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Fig. 1. We apply our accelerated ADMM solver to optimize a quad mesh, subject to hard constraints of face planarity and soft constraints of closeness to a
reference surface. Our solver leads to a faster decrease of combined residual than the original ADMM, achieving better satisfaction of hard constraints within
the same computational time (highlighted in the plot in bottom right).

The alternating direction method of multipliers (ADMM) is a popular ap-

proach for solving optimization problems that are potentially non-smooth

and with hard constraints. It has been applied to various computer graph-

ics applications, including physical simulation, geometry processing, and

image processing. However, ADMM can take a long time to converge to a

solution of high accuracy. Moreover, many computer graphics tasks involve

non-convex optimization, and there is often no convergence guarantee for

ADMM on such problems since it was originally designed for convex op-

timization. In this paper, we propose a method to speed up ADMM using

Anderson acceleration, an established technique for accelerating fixed-point

iterations. We show that in the general case, ADMM is a fixed-point iteration

of the second primal variable and the dual variable, and Anderson accelera-

tion can be directly applied. Additionally, when the problem has a separable

target function and satisfies certain conditions, ADMM becomes a fixed-

point iteration of only one variable, which further reduces the computational

overhead of Anderson acceleration. Moreover, we analyze a particular non-

convex problem structure that is common in computer graphics, and prove

the convergence of ADMM on such problems under mild assumptions. We
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apply our acceleration technique on a variety of optimization problems in

computer graphics, with notable improvement on their convergence speed.
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1 INTRODUCTION
Many tasks in computer graphics involve solving optimization prob-

lems. For example, a geometry processing task may compute the

vertex positions of a deformed mesh by minimizing its deformation

energy [Sorkine and Alexa 2007], whereas a physical simulation

task may optimize the node positions of a system to enforce physics

laws that govern its behavior [Martin et al. 2011; Schumacher et al.

2012]. Such tasks are often formulated as unconstrained optimiza-

tion, where the target function penalizes the violation of certain

conditions so that they are satisfied as much as possible by the solu-

tion. It has been an active research topic to develop fast numerical

solvers for such problems, with various methods proposed in the

past [Sorkine and Alexa 2007; Liu et al. 2008; Bouaziz et al. 2012;

Liu et al. 2013; Bouaziz et al. 2014; Wang 2015; Kovalsky et al. 2016;

Liu et al. 2017; Shtengel et al. 2017; Rabinovich et al. 2017].
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On the other hand, some applications involve optimization with

hard constraints, i.e., conditions that need to be enforced strictly.

Such constrained optimization problems are often more difficult to

solve [Nocedal and Wright 2006]. One possible solution strategy is

to introduce a quadratic penalty term for the hard constraints with

a large weight, thereby converting it into an unconstrained prob-

lem that is easier to handle. However, to strictly enforce the hard

constraints, their penalty weight needs to approach infinity [No-

cedal and Wright 2006], which can cause instability for numerical

solvers. More sophisticated techniques, such as sequential quadratic

programming or the interior-point method, can enforce constraints

without stability issues. However, these solvers often incur high com-

putational costs and may not meet the performance requirements

for graphics applications. It becomes even more challenging for

non-smooth problems where the target function is not everywhere

differentiable, as many constrained optimization solvers require

gradient information and may not be applicable for such cases.

In recent years, the alternating direction method of multipliers

(ADMM) [Boyd et al. 2011] has become a popular approach for solv-

ing optimization problems that are potentially non-smooth and with

hard constraints. The key idea is to introduce auxiliary variables

and derive an equivalent problem with a separable target function,

subject to a linear compatibility constraint between the original

variables and the auxiliary variables [Combettes and Pesquet 2011].

ADMM searches for a solution to this converted problem by al-

ternately updating the original variables, the auxiliary variables,

and the dual variables. With properly chosen auxiliary variables,

each update step can reduce to simple sub-problems that can be

solved efficiently, often in parallel with closed-form solutions. In

addition, ADMM does not rely on the smoothness of the problem,

and converges quickly to a solution of moderate accuracy [Boyd

et al. 2011]. Such properties make ADMM an attractive choice for

solving large-scale optimization problems in various applications

such as signal processing [Chartrand andWohlberg 2013; Simonetto

and Leus 2014], image processing [Figueiredo and Bioucas-Dias

2010; Almeida and Figueiredo 2013], and computer vision [Liu et al.

2013]. Recently, ADMM has also been applied for computer graphics

problems such as geometry processing [Bouaziz et al. 2013; Neu-

mann et al. 2013; Zhang et al. 2014; Xiong et al. 2014; Neumann et al.

2014], physics simulation [Gregson et al. 2014; Pan and Manocha

2017; Overby et al. 2017], and computational photography [Heide

et al. 2016; Xiong et al. 2017; Wang et al. 2018].

Despite the effectiveness and versatility of ADMM, there are

still two major limitations for its use in computer graphics. First,

although ADMM converges quickly in initial iterations, its final con-

vergence might be slow [Boyd et al. 2011]. This makes it impractical

for problems with a strong demand for solution accuracy, such as

those with strict requirements on the satisfaction of hard constraints.

Recent attempts to accelerate ADMM such as [Goldstein et al. 2014;

Kadkhodaie et al. 2015; Zhang and White 2018] are only designed

for convex problems, which limits their applications in computer

graphics. Second, ADMM was originally designed for convex prob-

lems, whereas many computer graphics tasks involve non-convex

optimization. Although ADMM turns out to be effective for many

non-convex problems in practice, its convergence for general non-

convex optimization remains an open research question. Recent

convergence results such as [Li and Pong 2015; Hong et al. 2016;

Magnússon et al. 2016; Wang et al. 2019] rely on strong assumptions

that are not satisfied by many computer graphics problems.

This paper addresses these two issues of ADMM. First, we propose

a method to accelerate ADMM for non-convex optimization prob-

lems. Our approach is based on Anderson acceleration [Anderson

1965; Walker and Ni 2011], a well-established technique for acceler-

ating fixed-point iterations. Previously, Anderson acceleration has

been applied to local-global solvers for unconstrained optimization

problems in computer graphics [Peng et al. 2018]. Our approach

expands its applicability to many constrained optimization prob-

lems as well as other unconstrained problems where local-solver

solvers are not feasible. To this end, we need to solve two prob-

lems: (i) we must find a way to interpret ADMM as a fixed-point

iteration; (ii) as Anderson acceleration can become unstable, we

should define criteria to accept the accelerated iterate and a fall-back

strategy when it is not accepted, similar to [Peng et al. 2018]. We

show that in the general case ADMM is a fixed-point iteration of the

second primal variable and the dual variable, and we can evaluate

the effectiveness of an accelerated iterate via its combined residual
which is known to vanish when the solver converges. Moreover,

when the problem structure satisfies some mild conditions, one of

these two variables can be determined from the other one; in this

case ADMM becomes a fixed-point iteration of only one variable

with less computational overhead, and we can accept an accelerated

iterate based on a more simple condition. We apply this method to

a variety of ADMM solvers for computer graphics problems, and

observe a notable improvement in their convergence rates.

Additionally, we provide a new convergence proof of ADMM on

non-convex problems, under weaker assumptions than the conver-

gence results in [Li and Pong 2015; Hong et al. 2016; Magnússon et al.

2016; Wang et al. 2019]. For a particular problem structure that is

common in computer graphics, we also provide sufficient conditions

for the global linear convergence of ADMM. Our proofs shed new

light on the convergence properties of non-convex ADMM solvers.

2 RELATED WORK
Optimization solvers in computer graphics. The development of

efficient optimization solvers has been an active research topic in

computer graphics. One particular type of method, called local-

global solvers, has been widely used for unconstrained optimization

in geometry processing and physical simulation. For geometry pro-

cessing, Sorkine and Alexa [2007] proposed a local-global approach

to minimize deformation energy for as-rigid-as-possible mesh sur-

face modeling. Liu et al. [2008] developed a similar method to per-

form conformal and isometric parameterization for triangle meshes.

Bouaziz et al. [2012] extended the approach to a unified frame-

work for optimizing discrete shapes. For physical simulation, Liu

et al. [2013] proposed a local-global solver for optimization-based

simulation of mass-spring systems. Bouaziz et al. [2014] extended

this approach to the projective dynamics framework for implicit

time integration of physical systems via energy minimization.

Local-global solvers often converge quickly to an approximate

solution, but may be slow for final convergence. Other methods

have been proposed to achieve improved convergence rates. For
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geometry processing, Kovalsky et al. [2016] achieved a fast con-

vergence of geometric optimization by iteratively minimizing a

local quadratic proxy function. Rabinovich et.al. [2017] proposed

a scalable approach to compute locally injective mappings, via

local-global minimization of a reweighted proxy function. Claici et

al. [2017] proposed a preconditioner for fast minimization of distor-

tion energies. Shtengel et al. [2017] applied the idea of majorization-

minimization [Lange 2004] to iteratively update and minimize a

convex majorizer of the target energy in geometric optimization.

Zhu et al. [2018] proposed a fast solver for distortion energy min-

imization, using a blended quadratic energy proxy together with

improved line-search strategy and termination criteria. For physi-

cal simulation, Wang [2015] proposed a Chebyshev semi-iterative

acceleration technique for projective dynamics. Later, Wang and

Yang [2016] developed a GPU-friendly gradient descent method for

elastic body simulation, using Jacobi preconditioning and Cheby-

shev acceleration. Liu et al. [2017] proposed an L-BFGS solver for

physical simulation, with faster convergence than the projective

dynamics solver from [Bouaziz et al. 2014]. Brandt et al. [2018] per-

formed projective dynamics simulation in a reduced subspace, to

compute fast approximate solutions for high-resolution meshes.

ADMM. ADMM is a popular solver for optimization problems

with separable target functions and linear side constraints [Boyd

et al. 2011]. Using auxiliary variables and indicator functions, such

formulation allows for non-smooth optimization with hard con-

straints, with wide applications in signal processing [Erseghe et al.

2011; Simonetto and Leus 2014; Shi et al. 2014], image process-

ing [Figueiredo and Bioucas-Dias 2010; Almeida and Figueiredo

2013], computer vision [Hu et al. 2013; Liu et al. 2013; Yang et al.

2017], computational imaging [Chan et al. 2017], automatic con-

trol [Lin et al. 2013], and machine learning [Zhang and Kwok 2014;

Hajinezhad et al. 2016]. ADMM has also been used in computer

graphics to handle non-smooth optimization problems [Bouaziz

et al. 2013; Neumann et al. 2013; Zhang et al. 2014; Xiong et al.

2014; Neumann et al. 2014] or to benefit from its fast initial conver-

gence [Gregson et al. 2014; Heide et al. 2016; Xiong et al. 2017; Pan

and Manocha 2017; Overby et al. 2017; Wang et al. 2018].

ADMM was originally designed for convex optimization [Gabay

andMercier 1976; Fortin and Glowinski 1983; Eckstein and Bertsekas

1992]. For such problems, its global linear convergence has been

established in [Lin et al. 2015; Deng and Yin 2016; Giselsson and Boyd

2017], but these proofs require both terms in the target function to be

convex. In comparison, our proof of global linear convergence allows

for non-convex terms in the target function, which is better aligned

with computer graphics problems. In practice, ADMMworkswell for

many non-convex problems as well [Wen et al. 2012; Chartrand 2012;

Chartrand and Wohlberg 2013; Miksik et al. 2014; Lai and Osher

2014; Liavas and Sidiropoulos 2015], but it is more challenging to

establish its convergence for general non-convex problems. Only

very recently have such convergence proofs been given under strong

assumptions [Li and Pong 2015; Hong et al. 2016; Magnússon et al.

2016; Wang et al. 2019]. We provide in this paper a general proof of

convergence for non-convex problems under weaker assumptions.

It is well known that ADMM converges quickly to an approximate

solution, but may take a long time to convergence to a solution of

high accuracy [Boyd et al. 2011]. This has motivated researchers to

explore acceleration techniques for ADMM. Goldstein et al. [2014]

and Kadkhodaie et al. [2015] applied Nesterov’s acceleration [Nes-

terov 1983], whereas Zhang and White [2018] applied GMRES ac-

celeration to a special class of problems where the ADMM iterates

become linear. All these methods are designed for convex problems

only, which limits their applicability in computer graphics.

Anderson acceleration. Anderson acceleration [Walker and Ni

2011] is an established technique to speed up the convergence of

a fixed-point iteration. It was first proposed in [Anderson 1965]

for solving nonlinear integral equations, and independently re-

discovered later by Pulay [1980; 1982] for accelerating the self-

consistent field method in quantum chemistry. Its key idea is to

utilize them previous iterates to compute a new iterate that con-

verges faster to the fixed point. It is indeed a quasi-Newton method

for finding a root of the residual function, by approximating its

inverse Jacobian using previous iterates [Eyert 1996; Fang and Saad

2009; Rohwedder and Schneider 2011]. Recently, a renewed interest

in this method has led to the analysis of its convergence [Toth and

Kelley 2015; Toth et al. 2017], as well as its application in various

numerical problems [Sterck 2012; Lipnikov et al. 2013; Pratapa et al.

2016; Suryanarayana et al. 2019; Ho et al. 2017]. Peng et al. [Peng

et al. 2018] noted that local-global solvers in computer graphics

can be treated as fixed-point iteration, and applied Anderson ac-

celeration to improve their convergence. Additionally, to address

the stability issue of classical Anderson acceleration [Walker and

Ni 2011; Potra and Engler 2013], they utilize the monotonic energy

decrease of local-global solvers and only accept an accelerated it-

erate when it decreases the target energy. Fang and Saad [2009]

called classical Anderson acceleration the Type-II method in an

Anderson family of multi-secant methods. Another member of the

family, called the type-I method, uses quasi-Newton to approximate

the Jacobian of the fixed-point residual function instead [Walker

and Ni 2011], and has been analyzed recently in [Zhang et al. 2018].

In this paper, we focus our discussion on the type-II method.

3 OUR METHOD

3.1 Preliminary
ADMM. Let us consider an optimization problem

min

x
Φ(x,Dx + h). (1)

Here x can be the vertex positions of a discrete geometric shape, or

the node positions of a physical system at a particular time instance.

The quantity Dx + h encodes a transformation of the positions x
relevant for the optimization problem, such as the deformation gra-

dient of each tetrahedron element in an elastic object. The notation

Φ(x,Dx + h) signifies that the target function contains a term that

directly depends on Dx + h, such as elastic energy dependent on

the deformation gradient. In some applications, the optimization

enforces hard constraints on x or Dx + h, i.e., conditions that need
to be strictly satisfied by the solution. Such hard constraints can be

encoded using an indicator function term within the target function.

Specifically, suppose we want to enforce a condition y ∈ C where y
is a subset from the components of x or Dx+h, and C is the feasible
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set. Then we include the following term intoΦ:

σC(y) =
{

0 if y ∈ C

+∞ otherwise

.

By definition, if x∗ is a solution, then the corresponding components

y∗ must satisfy y∗ ∈ C; otherwise it will result in a target function

value +∞ instead of the minimum. Examples of such an approach

to modeling hard constraints can be found in [Deng et al. 2015].

In many applications, the optimization problem (1) can be non-

linear, non-convex, and potentially non-smooth. It is challenging to

solve such a problem numerically, especially when hard constraints

are involved. One common technique is to introduce an auxiliary

variable z = Dx + h to derive an equivalent problem

min

x,z
Φ(x, z) s.t. W(z − Dx − h) = 0, (2)

whereW is a diagonal matrix with positive diagonal elements. W
can be the identity matrix in the trivial case, or a diagonal scal-

ing matrix that improves conditioning [Giselsson and Boyd 2017;

Overby et al. 2017]. ADMM [Boyd et al. 2011] is widely used to solve

such problems. For ease of discussion, let us consider the problem

min

x,z
Φ(x, z) s.t. Ax − Bz = c, (3)

Its solution corresponds to a stationary point of the augmented

Lagrangian function

L(x, z, u) = Φ(x, z) + ⟨µu,Ax − Bz − c⟩ +
µ

2

∥Ax − Bz − c∥2

= Φ(x, z) +
µ

2

∥Ax − Bz + u − c∥2 −
µ

2

∥u∥2. (4)

Here u is the dual variable and µ > 0 is the penalty parameter.

Following [Boyd et al. 2011], we also call x and z the primal variables.
ADMM searches for a stationary point by alternately updating x, z
and u, resulting in the following iteration scheme [Boyd et al. 2011]:

xk+1 = argmin

x
L(x, zk , uk ),

zk+1 = argmin

z
L(xk+1, z, uk ),

uk+1 = uk + Axk+1 − Bzk+1 − c.

(5)

We can also update z before x, resulting in an alternative scheme:

zk+1 = argmin

z
L(xk , z, uk ),

xk+1 = argmin

x
L(x, zk+1, uk ),

uk+1 = uk + Axk+1 − Bzk+1 − c.

(6)

In this paper, we refer to the scheme (5) as x-z-u iteration, and the

scheme (6) as z-x-u iteration. In both cases, the updates for z and x
often reduce to simple subproblems that can potentially be solved

in parallel. According to [Boyd et al. 2011], the optimality condition

of ADMM is that both its primal residual and dual residual vanish.
For both iteration schemes above, the primal residual is defined as

rk+1
p
= Axk+1 − Bzk+1 − c.

As for the dual residual: for the x-z-u iteration it is defined as

rk+1
d
= µAT B(zk+1 − zk ), (7)

whereas for the z-x-u iteration it is defined as

rk+1
d
= µBTA(xk+1 − xk ). (8)

Intuitively, the primal residual measures the violation of the linear

side constraint, whereas the dual residual measures the violation of

the dual feasibility condition [Boyd et al. 2011]. Accordingly, ADMM

is terminated when both ∥rk+1
p

∥ and ∥rk+1
d

∥ are small enough.

Anderson acceleration. ADMM is easy to parallelize and conver-

gences quickly to an approximate solution. However, it can take a

long time to converge to a solution of high accuracy [Boyd et al.

2011]. In the following subsections, we will discuss how to apply

Anderson acceleration [Walker and Ni 2011] to improve its conver-

gence. Anderson acceleration is a technique to speed up the conver-

gence of a fixed-point iteration G : Rn 7→ Rn , by utilizing the cur-

rent iterate as well asm previous iterates. Let qk−m , qk−m+1, . . . , qk

be the latestm + 1 iterates, and denote their residuals under map-

ping G as Fk−m , Fk−m+1, . . . , Fk , where F j = G(qj ) − qj (j =
k −m, . . . ,k). Then the accelerated iterate is computed as

qk+1
AA

= (1 − β)
©­«qk −

m∑
j=1

θ∗j (q
k−j+1 − qk−j )ª®¬

+ β
©­«G(qk ) −

m∑
j=1

θ∗j (G(q
k−j+1) −G(qk−j ))ª®¬ , (9)

where (θ∗
1
, . . . ,θ∗m ) is the solution to a linear least-squares problem:

min

(θ1, ...,θm )







Fk −

m∑
j=1

θ j (F
k−j+1 − Fk−j )








2

. (10)

In Eq. (9), β ∈ (0, 1] is a mixing parameter, and is typically set

to 1 [Walker and Ni 2011]. We follow this convention throughout

this paper. Previously, Anderson acceleration has been applied to

speed up local-global solvers in computer graphics [Peng et al. 2018].

3.2 Anderson acceleration of ADMM: the general approach
To speed upADMMwithAnderson acceleration, wemust first define

its iteration scheme as a fixed-point iteration. For the x-z-u iteration,

we note that xk+1 is dependent only on zk and uk . Therefore, by
treating xk+1 as a function of (zk , uk ), we can rewrite zk+1, and
subsequently uk+1, as a function of (zk , uk ) as well. In this way, the

x-z-u iteration can be treated as a fixed-point iteration of (z, u):

(zk+1, uk+1) = G(zk , uk ).

Similarly, we can treat the z-x-u scheme as a fixed-point iteration of

(x, u). In addition, to ensure stability for Anderson acceleration, we

should define criteria to evaluate the effectiveness of an accelerated

iterate, as well as a fall-back strategy when the criteria are not met.

Goldstein et al. [2014] pointed out that if the problem is convex,

then its combined residual is monotonically decreased by ADMM.

For the x-z-u iteration, the combined residual is defined as

rk+1x-z-u = µ∥Axk+1 − Bzk+1 − c∥2 + µ∥B(zk+1 − zk )∥2. (11)

Here the first term is a measure of the primal residual, whereas the

second term is related to the dual residual (7) but without the matrix
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Algorithm 1: Anderson acceleration for ADMMwith x-z-u iteration.

Data: x0, z0, u0: initial values of variables;
L: the augmented Lagrangian function;

m: the number of previous iterates used for acceleration;

AA(G, F): Anderson accleration from a sequence G of fixed-point

mapping results of previous iterates, and a sequence F of their

corresponding fixed-point residuals;

Imax : the maximum number of iterations;

ε : convergence threshold for combined residual.

1 x
default

= x0; z
default

= z0; u
default

= u0;
2 rprev = +∞; j = 0; reset = TRUE; k = 0;

3 while TRUE do
// Run one iteration of ADMM

4 x⋆ = argminx L(x, z
k , uk );

5 z⋆ = argminz L(x⋆, z, u
k );

6 u⋆ = uk + Ax⋆ − Bz⋆ − c;
// Compute the combined residual

7 r = ∥Ax⋆ − Bz⋆ − c∥2 + ∥B(z⋆ − zk ) ∥2;
8 if reset == TRUE OR r < rprev then

// Record the latest accepted iterate

9 x
default

= x⋆; zdefault = z⋆; udefault = u⋆;
10 rprev = r ; reset = FALSE;

// Compute the accelerated iterate

11 gj = (z⋆, u⋆); fj = (z⋆ − zk , u⋆ − uk );
12 j = j + 1; m = min(m − 1, j);
13 (zk+1, uk+1) = AA

(
[gj , . . . , gj−m ], [fj , . . . , fj−m ]

)
;

14 k = k + 1;
15 else

// Revert to the last accepted iterate

16 zk = z
default

; uk = u
default

; reset = TRUE;

17 end if
18 if k ≥ Imax OR r < ε then // Check termination
19 return x

default
; // Return the last accepted x

20 end if
21 end while

AT . The combined residual for the z-x-u iteration is defined as

rk+1z-x-u = µ∥Axk+1 − Bzk+1 − c∥2 + µ∥A(xk+1 − xk )∥2. (12)

Although [Goldstein et al. 2014] only proved themonotonic decrease

of the combined residual for convex problems, our experiments

show that the combined residual is decreased by the majority of

iterates from the non-convex ADMM solvers considered in this pa-

per. Indeed, if ADMM converges to a solution, then both the primal

residual Axk+1 − Bzk+1 − c and the variable changes zk+1 − zk and

xk+1 − xk must converge to zero, so the combined residual must

converge to zero as well. Therefore, we evaluate the effectiveness

of an accelerated iterate by checking whether it decreases the com-

bined residual compared with the previous iteration, and revert to

the un-accelerated ADMM iterate if this is not the case.

Algorithm 1 summarizes our Anderson acceleration approach for

the x-z-u iteration. Note that the evaluation of combined residual

requires computing the change of z in one un-accelerated ADMM

iteration. However, given an accelerated iterate (zAA, uAA), it is of-
ten difficult to find a pair (z†, u†) that leads to (zAA, uAA) after one

Algorithm 2: Anderson acceleration for ADMMwith z-x-u iteration.

1 x
default

= x0; u
default

= u0; rprev = +∞; j = 0; reset = TRUE; k = 0;

2 while TRUE do
3 z⋆ = argminz L(x

k , z, uk );
4 x⋆ = argminx L(x, z⋆, u

k );

5 u⋆ = uk + Ax⋆ − Bz⋆ − c;
6 r = ∥Ax⋆ − Bz⋆ − c∥2 + ∥A(x⋆ − xk ) ∥2;
7 if reset == TRUE OR r < rprev then
8 x

default
= x⋆; udefault = u⋆; rprev = r ; reset = FALSE;

9 j = j + 1; m = min(m − 1, j);
10 gj = (x⋆, u⋆); fj = (x⋆ − xk , u⋆ − uk );
11 (xk+1, uk+1) = AA

(
[gj , . . . , gj−m ], [fj , . . . , fj−m ]

)
;

12 k = k + 1;
13 else
14 xk = x

default
; uk = u

default
; reset = TRUE;

15 end if
16 if k ≥ Imax OR r < ε then
17 return x

default
;

18 end if
19 end while

ADMM iteration (i.e., (zAA, uAA) = G(z†, u†)). Therefore, we run
one ADMM iteration on (zAA, uAA) instead, and use the resulting

values (z⋆, u⋆) = G(zAA, uAA) to evaluate the combined residual. If

the accelerated iterate is accepted, then the computation of (z⋆, u⋆)
can be reused in the next step of the algorithm and incurs no over-

head. We can derive an acceleration method for the x-z-u iteration

in a similar way, by swapping x and z and adopting Eq. (8) for the

computation of combined residual, as summarized in Algorithm 2.

Remark 3.1. If the target functionΦ contains an indicator function

for a hard constraint on the primal variable updated in the second

step of an ADMM iteration (i.e., z in the x-z-u iteration, or x in the z-
x-u iteration), then after each iteration this variable must satisfy the

hard constraint. However, as Anderson acceleration computes the

accelerated iterate via an affine combination of previous iterates, the

accelerated zAA or xAA may violate the constraint unless its feasible

set is an affine space. In other words, the accelerated iterate may not

correspond to a valid ADMM iteration, and may cause issues if it is

used as a solution. Therefore, to apply Anderson acceleration, we

should ensure thatΦ contains no indicator function associated with

the primal variable updated in the second step of the original ADMM

iteration. This does not limit the applicability of ourmethod, because

it can always be achieved by introducing auxiliary variables and

choosing an appropriate iteration scheme. The simulation in Fig. 4 is

an example of changing the iteration scheme to allow acceleration.

3.3 ADMM with a separable target function
The general approach in Section 3.2 does not assume any special

structure of the target function. When the target function terms

for x and z are separable, it is possible to improve the efficiency of

acceleration further. To this end, we consider the following problem

min

x,z
f (x) + д(z), s.t. Ax − Bz = c. (13)

Moreover, we assume this problem satisfies the following properties:
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Assumption 3.1. Matrix B is invertible.

Assumption 3.2. f (x) is a strongly convex quadratic function

f (x) =
1

2

(x − x̃)TG(x − x̃), (14)

where x̃ is a constant and G is a symmetric positive definite matrix.

One example of such optimization is the implicit time integration

of elastic bodies in [Overby et al. 2017], where x̃ is the predicted

values of node positions x without internal forces, G = M/∆t2

where M is the mass matrix and ∆t is the integration time step, the

auxiliary variable z stacks the deformation gradient of each element,

and д(z) sums the elastic potential energy for all elements. For the

problem (13), the x-z-u iteration of ADMM becomes

xk+1 = (G + µATA)−1(Gx̃ + µAT (Bzk + c − uk )), (15)

zk+1 = argmin

z

(
д(z) +

µ

2

∥Axk+1 − Bz − c + uk ∥2
)
, (16)

uk+1 = uk + Axk+1 − Bzk+1 − c. (17)

And the z-x-u iteration becomes

zk+1 = argmin

z

(
д(z) +

µ

2

∥Axk − Bz − c + uk ∥2
)
, (18)

xk+1 = (G + µATA)−1(Gx̃ + µAT (Bzk+1 + c − uk )), (19)

uk+1 = uk + Axk+1 − Bzk+1 − c. (20)

Similar to Remark 3.1, we assume that the target function contains

no indicator function for the primal variable updated in the second

step. The general acceleration algorithms in Section 3.2 treat ADMM

as a fixed-point iteration of (z, u) or (x, u). Next, we will show that

if the problem satisfies certain conditions, then ADMM becomes a

fixed-point iteration of only one variable, allowing us to reduce the

overhead of Anderson acceleration and improve its effectiveness.

Remark 3.2. Without assuming the convexity of function д(·), there
may be multiple solutions for the minimization problems in (16)

and (18). Throughout this paper, we assume the solver adopts a

deterministic algorithm for (16) and (18), so that given the same

values of x and u it always returns the same value of z.

3.3.1 x-z-u iteration. For the x-z-u iteration (15)-(17), under cer-

tain conditions uk+1 can be represented as a function of zk+1:

Proposition 3.1. If the optimization problem (13) satisfies As-
sumptions 3.1 and 3.2, and the function д(z) is differentiable, then the
x-z-u iteration (15)-(17) satisfies

uk+1 =
1

µ
B−T ∇д(zk+1). (21)

A proof is given in Appendix A. Proposition 3.1 shows that uk+1

can be recovered from zk+1. Therefore, we can treat the x-z-u iter-

ation (15)-(17) as a fixed-point iteration of z instead of (z, u), and
apply Anderson acceleration to z alone. From the accelerated zAA,
we recover its corresponding dual variable uAA via Eq. (21). This

approach brings two major benefits. First, the main computational

overhead for Anderson acceleration in each iteration is to update

the normal equation system for the problem (10), which involves

inner products of time complexity O(mn) where n is the dimension

Algorithm 3: Anderson acceleration for ADMM with x-z-u itera-

tion, on a problem (13) that satisfies Assumptions 3.1, 3.2 and with a

differentiable д.

1 rprev = +∞; j = 0; reset = TRUE; k = 0;

2 while TRUE do
// Update x with (15) and compute residual with (22)

3 xk+1 = (G + µATA)−1(Gx̃ + µAT (Bzk + c − uk ));
4 r = ∥Axk+1 − Bzk − c∥;
5 if reset == FALSE AND r ≥ rprev then // Check residual

6 zk = z
default

; // Revert to un-accelerated z
// Re-compute u and x with (17) and (15)

7 uk = uk−1 + Axk − Bzk − c;
8 xk+1 = (G + µATA)−1(Gx̃ + µAT (Bzk + c − uk ));

// Re-compute residual

9 r = ∥Axk+1 − Bzk − c∥; reset = TRUE;

10 end if
// Check termination criteria

11 if k + 1 ≥ Imax OR r < ε then
12 return xk+1;
13 end if

// Compute un-accelerated z value with (16)

14 z
default

= argminz

(
д(z) + µ

2
∥Axk+1 − Bz − c + uk ∥2

)
// Compute accelerated z value

15 j = j + 1; m = min(m, j);
16 gj = z

default
; fj = z

default
− zk ;

17 zk+1 = AA

(
[gj , . . . , gj−m ], [fj , . . . , fj−m ]

)
;

// Recover compatible u value with (21)

18 uk+1 = 1

µ B
−T ∇д(zk+1);

19 k = k + 1; rprev = r ;
20 end while

of variables that undergo fixed-point iteration [Peng et al. 2018].

Since B is invertible, u and z are of the same dimension; thus this

new approach reduces the computational cost of inner products by

half. Another benefit is a more simple criterion for the effectiveness

of an accelerated iterate, based on the following property:

Proposition 3.2. Suppose the problem (13) satisfies Assumptions 3.1
and 3.2, and the function д(z) is differentiable. Let zk+1 = Gxzu(zk )
denote the fixed-point iteration of z induced by the x-z-u iteration (15)-
(17). Then zk+1 is a fixed point of mapping Gxzu(·) if and only if

Axk+2 − Bzk+1 − c = 0. (22)

A proof is given in Appendix B. Note that the left-hand side of (22)

has a similar form as the primal residual, but involves the value of

x in the next iteration. Accordingly, we evaluate the effectiveness

of an accelerated iterate zAA and its corresponding dual variable

uAA by first computing a new value x⋆ according to the x-update
step (15), then evaluating a residual r̂x-z-u = Ax⋆ − BzAA − c.
We only accept zAA if it leads to a smaller norm of this residual

compared to the previous iteration; otherwise, we revert to the last

un-accelerated iterate. If zAA is accepted, then x⋆ can be reused in

the next step. The main benefit here is that we do not need to run an
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additional ADMM iteration to verify the effectiveness of zAA, which
incurs less computational overhead when the accelerated iterate is

rejected. This acceleration strategy is summarized in Algorithm 3.

Fig. 2 shows an example where accelerating z alone leads to a faster
decrease of combined residual than accelerating z, u together.

3.3.2 z-x-u iteration. Similar to the previous discussion, when

the problem satisfies certain conditions, the z-x-u scheme is a fixed-

point iteration of only one variable. In particular, we have:

Proposition 3.3. If the optimization problem (13) satisfies As-
sumptions 3.1 and 3.2, then the z-x-u iteration (18)-(20) satisfies

xk+1 = x̃ − µG−1AT uk+1. (23)

A proof is given in Appendix C. This property implies that xk+1

can be recovered from uk+1; thus we can treat the z-x-u scheme (18)-

(20) as a fixed-point iteration of u instead of (x, u). In theory, we

can apply Anderson acceleration to the history of u to obtain an

accelerated iterate uAA, and recover the corresponding xAA from

Eq. (23). However, this would require solving a linear system with

matrix G, and can be computationally expensive. Instead, we note

that xk+1 and uk+1 are related to by an affine map, and this relation

is satisfied by any previous pair of x and u values. Then since uAA
is an affine combination of previous u values, we can apply the

same affine combination coefficients to the corresponding previous

x values to obtain xAA, which is guaranteed to satisfy Eq. (23) with

uAA. As the affine combination coefficients are computed from u
only, this still reduces the computational cost compared to applying

Anderson acceleration to (x, u). Similar to the x-z-u case, we can

verify the convergence of the z-x-u iteration by comparing x in the

current iteration with the value of z in the next iteration:

Proposition 3.4. Suppose the problem (13) satisfies Assumptions 3.1
and 3.2. Let uk+1 = Gzxu(uk ) denote the fixed-point iteration of u
induced by the x-z-u iteration (18)-(20). Then uk+1 is a fixed point of
mapping Gzxu(·) if and only if

Axk+1 − Bzk+2 − c = 0. (24)

Accordingly, we evaluate the effectiveness of uAA and xAA by

computing from them a z⋆ using Eq. (18), and evaluating the residual

r̂z-x-u = AxAA −Bz⋆− c. We accept uAA if the norm of this residual

is smaller than the previous iteration, and revert to the last un-

accelerated iterate otherwise. If uAA is accepted, then z⋆ is reused

in the next step. Algorithm 4 summarizes our approach.

Remark 3.3. We have shown that ADMM can be reduced to a fixed-

point iteration of the second primal variable or the dual variable

based on Assumptions 3.1 and 3.2, and (for the x-z-u iteration) the

smoothness of д. In fact, these assumptions can be further relaxed.

We refer the reader to Appendix E for more details. Fig. 11 is an

example of using such relaxed conditions to reduce the fixed-point

iteration to one variable.

Algorithm 4: Anderson acceleration for ADMMwith z-x-u iteration,

on a problem (13) that satisfies Assumptions 3.1 and 3.2.

1 rprev = +∞; j = 0; reset = TRUE; k = 0;

2 while TRUE do
// Update z with (18) and compute residual with (24)

3 zk+1 = argminz

(
д(z) + µ

2
∥Axk − Bz − c + uk ∥2

)
;

4 r = ∥Axk − Bzk+1 − c∥;
// Check whether the residual increases

5 if reset == FALSE AND r ≥ rprev then
// Revert to un-accelerated x, u

6 xk = x
default

; uk = u
default

;

7 zk+1 = argminz

(
д(z) + µ

2
∥Axk − Bz − c + uk ∥2

)
;

8 r = ∥Axk − Bzk+1 − c∥;
9 reset = TRUE;

10 end if
11 if k + 1 ≥ Imax OR r < ε then
12 return xk ;
13 end if

// Compute un-accelerated x and u
14 x

default
= (G + µATA)−1(Gx̃ + µAT (Bzk+1 + c − uk ));

15 u
default

= uk + Ax
default

− Bzk+1 − c;
// Use history of u to compute affine coeffients

16 j = j + 1; m = min(m, j);
17 gxj = x

default
; guj = u

default
; fuj = u

default
− uk ;

18 (θ ∗
1
, . . . , θ ∗

m ) = argmin

(θ1, . . .,θm )




fuj −
∑m
i=1 θi (f

u
j−i+1 − fuj−i )




2;
// Compute accelerated x and u with the coefficients

19 xk+1 = gxj −
∑m
i=1 θ

∗
i

(
gxj−i+1 − gxj−i

)
;

20 uk+1 = guj −
∑m
i=1 θ

∗
i

(
guj−i+1 − guj−i

)
;

21 k = k + 1; rprev = r ;
22 end while

3.4 Convergence analysis
For Anderson acceleration to be applicable, an ADMM solver must

be convergent already. However, many ADMM solvers used in

computer graphics lack a convergence guarantee due to the non-

convexity of the problems they solve. Although ADMM works well

for many non-convex problems in practice, convergence proofs on

such problems rely on strong assumptions that are often not satisfied

by graphics problems [Li and Pong 2015; Hong et al. 2016; Magnús-

son et al. 2016; Wang et al. 2019]. In this subsection, we discuss the

convergence of ADMM on the problem (13) where the term д in the

target function can be non-convex. We first provide a set of condi-

tions for linear convergence of ADMM on such problems, and then

give more general convergence proofs using weaker assumptions

than existing results in the literature. As the problem structure (13)

is common in computer graphics, our new results can potentially

expand the applicability of ADMM for graphics problems.

To ease the presentation, we first introduce some notation. To

account for the fact that the target function may be unbounded from

above due to an indicator function, we suppose all the functions are

mappings to R
⋃
{+∞}. Following [Rockafellar 1997], for a function
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F we define its effective domain and level set as:

dom(F ) B {x | f (x) < +∞},

L F
α B {x | f (x) ≤ α }, given α ∈ R.

A function F is level-bounded if L F
α is a bounded set for any α ∈ R.

Given a set S, let IS and BS denote the interior and the bound-

ary of S, respectively. A function F is continuous on Rn if: (i) it

is continuous within I
dom(F ) in the conventional sense; and (ii)

∀xk → x ∈ B
dom(F ), we have F (xk ) → F (x) = +∞. We say a func-

tion is Lipschitz differentiable if it is differentiable and its gradient is

Lipschitz continuous. Unless specified otherwise, I denotes the iden-
tity matrix and the identity map. The symbol conv(S) denotes the

convex hull of a set S, and ∂F denotes the set of all sub-differentials

for a function F (see [Rockafellar and Wets 2009, Definition 8.3(b)]).

For matrix Q, we use ρ(Q) to represent its spectral radius. We will

discuss conditions for the ADMM iterates {(xk , zk , uk )} to converge
to a stationary point (x∗, z∗, u∗) of the augmented Lagrangian for

problem (13), which is defined by the conditions [Boyd et al. 2011]:

Ax∗ − Bz∗ = c, 0 ∈ ∂ f (x∗) + AT u∗, 0 ∈ ∂д(z∗) − BT u∗. (25)

Linear convergence. Our discussion involves the following defini-

tions related to the problem (13) and Assumptions 3.1 and 3.2:

д̂(z) B д(B−1z), K B AG−1AT . (26)

We denote by ρ(K) the spectral radius of matrix K. To prove linear

convergence of ADMM for the problem (13) regardless of its initial

value, we need the following assumption:

Assumption 3.3. ∇д̂ is Lipschitz differentiable on Rn with a Lips-
chitz constant L, i.e. ∥∇д̂(z1) − ∇д̂(z2)∥ ≤ L∥z1 − z2∥ ∀z1, z1 ∈ Rn .

Then we have:

Theorem 3.1. If Assumptions 3.1-3.3 are satisfied and ρ(K) < 1

2L ,
then for a sufficiently large µ the x-z-u iteration (15)-(17) converges
to a stationary point defined in Eq. (25). Moreover,

∥Bzn+1 − Bzn ∥ ≤ γ1∥Bzn − Bzn−1∥,

where γ1 =

µρ(K)
1+µρ(K) +

L
µ

1 − L
µ

< 1 is a constant.

Theorem 3.2. If Assumptions 3.1-3.3 are satisfied, ρ(K) < 1

L and I−
µK is invertible, then for a sufficiently large µ the z-x-u iteration (18)-
(20) converges to a stationary point defined in Eq. (25). Moreover,

∥vk+1 − vk ∥ ≤ γ2∥vk − vk−1∥,

where vk = (I − µK)uk and γ2 =
µρ(K)

1+µρ(K) +
L

µ−L < 1.

Proofs are provided in Appendix F. The theorems above rely on

Assumption 3.3which requires the functionд to be globally Lipschitz
differentiable. This may not be the case for some graphics problems.

For example, the StVK energy used for simulation of hyperelastic

materials is a quartic function of the deformation gradient, and is

locally Lipschitz differentiable but not globally so. For such problems,

we can still prove linear convergence with additional conditions

on its initial value and penalty parameter. In the following, we use

T (x, z) to denote the target function (13). We make the following

relaxed assumption about д̂:

Assumption 3.4. (1) д̂ is level-bounded, and д̂(z) ≥ 0 ∀z ∈ Rn .
(2) д̂ is continuous on Rn and differentiable in I

dom(д̂).
(3) д̂ is Lipschitz differentiable on any compact convex set in dom(д̂).

For linear convergence of the x-z-u iteration, we assume the

following for the initial value (x0, z0, u0) and penalty parameter µ:

Assumption 3.5. (1) z0 = B−1(Ax0 − c), u0 = 1

µ B
−T ∇д(z0).

z0 ∈ dom(д).
(2) µ is large enough such that c1 ≤ 1, where

c1 = sup

z∈L
д
T 0+1

1

2µ
∥B−T ∇д(z)∥2

andT 0 = T (x0, z0). Moreover, suppose conv(L д̂
T 0+c1

) ⊂ dom(д̂)

and let Lc be a Lipschitz constant of ∇д̂ over this set.

Theorem 3.3. Suppose Assumptions 3.1, 3.2, 3.4, 3.5 are satisfied,
µ
2
−

L2c
µ >

Lc
2
, and ρ(K) < 1

2Lc . Then for a sufficiently large µ the x-z-
u iteration (15)-(17) converges to a stationary point defined in Eq. (25),

and ∥Bzn+1−Bzn ∥ ≤ γ3∥Bzn−Bzn−1∥ withγ3 =

µρ(K)
1+µρ(K) +

Lc
µ

1 −
Lc
µ

< 1.

For the z-x-u iteration, we need a different assumption that relies

on the following proposition which is proved in Appendix F.3:

Proposition 3.5. Let R(A) be the range of matrix A. Then for any
x ∈ R(A), ∥Kx∥ ≥ η∥x∥ where η > 0 is a constant depending on K.

Assumption 3.6. The initial value (x0, z0, u0) satisfies:
(1) z0 = B−1(Ax0 − c), x0 = x̃, u0 = 0. z0 ∈ dom(д).
(2) µ is large enough such that c2 + c3 ≤ 1, where

c2 = sup

(x,z)∈LT
T 0+1

2

η2µ
∥Ax − Ax̃∥2 + (

2ρ(K)2

µη2
+

1

µ
)∥B−T ∇д(z)∥2,

c3 = (
8ρ(K)2

µη2
+

4

µ
)∥B−T ∇д(z0)∥2,

where η is defined in Proposition 3.5. Moreover, let Ld be a
Lipschitz constant of ∇д̂ over conv(L д̂

T 0+c2+c3
), and suppose

conv(L
д̂
T 0+c2+c3

) ⊂ dom(д̂).

Theorem 3.4. Suppose Assumptions 3.1, 3.2, 3.4, 3.6 are satisfied,
ρ(K) < 1

Ld
, and I − µK is invertible. Then for a sufficiently large µ

the z-x-u iteration (18)-(20) converges to a stationary point defined in
Eq. (25), and ∥vk+1 − vk ∥ ≤ γ4∥vk − vk−1∥, with vk = (I − µK)uk

and γ4 =
µρ(K)

1+µρ(K) +
Ld

µ−Ld
< 1.

The proofs for these two theorems are given in Appendix F.

Remark 3.4. Unlike existing linear convergence proofs such as [Lin

et al. 2015; Deng and Yin 2016; Giselsson and Boyd 2017], we do not

require both f and д to be convex. This makes our proofs applicable

to some graphics problems with a non-convex д, such as the elastic

body simulation problem in [Overby et al. 2017] where д is an

elastic potential energy. In the supplementary material we provide

numerical verification of linear convergence on such a problem.
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Fig. 2. Comparison between the ADMM solver in [Overby et al. 2017] and our method according to Algorithm 3, for computing the same frame of a simulation
sequence with three elastic bars. Two material stiffness settings (“soft rubber” and “rubber”) are used for testing. In both case, our method leads to faster
decrease of residuals and accelerates the convergence. For the case with rubber, we also test Algorithm 1 that applies Anderson acceleration to (z, u), which
also speeds up the convergence but is less effective than accelerating z alone.

General convergence under weak assumptions. If a linear conver-
gence rate is not needed, the assumptions above can be further

relaxed to prove the convergence of ADMM on problem (13): in-

stead of the relation between the matrixK and the Lipschitz constant

L, we require the following weak assumption on function д.

Assumption 3.7. д is a semi-algebraic function.

A function F : Rn 7→ R is called semi-algebraic if its graph

{
(
y, F (y)

)
| y ∈ Rn } ⊂ Rn+1 is a union of finitely many sets

each defined by a finite number of polynomial equalities and strict

inequalities [Li and Pong 2015]. This assumption covers a large range

of functions used in computer graphics. For example, polynomials

(such as StVK energy) and rational functions (such as NURBS) are

both semi-algebraic. Then we have:

Theorem 3.5. Suppose Assumptions 3.1, 3.2, 3.4, 3.5 and 3.7 are

satisfied, and µ
2
−

L2c
µ >

Lc
2
. Then for a sufficiently large µ the x-z-u

iteration (15)-(17) converges to a stationary point defined in Eq. (25),
and

∑+∞
n=1 ∥z

k+1 − zk ∥ < ∞.

Theorem 3.6. If Assumptions 3.1, 3.2, 3.4, 3.6 and 3.7 are satisfied,
then for a sufficiently large µ the z-x-u iteration (18)-(20) converges to
a stationary point defined in Eq. (25), and

∑+∞
n=1 ∥Ax

k+1−Axk ∥ < ∞.

Proofs are given in Appendix F.1 and F.3.

Remark 3.5. Compared with existing convergence results for non-

convex ADMM such as [Li and Pong 2015; Wang et al. 2019], for

the x-z-u iteration we do not require the function д to be globally

Lipschitz differentiable, and for the z-x-u iteration we do not re-

quire the matrix A to be of full row rank. This makes our results

applicable to a wider range of problems in computer graphics. In

particular, for geometry optimization, the reduction matrix A that

relates vertex positions to auxiliary variables may not be of full row

rank, potentially due to the presence of auxiliary variables that are

derived in the same way from vertex positions but involved in dif-

ferent constraints. Although for the z-x-u iteration our assumptions
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Over relaxation (α = 1.5)
Over relaxation (α = 1.6)
Over relaxation (α = 1.7)
Over relaxation (α = 1.8)

[Kadkhodaie et al. 2015]
[Goldstein et al. 2014]

Fig. 3. Comparison with other ADMM acceleration schemes on the same
non-convex problem for rubber simulation as Fig. 2. Themethods from [Gold-
stein et al. 2014] and [Kadkhodaie et al. 2015], which are designed for convex
problems, are ineffective for this problem instance. Over-relaxation is effec-
tive in accelerating the convergence, but not as much as our approach.

on д are more restrictive than those in [Li and Pong 2015; Wang

et al. 2019], such assumptions are still general enough to be satisfied

by many graphics problems.

4 RESULTS
We apply our methods to a variety of ADMM solvers in graphics.

We implement Anderson acceleration following the source code

released by the authors of [Peng et al. 2018]
1
. The source code

of our implementation is available at https://github.com/bldeng/

AA-ADMM. All examples are run on a desktop PC with 32GB of

RAM and a quad-core CPU at 3.6GHz. To account for the dimension

and the numerical range of the variables, we use the following

normalized combined residual Rc and normalized forward residual
Rf to measure convergence:

Rc =

√
rc

Nz · a2
, Rf =

√
rf

Nz · a2
, (27)

where rc is the combined residual computed from Eq. (11) or (12),

rf is the squared norm of the residual of Eq. (22) or (24), Nz is the
dimension of z, and a > 0 is a scalar that indicates the typical

1
https://github.com/bldeng/AASolver
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Fig. 4. For the simulation of a discretized flag with hard constraints that limit its strain, our accelerated solver convergences faster than an ADMM solver.
Here the color-coding shows the deviation from the deformation gradient singular values from their prescribed range. Using the same computational budget
to compute a frame, the results with our solver satisfy the strain limiting constraints better.

variable range. In the following, for all physical simulation and

geometry optimization problems, we set a to the average edge length
of the initial discretized model. For image processing problems, we

simply set a = 1. For the choice of parameterm, similar to [Peng

et al. 2018] we observe that a largem tends to improve the reduction

of iteration count but increases the computational overhead per

iteration (see Fig. 2). We choosem = 6 by default.

4.1 Physical simulation
Overby et al. [2017] performed physical simulation via the following

optimization problem:

min

x,z
f (x) + д(z) s.t. W(z − Dx) = 0, (28)

Here x is the node positions of the discretized object, f (x) is a mo-

mentum energy of the form (14) with G being a scaled mass matrix,

Dx collects the deformation gradient of each element, д(z) is the
elastic potential energy, and W is a diagonal scaling matrix that

improves conditioning. This problem is solved in (28) using ADMM

with the x-z-u iteration. As it satisfies the assumptions in Proposi-

tion 3.1, we apply Anderson acceleration to variable z according to

Algorithm 3. Our method is implemented based on the source code

released by the authors of [Overby et al. 2017]
2
. Fig. 2 compares the

simulation performance on three elastic bars subject to horizontal

external forces on their two ends. We use the same material stiffness

for all bars, and a different elastic potential energy model for each

bar (corotational, StVK and neo-Hookean, respectively). We apply

the original solver and our solver with differentm values to the same

problem for a particular frame, and plot their normalized combined

residuals and normalized forward residuals through the iterations.

The methods are compared on two types of material stiffness (“soft

rubber” and “rubber” as defined in the code from [Overby et al.

2017], with the latter one being stiffer). Our method decreases both

residuals much faster than the original ADMM solver for each stiff-

ness settings. Moreover, these two residuals are highly correlated,

which demonstrates the effectiveness of using the forward residual

to verify accelerated iterates according to Proposition 3.2. On the

2
https://github.com/mattoverby/admm-elastic

rubber models, we also evaluate the performance of the general ap-

proach in Algorithm 1 that accelerates z and u together. We can see

that accelerating z alone leads to a faster decrease of the combined

residual. One possible reason is that Algorithm 3 explicitly enforces

the compatibility condition (21), so that the accelerated z and the

recovered u always correspond to a valid intermediate value for a

certain ADMM iterate sequence. This property does not hold for

the general approach, since it only performs affine combination to

obtain the accelerated z and u, which is more akin to finding a new

initial value for an ADMM sequence. In Fig. 3, we use the same soft

rubber simulation problem to compare our method with existing

ADMM acceleration techniques, including [Goldstein et al. 2014]

and [Kadkhodaie et al. 2015] which combined Nesterov’s acceler-

ation scheme with a restarting rule based on combined residual,

as well as over-relaxation [Eckstein and Bertsekas 1992] with a re-

laxation parameter α ∈ [1.5, 1.8] as explained in [Boyd et al. 2011,

§3.4.3]. As [Goldstein et al. 2014; Kadkhodaie et al. 2015] rely on the

convexity of the problem, they are ineffective for this non-convex

problem and in fact increases the computational time. Although

over-relaxation speeds up the decrease of residual, it achieves less

acceleration than our method.

The solver in [Overby et al. 2017] allows enforcing hard con-

straints on node positions. Our method can be applied in such cases

as well. In Fig. 4, we simulate the movement of a triangulated flag

under the wind force. Within д(z), the elastic potential energy for

each triangle is defined as the squared Euclidean distance from its

deformation gradient to the closest rotation matrix. In addition, д(z)
contains an indicator function term for the strain limit of each trian-

gle that requires all singular values of the deformation gradient to

be within the range [0.95, 1.05]. Due to such hard constraints for z,
we cannot apply our method to the x-z-u iteration (see Remark 3.1).

Instead, we adopt the z-x-u iteration and apply Algorithm 4 to ac-

celerate u alone, because the iteration satisfies the assumptions in

Proposition 3.3. We compare the original ADMM solver with our ac-

celerated solver withm = 6. To this end, we first apply our solver to

compute a simulation sequence, and then re-solve the optimization

problem using the original ADMM solver. Fig. 4 plots the normal-

ized forward residual from each solver on three frames, where we

ACM Trans. Graph., Vol. 38, No. 6, Article 163. Publication date: November 2019.
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Fig. 5. Simulation of a falling horse, with hard constraints on node positions
that prevent them from penetrating the static objects. Our method achieves
faster convergence than ADMM, as shown by the plots of normalized for-
ward residual for three frames.

see a faster decrease of the residual using our solver. In addition,

for these three frames we take the results from both solvers within

the same computational time, and use color-coding to illustrate the

maximum deviation of its deformation gradient singular values from

the prescribed range on each triangle. We can see that our solver

leads to better satisfaction of the strain limiting constraints.

Hard constraints are also used in [Overby et al. 2017] to handle

collision between objects. In Figs. 5 and 6, we apply our method in

such scenarios. Here an elastic solid horse model falls under gravity

and collides with static objects in the scene. In [Overby et al. 2017],

this is handled by enforcing hard constraints on x that prevent the

nodes from penetrating the static objects. As this would reduce the

x-update step to a time-consuming quadratic programming problem,

[Overby et al. 2017] linearizes the constraints and solve the resulting

linear system. However, with such modification it is no longer an

ADMM algorithm. Therefore, we apply the constraints on z instead
and solve the problem using z-x-u iteration, with acceleration ac-

cording to Algorithm 4. Figs. 5 and 6 plot the normalized forward

residual for computing certain frames in the simulation sequence,

showing a faster decrease of the residual with our method.

4.2 Geometry processing
We also apply ourmethod to an ADMM solver for mesh optimization

subject to both soft and hard constraints based on [Deng et al. 2015].

The input is a mesh with vertex positions x, soft constraints Aix ∈

Ci (i ∈ S), and hard constraints Ajx ∈ Cj (j ∈ H ). Here each

reduction matrix Ai and Aj selects vertex positions relevant to

the constraint and (where appropriate) compute their differential

coordinates with respect to either their mean position or one of the

vertices. [Deng et al. 2015] introduce auxiliary variables zi ∈ Ci
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Fig. 6. The same simulation of a falling horse as in Fig. 5, with more complex
arrangement of static objects. Our acceleration approach remains effective.

(i ∈ S) and zj ∈ Cj (j ∈ H ) to derive an optimization problem

min

x,z

1

2

∥L(x − x̃)∥2 +
∑
i ∈S

(wi
2

∥Aix − zi ∥2 + σCi (zi )
)
+

∑
j ∈H

σCj (zj )

s.t. Ajx − zj = 0, ∀ j ∈ H . (29)

Here ∥L(x − x̃)∥2 is an optional Laplacian fairing energy for the

vertex positions and/or for their displacement from initial positions,

whereas ∥Aix−zi ∥2 penalizes the violation of a soft constraint with

a user-specified weight wi . This problem is solved in [Deng et al.

2015] using the augmented Lagrangian method (ALM), where each

iteration performs multiple alternate updates of z and x followed by

a single update of u, using the same formulas as (6). Wu et al. [2011]

pointed out that it is more efficient to perform only one alternate

update of primal variables per iteration, in which case ALM reduces

to ADMM. Therefore, we solve the problem using ADMM with the

z-x-u iteration, and apply the general approach in Algorithm 2 for

acceleration because the target function is not separable.

In Fig. 7, we apply our method with m = 6 to the wire mesh

optimization problem from [Garg et al. 2014]. The input is a regular

quad mesh subject to the following constraints:

• Hard constraints: all edges have the same length l ; within a face,

each angle formed by two incident edges is in the range [ π
4
, 3π

4
].

• Soft constraint: each vertex lies on a given reference surface.

The mesh is optimized without the Laplacian fairing term, i.e., L = 0.
Our method leads to a faster decrease of the combined residual with

ACM Trans. Graph., Vol. 38, No. 6, Article 163. Publication date: November 2019.
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Fig. 7. Our method accelerates an ADMM solver for wire mesh optimization, as shown by the normalized combined residual plots. We also show two results
computed using ADMM and our accelerated solver within the same computational time (indicated in the bottom-right plot), and evaluate their violation of
the angle constraints and edge length constraints using the error metrics in Eq. (30). Our result satisfies these constraints better.

0 0.1
Reference surface distance

angle & edge penalty = 100 angle & edge penalty = 10000  angle & edge penalty = 1000000 ADMM penalty = 1000 

ShapeUp + Anderson Acceleration Our method

Target Mesh Initial Mesh

#V: 230400  
#F: 229440

Fig. 8. Comparison of wire mesh optimzation results using our accelerated ADMM solver and an accelerated quadratic penalty method as described in [Peng
et al. 2018]. The error metric E is the sum of squared distances from the mesh vertices to the reference shape, and the color-coding illustrates the distance for
each vertex. Although the quadratic penalty method can improve satisfaction of the angle and edge length constraints with a larger penalty weight, this leads
to greater deviation from the reference shape.

respect to both the iteration count and the computational time. We

also evaluate the violation of hard constraints using the following

error metrics for angle α and edge length e:

ξ (e) =
|e − l |

l
, γ (α) =


π
4
− α if α < π

4
,

α − 3π
4

if α > 3π
4
,

0 otherwise.

(30)

The data and color-coding in Fig. 7 show that within the same

computational time, the result from our method satisfies the hard

constraints better than the original ADMM.

Besides ADMM, another popular approach for enforcing hard

constraints is the quadratic penalty method, which replaces the

original constrained problem by an unconstrained problem with

quadratic terms in the target function to penalize the violation of

hard constraints [Nocedal and Wright 2006]. Fig. 8 compares the

effectiveness of these two approaches in enforcing hard constraints

while decreasing the original target function. For the quadratic

penalty method, we use ShapeUp [Bouaziz et al. 2012] with An-

derson acceleration as described in [Peng et al. 2018], and solve

three problem instances with different penalty weights for hard con-

straints and fixed weights for the other terms. Each solver is run to

ACM Trans. Graph., Vol. 38, No. 6, Article 163. Publication date: November 2019.
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Fig. 9. PQ mesh optimization using our accelerated solver convergences faster than ADMM, and achieves better satisfaction of the planarity constraints
within the same computational time (highlighted in the plot in bottom right).

full convergence for comparison. We can see that although a larger

penalty weight for hard constraints improves their satisfaction, it

also leads to relatively less penalty and greater violation of the soft

constraints. In particular, with a large penalty weight to satisfy the

hard constraints to a similar level as ADMM, the result from the

quadratic penalty method deviates much more from the reference

surface than ADMM. It shows that ADMM is more effective in sat-

isfying hard constraints without compromising the minimization of

the target function, and our method further improves its efficiency.

In Figs. 1 and 9, we apply our method to planar quad mesh opti-

mization, a classical problem in architectural geometry [Liu et al.

2006]. The input is a quad mesh subject to the following constraints:

• Hard constraint: vertices within each face lie on a common plane.

• Soft constraint: each vertex lies on a given reference surface.

Following [Bouaziz et al. 2012], the reduction matrix for each hard

constraint represents the mean-centering operator for the vertices

on a common face. The target function includes a Laplacian fairness

energy and a relative fairness energy for the vertex positions, as

described in [Liu et al. 2011]. We measure the planarity error for

each face F of a given mesh using the metric dmax(F )/e , where
dmax(F ) is the maximum distance from a vertex of F to the best

fitting plane of its vertices, and e is the average edge length of the

mesh. In both Fig. 1 and Fig. 9, our method accelerates the decrease

of the combined residual, producing a result with lower planarity

error than the original ADMM within the same computational time.

4.3 Image processing
In Fig. 10, we apply our method to the ADMM solver from the

ProxImaL image optimization framework [Heide et al. 2016]. We

compare our method with the original solver on the following prob-

lem that computes a deconvoluted image x from an observation

image f with Gaussian noise and a convolution operator K:

min

x,z
λ1∥z1−f ∥2+λ2∥z

i, j
2

∥ s.t. Kx = z1, (∇x)i, j = zi, j
2

∀i, j, (31)

where (∇x)i, j is the image gradient of x at pixel (i, j). This is solved
in [Heide et al. 2016] using ADMM with the x-z-u iteration, and we

accelerate it using Algorithm 1 withm = 6. We modify the source

code of the ProxImaL library
3
to implement our accelerated solver,

and use conjugate gradient to solve the linear systems in the update

steps. Fig. 10 shows that our method requires less computational

time and lower iteration count to achieve the same residual value.

Finally, in Fig. 11, we accelerate the ADMM solver used by the

Coded Wavefront Sensor in [Wang et al. 2018] for computing the

observed wavefront from a captured image. The wavefront x is

computed by solving an optimization problem

min

x,z
λ∥∇x∥2 + д(z) s.t. ∇x = z, (32)

where z is an auxiliary variable for image gradient, and д(z) is a qua-
dratic term that measures the consistency between the wavefront

and the captured image. From the general condition presented in

Appendix E.1, we know that in each iteration the dual variable uk

can be represented as a function of zk via Eq. (49). Therefore, we

apply Anderson acceleration to z alone. Moreover, as д(z) is qua-
dratic, Eq. (49) implies that zk and uk are related by a linear map.

Thus we use the history z to compute the affine combination coeffi-

cients for Anderson acceleration, and apply them to both z and u to

derive the accelerated z and its compatible u, similar to Algorithm 4.

We modify the source code released by the authors of [Wang et al.

2018]
4
to implement our accelerated solver. Fig. 11 compares the

normalized combined residual plots between the two solvers, using

a test example provided in the released source code. Compared to

the original ADMM, our method leads to a significant reduction of

computational time and iteration count for the same accuracy. Also

included in the comparison is the GMRES acceleration for ADMM

3
https://github.com/comp-imaging/ProxImaL

4
https://github.com/vccimaging/MegapixelAO
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Fig. 10. Our method accelerates the ADMM solver in [Heide et al. 2016] for
the deconvolution of a 512 × 512 image with Gaussian noise using Eq. (31).
The given convolution operator K is visualized in the bottom right of the
observation image.

proposed in [Zhang and White 2018], which is designed specifi-

cally for strongly convex quadratic problems. Following [Zhang and

White 2018], we restart GMRES every 10 iterations to reduce com-

putational cost. As a general method, our approach is outperformed

by GMRES acceleration, but only by a small margin.

5 CONCLUSION AND FUTURE WORK
In this paper, we apply Anderson acceleration to improve the con-

vergence of ADMM on computer graphics problems. We show that

ADMM can be interpreted as a fixed-point iteration of the second

primal variable and the dual variable in the general case, and of only

one of them when the problem has a separable target function and

satisfies certain conditions. Such interpretation allows us to directly

apply Anderson acceleration in the former case, and further reduce

its computational overhead in the latter case. Moreover, for each

case we propose a simple residual for measuring the convergence,

and use it to determine whether to accept an accelerated iterate. We

apply this method to a variety of ADMM solvers in graphics, with

applications ranging from physics simulation, geometry process-

ing, to image processing. Our method shows its effectiveness on all

these problems, with a notable reduction of iteration account and

computational time required to reach the same accuracy. On the

theoretical front, we also prove the convergence of ADMM for a

common non-convex problem structure in computer graphics un-

der weak assumptions. Our work addresses two main limitations

of ADMM especially on non-convex problems, which will help to

expand its applicability in computer graphics as a versatile solver for

optimization problems that are potentially non-smooth, non-convex,

and with hard constraints.

One limitation of our method is that it can be less effective for

ADMM solvers with very low computational cost per iteration. In

this case, the overhead of Anderson acceleration can cause a large

relative increase of computational time, which partly cancels out

the speedup gained from the reduction of iteration count. One such
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Fig. 11. Our method accelerates the ADMM solver in [Wang et al. 2018] for
computing the observed wavefront from a captured image, and achieves
similar performance as the specialized GMRES acceleration [Zhang and
White 2018] despite being a general acceleration technique.

example is Fig. 12, where we apply our method to the ADMM solver

in [Tao et al. 2019] for correcting a vector field into an integrable

gradient field of geodesic distance. Although our method reduces the

number of iterations, its large relative overhead actually increases

the computational time for achieving the same residual.

Our experiments show that Anderson acceleration is effective in

reducing the number of iterations, but we do not have a theoretical

guarantee for such property. This is still an open research problem,

and the only existing result we are aware of is [Evans et al. 2018],

which proves that Anderson acceleration improves the convergence

rate for linearly converging fixed-point methods if a set of strong

assumptions is satisfied. Further theoretical analysis of our method

is needed to understand and guarantee its performance.

Currently we follow the convention and set the mixing parameter

β = 1 for Anderson acceleration. Although it is effective in our

experiments, other values of β = 1 can potentially improve the

performance [Eyert 1996]. The optimal choice of mixing parameter

remains an open research problem, and should be explored further.

The convergence of ADMM can also be affected by the choice of

the penalty parameter and the conditioning of linear side constraints.

Recently, researchers have started to analyze the optimal choice

of penalty parameter and conditioning for ADMM, but only on

simple convex problems [Ghadimi et al. 2015; Giselsson and Boyd

2017]. Overby et al. [2017] proposed a heuristic for choosing such

parameters for non-convex physical simulation problems, but there

is still no theoretical guarantee for its effectiveness. A potential

future research is to perform such analysis on non-convex problems,

as well as how they can be used in conjunction with Anderson

acceleration to further improve convergence of ADMM.

Finally, as ADMM is a popular solver across different problem

domains, we can apply our method to problems outside computer

graphics. In this paper we have focused on a problem structure

common for graphics tasks. Applications in other domains may

involve other problem structures and require different analyses and

strategies, which will be an interesting future work.
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Fig. 12. We apply our method to the ADMM solver in [Tao et al. 2019] for
correcting a vector field into an integrable gradient field. Due to the very low
computational cost per iteration in the original solver, Anderson acceleration
incurs a large relative overhead. As a result, although our method reduces
the number of iterations, it actually increases the computational time.
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A PROOF FOR PROPOSITION 3.1
By the optimality condition of (16) we have:

∇д(zk+1) − µBT (Axk+1 − Bzk+1 + uk − c) = 0. (33)

Put (17) into (33):

∇д(zk+1) = µBT uk+1, (34)

which completes the proof. □

B PROOF FOR PROPOSITION 3.2
For the first part, suppose zk+1 is the fixed-point of the x-z-u itera-

tion, which means that

zk+2 = zk+1. (35)

Then we have

uk+2 = uk+1 by (34)

=⇒ Axk+2 − Bzk+2 − c = 0 by (17)

=⇒ Axk+2 − Bzk+1 − c = 0 by (35).

For the second part, if Axk+2 − Bzk+1 − c = 0 then from (17):

Axk+2 − c + uk+1 = Axk+1 − c + uk . (36)
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And from (16) and Remark 3.2

zk+1 = argmin

z

(
д(z) +

µ

2

∥(Axk+1 − c + uk ) − Bz∥2
)

= argmin

z

(
д(z) +

µ

2

∥(Axk+2 − c + uk+1) − Bz∥2
)
= zk+2,

which completes the proof. □

C PROOF FOR PROPOSITION 3.3
By (20) we have:

Bzk+1 − uk + c = Axk+1 − uk+1 (37)

Put (37) into (19):

(G + µATA)xk+1 = Gx̃ + µAT (Axk+1 − uk+1)

=⇒ Gxk+1 = Gx̃ − µAT uk+1

=⇒ xk+1 = x̃ − µG−1AT uk+1, (38)

which completes the proof. □

D PROOF FOR PROPOSITION 3.4
For the first part, suppose uk+1 is the fixed-point of the z-x-u itera-

tion, so that

uk+2 = uk+1. (39)

Then by (38) and (39):

xk+2 = xk+1. (40)

Therefore

Axk+2 − Bzk+2 − c = 0 by (20) and (39)

=⇒ Axk+1 − Bzk+2 − c = 0 by (40).

For the second part, suppose

Axk+1 − Bzk+2 − c = 0. (41)

Then we have

uk+1 − Bzk+2 = uk − Bzk+1 by (20) and (41)

=⇒ xk+2 = xk+1 by (19)

=⇒ Axk+2 − Bzk+2 − c = 0 by (41)

=⇒ uk+2 = uk+1 by (20),

which completes the proof. □

E FURTHER DISCUSSION FOR PROPOSITIONS 3.1-3.4
Wenow consider the general condition such that between the second

updated primal variable and the dual variable, one of them is a

function of the other. We consider the most general case:

min

x,z
f (x) + д(z) s.t. Ax − Bz = c. (42)

Unlike Section 3.3, we do not assume any specific form of f and д.
We then only need to discuss the following x-z-u iteration because

the conclusion for z-x-u iteration is similar:

xk+1 ∈ argmin

x
L(x, zk , uk ), (43)

zk+1 ∈ argmin

z
L(xk+1, z, uk ), (44)

uk+1 = uk + Axk+1 − Bzk+1 − c. (45)

We first need the subproblem (43) and (44) to be well-defined, for

which the next condition is sufficient :

(C1) f and д are bounded from below and lower-semi continuous.

Then we rewrite the ADMM iteration as:

− AT (Axk+1 − Bzk − c + uk ) ∈ ∂ f (xk+1), (46)

BT (Axk+1 − Bzk+1 − c + uk ) ∈ ∂д(zk+1), (47)

uk+1 = uk + Axk+1 − Bzk+1 − c. (48)

E.1 u as a function of z
By (47) and (48):

BT uk+1 ∈ ∂д(zk+1). (49)

Now we can see that uk+1 is a function zk+1 if and only if:

(C2) B is invertible.

(C3) ∂д(z) contains exactly one element ∀z ∈ dom(∂д).

From [Rockafellar and Wets 2009, Theorem 9.18] we know that the

next condition is sufficient:

(C3
′
) д(z) is strictly differentiable ∀z ∈ dom(∂д).

Moreover, we need additional conditions in order to use Anderson

acceleration on z. Note that Anderson acceleration generates zAA

by affine combination. So if we want to use (49) to compute uAA
from zAA, the following condition is needed:

(C4) The domain of ∂д, defined as {z | ∂д(z) , ∅}, is affine.

E.2 z as a function of u
From (49) we know that z is a function of u if and only if:

(C5) The inverse mapping of set-valued mapping ∂д(z) is a single-
valued mapping.

The next condition is sufficient to ensure (C5) but not necessary:

(C5
′
) д(z) is strictly convex.

Also, similar to the argument in Appendix E.1, in order to apply

Anderson acceleration on u we need the following condition:

(C6) The range of ∂д, defined as

⋃
z∈Rn ∂д(z), is affine.

F PROOFS FOR CONVERGENCE THEOREMS
This section proves the linear convergence theorems when д is lo-

cally Lipschitz differentiable (Theorems 3.3 and 3.4) and the general

convergence theorems (Theorems 3.5 and 3.6). The proofs for Theo-

rems 3.1 and 3.2 are similar to those for Theorems 3.3 and 3.4, so we

will not give their complete proofs but only summarize the main

steps. Because of the order in which some lemmas are used in the

proofs, we will prove Theorem 3.5 and 3.3 first. Without loss of

generality, we assume c = 0 in Eq. (13) to simplify notation.
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F.1 Proof for Theorem 3.5
Recall that Theorem 3.5 is about general convergence of the x-z-u
iteration. We first note that:

∇д̂(z) = B−T ∇д(B−1z) (50)

=⇒ ∇д̂(Bz) = B−T ∇д(z). (51)

These two equations will be used frequently in the following. Note

that from Assumption 3.4(2) we can derive (33) from (16). Moreover,

based on the definition of Lc in Assumption 3.5 we have:

Proposition F.1. Suppose the Lipschitz constant of ∇д̂(z) over
conv(L

д̂
α ) is L1, then ∀ Bz1,Bz2 ∈ L

д̂
α , we have

|д̂(Bz1) − д̂(Bz2) − ⟨∇д̂(Bz2),Bz1 −Bz2⟩| ≤
L1
2

∥Bz1 −Bz2∥2. (52)

Moreover, if µ > L1, and z2 ∈ argminz(д(z) +
µ
2
∥Bz − q∥2), then:

д(z2)+
µ

2

∥Bz2 − q∥2 ≤ д(z1)+
µ

2

∥Bz1 − q∥2 −
µ − L1

2

∥Bz1 −Bz2∥2.

The proof is standard so we omit it. Also see [Nesterov 2013,

Lemma 1.2.3 & Theorem 2.1.8]. The next lemma is important.

Lemma F.1. If Assumption 3.4 and 3.5 hold, µ
2
−

L2c
µ >

Lc
2
, and the

x-z-u iteration satisfies д(zk ) ≤ T (x0, z0) + c1 and L(xk , zk , uk ) ≤
L(x0, z0, u0) = T (x0, z0). Then

д(zk+1) ≤ T (x0, z0) + c1, L(xk+1, zk+1, uk+1) ≤ T (x0, z0). (53)

Proof. By the definition of zk+1 in (16):

д(zk+1)+
µ

2

∥Axk+1−Bzk+1+uk ∥2 ≤ д(zk )+
µ

2

∥Axk+1−Bzk+uk ∥2.

And notice the definition of xk+1 in (15):

f (xk+1)+
µ

2

∥Axk+1 −Bzk +uk ∥2 ≤ f (xk )+
µ

2

∥Axk −Bzk +uk ∥2.
(54)

Combine the two equations above:

T (xk+1, zk+1)+
µ

2

∥Axk+1−Bzk+1+uk ∥2 ≤ L(xk , zk , uk )+
µ

2

∥uk ∥2.

By (17) and (34):

T (xk+1, zk+1) +
µ

2

∥uk+1∥2 ≤ L(xk , zk , uk ) +
1

2µ
∥B−T ∇д(zk )∥2.

(55)

Notice that L(xk , zk , uk ) ≤ T (x0, z0) and by the definition of c1:

д(zk+1) ≤ T (x0, z0) + c1.

Thus we have proved the first part. For the second part, we have:

L(xk+1, zk , uk ) ≤ L(xk , zk , uk ), (56)

L(xk+1, zk+1, uk ) ≤ L(xk+1, zk , uk ) −
µ − Lc

2

∥Bzk+1 − Bzk ∥2,
(57)

L(xk+1, zk+1, uk+1) = L(xk+1, zk+1, uk ) + µ∥uk+1 − uk ∥2. (58)

Here (56) is derived from (54), (57) is derived from Assumption 3.5(2)

and Proposition F.1, and (58) is trivial. Add them together, and then

use (34) and the fact that
µ
2
−

L2c
µ >

Lc
2
:

L(xk+1, zk+1, uk+1) ≤ L(xk , zk , uk ) − (
µ

2

−
L2c
µ

−
Lc
2

)∥Bzk+1 − Bzk ∥2

≤ T (x0, z0), (59)

Which completes the proof. □

From Assumption 3.5(1) and Lemma F.1, we have:

Proposition F.2. Suppose Assumptions 3.4 and 3.5 hold, and µ
2
−

L2c
µ >

Lc
2
. Then the x-z-u iteration satisfies

д(zk ) ≤ T (x0, z0) + c1, L(xk , zk , uk ) ≤ T (x0, z0). (60)

By Proposition F.2, Assumption 3.4(3) has the same effect as the

Lipschitz differentiability assumption. The next step is similar to

the convergence proof in [Wang et al. 2019], which requires the

following properties for the sequence (xk , zk , uk ):
(P1) Boundedness: the generated sequence (xk , zk , uk ) is bounded,

and L(xk , zk , uk ) is lower bounded.
(P2) Sufficient descent: there is a constant C1(µ) > 0 such that for

sufficiently large k , we have:

L(xk , zk , uk ) − L(xk+1, zk+1, uk+1)

≥ C1(µ)(∥B(zk+1 − zk )∥2 + ∥A(xk+1 − xk )∥2).

(P3) Subgradient bound: there is a constant C2(µ) > 0 and dk+1 ∈

∂L(xk+1, yk+1, uk+1) such that

∥dk+1∥ ≤ C2(µ)(∥B(zk+1 − zk )∥ + ∥A(xk+1 − xk )∥).

(P4) Limiting continuity: if (x∗, z∗, u∗) is the limit point of the

sub-sequence (xks , zks , uks ) for s ∈ N, then we have:

lim

s→∞
L(xks , zks , uks ) = L(x∗, z∗, u∗).

Note that although the x-z-u iteration is not same as the one defined

in [Li and Pong 2015], the proof for [Li and Pong 2015, Theorem

3] is not affected by the difference. Combining it with [Wang et al.

2019, Proposition 2], we can prove Theorem 3.5:

Proof for Theorem 3.5. From [Wang et al. 2019, Proposition 2],

[Li and Pong 2015, Theorem 3], and Proposition F.2 in our paper,

we only need to show (P1)-(P4) hold for (xk , zk , uk ).
For (P1), from (55) we have:

T (xk , zk ) ≤ T (x0, z0) + c1. (61)

From Assumption 3.4(1) д(z) is level-bounded and G is invertible

so f (x) is also level-bounded, thus (xk , zk ) is bounded. The bound-
edness of uk can be derived from (33). The lower boundedness

of L(xk , zk , uk ) comes from Assumption 3.5(2) and the fact that

T (x, z) ≥ 0. In fact we have: L(xk , zk , uk ) ≥ −c1.
In the derivation of (56), we did not use the fact that f (x) is

quadratic. If we take this into consideration, then (56) becomes:

L(xk+1, zk , uk ) ≤ L(xk , zk , uk ) − l ∥xk+1 − xk ∥2. (62)
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Here l > 0 is some constant. (62),(57) and (58) show that (P2) holds.

(P4) is trivial for our problem. For (P3) we have:

∇xL(xk+1, zk+1, uk+1) = G(xk+1 − x̃) + µAT (Axk+1 − Bzk+1 + uk+1)

= µAT (Bzk − Bzk+1 + uk+1 − uk ), (63)

∇zL(xk+1, zk+1, uk+1) = ∇д(zk+1) + µBT (Bzk+1 − Axk+1 − uk+1)

= µBT (uk − uk+1), (64)

∇uL(xk+1, zk+1, uk+1) = µ(Axk+1 − Bzk+1) = µ(uk+1 − uk ). (65)

Here we use (15) and (17) for (63); (33) for (64); (17) for (65). By (33),

Assumption 3.4(3), and Assumption 3.5:

∥∇xL(xk+1, zk+1, uk+1)∥ ≤

√
ρ(ATA)(µ + Lc )∥Bzk+1 − Bzk ∥,

∥∇zL(xk+1, zk+1, uk+1)∥ ≤

√
ρ(BT B)Lc ∥Bzk+1 − Bzk ∥.

And notice that∇uL(xk+1, zk+1, uk+1) = −BT ∇zL(xk+1, zk+1, uk+1),
then we get the result. □

F.2 Proof for Theorem 3.3
Recall that Theorem 3.3 is about linear convergence of the x-z-u
iteration. To simplify the notation, we define:

N(z) B z +
1

µ
B−T ∇д(B−1z). (66)

Proposition F.3. The x-z-u iteration (15)-(17) satisfies

N(Bzk+1) = (I + µK)−1(Ax̃ + µKBzk +
1

µ
B−T ∇д(zk )), (67)

where matrix K is defined in (26).

Proof. By (17) we have:

Bzk − uk = Axk+1 + Bzk − Bzk+1 − uk+1.
by (15)

=⇒ (G + µATA)xk+1 = Gx̃ + µAT (Axk+1 + Bzk − Bzk+1 − uk+1)

=⇒ xk+1 = x̃ + µG−1AT (Bzk − Bzk+1 − uk+1)

=⇒ Axk+1 = Ax̃ + µAG−1AT (Bzk − Bzk+1 − uk+1).
by (17)

=⇒ (I + µAG−1AT )(uk+1 + Bzk+1) = Ax̃ + µAG−1AT Bzk + uk .
by (34)

=⇒ (I + µAG−1AT )(
1

µ
B−T ∇д(zk+1) + Bzk+1)

= Ax̃ + µAG−1AT Bzk +
1

µ
B−T ∇д(zk ).

From the definitions of N and K, the last equation above becomes:

(I + µK) N(Bzk+1) = Ax̃ + µKBzk +
1

µ
B−T ∇д(zk )

=⇒ N(Bzk+1) = (I + µK)−1(Ax̃ + µKBzk +
1

µ
B−T ∇д(zk )),

which completes the proof. □

Next we show a sufficient condition for the convergence to a

stationary point:

Proposition F.4. If the sequence {zk } converges, then {xk , zk , uk }
converges to a stationary point defined in (25).

Proof. Suppose zk → z∗. Then by (21), uk → u∗ = B−T ∇д(z∗),
which proves ∇д(z∗) − BT u∗ = 0. By (15), xk → x∗ where

x∗ = (G + µATA)−1(Gx̃ + µAT (Bz∗ + c − u∗)) (68)

In (17), let k → ∞ then we have

Ax∗ − Bz∗ = c (69)

The identity ∇f (x∗)+AT u∗ = 0 then follows from (68) and (69). □

We now show that {zk } converge linearly:

Proof for Theorem 3.3. From (67):

N(Bzk+1) − N(Bzk )

= (I + µK)−1(µKB(zk − zk−1) +
1

µ
B−T (∇д(zk ) − ∇д(zk−1))).

(70)

By Proposition F.2, д(zk ) ≤ T (x0, z0) + c1, ∀k ∈ N. Then by the

definition of c1(see Assumption 3.5) and Assumption 3.4(3):

∥∇д̂(Bzk+1) − ∇д̂(Bzk )∥ ≤ Lc ∥Bzk+1 − Bzk ∥, ∀k ∈ N

=⇒ ∥N(Bzk+1) − N(Bzk )∥ ≥ (1 −
Lc
µ
)∥Bzk+1 − Bzk ∥. (71)

For the right hand side of (70):

∥(I + µK)−1(µKB(zk − zk−1) +
1

µ
B−T (∇д(zk ) − ∇д(zk−1)))∥

≤ ∥(I + µK)−1(µKB(zk − zk−1)∥ + ∥
1

µ
(I + µK)−1B−T (∇д(zk ) − ∇д(zk−1))∥.

By the spectral mapping theorem:

∥(I + µK)−1(µK)∥ = ρ
(
(I + µK)−1(µK)

)
=

µρ(K)
1 + µρ(K)

. (72)

And notice that K is positive semi-definite:

∥
1

µ
(I+µK)−1B−T (∇д(zk )−∇д(zk−1)))∥ ≤

Lc
µ
∥Bzk −Bzk−1∥. (73)

Combine (72) with (73):

∥(I + µK)−1(µK(Bzk − Bzk−1) + (
1

µ
(B−T ∇д(zk ) − B−T ∇д(zk−1)))∥

≤ (
µρ(K)

1 + µρ(K)
+
Lc
µ
)∥Bzk − Bzk−1∥. (74)

By (71) and (74) we have:

∥Bzk+1 − Bzk ∥ ≤

µρ(K)
1+µρ(K) +

Lc
µ

1 −
Lc
µ

∥Bzk − Bzk−1∥. (75)

If µ > max

{
1

1

2Lc
−ρ(K)

, 1

Lc

}
then γ1 < 1, which completes the proof.

□
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F.3 Proof for Theorem 3.6
Theorem 3.6 is about general convergence of the x-z-u iteration. We

first prove Proposition 3.5 that defines the value η.

Proof for Proposition 3.5. By the definition of K in (26), we

know thatK(R(A)) ⊂ R(A). SinceR(A) is a linear subspace andK is a

linear operator, for the proof it suffices to show ker(K)∩R(A) = {0},

where ker(K) is the kernel of K. Now assume y ∈ ker(K), then for

any z ∈ Rq where q is the number of rows in matrix A, we have:

⟨AG−1AT y, z⟩ = 0 =⇒ ⟨G−1AT y,AT z⟩ = 0

=⇒ ⟨G−1AT y,AT y⟩ = 0 (take z = y).

Notice that G−1
is positive definite, so we have AT y = 0, which is

equivalent to y ⊥ R(A). Hence we get ker(K) ∩ R(A) = {0}, which

completes the proof. □

The next proposition provides a characterization of uk+1:

Proposition F.5. The z-x-u iteration (18)-(20) satisfies:

uk+1 = Axk+1 − Axk +
1

µ
B−T ∇д(zk+1). (76)

Proof. From (20):

uk+1 − Axk+1 = uk − Bzk+1. (77)

From (23):

Axk + uk = Ax̃ − µKuk + uk

by (18)

=⇒ Bzk+1 +
1

µ
B−T ∇д(zk+1) = Axk + uk

=⇒
1

µ
B−T ∇д(zk+1) = Axk + uk − Bzk+1. (78)

Combine (77) with (78) then we can get the result. □

Now we are able to bound both ∥uk ∥ and ∥uk+1 − uk ∥:

Proposition F.6. For z-x-u iteration (18)-(20) and k ≥ 1 we have:

∥uk ∥2 ≤
4

η2µ2
∥Axk −Ax̃∥2 + (

4ρ(K)2

µ2η2
+

2

µ2
)∥B−T ∇д(zk )∥2, (79)

∥uk+1 −uk ∥2 ≤
4

µ2η2
∥Axk+1 −Axk ∥2

+ (
4ρ(K)2

µ2η2
+

2

µ2
)∥B−T (∇д(zk+1)−∇д(zk ))∥2. (80)

Proof. To prove (79), note that from (76):

∥uk ∥2 ≤ 2∥Axk − Axk−1∥2 +
2

µ2
∥B−T ∇д(zk )∥2. (81)

And from (23):

Axk+1 = Ax̃ − µKuk+1 (82)

by (76)

=⇒ Axk+1 = Ax̃ − µK(Axk+1 − Axk ) − KB−T ∇д(zk+1)

=⇒ Axk+1 − Ax̃ + KB−T ∇д(zk+1) = −µK(Axk+1 − Axk ). (83)

Hence by Proposition 3.5:

µ2η2∥Axk+1−Axk ∥2 ≤ 2∥Axk+1−Ax̃∥2+2ρ(K)2∥B−T ∇д(zk+1)∥2,

and (79) follows from this equation and (81). For (80), from (76):

uk+1 − uk = A(xk+1 − 2xk + xk−1) +
1

µ
B−T (∇д(zk+1) − ∇д(zk ))

=⇒ ∥uk+1 − uk ∥2 ≤ 2∥A(xk+1 − 2xk + xk−1)∥2

+
2

µ2
∥B−T (∇д(zk+1) − ∇д(zk ))∥2. (84)

And by (83):

Axk+1−Axk+KB−T (∇д(zk+1)−∇д(zk )) = −µKA(xk+1−2xk+xk−1).

Hence:

µ2η2∥A(xk+1 − 2xk + xk−1)∥2

≤ 2∥Axk+1 − Axk ∥2 + 2ρ(K)2∥B−T (∇д(zk+1) − ∇д(zk ))∥2.
(85)

Then (80) follows from (84) and (85). □

Similar to Proposition F.2, we can prove:

Proposition F.7. Suppose Assumptions 3.4 and 3.6 hold, and µ is
sufficiently large. The the z-x-u iteration satisfies:

T (xk , zk ) ≤ T (x0, z0)+c2 +c3, L(xk , zk , uk ) ≤ T (x0, z0)+c3. (86)

Proof. We will prove this by induction. For k = 0 this is trivial,

now assume (86) holds for every k ≤ l . Consider k = l + 1. By the

definition of zl+1 in (18):

д(zl+1)+
µ

2

∥Axl −Bzl+1+ul ∥2 ≤ д(zl )+
µ

2

∥Axl −Bzl +ul ∥2. (87)

By the definition of xl+1 in (18):

f (xl+1)+
µ

2

∥Axl+1−Bzl+1+ul ∥2 ≤ f (xl )+
µ

2

∥Axl −Bzl+1+ul ∥2.
(88)

add (88) to (87):

T (xl+1, zl+1) ≤ L(xl , zl , ul ) +
µ

2

∥ul ∥2.

By induction:

L(xl , zl , ul ) ≤ T (x0, z0) + c3.
Since l + 1 ≥ 1, by Proposition F.6:

µ

2

∥ul ∥2 ≤
2

η2µ
∥Axl − Ax̃∥2 + (

2ρ(K)2

µη2
+

1

µ
)∥B−T ∇д(zl )∥2.

By induction:

T (xl , zl ) ≤ T (x0, z0) + c2 + c3 ≤ T (x0, z0) + 1.

By the definition of c2,
µ
2
∥ul ∥2 ≤ c2. Hence:

T (xl+1, zl+1) ≤ T (x0, z0) + c2 + c3,

which proves the first part. For the second part, we first prove that

the conclusion holds for l = 0 (k = 1). From the first part we know:

T (x1, z1) ≤ T (x0, z0) + c2 + c3.

Notice that f (x1) ≥ 0 so we have д(z1) ≤ T (x0, z0) + c2 + c3. Hence
by Proposition F.1:

L(x0, z1, u0) ≤ L(x0, z0, u0) −
µ − Ld

2

∥Bz1 − Bz0∥2.

And by Assumption 3.2:

L(x1, z1, u0) ≤ L(x0, z1, u0) −
µ

2

∥Ax1 − Ax0∥2.
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Moreover, we have:

L(x1, z1, u1) = L(x1, z1, u0) + µ∥u1 − u0∥2

By (79) and u0 = 0:

µ∥u1 − u0∥2 = µ∥u1∥2

=
4

η2µ
∥Ax1 − Ax̃∥2 + (

4ρ(K)2

µη2
+

2

µ
)∥B−T ∇д(z1)∥2.

Moreover, we have:

∥B−T ∇д(z1)∥2 ≤ 2∥B−T ∇д(z1) − B−T ∇д(z0)∥2 + 2∥B−T ∇д(z0)∥2

≤ 2Ld ∥Bz
1 − Bz0∥2 + 2∥B−T ∇д(z0)∥2.

So if
µ
2
≥ 4

η2µ and
µ−Ld
2

≥ 2Ld (
4ρ(K)2

µη2 +
2

µ ), then we have:

L(x1, z1, u1) ≤ L(x0, z0, u0) + (
8ρ(K)2

µη2
+

4

µ
)∥B−T ∇д(z0)∥2

= T (x0, z0) + (
8ρ(K)2

µη2
+

4

µ
)∥B−T ∇д(z0)∥2.

By the definition of c3 we have L(x1, z1, u1) ≤ T (x0, z0) + c3. Now
suppose l ≥ 1. Similar to the proof of the case l = 0 we have:

L(xl , zl+1, ul ) ≤ L(xl , zl , ul ) −
µ − Ld

2

∥Bzl+1 − Bzl ∥2,

L(xl+1, zl+1, ul ) ≤ L(xl , zl+1, ul ) −
µ

2

∥Axl+1 − Axl ∥2,

L(xl+1, zl+1, ul+1) = L(xl+1, zl+1, ul ) + µ∥ul+1 − ul ∥2.

By (80) we have:

µ∥ul+1 − ul ∥2 ≤
4

µη2
∥Axl+1 − Axl ∥2

+ (
4ρ(K)2

µη2
+

2

µ
)∥B−T (∇д(zl+1) − ∇д(zl ))∥2.

Since д(zl ),д(zl+1) ≤ T (x0, z0) + c2 + c3, by the definition of Ld :

∥B−T (∇д(zl+1) − ∇д(zl ))∥ ≤ Ld ∥Bz
l+1 − Bzl ∥. (89)

Hence we have:

µ∥ul+1 − ul ∥2 ≤
4

µη2
∥Axl+1 − Axl ∥2

+ (
4ρ(K)2L2d

µη2
+
2L2d
µ

)∥Bzl+1 − Bzl ∥2.

If
µ
2
≥ 4

η2µ and
µ−Ld
2

≥ (
4ρ(K)2L2d

µη2 +
2L2d
µ ), then we have:

L(xl+1, zl+1, ul+1) ≤ L(xl , zl , ul ) ≤ T (x0, z0) + c3 (90)

which completes the proof. □

Similar to the proof of Theorem 3.5, we need to show (P1)-(P4)

hold for z-x-u iteration. Sufficient descent has already been shown

in the proof of Proposition F.7. The remaining part is the same as

the proof of Theorem 3.5 so we omit it.

F.4 Proof for Theorem 3.4
Theorem 3.4 is about linear convergence of the z-x-u iteration. Sim-

ilar to Proposition F.4, for the convergence of the z-x-u iteration

to a stationary point, it suffices to show that the sequence {uk }
converges. Then for the main proof:

Proof for Theorem 3.4. By (78):

Bzk+1 +
1

µ
B−T ∇д(zk+1) = Ax̃ − vk

=⇒ B(zk+1 − zk ) +
1

µ
B−T (∇д(zk+1) − ∇д(zk )) = −(vk − vk−1).

By (89):

(1 −
Ld
µ
)∥Bzk+1 − Bzk ∥ ≤ ∥vk − vk−1∥.

Hence we have:

1

µ
∥B−T (∇д(zk+1) − ∇д(zk ))∥ ≤

Ld
µ
∥Bzk+1 − Bzk ∥

≤
Ld

µ − Ld
∥vk − vk−1∥. (91)

By (76) and (82):

(I + µK)uk+1 = µKuk +
1

µ
B−T ∇д(zk+1)

=⇒ vk+1 = (I + µK)−1µKvk + (I + µK)−1(I − µK)
1

µ
B−T ∇д(zk+1).

Hence we have:

∥vk+1 − vk ∥ ≤ ∥(I + µK)−1µK(vk − vk−1)∥

+
1

µ
∥(I + µK)−1(I − µK)B−T (∇д(zk+1) − ∇д(zk ))∥.

Similar to (72) we have:

∥(I + µK)−1µK(vk − vk−1)∥ ≤
µρ(K)

1 + µρ(K)
∥vk − vk−1∥

by (91)

=⇒ ∥vk+1 − vk ∥ ≤ (
µρ(K)

1 + µρ(K)
+

Ld
µ − Ld

)∥vk − vk−1∥.

Then let µ > max

{
2

1

Ld
−ρ(K)

, 1

Ld

}
and we get the result. □

F.5 Sketch of proofs for Theorems 3.1 and 3.2
For the proof of Theorem 3.1, the derivation can start from (71)

without assumptions on the initial values. The rest of the proofs is

the same as the proof of Theorem 3.3.

For the proof of Theorem 3.2, the derivation of (89) does not rely

on the initial value. The rest is the same.
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