0.76 0.65 0.70 0.84 0.55 0.67 0.80 0.40 0.53 0.93 0.70 0.80 0.81 0.65 0.72
Wibi 0.90 0.90 0.90 0.89 0.85 0.87 0.68 0.55 0.61 0.87 0.70 0.77 0.66 0.50 0.57

Table 2: Precision, recall and F-Measure between TAXOEMBED, two taxonomy learning systems (Yago and
WiBi), and a pattern-based approach that performs hypernym extraction (DefIE).

data), and from OIE systems. We substantially ex-
pand our initial training set by expanding both terms
and hypernyms to all their available senses, and in a
last step, to their corresponding disambiguated vec-
tor representations.

Evaluation shows that the general trend is that our
hypernym matrix improves as we increase training
data. Our best domain-wise configuration combines
25k training pairs from Wikidata and additional
pairs from an OIE-derived KB, achieving promis-
ing results. The domains in which the addition of
the OIE-based information contributed the most are
education, transport and media. For in-
stance, in the case of education, this may be due
to the over representation of the North American ed-
ucational system in IE systems like NELL. We ac-
company this quantitative evaluation with manual
assessment of precision of false positives, and an
analysis of the potential coverage comparing it with
knowledge taxonomies like Yago or WiBi, and with
DefIE, a quasi-OIE system.

7 Future Work

For future work we are planning to apply this strat-
egy to learn large-scale semantic relations beyond
hypernymy. This may constitute a first step towards
a global and fully automatic ontology learning sys-
tem. In the context of semantic web, we would like
to include semantic parsers and distant supervision

to our algorithm in order to capture n-ary relations
between pairs of concepts to further create and im-
prove existing KBs.

As mentioned in Section 5.2.2, we are also plan-
ning to combine our distributional approach with
rule-based heuristics, following the line of work in-
troduced by Shwartz et al. (2016). Finally, we see
potential in the domain clustering approach for im-
proving graph-based taxonomy learning systems, as
it can serve as a weighting measure as to how perti-
nent a given set of concepts in a taxonomy are for a
specific domain.
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