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SUMMARY

There is a current imperative to unravel the hierarchy
of molecular pathways that drive the transition of
early to established disease in rheumatoid arthritis
(RA). Herein, we report a comprehensive RNA
sequencing analysis of the molecular pathways that
drive early RA progression in the disease tissue
(synovium), comparing matched peripheral blood
RNA-seq in a large cohort of early treatment-naive
patients, namely, the Pathobiology of Early Arthritis
Cohort (PEAC). We developed a data exploration
website (https://peac.hpc.qmul.ac.uk/) to dissect
gene signatures across synovial and blood compart-
ments, integratedwith deep phenotypic profiling.We
identified transcriptional subgroups in synovium
linked to three distinct pathotypes: fibroblastic
pauci-immune pathotype, macrophage-rich diffuse-
myeloid pathotype, and a lympho-myeloid pathotype
characterized by infiltration of lymphocytes and
myeloid cells. This is suggestive of divergent patho-
genic pathways or activation disease states. Pro-
myeloid inflammatory synovial gene signatures
correlated with clinical response to initial drug ther-
apy, whereas plasma cell genes identified a poor
Cell Re
This is an open access article und
prognosis subgroup with progressive structural
damage.
INTRODUCTION

The genetic architecture underlying susceptibility to rheuma-

toid arthritis (RA) (Eyre et al., 2017) and its interaction with

environmental and epigenetic factors have been characterized

with increasing depth. Although these predisposing factors

initiate the start of RA, the subsequent aberrant biological pro-

cesses and sequence of events, which drive the transition

from systemic autoimmunity to joint inflammation, and from

early to established disease, culminating in the development

of synovitis and articular destruction, are less clear (Firestein

and McInnes, 2017). Established RA displays clinical hetero-

geneity as demonstrated by variable prognosis, unpredictable

propensity to rapid progression to structural damage, and

inconsistent response to therapy. Although RA treatment

has been revolutionized by biologic and synthetic therapies

targeting specific immune-mediated pathways, a significant

number of patients fail to respond to current medications

with only 20%–30% reaching low disease activity status (as

measured by 70% improvement in American College of Rheu-

matology [ACR] response criteria). Notably, treatment failure

rates remain uniformly similar, regardless of the drug mecha-

nism of action. The mechanistic reasons for such similar
ports 28, 2455–2470, August 27, 2019 ª 2019 The Author(s). 2455
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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failure rates remain largely unknown, but the wide cellular and

molecular variation described in the synovial tissue of patients

with long-standing RA are likely to play a role in the variable

treatment response and heterogeneous clinical evolution (Pit-

zalis et al., 2013).

Although a number of studies have examined synovial tis-

sue gene expression (Badot et al., 2009; Dennis et al., 2014;

Lindberg et al., 2010; Timmer et al., 2007), few studies have

focused on gene expression in early, treatment-naive RA (De

Groof et al., 2016). Many of these studies have been per-

formed in established or late stage disease and with a sam-

pling bias due to major representation of large joints, whereas

only a handful of studies have included small joints (Pitzalis

et al., 2013). Furthermore, very few studies have to date re-

ported a systematic molecular characterization by RNA

sequencing of the synovial tissue (Mandelin et al., 2018; Or-

ange et al., 2018) but none in early treatment-naive patients.

Until now it has remained unknown whether specific histolog-

ical and transcriptomic findings represent an evolutionary

response to long-standing joint inflammation following multi-

ple immune-modulatory therapies or embody distinct, essen-

tial RA pathogenetic mechanisms from disease onset. In addi-

tion, although microarray-based gene expression analyses

have been performed in RA peripheral blood (Smith et al.,

2013), no studies have examined coordinate gene expression

changes at the RNA sequencing level in blood and synovium

from the same patients.

Here, we characterize at disease presentation early, pre-

treatment RA (mean 5.6-month symptom duration), using

comprehensive RNA sequencing (RNA-seq) analysis of syno-

vial biopsies and blood from the largest biopsy-driven cohort

of treatment-naive patients: the Pathobiology of Early Arthritis

Cohort (PEAC). We combined RNA-seq with detailed synovial

histology and correlated these molecular signatures with clin-

ical and imaging phenotype data at disease presentation. We

show that the spectrum of the synovial immune response is

diverse and associated with differential blood immune signals.

We identify transcriptional endotypes in the synovium linked

to three distinct pathotypes: fibroblastic-rich pauci-immune

pathotype, myeloid- or macrophage-rich pathotype, and

lymphoid-rich pathotype with high plasma cell accumulation.

This study yields major insights into pathogenic pathways in

RA synovium and the links between local synovium and sys-

temic immune responses in the blood and demonstrates

that synovial pathotype signatures are associated with diverse

disease activity or severity and structural damage at baseline

and response to disease-modifying anti-rheumatic drug

(DMARD) therapy.
Figure 1. Synovium RNA Sequencing Correlates with Histological Path

(A) Immunohistochemistry of synovial biopsies for CD20+ B cells, CD3+ T cells, an

cells from treatment-naive individuals with early rheumatoid arthritis. Synovial bio

myeloid (sublining macrophage infiltration), or pauci-immune fibroid (lack of or lo

(B) Comparison of cell-specific RNA-seq gene module scores with histology sco

(C) Cell-specific gene scores compared across histology pathotypes. Statistical

(D) Clustering of lympho-myeloid, diffuse-myeloid and pauci-immune fibroid sam

(E) Heatmap showing hierarchical clustering of cell-specific gene module scores a

biopsies from each pathotype.
RESULTS

Identification of Distinct Histological Pathotypes in
Treatment-Naive Early RA Synovium
Ultrasound-guided synovial biopsies were selected from 90

consecutive individuals (demographics in Table S1) meeting the

1997ACRclassification criteria for early RA from the larger 355-in-

dividual PEAC. At presentation, average clinical disease activity

was high, with a mean 28-joint disease activity score (DAS28-

ESR) of 5.8 ± 1.3 (Table S1). Biopsies were obtained using a mini-

mally invasive ultrasound-guided approach, which we pioneered

on a large scale (Kelly et al., 2015) under local anesthesia including

both small or medium joints (�75%) and large joints (�25%) prior

to any therapy with synthetic disease-modifying anti-rheumatic

drugs (sDMARDs) including steroids. Synovial biopsies were

analyzedby immunohistochemistry andscoredsemiquantitatively

(0–4) for thepresenceofBcell aggregates (clusterof differentiation

[CD]20+), plasma cells (CD138+), T cells (CD3+), andmonocytes or

macrophages (CD68+) in the synovial lining (CD68L) or sublining

(CD68SL) layers (Figure 1A). Based on histology scores, synovial

samples were classified as lympho-myeloid (CD20 B cell aggre-

gate rich), diffuse-myeloid (CD68 rich in the lining or sublining layer

but poor inB cells), or fibroid (paucity of immune-inflammatory cell

infiltrate), as described in the STAR Methods. A total of 46 (51%)

biopsies were classed as lympho-myeloid, 21 (23%) were

diffuse-myeloid, 17 (19%) were pauci-immune fibroid, and 6

(7%) were unclassifiable by histological analysis due to low tissue

quality following histology processing (Table S2). Whole-tissue

RNA-seq was performed on 90 synovial biopsies, pooling a mini-

mum of 6 biopsies per patient. Three synovial RNA-seq samples

were excluded following quality control, resulting in a post-quality

control (QC) sample size of 87 synovial RNA-seq samples. RNA-

seq performed on matching peripheral blood samples was avail-

able on 67 individuals.

Histological pathotype, clinical parameters, and ultrasound

analysis were repeated after 6 months, during which individuals

were treated with DMARDs, predominantly methotrexate in

combination with sulfasalazine and/or hydroxychloroquine

(Table S3). Sharp van der Heijde X-ray scores were measured

at baseline and after 12 months of treatment.

Cell-Specific Gene Modules Correlate with Synovial
Cellularity by Immunohistology, Confirming the
Presence of Pathobiological Endotypes in Early RA
Synovitis
We derived gene sets highly specific to immune cell tissue types

(Table S4; Figure S1), based on cap analysis gene expression

(CAGE) sequencing data from the FANTOM5 project (Forrest
otype in Early Rheumatoid Arthritis

d CD68+macrophages in synovial lining or sublining layers and CD138+ plasma

psies were categorized as lympho-myeloid (B cell aggregates present), diffuse-

w inflammatory cell infiltrate).

res.

analysis by one-way ANOVA with Bonferroni post-test.

ples according to B cell, monocyte, and synoviocyte RNA-seq modules.

nd collapsed module space (right) highlighting cellular composition of synovial
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Figure 2. Clinico-radiographic Correlates of Cell-Specific Gene Modules in Rheumatoid Arthritis Synovium

(A) Correlation heatmap showing Spearman correlation of cell-specific gene modules against baseline clinical (ESR, erythrocyte sedimentation rate; CRP,

C-reactive protein; CCP, anti-cyclic citrullinated peptide antibody titer; RF, rheumatoid factor titer; VAS, visual analog score; HAQ, health assessment ques-

tionnaire), ultrasonographic scores (ST, synovial thickness; PD, power doppler) at the biopsy joint (Ultrasound ST/PD BJ) or across 12 representative joints

(Ultrasound ST/PD 12) and radiographic parameters (Total Sharp van der Heijde score).

(legend continued on next page)
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et al., 2014), which correlates well with tissue-derived RNA-seq

(Yu et al., 2015). RNA-seq gene module scores specific for B

cells, T cell subsets, monocyte or macrophage subsets, plasma

cells, and mast cells were analyzed for correlation against

relevant histological markers in synovial tissue. Gene module

scores for CD19+ B cells, CD4+ T cells, CD14+CD16+ mono-

cytes, plasma cells, and mast cells correlated strongly with

synovial histology scores for CD20 (r = 0.65, p = 3.8 3 10�11),

CD3 (r = 0.54, p = 2.7 3 10�7), sublining CD68 (r = 0.62,

p = 1.6 3 10�10), CD138 (r = 0.72, p = 4.4 3 10�14), and

CD117+ mast cells (r = 0.51, p = 1.3 3 10�5), respectively (Fig-

ure 1B). Hence, cell-specific gene modules derived from

FANTOM5 data enabled a new method to use RNA-seq data

to reveal relative quantitation of tissue immune cell infiltration

according to cell-specific transcripts. Cell-specific module

scores were compared between the lympho-myeloid, diffuse-

myeloid, and pauci-immune fibroid histological groups (Fig-

ure 1C); as expected, both the B cell and T cell gene scores

were elevated in the lympho-myeloid versus pauci-immune

fibroid group (p = 8.7 3 10�7 and p = 6.2 3 10�9, respectively).

The CD14+CD16+ monocyte gene score was high in both

diffuse-myeloid (p = 1.6 3 10�4) and lympho-myeloid

(p = 2.6 3 10�9) groups compared to the pauci-immune fibroid

group, whereas the CD138+ plasma cell score was highest in

the lympho-myeloid group (p = 2.5 3 10�6). Thus, plasma cell,

B cell, monocyte, and synoviocyte RNA-seq cell-specific

modules were able to segregate the histologically defined

lympho-myeloid, diffuse-myeloid, and pauci-immune fibroid

samples (Figure 1D). In plasma cell-rich synovial samples, we

also detected high monocyte or macrophage and T cell module

scores (Figure 1D), suggesting a strong association with these

cell types most likely to be connected to immunological priming

of T cells by APC, leading to B cell activation and differentiation in

the synovial tissue. Further analysis of a wider set of immune cell

types using gene modules derived from FANTOM5 shows more

general patterns of immune cell infiltration in synovial tissue

across the 3 major pathotypes (Figure 1E). Gene signatures of

CD4+ T cell subsets including regulatory T cells, CD8+ T cells,

plasmacytoid dendritic cells, and natural killer (NK) cells were

associated with the lympho-myeloid group, whereas basophil,

eosinophil, and neutrophil signatures were more frequently

observed in the diffuse-myeloid group. The pauci-immune

fibroid group showed increased magnitude of the synoviocyte

gene module and, importantly, a distinct absence of immune

cells (Figure 1E). Together, the distribution of cell-lineage-spe-

cific transcripts (Figures 1D and 1E) suggests that synovial tissue

heterogeneity represents a divergent continuum with pauci-im-

mune fibroid samples, low on all types of immune-inflammatory

cells at one end of the spectrum and lympho-myeloid at the other

end of the spectrum, with the full range of immune-inflammatory

cells including macrophage, T, B, and plasma cell infiltration,

whereas the diffuse-myeloid samples show a prevalent macro-

phage infiltration but largely lack T, B, and plasma cell infiltration.
(B) Boxplots of clinical parameters by tertile demonstrating correlation with cell-

(C) Linear regression of ultrasound biopsy joint parameters against cell-specific

(D) Boxplots of total Sharp van der Heijde radiographic score by tertile correlated

models.
Cell-Specific Gene Modules in Synovium Correlate with
Clinical Phenotypes Featuring Diverse Disease Activity
and Radiographic Damage
Correlation of clinical and radiographic parameters with cell-

specific gene modules showed that specific immune cell line-

ages associate with increased disease activity, which is reflected

in the DAS28-ESR including the sedimentation rate (ESR) and

tender and swollen joints scores (Figure 2A). The plasma cell

gene module showed strongest correlation with anti-cyclic cit-

rullinated peptide (CCP) titer (r = 0.30, false discovery rate

[FDR]-adjusted p = 0.0096) (Figure 2B), consistent with previous

studies linking synovial B cell infiltration and in situ plasma cell

differentiation to anti-CCP antibody production (Corsiero et al.,

2016; Humby et al., 2009; Teng et al., 2007). CD14+CD16�

monocyte module correlated with pain visual analog score

(VAS) (r = 0.38, padj = 7.6 3 10�4). Plasmacytoid dendritic cell

(pDC) (r = 0.41, padj = 3.5 3 10�4) and microvascular endothelial

cell modules (r = 0.35, padj = 0.0099) correlated with ESR, which

is consistent with pDC involvement (in addition to myeloid den-

dritic cell [mDC]) in immune and/or inflammatory responses.

Particularly strong correlation was seen between both biopsy

joint synovial thickness and power Doppler ultrasonographic

measures with gene expression modules, confirming that gene

expression of cellular infiltration strongly matches imaging signs

of active joint inflammation in the particular joint undergoing

biopsy. The plasma cell gene module was the strongest

predictor of ultrasonographic synovial thickness (r = 0.56,

padj = 7.1 3 10�7) and power Doppler signal (r = 0.44,

padj = 2.1 3 10�4) (Figure 2C), which is consistent also with a

strong correlation between CD138+ histology score and ultraso-

nography (Figure S2). In contrast, there was an inverse correla-

tion between ultrasound scores and synoviocyte gene expres-

sion (pauci-immune fibroid pathotype). Several cell type

modules showed significant correlation with radiographic dam-

age, as measured by baseline total Sharp van der Heijde score

(Figure 2D): B cell (r = 0.31, padj = 0.015), CD4+ memory T cell

(r = 0.30, padj = 0.018), regulatory T cell (r = 0.28, padj = 0.029),

and plasma cell (r = 0.28, padj = 0.025) gene signatures were

correlated with radiographic change. These data suggest that

infiltration of multiple immune cell types associated with ectopic

lymphoid responses in the synovial tissue may be linked to more

destructive disease from early on in the course of RA.

Synovium and Blood RNA-Seq Comparison Reveals
Differential Axes of Gene Expression
We next compared gene expression in synovium and peripheral

blood in the three histologically identified subgroups using FDR-

adjusted likelihood ratio test and pairwise group tests for differ-

ential expression. Differentially expressed genes were initially

visualized using standard volcano plots (Figure S3). However,

due to the three-way nature of the analysis, the multiple pairwise

comparisons rendered data interpretation difficult. Hence, we

developed a 3D volcano plot by using a cylindrical geometry to
specific gene modules.

gene modules.

with cell-specific gene modules. p values were calculated by linear regression
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Figure 3. Synovium and Blood RNA-Seq Comparison Reveals Differential Axes of Gene Expression

(A and B) 3D cylindrical volcano plots of differentially expressed genes comparing RNA sequencing of (A) synovial tissue and (B) whole blood. Vectors for

pathotype mean Z score per gene were projected onto a polar coordinate space analogous to RGB (red-green-blue) color space mapping to HSV (hue-satu-

ration-value) as described in the STARMethods. Lympho-myeloid, diffuse-myeloid, and pauci-immune fibroid vectors are mapped to 3 axes lympho-myeloid (L),

diffuse-myeloid (M), and pauci-immune fibroid (F) using polar coordinates in the horizontal plane. The z axis shows –log10 p value for likelihood ratio test. Genes

with adjusted p value for likelihood ratio test < 0.05 (z axis) were considered significant (non-significant genes colored gray). Colors demonstrate pairwise

comparisons (FDR < 0.05) between the 3 histological pathotypes: primary colors denote upregulation in one group only for lympho-myeloid (blue), diffuse-

(legend continued on next page)
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aid visualization and interpretation of the three-way group com-

parison (Figures 3A and 3B; Videos S1 and S2). The three-way

volcano plots demonstrate that the largest groups of differen-

tially expressed RA synovium genes are upregulated in the lym-

pho-myeloid group alone (blue) or diffuse-myeloid and pauci-im-

mune fibroid combined (yellow), with a smaller number of genes

associated with diffuse-myeloid group alone (red) (Figure 3A).

The polar angle of each gene directly conveys the degree to

which a gene is associated with one or more pathotypes. Fold

change can be used as an alternative to Z score for the radial

scale (see online https://peac.hpc.qmul.ac.uk).

Comparison of synovium and blood RNA-seq showed a stark

difference in the absolute quantity of differentially expressed

transcripts between pathotypes, with approximately 3,000 tran-

scripts in synovium compared to only 8 differentially expressed

transcripts in matched peripheral blood at FDR < 0.05 (Fig-

ure 3B). The eight differentially expressed blood transcripts

were associated with the lympho-myeloid pathotype, and seven

out of eight are known type I interferon response genes (IFI27,

ISG15, IFI44L, OASL, USP18, RSAD2, and LY6E). The overall

transcriptome shape as visualized in the polar plots (Figures

3A and 3B) showed greater whole-transcriptome variation be-

tween the lymphoid-fibroid axis in synovium in comparison to

the myeloid-fibroid axis in blood. Pairwise volcano plots (Fig-

ure S3) confirmed the largest number of differentially expressed

genes in peripheral blood were seen in the myeloid-fibroid com-

parison, but, in contrast, in synovium the myeloid-fibroid com-

parison showed the fewest number of differentially expressed

genes.

To facilitate the interrogation of this large synovial tissue RNA-

seq database, we developed a web interface (https://peac.hpc.

qmul.ac.uk/) that facilitates visualization and exploration of the

data (Figure S4). The web interface includes an interactive

version of the 3D volcano plot; an interactive interface for

comparing genes or gene modules of interest in synovium or

blood against histological, clinical, or radiographic measures;

and searchable tables of differentially expressed genes and

module comparisons.

To find evidence of natural structure in the transcriptome data,

principal-component analysis (PCA) of synovium was compared

with whole blood (Figures 3C and 3D). Synovial transcriptome

PCA showed clear separation between lympho-myeloid and

pauci-immune fibroid groups, whereas the diffuse-myeloid

partially overlapped with the two groups. However, in the

whole-blood transcriptome, PCA showed separation between

patients showing a diffuse-myeloid and pauci-immune fibroid

synovial pathotype on PC1, whereas patients with the lympho-

myeloid synovial pathotype were evenly distributed. Taken

together, the clustering analysis and PCA suggest that although

the synovium gives clean delineation of the lympho-myeloid

group, particularly in those individuals with synovial plasma cells,
myeloid (red), and pauci-immune fibroid (green) compared to reference group w

regulated in two groups (myeloid+lymphoid, purple; fibroid+myeloid, yellow; lym

(C and D) Principal-component analysis of whole transcriptome RNA-seq data fr

separation of lympho-myeloid (blue) and pauci-immune fibroid (green) histolog

separation of diffuse-myeloid (red) and pauci-immune fibroid samples on PC1 in
the blood transcriptome shows significantly less differentiation

between pathotypes.

Synovial RNA-Seq Gene Clusters Delineate Pathways
Characterizing Histo-pathotype Spectrum
Differentially expressed genes in RA synovial biopsies were sub-

jected to unsupervised hierarchical clustering and compared

against histology (Figure 4A). Cluster S1 and S2 were mainly

associated with pauci-immune and diffuse-myeloid samples,

whereas S3 and S4were typically associated withmore inflamed

diffuse-myeloid or lympho-myeloid samples. In comparison, lit-

tle evidence of structure and relationship to pathotypes was

observed in clustering of the top �500 variable genes in blood

(data not shown). Biological processes for each synovial and

blood gene cluster were investigated using ingenuity pathway

analysis (IPA) (Figure 4B). Overall, pathway analysis showed

strong segregation, concordant with histology. The strongest

pathway enrichment was identified in cluster S4 (lympho-

myeloid group), which was associated with both B cell, plasma

cell, and macrophage infiltration histologically, and demon-

strated multiple immune cell activation, encompassing B and T

helper cell maturation associated with dendritic cell activation,

antigen presentation, and interaction with NK cells typically

associated with ectopic lymphoid-like structure (ELS) formation.

Cluster S3 pathways showed specific pro-inflammatory path-

ways including phospholipase C, PI3K, and NFAT signaling,

which are known to be important drivers of activation and infiltra-

tion of tissue neutrophils, macrophages, and other immune cell

types into inflamed synovium (Jakus et al., 2009). In contrast,

clusters S1 and S2, which were dominated by pauci-immune

and diffuse myeloid samples, were associated with pro-fibro-

blast Wnt/b-catenin pathways, whereas immune and/or inflam-

matory pathways were notably lower.

Modular Analysis Shows Discordance between Blood
and Synovium Immunological Pathways
Blood transcript modules (Li et al., 2014) were applied to the RA

synovium and peripheral blood transcriptome data. We used

Quantitative Set Analysis for Gene Expression (QuSAGE) meth-

odology to compare differential gene module expression be-

tween synovial pathotypes in synovium (Figures 5A and S5A)

and peripheral blood (Figures 5B and S5B). In synovium, plas-

mal, B, and T cell gene modules were strongly upregulated in

the lympho-myeloid pathotype, as were gene modules for

CD28 costimulation, interleukin-7 (IL-7) and B and T cell differen-

tiation (Figures 5A and S5A). Pro-inflammatory chemokine and

cytokine modules and dendritic cell modules were associated

with both diffuse-myeloid and lympho-myeloid pathotypes, in

keeping with their role inmonocyte recruitment andmacrophage

activation in the diffuse-myeloid pathotype and ectopic

lymphoid structure development in the lympho-myeloid
ith minimum gene expression; composite colors show genes significantly up-

phoid+fibroid, cyan). Lateral view and 2D polar plots are shown below.

om untreated rheumatoid arthritis (C) synovium and (D) whole blood, showing

ical pathotypes on principal component 1 (PC1) for synovial RNA-seq, with

whole blood.
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Figure 4. Clustering and Pathway Analysis of Differentially Expressed Genes in Rheumatoid Arthritis Synovium

(A) Heatmap of 2,964 RNA-seq genes differentially expressed between three histological pathotypes (lympho-myeloid, diffuse-myeloid, and pauci-immune

fibroid) (FDR < 0.05, n = 87). Upper tracks show histological scores for CD3, CD20, CD68L, CD68SL, andCD138 and overall pathotype. Unsupervised hierarchical

clustering demonstrated clustering of genes into four clusters, demonstrating some overlap between the three histologically determined pathotypes.

(B) Ingenuity Pathway Analysis performed on synovial gene clusters produced by hierarchical clustering identified pathways by gene enrichment, using whole

genome as background. Clusters S1 and S2 represent pauci-immune fibroid and diffuse-myeloid samples, and clusters S3 and S4 represent lympho-myeloid and

diffuse-myeloid samples. Color scale and numbers depict –log10 FDR-adjusted p values.
pathotype. Pauci-immune fibroid synovial modules were en-

riched for cell junction, cell-cell adhesion, extracellular matrix,

and Hox cluster, which is consistent with fibroblast and connec-

tive tissue development.

To complement this analysis, we performed weighted correla-

tion network analysis (WGCNA) on synovium RNA-seq. Syno-

vium WGCNA modules (Figure 5C; Table S5) were annotated

against 13 cell populations observed in single cell RNA-seq of

RA synovium (Stephenson et al., 2018), by testing for module

gene enrichment in genes upregulated in each cell type by hy-

pergeometric test. Correlation of synovium WGCNA modules

with clinical variables showed comparable results to FANTOM5

cell-lineage modules (Figure S6; and see https://peac.hpc.qmul.

ac.uk/) and provides additional information on synovial cell types

not available in FANTOM5, including synovial fibroblast sub-

types (Mizoguchi et al., 2018) and synovial macrophage and

T cell subpopulations including peripheral helper T cells (TPH
cells) (Rao et al., 2017). The single-cell plasma cell module

showed similar results to FANTOM5 (Figure S6A). The SC160

module, which contains multiple genes associated with PD-1high

TPH cells including PDCD1, TIGIT, and CXCR6, showed strong

correlation with increased disease severity measured by

DAS28-ESR, ultrasound at the biopsy joint, and Sharp van der

Heijde radiographic damage score (Figure S6B). A CD55+ type
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1 fibroblast-associatedmodule, SC210, was strongly associated

with the pauci-immune fibroid pathotype and was inversely

correlated with inflammatory cell histology and showed inverse

correlation with disease severity measured by multiple clinic-

radiographic parameters (Figure S6C).

Heatmaps of individual gene modules revealed that plasma-

cell-associated genes such as CD27 and IGLL5 were strongly

upregulated in lympho-myeloid samples, whereas multiple che-

mokine genes were increased in both lympho-myeloid and

diffuse-myeloid samples (Figures 5D and 5E). In contrast, Wnt

signaling module M206 (Figures 5D and 5E), containing FRZB,

which has a critical role in bone and cartilage development,

was elevated in the pauci-immune fibroid pathotype (Figures

5D and 5E).

The polar plot of the blood module signatures (Figure 5B) was

distinctively different from synovium, with the main axis of varia-

tion lying from myeloid to fibroid, mirroring the distinct whole-

transcriptome variation between the two compartments (Figures

3A and 3B, polar plots). Noteworthy, blood module associations

with pathotype included type I interferon response and paradox-

ical changes in the B cell compartment. Increased peripheral

blood type I interferon response (M127), which is involved in

terminal B cell maturation and plasma cell development, was

associated with the lympho-myeloid pathotype in synovium

https://peac.hpc.qmul.ac.uk/
https://peac.hpc.qmul.ac.uk/
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Figure 5. Modular Analysis of Synovial and Blood RNA Sequencing

(A–C) Three axis polar plots of synovium (A) and blood (B) genemodules based on bloodmicroarraymodules (Li et al., 2014) and (C) synoviummodules derived by

weighted correlation network analysis (WGCNA), analyzed using QuSAGE. Modules are color-coded for statistical significance (FDR < 0.05) for upregulation in

different pathotypes. WGCNA synovium modules were annotated against single-cell RNA-seq cell types (Stephenson et al., 2018).

(legend continued on next page)
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(padj = 0.002) (Figures 5B, 5E, and S5B), which is in line with our

earlier differential expression data (Figure 3B). Blood B cell mod-

ules were reduced in the diffuse-myeloid pathotype, which could

represent B cell flux into tissues leading to reduced circulating

peripheral B cells (Figure 5E).

We directly compared differences between synovium and

blood, looking at the number of gene modules in each compart-

ment that significantly correlated with histology, clinical, and

radiological variables at FDR < 0.05 (Figure 5F). Synovial modules

were strongly correlated with histology, acute phase response,

VAS, and overall disease activity measured by DAS28-ESR/

C-reactive protein (CRP). Synovium modules also strongly corre-

latedwith ultrasound power Doppler and synovial thickness at the

biopsy joint. Blood module associations with clinical parameters

were generally rarer than for synovium, except for strong correla-

tion with blood markers of acute phase response such as ESR

and CRP. Looking specifically at disease activity measured by

DAS28-CRP (Figure 5G), substantially more synovium modules

correlated with DAS28-CRP than for blood; however, a few

monocyte and dendritic cell modules such as M81, M168, and

toll-like receptor (TLR) module M16 showed correlation with

DAS28-CRP in both synovium and blood.

Synovium Plasma Cell Gene Expression Is Associated
with Anti-CCP Antibody Positivity and Predicts Worse
Prognosis at 12 Months
Differential gene expression between anti-CCP antibody (ACPA)-

positive and ACPA-negative individuals showed increased

plasma cell genes such as XBP1, ODC1, and EAF2 as well as

LAMP5, a regulator of TLR9 in pDCs (Combes et al., 2017), which

was the strongest pro-lympho-myeloid pathotype gene (Fig-

ure 6A). In contrast, although relatively few genes were differen-

tially expressed in blood between ACPA positive versus negative

individuals, these included type I interferon response genes

IFI44L and IFI27 (Figure S7), which is consistent with a blood

type I interferon signature underlying synovial plasma cell infiltra-

tion. RA individuals with X-rays at baseline and 12-month follow-

up were divided into progressors, in whom radiographic bone

erosions had worsened over 12 months, or non-progressors.

Plasma-cell-associated genes were significantly increased in

bone erosion progressors compared to non-progressors, demon-

strating that synovial plasma cell gene expression at baseline pre-

dicts aworse prognosis radiographically at 12months. Single-cell

RNA-seq-annotated WGCNA modular analysis showed that

ACPA positivity was associated with increased plasma cell and

macrophage gene modules (Figure 6C), and baseline plasma

cell modules also predicted bone erosion progression at

12 months (Figure 6D).
(D) Heatmap showing gene expression in selected gene modules in synovium an

(E) Boxplots of summarized module scores in synovium and blood. Statistic

***FDR < 0.001.

(F) Comparison of number of significant (FDR < 0.05) synovium and blood gene mo

disease activity and response to 6 months treatment with DMARDs, in either sy

compartments (purple). Statistical analysis by Spearman correlation.

(G) Bubble plot of –log10 p values comparing correlation of gene modules in sy

significantly (FDR < 0.05) correlatedmodules found in synovium alone (blue), blood

blood (purple).
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Transcriptional Regulators of Ectopic Lymphoid
Structure Development
Upstream regulator analysis using IPA (Figure 6E) showed that

key regulators including interferon gamma (IFN-g), IFN-a2,

IFN-b1, IL-7, IL-21, and CD40L were associated with the lym-

pho-myeloid pathotype, which is consistent with the dominant

theme of B cell proliferation, differentiation, and plasma cell

development (Hiepe et al., 2011), and the previously reported as-

sociation of IL-7 pathway with synovial B cell infiltration (Badot

et al., 2009; Timmer et al., 2007). The follicular helper T cell cyto-

kine IL-21 is important for ELS maturation (Jones et al., 2015;

J€ungel et al., 2004; Liu et al., 2015). We also confirmed the asso-

ciation of the chemokine CXCL12 with ELS formation (Timmer

et al., 2007), which is consistent with its role in maintaining

long-lived plasma cells (Tokoyoda et al., 2004). TNF, IFN-g,

IL-1b, IL-4, IL-6 ,and IL-15 were upstream regulators for the

diffuse myeloid pathotype, whereas WNT3A was an upstream

regulator of the pauci-immune fibroid pathotype.

Histological pathotype was re-analyzed after 6 months (Fig-

ure 6F), during which individuals were treated with DMARDs

(Table S3). In ACPA-positive RA individuals, the histological

pathotype showed a more consistent tendency (p = 0.020) to

change to a less inflammatory pathotype, i.e., from lymphoid

to myeloid, or myeloid to fibroid (Figure 6G), whereas in ACPA-

negative individuals change in pathotype at 6 months was less

consistent (p = 0.27). Stratifying DAS28-ESR measurements ac-

cording to whether individuals had shifted to a more or less in-

flammatory pathotype from baseline to 6 months, we observed

a linear relationship between shift in pathotype and change in

DAS28-ESR (r = 0.31, p = 0.0027) (Figure 6H). Thus, individuals,

whose pathotype shifted to a less inflammatory pathotype at

6 months, e.g., from lymphoid to myeloid or lymphoid to fibroid,

showed significantly greater reductions in DAS28-ESR, whereas

individuals whose pathotype became more inflammatory, e.g.,

from fibroid to myeloid, on average showed no reduction in dis-

ease activity. Thus, changes in synovial pathotype, as detected

by serial synovial biopsy, reflect clinical responsiveness to

DMARD therapy. This is consistent with our assertion that the

complex autoimmune milieu observed within RA synovial tissue

directly underlies core pathogenic processes that drive RA pro-

gression, and when improved therapeutically, the change in this

autoimmune milieu is detectable in sequential biopsies.

Baseline Predictors of Response to Treatment
Numerous synovial modules correlated with response to treat-

ment after 6 months measured by change in DAS28-CRP,

including type I IFN signature and antiviral modules, monocyte

and chemokine modules, dendritic cell and antigen presentation
d blood, grouped by pathotype.

al analysis by QuSAGE with FDR correction: *FDR < 0.05, **FDR < 0.01,

dules (Li et al., 2014), which correlate with clinical and radiographic markers of

novium only (blue) or blood only (red) or are concordantly correlated in both

novium and blood with disease activity measured by DAS28-CRP, showing

alone (red), or concordantly correlated with DAS28-CRP in both synovium and
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modules, and B cell modules (Figures 7A and 7C), demonstrating

that a more inflammatory synovial phenotype at baseline corre-

lated with a greater fall in DAS28-CRP after 6 months of DMARD

treatment. However, no blood modules were associated with

clinical response. Looking at the acute phase response (Fig-

ure 7B), we observed that both synovium and blood modules

were associated with reduction in ESR, with some modules

such as TLR signaling, antiviral response, and dendritic cell mod-

ules showing association with DESR in both compartments (Fig-

ures 7B, 7D, and 7E). In contrast, pauci-immune-fibroid-associ-

ated Hox cluster modules were associated with resistance to

treatment. These findings suggest that although blood gene

expression directly reflects the systemic inflammatory and acute

phase response and, thus, is associated with change in ESR or

CRP following treatment, blood gene expression is not a strong

predictor of overall clinical response. Grouping patients by Euro-

pean League Against Rheumatism (EULAR) response using

DAS28-CRP, we observed that modules for CD8+ T cells, mast

cells, and TLR signaling were significantly increased in EULAR

moderate and good responders at 6 months compared to non-

responders, whereas a CD55+ type 1 fibroblast module was

lower in responders (Figure 7F), although pathotype per se was

not significantly different between EULAR response groups.

Thus, specific synovial cell types are associated with differential

response to DMARD treatment.

DISCUSSION

This study represents the most comprehensive exploration of

synovial and blood RNA-seq in RA to date, which combines

detailed histopathological classification and in-depth clinical phe-

notyping. The interactive website (https://peac.hpc.qmul.ac.uk/)

developed with these data will allow the research community to

dissect synovial pathology architecture, allowing researchers to

explore the data and correlate genes and gene modules with his-

tological, clinical, and radiographic parameters. Based on our

previous work using histopathology, we identified three partially

overlapping groups: (1) a lympho-myeloid (L) group showing ag-

gregates of B and T lymphocytes associated with diverse inflam-

matory cell infiltrate; (2) a diffuse-myeloid (M) group characterized

by macrophage or monocyte enrichment, but poor in B cells; and

(3) a pauci-immune fibroid (F) group showing a distinct lack of im-

mune-inflammatory infiltrate. Multiple techniques were used to

investigate links between synovium and blood transcriptomes

to further define the pathobiological subtypes.

Wedeveloped and validated cell-lineage specific genemodules

derived from FANTOM5 data for relative quantitation of cell popu-
Figure 6. Baseline Synovium Plasma Cell Gene Expression Is Associat

(A and B) Differential gene expression in synovium RNA-seq comparing (A) anti-

dividuals with progression of bone erosions on X-rays at 12 months compared to

(C and D) Single-cell RNA-seq-annotated WGCNA modular analysis shows that in

and is predictive of bone erosion radiographic progression at 12 months (D).

(E) Upstream regulator analysis using Ingenuity Pathway Analysis showing upst

lymphoid structure development in synovium.

(F and G) Sankey diagrams showing change in histological pathotype following 6-m

whole cohort or (G) grouped by ACPA status. Statistical analysis by Fisher’s test

(H) Shift in pathotype between baseline and 6 months correlated against change
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lations in RNA-seq tissue samples. This transcript-based immune

cell phenotyping performed well in comparison to established im-

munohistology (Humby et al., 2009). The analysis suggested that

the immune cell infiltration in synovium is a continuum with

pauci-immune fibroid pathotype, lacking immune cell infiltration

at one end, and the lympho-myeloid pathotype with diverse im-

mune cell infiltration with NK cells and plasmacytoid DC, with fully

formed ELS and high levels of plasma cells at the most advanced

endof the spectrum.Macrophage infiltrationappeared tobeapre-

requisite for B cell activation and plasma cell development,

implying their potential for local differentiation into antigen-pre-

senting cells (APC) driving T cell activation, T follicular helper cell

(Tfh) activation, and formation of ELS. Although our data support

the notion that the pathotypes represent different types of synovi-

tis, with differing pathogenic process and inflammatory milieu, we

cannot exclude the possibility that they represent evolving states

of activation or gear shifts in the disease process.

Correlation of cell-specific RNA-seq genemodules with clinical

and radiological parameters showed that themultiple synovial im-

mune cell types including monocytes or macrophages were

correlated with disease activity measured by DAS28-ESR. The

plasma cell gene module correlated with ACPA and rheumatoid

factor titer, which is consistent with the notion that local in situ

plasma cell differentiation and perpetuation are associated with

high ACPA titer in RA (Corsiero et al., 2016; Teng et al., 2007).Mul-

tiple cell modules were correlatedwith ultrasonographic scores at

the biopsy joint, with particularly strong correlation for the plasma

cell transcript module but inverse correlation with the synoviocyte

module. Similarly, radiographic joint damage at baseline corre-

lated with CD4+ T, Treg, B, and plasma cells. Historically, previous

studies identified an association between synovial macrophage

infiltration and radiographic progression (Bresnihan et al., 2009;

Yanni et al., 1994). In our study, gene transcript changes in syno-

vium largely reflect the altered cellularity in synovium in line with

pathogenic processes in RA. The data suggest that disease

severity, as measured by ultrasonographic and radiographic

change, correlateswith advanced synovial immune cell infiltration

and in situ plasma cell development.

Recent RNA-seq studies of synovium in established, long-

standing RA have identified novel cell populations including

PD-1 high TPH cells (Rao et al., 2017) and distinct fibroblast sub-

sets (Mizoguchi et al., 2018). As a counterpart to using

FANTOM5, we leveraged single-cell RNA-seq data to annotate

WGCNA synovial genemodules according to 13 cell populations

identified in single-cell RNA-seq of RA synovium (Stephenson

et al., 2018). The single-cell RNA-seq-annotated gene modules

showed comparable results to the FANTOM5 approach and
ed with CCP Antibody Positivity and Worse Prognosis at 12 Months

CCP antibody (ACPA)-positive and ACPA-negative RA individuals and (B) in-

baseline versus non-progressors.

creased plasma cell module expression is associated with ACPA positivity (C)

ream regulator effects of cytokines and chemokines associated with ectopic

onth treatment with disease-modifying anti-rheumatic drugs (DMARDs) for (F)

.

in DAS28-ESR. Statistical analysis by Pearson correlation.

https://peac.hpc.qmul.ac.uk/


A B

C

D

F

E

Figure 7. Association of RNA-Seq Modules and Response to 6 Months of DMARD Treatment

(A and B) Correlation of gene modules in synovium (x axis) versus blood (y axis) with 6-month response to DMARD treatment measured by (A) delta DAS28-CRP

and (B) delta ESR. Significantly correlated synovial modules (at FDR < 0.05) are shown in blue, significant bloodmodules in red, andmodules, which concordantly

correlate with each clinical parameter in both synovium and blood, are shown in purple.

(C) Correlation of synovium gene modules with delta DAS28-CRP from baseline to 6 months.

(D and E) Correlation of (D) synovium and (E) blood gene modules against change in ESR from baseline to 6 months following DMARD treatment. Statistical

analysis by Spearman correlation with FDR adjustment (A–E).

(F) Differential expression of synovial single-cell-annotated WGCNA modules between EULAR DAS28-CRP responders (good and moderate) and non-re-

sponders. Statistical analysis by QuSAGE with FDR adjustment.
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add additional information about other important synovial cell

types not available in FANTOM5, including fibroblast, macro-

phage, and T cell subpopulations (Figure 5C). Although single-

cell RNA-seq of synovial biopsies would have allowed more

complete gene expression deconvolution at the level of individ-

ual cells, this approachwould have been difficult to apply to large

numbers of samples, and the reduced dynamic range of single-

cell RNA-seq impairs quantitation of rare, low-abundance tran-

scripts. In the future, ongoing efforts in collaboration with the

NIH-funded Accelerating Medicines Partnership (AMP)

combining both methodologies may yield further insights.

Synovial RNA-seq data demonstrated distinct gene clustering

with significantly different gene sets upregulated between the

three pathological groups. We developed an interactive 3D vol-

cano plot, as part of our website resource (https://peac.hpc.

qmul.ac.uk/), to illustrate the three-way differences in synovial

gene expression. Differential gene expression in blood was far

less extensive than in synovium but revealed type I IFN response

genes associated with the presence of the lympho-myeloid

pathotype in synovium. Similar type I IFN response genes have

been associated with differential response to Rituximab (Rater-

man et al., 2012; Vosslamber et al., 2011). Synovium and blood

compartments demonstrated differential axes of gene expres-

sion variation. Synovium gene expression showed strongest

delineation along the lymphoid-fibroid axis, whereas the blood

whole transcriptome showed a tendency to delineate pauci-im-

mune fibroid from diffuse-myeloid development. A potential

implication is that the adaptive immune response is localized

to the site of inflammation or secondary lymphoid organs. Sec-

ondary amplification of the myeloid system by cytokines such

as type I IFN may lead to a signature in the blood. Cluster anal-

ysis of pathotype-specific genes identified pro-inflammatory

genes common to both the lympho-myeloid and diffuse-myeloid

groups with pathways consistent with infiltration and differentia-

tion of multiple cell types, including T helper cells and dendritic

cells, whereas genes that were more specific to B cell differenti-

ation, including PI3K signaling were associated with B cell and

plasma cell infiltration histologically.

We did not perform simultaneous biopsies of different joints in

the same patient, so we cannot address the question of how sta-

ble synovial histology and RNA expression are between joints

within the same patient. However, other studies support the

notion of stable cellular infiltrates (Kraan et al., 2002) and T cell

clonality (Musters et al., 2018) between joints. Synovial histology

and RNA expression directly reflect the inflammatory state within

the biopsied joint, so our finding that specific immunological

processes in peripheral blood, such as the type I IFN response,

were associated with synovial B cell infiltration supports the

notion of the RA disease process driving a consistent immuno-

logical response in each tissue compartment.

Baseline synovial plasma cell gene modules were associated

with ACPA positivity and worse prognosis in terms of radio-

graphic damage at 12 months (Figure 6). Local in situ plasma

cell differentiation and persistence of long-lived tissue plasma

cells are likely to play an important role in ACPA formation and

perpetuation of disease. Upstream regulator analysis (Figure 6E)

identified multiple regulators known to facilitate ectopic

lymphoid structure development within tissues, which is consis-
2468 Cell Reports 28, 2455–2470, August 27, 2019
tent with local B cell maturation and plasma cell differentiation

being key events underlying the lympho-myeloid pathotype.

Following treatment with DMARDs, the shift in synovial patho-

type on repeat biopsy at 6 months correlated with clinical

response to DMARD therapy (Figures 6F–6H). Individuals whose

pathotype became less inflammatory (e.g., lymphoid to myeloid

or lymphoid to fibroid) showed greater reduction in disease ac-

tivity, whereas individuals whose pathotype progressed to a

more inflammatory state showed little or no response. We

observed that high baseline inflammatory synovial genemodules

including TLR signaling, type I IFN signature, and macrophage

chemokine modules were associated with better response at

6 months to DMARDs, as assessed by DDAS28-CRP, whereas

blood modules were only associated with reduction in ESR at

6months. Thus, baseline blood gene expression can, to a limited

extent, anticipate changes in the systemic acute phase response

in response to DMARD therapy but are less informative than

synovium gene expression for predicting clinical outcome, which

includes swollen and tender joint count and VAS.

Although disease heterogeneity has long been postulated in

RA, our study provides the clearestmap to date of the relationship

between peripheral blood signals and development of different

patterns in the synovium early in the RA disease process prior

to therapeutic intervention, while avoiding the confounding ef-

fects of therapy, especially corticosteroids, on disease tissue

pathology. Our data advance our understanding of RA pathogen-

esis, revealing major differences in synovial gene expression

across the histo-pathotype spectrum, and identifying associated

pathways and gene modules for each pathotype. Although there

was substantially less variation in the peripheral blood transcrip-

tome than in synovium, a few identifiable blood transcript signals

were linked to clinical measures of disease activity (monocyte

activation and TLR signaling). While synovium, both histologically

and at the gene expression level, was highly informative for its as-

sociation with disease activity and disease progression, blood

gene expression independently revealed systemically altered

gene expression in the form of upregulated type I IFN signature

linked to pathogenic plasmacell infiltration into synovium.Overall,

synovial modules were superior for predicting clinical response to

DMARD therapy at 6 months and poor prognosis in terms of

radiographic progression at 12 months.

In summary, we report an in-depth RNA-seq analysis of syno-

vial tissue and peripheral blood in early RA, prior to therapeutic

modification of the disease pathology, and linked to detailed

phenotypic profiling. Our data suggest that persistent synovial

plasma cell infiltration identifies individuals at increased risk of

rapid disease progression and severe joint destruction, and pro-

vide the strongest evidence yet that optimal stratification of RA

therapies would be enhanced by sampling of both synovium

and blood biomarkers.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD20cy, L26, Unconjugated, Culture supernatant Agilent Technologies Dako Cat# M0755 RRID:AB_2282030

CD3, F7.2.38, Unconjugated, Culture supernatant Agilent Technologies Agilent Technologies Cat# M7254 RRID:AB_2631163

CD68, KP1, Unconjugated, Culture supernatant Agilent Technologies Dako Cat# M0814 RRID:AB_2314148

CD138, MI15, Unconjugated, Culture supernatant Agilent Technologies Dako Cat# M7228 RRID:AB_2254116

CD21, 1F8, Unconjugated, Culture supernatant Agilent Technologies Dako Cat# M0784 RRID:AB_2085307

Chemicals, Peptides, and Recombinant Proteins

TRIzol� Reagent ThermoFisher Scientific/

Invitrogen Division

15596018

Xylene Mixt. of Isomers ANALAR ACS/R.PE -

Analytical Grade

VWR International 28975.325

Eosin Yellowish VWR International 341973R

Haemotoxylin Sigma-Aldrich H-3136

Deposited Data

FANTOM5 CAGE seq data Forrest et al., 2014 http://fantom.gsc.riken.jp/

RNA-seq on synovium and blood in rheumatoid

arthritis

This paper ArrayExpress E-MTAB-6141

Software and Algorithms

R statistics R foundation https://www.r-project.org/

Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/

tximport Bioconductor https://www.bioconductor.org/packages/release/

bioc/html/tximport.html

DESeq2 Love et al., 2014 https://www.bioconductor.org/packages/release/

bioc/html/DESeq2.html

shiny RStudio https://shiny.rstudio.com/

plotly.r Plotly https://plot.ly/r/

ComplexHeatmap Bioconductor https://www.bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

Ingenuity Pathway Analysis QIAGEN Bioinformatics https://www.qiagenbioinformatics.com/IPA

QuSAGE Yaari et al., 2013 https://www.bioconductor.org/packages/release/

bioc/html/qusage.html

WGCNA Langfelder and Horvath, 2007 https://cran.r-project.org/web/packages/WGCNA/

index.html

Cytoscape Cytoscape Consortium https://www.cytoscape.org/

PEAC RNA-seq web interface This paper https://peac.hpc.qmul.ac.uk/

Other

Target Retrieval Solution, x10 Concentrate Agilent Technologies S1699

DAB+, Liquid, 2-component system Agilent Technologies K3468

Peroxidase-Blocking Solution, Dako REAL Agilent Technologies S2023

Protein Block, Serum-Free, Liquid form, Agilent Technologies X0909

Antibody Diluent, Background Reducing Agilent Technologies S3022

EnVision+ Single Reagents, HRP. Mouse Agilent Technologies K4001

Proteinase K Agilent Technologies S3020

RNA 6000 Nano Kit Agilent Technologies 5067-1511

Microscope slides; Superfrost Plus Fisher Scientific 10149870

Microtome blades MX35 Premier (34�/80mm) Fisher Scientific 3051835
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REAGENT or RESOURCE SOURCE IDENTIFIER

RNase Away Solution Fisher Scientific 10666421

RNALater Solution ThermoFisher Scientific/

Ambion Division

AM7021

Sterile Water, RNase-free Baxter Healthcare UKF7114

Fibrowax (pastillated) VWR International 361427G

Cover Glass 22x64mm VWR International 631-0880

DePex Mountant VWR International 360294H

Ambion Ribo-Pure Blood kit ThermoFisher Scientific/

Ambion Division

AM1928
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Costan-

tino Pitzalis (c.pitzalis@qmul.ac.uk). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Pathobiology of Early Arthritis Cohort (PEAC)
90 rheumatoid arthritis patients fulfilling 2010 ACR/EULARRAClassification Criteria were enrolled at Barts Health NHS trust (London,

UK) as part of the Medical Research Council (MRC) funded multi-center Pathobiology of Early Arthritis Cohort (PEAC). The study

received ethical approval from the UK Health Research Authority (REC 05/Q0703/198, National Research Ethics Service Committee

London – Dulwich). All patients gave written informed consent. Patients had clinically defined synovitis, but duration of symptoms of

less than 12 months. Patient characteristics are summarized in Table S1. Exclusion criteria included all patients receiving corticoste-

roids, sDMARDs or biologic therapies. Upon enrolment and acquisition of demographic and clinical disease parameters, patients

underwent minimally invasive ultrasound-guided synovial biopsy of a clinically active joint (see below).

METHOD DETAILS

Ultrasound-Guided Synovial Biopsy
We analyzed 90 synovial samples acquired through a minimally invasive US-guided synovial biopsy (Kelly et al., 2015) from patients

presenting with early RA naive to therapy. Ultrasonography scores were collected at the time of biopsy for both the individual bio-

psied joint as well as a global joint score. Immediately prior to baseline US-guided synovial biopsy standard longitudinal images

of the 1st-5th metacarpo-phalangeal (MCP) joints and midline, radial, and ulnar views of both wrist joints were acquired in addition

to standard images of the joint undergoing US-guided synovial biopsy as previously described (Kelly et al., 2015). Images subse-

quently underwent semiquantitative (SQ) assessment by a blinded assessor (IL) for both synovial thickening (ST) and power doppler

activity (PD) according to standard EULAR-OMERACT US synovitis scores (grade 0-3) (Naredo et al., 2008). For each patient, base-

line total mean (12max) ST (STUS) and PD (PDUS) scoreswere calculated by deriving themean of the total scores for ST and PD for all

12 joints including maximal score in the wrist. STUS and PDUS were also recorded of the biopsied joint. All procedures were per-

formed following written informed consent and were approved by the hospital’s ethics committee (REC 05/Q0703/198).

Clinical Assessments
At baseline clinical parameters including CRP, ESR, RF/ACPA positivity/titer and DAS28 were collected. Anonymized baseline radio-

graphs of the hands and feet underwent scoring according to the modified Sharp van der Heijde scoring system by a trained reader.

Synovial Histology
3 mm paraffin embedded sections underwent standard H&E staining and then semiquantitative assessment for degree of synovitis

according to a previously validated score (Krenn et al., 2006). In order to determine the degree of immune cell infiltration sequentially

cut sections underwent staining for B cells (CD20), T cells (CD3), macrophages (CD68) and plasma cells (CD138) as previously re-

ported (Humby et al., 2009), and mast cells (CD117). Sections underwent SQ scoring (0-4) for CD3, CD20, CD68 lining (CD68L) and

sublining (CD68SL) andCD138 number (Humby et al., 2009). CD20+ aggregates within synovial tissuewere graded (1-3) according to

a scoring atlas as previously described (Manzo et al., 2005). Synovial biopsies were categorized into 3 separate synovial pathotypes

according to the following criteria: i) Lympho-myeloid (L) presence of grade 2-3 CD20+ aggregates, (CD20 R 2) and/or CD138 > 2;

ii) Diffuse-Myeloid (M) CD68SLR 2, CD20% 1 and/or CD3R 1, CD138% 2 and iii) pauci-immune Fibroid (F) CD68SL < 2 and CD3,
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CD20, CD138 < 1. Automated image analysis and cell counting (cellSens, Olympus) was used to calculate the density of

CD117+ mast cells (number/mm2).

RNA Extraction Procedure
All tissue samples were maintained on ice and homogenized in a fume hood using a rotor-stator benchtop laboratory homogenizer.

Samples were homogenized at short five-second intervals until all the tissue had been sheared/homogenized. The probe of the ho-

mogenizer was cleaned thoroughly in between samples by washing initially in RNase Away solution (Fisher Scientific, UK), followed

by four washes in sterile/RNase-free water (Baxter Healthcare Ltd, UK). RNA was extracted from a minimum of 10mg of synovial tis-

sue homogenized at 4�C in Trizol reagent (ThermoFisher Scientific, Invitrogen Division, UK). Chloroform was mixed with the lysate

and following centrifugation the aqueous RNA layer was transferred to a new microcentrifuge tube. Isopropanol at 4�C was mixed

with the RNA layer. Following incubation and centrifugation, the isopropanol was removed and the RNA pellet washed with 70%

ethanol. The pellet was re-dissolved in RNase-free water.

Whole blood samples were preserved in RNALater solution (ThermoFisher Scientific, UK) (500mL whole blood: 1.3mL RNALater

solution) and stored at �80�C prior to extraction. Blood samples in RNALater solution were thawed on ice and RNA prepared using

the Ambion Ribo-Pure Blood kit (ThermoFisher Scientific, UK), as per the manufacturer’s instructions.

The concentration/purity of RNA samples was measured using the NanoDrop 2000C (Lab Tech, UK) and RNA quality (RIN) was

assessed by Agilent 2100 Bioanalyser (Agilent Technologies, UK) and 2200 TapeStation (Agilent Technologies).

RNA Sequencing
Where available, 1 mg of total RNA was used as an input material for library preparation using TruSeq RNA Sample Preparation Kit v2

(Illumina). Generated libraries were amplified with 10 cycles of PCR. Size of the libraries was confirmed using 2200 TapeStation and

High Sensitivity D1K screen tape (Agilent Technologies) and their concentration was determined by qPCR based method using Li-

brary quantification kit (KAPA). The libraries were first multiplexed (five per lane) and then sequenced on Illumina HiSeq2500 (Illumina)

to generate 50 million of paired end 75 base pair reads (154 samples) or 30 million of single end 50 base pair reads (10 samples).

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Sequencing Data Processing
Transcript abundance was derived from paired (154 samples) or single (10 samples) FASTQ files over GENCODE v24/GRCh38 tran-

scripts using Kallisto v0.43.0 (Bray et al., 2016). Transcript abundances and average transcript lengths were imported into R using

Bioconductor package tximport 1.4.0 and summarized over NCBI RefSeq transcript isoforms. Imported abundances were normal-

ized in R, including a correction for average transcript length and incorporating batch, sex, and pathotype asmodel covariates, using

DESeq2 1.14.1 (Love et al., 2014). Transcript abundances underwent regularized log expression (RLE) transformation. Principal com-

ponents analysis (PCA) was performed on the RLE normalized data and paired plots of first 10 eigenvectors were generated to iden-

tify outliers. After removal of three synovium RNA sample outliers, transcript abundances for the remaining synovium (n = 87) and

blood (n = 67) samples were re-imported into R, normalized, and underwent RLE transformation followed by PCA again to confirm

homogeneity of each dataset.

Identification of Cell-Specific Gene Sets
RLE normalized FANTOM5 data were downloaded from http://fantom.gsc.riken.jp/5/data/. Data were subsetted to include only un-

manipulated and uncultured primary tissues (derived cells, stimulated cells, and cell lines were excluded) and restricted to NCBI gene

transcripts. For each gene only the CAGE peak with the highest mean expression was used. Data were Z score normalized across all

primary tissues and expression of each gene ranked across all tissues. A specificity score was determined for all genes by counting

the number of tissues showing increased gene expression Z score >3 (i.e., more than 3 SD above the mean expression across all

tissues), so that the most tissue specific genes would have the lowest specificity scores. After different cut-offs were tested for

robustness, genes were considered specific to a tissue type using the following criteria: i) the level of gene expression in that tissue

was in the top three tissues (i.e., rank 1-3); ii) Z score >5 (i.e., >5 SD above the mean expression across all tissues); iii) specificity

score < 10 tissues. Gene modules for different cell types were consistent with lists of genes previously published by the FANTOM5

consortium for several cell types (Motakis et al., 2014; Schmidl et al., 2014).

Gene Module Scoring
Gene module scores for synovial RNA-seq data were derived by singular value decomposition (SVD) for each gene module matrix

usingmethodology described in detail by other studies (Langfelder and Horvath, 2007). Module scores specific for B cells, T cell sub-

sets, monocyte/macrophage subsets, plasma cells, and mast cells were analyzed for correlation against relevant histological

markers in synovial tissue. Statistical comparison of groups was performed using one-way ANOVA and post hoc Bonferroni test.
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Differential Expression Analysis
Differential Expression analysis based on negative binomial distribution using regression models of normalized count data was per-

formed using DESeq2 using a likelihood ratio test to compare variation between pathotype groups in synovium and peripheral blood

RNA-seq samples, followed by pairwise comparisons between Lympho-myeloid, Diffuse-Myeloid and pauci-immune Fibroid groups.

P values were converted to Q values based on Benjamini-Hochberg false discovery rate (FDR), using FDR cut-off set at Q < 0.05 to

define differentially expressed genes. MA and volcano plots were generated to illustrate the distribution of significant genes in each

comparison.

3D Volcano Plot
Three-way differential expression was visualized by a 3D cylindrical volcano plot using R package plotly 4.6.0. RLE counts were

Z-score normalized and mean Z scores calculated for the three pathotype groups (L, M, F) for each gene. This three dimensional

data were reduced to two dimensional polar coordinate system analogous to color space conversion of red, green, blue (RGB) color

space to hue, saturation, value (HSV):
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w= atan2 ðy; xÞ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Thus Lympho-myeloid, Diffuse-Myeloid, pauci-immune Fibroid vectors were mapped to three axes in the horizontal plane (see

polar plots, Figures 2B and 2C). Fold change can be used as an alternative to Z score for the radial scale without affecting q. z

axis shows –log10 p value for likelihood ratio test comparing all three groups. Genes with FDR-adjusted p value for likelihood ratio

test < 0.05 were considered significant. Significant genes were color-coded based on pairwise statistical tests using the minimum

group mean as reference. Genes which were significantly upregulated in one group alone were colored using primary colors, i.e.,

Lympho-myeloid, blue; Diffuse-Myeloid, red; and pauci-immune Fibroid, green. Genes upregulated in two groups compared to

theminimum reference groupwere depicted using secondary colors i.e., genes upregulated in Lympho-myeloid and Diffuse-Myeloid

compared to pauci-immune Fibroid: purple; upregulated in Diffuse-Myeloid and pauci-immune Fibroid versus Lympho-myeloid: yel-

low; upregulated in Lympho-myeloid and pauci-immune Fibroid versus Diffuse-Myeloid: cyan. Non-significant genes are colored

gray.

Hierarchical Clustering
Hierarchical clustering on 2964 differentially expressed synovium genes (FDR < 0.05, log2 fold change >1) was performed using

Euclidean distance metric and Ward’s linkage method and plotted using the ComplexHeatmap package 1.14.0 in R. Color tracks

for histology data for CD3, CD20, CD68L/SL, CD138 and overall pathotype were included to aid interpretation.

Pathway Analysis
Pathway analysis was performed for each of four clusters of genes which were identified via hierarchical clustering by gene enrich-

ment analysis using Ingenuity Pathway Analysis (IPA, QIAGEN, Redwood City, CA, USA). Upstream regulators were identified for

pathotypes and gene clusters. All p values were FDR adjusted. Pathway analysis was undirected and detected enrichment against

a background of all human genes.

Modular Gene Analysis
RNA-seq read counts were analyzed for differential genemodule expression, using the Bioconductor package Quantitative Set Anal-

ysis for Gene Expression (QuSAGE, version 2.10.0) (Yaari et al., 2013), using genemodules derived from Li et al. (2014).Where stated,

p values were corrected for multiple testing using Storey’s q value. Weighted correlation network analysis (WGCNA) on synovium

RNA-seq was performed using R package WGCNA (Langfelder and Horvath, 2007). Gene modules were annotated against 13

cell types identified by single cell RNA-seq of RA synovium (Stephenson et al., 2018), using enrichment testing by hypergeometric

test for module genes differentially upregulated in each single cell RNA-seq cell type. Modules were also annotated for pathways

using REACTOME and Kegg databases.
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DATA AND CODE AVAILABILITY

The RNA-seq data have been deposited in ArrayExpress under Accession code E-MTAB-6141.

ADDITIONAL RESOURCES

Web Interface
To facilitate data exploration, we developed a web interface available at https://peac.hpc.qmul.ac.uk/. The website was constructed

using R shiny server 1.5.2 with interactive plots generated using Rplotly 4.7.1. This allows interactive 3D visualization of the three-way

volcano plot allowing users to click on individual genes to see their expression. A searchable interface is available to examine relation-

ships between individual synovial and blood gene transcript levels and histological, clinical, and radiographic parameters, and clinical

response at 6 months. A selectable table of synovial genes differentially expressed in different pathotypes is included. An interactive

interface allows the gene module analysis to be explored for relationships between modules and clinical parameters. Figure S4 sum-

marizes the main features of the website.
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