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Abstract

The dynamical properties of periodic two-component phononic rods whose ele-
mentary cells are generated adopting the Fibonacci substitution rules are studied
through the recent-introduced method of the toroidal manifold. The method allows
all band gaps and pass bands featuring the frequency spectrum to be represented in
a compact form with a frequency-dependent flow line on the surface describing their
ordered sequence. The flow lines on the torus can be closed or open: in the former
case, (i) the frequency spectrum is periodic and the elementary cell corresponds to
a canonical configuration, (ii) the band gap density depends on the lengths of the
two phases; in the latter, the flow lines cover ergodically the torus and the band
gap density is independent of those lengths. It is shown then how the proposed
compact description of the spectrum can be exploited (i) to find the widest band
gap for a given configuration and (ii) to optimise the layout of the elementary
cell in order to maximise the low-frequency band gap. The scaling property of
the frequency spectrum, that is a distinctive feature of quasicrystalline-generated
phononic media, is also confirmed by inspecting band gap/pass band regions on
the torus for elementary cells of different Fibonacci order.

Keywords: Fibonacci sequence, quasicrystalline phononic structure, metamaterial,
band gap, Floquet-Bloch wave.
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1 Introduction

In the last fifty years, the investigation of wave propagation in structured media and their
applications in different areas of engineering has attracted significant interests from the
scientific community. In this context, the contribution of Prof. Slepyan and his collab-
orators was essential for undestanding and predicting several phenomena, in particular
transition waves in periodic and bistable structures (Nieves et al., 2017; Brun et al., 2013;
Slepyan et al., 2005; Cherkaev et al., 2005), interaction between surface modes and frac-
tures (Slepyan, 2010; Mishuris and Movchan, 2009), dissipation and phase transition in
lattice materials (Slepyan, 2001c,b,a) and solitary nonlinear waves (Slepyan et al., 1998;
Krylov et al., 1998). These fundamental studies, together with the results obtained by
other authors (Ewing et al., 1956; Nemat-Nasser, 1972; Mead, 1998a,b), have inspired a
very active field of research, concerning the design of phononic structures with the aim
of achieving and controlling non-standard wave propagation phenomena, such as wave
focussing (Guenneau et al., 2007), frequency filtering (Brun et al., 2010), cloaking (Nor-
ris, 2008; Colquitt et al., 2014) and negative refraction (Srivastava, 2016; Willis, 2016).
Recently, the intriguing dynamical properties of a class of two-phase periodic structured
solids whose unit cells are generated according to the Fibonacci substitution rule have
been presented (Gei, 2010; Morini and Gei, 2018). This particular family of composites
belongs to the subset of quasicrystalline media (Poddubny and Ivchenko, 2010) and por-
tion of Floquet-Bloch frequency spectra of its members are characterised by a self-similar
pattern which scales according to factors linked to the Kohmoto’s invariant of the family
itself (Kohmoto and Oono, 1984).

This work provides new insights on the relationship between the geometrical and
constitutive properties of the elementary cells and the layout of pass bands/band gaps
for the same type of quasicrystalline-generated phononic rods. By considering harmonic
axial waves, we show that the corresponding frequency spectrum can be represented
on a two-dimensional toroidal manifold similar to that introduced in Shmuel and Band
(2016); Lustig and Shmuel (2018) to study Floquet-Bloch waves in periodic laminates.
This manifold is universal for all two-phase configurations and the dispersion properties
of the concerned rod can be inferred from the features of the frequency-parametrised
flow lines lying on the toroidal domain, which is composed of band gap and pass band
regions. We identify a particular subclass of rods whose flow lines on the torus are closed,
thus describing a periodicity in the spectrum at increasing frequency, and show that the
subclass coincides with that of the so-called canonical structures introduced by Morini
and Gei Morini and Gei (2018). The local scaling governing the pass band/band gap
layout about certain relevant frequencies (i.e. the canonical frequencies) is confirmed
and highlighted through the analysis of the flow lines on the torus.

The universal representation of the spectrum on the toroidal surface allows us to
rigorously estimate the band gap density for rods of any arbitrary Fibonacci elementary
cell. We find that for canonical configurations this quantity varies with the ratio between
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the lengths of the phases, corresponding to the slope of the flow lines. Conversely, for
generic non-canonical rods, the band gap density is independent of the lengths of the cells
and is defined by the ratio between the area of the band gap subdomain and the total
surface of the torus Barra and Gaspard (2000); Berkolaiko and Winn (2010); Band and
Berkolaiko (2013). The provided examples show that this ratio can be easily evaluated
numerically.

We further demonstrate how the compact representation of the spectrum on the
two-dimensional torus can be exploited to either optimise the design of the elementary
cells to achieve the widest low-frequency band gap or to determine rigorously where
the maximal band gap is located in the spectrum for a given configuration. In the
examples that we report we have based this investigation on analytical expressions of the
boundaries of band gap regions that can be easily obtained for low-order elementary cells.
Unlike the standard procedure based on partial evaluation of the spectrum Sigmund and
Sondergaard Jensen (2003); Liu et al. (2014); Hedayatrasa et al. (2016), the proposed
optimisation strategy provides exact rigorous results, and it can be easily generalised to
Fibonacci cells of higher order.

2 Waves in quasicrystalline-generated phononic rods

We introduce a particular class of infinite, one-dimensional, two-component phononic
rods consisting of a repeated elementary cell where two distinct elements, say L and S, are
arranged in series according to the Fibonacci sequence (Poddubny and Ivchenko, 2010).
The repetition of such a cell implies periodicity along the axis and then the possibility of
applying the Floquet-Bloch technique in order to study harmonic wave propagation. The
two-component Fibonacci sequence is based on the following substitution rule (Kolar and
Ali, 1989):

L→ LS, S → L. (1)

Expression (1) implies that the i−th (i = 0, 1, 2, . . . ) element of the Fibonacci sequence,
here denoted by Fi, obeys the recursive rule Fi = Fi−1Fi−2, where the initial conditions
are F0 = S and F1 = L (in Fig. 1, elementary cells designed according to sequences
F2, F3 and F4 are displayed)1. The total number of elements of Fi corresponds to the
Fibonacci number ñi given by the recurrence relation ñi = ñi−1 + ñi−2, with i ≥ 2, and
ñ0 = ñ1 = 1. The limit of ñi+1/ñi for i → ∞ corresponds to the so-called golden mean
ratio (1 +

√
5)/2.

Further in the text, we will refer to those structured rods as Fibonacci structures. Ac-
cording to the general criterion for the classification of the one-dimensional quasiperiodic
patterns proposed in Kolar (1993), these structures are quasicrystalline. Quasicrystalline

1Henceforth, the notation Fi will indicate both the sequence and the elementary cell of the structured
rod.
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Figure 1: Elementary cells for infinite Fibonacci rods based on F2 = LS, F3 = LSL and F4 = LSLLS.
Symbols r and l denote right and left-hand boundaries of the cell, respectively.

media possess characteristic features that make them an intermediate class between pe-
riodic ordered crystals and random media (Steurer, 2004; Steurer and Deloudi, 2008).
An example of these interesting and intriguing properties is the self-similarity of the fre-
quency spectrum (Morini and Gei, 2018). The focus of this paper is on the analysis of
the universal structure of this spectrum and on its application to predict, modulate and
optimise the corresponding stop/pass band layout. We will show that the universality
of the spectrum is closely related with the properties of the Floquet-Bloch dispersion
relation exploited in Gei (2010) and summarised in this Section.

Let us introduce the mechanical and geometric parameters of elements L and S. The
lengths of the two phases are indicated with lL and lS, respectively, while AX , EX and %X
(X ∈ {L, S}) denote cross-section area of each bar, Young’s modulus and mass density
per unit volume of the two adopted materials, respectively. For both elements, we define
the displacement function and the axial force along the rod as u(z) and N(z) = EAu′(z),
respectively, where z is the coordinate describing the longitudinal axis. The governing
equation of harmonic waves in each section assumes the form

u′′X(z) +
%X
EX

ω2uX(z) = 0, (2)

where ω ∈ R+ is the circular frequency (simply the ‘frequency’ in the following) and the
term %X/EX corresponds to the reciprocal of the square of the speed of propagation of
longitudinal waves in material X. The solution of (2) is given by

uX(z) = CX
1 sin

(√
%X
EX

ωz

)
+ CX

2 cos

(√
%X
EX

ωz

)
, (3)

where CX
1 and CX

2 are integration constants, to be determined by the boundary condi-
tions.

To obtain the dispersion diagram of the periodic rod, displacement ur and axial force
Nr at the right-hand boundary of the elementary cell have to be given in terms of those
at the left-hand boundary, namely ul and Nl (Fig. 1), as

U r = T iU l, (4)

4



where U j = [uj Nj]
T (j = r, l) and T i is a transfer (or transmission) matrix of the cell

Fi. This matrix is the result of the product T i =
∏ñi

p=1 T
X , where TX (X ∈ {L, S}) is

the transfer matrix which relates quantities across a single element, given by

TX =


cos
(√

%X
EX

ωlX

) sin
(√

%X
EX

ωlX

)
EXAX

√
%X
EX

ω

−EXAX
√

%X
EX

ω sin
(√

%X
EX

ωlX

)
cos
(√

%X
EX

ωlX

)
 . (5)

Transfer matrices T i have some important properties that can be exploited: i) they
are unimodular, i.e. detT i = 1, and ii) follow the recursion rule

T i+1 = T i−1T i, (6)

with T 0 = TS and T 1 = TL.
The Floquet-Bloch theorem implies that U r = exp(ikLi)U l, where Li is the total

length of the fundamental cell Fi and the imaginary unit appearing in the argument of
the exponential function should not be confused with the index i. By combining this
condition with (4), we obtain the dispersion equation

det[T i − eikLiI ] = 0. (7)

The solution of eq. (7) provides the complete Floquet-Bloch spectrum and allows to
obtain the location of band gaps and pass bands associated with the infinite rods here
considered.

Equivalently, we can study the dispersion properties of these structures by evaluating
the eigenvalues of the transfer matrix. As T i is unimodular, it turns out that the
characteristic equation of the waveguide is given by

det[T i − λI ] = 0 ⇒ λ2 − λ trT i + 1 = 0. (8)

By substituting eikLi = λ in eq. (8) and multiplying it by e−ikLi , the condition eikLi +
e−ikLi − trT i = 0 is achieved, leading to

ηi = cos kLi, (9)

where ηi = trT i/2.
By observing eq. (9), we can easily deduce that all the information concerning har-

monic axial wave propagation in a Fibonacci structure is contained in the half trace ηi
of the corresponding transfer matrix. Waves propagate when |ηi| < 1 (kLi ∈ R\{x : x =
hπ, h ∈ Z}), band gaps correspond to the ranges of frequencies where |ηi| > 1 (k is
a complex number with a non-vanishing imaginary part) whereas |ηi| = 1 characterises
standing waves (kLi ∈ {x : x = hπ, h ∈ Z}).
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We note that both the transfer matrix (5) and the dispersion relation (9) possess a
form identical to that derived in Lekner (1994); Rytov (1956) and used in Shmuel and
Band (2016); Lustig and Shmuel (2018); Morini et al. (2019) to study antiplane shear
waves in periodic two-phase, multi-phase and quasicrystalline laminates, respectively.
Further in the paper, we will exploit this mathematical analogy generalising the approach
proposed in Shmuel and Band (2016) to study the universal structure of the frequency
spectrum of Fibonacci phononic rods.

3 Universal structure of the frequency spectrum

The analysis of the universal structure of the frequency spectrum will take advantage of
the introduction of the following variables (Shmuel and Band, 2016; Barra and Gaspard,
2000; Berkolaiko and Winn, 2010; Band and Berkolaiko, 2013)

ζX =

√
%X
EX

ωlX (X ∈ {L, S}). (10)

The unimodularity property of T i, together with the relationship (6), implies the follow-
ing recursive rule for the half trace ηi+1 (Morini and Gei, 2018):

ηi+1 = 2ηiηi−1 − ηi−2, with i ≥ 2, (11)

where the initial conditions are

η0(ζS) = cos ζS, η1(ζL) = cos ζL, η2(ζS, ζL; γ) = cos ζS cos ζL − γ sin ζS sin ζL. (12)

The quantity

γ =
1

2

(
ALEL
ASES

√
%LES
%SEL

+
ASES
ALEL

√
%SEL
%LES

)
(13)

quantifies the impedance mismatch between the phases L and S, and it depends on
their constitutive parameters but not on lengths of the single elements L and S. When
γ = 1 there is no contrast between phases and the waveguide behaves as a homogeneous
one. Expressions (12) show that for any given value of γ, η0, η1 and η2 are 2π−periodic
functions of ζS and ζL. The generic half trace ηi can be derived by means of successive
iterations of the recursive formula (11) by assuming (12) as initial conditions. Therefore,
at any order i, ηi is also a 2π−periodic function, separately, of ζS and ζL as it is defined
through sums and products of functions with the same period. This implies that we
can consider the half trace ηi as a function of a two-dimensional torus of edge length
2π, whose toroidal and poloidal coordinates are ζS and ζL, respectively. This function is
independent of the lengths of the two phases L and S. The toroidal domain is composed
of two complementary subspaces that are associated with the two inequalities introduced
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earlier in the discussion after eq. (9), namely: |ηi(ζS, ζL)| < 1 identifies a pass-band
subdomain whereas |ηi(ζS, ζL)| > 1 corresponds to a band-gap one. The two regions
might not be simply connected and the collection of lines of separation between the two
subdomains, in which |ηi(ζS, ζL)| = 1, denotes a standing wave solution. The measures
of the two regions are univocally determined by the value of the parameter γ.

A sketch of the toroidal domains for cells F2 and F3 are displayed in Fig. 2/(a) and
/(b) where the set of physical properties tabled in Tab. 1 have been assumed (for that
choice, γ ≈ 2.125). In both plots, the pink zone corresponds to the pass-band region
whereas the band-gap one is painted in gray.

Equation (9) shows that |ηi(ζS, ζL)| is invariant under the transformation

ζS → ζS + nπ, ζL → ζL +mπ (n,m ∈ N), (14)

so that, as pointed out in Shmuel and Band (2016), the map on the torus can be equiv-
alently represented on a reduced π−periodic torus. The latter can be conveniently rep-
resented through the so-called square identification (Arnold, 1989), in which the curved
domain is flattened and transformed to a square whose edges are still described by coor-
dinates ζS and ζL, both ranging now between 0 and π. In the new square representation,
the band-gap subdomain (|ηi(ζS, ζL)| > 1) is denoted by Di(γ). In the following, the
square equivalent π−periodic torus with the domain Di(γ) will be indicated with Ti. At
times, we will also refer to it as the ‘reduced torus’ for the cell Fi.

In Fig. 2/(c) and /(d), the reduced tori T2 and T3 are reported. The light blue,
light red and light brown regions in both plots denote the subdomains D2(γ) and D3(γ)
determined for γ ≈ 8.031, 2.125 and 1.170, respectively. In particular, the light red
ones are the representation of the band gap domains depicted in gray on the original
2π−periodic tori reported just above in the same Figure 2/(a) and /(b), respectively.

The spectrum for a Fibonacci rod of any arbitrary order can therefore be studied
by analysing the dynamic flow parametrised ζ(ω) = (ζS(ω), ζL(ω)) on the corresponding
reduced torus, where the frequency ω plays the role of a time-like parameter. This flow
is the image on Ti of the trajectories described by the angles ζS and ζL on the original
torus. Two examples of the latter are the blue lines reported in Fig. 2 /(a) and /(b). In
order to represent these flow lines on Ti, we interpret expression (10) as the equation of
a rectilinear trajectory lying on the square. Now, for any arbitrary Fibonacci cell Fi for
which a specific indication for lengths lL and lS is provided, we can depict the trajectory
(10) on Ti as those illustrated for F2 and F3 in the two plots of Fig. 2/(c) and /(d).
For this purpose, if we consider values of the frequency such that

√
%X/EXωlX > π, by

recalling the invariance of Ti and of its subdomain Di(γ) with respect to transformations

ES = EL = 3.3 GPa %S = %L = 1140 kg/m3 AL = 4AS = 1.963 · 10−3 m2 lL = 0.07 m

Table 1: Mechanical and geometrical parameters adopted in the numerical calculations.
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Figure 2: (a) and (b) Toroidal domains of edge length 2π for Fibonacci cells F2 (a) and F3 (b) with
γ ≈ 2.125. The pass-band regions where |η2| < 1 and |η3| < 1 are depicted in pink. The band-gap ones
(|η2| > 1 and |η3| > 1) are highlighted in gray. An example of a periodic, closed flow line is reported
in blue in each panel. (c) and (d) Square identification of the π−periodic torus for cells F2 and F3;
light blue, light red and light brown regions correspond to the subdomains D2(γ) and D3(γ) defined for
γ ≈ 8.031 (AS/AL = 0.0625), 2.125 (AS/AL = 0.25) and 1.170 (AS/AL = 0.5625), respectively. Red
dots denote the intersection of the flow lines with the boundary of Di for the case γ ≈ 2.125. (e) and (f)
Dispersion diagrams for Fibonacci cells F2 (e) and F3 (f) with γ ≈ 2.125 (AS/AL = 0.25) and values
of other the mechanical and geometrical parameters reported in Table 1.

(14), expression (10) can be written in the transformed form as

ζS(ω) =

√
%S
ES

ωlS − nπ, ζL(ω) =

√
%L
EL

ωlL −mπ (n,m ∈ N). (15)

Consequently, the trajectory (10) reported on Ti appears as a set of parallel segments as
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those reported in blue in Fig. 2/(c) and /(d), and the flow ζ(ω) can be expressed as

ζ(ω) = ω

(√
%S
ES

lS,

√
%L
EL

lL

)
mod π. (16)

The segments shown in Fig. 2c) and d) are the images of the flow lines illustrated in Fig.
2/(a) and /(b), respectively. By examining these lines, we can easily observe that they
trace a closed trajectory on the torus. In the next Section, the class of structures whose
spectra are described by this particular type of flow lines is defined and characterised in
details.

The values of ω for which the lines of the flow (16) intersect the boundary of the
subdomain Di(γ) coincide with the extremes of the band gaps. These intersections are
highlighted with red points in Fig. 2/(c) and /(d) for waveguides generated by F2 and
F3 for γ ≈ 2.125. The same band gaps are illustrated in the classical dispersion diagrams
of Fig. 2/(e) and /(f).

A parametric equation for the flow lines on Ti is easily derived from eqs. (15)

ζL(ω) = α + βζS(ω), (17)

where
α = π(βn−m) (18)

and the angular coefficient

β =

√
%LES
%SEL

lL
lS

(19)

defines the direction of the flow (i.e. the slope of the blue segments shown in Fig.
2/(c) and /(d). In particular, the segment emerging from the origin for ω = 0+ (i.e.
m = n = 0) has equation ζL(ω) = βζS(ω). In the next Section, we discuss how rational
and irrational values of ratio (19) are associated with Fibonacci rods possessing periodic
and non-periodic spectra, respectively, corresponding to closed and open trajectories on
the 2π−periodic torus, respectively. Both these two different behaviours are studied by
analysing the flow lines on Ti. Relevant indications concerning the band gap density and
the different properties of rods with periodic and non-periodic spectra are obtained by
using this universal approach.

4 Analysis of the flow lines on the reduced torus

Let us analyse the different types of trajectories (lines) that can describe the flow ζ(ω) on
the torus. The condition for closed periodic lines is the existence of a frequency interval
Ω such that (Arnold, 1989)

ζS(ω + Ω) = ζS(ω) + 2πj, ζL(ω + Ω) = ζL(ω) + 2πq (j, q ∈ N). (20)
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By combining expressions (20) with eq. (10), we derive the relationships√
%S
ES

lS =
2πj

Ω
,

√
%L
EL

lL =
2πq

Ω
, (21)

and then the ratio
β =

q

j
. (22)

We can deduce from expression (22) that the trajectories on the torus are periodic if
the ratio β is a rational number. This condition is exactly the same as that introduced
in Morini and Gei (2018) and necessary to realise Fibonacci structures with a periodic
spectrum, which are called in that article canonical structures. Therefore, canonical con-
figurations correspond to closed flow trajectories on the torus. Considering the original
2π-periodic torus, these are closed helicoidal orbits on the surface as those reported in
Figs. 2/(a) and /(b). The two whole numbers j and q represent the number of cycles,
namely 2π rotations, about, respectively, the toroidal and poloidal axes. As an example,
both blue trajectories of Figs. 2/(a) and /(b) correspond to j = 1 and q = 2 and then to
β = 2. On Ti, the closed flow lines associated with canonical structures become a finite
number of parallel segments. The periodicity of the dispersion diagram is verified in Fig.
2/(e) and /(f) where the band gap limits already highlighted in the companion graphs
plotted above (i.e. (c) and (d), respectively) are marked with red points.
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Figure 3: Half-trace function (a) and flow lines on diagram T2 (b) for a F2 canonical Fibonacci rod
characterised by the parameters listed in Tab. 1 and lS/lL = 1/2 (γ ≈ 2.125, β = 2). Coloured dots in
both panels mark the extremes of the band gaps.

In Figs. 3, 4 and 5, examples of periodic flow lines for canonical structures generated
by repetition of cells F2, F3 and F4 are reported. For the calculations, we considered
two phases S and L of the same material (ES = EL and %S = %L, see Tab. 1) so that
parameters γ and β become

γ =
1

2

(
AS
AL

+
AL
AS

)
, β =

lL
lS
. (23)
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Figure 4: Half-trace function (a) and flow lines on diagram T2 (b) for a F3 canonical Fibonacci rod
characterised by the parameters listed in Tab. 1 and lS/lL = 1/2 (γ ≈ 2.125, β = 2). Coloured dots in
both panels mark the extremes of the band gaps.
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Figure 5: Half-trace function (a) and flow lines on diagram T2 (b) for a F4 canonical Fibonacci rod
characterised by the parameters listed in Tab. 1 and lS/lL = 1/2 (γ ≈ 2.125, β = 2). Coloured dots in
both panels mark the extremes of the band gaps.

As a consequence, the areas of subdomains Di
2 depend only on ratio AS/AL, while the

direction of flow is defined by lS/lL. Moreover, according to the classification provided
in (Morini and Gei, 2018), the analysed rods belong to the second family of canonical
configurations.

In the plots on the left-hand side of each of Figs. 3, 4 and 5, diagrams are presented
of the half traces η2, η3, η4 reported as functions of ω for an interval of frequencies
which coincides with the half-period of the spectrum. We use coloured dots to earmark
the extremes of the intervals where |η2|, |η3|, |η4| > 1, defining the band gaps. The
flow lines on T2, T3 and T4 are reported on the right-hand side of each figure. Their
intersection with the boundaries of D2, D3 and D4, which identify the extreme of the
band gaps, are indicated with the same coloured dots. We used the same colour cod
in both diagrams of traces and Ti in order to associate the corresponding band gap in

2From now on the dependency on γ of Di will be dropped.
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Figure 6: Band-gap density reported for Fibonacci canonical rods designed according to elementary
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the ratio lS/lL are assumed: 1, 1/2, 2/7, corresponding to β = 1 (Family no. 1), β = 2 (Family no. 2)
and β = 7/2 (Family no. 3), respectively.

the two different representations. We note that the flow diagrams in Ti highlight all
the band gaps contained in the half period of the canonical structures, and then the
successive band gaps can be visualised using the same finite number of segments on Ti
and applying the transformation (15). Therefore, for canonical structures generated by
any arbitrary cell Fi, the band gap density ϕi is given by the ratio between the measure
of the intersections between the flow lines and the subdomain Di, and the total length
of the flow lines. The latter is given by the sum of all the parallel segments reported in
Figs. 3, 4 and 5 and corresponding to

√
j2 + q2π. This ratio depends on both the area

of Di and the direction of the flow lines, and then on both γ and β parameters.
The values of the band gap density for three different examples of canonical structures

with elementary cells from F2 to F8 are reported in Fig. 6. We assumed the same
constitutive properties used for the results shown in Figs. 3, 4 and 5 (see Tab. 1)
and three different ratios lS/lL which, in this particular case, correspond to three values
of β, namely 1, 2 and 7/2 (see eq. (23)2). According to the definition provided in
Morini and Gei (2018), those three ratios are associated with canonical structures which
belong to the first, the second and the third family, respectively. The three families
are distinguished by different stop and pass band layouts, but they all possess periodic
spectra with properties depending exclusively on β. Fig. 6 shows that the value of
the band gap density is different for cells of the same order i, but with distinct values
of the parameter β. This confirms, as we have already mentioned, that the band gap
density of canonical rods depends on the ratio lS/lL. As a consequence, if we assume
given constitutive properties of the phases S and L (i.e. ES, EL, %S and %L) and given
cross sections AL and AS, and then we determine univocally the domain Ti and the
area of the subspace Di, we can modulate the band gap density by simply varying the
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ratio lS/lL. Indeed, by changing this parameter, we assign a different direction to the flow
lines on the torus or equivalently to the slope of the segments on the square identification
of Ti, determining the band gap intervals which coincide with intersections of the flow
trajectories with the subdomain Di.

By observing Fig. 6, we note that, for all the three types of canonical rods here
analysed, the band gap density increases with the index i following a logarithmic trend.
This is in agreement with the results presented in Kohmoto et al. (1987); Sutherland and
Kohmoto (1987) for electronic and optic systems subjected to quasiperiodic Fibonacci
potentials.

In addition to the canonical ones, we can define a different class of waveguides whose
ratio β is irrational. In this case, the spectrum is not periodic and the corresponding
flow lines are open and cover ergodically the whole torus with uniform measure (Katok
and Hasselblatt, 1996). In this situation, it is commonly said that the orbits are dense
on the torus (Ott, 1993). Consequently, the flow trajectories on Ti consist of an infinite
number of parallel segments which in turn cover ergodically the whole square domain.
Therefore, the band gap density is given by the ratio between the area of the subdomain
Di and the area π2 of the square. Since the measure of Di is determined only by the
parameter γ, which is independent of the ratio lS/lL, for non-canonical rods the band
gap density does not depend on that ratio.

The fundamental differences between the flow lines of a canonical waveguide and
those of non-canonical one are pointed out in Fig. 7. Figs. 7/(a) and 7/(b) display the
variation of the half trace η2 with the frequency and the trajectories on the reduced torus
T2 for a canonical structure with parameters listed in Tab. 1 and lS/lL = 1/2, the same
considered in Fig. 3. The variation of η2 is plotted for a frequency range equal to its
period (0 < ω . 305 krad/s). The corresponding extremes of band gaps both in the half
trace diagram and in T2 are marked using points with the same colours. As anticipated,
due to the periodicity of the flow lines, all band gaps and pass bands in the frequency
spectrum can be represented through the two parallel segments reported in Fig. 7/(b).
Indeed, by observing this figure, the first and the third band gap, whose extremes are
denoted by red and green points, respectively, overlap as well as the second and the
fourth ones whose extremes are marked with magenta and yellow points, respectively.

The pairs of figures 7/(c) and 7/(d), 7/(e) and 7/(f), and 7/(g) and 7/(h) illustrate
the diagrams of the half trace η2 and the flow lines on T2 for cells F2 with lS/lL =
1/2 +

√
1/500, lS/lL = 1/2 + 3

√
1/500 and lS/lL = 1/2 + 10

√
1/500, respectively.

We assumed three different perturbations of the length ratio in order to have three
irrational values of β and then three examples of non-canonical configurations. Their
spectra are studied in the same range of frequencies of the canonical waveguide in Figs.
7/(a) and 7/(b). We observe that for the three irrational ratios the half trace η2 is no
longer periodic, and the number of band gaps in the same frequency range increases with
respect to the canonical case. Due to the lack of periodicity, band gaps are characterised
by widths and relative distances that are all different from each other. This implies that
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Figure 7: Half-trace diagrams and flow lines on T2 associated with cells F2 characterised by the
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Figure 9: Numerical study of convergence of band-gap density for non-canonical structures with ele-
mentary cells F4 and F5 whose properties are listed in Tab. 1 (γ ≈ 2.125). We assumed two irrational
values for the length ratio, i.e. lS/lL =
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3/10 (red circle markers) and lS/lL =
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markers).

the representation of each of them on T2 is associated with a different parallel segment,
as shown in Figs. 7/(d), 7/(f) and 7/(h). These segments are the image on the reduced
torus of the three flow lines, which in this case are infinite. At an increase of the frequency
range for the half traces in Figs. 7/(c), 7/(e) and 7/(g), more and more segments are
needed in order to depict the set of band gaps on the right-hand counterparts (Figs.
7/(d), 7/(f) and 7/(h), respectively), up to cover the whole domain of T2. Therefore, for
all the three non canonical rods analysed, it is confirmed that the band gap density ϕi is
given by the ratio between the area of D2 and π2. In general,

ϕi =
1

π2

∫ ∫
Di(γ)

dζSdζL. (24)

Unlike canonical structures, this value is univocally determined by the parameter γ and
is independent of lS/lL.

We can now generalise the analysis provided for waveguides generated by F2 to any
arbitrary Fibonacci cell Fi. In analogy with the previous examples, we consider two
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phases with the same properties (see Tab. 1) and lS/lL =
√

3/10 and lS/lL =
√

1/2,
corresponding to β =

√
10/3 and β =

√
2, respectively. We solve numerically the

dispersion relation (9) over increasing intervals of frequencies, and at each iteration we
estimate the ratio between the total length of the band gaps and the whole length of the
frequency range. Calculations are carried out for structures designed according to cells
F2, F3, F4 and F5; the results are shown in Figs. 8 and 9. Red lines with circle marks
and blue lines with square marks map the band gap density for lS/lL =

√
3/10 and

lS/lL =
√

1/2, respectively. For both cases, and in each panel, we note the convergence
of the data to the black horizontal line that corresponds to ϕi in (24). These ratios
can be estimated numerically or analytically for cell F2 (see explicit expression derived
in Shmuel and Band (2016)), and in this case they are 0.5090 for F2, 0.5098 for F3,
0.5938 for F3 and 0.6334 for F5. The convergence observed for all panels in Figs. 8
and 9 demonstrates that for non-canonical structures the band gap density at a given
value of γ is independent of the lengths of the phases S and L. Therefore, we can state
that the band gap density is a universal property of classes of non canonical waveguides
characterised by a prescribed γ and an elementary cell Fi. This is in agreement with
the results reached in Shmuel and Band (2016), where it is shown that for irrational
values of a parameter analogous to our β the band gap density of two phase laminates is
independent of the thicknesses of the layers.

5 Band gap optimisation using universality proper-

ties

The compact representation of the frequency spectrum on Ti is now used to formulate
rigorously and solve two types of optimisation problems in periodic quasicrystalline-
generated rods. We focus on the case of F3 for which analytical representations of the
boundaries of the band gaps are available, but the same approach can be easily applied to
higher-order cells with the aid of implicit expressions similar to those obtained in Lustig
and Shmuel (2018).

The band gap subdomain D3 is composed of two identical regions for any values of
the parameter γ: one, namely D−3 , lies on the portion of T3 delimited by the intervals
0 ≤ ζS ≤ π and 0 ≤ ζL ≤ π/2; the other, D+

3 , occupies the portion delimited by the
intervals 0 ≤ ζS ≤ π and π/2 ≤ ζL ≤ π (see Figs. 2/(d) and 4/(b)). The former is
considered for the maximisation of gap width, but the same methodology can be applied
to D+

3 . All points of the boundary of D−3 satisfy the condition η3(ζS, ζL) = −1 and define
the curves C−l and C−u whose analytical expressions are

ζL = arctan

[
(γ ±

√
γ2 − 1) sin ζS

1− cos ζS

]
, (25)

where the upper curve C−u (lower one C−l ) corresponds to the plus (minus) sign in the
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numerator. The width of the generic band gap {ωB − ωA} is related to the length of the
associated interval along the flow line, whose endpoints A(ζAS , ζ

A
L ) and B(ζBS , ζ

B
L ) lie on

C−u and C−l , respectively, through the relationship

ωB − ωA =
νS√

1 + β2

√
(ζBS − ζAS )2 + (ζBL − ζAL )2, (26)

where νS =
√
ES/(

√
%SlS). An equation analogous to (26) is obtained in Shmuel and

Band (2016), where it is used to derive exact expressions for the bounds of the band-gap
widths in two-phase laminates as functions of the geometrical and physical properties of
the unit cells. Since points A and B belong to the flow lines on T3, their coordinates
satisfy the relationships

ζAL = βζAS + α, ζBL = βζBS + α, (27)

where ζ•X = ζX(ω•). Equations (26) and (27), together with expressions (25) for the
curves C−l and C−u , enable us to maximise the width of {ωB − ωA} through the flow lines
defined on the basis of the physical and geometrical properties of the elementary cells.

5.1 Identification of the widest band gap for a prescribed struc-
ture

We first consider a given cell F3 with prescribed physical and geometrical properties.
Our purpose is to determine the interval {ωB − ωA} defining the widest band gap in the
frequency spectrum of the structure. As β = (ζBL − ζAL )/(ζBS − ζAS ), expression (26) can
be written in the form

ωB − ωA = νS(ζBS − ζAS ) = νS∆ζS. (28)

In this case, νS and β are known and the goal is achieved by finding the value of the
translation coefficient α associated with the largest ∆ζS. By imposing that both the
points A and B lie on the flow line (27) and that A ∈ C−l and B ∈ C−u , the following
equations for the coordinates ζBS and ζAS are established

βζAS + α = arctan

[
(γ −

√
γ2 − 1) sin ζAS

1− cos ζAS

]
, (29)

βζBS + α = arctan

[
(γ +

√
γ2 − 1) sin ζBS

1− cos ζBS

]
, (30)

and then ∆ζS = ζBS − ζAS becomes

∆ζS =
1

β

{
arctan

[
(γ +

√
γ2 − 1) sin ζBS

1− cos ζBS

]
− arctan

[
(γ −

√
γ2 − 1) sin ζAS

1− cos ζAS

]}
. (31)
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By eliminating α between (29) and (30), it turns out that

∆α = β(ζBS − ζAS )− arctan

[
(γ +

√
γ2 − 1) sin ζBS

1− cos ζBS

]
+ arctan

[
(γ −

√
γ2 − 1) sin ζAS

1− cos ζAS

]
= 0.

(32)
The aim is now to determine the values of ζAS and ζBS that maximise the quantity (31)
and are solution of eq. (32). Then, the corresponding α can be evaluated by means
of (29) and (30). The problem can be solved graphically for any cell F3 through the
two diagrams reported in Fig. 10. For the calculations we considered a non-canonical
configuration with the parameters listed in Tab. 1 and lS/lL = 1/2 + 3

√
1/500.

The contour plot in Fig. 10/(a) shows the variation of the function (31) on the whole
two-dimensional domain 0 ≤ {ζAS , ζBS } ≤ π, while the red line reported in the same figure
is determined by the values of ζAS and ζBS satisfying eq. (32). Point P , whose coordinates
are solution to (32) and maximise ∆ζS, is denoted by the yellow dot. It corresponds to
the intersection between the red line and the blue curve, defined in this case through
the equation ∆ζS = 0.589. We note that this point also coincides with the intersection
between the curve (32) and the line ζBS = π − ζAS . Consequently, the coordinates ζAS and
ζBS can be derived as the solution of the system{

∆α(ζAS , ζ
B
S ) = 0,

ζBS + ζAS = π.
(33)

By substituting (33)2 into (33)1, we obtain arctan

[
(γ−
√
γ2−1) sin ζAS

1−cos ζAS

]
− arctan

[
(γ+
√
γ2−1) sin(π−ζAS )

1−cos(π−ζAS )

]
+ β(π − 2ζAS ) = 0,

ζBS = π − ζAS .
(34)

For the set of physical and geometrical properties assumed in the example, the solution
of (34) is ζAS = 1.278 and ζBS = 1.863. Using these values in eq. (29) (or (30)), α = 1.692
is determined. Remembering that in this case lS/lL = 1/2 + 3

√
1/500 = 1/β, eqs. (27)

provide ζAL = 0.324 and ζBL = 1.246.
We determined the translation coefficient of the flow segment corresponding to the

widest band gap among all those detected in the spectrum of the structure, as well as the
coordinates on T3 of the points A(ζAS , ζ

A
L ) and B(ζBS , ζ

B
L ), associated with ωA and ωB. A

and B are denoted by red dots in Fig. 11/(b), and the width ωB − ωA = 22.066 krad/s
can be calculated through eq. (28). On the basis of the definition (15), ωA and ωB are
given by

ωA =
1

lS

√
ES
%S

(ζAS + nπ), ωB =
1

lS

√
ES
%S

(ζBS + nπ), (35)

or, alternatively,

ωA =
1

lL

√
EL
%L

(ζAL +mπ), ωB =
1

lL

√
EL
%L

(ζBL +mπ), (36)
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where n and m are two whole numbers satisfying condition (18).
The invariance of T3 and D3 with respect to the transformations (14), together with

the conditions A ∈ C−l and B ∈ C+l , provides the following system of implicit equations{
η3(ζ

A
S + nπ, ζAL +mπ) = −1,

η3(ζ
B
S + nπ, ζBL +mπ) = −1.

(37)

The values of n and m corresponding to the extremes ωA and ωB of the maximal band gap
are given by a pair of integer solutions of system (37) that satisfies the relationship (18).
They can be found through a diagram like the one reported in Fig. 10/(b), where the
solutions of eqs. (37)1 and (37)2 correspond to the red and blue contours, respectively, and
the black line is defined by eq. (18). The green dot denotes the intersection of the three
curves at n = 6 and m = 10, which are the required numbers in this case. By substituting
them together with the previously calculated ζAS , ζBS , ζAL , ζBL and the physical properties
of the cell in expressions (35) and (36), we finally determine ωA = 759.69 krad/s and
ωB = 781.76 krad/s. These extremal values are highlighted using the red dots in the
diagram of the half trace η3 reported in Fig. 11/(a).

The illustrated method can be easily applied to cells of higher order through the
general approach developed in Lustig and Shmuel (2018), where analytical expressions for
the boundaries of the band gap subregions of periodic laminates with an arbitrary number
of phases are derived. This original procedure provides several fundamental advantages
with respect to the standard optimisation methods based on the numerical evaluation of
the frequency spectrum. This is obvious especially in the case of non-canonical structures
as this is the case where the spectrum is not periodic, and then, in principle, calculations
over an infinite frequency domain should be performed to determine the widest band
gap. Since in practice calculations must be truncated, such an approach yields only
an approximate solution. Moreover, there is currently any rigorous way to predict how
the considered truncated subdomain allows an accurate estimation compared to the real
infinite case. Contrarily, through the formulation over the torus T3, the problem is solved
in closed form, without any approximation, avoiding the numerical calculations required
by the evaluation of large portions of the frequency spectrum. It is also worth remarking
that the solutions m and n can be relatively high, at a frequency for which, due to the
effects of lateral inertia, the simple one-dimensional axial model might be no longer valid.

5.2 Optimisation of the lowest band gap through variation of
the geometrical properties

The second example of optimisation which can be formulated rigorously and solved by
exploiting the representation of the spectrum on T3 is here illustrated. Let us consider a
cell F3 with parameters listed in Tab. 1, such that γ ≈ 2.125 and the slope of the flow
lines becomes β = lL/lS. Our aim is now to find the value of β that maximise the lowest
band gap of the spectrum.

19



HbL

4 5 6 7 8

8

9

10

11

12

n

m

Figure 10: Widest band gap for a non-canonical cell F3 designed assuming the parameters listed in
Tab. 1 and lS/lL = 1/2 + 3
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Graphic solution of system including eqs. (18) and (37); red, blue and black lines correspond to eqs.
(37)1, (37)2 and (18), respectively; the green dot is placed at n = 6, m = 10.
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Figure 11: Widest band gap for a non-canonical cell F3 designed assuming the parameters listed in
Tab. 1 and lS/lL = 1/2 + 3

√
1/500, highlighted both on the diagram of the half trace η3 (a) and on the

reduced torus T3 (b). The extremes of the gap, namely ωA = 759.69 krad/s and ωB = 781.76 krad/s
(a) and A(ζAS , ζ

A
L ) and B(ζBS , ζ

B
L ) on T3 (b), are marked with red points.

This one, i.e. {ωB − ωA}, is detected by the intersection between the region D−3
and the flow segment starting from the origin of the plane OζSζL. Similarly to the case
studied in Section 5.1, A(ζAS , ζ

A
L ) ∈ C−l and B(ζBS , ζ

B
L ) ∈ C+l , and

ζAL = βζAS , ζBL = βζBS , (38)

since α = 0 in this problem. Equation (38)1, together with the condition A ∈ C−l ,
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provides the following expression for β:

β =
1

ζAS
arctan

[
(γ −

√
γ2 − 1) sin ζAS

1− cos ζAS

]
. (39)

By substituting (39) into (38)2 and imposing B ∈ C−u , we get

arctan

[
(γ +

√
γ2 − 1) sin ζBS

1− cos ζBS

]
+
ζBS
ζAS

arctan

[
(γ −

√
γ2 − 1) sin ζAS

1− cos ζAS

]
= 0. (40)

Assuming that lS, and then νS, is known, the expression for the width of the band gap
(26) can be written in the normalised form

∆ω =
ωB − ωA

νS
=

√
(ζBS − ζAS )2 + (ζBL − ζAL )2√

1 + β2
, (41)

where β is given by (39), ζAL and ζAL can be expressed as functions of ζAS and ζAS using
(25). We now have to determine the values of ζAS and ζBS that maximise ∆ω and are
solution of eq. (40). The problem is solved graphically using the diagram reported in
Fig. 12/(a). The contour plot herein shows the variation of ∆ω on the whole two-
dimensional domain 0 ≤ {ζAS , ζBS } ≤ π, while the red line reported in the same figure is
the plot of eq. (40). Point Q, whose coordinates are solution of (40) and maximise ∆ω,
is denoted by the yellow dot. It corresponds to the intersection between the red line and
the blue contour, the latter defined through eq. ∆ω = 1.46. For the set of constitutive
and geometrical parameters here considered, we have ζAS = 1.215 and ζBS = 2.675. By
employing these values in eq. (25), we get ζAL = 0.345 and ζBL = 0.769, and then,
eventually, β = (ζBL − ζAL )/(ζBS − ζAS ) = 0.284. Therefore, this solution provides the
slope of the flow segment corresponding to the widest lowest band gap, and its extremes
A(ζAS , ζ

A
L ) and B(ζAS , ζ

A
L ) on the reduced torus T3 are marked with the red dots in Fig.

12/(b). This result is valid for any given value of lL 6= 0 which is assumed to be known
for the calculations, and then the optimisation procedure does not depend separately on
lengths lS and lL, but only on their ratio β.

The illustrated method provides an exact solution to the problem of the maximisation
of the lowest band gap, which is of practical importance in several operative scenarios in-
volving different types of phononic structures (see, e.g. Sigmund and Sondergaard Jensen
(2003); Liu et al. (2014); Hedayatrasa et al. (2016)). The formulation over the reduced
torus can be easily extended to the case of an arbitrary cell Fi and represents a promising
alternative to the direct approach based on partial evaluation of the frequency spectrum
evaluation for all possible ratios lS/lL.
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Figure 12: Optimisation of the lowest band gap for a waveguide designed according to parameters
listed in Tab. 1. (a) Contour plot of the function ∆ω(ζAS , ζ

B
S ). Red and blue lines are associated with

eqs. (40) and ∆ω = 1.46, respectively. Point Q, marked in yellow, corresponds to ζAS = 1.215 and
ζBS = 2.675, i.e. the solutions of eq. (40), and maximize ∆ω. (b) Identification on T3 of the maximal
lowest band gap obtained for β = 0.284 whose extremes are points A and B.

6 Scaling of the band gaps observed on the reduced

torus

The universal representation of the spectrum on the reduced torus Ti can be exploited
to check the local scaling occurring between band gaps at determined frequencies, as
shown earlier in Gei (2010); Morini and Gei (2018); Morini et al. (2019) for different
types of quasicrystalline phononic structures. Following their approach, let us identify
with Ri = (xi, yi, zi) a point whose coordinates correspond to xi = ηi+2, yi = ηi+1 and
zi = ηi. On the basis of the recursive relation (11), the change of point Ri to Ri+1 can
be described as the evolution of the nonlinear discrete map

Ri+1 = T (Ri) = (xi+1, yi+1, zi+1) = (2xiyi − zi, xi, yi). (42)

We can easily demonstrate (see, e.g. Gei (2010)) that the invariant

J(ω) = J(ζS(ω), ζL(ω); γ) = x2i +y2i +z2i −2xiyizi−1 = (γ2−1) sin2 ζS(ω) sin2 ζL(ω) (43)

is a constant, independent of index i. It is worth noting that J = I/4, where I is the
Kohmoto’s invariant defined in (Morini and Gei, 2018).

For any given value of the frequency, and then of the flux variables ζS and ζL, eq.
(43) defines a manifold whose equation in the continuous three-dimensional space Oxyz
is x2 + y2 + z2 − 2xyz − 1 = J(ω), the so-called Kohmoto’s surface (Kohmoto and
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Figure 13: Half-trace diagrams (left) and flow lines on the domain Ti (right) corresponding to Fibonacci
rods whose properties are listed in Tab. 1 with lS/lL = 1. Cells F5 ((a) and (b)) and F8 ((c) and (d))
are considered. The extremes of the band gap centered at the canonical frequency ωc = 37.596 krad/s,
that is indicated with a green point, are marked with red points.

Oono, 1984). The points obtained by iterating map (42) are all confined on this sur-
face and describe an open, discrete trajectory. Each Kohmoto’s surface possesses six
saddle points, say ±Pk (k = 1, 2, 3), whose coordinates are ±P1 = (±2

√
1 + J(ω), 0, 0),

±P2 = (0,±2
√

1 + J(ω), 0), ±P3 = (0, 0,±2
√

1 + J(ω) ). They are connected through
a closed (periodic) orbit generated by the six-cycle transformation obtained by applying
six times map (42), in other words, T 6(Pk) = Pk. Moreover, it can be also verified that
T 3(Pk) = −Pk. The frequencies ωc at which a generic Ri coincides with one of these
saddle points are called canonical frequencies and are exactly midway of the semi-period
of the spectrum of canonical structures (Morini and Gei, 2018). For instance, in the cases
addressed in Figs. 3, 4, 5 and 7, the period is approximately 305 krad/s and canonical
frequencies are approximately 305/4 krad/s and (3/4)305 krad/s.

In the neighbourhood of ωc, the corresponding point Ri locates in the vicinity of a
saddle point, therefore the discrete trajectory traced by transformation of the point Ri

itself at increasing index on the Kohmoto’s surface is then studied as a small perturbation
of the periodic orbit with map (42) linearised about the six saddle points. The derived
linearised transformation has an eigenvalue that is equal to one and an additional pair
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of them given by

κ±(ω) =
(√

1 + 4(1 + J(ω))2 ± 2(1 + J(ω))
)2
. (44)

In both (Gei, 2010) and (Morini and Gei, 2018), it is shown that the quantity κ+(ω)
governs the local scaling occurring between localised ranges of the spectrum of cell Fi
and that of Fi+6, while λ ≈

√
κ+ is the scaling factor between Fi and Fi+3. In particular,

across a canonical frequency, the width of a band gap in the diagram of cell Fi+6 centred
at frequency ωc, say {ωVi+6−ωUi+6}, is related to that of {ωVi −ωUi } in the diagram of cell
Fi centred at the same frequency by the following scaling law

ωVi+6 − ωUi+6 ≈
ωVi − ωUi

κ
, (45)

where κ = κ+(ωc). Similarly, the following relationship can be established between the
widths of {ωVi+3 − ωUi+3} and {ωVi − ωUi }:

ωVi+3 − ωUi+3 ≈
ωVi − ωUi

λ
. (46)

As a way of an example, let us consider Fibonacci canonical cells Fi whose parameters
are those in Tab. 1 (γ ≈ 2.125) and lS/lL = 1 (β = 1). For this class of structures, local
scaling governed by (45) and (46) at ωc = 37.596 krad/s is analysed. The numerical
results are illustrated in Fig. 13, where the band gap associated with F5 is compared
with that corresponding to F8 using close up views of both the diagrams η5 and η8
(respectively (a) and (c)) and the flow lines on the reduced tori T5 and T8 (respectively
(b) and (d)). The canonical frequency ωc is indicated with green points and the magenta
dot-dashed vertical lines on the left-hand sides, while the extremes of the band gaps U
and V are denoted by the red points on the right. We note also in this case the perfect
correspondence between the band gaps detected through the trace diagrams and the
intersections of the flow lines with the subdomains D5 and D8. Concerning the band gap
reported in Figs. 13/(a) and /(b), numerical calculations yield ωV5 − ωU5 = 3.407 krad/s
and λ = 18.12. By using the relationship (46), the value ωV8 − ωU8 ≈ (ωV5 − ωU5 )/λ =
0.188 krad/s is obtained, which is in very good agreement with the value provided by
direct estimation of the band gap highlighted in Figs. 13/(c) and /(d) (i.e. ωV8 − ωU8 =
0.186 krad/s). We record the same scaling behaviour by comparing ωV5 −ωU5 with ωV11−ωU11
centred at the same ωc. In this case, the scaling factor is κ = κ+(ωc) = 328.25, the actual
range ωV11 − ωU11 measures 0.0103 krad/s whereas relationship (45) provides ωV11 − ωU11 ≈
(ωV5 − ωU5 )/κ = 0.0104 krad/s.

The proposed example demonstrates how, in addition to the standard representation
of the dispersion diagram, the typical scaling properties can be also pinpointed and
estimated through the universal representation of the torus.
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7 Concluding remarks

The characteristic features of the frequency spectrum for elastic waves propagating in
a two-phase periodic medium can be revealed through its universal representation on
a two-dimensional toroidal surface composed of pass band and band gap sub-regions.
Frequency-dependent flow lines belonging to the surface can be defined for each con-
figuration of the waveguide. In this paper, we exploited this possibility to investigate
axial waves for a class of periodic rods whose elementary cell is generated through the
Fibonacci substitution rule, an example of quasicrystalline sequence.

First, we have established the mechanical and geometrical conditions for which an
elementary cell of the Fibonacci sequence may display closed flow lines on the torus,
a circumstance that corresponds to the periodicity of the frequency spectrum and of
the layout of pass bands and band gaps. We concluded that the required combination of
parameters corresponds to that leading to the concept of canonical structures introduced
by Morini and Gei Morini and Gei (2018). For these type of arrangements, it turned out
that the band gap density depends on the lengths of the two phases. Conversely, for
non-canonical rods, the flow lines cover ergodically the torus and their band gap density
is independent of the lengths of the constituents.

Second, we addressed analytically two illustrative band gap optimisation problems,
based on element F3 of the Fibonacci sequence. Analytical expressions of the boundaries
of band gap regions on the torus were exploited, on the one hand, to guide the design
of the elementary cell to achieve the widest low-frequency band gap, on the other, to
detect the maximal band gap in the spectrum for a given configuration. Thanks to the
availability of the expressions of the boundaries of the band-gap regions on the torus,
the proposed optimisation technique is considerably more robust in comparison with the
standard procedure based on partial evaluation of the frequency spectrum Sigmund and
Sondergaard Jensen (2003); Liu et al. (2014); Hedayatrasa et al. (2016) which necessarily
relies on numerical algorithms.

In the final section, the local scaling governing the spectrum of quasicrystalline-
generated phononic rods about certain relevant frequencies, as revealed in Morini and
Gei (2018), was investigated and confirmed through the analysis of the flow lines on the
torus.

The presented approach based on the representation of pass band and band gap sub-
regions on the toroidal manifold can be easily extended to study other wave phenomena
governed by an equation similar to (2) in different periodic systems, i.e. prestressed lami-
nates, photonic crystals and composite nanostructures. Moreover, through the definition
of an appropriate set of invariants that fully characterize the pass band/band gap layout,
similar universality properties can be detected in spectra associated with different types
of equations, such as for example those related to flexural systems (Romeo and Luongo,
2002; Carta and Brun, 2015), thin soft dielectric films (Shmuel and Pernas-Salomon,
2016) and plane strain laminates (Chen et al., 2008).
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