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a b s t r a c t

This paper is on Γ-convergence for degenerate integral functionals related to
homogenisation problems in the Heisenberg group. Here both the rescaling and
the notion of invariance or periodicity are chosen in a way motivated by the
geometry of the Heisenberg group. Without using special geometric features, these
functionals would be neither coercive nor periodic, so classic results do not apply.
All the results apply to the more general case of Carnot groups.
©2019 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Γ -convergence is a notion of convergence of a family of functionals Fε to a functional F∞ which goes back
to E. de Giorgi (see [15–17]) and guarantees the convergence of minimisers of the functionals Fε to minimisers
of the limit (or effective) functional F∞; for a precise definition and properties see Section 4. The convergence
of minimisers implies, under suitable conditions, convergence of solutions of the Euler–Lagrange equations,
and is therefore a useful tool for homogenisation problems, in particular in the random and nonlinear case,
see e.g. [12]. If the functional is integral, i.e. of the form

u ↦→ F (u) =
∫

A

f(x, ∇u(x))dx,

where A is a (Borel) domain, ∇u is the distributional gradient of the real-valued function u assumed to
be in a suitable Lp-space, and f : RN × RN → R with some regularity and growth assumptions, then the
corresponding Euler–Lagrange equation is a nonlinear divergence form equation.
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The above functional can be generalised to degenerate functionals in the setting of Carnot groups. In
this paper we focus specifically on the n-dimensional Heisenberg group Hn, which is a step 2 Carnot group
defined on R2n+1 (see Section 2 for definitions and properties). Thus the family of functionals considered
here is of the form

u ↦→ F (u) =
∫

A

f(x, ∇X u(x))dx

where A is a domain on RN = R2n+1 while ∇X u is the horizontal gradient in the Heisenberg group which
belongs to a suitable m-dimensional subspace of the “space of derivatives” (tangent space), see Definition
(2.7).

Since m = 2n, we have m < N : as a consequence, such functionals are typically not coercive in the
classical sense, so classical results do not apply.

Working in the setting of the Heisenberg group, the scaling needs to adapt to the underlying geometrical
structure, therefore we will consider the following anisotropic scaling δ1/ε(x1, x2, x3) = (ε−1x1, ε−1x2, ε−2x3),
with (x1, x2, x3) ∈ RN ≡ Rn × Rn × R. Hence the scaling is anisotropic w.r.t. the last component.
The anisotropy can be understood heuristically in another way: at each point, some directions are
“forbidden”, i.e. paths of the associated control problem can move only on a 2n-dimensional subspace of a
(2n+1)-dimensional space. By varying their direction often (i.e. by the use of non-trivial commutators from
the Hörmander condition) they are able to reach any given point but the cost for “zig-zagging” to get in
the forbidden direction is higher, so typically they move slower in these directions, which makes a faster
rescaling necessary.

The limit functional F∞ is of the same form, i.e.

F∞(u) =
∫

A

f0 (∇X u(x)) dx,

where the integral function f0 does not depend on x anymore (however the horizontal gradient still depends
on x through the vector fields). The corresponding Euler–Lagrange equation will not be elliptic but only
subelliptic, we refer to [7,20] for an overview on subelliptic equations.

The study of homogenisation in subelliptic settings started with the periodic case (see e.g. [4–6,22,23,28,
33]). The first result for the stochastic case in this degenerate setting is [19], where the authors studied the
case Hamilton–Jacobi (first order) case for Hamiltonian depending on the horizontal gradient in the case of
Carnot groups.

As Γ -convergence has nice compactness results, the main difficulty is in general the identification of the
Γ -limit as again an integral functional. Here it is used that the integrand can be retrieved by considering
minimisation problems over small cubes with affine boundary conditions, see [11]. A generalisation
to the setting of the Heisenberg group requires a suitable adaption of the notion of “affine”, namely
H-affine functions, see Section 3 for the definition and references. Recently some results for Γ -convergence
of degenerate functionals in very general geometries have been proved in [27]. Here we use that the minimal
normalised energy on anisotropically (Heisenberg dilations) scaled cubes is subadditive by constructing
admissible functionals on large cubes and patching together translated minimisers on translated cubes. Here
we need to use the specific properties of translations in the Heisenberg group. Note that cubes rescaled by
an integer (i.e. δk(Q)) cannot be written as union of translations of the original cube Q, not even up to a set
of measure zero. This is a crucial difference with the Euclidean case but we overcome the issue by controlling
the error term.

A closely related approach can be found in [24], where the Γ -convergence in Cheeger–Sobolev spaces is
considered. Our functional depending only on |∇X u| instead of ∇X u would be a functional on a Cheeger–
Sobolev space, but the natural tiling generalising periodicity in our case does not satisfy the assumptions
of [24].
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All the results are written in the Heisenberg group for sake of simplicity but the proofs apply to general
Carnot groups.

These results can be applied to functionals related to subelliptic p-Laplace equations and generalised to
stochastic functionals with short correlations (as done in Dal Maso-Modica [13]).

This paper is organised as follows.
In Section 2 we give an overview on the Heisenberg group and its geometry, in particular the scaling, the

horizontal gradient and the notion of periodicity.
In Section 3 we define precisely our functionals and we recall the Sobolev spaces adapted to the structure

of the Heisenberg group, in particular their embedding into Lp-spaces, through the embedding in fractional
Sobolev spaces, which will be crucial for the later Γ -convergence results.

Section 4 is devoted to the Γ -convergence results. We first recall the definition and some basic properties
of Γ -convergence. We use compactness properties of the Γ -convergence and we give conditions under which
the Γ -limit is again an integral functional, thus recovering the results by Dal Maso–Modica, [11], for our
degenerate functionals.

In Section 5 we prove the main result of the paper, that is the homogenisation result for Heisenberg-
periodic functionals. In fact, we show a Akcoglu–Krengel type result, [1], for our anisotropic Heisenberg-
periodic functionals, i.e. the convergence of normalised minimal energies over rescaled cubes. For this
purpose, we exploit an underlying subadditive structure.

In Section 6 we mention some applications and further directions of research. We highlight how the results
apply to more general functionals associated to Carnot group structures. We then give some connections with
homogenisation for subelliptic p-Laplacian. Finally we explain how our methods can be used to generalise
the results to the stochastic case with short correlations.

2. Preliminaries: The Heisenberg group

Carnot groups are non-commutative Lie groups: thus they are endowed both with a non-commutative
algebraic structure and with a manifold structure. The lack of commutativity in the algebraic structure
reflects on the manifold structure as restrictions on the admissible motions. This means that the allowed
curves are constrained to have their velocities in a lower dimensional subspace of the tangent space of the
manifold. Then the associated manifold structure is not Riemannian but sub-Riemannian. In this paper
we give details for the Heisenberg group only but the results can be easily generalised to Carnot groups
(see Section 6). We refer the reader to [7] for definitions and properties on Carnot groups and to [29] for an
overview on sub-Riemannian manifolds.

To keep the paper easily readable we omit the intrinsic definition of the Heisenberg group, introducing it
directly as the following non-commutative group structure on RN .

Definition 2.1. The n-dimensional Heisenberg group Hn, with n ≥ 1, is a Carnot group of step 2
isomorphic to RN , where N = 2n + 1, endowed with the following non-commutative group operation:

x ∗ y :=
(

x1 + y1, x2 + y2, x3 + y3 +
x1 · y2 − x2 · y1

2

)
(2.1)

for all x = (x1, x2, x3), y = (y1, y2, y3) ∈ RN ≡ Rn × Rn × R and where by · we indicate the standard inner
product in Rn.

In all Carnot groups it is possible to define a natural scaling, induced by the Lie algebra stratification,
namely dilations. The dilations replace the multiplication by scalars in the standard vector space structure
of the Euclidean RN .



4 N. Dirr, F. Dragoni, P. Mannucci et al. / Nonlinear Analysis 190 (2020) 111618

Definition 2.2. The dilations in the Heisenberg group are the family of group homeomorphisms defined
as, for all t > 0, δt : RN → RN with

δt(x) = (t x1, t x2, t2 x3), ∀ x = (x1, x2, x3) ∈ RN ≡ Rn × Rn × R. (2.2)

Thus the dilations in Hn coincide with the standard Euclidean scaling in the first 2n components while
the last component scales as t2.

The following properties of dilations are true in all Carnot groups and they can be easily checked in the
Heisenberg group by using formulae (2.1) and (2.2).

Lemma 2.1. For all t, s > 0, the following properties hold true:

(1) δ1 = id;
(2) δ−1

t = δt−1 ;
(3) δt ◦ δs = δt s;
(4) for every x, y ∈ RN one has δt(x) ∗ δt(y) = δt(x ∗ y).

We now recall the notion of homogeneous dimension. In a general Carnot group G, the homogeneous
dimension is the natural number Q :=

∑r
i=1 i dim gi, where r is the step of the stratified associated Lie

algebra g (see e.g. [7] for more details). In Hn one can easily show that

Q = 2n + 2.

The homogeneous dimension is correlated to the scaling of measures since it coincides with the Hausdorff
dimension w.r.t. every homogeneous metric. In the paper we always indicate simply by |A| the N -dimensional
Lebesgue measure of the Borel set A of RN . Then for all t > 0, |t A| = tN |A| while one can easily show that

At := δt(A) ⇒ |At| = tQ|A|. (2.3)

Since the Heisenberg group (as all Carnot groups) is non-abelian, translations to the right or to the left
determine two different families of homeomorphism on the group. As standard in this setting, we consider
the left-translations, which are defined, for all y ∈ RN as Ly : RN → RN with

Ly(x) := y ∗ x,

where ∗ is the group operation defined in (2.1).
Using the left-translations it is possible to define a sub-Riemannian structure on each Carnot group by

introducing a suitable family of left-invariant vector fields spanning to the first layer of the Lie algebra
stratification. We omit the general definition on Carnot groups (see e.g. [7]). In the specific case of the
Heisenberg group, the vector fields can be found as

Xi(x) = dLx(ei), (2.4)

where ei are the unit vectors of the standard Euclidean basis on RN for i = 1, . . . , 2n. One can also easily
show that, for all j = 1, . . . , n

X2n+1(x) = dLx(e2n+1) =
[
Xj , Xn+j

]
(x),

where
[
·, ·

]
are the standard Lie brackets (called also commutators) defined for vector fields. In the case

n = 1 the vector fields are

X1(x) =

⎛⎝ 1
0

− x2
2

⎞⎠ and X2(x) =

⎛⎝ 0
1
x1
2

⎞⎠ , ∀ x = (x1, x2, x3) ∈ R3. (2.5)
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We recall that the previous vector fields are left-invariant by definition. For later use we introduce the
following simplified notation: given any function u : RN → R, the translation Lz of the function u is simply
u ◦ Lz, i.e.

Ly(u)(x) := u(y ∗ x).

Thus Xi is a left-invariant vector field if for all u ∈ C∞(RN ) and for all fixed y ∈ RN

Xi(Ly(u))(x) = (Xiu) (y ∗ x), ∀x ∈ RN , (2.6)

(while this is in general false considering instead the right-translations). We recall that the vector fields Xi

for i = 1, . . . , 2n span a bracket generating distribution with step 2 (see e.g. [29] for some details).
The previous vector fields allow us to define derivatives of any order, just considering how a vector field

acts on smooth functions. Given a function u : RN → R, we denote the horizontal gradient of u by

∇X u = (X1u, . . . , X2nu)T
. (2.7)

In the case of n = 1 the horizontal gradient can be explicitly written as

∇X u =
(

ux1 − x2
2 ux3

ux2 + x1
2 ux3

)
∈ R2.

We now recall that a differential operator L on the Heisenberg group is called homogeneous of degree κ

if for every u ∈ C∞(RN ) one has
L(δtu) = tκδt(Lu),

where the scaled function is defined as δtu(x) := u(δt(x)), for all x ∈ RN .
Then we have the following result.

Lemma 2.2. For every i = 1, . . . , 2n, each left-invariant vector field Xi, defined in (2.4), is homogeneous
of degree κ = 1, i.e., for any u ∈ C∞(RN ) one has

Xi(δtu) = tδt(Xiu).

The proof is a very simple computation in the Heisenberg group while for general Carnot groups the
reader can find a proof e.g. in [21].

This in particular implies that the horizontal gradient is homogeneous of degree one with respect to the
dilations δλ, i.e., for every u ∈ C∞(RN ) we have

∇X (δtu) = tδt

(
∇X u

)
. (2.8)

For later use, it is very useful to introduce the N × 2n-matrix associated to the vector fields, that is

σ :=
(
X1, . . . , X2n

)
, (2.9)

where Xi are the left-invariant vector fields defined in (2.4) and the extended matrix of vector fields, which
is the N × N -matrix

σExt :=
(
X1, . . . , X2n, X2n+1

)
, (2.10)

where X2n+1(x) = dLx(e2n+1), and e2n+1 is the unit vector spanning the 2n + 1-direction (and associated
to the second layer of the stratification for the Lie algebra).
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Example 2.1. In the 1-dimensional Heisenberg group H1, the matrix σ is the 2 × 3-matrix given by

σ(x1, x2, x3) =

⎛⎝ 1 0
0 1

− x2
2

x1
2

⎞⎠ ,

while σExt is the 3 × 3-matrix given by

σExt(x1, x2, x3) =

⎛⎝ 1 0 0
0 1 0

− x2
2

x1
2 1

⎞⎠ .

A trivial computation shows the following property, which will be very useful later: given the quadratic
matrix defined in (2.10), then

det
(
σExt(x)

)
= 1, ∀ x ∈ RN . (2.11)

The property above means that the left-translations are an isometry for the associated Lp-spaces, i.e. infor-
mally setting for all fixed z ∈ RN y := Lz(x) = z ∗ x, we have dy = dx.

Remark 2.1. Property (2.11) can be generalised to all Carnot groups in exponential coordinates or to more
general Carnot-type groups (see e.g. [2] for properties and definitions of Carnot-type groups).

Remark 2.2. Trivially ∇X u = σT ∇u where ∇u denotes the standard (Euclidean) gradient of u.

2.1. Periodicity in the Heisenberg group

Being the Heisenberg group a Lie group, a very natural notion of periodicity can be introduced by
left-translations, see [4,5,22,23]. We refer also to the Phd thesis [25] where periodicity in the Heisenberg
group (but also in more general structures as Grushin spaces) is studied in detail with many properties
and examples. Given any Ω ⊂ RN , we say that Ω is H-periodic with period T > 0, whenever LT k(Ω) =
(Tk) ∗ Ω = Ω for all k ∈ ZN .

For later use in the paper we fix the period T = 2. In fact, recalling that Ly ◦ Lz(x) = Ly∗z(x),
the composition of two left-translations with period T = 1 is not anymore a integer left-translation since
k ∗ h /∈ ZN , because the third component becomes k3 + h3 + k1h2−k2h1

2 , which is in general not anymore an
integer.

Instead the composition of two left-translations with period 2 is still a translation of the same type since,
for all k, h ∈ ZN , 2k ∗ 2h = 2z with z = (k1 + h1, k2 + h2, k3 + h3 + k2 · h1 − k1 · h2) ∈ ZN . (Note that
z ̸= k ∗ h since the third component is different by a factor 1

2 in the mixed term.) One could very simply
adapt everything to period T = 1 by choosing a different representation of the Heisenberg group, where the
group law is expressed by polynomials with integer coefficients; in that case the unit cell needs to be rescaled
to a unit cube (e.g. [− 1

2 , 1
2 ]N ), see e.g. [22].

We introduce the following simplified notation for the left-translations with period 2, that is

τk(x) := 2k ∗ x, ∀ k ∈ RN , x ∈ RN . (2.12)

We recall that, for all k, h ∈ RN , the following properties hold true:

τk ◦ τh = τk∗h and τ−1
k = τ−k.

A definition of periodicity adapted to the Heisenberg group structure can be given for functions as follows.
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Fig. 1. Tiling in H1 constructed by translating Q = [−1, 1)3.

Fig. 2. Rescaling of the unit cell Q = [−1, 1)3 (which is the blue cube) w.r.t. the dilations in the 1-dimensional Heisenberg group: in
particular in red one can see δ2(Q) while in bordeaux one can see δ 1

2
(Q). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Definition 2.3. We say that the function f : RN → R is H-periodic whenever

f(τk(x)) = f(2k ∗ x) = f(x), ∀ x ∈ RN , k ∈ ZN .

To construct a large class of periodic functions we need to introduce a H-periodic tiling of RN . Thus we
consider the semiopen cube Q = [−1, 1)N . We call Q unit cell and consider τk(Q) = 2k ∗ Q. Then one can
easily show that the family

{
τk(Q)

}
k∈ZN fulfills⋃

k∈ZN

τk(Q) = RN and τk(Q) ∩ τh(Q) = ∅, ∀ k ̸= h. (2.13)

See Fig. 1 and [23, Lemma 2.4].
We next want to highlight a few facts about the scaling of tilings since this will be crucial later when we

will study our homogenisation problem. First recall that, in the Heisenberg group, if we scale the unit cell,
then we do not get anymore hypercubes but hyper-rectangles since the scaling is anisotropic. In Fig. 2 we
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show how the cube Q scales for t > 1 and for t < 1. Then if we want to build a tiling of RN starting by a
rescaled cell, we need to be very careful and adapt the translations to the Heisenberg scaling.

Lemma 2.3. Given the unit cell Q = [−1, 1)N and a t > 0, the scaled unit cell as

Qt = δt(Q) and Qt
k := τδt(k)

(
Qt

)
,

then the family
{

Qt
k

}
k∈ZN is a tiling of RN in the sense that⋃

k∈ZN

Qt
k = RN and Qt

k ∩ Qt
h = ∅, ∀ k ̸= h. (2.14)

Proof. The result follows easily from the properties for t = 1 and from the fact that δt(k) ∗ δt(Q) =
δt(k ∗ Q). □

3. A class of degenerate functionals

Affine functions can be introduced in different ways in the Heisenberg group setting and they have been
studied in [3,14]. For the purpose of the paper, we say that a function u : RN → R is H-affine (in the
Heisenberg group) if

u(x) = q · πm(x) + a,

for m = 2n and for some q ∈ Rm and a ∈ R, where πm : RN → Rm is the projection on the first m

components and · is the standard inner product on Rm. The following lemma is an immediate property of
H-affine functions in all Carnot-type groups and it will be key for our later results.

Lemma 3.1. For all fixed q ∈ Rm, we have

∇X u = q ⇔ u(x) = q · πm(x) + a,

for some a ∈ R and for all x ∈ RN .

Proof. One implication (from the right to the left) follows trivially from the fact that q · πm(x) + a does
not depend on the last coordinate and the structure of the horizontal gradient.

The other implication follows from the fact that ∇X u = q means Xiu(x) = qi =constant for all
i = 1, . . . , m, then

u2n+1 = [X1, Xn+1]u = X1(Xn+1u) − Xn+1(X1u) = X1(qn+1) − Xn+1(q1) = 0,

where we indicate by ui the partial derivative of u w.r.t. the variable xi, for i = 1, . . . , N . Using u2n+1(x) = 0,
for all x ∈ RN , Xiu(x) = qi implies ui(x) = qi for all i = 1, . . . , 2n, which gives u(x) = q · πm(x) + a for
some a ∈ R. □

We will later often use the following notation for H-linear functions:

lq(x) = q · πm(x). (3.1)

We next recall that the definition of Sobolev spaces in the setting of Hörmander vector fields, which
applies in particular to the Heisenberg group. We refer to [31,35] for more details on these spaces.

Let k > 1 be an integer, 1 ≤ α ≤ +∞ and A a domain on RN . We define the space

W k,α
X (A) =

{
u ∈ Lα(A)

⏐⏐ X Ju ∈ Lα(A), ∀J ∈ Nm, |J | ≤ k
}

,
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where X Ju = XJ1
1 . . . XJm

m u for J = (J1, . . . , Jm). Endowed with the norm

∥u∥
W

k,α
X (A) =

⎛⎝ ∑
|J|≤k

∫
A

|X Ju|α dx

⎞⎠1/α

,

W k,α
X (A) is a Banach space, and is an Hilbert space in the case α = 2.
Moreover, for any 1 ≤ α < +∞, the embeddings

W k,α
X (A) ↪→ W k/r,α(A),

hold true, where r is the step of the stratified associated Lie algebra, thus in Heisenberg group r = 2
(see e.g. [34]). Later we will also need the following compact embedding.

Lemma 3.2. W k,α
X (A) is compactly embedded into Lα(A).

Proof. This follows from the previous embedding and the fact that the fractional Sobolev space W k/r,α(A)
is compactly embedded into Lp(A) (see e.g. [18]). □

Definition 3.1. For each domain A ⊂ RN , we indicate by

W k,α
X ,0(A)

the closure of C∞
0 (A) w.r.t. the Sobolev norm ∥·∥

W
k,α
X (A).

This means that, whenever the boundary ∂A is regular enough, the trace of u vanishes on the boundary
of the set.

We will use this notation to express the Dirichlet boundary conditions: more precisely

u − u0 ∈ W k,α
X ,0(A)

are all the functions u ∈ W k,α
X (A) which coincide on ∂A (in the sense of Sobolev space) with some

u0 ∈ W k,α
X (A).

Next we recall the following Poincaré inequality, which is key for later results.

Lemma 3.3. Given a bounded domain A ⊂ RN , then there exists a constant C > 0 such that∫
A

|u|αdx ≤ C

∫
A

|∇X u|αdx, ∀ u ∈ W 1,α
X ,0(A).

Proof. This follows from the results in [26,34]. □

Consider now a function f : RN × Rm → R with N = 2n + 1 and m = 2n, we introduce the integral
functional defined, for all domain A ⊂ RN , as

F (u, A) :=

⎧⎨⎩
∫

A

f (x, ∇X u) d x, u ∈ W 1,α
X (A),

+∞, else.

(3.2)

We introduce the following properties for the integrand function
f : RN × Rm → R (with N = 2n + 1 and m = 2n)

f(x, q) is measurable in x and convex in q; (3.3)
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∃ C1, C2 > 0 and α > 1 such that
C1|q|α ≤ f(x, q) ≤ C2 (|q|α + 1) , q ∈ Rm, x ∈ RN .

(3.4)

Moreover for the later homogenisation problem we will assume H-periodicity for the functional in the
sense of Definition 2.3; more precisely

f(τk(x), q) = f(2k ∗ x, q) = f(x, q), ∀ x ∈ RN , q ∈ Rm, k ∈ ZN . (3.5)

Example 3.1. The main example is f(x, q) = a(x)|q|α, which trivially satisfies (3.3) and (3.4) whenever
a : RN → R is bounded (with a strictly positive lower bound) and measurable, while assumption (3.5) is
equivalent to requiring that a(·) is H-periodic.

We want to study the minimisation problem for F (u, A) with H-affine boundary condition, i.e.

m(F, u0, A) := min
{

F (u, A) | u − u0 ∈ W 1,α
X ,0(A)

}
, (3.6)

with u0(x) = q · πm(x) + a for some q ∈ Rm and a ∈ R.

Remark 3.1. Note that under assumptions (3.3) and (3.4), the infimum of F (u, A) on the set of functions u

such that u−u0 ∈ W 1,α
X ,0(A) is indeed a minimum by standard arguments, using the convexity, the embedding

in Lemma 3.2 and the Poincaré inequality (see Lemma 3.3).

4. A Γ -convergence result for degenerate functionals

To keep the paper self contained we next recall briefly the definition of Γ -convergence.

4.1. Very brief introduction to Γ -convergence

In homogenisation theory, we consider a family of solutions to equations with rapidly oscillating coeffi-
cients and investigate if they converge to a solution of a homogenised equation with slowly oscillating or
constant coefficients. If these equations are the Euler–Lagrange equations of a suitable family of functionals
with rapidly oscillating coefficients, and if both minimisers and solutions of the Euler–Lagrange equation
are unique, then we can study convergence of the family of functionals instead.

We need a notion of convergence of functionals which guarantees that minimisers of the approximating
functionals converge to minimisers of the limit functional.

A suitable mathematical setup to make this rigorous is the notion of Γ -convergence. Let us briefly recall
the definition of Γ -convergence (see [8–10] for more details on this subject).

Definition 4.1. Let U be a metric space and for ε > 0 let Fε : U → R be a family of functionals on U .
We say that Fε Γ -converge to F : U → R if the following conditions are verified:

1. for all u ∈ U and for all uε → u, there holds lim infε→0Fε(uε) ≥ F (u)
(Γ -liminf inequality);

2. for all u ∈ U there exist uε → u, such that limε→0Fε(uε) = F (u)
(Γ -limsup inequality).

The convergence of minimisers to minimisers is formalised in the following way, which can be easily derived
from Definition 4.1.
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Proposition 4.1. If Fε Γ -converge to F in U , also the corresponding minimal values (or infima) converge.
Moreover, if uε is a minimiser of Fε and uε → u ∈ U , then u is a minimiser of F .

Hence, the asymptotic behaviour of minimisers of Fε (and therefore solutions of the Euler–Lagrange
equations, see Section 6) can be partly understood by considering the Γ -limit of Fε.

Moreover, Γ -convergence has nice compactness properties, i.e. in general it is easy to show that a Γ -limit
along subsequences exists. The problem is then to identify this limit (see Section 5) and to show properties
of this limit, in particular that it is again an integral functional.

4.2. Γ -Convergence limit

We say that a family (Aρ)ρ>0 of open subsets of RN with Lipschitz boundary is a substantial family
(around x) as ρ → 0+ if, for every positive ρ, there hold

Aρ ⊂ B(x, ρ) := {y ∈ RN
⏐⏐ |y − x| < ρ} and |Aρ| ≥ c |B(x, ρ)|,

where c is a constant independent of ρ (see the monograph [32, Ch.8] for other properties).
The following result states that the integral function f can be obtained from the minima of the Dirichlet

problem for F with affine boundary data. To this purpose, for any domain A with Lipschitz boundary and
for every u0 H-affine data, we introduce the following regularised variational problem

mreg(F, u0, A) := inf
{

F (u, A) | u ∈ C∞(RN ), u = u0 on ∂A
}

. (4.1)

Since the functional depends on u only through its horizontal gradient, therefore the constant a in the
definition of H-affine function does not affect the results; we now consider directly the H-linear functions
defined in (3.1) as boundary data. We state now a useful property, key for the later results.

Lemma 4.1. Let A be a N -dimensional domain with Lipschitz boundary. For q ∈ Rm and lq(y) = q ·πm(y),
and for every smooth function u such that u = lq on ∂A, we have∫

A

∇X u dy = q |A|. (4.2)

Proof. We write y = (y1, y2, y3) ∈ RN ≡ Rn × Rn × R. First we show that∫
A

∇X u dy =
∫

∂A

(q · πm) ν0 d HN−1 ∈ Rm, (4.3)

where ν0 is the horizontal normal, i.e. ν0 = σT ν with σ matrix of the vector fields defined in (2.9) and ν the
outward unit normal to ∂A, while d HN−1 is the Hausdorff measure defined on ∂A. To prove the claim (4.3)
we use that the vector fields in the Heisenberg group are divergence free and we combine a simple integration
by parts with Remark 2.2, which gives∫

A

Xiu dy =
∫

∂A

u νi
0 d HN−1 =

∫
∂A

(q · πm) νi
0 d HN−1,

where νi
0 is the i-component of ν0 for i = 1, . . . , m = 2n.

Then we can use the divergence theorem again (together with the fact that the vector fields in Carnot
groups are divergence free) to conclude:∫

∂A

(q · πm) νi
0 d HN−1 =

∫
A

Xi (q · πm) d x = qi

∫
A

d x = qi|A|,

for all i = 1, . . . , m. □
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We now use the previous lemma to show that, whenever the integrand function f does not depend on x,
then H-affine functions are minimisers for problem (3.6) with H-affine boundary condition.

Lemma 4.2. Given a domain with Lipschitz boundary A ⊂ RN , consider the problem (3.6) with u0(x) =
q · πm(x) + a for some q ∈ Rm and a ∈ R, and F defined in (3.2) with f(x, q) = f(q) convex, then

mreg(F, u0, A) =
∫

A

f(∇X u0) d x = f(q)|A|.

Proof. The result follows by combining Lemmas 3.1 and 4.1 with Jensen’s inequality. □

Now following the arguments of Dal Maso–Modica [11] for the standard non degenerate case, we prove
that the integrand function f can be retrieved in terms of mreg.

Theorem 4.1. Under assumptions (3.3)–(3.4), there exists a measurable subset N of RN with |N | = 0 such
that

f(x, q) = lim
ρ→0+

mreg(F, lq, Aρ)
|Aρ|

,

for every q ∈ Rm and with lq H-linear as in (3.1), x ∈ RN \ N and every substantial family (Aρ)ρ>0 around
x.

Proof. We will use the same arguments as in [11, Theorem I] for the non-degenerate case. We just sketch
the main steps.
Step 1. Let us at the moment assume that there exists some R > 0 such that f does not depend on x

for |q| > R. Then by Jensen’s inequality and by Lemma 4.1, we obtain

inf
{∫

Aρ

f(x, ∇X u) dy | u ∈ C∞(RN ), u = lq on ∂Aρ

}
=

∫
Aρ

f(x, q) dy

= |Aρ|f(x, q),

for every q ∈ Rm, ρ > 0, x ∈ RN and lq defined by (3.1). Exactly as in [11, Proposition 1.1], we can deduce⏐⏐⏐⏐f(x, q) − mreg(F, lq, Aρ)
|Aρ|

⏐⏐⏐⏐ ≤ 1
|Aρ|

∫
Aρ

sup
q∈Rm

|f(x, q) − f(y, q)| dy.

It remains to prove that there exists a measurable subset N of RN with |N | = 0 such that

lim
ρ→0+

1
|Aρ|

∫
Aρ

ϕ(x, y) dy = 0,

for every x ∈ RN \ N and every substantial family {Aρ} around x, where

ϕ(x, y) := sup
q∈Rm

ω(x, y, q), ω(x, y, q) := |f(x, q) − f(y, q)|, ∀x, y ∈ RN , q ∈ Rm.

We observe that ω(x, y, q) = 0 for every q ∈ Rm with |q| ≥ R and that, arguing as in [11] (recall that f

is convex w.r.t. q), there exists a positive constant K such that: |ω(x, y, q1) − ω(x, y, q2)| ≤ K|q1 − q2| for
every x, y ∈ RN and q1, q2 ∈ Rm.

Fix a dense subset D of Rm. The Lebesgue’s Differentiation Theorem ensures that there exists a
measurable subset N of RN with |N | = 0 such that

lim
ρ→0+

1
|Aρ|

∫
Aρ

ω(x, y, p) dy = 0, ∀x ∈ RN \ N , p ∈ D,
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for every substantial family {Aρ} around x. Moreover, as in [11], for every ε > 0, there exists a finite set
{p1, . . . , pk} ⊂ D such that

ϕ(x, y) ≤
k∑

i=1
ω(x, y, pi) + Kε, ∀x, y ∈ RN .

Therefore, we infer
lim sup

ρ→0+

1
|Aρ|

∫
Aρ

ϕ(x, y) dy ≤ Kε, ∀x ∈ RN \ N ,

for every substantial family {Aρ} around x. By the arbitrariness of ε, we accomplish the proof.
Step 2. Let us now remove the additional assumption of Step 1. Taking into account the convexity and
the coercivity of f w.r.t. q, by the same arguments as in [11, Theorem I], we obtain that there exists a
measurable set N ′ ⊂ RN , with |N ′| = 0, such that

f(x, q) ≥ lim sup
ρ→0+

mreg(F, lq, Aρ)
|Aρ|

, ∀x ∈ RN \ N ′, q ∈ Rm,

for every family (Aρ)ρ>0 as in the statement. In order to obtain the reverse inequality, we first observe that
the same arguments of [11, Lemma 1.2] ensure that there exists an increasing sequence {fi}i∈N of functions
such that f = supi fi and each fi satisfies the assumptions of step 1. For each i ∈ N, we denote Fi and Ni

respectively the corresponding functional and the negligible set given by step 1. We set N ′′ := ∪∞
i=1Ni. Step 1

for fi and the inequality f ≥ fi entail

fi(x, q) = lim
ρ→0+

mreg(Fi, lq, Aρ)
|Aρ|

≤ lim inf
ρ→0+

mreg(F, lq, Aρ)
|Aρ|

, ∀x ∈ RN \ N ′′, q ∈ Rm,

for every family (Aρ)ρ>0 as in the statement. Passing to the limit as i → +∞, one deduces

f(x, q) ≤ lim inf
ρ→0+

mreg(F, lq, Aρ)
|Aρ|

, ∀x ∈ RN \ N ′′, q ∈ Rm,

for every family (Aρ)ρ>0 as in the statement. Finally, we accomplish the proof by choosing N = N ′∪N ′′. □

We denote by F = F(α, C1, C2) the set of all functional F which satisfy assumptions (3.3)–(3.4) with
the same constants α, C1 and C2. In the next result, we obtain a characterisation of Γ -convergence in terms
of the convergence of the minima of problems with Dirichlet boundary conditions. We like also to mention
that very recently some results in this direction have been proved in [27] in much more general geometries
but with quite different techniques.

Theorem 4.2. Let {Fn}n∈N be a sequence of functionals in F . Let D be a dense subset of Rm. Let B be a
family of open bounded subsets of RN which contains a substantial family around every point x ∈ RN . Assume
that for each q ∈ D and for each B ∈ B there exists limn m(Fn, q, B). Then, there exists a functional F∞ ∈ F
such that the sequence {Fn}n∈N Γ -converge to F∞ and

lim
n→+∞

m(Fn, lq, A) = m(F∞, lq, A),

for every q ∈ Rm and for every A bounded domain of RN with Lipschitz boundary.

Proof. The proof follows exactly the same arguments of the proof of [11, Theorem IV] so we just sketch the
main issues. We first claim that the space F can be endowed with a metric d such that (F , d) is a compact
metric space and a sequence {Fn}n of functionals in F is convergent w.r.t. to d to some F ∈ F if and only if
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it Γ -converges to F . Indeed, this property can be obtained following the same arguments of [13, Proposition
1.21] and taking advantage of the properties of W k,α

X ,0 and of W k,α
X for the Heisenberg group, in particular the

Rellich compact injection and the Poincaré inequality respectively in Lemma 3.2 and in Lemma 3.3. Hence,
we shall omit it.

Even if the rest of the proof follows the arguments in [11], for the sake of completeness, let us recall the
role of Theorem 4.1. Let Fk1(n) and Fk2(n) be two subsequences of Fn which Γ -converge respectively to
some F ′

∞ and to some F ′′
∞. We claim: F ′

∞ = F ′′
∞. Actually, we have

mreg(F ′
∞, lq, B) = mreg(F ′′

∞, lq, B), ∀q ∈ Rm, B ∈ B.

Theorem 4.1 ensures that there exists a measurable set N ⊂ RN , with |N | = 0, such that

f ′
∞(x, q) = f ′′

∞(x, q), ∀x ∈ RN \ N , q ∈ D,

where f ′
∞ and f ′′

∞ are the integrands of F ′
∞ and respectively of F ′′

∞. Finally, the convexity of f ′
∞ and of f ′′

∞
permits to extend the previous equality to every q ∈ Rm. □

5. Periodic homogenisation for degenerate functionals with H-affine data

Given the functional F (u, A) defined in (3.2), we now introduce for all ε > 0 the following rescaled
functionals:

Fε(u, A) =
(
ρH

ε F
)
(u, A) :=

⎧⎨⎩
∫

A

f
(

δ 1
ε
(x), ∇X u(x)

)
d x, u ∈ W 1,k

X (A)

+∞, else,

(5.1)

and for all z ∈ RN , the following translated functionals:

(
τH

z F
)
(u, A) :=

⎧⎨⎩
∫

A

f (z ∗ x, ∇X u(x)) d x, u ∈ W k,α
X (A)

+∞, else.

(5.2)

Following the idea in [12], for all fixed q ∈ Rm, for all bounded domain A ⊂ RN , and with N = 2n + 1 and
m = 2n, we introduce the following notation

µq(A) := m(F, lq, A) = min
{∫

A

f
(
x, ∇X u(x)

)
d x

⏐⏐u − lq ∈ W 1,α
X ,0(A)

}
, (5.3)

where we recall that lq(x) = q · πm(x) is a H-affine boundary data.
We next define

τH
z µq(A) := µq

(
τH

z (A)
)

= µq

(
z ∗ A

)
.

Lemma 5.1. Given a bounded domain A of RN , there holds

τH
z µq(A) = min

{
(τH

z F )(w, A)
⏐⏐w − lq ∈ W 1,α

X ,0(A)
}

. (5.4)

Proof. Note that since the functional F depends only on the gradient of the function, F (w, A) =
F (w + lq(z), A). Thus to prove (5.4) is the same of proving

τH
z µq(A) = min

{(
τH

z F
)
(w + lq(z), A)

⏐⏐w − lq ∈ W 1,α
X ,0(A)

}
. (5.5)
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In order to prove (5.5) we start looking at the right-hand side and defining v(x) := w(x) + lq(z). Since w

and v differ only by a constant, obviously

min
{(

τH
z F

)
(w + lq(z), A)

⏐⏐w − lq ∈ W 1,α
X ,0(A)

}
= min

{∫
A

f
(
z ∗ x, ∇X

[
w(x) + lq(z)

])
d x

⏐⏐w − lq ∈ W 1,α
X ,0(A)

}
= min

{∫
A

f
(
z ∗ x, ∇X v(x)

)
d x

⏐⏐v − Lz(lq) ∈ W 1,α
X ,0(A)

}
,

(5.6)

where we recall that Lz(lq)(x) := lq(z ∗x) by definition of translated function. Now we consider the following
change of variables y = z ∗ x (equivalently x = z−1 ∗ y where z−1 is the inverse element w.r.t. the group law
∗).

An easy computation shows that the Jacobian of the change of variables is exactly the matrix σExt defined
in (2.10). Then property (2.11) tells that | det J | = 1. Since Xi are defined as left-invariant vector fields for
all i = 1, . . . m (see (2.6)) we also know that

∇X v(x) = ∇X
(
Lz−1(v)

)
(x) = ∇X v(z−1 ∗ x).

Moreover x ∈ A if and only if y ∈ z ∗ A and

v − Lz(lq) ∈ W 1,α
X ,0(A) if and only if Lz−1(v) − lq ∈ W 1,α

X ,0(z ∗ A),

where Lz−1(v)(x) := v(z−1∗x): in fact on ∂(z∗A) we have v(z−1∗y) = v(x) = lq(z∗x) = lq(z∗z−1∗y) = lq(y).
Then in the new variables y = z ∗ x we have

min
{∫

A

f
(
z ∗ x, ∇X v(x)

)
d x

⏐⏐v − Lz(lq) ∈ W 1,α
X ,0(A)

}
= min

{∫
z∗A

f
(
y, ∇X v(z−1 ∗ y)

)
d y

⏐⏐Lz−1(v) − lq ∈ W 1,α
X ,0(z ∗ A)

}
.

(5.7)

To conclude we now define u := Lz−1(v). Using again the property of left-invariant vector fields, we have
∇X v(z−1 ∗ y) = ∇X u(z ∗ z−1 ∗ y) = ∇X u(y), then

min
{∫

z∗A

f
(
y, ∇X v(z−1 ∗ y)

)
d y

⏐⏐Lz−1(v) − lq ∈ W 1,α
X ,0(z ∗ A)

}
= min

{∫
z∗A

f
(
y, ∇X u(y)

)
d y

⏐⏐u − lq ∈ W 1,α
X ,0(z ∗ A)

}
= τH

z µq(A).
(5.8)

The chains of identities in (5.6)–(5.8) give identity (5.5) and conclude the proof. □

The following result is an immediate consequence of the previous lemma in the case of H-periodic
functionals.

Lemma 5.2. Assume (3.5), then, for all bounded domains A ⊂ RN and for all q ∈ Rm and z ∈ ZN

τH
z µq(A) = µq(A).

In the following lemma we show how the assumptions on the integrand f(x, q) are inherited by µq(A).

Lemma 5.3. Let A be a bounded domain in RN with Lipschitz boundary, q ∈ Rm and µq(A) defined in
(5.3) and let f : RN × Rm → R be measurable.
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(i) If f satisfies assumption (3.4), we have

C1|q|α|A| ≤ µq(A) ≤ C2
(
|q|α + 1

)
|A|,

where C1, C2 and α are the same constants given in (3.4).
(ii) If f satisfies assumption (3.3), we have for all q1, q2 ∈ Rm and for all λ ∈ (0, 1)

µλq1+(1−λ)q2(A) ≤ λµq1 + (1 − λ)µq2 .

Proof. Using that lq = q · πm is admissible for the minimum defining µq(A) and that ∇X lq(x) = q, we get

µq(A) ≤
∫

A

f
(
x, ∇X lq(x)

)
d x =

∫
A

f
(
x, q

)
d x ≤ C2

(
|q|α + 1

)
|A|.

Moreover

µq(A) = min
{∫

A

f
(
x, ∇X u(x)

)
d x

⏐⏐u − lq ∈ W 1,α
X ,0(A)

}
≥ C1 min

{∫
A

|∇X u(x)|α d x
⏐⏐u − lq ∈ W 1,α

X ,0(A)
}

= C1

∫
A

|∇X lq(x)|α d x = C1|q|α|A|,

where for the last identity we use Lemma 4.2 for the convex function f(x, q) = |q|α, which tells that the
minimisers are the H-affine functions, whenever f does not depend on x.

It remains to prove (ii). To this end it is enough to remark that for all functions u1 and u2 which are
admissible respectively for µq1 and µq2 , then u := λu1 + (1 − λ)u2 is admissible for µλq1+(1−λ)q2 , which
implies

µλq1+(1−λ)q2(A) ≤
∫

A

f(x, ∇X u(x))d x

=
∫

A

f
(
x, λ∇X u1(x) + (1 − λ)∇X u2(x)

)
d x

≤ λ

∫
A

f(x, ∇X u1(x)) d x + (1 − λ)
∫

A

f(x, ∇X u2(x)) d x.

Taking the minimum over all admissible u1 and u2, we get property (ii). □

To prove the convergence of the functional Fε(u, A) as ε → 0+, we need to show now a sort of Akcoglu–
Krengel type result (see [1]) for periodic functionals, adapted to the anisotropic structure of the Heisenberg
group. In [24] the authors prove a very interesting Akcoglu–Krengel type result for general metric measure
spaces. We need to mention that unfortunately the result therein does not apply to our case. In fact it is
quite easy to show that the Heisenberg group endowed with the Carnot–Carathéodory metric (or also with
the homogeneous metric) and the Lebesgue measure is a

(
G, {δt}t>0

)
-metric measure space where G is the

subgroup of homeomorphisms on the Heisenberg group defined by the left-translations w.r.t. an element in
ZN . Nevertheless one can also show that in general that space is not “meashable” according to the definition
introduced in [24]. We give a self-contained proof which can be later adapted to the stochastic case (which
will be a topic in a forthcoming paper, see Section 6).

We now recall that, defining for all t > 0, Qt = δt(Q), we know that |δt(Q)| = tQ|Q| (see (2.3)), where Q
is the homogeneous dimension, then in Hn in particular Q = 2n + 2 = N + 1.

The next lemma tells that, as t → +∞, we can reduce to take the limits only over integer subsequences.
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Lemma 5.4. Assume that the limit exists for integer sequences, i.e. for h ∈ N,

lim
h→∞

µq(Qh)
|Qh|

=: C.

Then for all sequences {tk} ⊂ R with tk → ∞ it holds

lim
k→∞

µq(Qtk )
|Qtk |

= C.

Proof. For t > 0 we define
et := µq(Qt)

|Qt|
.

Fix ε > 0 and choose N large enough that |C − eh| < ε for h ≥ N .
Denote by C+ := lim supk→∞ etk

, and C− := lim infk→∞ etk
, which are both finite by Lemma 5.3. We

can find k such that
etk

≥ C+ − ε and tk > N.

Define Nk := [tk] ≥ N , (where by [·] we indicate the integer part of a real number) and let uk be a function
with H-affine boundary conditions on QNk such that F (uk, QNk ) = µq(QNk ). We extend uk to Qtk by letting
it equal to the boundary condition on Qtk \ QNk , i.e. ũk : RN → R given by

ũk(x) :=
{

uk(x), if x ∈ QNk ,
lq(x), else,

whose restriction to Qtk is an admissible function for µq(Qtk ). Note that

f(x, ∇X ũk) = f(x, ∇X lq) = f(x, q) ≤ C2(|q|α + 1) on Qtk \ QNk ,

hence
F (ũk, Qtk ) =

∫
QNk

f(x, ∇X uk)dx +
∫

Qtk \QNk

f(x, q)dx ≤ F (uk, QNk ) + C|Qtk \ QNk |,

where the constant depends on q and α. Since ũk is admissible for Qtk , so µq(Qtk ) ≤ F (ũk, Qtk ), we estimate

C+ ≤ etk
+ ε ≤ F (ũk, Qtk )

|Qtk |
+ ε ≤ F (uk, QNk )

|Qtk |
+ ε + C

|Qtk \ QNk |
|Qtk |

= ε + µq(QNk )
|Qtk |

+ C
|Qtk \ QNk |

|Qtk |
= eNk

|QNk |
|Qtk |

+ ε + C
|Qtk \ QNk |

|Qtk |
.

Note that
lim

k→∞

|QNk |
|Qtk |

= 1 and lim
k→∞

|Qtk \ QNk |
|Qtk |

= 0,

so, by choosing, if necessary, N larger, we can make the right hand side ≤ C + 3ε, thus, as ε was arbitrary,
we have shown C+ ≤ C.

For the opposite inequality, we use estimates similar to what we did before: we can find infinitely many
k such that

etk
≤ C− + ε and tk > N.

Therefore we take Nk = [tk] + 1 and let uk be a function with H-affine boundary condition lq on Qtk such
that F (uk, Qtk ) = µq(Qtk ). We extend uk to a function ũk on QNk which is admissible for µq(QNk ) and
equals lq on QNk \ Qtk . Arguing as before we get

F (ũk, QNk ) ≤ F (uk, Qtk ) + C|QNk \ Qtk |.
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Then

C ≤ eNk
+ ε ≤ F (ũk, QNk )

|QNk |
+ ε ≤ F (uk, Qtk )

|QNk |
+ ε + C

|QNk \ Qtk |
|QNk |

= ε + µq(Qtk )
|QNk |

+ C
|QNk \ Qtk |

|QNk |
= etk

|Qtk |
|QNk |

+ ε + C
|QNk \ Qtk |

|QNk |

≤ (C− + ε) + (C− + ε)
(

|Qtk |
|QNk |

− 1
)

+ ε + C
|QNk \ Qtk |

|QNk |
.

By choosing, if necessary, N larger, we can make the right hand side smaller than C− + (2C− + 3)ε, thus
we have shown C ≤ C−, but as C− ≤ C+, we have C− = C = C+. □

We denote N∗ the set of natural numbers excluding 0. We next prove an Akcoglu–Krengel type result.

Theorem 5.1. Let consider the (semiopen) unit cell Q = [−1, 1)N and let q ∈ Rm and µq be defined in
(5.3). Assume that f is measurable and satisfies (3.4) and (3.5), then

lim
k→+∞

µq

(
Qk

)
|Qk|

= Cq,

where Cq is the non-negative constant given by

Cq = inf
k∈N∗

µq

(
Qk

)
|Qk|

.

Proof. Note that, by Lemma 5.3(i),

C1|q|α ≤
µq

(
Qk

)
|Qk|

≤ C2
(
|q|α + 1

)
, (5.9)

so in particular Cq ≥ 0.

Step 1. Since Cq is defined as infimum over N∗, trivially µq

(
Qk

)
|Qk| ≥ Cq for all k ∈ N∗, which implies

lim inf
k→+∞

µq

(
Qk

)
|Qk|

≥ Cq.

Step 2. We next show the limsup estimate. Using the definition of infimum for Cq, for all ρ > 0, and the
definition of µq, then there exist kρ ∈ N∗ and uρ ∈ W 1,α

X (Qkρ) ∩ C∞(Qkρ) and such that

µq(Qkρ)
|Qkρ |

≤ Cq + ρ

2 ,

F (uρ, Qkρ)
|Qkρ |

≤ µq(Qkρ)
|Qkρ |

+ ρ

2 ,

where F is the functional defined in (3.2). This sums up as follows

F (uρ, Qkρ)
|Qkρ |

≤ Cq + ρ. (5.10)

Recall the definition of τk given in (2.12); we use such translations to extend uρ to the whole RN by
translating periodically the gradient. More precisely, let us introduce

jρ := δkρ(j) and Qρ
j := τjρ

(
Qkρ

)
, ∀ j ∈ ZN .



N. Dirr, F. Dragoni, P. Mannucci et al. / Nonlinear Analysis 190 (2020) 111618 19

Using that RN =
⋃

j∈ZN Qρ
j , we can define

Uρ(x) :=
∑

j∈ZN

(
q · πm(jρ) + uρ

(
τ−jρ(x)

))
1Q

ρ
j
,

where by 1A we indicate the characteristic function of the set A; recall also that τ−1
k = τ−k. The function

Uρ is well-defined since Qρ
j are all disjoint. We can easily check that Uρ is continuous on RN : in fact, for

x ∈ Qρ
j , then Uρ(x) = q · πm(jρ) + uρ(τ−jρ(x)) and, whenever x ∈ ∂Qρ

j , we have τ−jρ(x) ∈ ∂Qkρ which
implies

Uρ(x) = q · πm(jρ) + q · πm

(
τ−jρ(x)

)
= q · πm(jρ) + q ·

(
πm(−jρ) + πm(x)

)
= q · πm(x),

which does not anymore depend on j. The continuity of Uρ on RN , together with the fact that Uρ ∈
W 1,α

X (Qρ
j ), imply that Uρ ∈ W 1,α

X ,loc
(
RN

)
.

We next introduce the following two objects:

Sρ
k :=

{
j ∈ ZN | Qρ

j ⊂ Qk = δk(Q)
}

,

Ŝρ
k :=

⋃
j∈S

ρ
k

Qρ
j ,

and we construct a new function vρ, which is admissible for µq(Qk), as

vρ(x) :=
{

Uρ(x), x ∈ Ŝρ
k

q · πm(x), x ∈ Qk\Ŝρ
k .

By definition vρ − lq ∈ W 1,α
X ,0

(
Qk

)
, and

F (vρ, Qk) =
∫

Qk
f(x, ∇X vρ(x)) d x

=
∫

Ŝ
ρ
k

f(x, ∇X vρ(x)) d x +
∫

Qk\Ŝ
ρ
k

f(x, ∇X vρ(x)) d x

First we compute∫
Ŝ

ρ
k

f(x, ∇X vρ(x)) d x =
∫

Ŝ
ρ
k

f(x, ∇X Uρ(x)) d x =
∑

j∈S
ρ
k

∫
Q

ρ
j

f(x, ∇X Uρ(x)) d x, (5.11)

where we have used that Qρ
j are disjoint. If x ∈ Qρ

j , then Uρ(x) = q · πm(jρ) + uρ

(
τ−jρ(x)

)
. By using that

the vector fields are left invariant, we get

∇X Uρ(x) = ∇X

(
uρ

(
τ−jρ(x)

))
= ∇X uρ

(
τ−jρ(x)

)
.

Thus, by using the change of variables y = τ−jρ(x) and recalling that the determinant of the Jacobian is 1
(see (2.11)), we get the following chain of identities:∑

j∈S
ρ
k

∫
Q

ρ
j

f(x, ∇X Uρ(x)) d x =
∑

j∈S
ρ
k

∫
Q

ρ
j

f
(
x, ∇X uρ

(
τ−jρ(x)

))
d x

=
∑

j∈S
ρ
k

∫
Qkρ

f
(
τjρ(y), ∇X uρ

(
y
))

d y =
∑

j∈S
ρ
k

∫
Qkρ

f
(
y, ∇X uρ

(
y
))

d y,

(5.12)
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where in the last identity above we have used the periodicity assumption on f (see assumption (3.5)). The
integrals in the last term of (5.12) do not depend anymore on j, then∑

j∈S
ρ
k

∫
Qkρ

f
(
y, ∇X uρ

(
y
))

d y = card
(
Sρ

k

) ∫
Qkρ

f
(
y, ∇X uρ

(
y
))

d y

≤ card
(
Sρ

k

)(
Cq + ρ

)
|Qkρ |,

(5.13)

where the last inequality follows from (5.10).
Put together (5.11)–(5.13), we get the following estimate:∫

Ŝ
ρ
k

f(x, ∇X vρ(x)) d x ≤ card
(
Sρ

k

)(
Cq + ρ

)
|Qkρ |. (5.14)

It remains to estimate the integral on the complementary of Ŝρ
k by using that vρ(x) = q · πm(x) for all

x ∈ Qk\Ŝρ
k by definition, hence∫

Qk\Ŝ
ρ
k

f(x, ∇X vρ(x)) d x ≤
∫

Qk\Ŝ
ρ
k

f(x, q) d x ≤ C2(|q|α + 1)|Qk\Ŝρ
k |. (5.15)

Estimates (5.14) and (5.15), together with the fact that vρ is admissible for µq(Qk), give

µq(Qk)
|Qk|

≤ F (vρ, Qk)
|Qk|

≤ card
(
Sρ

k

)(
Cq + ρ

) |Qkρ |
|Qk|

+ C2(|q|α + 1)
|Qk\Ŝρ

k |
|Qk|

, (5.16)

where in the last inequality we have used that Ŝρ
k ⊂ Qk and |Ŝρ

k | = card
(
Sρ

k

)
|Qkρ |, which together imply

card
(

S
ρ
k

)
|Qkρ |

|Qk| ≤ 1.
To conclude we claim that the following limit holds true:

lim
k→+∞

|Qk\Ŝρ
k |

|Qk|
= 0. (5.17)

Then, by simply taking the limsup as k → +∞ in the inequality (5.16) and using claim (5.17), we get

lim sup
k→+∞

µq(Qk)
|Qk|

≤
(
Cq + ρ

)
,

which conclude the proof as ρ → 0+.
It remains only now to prove claim (5.17). By a simple rescaling we can actually show that this limit is

the same as the one shown in the proof of Lemma 2.21 in [23]. In fact, set ε = 1
k , then by using the properties

of dilations (Lemma 2.1)
Qε = δε(Q) = δ 1

kρ

(
δkρ

(
δε(Q)

))
= δ ε

kρ
(Qkρ).

Set Q̃ := δε(Qkρ) = δ ε
kρ

(Q 1
ε ), by using the properties of dilations and left-translations one can easily check

that
τδε(j)(Qε) ⊂ Q̃ ⇐⇒ τδkρ (j)(Qkρ).

Thus by using the limit proved in [23] we conclude the proof. □

We define f0 : Rm → R as
f0(q) := Cq, (5.18)

where Cq is the limit proved in Theorem 5.1.
From Lemma 5.3, one can show that f0 keeps the properties of f simply by passing to the limit as

k → +∞. More precisely
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Lemma 5.5. Given f : RN × Rm → R measurable, the following properties hold:

(i) if assumption (3.4) is satisfied, then

C1|q|α ≤ f0(q) ≤ C2
(
|q|α + 1

)
,

where C1, C2 and α are the same constants given in (3.4).
(ii) if assumption (3.3) is satisfied, then for all q1, q2 ∈ Rm

f0(λq1 + (1 − λ)q2) ≤ λf0(q1) + (1 − λ)f0(q2), λ ∈ (0, 1).

We now prove the main result of the paper.

Theorem 5.2. Given a bounded domain A ⊂ RN with Lipschitz boundary, u : A → R and the functional
F (u, A) defined in (3.2). Let us assume that (3.3), (3.4) and (3.5) hold true, and u0(x) = q · πm(x) + a

for some q ∈ Rm and a ∈ R. Define the rescaled functionals Fε introduced in (5.1) and let us consider the
corresponding minimisation problems for u − u0 ∈ W 1,α

X ,0(A) (see (3.6)) then

lim
ε→0+

m(Fε, u0, A) = m(F∞, u0, A),

where the limit functional F∞ can be characterised as

F∞(u, A) :=

⎧⎨⎩
∫

A

f0 (∇X u) d x, u ∈ W 1,α
X (A),

+∞, else,

and f0 : Rm → R defined as f0(q) = Cq with Cq constant given in Theorem 5.1.
Moreover the limit function f0 is still measurable, convex and satisfies the same growth condition (3.4)

satisfied by f .

Proof. Applying Theorem 4.2 we deduce that Fε Γ -converge to some functional F∞. Let us now prove that
the limit functional F∞ can be identified as the integral functional associated to f0 given in (5.18). Choose
as substantial family Aρ := [−ρ, ρ]N , and fix t = 1

ε , at the moment let us assume the following claim:

µq(δt(Aρ)) = tQm(Fε, lq, Aρ), (5.19)

with Q homogeneous dimension.
By using that all the previous results in Section 5 can be obtained by replacing Q with the cube Aρ, we

have
m(F∞, lq, Aρ)

|Aρ|
= lim

ε→0+

m(Fε, lq, Aρ)
|Aρ|

= lim
t→+∞

1
|Aρ|

µq(δt(Aρ))
tQ

= lim
t→+∞

µq

(
δt(Aρ)

)
|δt(Aρ)| = Cq, ∀ ρ > 0.

By Theorem 4.1, passing to the limit as ρ → 0+, we conclude f0(q) = Cq.
It only remains to check claim (5.19). At this purpose, we use the change of variables y = δ1/t(x); hence

recalling definition (5.3) and using that δt(u) is the scaled function defined as δt(u)(x) = u(δt(x)), we have

µq(δt(Aρ)) = min
{∫

δt(Aρ)
f(x, ∇X u(x)) d x

⏐⏐ u − lq ∈ W 1,α
X ,0(δt(Aρ))

}

= tQ min
{∫

Aρ

f(δt(y), ∇X u(δt(y))) d y
⏐⏐ δt(u) − ltq ∈ W 1,α

X ,0(Aρ)
}

,

(5.20)
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by simply using that lq(δt(y)) = q · πm(δt(y)) = q · t πm(y) = (tq) · πm(y) and (2.3). Defining the function
w := 1

t δt(u) and using Lemma 2.2, we have that

∇X w(y) = 1
t

∇X (δt(u))(y) = 1
t

t ∇X u(δt(y)) = ∇X u(δt(y)).

Moreover informally we have that, for y ∈ ∂Aρ, 1
t u(δt(y)) = 1

t lq(δt(y)) = lq(y). Hence (5.20) gives

µq(δt(Aρ)) = tQ min
{∫

Aρ

f(δt(y), ∇X w(y)) d y
⏐⏐ w − lq ∈ W 1,α

X ,0(Aρ)
}

= tQm(F1/t, lq, Aρ),

which proves claim (5.19).
The properties for the limit function f0 are proved in Lemma 5.5. □

6. Applications and generalisations

We conclude listing further directions in which we are presently working, for some of which we obtained
already some partial results.

6.1. Homogenisation for functionals associated to Carnot groups and the subelliptic p-Laplacian.

As mentioned in the introduction all the proofs never use the specific structure of the Heisenberg group
but they instead use properties true for all Carnot groups. So all the results apply without any modification
to the general case of Carnot groups.

As it is well-known by Euler–Lagrange equations, we can connect minima of functionals to solutions
of PDEs. Whenever uniqueness holds this correspondence is one-to-one. Then our results can be used to
study homogenisation for several subelliptic PDEs and in particular for the subelliptic p-Laplacian, which
is defined, for 1 < p < +∞, as

divX

(⟨
A∇X u, ∇X u

⟩ p−2
2 A∇X u

)
= 0,

where A(x) is a m × m symmetric matrix satisfying the usual ellipticity condition. Equations of this form
have been studied by many authors, see e.g. [30] and references therein. The functional associated to the
p-Laplacian is

Fp(u, A) =

⎧⎨⎩
∫

A

⏐⏐A(
δ 1

ε
(x)

)
∇X u(x)

⏐⏐p
d x, u ∈ W 1,p

X (A)

+∞, else.

Note that Fp satisfies all our conditions for all 1 < p < +∞. Then we can apply Theorem 5.2. It remains now
to show that the limit functional has still the structure of a functional associated to a subelliptic p-Laplacian
equation (work in preparation).

6.2. Stochastic functionals

Another generalisation is the case of random functionals, i.e. integral functionals of the form

u ↦→ Fε(u, A) =
∫

A

f
(

δ 1
ε
(x), ω, ∇u(x)

)
dx,

where ω belongs to a probability space and the integrand f(x, ω, p) is stationary and ergodic with respect
to left translations. For a precise definition of stationary ergodic in the setting of Carnot groups we refer to



N. Dirr, F. Dragoni, P. Mannucci et al. / Nonlinear Analysis 190 (2020) 111618 23

[19], where the authors prove a homogenisation result for stochastic Hamilton–Jacobi equations. The general
stationary ergodic case will be treated in a forthcoming paper, but we sketch here a proof for the simpler
situation of short correlated random variables.

More precisely, we assume that the random integrand f(x, ω, p) satisfies (3.3) and (3.4) uniformly in ω and
(3.5) in law, i.e. the random integrand and its translations are not equal, but have the same law as random
variables. In addition, we require that there exists a constant C > 0 such that f(x, ω, p) and f(y, ω, p) are
independent, if dh(x, y) > C, where by dh(x, y) we indicate the homogeneous distance in Carnot groups,
i.e. for example in 1-dimensional Heisenberg dh(x, y) = |y−1 ∗ x|h where |x|h :=

(
(x2

1 + x2
2)2 + x2

3
)1/4. Note

that this is different from being short correlated in the Euclidean distance.
Under these assumptions one can show along the lines of [13] that

lim
k→+∞

µq

(
ω, Qk

)
|Qk|

= Cq,

in probability to a constant Cq > 0, and conclude convergence of the functionals in probability to an integral
functional with constant integrand f0(q) = Cq.

As a first step, defining
µ̃q(Q) := E(µq(ω, Q)),

one can show along the lines of Section 5 that

lim
k→+∞

µ̃q

(
ω, Qk

)
|Qk|

= Cq,

for some constant Cq > 0. Note that because of the invariance in law, Lemma 5.2 holds for µ̃ but not for
µ(ω, ·) with ω fixed.

Now fix k0 ≫ 1 so large that ⏐⏐⏐⏐⏐ µ̃q

(
Qk

)
|Qk|

− Cq

⏐⏐⏐⏐⏐ < δ/4, for all k ≥ k0

and now fix k ≫ k0, we use the construction in step 2 of the proof of Theorem 5.1 to show that
µ(ω, Qk)

|Qk|
≤ |Qk|

|Qk0 |
∑

j∈S
k0
k

µ
(
ω, τjk0(Qk0)

)
|Qk0 |

+ o (1) .

The r.h.s. is a normalised sum over (k/k0)Q independent, identically distributed random variables with mean
close to Cq. By the weak law of large numbers, we have that for δ > 0 and k sufficiently large the quantity

β(δ) := P
({

ω

⏐⏐⏐⏐ µ(ω, Qk)
|Qk|

> Cq + δ/4
})

is small. Now define
α(δ) := P

({
ω

⏐⏐⏐⏐ µ(ω, Qk)
|Qk|

< Cq −
√

δ

})
.

We have

Cq ≤
E

(
µ(ω, Qk)

)
|Qk|

+ δ/2

≤ α(δ)(Cq −
√

δ) + C2(|q|α + 1)β(δ)

+ P
({

ω

⏐⏐⏐⏐ Cq −
√

δ ≤ µ(ω, Qk)
|Qk|

< Cq + δ/4
})

+ δ/2

≤ α(δ)(Cq −
√

δ) + C2(|q|α + 1)β(δ) + (1 − α − β)(Cq + δ/4) + δ/2
≤ Cq − α(δ)

√
δ + (3/4)δ + β(δ)C2(|q|α + 1).

As we can make β(δ) arbitrarily small by choosing k big, this implies that for such k also α(δ) → 0 in order
to avoid the contradiction Cq < Cq.
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