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Abstract: Load forecasting is one of the major challenges of power system operation and is crucial to
the effective scheduling for economic dispatch at multiple time scales. Numerous load forecasting
methods have been proposed for household and commercial demand, as well as for loads at various
nodes in a power grid. However, compared with conventional loads, the uncoordinated charging of
the large penetration of plug-in electric vehicles is different in terms of periodicity and fluctuation,
which renders current load forecasting techniques ineffective. Deep learning methods, empowered by
unprecedented learning ability from extensive data, provide novel approaches for solving challenging
forecasting tasks. This research proposes a comparative study of deep learning approaches to
forecast the super-short-term stochastic charging load of plug-in electric vehicles. Several popular
and novel deep-learning based methods have been utilized in establishing the forecasting models
using minute-level real-world data of a plug-in electric vehicle charging station to compare the
forecasting performance. Numerical results of twelve cases on various time steps show that deep
learning methods obtain high accuracy in super-short-term plug-in electric load forecasting. Among
the various deep learning approaches, the long-short-term memory method performs the best by
reducing over 30% forecasting error compared with the conventional artificial neural network model.

Keywords: load forecasting; LSTM; electric vehicles; deep learning

1. Introduction

Uninterrupted supply of electricity is crucial to the functioning of the modern civilization.
Today’s electricity grid is highly complex and increasingly vulnerable to the potential disruptions.
Load forecasting has, therefore, been a key measure in power system planning, scheduling and
operation. With the increasing penetration of variable renewable energy resources, accurate forecasting
of both generation and demand profiles are important for effective and economic dispatching of power
contributors. Load forecasting can be categorized into short-, medium- and long-term depending on the
time span or resolution [1]. The short-term load forecasting is useful for utility optimal operations and
scheduling while the long-term load forecasting is delivered in the system planning stage. Moreover,
minute-level load forecasting is super-short-term load forecasting [2] and has been utilized in real-time
power quality and security monitoring.

The electrification of the transportation sector is seen as an effective means to reduce greenhouse
gas emissions from the burning of fossil fuel. Other environmental concerns such as urban air
quality and related health impacts have also prompted policy makers and stakeholders to opt for the
popularization of electric vehicles (EVs) [3] in replacing traditional internal combustion engine (ICE)
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based vehicles. EVs can be considered as zero emissions vehicle during its operation when electricity
from renewable sources are used to charge them. However, the rapid development of the EV industry
is introducing new challenges to the existing power system structure owing to their large battery
capacity [4] and highly stochastic individual charging behavior.

Model based load forecasting techniques include statistical models using recursive and traditional
mathematical tools [5–8], and artificial intelligence models involving various state-of-the-art machine
learning approaches [9,10]. Traditional forecasting methods are generally straightforward and utilizing
explainable presentations in the model composition, whereas artificial intelligence methods produce
grey or black-box models in generating the forecasting results. Due to the strong adaptive learning
and generalization ability, artificial neural network (ANN) has become successful in delivering
load forecasting tasks [11]. However, increasing resolution and dimensionality of the emerging
dataset challenge canonical ANN approaches. Deep learning methods have been on the spotlight
and seen remarkable success in image semantic segmentation and feature classification [12–14],
natural language processing [15] and various computational extensive science and engineering fields
[16]. The load forecasting problem is a featured time-series problem which is of strong similarity
with natural language processing, where the deep learning method would have the potential to
effectively contribute.

In the distribution grid level, EV charging load exerts strong pressures due to its highly periodical
and fluctuate characteristics. The EV demand curve would see significant peak-valley differences
and large spikes in featured time slots particular in a super-short-term time scale. A more precise
forecasting of such novel load type is potential to significantly contribute to the power system operator
both from economic and security issues, where more powerful tools are in need. The key contributions
of the paper are as below:

(1) New model: a novel exploratory super-short-term multi-step load forecasting model is proposed
particularly for modeling the super-short-term EV charging load. The minute-level extra-short-term
model plays a crucial role in the operation and maintenance of the EV charging aggregators as well as
in the power flow analysis and control [17]. The impact of multiple time step of the historical data on
the forecasting accuracy would be evaluated.

(2) New method: a new EV load forecasting deep learning framework is established and applied
in the modeling task, where six conventional and deep learning based methods are comprehensively
and comparatively studied in the evaluations on various index criteria.

(3) New scenario: a brand new scenario with real world historical data of a whole year on plug-in
electric vehicle charging stations in Shenzhen has been adopted in validating the model effectiveness.
According to our knowledge, this is the first study that utilizes real world super-short-term EV charging
data rather than simulation data to forecast the multi-time step extra-short-term charging load profiles.

The rest of the paper is organized as follows: Section 2 elaborates the background of the load
forecasting and briefly reviews load forecasting methods; Section 3 demonstrates the principle of
several featured deep learning method and the corresponding load forecasting framework; Section 4
gives a detailed discussion and analysis of the charging data we used; the experimental results of
comparative studies are shown in Section 5; in the end, Section 6 concludes the paper.

2. Literature Study

Based on the characteristics of load-based time dimension expansion, the initial research on load
forecasting problem is based on the time series prediction method proposed by Box et al. [5] in 1976.
The method has low input requirements for the load forecasting model, which only considers the time
series input of historical data and does not consider other multi-faceted influencing factors that affect
the load. The literature [18] provides a load peak model that takes external factors into account such as
weather and humidity. Based on the Box–Jenkins method, Hagan et al. [19] proposed an autoregressive
moving average model (ARMA) model prediction method, and Juberias et al. [20] established the
autoregressive integral moving average model (ARIMA) model to achieve load forecasting. In order to
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further improve the accuracy of load forecasting, many hybrid methods of predictive models have
been proposed. Jie et al. [21] combine the seasonal exponential adjustment method with the regression
methods. Pai and Hong [22] applied support vector machine (SVM) to load forecasting and used the
simulated annealing algorithm to select the kernel parameters. Guo et al. [23] utilized time-indexed
autoregressive with exogenous terms (ARX) models with two-stage weighted least squares regression
for modeling hourly cooling load.

Due to the different types of load and the complexity of influencing factors, the selection of input
features and the method in constructing load forecasting models become important. Many intelligent
prediction methods have been proposed utilizing more relevant information. The authors in [24] used
a random forest approach to build a load forecasting model and the inputs are refined by expert feature
selection using fuzzy rules. Feng and Xu [25] proposed an appropriate combinational approach for
short-term gas load forecasting based on genetic algorithm-optimized neural network. Kouhi and
Keynia [26] proposed a cascade neural network method and used a two-stage feature selection method
for selecting the best input. Mahmoud et al. [27] utilized a tuning fuzzy system and ANN method
for modeling the medium voltage load. Existing approaches have proved the applicability for the
time series based mathematical models and computational intelligence models in solving the load
forecasting problem. However, new participants such as renewable generation and EVs have seen more
complicated characteristics and higher uncertainties, which challenge the conventional approaches.

In 2006, the deep learning concept was firstly proposed by Hinton et al. [28]. The deep learning
methods have stronger nonlinear learning ability, robustness and generalization than the traditional
methods, in particular for the large scale data resources. The model trained by deep learning methods
could be applied to large scale and intractable scenarios, where appropriate adjustments of only
limited hyper-parameters could achieve desired effects. Featured deep learning based network include
convolutional neural network (CNN), recurrent neural network (RNN), Deep Boltzmann Machines [29],
Stacked AutoEncoder [30], etc. Long short-term memory is an improved RNN, which was first
introduced by Hochreiter et al. [31] and aimed to relief the gradient vanish problem of original RNN.
In 2016, Marino et al. [32] used long-short-term memory (LSTM) for building energy load forecasting
and discussed the effect of neuron nodes numbers on the forecasting error. In 2017, Kong et al. [33]
applied LSTM to the residential load forecasting, and LSTM showed the best performance compared
to other counterparts. Zheng et al. [34] presented a hybrid LSTM model for short-term load forecasting
and obtained comparatively good results compared with other counterparts. In 2018, Bouktif et al. [35]
proposed an optimal LSTM model for electric load forecasting using feature selection and genetic
algorithm. This method trained several linear and nonlinear machine learning algorithms and selected
the best performance algorithm as the baseline. These case studies have effectively verified the
feasibility and superiority of deep learning in particular LSTM methods in the field of load forecasting.

In recent years, plug-in electric vehicles (PEVs) have emerged worldwide. The large power
capacity of their battery provides an unprecedented challenge to the existing power system.
Accurate and efficient load forecasting for PEV charging is critical for the maintenance and operation
of charging stations [36,37]. Mu et al. [38] presented a Spatial-Temporal model to evaluate the
impact of large scale deployment of PEVs on urban distribution networks. Qian et al. [39] proposed
a methodology for modeling and analyzing the load in a distribution system considering PEV battery
charging, and adopted Monte Carlo simulation in scenario generations. Alizadeh et al. [40] proposed
a stochastic model based on queuing theory for PEV charging load. Luo et al. [41] proposed a Monte
Carlo simulation based model to forecast the charging load of the PEVs in China. Lu et al. [42] utilized
a random forest to forecast the 15 min level EV charging data. However, these traditional methods are
difficult for quantifying the external factors that affect the charging load of PEVs, and it is impossible
to establish a deterministic model. In our previous study [43], the deep learning method is used
for hourly level PEV load forecasting and obtained well performance. However, the minute level
super-short-term forecasting is more challenging. In this paper, the super-short-term PEV charging
load model is established using minute level historical data for training, validation and test. Moreover,
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the performance of multiple deep learning methods in solving the super-short-term PEV forecasting
problem is comprehensively evaluated.

3. The Deep Learning Based PEV Charging Load Forecasting Framework

In 2015, LeCun et al. [44] systematically reviewed the featured methods and the applications of
deep learning in the literature, where CNN and RNN have been among the most powerful tools in
solving image based and time sequential data problems, respectively. Specifically, the recurrent nets
have shone light on sequential data such as text and speech. The load forecasting data are sequential
data that is similar to the text and speech, and RNN is the sequence-based model, which is potential to
demonstrate better performance than traditional methods in solving time series problems.

3.1. RNN Model

For load forecasting problem, when the load value at time t-1 as the input of RNN, the model can
output the load value of time t, RNN models can better capture the characteristics of input data by
using recurrent structure shown in Figure 1.

Figure 1. Basic RNN structure.

For time t:
St = φ(Uxt + WSt−1 + b1), (1)

ot = φ(VSt + b2), (2)

ŷt = φ(ot), (3)

where xt, St and ot denote input, hidden and output unit at t, respectively. Network connection weights
are denoted by V, W, U. Moreover, b and ŷ represent the bias and predicted output value, and φ

denotes activation function. With the increase amount and dimension of data, RNN has to remember a
lot of information before the time t, which leads to the vanishing gradient problem. In light of this, the
LSTM method is proposed for solving this problem.

3.2. LSTM Model

The LSTM structure maintains the key logic of original recurrent network scheme. The major
difference between LSTM and RNN is that the LSTM method adds a “processor” to the algorithm to
determine whether the input information is useful or not. The processor item is named ’cell’ to include
the all features of LSTM modules. As shown in Figure 2, three gates are Three gates are designed
in the cell named input gate (it), forget gate ( ft) and output gate (ot), respectively, for maintaining
and updating valuable information of the data before time t. The model training method for LSTM
is the well adopted back-propagation through time (BPTT) [45]. It has been proved that LSTM is an
effective method to solve the problem of long-range dependencies, and it has universal applicability in
various learning and prediction problems. The cell states and parameters’ updating scheme is shown
as follows:

ft = σ(W f [ht−1, xt] + b f ), (4)
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it = σ(Wi[ht−1, xt] + bi), (5)

C̃t = tanh(Wc[ht−1, xt] + bc), (6)

Ct = it ∗ C̃t + ft ∗ Ct−1, (7)

ot = σ(Wo[ht−1, xt] + bo), (8)

ht = ot ∗ tanh(Ct), (9)

where it, ft, and ot are input, forget and output gate, respectively. ht−1 is the output at t− 1 time
slot, and xt is the input at current moment, and Ct−1 is the memory from previous block. The forget
gate ( ft) reads the information in ht−1 and xt, then outputs a value between 0 and 1 for the cell state
Ct−1, and 1 denotes “completely reserved” and 0 represents “completely discarded”. The input gate it
decides how much new information is to be added into the cell state, and the first stage is the sigmod
layer that decides which information will be updated. The second stage is that the tanh layer generates
a vector which is the new candidate value C̃t. The memory of current block Ct is generated by the
item’s accumulation of previous block and input gate. Finally, the output gate (ot) outputs a value
that determines the cell state, where W and b are weight and bias. σ and tanh are activation functions
shown as follows:

σ(x) =
1

1 + e−x , (10)

tanh(x) =
ex − e−x

ex + e−x . (11)

Figure 2. The structure of LSTM.

3.3. The LSTM Based PEV Charging Load Forecasting Framework

The framework for PEV charging load forecasting using LSTM is shown in Figure 3. In this case,
the model training and validation data are the real world PEV charging load with one minute time
intervals. The original data are the accumulated sampling output of the overall charging actions,
e.g., from the beginning of each charging process to the end of charging time for each charging post.
Therefore, the framework starts from data pre-processing for the input, and the preprocessed input is
the PEV charging load power per minute. Then, the whole prepared data set is divided into training,
test and validation set. The training set is used to train the model, while the validation set is used to
tune the hyper-parameters in order to get the best performance forecasting model, and the test set is
used to verify the validity of the model.
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Figure 3. The LSTM based forecasting framework.

The data set should be normalized before being fed into the model, through which the calculations
in the training is simplified and the network convergence is accelerated. The normalization formula is
as follows:

y =
x− xmin

xmax − xmin
. (12)

The next step is to set a time step for look-back, and Figure 4 shows how the time step works.
If TimeStep = 1, the model uses the information from the previous moment (xn−1) as the input,
and the output is the current time information (xn). If TimeStep = 3, the model would utilize n
previous moment information, e.g., xn−3, xn−2, ..., xn−1, as the inputs, and the output is the current
time information (xn). Proper hyper-parameters are preset for the LSTM net and the training set data
are adopted to train the model using the BPTT method. Finally, test set data are used to evaluate the
performance of the model.

After the LSTM block, there is a dense layer that maps the outputs of LSTM block to a single value.
The PEV charging load forecast of a one minute time interval is obtained by the inverse normalization
of the output data from LSTM block. In this paper, several other deep learning based models are also
considered in the comparative studies, and they share the same forecasting framework. Due to the
space limitation, the other methods are not detailed in this section. All of the framework modules
are implemented in a desktop workstation with 3.0 GHz Intel i7 and 64 GB memory, and the GPU is
Geforce Nvidia GTX-1080Ti with all codes running in Keras library [46] with Tensorflow [47] backend.
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Figure 4. Time step working mechanism.

4. Data Analysis

In dealing with the load forecasting and energy prediction tasks, data-driven approaches have
achieved good results compared to other analytical models [48]. The deep learning model adopted in
this paper is also a data-driven method, in which the data analysis is vital to train the model for the
given task. In this section, the characteristics of the dataset will be comprehensively analyzed.

4.1. Data Statistical System

The dataset used in this paper is collected from a large scale PEV charging station in Shenzhen
with photovoltaic panels on the roof and considerable energy storage equipped. The charging station
has 64 parking spaces for pure-electrified buses, 12 charging spaces for cars, and 24 built-up charging
piles. Our dataset is the charging load collected from the 24 charging piles. The charging station’s
power distribution mode and data statistics system diagram are shown in Figure 5. The charging
station has two power distribution modes: solar carport power generation and battery energy
storage. The charging data are stored in the charging pile and transmitted to the data center through
the wireless router. The data center is established in the cloud and managed by the centralized
platform. The real-time data would be downloaded and delivered into the data processing step that is
implemented in the local work station.

Figure 5. Power distribution mode and data statistics system.
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4.2. Data Pre-Processing and Feature Analysis

The original data contain three data types: charging start time, charging end time and total
charging amount. The data ranges from 31 March 2017 to 17 July 2018. Due to the fact that many
cars choose to charge at night, the charge statistics span covers two days long. In order to obtain
the one year data from 1 July 2017 to 30 June 2018, we choose the data from 3 June 2017 to 1 July
2018. Then, the outlier data in the dataset are found and processed with the method elaborated in the
following paragraphs.

A fetched load value is firstly judged in Equation (13), and determined by Equation (14)
once identified as an outlier or missing data. In this paper, the outlier data are majorly tacked by
interpolation methods. The detailed threshold handling method is shown as below:
when:

max[|ydt − ydt−1
ydt

|, |ydt − ydt+1
ydt

|] 6 εa, (13)

where ydt is the fetched load value of time t and εa is the predetermined threshold. The outlier data
will be replaced by a simple interpolation manner, where ydt is denoted as below:

ydt =
ydt−1 + ydt+1

2
. (14)

A similar operation is implemented for the error data. It should be noted that the interpolation
method is only effective in minor outliers, whereas the large amount of error data may require more
specific manner to handle or prevent. Finally, the tool panda is used to split the data at one-minute
intervals for one year from 1 July 2017 12:00 a.m. to 30 June 2018 11:59 a.m. At this point, the data
pre-processing task finishes and ends.

Shenzhen is located in the southern part of China and belongs to the subtropical monsoon climate.
The summer time spans more than six months. It is therefore not reasonable to analyze the data features
on a quarterly basis. Figure 6 shows the load curve for half a month. It can be seen from the figure
that the PEV charging load as a whole follows a certain fixed pattern, which is related to the fixed
route of the bus and the commutes of passengers. Therefore, according to the climate characteristics of
Shenzhen, the distribution of charging load is compared by the scenarios of the dry season and the
rainy season. The rainy season is from April to September, while the dry season is between October
and March. The box plot of charging load distribution per minute is shown in Figure 7. It can be seen
that the peak load, median load, upper quantile and lower quantile in the rainy season are all higher
than those of the dry season, and the peak load in the rainy season exceeds 40 kW. It shows that the
rainy season is pleasant for people to travel and consume more power, due to which the amount of
charging vehicles is larger.

Figure 6. Load curve for half a month data.
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In addition to the climate impact, the holidays and work days are normally completely different
in charging profiles. Figure 7 also shows the box plot comparison of load distribution for the weekday
and holiday in each month. Overall, the peak load and upper quantile of the holidays are higher than
the weekdays. In February of 2018, the weekday load distribution has many outliers. The reason is that
this month is the Chinese Spring Festival, when people are mostly reunited at home and the charging
load is lower than other times. These points are judged as abnormal data in the box plot, but this
indicates the authenticity of the data and the impact of holidays on the charging load.

Figure 7. Box plot of EV charging load.

5. Numerical Results for Case Study

5.1. Evaluation Metrics and Error Function

Generally, three popular metrics are used to evaluate the performance of model, including root
mean squared error (RMSE), mean absolute percent error (MAPE) and mean absolute error (MAE), etc.
The equations of these metrics are shown as follows:

RMSE =

√
1
N

n

∑
i=1

(ŷi − yi)2, (15)

MAPE =
1
N

n

∑
i=1

(| ŷi − yi
yi
| × 100), (16)

MAE =
1
N

n

∑
i=1
|ŷi − yi|, (17)

where N is the number of samples, ŷi is forecasting value, and yi is actual value. In this paper, the EV
charging facilities have been using the constant charging power. In this regard, to keep this commonly
used unit, the minute based charging load of a whole charging station is calculated by the accumulated
charging time slots of all the charging piles in each minute. The accumulated charging power could
also denote the total charging amount for the overall charging station in every minute. Due to the
durability of the PEV batteries, the drivers’ driving habits and the period of frequent use of the vehicles
have the regularity. Therefore, the sum of the charing load of the piles in a certain period of time may
be 0. However, in Equation (16), the actual value is the denominator and should not be ’0’. Therefore,
in our study, the MAPE metric is not considered in the evaluation of forecasting accuracy. On the other
hand, the RMSE and MAE are chosen as the metrics, and a coefficient of determination is adopted to
estimate the goodness of fit, named R square, of which the formula is as follows:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(ŷi − yi)2 , (18)
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where ȳi is the average of all samples. The range of R2 is (0,1), and the closer R2 is to 1, the higher
forecasting accuracy it would be.

5.2. Experimental Setup

The load forecasting model can be divided into univariate models and multivariate models.
Some traditional load forecasting methods cannot increase the temperature and other characteristics
to express a more complete relationship map because we cannot capture the change law from
the individual load variables. The deep learning model is capable of capturing the load variation
characteristics from univariate, which is a great improvement for the efficiency of real-time prediction.
The final load prediction error confirms the validity of a univariate deep learning prediction model.

In this paper, we choose two datasets of PEV charging load of a whole year ranging from 1 July
2017 to 30 June 2018 including a charging station case and an official charging site aggregator case.
For both cases, the charging load time interval is in minutes and an accumulation of 525,600 rows data
are considered in total. The data are split into three subsets for different purposes in order to make
full use of the data. The proportion of the three subsets are divided as 0.7/0.2/0.1, among which the
training set is from 1 July 2017 to 31 January 2018 and from 22 April 2018 to 21 May 2018, the test
set is from 1 February 2018 to 21 April 2018, and the validation set is from 22 May 2018 to 30 June
2018. The training set is firstly used to get the pre-training model, followed by the model performance
improvement by adjusting the hyper-parameters on the validation set. Finally, the validation set is
used for result evaluation.

In the application of the Deep Learning model, hyper-parameter tuning is essential to
obtain the best performance. In this case study, six featured and popular models are selected
for performance comparison including ANN, RNN [49], canonical LSTM, gated recurrent units
(GRU) [50], stacked auto-encoders (SAEs) [51] and the bi-directional long short-term memory
(Bi-LSTM) [52]. These methods have broadly covered the conventional neural network approaches
as well as the state-of-the-art deep learning methods. For deep learning models, the adjustment
of hyper-parameters relies heavily on repeated experiments. By observing the performance of the
validation set, hyper-parameter adjustment is performed. If the number of neural network layers is
too large, the model will be over-fitting, and too little will lead to under-fitting. Through repeated
experiments, the ANN is assumed as a single hidden layer structure for parameter tuning simplification.
The RNN, GRU, Bi-LSTM and LSTM have two hidden layers, whereas the SAEs have four hidden
layers, and all of the models’ hidden layers have 16 nodes. The learning rate in the deep learning
model is also an important parameter. It is often set between 0.00001 and 0.01; if the learning rate is too
high, the network cannot converge to the global optimal value; if the learning rate is too low, it cannot
converge. Through extensive experiments, the learning rate is set to 0.001. The epoch and batch size of
the training process are according to the data set size, and the network convergence can be achieved.
In this experiment, we set them as 30 and 512, respectively. To prevent over-fitting of the network,
we added the dropout layer, which is usually set to a range of 0.3–0.8. Through experimentation, the
dropout is 0.3 to achieve the lowest prediction error. Other comparison models have achieved optimal
results under this set of parameters and are discussed separately. The MAE is chosen as the loss
function, while the RMS prop [53] is adopted as an optimizer. The time steps’ parameter represents
the second dimension of the input matrix. In the experimental study, the performance of the models in
three different time steps are compared. The dimension conversion in each layer is shown in Figure 8.
The dropout concept, first introduced by Hinton et al. [54], refers to the temporary discarding of
neural network units from the network according to a certain probability during the training process
to prevent the model from over-fitting, of which the value is set as 0.5.
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Figure 8. Dimension conversion in each layer.

5.3. Case 1: PEV Charging Station Case Study

The first step in the experimental process is to read the load data file and convert the load data
into the required matrix. The data are then fed it into the model for pre-training. It is required to keep
observing whether the loss function of the model on the training set converges. Once it converges,
the loss of the validation set should be finally checked regarding whether the model converges or
not. If the loss does not converge, an over-fitting phenomenon occurs. The hyper parameters of the
model are not effective and should be adjusted. The procedure is repeated until the best performance
on the validation set is obtained. The best hyper-parameters are shown in the previous subsection.
The training loss and validation loss on some epochs are shown in Table 1. Multiple scenarios with
three different time steps for each method are trained. As it can be seen from the table that the LSTM
model has the minimum loss in the last epoch for three scenarios, which is 0.0068 (one time step),
0.0065 (five time steps), 0.0064 (15 time steps) in the training set, and 0.0031 (one time step), 0.0043
(five time steps), 0.0034 (15 time steps) in the validation set. The loss curve of three scenarios are
shown in Figure 9, where the losses of each model are converged. Though the Bi-LSTM method has
the comparatively well performance, the training time of the model in the training procedure is too
long as the time steps increase, which need 58 s on each epoch for the 15 time steps, whereas LSTM
only needs 8 s. Overall, the performance of LSTM is proved to be the best among all the counterparts.

(a) one time steps (b) five time steps (c) 15 time steps

Figure 9. Loss curve comparison in three time steps.
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Table 1. Training and validation loss of different algorithms in different time steps.

T-Step Epoch Loss ANN RNN GRU SAEs Bi-LSTM LSTM

1

1 Training Loss 0.4227 0.1007 0.1067 0.1421 0.1076 0.0746
Validation Loss 0.1525 0.0253 0.0258 0.0583 0.0089 0.0136

10 Training Loss 0.0540 0.0270 0.0193 0.0229 0.0142 0.0079
Validation Loss 0.0483 0.0169 0.0098 0.0161 0.0072 0.0048

20 Training Loss 0.0455 0.0271 0.0190 0.0212 0.0140 0.0070
Validation Loss 0.0289 0.0166 0.0105 0.0116 0.0101 0.0033

30 Training Loss 0.0399 0.0271 0.0188 0.0209 0.0133 0.0068
Validation Loss 0.0153 0.0149 0.0096 0.0107 0.0068 0.0031

5

1 Training Loss 0.3010 0.0810 0.0771 0.0862 0.0581 0.0356
Validation Loss 0.0793 0.0240 0.0226 0.0293 0.0156 0.0253

10 Training Loss 0.0382 0.0195 0.0167 0.0222 0.0118 0.0074
Validation Loss 0.0185 0.0100 0.0087 0.0149 0.0067 0.0077

20 Training Loss 0.0380 0.0189 0.0163 0.0216 0.0116 0.0067
Validation Loss 0.0196 0.0126 0.0066 0.0121 0.0052 0.0053

30 Training Loss 0.0378 0.0186 0.0161 0.0214 0.0115 0.0065
Validation Loss 0.0196 0.0087 0.0081 0.0118 0.0055 0.0043

15

1 Training Loss 0.1726 0.0824 0.0763 0.1540 0.0519 0.0337
Validation Loss 0.0360 0.0756 0.0373 0.0509 0.0156 0.0692

10 Training Loss 0.0383 0.0195 0.0167 0.0224 0.0120 0.0073
Validation Loss 0.0204 0.0120 0.0090 0.0129 0.0101 0.0072

20 Training Loss 0.0379 0.0197 0.0164 0.0217 0.0116 0.0067
Validation Loss 0.0196 0.0167 0.0086 0.0120 0.0094 0.0084

30 Training Loss 0.0377 0.0195 0.0162 0.0214 0.0115 0.0064
Validation Loss 0.0194 0.0097 0.0075 0.0115 0.0049 0.0034

Then, the trained models are recalled to test the accuracy on the test set. The average error
(MAE, RSME) and goodness of fit (R2) are calculated and shown as Table 2. In Table 2, we can find
that the LSTM proves to be more accurate than the ANN, RNN, GRU, SAE, Bi-LSTM models for the
minute-level load forecasting. The MAE of ANN model in three time steps is 2.3582, 3.0206 and 2.9988,
and 0.4782, 0.5734 and 0.5500 for the LSTM model. In contrast, the MAE is reduced by 1.8800 in one
time step, 2.4472 in five time steps, and 2.4489 in 15 time steps. It can be found that, with the time step
increase, the MAE difference also increases in the two models. The average RMSE of LSTM in three
scenarios is 0.8988. When the time step changes from 1 to 5, the RMSE of RNN, GRU, Bi-LSTM LSTM
all decrease, and that of the ANN and SAE increase. Such results prove that the sequence models
work better for long sequences. When the time step changes from 5 to 15, the RMSE of other models
increase, while that of LSTM and Bi-LSTM decrease. This proves that LSTM can remember longer
input sequences and efficiently process their information, providing a more robust solution to the
sequences data with longer time intervals and longer delays. In addition, with the time steps increase,
the R2 of ANN becomes smaller, which are 0.862306 for one time step and 0.816820 for 15 time steps.
The R2 of LSTM is very close to one in three time steps, which indicates that the LSTM has been
significantly competitive for the super-short-term EV charging load forecasting. The metrics and error
comparison histograms in three scenarios are shown in Figure 10. It can be seen more intuitively from
the histograms that LSTM has the lowest error and the best goodness of fit compared to five other
methods. Compared with the best results obtained from all the counterparts, the LSTM method has an
average of 30% lower errors on all the index criteria.
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Table 2. Performance comparison of the MAE, RMSE, and R2 for all methods.

T-Step Metrics ANN RNN GRU SAEs Bi-LSTM LSTM

1
MAE 2.3582 3.2397 1.9116 1.0886 1.3096 0.4782
RMSE 4.3078 3.7915 2.4333 1.5689 1.5996 0.9546

R2 0.8623 0.8716 0.9495 0.9403 0.9844 0.9953

5
MAE 3.0206 2.7457 1.3134 2.1616 0.9045 0.5734
RMSE 5.0117 3.5703 1.7376 3.1042 1.2288 0.8937

R2 0.8136 0.9104 0.9788 0.9323 0.9894 0.9944

15
MAE 2.9988 3.1559 1.3269 2.2516 0.8296 0.5500
RMSE 4.9680 3.8630 1.7880 3.1556 1.0934 0.8452

R2 0.8168 0.8941 0.9756 0.9292 0.9916 0.9950

Figure 11 shows the actual data curve and forecasting curve for each model in the three scenarios
of a single day and a whole week. For the single day in the left column, 1440 points is described in
the curve. It can be seen that the charging load began to increase sharply at 11:00 p.m. This is due to
the fact that the public transportation in Shenzhen, such as taxis and buses, are all electric vehicles.
These vehicles work during the day and can be recharged at night after being fully uncommitted by
11:00 p.m. In addition, it is the time period when the charging price is the lowest after 11:00 p.m.,
which is beneficial for reducing the charging cost. In the enlarged view, it could be observed that
the change in per minute load is a more clear waveform. Both ANN and SAE models have slight
fluctuations in the forecasting curve when the time step is 1, and the fluctuation disappears with the
time step increases. Compared with the actual data curve especially near the peak, ANN and SAE
models fail to capture the step changes in the load value. The LSTM model again perfectly predicts the
load of each point and captures all the slight step changes.

(a) RMSE (b) MAE (c) R2

Figure 10. RMSE, MAE and R2 comparison histograms.

For a whole week in the right column of Figure 11, the data from 15 February 2018 to 22 February
2018 are adopted and 10,080 points are considered in the curve. It could be easily seen that, due to
the inherent working mode of public transports, the curve shows a certain periodicity. Moreover,
the utilization of one minute as time intervals can effectively describe the nonlinear characteristics
of the data; however, it makes it more difficult to the general model for accurate load forecasting.
From the first figure, it can be observed that, when the time step is 1, the RNN model cannot fit the
peak load well and the valley load, and the forecasting value is larger than the actual value. The ANN
model can not capture the subtle changes of the load, in particular for the data near the peak load.
In the partially enlarged graph, the forecasting effect of the SAEs model is basically a straight line near
the curve initial position, and it is basically unable to capture the subtle changes. The GRU, Bi-LSTM
and LSTM models can reasonably forecast the value of each point, and LSTM still shows the best
forecasting accuracy among the three models. In the second figure that illustrates the curves of the five
time step models, it can be seen that the RNN model forecasting effect is largely improved. However,
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in the enlarged graph, the forecasting curve of SAE and ANN produces the straight line near the initial
position. The LSTM model still obtains the best performance among all the counterparts. The third
figure demonstrates the curves of the 15 time steps models and shows the same results with Table 2.
In this scenario, the forecasting accuracy of the RNN model is reduced, where the forecasting value of
peak and valley load is higher than the actual value in the one time step case and it is lower than the
true data in the 15 time steps case.

Figure 11. Different time steps load forecasting curve effect comparison graph of one week.

As shown in Figure 12, the forecast results of the holiday (dry season) and the working day
(rainy season) are compared. From the forecast of the working day (rainy season), the charging load
peaks at 11:00 p.m., begins to decrease at 3:00 a.m., and increases again at 8:00 a.m. In addition,
the charging load is higher during working days, while the holiday (dry season) had a low charging
load during the day. This is because people often choose to travel on holidays, and most private
EVs are charged on working days, while most public transport EVs can only choose to charge at
night. Again, due to the large amount of public transportation, the charging load increases greatly at
11:00 p.m. The prediction results of each model show that the prediction accuracy of LSTM on holidays
and working days is better than the other five counterparts.



Energies 2019, 12, 2692 15 of 19

Figure 12. Load forecasting curve effect comparison graph of holiday (dry) and weekday (rainy).

In the results, the LSTM model exhibits strongly competitive performance in minute-level PEV
charging load forecasting, and its variants GRU and Bi-LSTM also exhibit comparatively well accuracy.
The effectiveness of the deep learning based model for minute-level super short-term load forecasting
for PEV charging is promising and manifested.

5.4. Case 2: PEV Aggregator Case Study

The load curves of the PEV charging station persist highly periodical characteristics, which might
not be convincing enough to demonstrate the superior performance of deep learning methods. In order
to further verify the validity of the proposed model, another minute-level load dataset of a PEV
aggregator for commercial building chargers in Shenzhen was used to validate the proposed super
short-term model, and the prediction results’ curves are shown in Figure 13. It could be observed that
the charging behavior of a commercial charges aggregator is more random and fluctuating, which is
completely different from the charging station profile. In this case study, all six of the methods are
compared again and the results of performance comparison are shown in Table 3, also with three
time-steps’ options. The LSTM again shows the best performances on all the time-step tests, obtaining
the MAE of the three time-steps as small as 0.3096, 0.4699 and 0.2864, respectively. Though the accuracy
is slightly lower than the results of the periodical charging station case study, deep learning models
again demonstrate competitive performance for the extra-short-term PEV charging load forecasting.

Table 3. Performance comparison of the MAE, the RMSE, and the R2 for all methods.

T-Step Metrics ANN RNN GRU SAEs Bi-LSTM LSTM

1
MAE 0.9098 0.4751 0.4281 0.7008 0.5321 0.3096
RMSE 1.2581 0.6890 0.6340 0.9551 0.7702 0.5095

R2 0.8603 0.9581 0.9645 0.9195 0.9476 0.9771

5
MAE 0.8912 0.4830 0.5112 0.5529 0.6241 0.4699
RMSE 1.2654 0.6761 0.7218 0.7638 0.8091 0.6219

R2 0.8585 0.9596 0.9361 0.9484 0.9421 0.9658

15
MAE 0.8823 0.4659 0.6111 0.6576 0.8157 0.2864
RMSE 1.2489 0.6506 0.8519 0.8956 1.0260 0.4418

R2 0.8626 0.9627 0.9284 0.9293 0.9072 0.9828
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Figure 13. Load forecasting curve effect comparison graph of the PEV aggregator.

6. Conclusions and Future Work

In this study, deep learning approaches are for the first time utilized in super-short-term
minute-level short-term PEV charging load forecasting. Unlike the previous shallow structure methods,
the deep learning based models do not need many features in the model training. They effectively
capture the potential load change features using only historical load data such as the nonlinear feature
and temporal correlations. Comprehensive comparative studies including ANN, RNN, LSTM, GRU,
SAEs and Bi-LSTM models are implemented in three scenarios, where the unsupervised learning
algorithm is applied to pre-train the models. Fine-tuning and proper hyper-parameters are well
investigated to achieve the best performance. Comprehensive metrics index including RMSE, MAE
and R2 are used to evaluate the model performances. The results show that deep learning models
effectively forecast super-short-term PEV charging load for providing accurate prediction curves in
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dynamic power system scheduling. Among the deep learning methods, the LSTM model is superior
to the other methods and is competent in forecasting extra-short term PEV charging load.

With the quickly mass roll out of PEVs in the multiple levels of power grid, the accurate forecasting
of PEV charging load has the potential to bring significant economic and social benefits. The proposed
deep learning model provides an important tool to pave the way for the large penetration of PEVs
integrating into the power system and provides a competitive artificial intelligence showcase in the
low carbon energy systems.
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