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ABSTRACT (100-150 words): Continuous efforts in the field of materials science have allowed us to generate smaller and 15 

smaller metal nanoparticles, creating new opportunities to understand catalytic properties that depend on the metal particle 16 

size. Structure sensitivity is the phenomenon where not all surface atoms in a supported metal catalyst have the same activity. 17 

Understanding of it can assist in the rational design of catalysts allowing control over mechanisms, activity and selectivity, 18 

and thus even the viability of a catalytic reaction. Using a unique set of well-defined silica-supported Ni nanoclusters (1-7 19 

nm) and advanced characterization methods, we prove how structure sensitivity influences the mechanism of catalytic CO2 20 

reduction, the nature of which has been long debated. These findings bring fundamental new understanding of CO2 21 

hydrogenation over Ni  and allow us to control both activity and selectivity, which can be a means for CO2 emission 22 

abatement through its valorization as a low, or even negative cost feedstock, on a low-cost transition metal catalyst. 23 
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The reduction of CO2 emissions into the earth’s atmosphere is gaining legislative importance in view of its impact on the 1 

climate
1–5

.  Reduction of the harmful effect of these emissions through reclamation of CO2 is made attractive because CO2 2 

can be a zero- or even negative-cost carbon feedstock
6,7

. The conversion of renewably produced hydrogen and CO2 into 3 

methane, or synthetic natural gas (SNG), over Ni is a solution which combines the potential to reduce CO2 emissions, with a 4 

direct answer to the temporal mismatch in renewable electricity production capacity and demand
8–17

. Chemical energy 5 

storage in the form of hydrogen production by electrolysis is a relatively mature technology, however the required costly 6 

infrastructure, and inefficiencies in distribution and storage deem it inconvenient for large-scale application in the near 7 

future. Point source CO2 hydrogenation to methane yields an alternative with higher energy density. Furthermore, methane is 8 

more easily liquefied and can be stored safely in large quantities through infrastructures that already exist
18,19

.  9 

The search for fossil fuel alternatives, and application of a process such as that described above can arguably only be 10 

achieved with the help of advances in catalysis and the closely related field of nanomaterials. Continuous efforts in both 11 

fields have allowed us to make increasingly smaller and catalytically more active (metal) particles. However, it is already 12 

known that making infinitesimally smaller supported catalyst particles doesn’t necessarily linearly correspond to higher 13 

catalytic activity
20–22

. This phenomenon, where not all atoms in a supported metal catalysts have the same activity, is called 14 

structure sensitivity and is often attributed to the distinctly different chemistries on different lattice planes for π-bond 15 

activation in CO2, or σ-bond activation in H2 dissociation and C-H propagation
20,23

. The availability of stepped (less 16 

coordinated) versus terrace (more coordinated) sites on the surface of supported catalyst nanoparticles obviously changes 17 

with particle size, and atomic geometries become particularly interesting below 2 nm where for example π-bond activation is 18 

believed to not be able to occur
20

. While particle size effects have extensively been studied for CO hydrogenation over 19 

Co
22,24

, understanding of structure sensitivity effects of these critical particle sizes are lacking as sub 2 nm particles prove 20 

difficult to synthesize for first row transition metals (Co, Fe and Ni). In this work we used a unique set of SiO2-supported Ni 21 

nanoparticles with diameters ranging from 1-7 nm in size, and show not only the existence of a distinct particle size effect, 22 

but also evidence that allows us tounderstand the structure-sensitivity of CO2 hydrogenation over Ni as a model structure 23 

sensitive reaction.  24 

Classically, CO2 hydrogenation over nickel is considered to follow a 2-step, Langmuir-Hinshelwood type mechanism 25 

whereby first CO2 dissociatively adsorbs with H2 to form CO and H2O in the reverse water gas shift (RWGS) reaction. The 26 

CO is then subsequently directly hydrogenated or dissociates to atomic Cads and is then hydrogenated as schematically 27 

depicted in Figure 1
6,7

. However, recent experimental and theoretical studies show that this reaction mechanism, particularly 28 

on surfaces of non-model catalysts, is not fully understood
25–30

. The reverse water gas shift reaction is believed to follow 29 

either of two mechanisms: firstly, a surface carbonate to formate reaction pathway (pathway 1 in Figure 1), and secondly, the 30 
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direct dissociation of CO2 to CO via a CO2
-
 ion (pathway 2 in Figure 1). Much of the debate in the literature arises from the 1 

direct comparison between model and non-model surface studies. We hypothesize that mechanistic understanding of this 2 

reaction is closely related to its structures sensitivity. 3 

Enhanced understanding of structure sensitivity and mechanistic aspects behind this reaction will not only be a step towards 4 

a feasible method for the valorization of CO2, with the potential to reduce its impact on the environment, but it will also aid 5 

in understanding similar structure sensitive reactions. Evidence for the impact of different atomic coordinations in metal 6 

nanoclusters on the activation of different bond-types, however, can have far greater, multidisciplinary impact as it will allow 7 

the rational design of catalysts enabling us to control, at the atomic level, the activity and selectivity of catalytic reactions
31–8 

33
. It may even facilitate the discovery of new, previously unattainable catalytic reactions.  9 

10 
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1 

Figure 1| Mechanisms of catalytic CO2 hydrogenation. Schematic 

overview of the mechanisms behind CO2 hydrogenation as currently 

proposed in literature, with simplification of certain non-rate determining 

steps (RDS) following the purple panels. Pathway 1 and 2, preceding 

green and red boxes, indicate reverse-water-gas-shift (RWGS) 

mechanisms, in which a darker colored atom in the cluster represents the 

higher oxidation state of Ni resulting from each step. The depiction is 

simplified to merely top-adsorption but it is important to ascertain the 

coordination of Ni sites in each reaction step. 
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RESULTS  1 

OPERANDO FT-IR SHOWS TWO SEPARATE, PARTICLE SIZE DEPENDENT RWGS MECHANISMS.  2 

A set of well-defined SiO2 supported Ni catalysts was prepared by deposition precipitation resulting in different nanoparticle 3 

sizes, ranging from 1-7 nm, by varying the weight loading of the precursor solutions. Particle sizes and oxidation states of 4 

fresh, reduced and spent catalysts were characterized by multiple techniques as summarized in Table 1; details concerning 5 

the characterization can be found in the Supplementary Information (see sections ‘Methods’ and ‘Characterization Results’, 6 

Figures S1-S6). The catalysts with different particle sizes were systematically tested in an operando transmission FT-IR 7 

spectroscopy set-up, while recording on-line activity data. Figure 2 shows the observed activities towards methane formation 8 

in CO2 hydrogenation with a 4:1 ratio of H2:CO2 at ambient pressure. Change in nanocluster size during catalytic reaction 9 

was not significant, as evidenced by post reduction and spent structural characterization listed in Table 1. The turnover 10 

frequency (TOF) and activity (Figure 2b and 2c) were determined at 400 °C, and using particle sizes after reduction, as 11 

determined by HAADF-STEM. Several additional trends serving to underwrite the attributed particle size effects to surface 12 

specific activity are reported in the Supplementary Information (see section ‘Particle Size vs. Activity Relationships’, Figures 13 

S7-S9). In contrast to the extensively studied CO hydrogenation over Co (Fischer-Tropsch synthesis), where the TOF does 14 

not change for particle sizes larger than 6 nm
22,24

, we observed a maximum activity at around 2.5 nm for CO2 hydrogenation 15 

over Ni at 400 °C (Figure 2b). We have thus established a particle size effect by use of a unique set of well-defined catalyst 16 

samples, that is, the surface specific activity of catalytic CO2 hydrogenation over Ni changes with Ni particle size. 17 

18 
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 1 

Operando spectroscopy was employed to relate these particle size, or structure sensitivity effects to surface species and 2 

processes. In Figures 3a and 3b, difference FT-IR spectra are shown, i.e. where the first spectrum of the series is subtracted 3 

from subsequent spectra. These consecutive spectra are focused on the absorption region between 2250-1400 cm
-1

, where 4 

amongst other things intermediate C≡O to C-O stretching vibrations occur
34–37

. Furthermore we also observe C-H stretching 5 

vibrations at 3015 cm
-1

 for methane (Figure 3c), and peaks at 1932, 1866, and 1635 cm
-1

 for framework silica. All spectra 6 

were normalized to Ni surface area, and thus contain more intense silica peaks with lower Ni wt%, as can be seen in Figure 7 

3a and 3b. 8 

Three important reaction intermediates were observed with this type of analysis (Figures 3d-f). Firstly, COads with peaks 9 

between 2060-1900 cm
-1

 where a distinction can be made between a set of peaks at 2060 cm
-1

 with a shoulder at 2019 cm
-1

, -10 

and a peak at 1903 cm
-1

 (Figure 3e, and Supplementary Fig. 10f-h). The former set describes terminally adsorbed CO atop a 11 

single Ni atom, and vibrations occur anywhere between 2060-2019 cm
-1

 depending on the oxidation state of Ni
34–37

. The 12 

band at 1903 cm
-1

 is ascribed to bridged carbonyl species; more specifically a CO species bound to three neighboring Ni 13 

atoms. The second important reaction intermediate is gaseous CO which gives a symmetrical broad band with maxima at 14 

2180 cm
-1

 and 2095 cm
-1

 (Figure 3d). Thirdly, a peak around 1591 cm
-1

 is attributed the third intermediate, namely surface 15 

formate (Figure 3f, see also section ‘FT-IR Studies of Catalyst Samples’ of the Supplementary information). We show 16 

therefore that intermediates from RWGS pathway 1, as well as pathway 2 in Figure 1, are both present on supported Ni 17 

Figure 2| a, Methane activity profiles normalized to Ni surface area in m
2
 (assuming hemispherical particles) for catalyst 

samples A-H (see table 1) the dotted grey line denotes the temperature profile, H2/CO2 = 4, 1 bar. b, The influence of Ni particle 

size on the TOF in grey (400 °C, H2/CO2 = 4, 1 bar). c, The influence of Ni particle size on activity normalized to the Ni loading 
(400 °C, H2/CO2 = 4, 1 bar). 
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catalysts. Figure 3a also already clearly shows that the catalyst with the highest Ni dispersion shows relatively few bands in 1 

the COads region, whereas for the catalyst with the largest Ni nanoparticles (Figure 3b), the peaks in this region are more 2 

pronounced. This intriguing trend evolves progressively with increasing particle size, as shown in the Supplementary 3 

information (see section ‘FT-IR Studies of Catalyst Samples’, Figures S10-S12), suggesting that with increasing particle size 4 

pathway 1 becomes more dominant. 5 

To assess the evolution of the FT-IR peaks during reaction, Figure 3g shows integrated peak areas plotted against time-on-6 

stream. Here it becomes evident that the intensity of the absorption bands in the COads stretching region during CO2 7 

hydrogenation is positively correlated with, and therefore even an indirect measure for, catalyst particle size. Interestingly, 8 

the amount of gaseous CO seems negatively correlated with particle size and is only observed for the smallest particles under 9 

investigation (<1.5 nm), i.e., which show lower TOF values. Furthermore, with the knowledge that COads atop a single nickel 10 

atom (2060-2019 cm
-1

) has a weaker Ni-C bond than CO adsorbed in a trifold bridge position (1903 cm
-1

), these FT-IR 11 

results also give a first indication of the particle size dependence of Sabatier’s general principle for catalysis, where 12 

intermediate adsorption strength (in this case of CO), is required for optimal catalyst activity, which is achieved here by Ni 13 

particle sizes with diameters in the 2-3 nm range. To corroborate this observation the catalysts were flushed post reaction. As 14 

Figure 3h shows, any CO species on the small Ni particle sizes are easily flushed off, while for the large Ni particles the 15 

COads is indeed present in a much more stable configuration, such as a bridged carbonyl, or carboxylate species.  16 

While both RWGS pathways from Figure 1 seem to occur, as both formate and CO(ads) species are observed in FT-IR, the 17 

intermediate species for each pathway show very different adsorption properties for the different particles sizes. Figure 3c 18 

shows that formate species are present irrespective of catalyst particle size, however for the smaller Ni particle sizes, we see 19 

no decrease of the band during reaction as we do for larger Ni particle sizes. To assess whether both formate and CO species 20 

are still reactive, isotopically labelled gas feedstocks (
13

CO2, and D2) were introduced. Interestingly, when pulsed with these 21 

labelled feedstocks, no interplay is observed between adsorbed 
12

C, and H in the formate species and the isotopically labelled 22 

feedstocks for small Ni particle sizes. For the larger Ni particle sizes these labelled gases readily interacted and shifted the 23 

formate peak with both D2 and 
13

CO2 pulses at any given point in the reaction (Figure 3i). Whereas for the larger Ni 24 

nanoparticles intermediate COads species dominate the surface, in the case of the smaller metal nanoparticle sizes formate 25 

species dominate and gaseous CO is also observed. These findings are crucial for developing a mechanistic understanding of 26 

our observed structure sensitivity effects. 27 

28 
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1 

Figure 3| Combined operando FT-IR and catalyst activity measurements a, b, Consecutive FT-IR spectra of the CO stretching absorption 

region plotted against time-on-stream for catalyst A and catalyst H, respectively. At 2060 cm-1, C=O stretching vibration are observed, ascribed 

to linearly/terminally adsorbed CO atop a single Ni atom. At 2030 cm-1 C=O stretching vibrations can be seen ascribed to linearly/terminally 

adsorbed CO atop a single Ni(II) or Ni(III) atom. The peak at 1918 cm-1 is attributed to bridged or 3-fold carbonyl C=O stretching vibrations, 

existing only for the larger particle sizes but convoluted with SiO2 framework stretching. The band at 1847 cm-1 shows SiO2 framework 

stretching vibration peaks, and the one at 1591 cm-1 shows conjugated C-O/C=O stretching vibration from formate species.34–37,47–50. c-f, FT-IR 

spectra with highlighted peak areas for  methane, gaseous CO, adsorbed CO, and formate species. g, Integrated FT-IR peak areas as a function 

of time-on-stream. h, Consecutive operando FT-IR spectra recorded during post-reaction flushing with N2 of the catalyst with the highest  

(Catalyst A), and the lowest dispersion (Catalyst H). i, Operando FT-IR spectra recorded during CO2 hydrogenation experiments pulsed with 

labeled feedstocks. Solid lines denote non-pulsed feedstock, while a dotted line denotes a subsequent pulse of either 13CO2, or D2. 
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QUICK-XAS EXPLAINS OBSERVED STRUCTURE SENSITIVITY EFFECTS. To further investigate the origin 1 

of the observed structure sensitivity effects described above we applied operando quick X-ray absorption spectroscopy (Q-2 

XAS) with an effective time resolution of 4 s. To this end, 100 s CO2 and H2 gas pulses were alternated by 30 s N2 pulses 3 

over the catalysts at 400, 350 and 300 °C. These measurements were performed for the two smallest catalyst particle sizes (A 4 

and B, 1.4-1.8 nm, 1% and 5% Ni loading respectively), and a sample with slightly larger Ni particle size (F, 2-3 nm, 11.8% 5 

Ni loading). Samples A, B, and F were chosen because they showed sufficient X-ray absorption (i.e. Ni weight loading), and 6 

because the particles on the catalysts were predominantly below 3 nm which theoretically ensures >35% surface atoms and 7 

thus sufficient signal in bulk Q-XAS to detect surface changes
38,39

. Section ‘Operando quick-XAS’ of the Supplementary 8 

information describes in detail the clustering and least squares fitting approach we applied, which resulted in a quantitative 9 

value of Ni metal relative to NiO. The percentage of metallic nickel is plotted in Figure 4, showing its evolution with time-10 

on-stream.  11 

The results of this operando spectroscopic characterization analysis are striking and it is worth highlighting that these 12 

experiments show exceptional sensitivity, as we are able to detect subtle surface oxidation state changes. Firstly, without 13 

using a priori knowledge we were able to distinguish the gas-flow pulse switches between feedstocks (CO2 and H2) in the 14 

oxidation state of the nickel. It is highly interesting that this method is thus sensitive to 1-2%  changes in oxidation state. A 15 

second striking observation is that for all Ni particle sizes, the initial oxidation process is direct, but a second slope initiates 16 

at the same degree of metallic Ni that the subsequent H2 pulses re-reduce to. This indicates that on each particle, there are 17 

slower and faster mechanisms for CO2 activation which occur at different catalytic sites. Furthermore, for larger Ni particles 18 

there is a two-step re-oxidation (evidenced by a plateau in the plot in Figure 4) for subsequent CO2 pulses indicating that, 19 

either with H2 or with COads on specific sites, a second, less preferred mechanism takes place for the RWGS reaction on 20 

larger particles that is slower and in which Ni has a higher overall oxidation state as in for example less active pathway 2 in 21 

Figure 1 where Ni with a higher oxidation state is inevitably formed. This plateau is much less apparent for catalysts with 22 

smaller Ni particle sizes, with even less terrace sites. These results are in line with the assignment of more coordinatively 23 

saturated sites to the less active RWGS pathway 2 in Figure 1. The initial oxidation observed during the N2 pulse is likely to 24 

be caused by a residue of CO2 in the valve and the lines after switching (see section ‘Operando Quick-XAS’ in the 25 

Supporting information). For the smaller metal nanoparticles, it is clear that the removal of oxygen or charged intermediates 26 

such as formate (as we know from FT-IR), is hampering activity, again underwriting that the formate pathway (pathway 2 in 27 

Figure 1) is not the active pathway in RWGS and CO2 hydrogenation.  28 
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The maximum change in degree of reduction for catalyst A is 2.3% (from 97.7 to 95.4%), for catalyst sample B 1.5% (from 1 

96.6 to 95.1%), and for catalyst sample F also 1.5% (from 99.5 to 98.0%). The order of magnitude of these surface changes 2 

is important to evaluate as it relates to the order of magnitude of sites that are active in CO2 activation. According to Figure 3 

S20 and section ‘Quantification of active sites’ of the Supplementary information, a 1.4 nm particle should consist of around 4 

192 Ni atoms, of which approximately 80% are forming the surface. If all of these 153 surface atoms were active purely in 5 

CO2 activation during a pulse of CO2, half the surface atoms (~77 atoms) would be oxidized while the other half would be 6 

covered in COads. A change in the reduction degree in the order of 1.5% corresponds to 3 atoms that are changing oxidation 7 

state, which means that around 4% of the surface atoms that can be oxidized (~77 atoms) actually oxidizes. Applying this 8 

same procedure to catalyst A and F, gives us 7% and 6%, resp. atoms that are active in CO2 activation, or atoms that are part 9 

of active atomic coordinations in these particles. Considering these particle sizes are believed even not to be able to activate 10 

π-bonds shows novel insights into what are likely restructuring effects in catalysts with such small particle sizes, as we prove 11 

the atomic coordinations that can cleave π-bonds are present (albeit in small quantities) under working conditions.  12 

13 

Figure 4| Quick X-ray absorption spectroscopy of three Ni/SiO2 catalysts with different mean Ni particle sizes. Q-XAS allowed 

to determine the percentage of metallic nickel with time-on-stream for different nickel nanoparticle sizes; smaller samples A and B 

(pink and black resp.), and larger particle size sample F (purple) see Table 1 for characterization summary. 
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DISCUSSION 1 

Operando FT-IR spectroscopy measurements showed that the larger Ni particle sizes retain several types of CO species with 2 

high surface coverage, while no gaseous CO is observed. The intensity of peaks in the COads stretching region (2060-1600 3 

cm
-1

) is a measure for Ni particle size. For the catalysts with high Ni dispersion, gaseous CO was observed, along with fewer 4 

adsorbed CO species. Clearly, the (re)activity, or stability of intermediate CO plays an important role in the observed Ni 5 

particle size effects. Drawing back to the first chemist who described the hydrogenation of CO2, at first glance Sabatiers 6 

principle describes the CO intermediate effects we observe with FT-IR
6,7

. That is, the interactions between the catalyst and 7 

the substrate (COads) should be just right, neither too strong, nor too weak. In essence, the larger Ni particles under 8 

observation are poisoned by a monolayer of COads in more stable bridge conformation, while the smallest Ni particles bind 9 

COads too weakly, facilitating easy desorption. Catalysts facilitating the largest relative amount of linearly adsorbed CO, 10 

show the highest activity. Thus the rate-determining step in CO2 hydrogenation is not the activation of CO2 or the 11 

dissociation of CO, but rather relates to how easily the adsorbed intermediate CO species can be hydrogenated and the 12 

availability of adjacent Hads sites to hydrogenate COads. In theory this activity should increase with smaller Ni particle size, 13 

however this increased activity is likely hampered by the slow removal of oxidizing, or charged surface species in smaller 14 

nanoclusters, as shown by Q-XAS. By examining oxidation state changes with high time resolution XAS, complementing the 15 

results from operando FT-IR we have identified the influence of more localized energy levels in the electronic band structure 16 

of smaller Ni nanoclusters ensuring increased stability of oxidizing or charged species. It is important to note here that it was 17 

previously suggested that particles smaller than 2 nm would not be able to cleave π-bonds, while we show experimentally 18 

that this is in fact not the case, as we observe gaseous CO and methane even with the smallest Ni particles
20

. These results 19 

allow us to discuss the mechanisms portrayed in Figure 1, and point towards the direct dissociation of CO2 (pathway 1) as the 20 

major active pathway in RWGS over Ni at 400 °C.  21 

We are able to identify 3 probable contributions to the structure sensitivity of methanation over Ni catalysts: first, we show 22 

operando evidence for the presence of different sites with different activities within a narrow particle size distribution. 23 

Second, we show that restructuring likely occurs, at the least for particles <2 nm, to form sites that are active in CO2 24 

hydrogenation. Finally, we present evidence suggesting that for sub-2 nm Ni particles the lower d-band energy, or higher 25 

electron localization has great impact on catalytic activity due to the increased stability of oxidizing or charged species on the 26 

surface.  27 

We thus prove that structure sensitivity effects are present in real catalysts and depend on a multitude of physical 28 

phenomena. Furthermore that model systems, such as single crystal facet studies, will therefore lack the influence of 29 
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electronic effects that can contribute to structure sensitivity. That is, it is important to study a model system that is dynamic, 1 

can restructure, and in which the d-band energy or degree of electron (de-)localization can be examined (to also incorporate 2 

contributions from supports). Thus most importantly, we argue that structure sensitivity can currently only be fully 3 

understood in non-model catalysts. 4 

In this work we have reported operando spectroscopy evidence for the effect of the Ni particle size on stability and reactivity 5 

of intermediates in CO2 methanation over Ni, which serves to provide a mechanistic understanding of how to control the 6 

activity of this reaction. Furthermore, these results provide new found potential for the use of Ni in Fischer-Tropsch 7 

synthesis, which is often neglected as an industrially relevant FT catalyst due to the formation of highly toxic 8 

nickeltetracarbonyls which were not found to be present in our study with small Ni particles. We show decreasing CO 9 

adsorption strength with decreasing particle size. Thus, under the condition that the particles remain structurally stable, small 10 

Ni particles may find revived interest for Fischer-Tropsch synthesis as highly selective C5+ catalysts, on reducible 11 

supports
40,41

. The current operando spectroscopy study can be regarded as not only a major step forward in understanding the 12 

origin of Ni particle size effects in CO2 hydrogenation and activation, but it also shines a light on the reactivity of 13 

intermediate CO with direct practical interest, for example in the Fischer-Tropsch synthesis of hydrocarbons. The analogous 14 

methodologies developed here also provide a fundamental insight in the performance-size relationship of CO2 hydrogenation 15 

and, consequently may be applicable for studies of metal nanoparticle size effects in general. 16 

17 
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METHODS (800 WORDS) 1 

CATALYST SYNTHESIS. Silica supported Ni nanoparticles were made by homogeneous deposition precipitation (HDP) 2 

according to e.g. Ermakova et al
42

. The catalyst samples under investigation have varying Ni mean particle sizes, as listed in 3 

Table 1.  4 

CATALYST CHARACTERIZATION. Temperature programmed reduction (TPR) was performed in a Tristar II series 5 

analyzer. The middle of the second reduction peak (Ni(II) to Ni (0)) was chosen as the reduction temperature for each 6 

catalyst. Per these results, all reduction steps in this work were ramped at 5 °C min
-1

 to 600 °C  (catalyst A), 550 °C  (catalyst 7 

B-G), and 500 °C (catalyst H), and held at these respective temperatures for 30 min. The oxidation states of the catalysts 8 

after this procedure were examined by X-ray absorption spectroscopy, and were in a fully reduced condition prior to activity 9 

experiments (see section ‘Characterization Results’ of the Supplementary information). 10 

Materials for examination by scanning transmission electron microscopy (STEM) were dry dispersed onto a holey carbon 11 

TEM grid. The catalyst samples were examined using BF- and HAADF-STEM imaging mode in an aberration corrected 12 

JEOL ARM-200CF scanning transmission electron microscope (STEM) operating at 200 kV. This microscope was also 13 

equipped with a Centurio silicon drift detector (SDD) system for X-ray energy dispersive spectroscopy (XEDS) analysis. 14 

Furthermore, fresh, reduced and passivated, and spent samples were examined with transmission electron microscopy (TEM) 15 

in an FEI Tecnai12 operated at 120 kV or in an FEI Tecnai20F operated at 200 kV. Samples were crushed and suspended in 16 

ethanol under ultrasonic vibration. A drop of this suspension was brought onto a holey carbon film on a 300 mesh copper 17 

grid. Metal particle sizes in Table 1 are surface-area averaged values (>100 particles). Particle size distributions were 18 

determined by TEM for fresh, reduced and spent samples (see section ‘Characterization Results’ in the Supporting 19 

information). X-ray diffraction (XRD) measurements of fresh, reduced (and re-oxidized), and spent samples were also 20 

carried out in a Bruker D2 Phaser to determine crystallite size.  21 

OPERANDO FT-IR WITH ON-LINE PRODUCT ANALYSIS. Operando Fourier transform infrared (FT-IR) 22 

spectroscopy measurements were performed to study reactants, intermediates and products in CO2 hydrogenation over Ni. 23 

Product formation was followed by on-line gas chromatography. Time-resolved operando FT-IR spectra were recorded to 24 

study the effect of different particle sizes on reaction intermediates and catalyst activity at different temperatures. The 25 

operando FT-IR measurements were carried out using a Bruker Tensor 37 FT-IR spectrometer equipped with a DTGS 26 

detector. Spectra were recorded every 30 s for each experiment. On-line product analysis was performed with an Interscience 27 

custom-built Global Analyzer Solutions (G.A.S) Compact GC4.0 gas chromatograph (GC) with a time resolution of around 10 28 
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s for lower hydrocarbons (methane, ethane, and ethene). The CO2 hydrogenation experiments were carried out in a Specac 1 

High Temperature transmission IR reaction cell (as depicted in Figure S1). To this end, the catalyst powders were pressed 2 

into wafers of approximately 16mm in diameter, and around 0.1 mg thickness weighing between 10-15 mg. These self-3 

supported catalyst wafers were created using a Specac Laboratory Pellet Press, a diaphragm vacuum pump and around 4 t of 4 

pressure. Before each reaction, each catalyst was reduced at a reduction temperature predetermined by TPR, and reduced in-5 

situ with a 5 °C min
-1

 temperature ramp, and a 3 min hold in a 1:1, N2:H2 flow with a total of 25mL/min
 
(both Linde, 4.9). 6 

After this in-situ reduction, the temperature of the reaction cell was brought to 100 °C, and the reactants were introduced 7 

through Bronkhorst EL-FLOW Mass Flow Controllers; CO2
 
at 1.25mL min

-1
, H2

 
at 5 mL min

-1
 and N2

 
to dilute at 6.25 mL 8 

min
-1

 for a total flow of 12.5 mL min
-1

. In a temperature programmed reaction, the reactor was heated at a ramp of 5 °C min
-1 9 

to 400 °C, where eventually the temperature was held for 90 min. For each catalyst sample with differing metal dispersion, 10 

on-line activity data was collected with a time resolution of 30 s. Simultaneously, successive operando FT-IR spectra were 11 

also recorded with a time resolution of 30 s (see section ‘FR-IR Studies of Catalyst Samples’ in the Supplementary 12 

information). 13 

OPERANDO QUICK-XAS WITH ON-LINE PRODUCT ANALYSIS. Operando X-ray absorption spectroscopy (and ex-14 

situ characterization) with millisecond time resolution was performed at the SuperXAS beamline (X10DA) at the Swiss 15 

Light Source in transmission mode. The X-ray beam from the bending magnet was monochromatized with a Si(111) 16 

channel-cut crystal in the QuickXAS monochromator. The Si(111) crystal was rotated at a frequency of 10 Hz across the Ni 17 

K-edge, and the signals of the ionization chambers and the angular encoder were sampled at a frequency of 2 MHz. The edge 18 

energy was calibrated using a Ni foil. The measurements were performed in a custom-built operando reaction cell, which is 19 

described in more detail in the Supplementary information. Q-XAS data was evaluated using the JAQ Analyzes QEXAFS 20 

version 3.3.53 software and self-developed Matlab™ code was used for principal component analysis and subsequent 21 

clustering
43

. Least squares linear combination fitting of clustered spectra was performed using the Athena software
44

. Based 22 

on the signal to noise ratio the data was binned to an effective time resolution of 4 s. Further information about the Q-XAS 23 

data processing can be found in the Supplementary information. 24 
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Table 1. Characteristics of the set of well-defined Ni/SiO2 catalysts (A-H), listing their Ni loadings, and Ni particle sizes after reduction, 

and of spent catalysts as determined by TEM, HAADF-STEM, XRD, and XAS.; 

a 
Arbitrary codes denoted from smallest (A) to largest (H) catalyst particle sizes determined as spent particle sizes from TEM,

 

b 
Average of at least 100 particles per sample, of spent samples, 

c
 Particle size distributions determined after reduction step 

(and re-oxidation by exposure to air) of at least 120 nanoparticles, see Supplementary information for additional details on 

HAADF-STEM analysis,  
d 

Full-width at half-maximum (FWHM) X-ray diffraction analysis of catalysts after reduction step, 

and re-oxidation by exposure to air, 
e 

XAS particle sizes (in brackets) determined from coordination numbers ex-situ for 

particles after the respective reduction step (fit of first coordination shell)
46,44 

  

 

Sample
a 

Ni loading 

(wt%) 

NiO TEM 

particle size spent 

(nm)
b
 

Ni HAADF-STEM 

particle size after 

reduction (nm)
c
 

Ni XAS coordination 

number (particle size) after 

reduction
45,46

 
e
 

NiO XRD particle 

size after reduction 

(nm)
d
 

A 1.0 1.1 ±0.4 1.82 ±0.75 6.4 ±1.2 (1 nm) 1.0 ±0.9 

B 5.0 1.6 ±0.3 1.42 ±0.41 7.3 ±1.2 (2 nm) 1.2 ±0.6 

C 4.7 1.6 ±0.7 1.23 ±0.48 7.1 ±1.5 (1.5 nm) 1.2 ±1.0 

D 6.7 2.5 ±0.7 2.04 ±0.78 7.6 ±1.3  (2 nm) 0.9 ±0.2 

E 1.7 2.6 ±0.5 1.36 ±0.40 5.8 ±3.1 (1 nm) 1.9 ±41 

F 11.8 3.5 ±0.6 2.10 ±1.09 7.3 ±2.1 (2 nm) 2.3 ±1.2 

G 19.5 5.0 ±1.4 4.43 ±2.39 7.4 ±1.3 (2 nm) 4.2 ±1.6 

H 60.0 6.9 ±1.9 6.08 ±1.93 8.8 ±1.1 (6 nm) 5.2 ±2.6 


