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Abstract
A continuous-time nonlinear regression model with Lévy-driven linear noise process is
considered. Sufficient conditions of consistency and asymptotic normality of the Whittle
estimator for the parameter of spectral density of the noise are obtained in the paper.
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1 Introduction

The paper is focused on such an important aspect of the study of regression models with
correlated observations as an estimation of random noise functional characteristics. When
considering this problem the regression function unknown parameter becomes nuisance and
complicates the analysis of noise. To neutralise its presence, we must estimate the parameter
and then build estimators, say, of spectral density parameter of a stationary random noise
using residuals, that is the difference between the values of the observed process and fitted
regression function.

So, in the first step we employ the least squares estimator (LSE) for unknown parameter of
nonlinear regression, because of its relative simplicity. Asymptotic properties of the LSE in
nonlinear regression model were studied by many authors. Numerous results on the subject
can be found in monograph by Ivanov and Leonenko (1989), Ivanov (1997).
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In the second step we use the residual periodoram to estimate the unknown parameter of
the noise spectral density using the Whittle-type contrast process (Whittle 1951, 1953).

The results obtained at this time on the Whittle minimum contrast estimator (MCE) form
a developed theory that covers various mathematical models of stochastic processes and
random fields. Some publications on the topic are Hannan (1970, 1973), Dunsmuir and
Hannan (1976), Guyon (1982), Rosenblatt (1985), Fox and Taqqu (1986), Dahlhaus (1989),
Heyde and Gay (1989, 1993), Giraitis and Surgailis (1990), Giraitis and Taqqu (1999), Gao
et al. (2001), Gao (2004), Leonenko and Sakhno (2006), Bahamonde and Doukhan (2017),
Ginovyan and Sahakyan (2017), AvLeoSaspsoSTLTHUBLIetc, Anh et al. (2004), Bai et al.
(2016), Ginovyan et al. (2014), Giraitis et al. (2017).

In the article by Koul and Surgailis (2000) in the linear regression model the asymptotic
properties of the Whittle estimator of strongly dependent random noise spectral density
parameters were studied in a discrete-time setting.

In the paper by Ivanov and Prykhod’ko (2016) sufficient conditions on consistency and
asymptotic normality of the Whittle estimator of the spectral density parameter of the Gaus-
sian stationary random noise in continuous-time nonlinear regression model were obtained
using residual periodogram. The current paper continues this research extending it to the
case of the Lévy-driven linear random noise and more general classes of regression func-
tions including trigonometric ones. We use the scheme of the proof in the case of Gaussian
noise (Ivanov and Prykhod’ko 2016) and some results of the papers (Avram et al. 2010; Anh
et al. 2004). For linear random noise the proofs utilize essentially another types of limits
theorems. In comparison with Gaussian case it leads to the use of special conditions on linear
Lévy-driven random noise, new consistency and asymptotic normality conditions.

In the present publication continues-time model is considered. However, the results
obtained can be also used for discrete time observations using the statements like Theo-
rem 3 of Alodat and Olenko (2017) or Lemma 1 of Leonenko and Taufer (2006).

2 Setting

Consider a regression model

X(t) = g(t, α0) + ε(t), t ≥ 0, (1)

where g: (−γ, ∞) × Aγ → R is a continuous function, A ⊂ R
q is an open convex

set, Aγ = ⋃

‖e‖≤1
(A + γ e), γ is some positive number, α0 ∈ A is a true value of unknown

parameter, and ε is a random noise described below.

Remark 1 The assumption about domain (−γ, ∞) for function g in t is of technical nature
and does not effect possible applications. This assumption makes it possible to formulate the
condition N2, which is used in the proof of Lemma 7.

Throughout the paper (�, F, P) denotes a complete probability space.
A Lévy process L(t), t ≥ 0, is a stochastic process, with independent and stationary

increments, continuous in probability, with sample-paths which are right-continuous with
left limits (cádlág) and L(0) = 0. For a general treatment of Lévy processes we refer to
Applebaum (2009) and Sato (1999).

Let (a, b, �) denote a characteristic triplet of the Lévy process L(t), t ≥ 0, that is for all
t ≥ 0

log E exp {izL(t)} = tκ(z)
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for all z ∈ R, where

κ(z) = iaz − 1

2
bz2 +

∫

R

(
eizu − 1 − izτ(u)

)
�(du), z ∈ R, (2)

where a ∈ R, b ≥ 0, and

τ(u) =
{

u, |u| ≤ 1;
u
|u| , |u| > 1.

The Lévy measure � in (2) is a Radon measure on R\{0} such that �({0}) = 0, and
∫

R

min(1, u2)�(du) < ∞.

It is known that L(t) has finite pth moment for p > 0 (E |L(t)|p < ∞) if and only if
∫

|u|≥1

|u|p�(du) < ∞,

and L(t) has finite pth exponential moment for p > 0 (E
[
epL(t)

]
< ∞) if and only if

∫

|u|≥1

epu�(du) < ∞, (3)

see, i.e., Sato Sato (1999), Theorem 25.3.
If L(t), t ≥ 0, is a Lévy process with characteristics (a, b, �), then the process −L(t),

t ≥ 0, is also a Lévy process with characteristics (−a, b, �̃), where �̃(A) = �(−A) for
each Borel set A, modifying it to be cádlág (Anh et al. 2002).

We introduce a two-sided Lévy process L(t), t ∈ R, defined for t < 0 to be equal an
independent copy of −L(−t).

Let â : R → R+ be ameasurable function.We consider the Lévy-driven continuous-time
linear (or moving average) stochastic process

ε(t) =
∫

R

â(t − s)d L(s), t ∈ R. (4)

For causal process (4) â(t) = 0, t < 0.
In the sequel we assume that

â ∈ L1(R) ∩ L2(R) or â ∈ L2(R) with E L(1) = 0. (5)

Under the condition (5) and
∫

R

u2�(du) < ∞,

the stochastic integral in (4) is well-defined in L2(�) in the sense of stochastic integration
introduced in Rajput and Rosinski (1989).

The popular choices for the kernel in (4) are Gamma type kernels:

• â(t) = tαe−λt
I[0, ∞)(t), λ > 0, α > − 1

2 ;
• â(t) = e−λt

I[0,∞)(t), λ > 0 (Ornstein-Uhlenbeck process);
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• â(t) = e−λ|t |, λ > 0 (well-balanced Ornstein-Uhlenbeck process).

A1. The process ε in (1) is a measurable causal linear process of the form (4), where a
two-sides Lévy process L is such that E L(1) = 0, â ∈ L1(R) ∩ L2(R). Moreover the Lévy
measure � of L(1) satisfies (3) for some p > 0.

From the condition A1 it follows Anh et al. (2002) for any r ≥ 1

log E exp

⎧
⎨

⎩
i

r∑

j=1

z jε(t j )

⎫
⎬

⎭
=
∫

R

κ

⎛

⎝
r∑

j=1

z j â
(
t j − s

)
⎞

⎠ ds. (6)

In turn from (6) it can be seen that the stochastic process ε is stationary in a strict sense.
Denote by

mr (t1, . . . , tr ) = E ε(t1) . . . ε(tr ),

cr (t1, . . . , tr ) = i−r ∂r

∂z1 . . . ∂zr
log E exp

⎧
⎨

⎩
i

r∑

j=1

z jε(t j )

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
z1=···=zr =0

the moment and cumulant functions correspondingly of order r , r ≥ 1, of the process ε.
Thus m2(t1, t2) = B(t1 − t2), where

B(t) = d2

∫

R

â(t + s)â(s)ds, t ∈ R,

is a covariance function of ε, and the fourth moment function

m4(t1, t2, t3, t4) = c4(t1, t2, t3, t4) + m2(t1, t2)m2(t3, t4)

+ m2(t1, t3)m2(t2, t4) + m2(t1, t4)m2(t2, t3).
(7)

The explicit expression for cumulants of the stochastic process ε can be obtained from
(6) by direct calculations:

cr (t1, . . . , tr ) = dr

∫

R

r∏

j=1

â
(
t j − s

)
ds, (8)

where dr is the r th cumulant of the random variable L(1). In particular,

d2 = E L2(1) = −κ(2)(0), d4 = E L4(1) − 3
(
E L2(1)

)2
.

Under the conditionA1, the spectral densities of the stationary process ε of all orders exist
and can be obtained from (8) as

fr (λ1, . . . , λr−1) = (2π)−r+1dr · a

⎛

⎝−
r−1∑

j=1

λ j

⎞

⎠ ·
r−1∏

j=1

a(λ j ), (9)

where a ∈ L2(R), a(λ) = ∫

R

â(t)e−iλt dt , λ ∈ R, if complex-valued functions fr ∈
L1
(
R

r−1
)
, r > 2, see, e.g., Avram et al. (2010) for definitions of the spectral densities

of higher order fr , r ≥ 3.
For r = 2, we denote the spectral density of the second order by

f (λ) = f2(λ) = (2π)−1d2a(λ)a(−λ) = (2π)−1d2 |a(λ)|2 .
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A2. (i) Spectral densities (9) of all orders fr ∈ L1(R
r−1), r ≥ 2;

(ii) a(λ) = a
(
λ, θ(1)

)
, d2 = d2

(
θ(2)

)
, θ = (

θ(1), θ (2)
) ∈ τ , τ = ⋃

‖e‖<1
( + τe),

τ > 0 is some number,  ⊂ R
m is a bounded open convex set, that is f (λ) =

f (λ, θ), θ ∈ τ , and a true value of parameter θ0 ∈ ;
(iii) f (λ, θ) > 0, (λ, θ) ∈ R × c.

In the condition A2(ii) above θ(1) represents parameters of the kernel â in (4), while θ(2)

represents parameters of Lévy process.

Remark 2 The last part of the condition A1 is fully used in the proof of Lemma 5 and
TheoremB.1 in “Appendix B”. The conditionA2(i) is fully used just in the proof of Lemma 5.
When we refer to these conditions in other places of the text we use them partially: see, for
example, Lemma 3, where we need in the existence of f4 only.

Definition 1 The least squares estimator (LSE) of the parameter α0 ∈ A obtained by
observations of the process {X(t), t ∈ [0, T ]} is said to be any random vector α̂T =
(̂α1T , . . . , α̂qT ) ∈ Ac (Ac is the closure of A), such that

ST (̂αT ) = min
α∈Ac

ST (α), ST (α) =
T∫

0

(X(t) − g(t, α))2 dt .

We consider the residual periodogram

IT (λ, α̂T ) = (2πT )−1

∣
∣
∣
∣
∣
∣

T∫

0

(X(t) − g(t, α̂T )) e−itλdt

∣
∣
∣
∣
∣
∣

2

, λ ∈ R,

and the Whittle contrast field

UT (θ, α̂T ) =
∫

R

(

log f (λ, θ) + IT (λ, α̂T )

f (λ, θ)

)

w(λ)dλ, θ ∈ c, (10)

where w(λ), λ ∈ R, is an even nonnegative bounded Lebesgue measurable function, for
which the intgral (10) is well-defined. The existence of integral (10) follows from the condi-
tion C4 introduced below.

Definition 2 The minimum contrast estimator (MCE) of the unknown parameter θ0 ∈  is
said to be any random vector θ̂T = (

θ̂1T , . . . , θ̂mT
)
such that

UT
(
θ̂T , α̂T

) = min
θ∈c

UT (θ, α̂T ) .

The minimum in the Definition 2 is attained due to integral (10) continuity in θ ∈ c as
follows from the condition C4 introduced below.

3 Consistency of theminimum contrast estimator

Suppose the function g(t, α) in (1) is continuously differentiable with respect to α ∈ Ac for

any t ≥ 0, and its derivatives gi (t, α) = ∂

∂αi
g(t, α), i = 1, q, are locally integrable with

respect to t . Let

123



Statistical Inference for Stochastic Processes

dT (α) = diag
(

diT (α), i = 1, q
)
, d2

iT (α) =
T∫

0

g2
i (t, α)dt,

and lim inf
T →∞ T − 1

2 diT (α) > 0, i = 1, q , α ∈ A.

Set

�T (α1, α2) =
T∫

0

(g(t, α1) − g(t, α2))
2dt, α1, α2 ∈ Ac.

We assume that the following conditions are satisfied.

C1. The LSE α̂T is a weakly consistent estimator of α0 ∈ A in the sense that

T − 1
2 dT (α0) (̂αT − α0)

P−→ 0, as T → ∞.

C2. There exists a constant c0 < ∞ such that for any α0 ∈ A and T > T0, where c0 and
T0 may depend on α0,

�T (α, α0) ≤ c0‖dT (α0) (α − α0) ‖2, α ∈ Ac.

The fulfillment of the conditions C1 and C2 is discussed in more detail in “Appendix A”.
We need also in 3 more conditions.

C3. f (λ, θ1) 
= f (λ, θ2) on a set of positive Lebesgue measure once θ1 
= θ2, θ1, θ2 ∈ c.

C4. The functionsw(λ) log f (λ, θ),
w(λ)

f (λ, θ)
are continuous with respect to θ ∈ c almost

everywhere in λ ∈ R, and

(i) w(λ) |log f (λ, θ)| ≤ Z1(λ), θ ∈ c, almost everywhere in λ ∈ R, and Z1(·) ∈
L1(R);

(ii) sup
λ∈R, θ∈c

w(λ)

f (λ, θ)
= c1 < ∞.

C5. There exists an even positive Lebesgue measurable function v(λ), λ ∈ R, such that

(i)
v(λ)

f (λ, θ)
is uniformly continuous in (λ, θ) ∈ R × c;

(ii) sup
λ∈R

w(λ)

v(λ)
< ∞.

Theorem 1 Under conditions A1,A2,C1–C5 θ̂T
P−→ θ , as T → ∞.

To prove the theorem we need some additional assertions.

Lemma 1 Under condition A1

ν∗
T = T −1

T∫

0

ε2(t)dt
P−→ B(0), as T → ∞.
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Proof For any ρ > 0 by Chebyshev inequality and (7)

P
{∣
∣ν∗

T − B(0)
∣
∣ ≥ ρ

} ≤ ρ−2T −2

T∫

0

T∫

0

c4(t, t, s, s)dtds+

+ 2ρ−2T −2

T∫

0

T∫

0

B2(t − s)dtds = I1 + I2.

From A1 it follows that I2 = O(T −1). Using expression (8) for cumulants of the process
ε we get

I1 = d4ρ
−2T −2

T∫

0

T∫

0

∫

R

â2(t − u)â2(s − u)dudtds

= d4ρ
−2T −2

T∫

0

⎛

⎝
∫

R

â2(t − u)

⎛

⎝

T∫

0

â2(s − u)ds

⎞

⎠ du

⎞

⎠ dt ≤ d4ρ
−2
∥
∥â
∥
∥4
2 T −1,

where
∥
∥â
∥
∥
2 =

(
∫

R

â2(u)du

) 1
2

, that is I1 = O(T −1) as well. �

Let

F(k)
T (u1, . . . , uk) = F(k)

T (u1 . . . , uk−1) = (2π)−(k−1)T −1
∫

[0,T ]k

e
i

k∑

j=1
t j u j

dt1 . . . dtk

= (2π)−(k−1)T −1
k∏

i=1

sin
T u j
2

u j
2

,

with uk = − (u1 + . . . + uk−1), u j ∈ R, j = 1, k.

The functions F(k)
T (u1, . . . , uk), k ≥ 3, are multidimensional analogues of the Fejér

kernel, for k = 2 we obtain the usual Fejér kernel.
The next statement bases on the results by Bentkus (1972a, b), Bentkus and Rutkauskas

(1973).

Lemma 2 Let function G (u1, . . . , uk), uk = − (u1 + . . . + uk−1) be bounded and contin-
uous at the point (u1, . . . , uk−1) = (0, . . . , 0). Then

lim
T →∞

∫

Rk−1

Fk
T (u1, . . . , uk−1) G (u1, . . . , uk) du1 . . . duk−1 = G(0, . . . , 0).

We set

gT (λ, α) =
T∫

0

e−iλt g(t, α)dt, sT (λ, α) = gT (λ, α0) − gT (λ, α),

εT (λ) =
T∫

0

e−iλtε(t)dt, I ε
T (λ) = (2πT )−1 |εT (λ)|2 ,
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and write the residual periodogram in the form

IT (λ, α̂T ) = I ε
T (λ) + (πT )−1 Re

{
εT (λ)sT (λ, α̂T )

}
+ (2πT )−1 |sT (λ, α̂T )|2 .

Let ϕ = ϕ(λ, θ), (λ, θ) ∈ R × c, be an even Lebesgue measurable with respect to
variable λ for each fixed θ weight function. We have

JT (ϕ, α̂T ) =
∫

R

IT (λ, α̂T )ϕ(λ, θ)dλ =
∫

R

I ε
T (λ)ϕ(λ, θ)dλ

+ (πT )−1
∫

R

Re
{
εT (λ)sT (λ, α̂T )

}
ϕ(λ, θ)dλ

+ (2πT )−1
∫

R

|sT (λ, α̂T )|2 ϕ(λ, θ)dλ

= J ε
T (ϕ) + J (1)

T (ϕ) + J (2)
T (ϕ).

Suppose
ϕ(λ, θ) ≥ 0, sup

λ∈R, θ∈c
ϕ(λ, θ) = c(ϕ) < ∞. (11)

Then by the Plancherel identity and condition C2

∣
∣
∣J

(1)
T (ϕ)

∣
∣
∣ ≤ 2c(ϕ)

⎛

⎝(2πT )−1
∫

R

|εT (λ)|2dλ

⎞

⎠

1
2
⎛

⎝(2πT )−1
∫

R

|sT (λ, α̂T )|2 dλ

⎞

⎠

1
2

= 2c(ϕ)
(
ν∗

T

) 1
2 T − 1

2 (�T (̂αT , α0))
1
2 ≤ 2c

1
2
0 c(ϕ)

(
ν∗

T

) 1
2

∥
∥
∥T − 1

2 dT (α0) (̂αT −α0)

∥
∥
∥ .

Taking into account conditions A1,C1,C2 and the result of Lemma 1 we obtain

sup
θ∈c

∣
∣
∣J

(1)
T (ϕ)

∣
∣
∣

P−→ 0, as T → ∞. (12)

On the other hand

J (2)
T (ϕ) ≤ c(ϕ)T −1�T (α0, α̂T ) ≤ c0c(ϕ)

∥
∥
∥T − 1

2 dT (α0) (̂αT − α0)

∥
∥
∥
2
,

and again, thanks to C1,C2,

sup
θ∈c

J (2)
T (ϕ)

P−→ 0, as T → ∞. (13)

Lemma 3 Suppose conditionsA1,A2 are fulfilled and the weight function ϕ(λ, θ) introduced
above satisfies (11). Then, as T → ∞,

J ε
T (ϕ)

P−→ J (ϕ) =
∫

R

f (λ, θ0)ϕ(λ, θ)dλ, θ ∈ c.

Proof The lemma in fact is an application of Lemma 2 in Anh et al. (2002) and Theorem 1
in Anh et al. (2004) reasoning to linear process (4). It is sufficient to prove

(1) E J ε
T (ϕ) −→ J (ϕ); (2) J ε

T (ϕ) − E J ε
T (ϕ)

P−→ 0.
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Omitting parameters θ0, θ in some formulas below we derive

E J ε
T (ϕ) =

∫

R

G2(u)F(2)
T (u)du, G2(u) =

∫

R

f (λ + u)ϕ(λ)dλ;

T Var J ε
T (ϕ) = 2π

∫

R3

G4(u1, u2, u3)F
(4)
T (u1, u2, u3)du1du2du3,

G4(u1, u2, u3) = 2
∫

R

f (λ + u1) f (λ − u3)ϕ(λ)ϕ(λ + u1 + u2)dλ

+
∫

R2

f4(λ + u1, −λ + u2, μ + u3)ϕ(λ)ϕ(μ)dλdμ

= 2G(1)
4 (u1, u2, u3) + G(2)

4 (u1, u2, u3).

To apply Lemma 2 we have to show that the functions G2(u), u ∈ R; G(1)
4 (u), G(2)

4 (u),
u = (u1, u2, u3) ∈ R

3, are bounded and continuous at origins.
Boundedness of G2 follows from (11). Thanks to (11)

sup
u∈R3

∣
∣
∣G

(1)
4 (u)

∣
∣
∣ ≤ c2(ϕ)‖ f ‖22 < ∞, ‖ f ‖2 =

⎛

⎝
∫

R

f 2(λ, θ0)dλ

⎞

⎠

1
2

.

On the other hand, by (9)

|G(2)
4 (u1, u2, u3)| ≤ d4(2π)−3

∫

R

|a(λ + u1)a(−λ + u2)| ϕ(λ)dλ

·
∫

R

|a(μ + u3)a(−μ − u1 − u2 − u3)| ϕ(μ)dμ

= d4 · (2π)−3 · I3 · I4,

I3 ≤ 2πc(ϕ)d−1
2

∫

R

f (λ, θ0)dλ = 2πc(ϕ)d−1
2 B(0).

Integral I4 admits the same upper bound. So,

sup
u∈R3

∣
∣
∣G

(2)
4 (u)

∣
∣
∣ ≤ (2π)−1γ2c2(ϕ)B2(0),

where γ2 = d4
d2
2

> 0 is the excess of L(1) distribution, and functions G2, G(1)
4 , G(2)

4 are

bounded. The continuity at origins of these functions follows from conditions of Lemma 3
as well. �

Corollary 1 If ϕ(λ, θ) = w(λ)

f (λ, θ)
, then under conditions A1,A2,C1,C2 and C4

UT (θ, α̂T )
P−→ U (θ) =

∫

R

(

log f (λ, θ) + f (λ, θ0)

f (λ, θ)

)

w(λ)dλ, θ ∈ c.
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Consider the Whittle contrast function

K (θ0, θ) = U (θ) − U (θ0) =
∫

R

(
f (λ, θ0)

f (λ, θ)
− 1 − log

f (λ, θ0)

f (λ, θ)

)

w(λ)dλ ≥ 0,

with K (θ0, θ) = 0 if and only if θ = θ0 due to C3.

Lemma 4 If the coditions A1,A2,C1,C2,C4 and C5 are satisfied, then

sup
θ∈c

|UT (θ, α̂T ) − U (θ)| P−→ 0, as T → ∞.

Proof Let {θ j , j = 1, Nδ} be a δ-net of the set c. Then

sup
θ∈c

|UT (θ, α̂T ) − U (θ)| ≤
≤ sup

‖θ1−θ2‖≤δ

|UT (θ1, α̂T ) − U (θ1) − (UT (θ2, α̂T ) − U (θ2))|

+ max
1≤ j≤Nδ

∣
∣UT (θ j , α̂T ) − U (θ j )

∣
∣ ,

and for any ρ ≥ 0

P

{

sup
θ∈c

|UT (θ, α̂T ) − U (θ)| ≥ ρ

}

≤ P1 + P2,

with

P2 = P

{

max
1≤ j≤Nδ

∣
∣UT (θ j , α̂T ) − U (θ j )

∣
∣ ≥ ρ

2

}

→ 0, as T → ∞.

by Corollary 1. On the other hand,

P1 = P

{

sup
‖θ1−θ2‖≤δ

∣
∣
∣UT (θ1, α̂T ) − U (θ1) − (UT (θ2, α̂T ) − U (θ2))

∣
∣
∣ ≥ ρ

2

}

≤ P

⎧
⎨

⎩
sup

‖θ1−θ2‖≤δ

∣
∣
∣
∣
∣
∣

∫

R

I ε
T (λ)

(
w(λ)

f (λ, θ1)
− w(λ)

f (λ, θ2)

)

dλ

∣
∣
∣
∣
∣
∣

+ sup
‖θ1−θ2‖≤δ

∣
∣
∣
∣
∣
∣

∫

R

f (λ, θ0)

(
w(λ)

f (λ, θ1)
− w(λ)

f (λ, θ2)

)

dλ

∣
∣
∣
∣
∣
∣

+ 2 sup
θ∈c

∣
∣
∣
∣J

(1)
T

(
w

f

)∣
∣
∣
∣+ 2 sup

θ∈c
J (2)

T

(
w

f

)

≥ ρ

2

}

.

(14)

By the condition C5(i)

sup
‖θ1−θ2‖≤δ

∣
∣
∣
∣
∣
∣

∫

R

I ε
T (λ)

(
w(λ)

f (λ, θ1)
− w(λ)

f (λ, θ2)

)

dλ

∣
∣
∣
∣
∣
∣
≤ η(δ)

∫

R

I ε
T (λ)

w(λ)

v(λ)
dλ,

where

η(δ) = sup
λ∈R, ‖θ1−θ2‖≤δ

∣
∣
∣
∣

v(λ)

f (λ, θ1)
− v(λ)

f (λ, θ2)

∣
∣
∣
∣ → 0, δ → 0.
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Since by Lemma 3 and the condition C5(ii)
∫

R

I ε
T (λ)

w(λ)

v(λ)
dλ

P−→
∫

R

f (λ, θ0)
w(λ)

v(λ)
dλ, as T → ∞,

and the 2nd term under the probability sign in (14) by chosing δ can be made arbitrary small,
then P1 → 0, as T → 0, taking into account that the 3rd and the 4th terms converge to zero

in probability, thanks to (12) and (13), if ϕ = w

f
. �

Proof of Theorem 1 By Definition 2 for any ρ > 0

P
{∥
∥θ̂T − θ0

∥
∥ ≥ ρ

} = P
{∥
∥θ̂T − θ0

∥
∥ ≥ ρ; UT (θ̂T , α̂T ) ≤ UT (θ0, α̂T )

}

≤ P

{

inf‖θ−θ0‖≥ρ
(UT (θ, α̂T ) − UT (θ0, α̂T )) ≤ 0

}

= P

{

inf‖θ−θ0‖≥ρ

[
UT (θ, α̂T ) − U (θ) − (UT (θ0, α̂T ) − U (θ0)) + K (θ0, θ)

]
≤ 0

}

≤ P

{

inf‖θ−θ0‖≥ρ

[
UT (θ, α̂T ) − U (θ) − (UT (θ0, α̂T ) − U (θ0))

]
+ inf‖θ−θ0‖≥ρ

K (θ0, θ)≤0

}

≤ P

{

sup
θ∈c

|UT (θ, α̂T ) − U (θ)| + |UT (θ0, α̂T ) − U (θ0)| ≥ inf‖θ−θ0‖≥ρ
K (θ0, θ)

}

→ 0,

when T → ∞ due to Lemma 4 and the property of the contrast function K . �

4 Asymptotic normality of minimum contrast estimator

The first three conditions relate to properties of the regression function g(t, α) and the LSE
α̂T . They are commented in “Appendix B”.

N1. The normed LSE dT (α0) (̂αT − α0) is asymptotically, as T → ∞, normal N (0, �L SE ),
�L SE = (

�i j
L SE

)q
i, j=1

.

Let us

g′(t, α) = ∂

∂t
g(t, α); �′

T (α1, α2) =
T∫

0

(
g′(t, α1) − g′(t, α2)

)2
dt, α1, α2 ∈ Ac.

N2. The function g(t, α) is continuously differentiable with respect to t ≥ 0 for any α ∈ Ac

and for any α0 ∈ A, and T > T0 there exists a constant c′
0 (T0 and c′

0 may depend on
α0) such that

�′
T (α, α0) ≤ c′

0

∥
∥
∥dT (α0) (α − α0)

∥
∥
∥
2
, α ∈ Ac.

Let

gil(t, α) = ∂2

∂αi∂αl
g(t, α), d2

il,T (α) =
T∫

0

g2
il(t, α)dt, i, l = 1, q,

v(r) = {
x ∈ R

q : ‖x‖ < r
}
, r > 0.
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N3. The function g(t, α) is twice continuously differentiable with respect to α ∈ Ac for
any t ≥ 0, and for any R ≥ 0 and all sufficiently large T (T > T0(R))

(i) d−1
iT (α0) sup

t∈[0,T ], u∈vc(R)

∣
∣
∣gi

(
t, α0 + d−1

T (α0)u
)∣
∣
∣ ≤ ci (R)T − 1

2 , i = 1, q;

(ii) d−1
il,T (α0) sup

t∈[0,T ], u∈vc(R)

∣
∣
∣gil

(
t, α0 + d−1

T (α0)u
)∣
∣
∣ ≤ cil(R)T − 1

2 , i, l = 1, q;

(iii) d−1
iT (α0)d

−1
lT (α0)dil,T (α0) ≤ c̃il T − 1

2 , i, l = 1, q,

with positive constants ci , cil , c̃il , possibly, depending on α0.
We assume also that the function f (λ, θ) is twice differentiable with respect to θ ∈ c

for any λ ∈ R.
Set

fi (λ, θ) = ∂

∂θi
f (λ, θ), fi j (λ, θ) = ∂2

∂θi∂θ j
f (λ, θ),

and introduce the following conditions.

N4. (i) For any θ ∈ c the functions ϕi (λ) = fi (λ, θ)

f 2(λ, θ)
w(λ), λ ∈ R, i = 1, m, possess

the following properties:
(1) ϕi ∈ L∞(R) ∩ L1(R);

(2)
+∞
Var−∞ ϕi < ∞;

(3) lim
η→1

sup
λ∈R

|ϕi (ηλ) − ϕi (λ)| = 0 ;

(4) ϕi are differentiable and ϕ′
i are uniformly continuous on R.

(ii)
| fi (λ, θ)|

f (λ, θ)
w(λ) ≤ Z2(λ), θ ∈ , i = 1, m, almost everywhere in λ ∈ R and

Z2(·) ∈ L1(R).

(iii) The functions
fi (λ, θ) f j (λ, θ)

f 2(λ, θ)
w(λ),

fi j (λ, θ)

f (λ, θ)
w(λ) are continuous with respect

to θ ∈ c for each λ ∈ R and

f 2i (λ, θ)

f 2(λ, θ)
w(λ) + | fi j (λ, θ)|

f (λ, θ)
w(λ) ≤ ai j (λ), λ ∈ R, θ ∈ c,

where ai j (·) ∈ L1(R), i, j = 1, m.

N5. (i)
f 2i (λ, θ)

f 3(λ, θ)
w(λ),

fi j (λ, θ)

f 2(λ, θ)
w(λ), i, j = 1, m, are bounded functions in (λ, θ) ∈

R × c;
(ii) There exists an even positive Lebesgue measurable function v(λ), λ ∈ R, such that

the functions
fi (λ, θ) f j (λ, θ)

f 3(λ, θ)
v(λ),

fi j (λ, θ)

f 2(λ, θ)
v(λ), i, j = 1, m, are uniformly

continuous in (λ, θ) ∈ R × c;

(iii) sup
λ∈R

w(λ)

v(λ)
< ∞.

Conditions N5(iii) and C5(ii) look the same, however the function v in these conditions
must satisfy different conditions N5(ii) and C5(i), and therefore, generally speaking, the
functions v in these two conditions can be different.
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The next three matrices appear in the formulation of Theorem 2:

W1(θ) =
∫

R

∇θ log f (λ, θ)∇′
θ log f (λ, θ)w(λ)dλ,

W2(θ) = 4π
∫

R

∇θ log f (λ, θ)∇′
θ log f (λ, θ)w2(λ)dλ,

V (θ) = γ2

∫

R

∇θ log f (λ, θ)w(λ)dλ

∫

R

∇′
θ log f (λ, θ)w(λ)dλ,

where γ2 = d4
d2
2

> 0 is the excess of the randomvariable L(1),∇θ is a columnvector-gradient,

∇′
θ is a row vector-gradient.
N6. Matrices W1(θ) and W2(θ) are positive definite for θ ∈ .

Theorem 2 Under conditions A1,A2,C1–C5 and N1–N6 the normed MCE T
1
2 (θ̂T − θ0) is

asymptotically, as T → ∞, normal with zero mean and covariance matrix

W (θ) = W −1
1 (θ0) (W2(θ0) + V (θ0)) W −1

1 (θ0). (15)

The proof of the theorem is preceded by several lemmas. The next statement is Theorem
5.1 Avram et al. (2010) formulated in a form convenient to us.

Lemma 5 Let the stochastic process ε satisfiesA1,A2, spectral density f ∈ L p(R), a function

b ∈ Lq(R)
⋂

L1(R), where
1

p
+ 1

q
= 1

2
. Let

b̂(t) =
∫

R

eiλt b(λ)dλ (16)

and

QT =
T∫

0

T∫

0

(ε(t)ε(s) − B(t − s)) b̂(t − s)dtds. (17)

Then the central limit theorem holds:

T − 1
2 QT ⇒ N (0, σ 2), as T → ∞,

where “⇒” means convergence in distributions,

σ 2 = 16π3
∫

R

b2(λ) f 2(λ)dλ + γ2

⎛

⎝2π
∫

R

b(λ) f (λ)dλ

⎞

⎠

2

, (18)

where γ2 = d4
d2
2

> 0 is the excess of the random variable L(1). In particular, the statement

is true for p = 2 and q = ∞.

Alternative form of Lemma 5 is given in Bai et al. (2016). We formulate their Theorem
2.1 in the form convenient to us.
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Lemma 6 Let the stochastic process ε be such that E L(1) = 0, E L4(1) < ∞, and QT be as
in (17). Assume that â ∈ L p(R)∩ L2(R), b̂ is of the form (16) with even function b ∈ L1(R)

and b̂ ∈ Lq(R) with

1 ≤ p, q ≤ 2,
2

p
+ 1

q
≥ 5

2
,

then

T − 1
2 QT ⇒ N (0, σ 2), as T → ∞,

where σ 2 is given in (18).

Remark 3 It is important to note that conditions of Lemma 5 are given in frequency domain,
while Lemma 6 employs the time domain conditions.

Theorems similar to Lemmas 5 and 6 can be found in paper by Giraitis et al. (2017),
where the case of martingale-differences were considered. Overview of analogous results for
different types of processes is given in the paper by Ginovyan et al. (2014).

Set

�T (ϕ) = T − 1
2

∫

R

εT (λ)sT (λ, α̂T )ϕ(λ)dλ.

Lemma 7 Suppose the conditions A1,A2,C2,N1–N3 are fulfilled, ϕ(λ), λ ∈ R, is a bounded
differentiable function satisfying the relation 3) of the condition N4(i), and moreover the
derivative ϕ′(λ), λ ∈ R, is uniformly continuous on R. Then

�T (ϕ)
P−→ 0 as T → ∞.

Proof Let Bσ be the set of all bounded entire functions onR of exponential type 0 ≤ σ < ∞
(see “Appendix C”), and δ > 0 is an arbitrarily small number. Then there exists a function
ϕσ ∈ Bσ , σ = σ(δ), such that

sup
λ∈R

|ϕ(λ) − ϕσ (λ)| < δ.

Let Tn(ϕσ ; λ) =
n∑

j=−n
c(n)

j ei j σ
n λ, n ≥ 1, be a sequence of the Levitan polynomials that

corresponds to ϕσ . For any � > 0 there exists n0 = n0(δ, �) such that for n > n0

sup
λ∈[−�,�]

|ϕσ − Tn(ϕσ ; λ)| ≤ δ.

Write

�T (ϕ) = �T (ϕ − ϕσ ) + �T (ϕσ − Tn) + �T (Tn),

|�T (ϕ − ϕσ )| ≤ δT − 1
2

∫

R

∣
∣
∣εT (λ)sT (λ, α̂T )

∣
∣
∣ dλ

≤ δT − 1
2

⎛

⎝
∫

R

|εT (λ)|2 dλ

⎞

⎠

1
2
⎛

⎝
∫

R

|sT (λ, α̂T )|2 dλ

⎞

⎠

1
2

= 2πδ
(
ν∗

T

) 1
2 �

1
2
T (̂αT , α0) ≤ 2πc

1
2
0 δ
(
ν∗

T

) 1
2 ‖dT (α0) (̂αT − α0)‖ .
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So, under the condition C2, for any ρ > 0

P {|�T (ϕ − ϕσ )| ≥ ρ} ≤

≤ P

⎧
⎨

⎩
‖dT (α0) (̂αT − α0)‖ ≥ ρ

2πc
1
2
0 δ(B(0) + 1)

1
2

⎫
⎬

⎭
+ P

{
ν∗

T − B(0) > 1
} = P3 + P4.

The probability P4 → 0, as T → ∞, and the probability P3 under the condition N1 for
sufficiently large T (we will write T > T0) can be made less than a preassigned number by
chosing δ > 0 for a fixed ρ > 0.

As far as the function ϕσ ∈ Bσ and the corresponding sequence of Levitan polynomials
Tn are bounded by the same constant, we obtain

|�(ϕσ − Tn)| ≤ δT − 1
2

�∫

−�

∣
∣
∣εT (λ)sT (λ, α̂T )

∣
∣
∣ dλ

+ 2c(ϕσ )T − 1
2

∫

R\[−�,�]

∣
∣
∣εT (λ)sT (λ, α̂T )

∣
∣
∣ dλ = D1 + D2.

The integral in the term D1 can be majorized by an integral over R and bounded as earlier.
We have further

sT (λ, α̂T ) = (iλ)−1
[
eiλT (g(T , α0) − g(T , α̂T )) − (g(0, α0) − g(0, α̂T )) − s′

T (λ, α̂T )
]
,

where s′
T (λ, α̂T ) =

T∫

0
e−iλt (g′(t, α0) − g′(t, α̂T ))dt .

Under the Lemma conditions

T − 1
2

∫

R\[−�,�]
|εT (λ)sT (λ, α̂T )|dλ ≤ T − 1

2

⎛

⎜
⎝

∫

R\[−�,�]
|εT (λ)|2 dλ

⎞

⎟
⎠

1
2

·
⎛

⎜
⎝3

∫

R\[−�,�]
λ−2

[
|g(T , α0) − g(T , α̂T )|2 + |g(0, α0) − g(0, α̂T )|2 + ∣

∣s′
T (λ, α̂T )

∣
∣2
]

dλ

⎞

⎟
⎠

1
2

≤ √
3
(
2πν∗

T

) 1
2
(√

2�− 1
2

(
|g(T , α̂T ) − g(T , α0)| + |g(0, α̂T ) − g(0, α0)|

)
+

+ (2πc′
0

) 1
2 �−1 ‖dT (α0) (̂αT − α0)‖

)

.

Obviously,

g(T , α̂T ) − g(T , α0) =
q∑

i=1

gi (T , α∗
T ), (̂αiT − αi0) ,
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α∗
T = α0 + η (̂αT − α0), η ∈ (0, 1), dT (α0)

(
α∗

T − α0
) = ηdT (α0) (̂αT − α0), and for any

ρ > 0 and i = 1, q

P
{∣
∣gi (T , α∗

T ), (̂αiT − αi0)
∣
∣ ≥ ρ

}

≤ P
{∣
∣gi (T , α∗

T ), (̂αiT − αi0)
∣
∣ ≥ ρ, ‖dT (α0) (̂αT − α0)‖ ≤ R

}

+ P
{
‖dT (α0) (̂αT − α0)‖ > R

}
= P5 + P6.

By condition N3(i) for any R ≥ 0

P5 ≤ P

{(

d−1
iT (α0) sup

t∈[0,T ], ‖u‖≤R

∣
∣
∣gi

(
t, α0 + d−1

T (α0)u
)∣
∣
∣

)

·
(

d−1
iT (α0) |̂αiT − αi0|

)
≥ ρ

}

≤ P

{

T − 1
2 d−1

iT (α0) |̂αiT − αi0| ≥ ρ

ci (R)

}

→ 0, as T → ∞,

according to N1 (or C1). On the other hand, by condition N1 the value R can be chosen so
that for T > T0 the probability P6 becomes less that preassigned number.

So,

g(T , α̂T ) − g(T , α0)
P−→ 0, as T → ∞,

and, similarly, g(0, α̂T ) − g(0, α0)
P−→ 0, as T → ∞.

Moreover, for any ρ > 0

P
{
�−1 ‖dT (α0) (̂αT − α0)‖ ≥ ρ

} ≤ P6

+ P
{
�−1 ‖dT (α0) (̂αT − α0)‖ ≥ ρ, ‖dT (α0) (̂αT − α0)‖ ≤ R

}
,

and the second probability is equal to zero, if � > R
ρ
.

Thus for any fixed ρ > 0, similarly to the probability P3, the probability P7 = P{D2 ≥ ρ}
for T > T0 can be made less than preassigned number by the choice of the value �.

Consider

�T (Tn) = T − 1
2

n∑

j=−n

c(n)
j

∫

R

εT (λ)sT (λ, α̂T )ei j σ
n λdλ,

sT (λ, α̂T )ei j σ
n λ =

T + jσ
n∫

jσ
n

eiλt
(

g
(

t − j
σ

n
, α0

)
− g

(
t − j

σ

n
, α̂T

))
dt, j = −n, n.

It means that

�T (Tn) = 2π
n∑

j=1

c(n)
j T − 1

2

T∫

jσ
n

ε(t)
(

g
(

t − j
σ

n
, α0

)
− g

(
t − j

σ

n
, α̂T

))
dt

+ 2π
0∑

j=−n

c(n)
j T − 1

2

T + jσ
n∫

0

ε(t)
(

g
(

t − j
σ

n
, α0

)
− g

(
t − j

σ

n
, α̂T

))
dt .
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For j > 0 consider the value

T − 1
2

T∫

jσ
n

ε(t)
(

g
(

t − j
σ

n
, α̂T

)
− g

(
t − j

σ

n
, α0

))
dt

=
q∑

i=1

⎛

⎜
⎜
⎝T − 1

2 d−1
iT (α0)

T∫

jσ
n

ε(t)gi

(
t − j

σ

n
, α0

)
dt

⎞

⎟
⎟
⎠ diT (α0)(̂αiT − αi0)

+ 1

2

q∑

i,k=1

⎛

⎜
⎜
⎝T − 1

2

T∫

jσ
n

ε(t)gik

(
t − j

σ

n
, α∗

T

)
dt

⎞

⎟
⎟
⎠ (̂αiT − αi0) (̂αkT − αk0)

= S1T + 1

2
S2T ,

α∗
T = α0 + η̄ (̂αT − α0), η̄ ∈ (0, 1).
Note that for i = 1, q

diT (α0) (̂αiT − αi0) ⇒ N (0, �i i
L SE

), as T → ∞,

by the condition N1. Moreover,

E

⎛

⎜
⎜
⎝T − 1

2 d−1
iT (α0)

T∫

jσ
n

ε(t)gi

(
t − j

σ

n
, α0

)
dt

⎞

⎟
⎟
⎠

2

= T −1d−2
iT (α0)

T∫

jσ
n

T∫

jσ
n

B(t − s)gi

(
t − j

σ

n
, α0

)
gi

(
s − j

σ

n
, α0

)
dtds

≤
⎛

⎝T −2

T∫

0

T∫

0

B2(t − s)dtds

⎞

⎠

1
2

= O
(

T − 1
2

)
,

since

T −1

T∫

0

T∫

0

B2(t − s)dtds → 2π‖ f ‖22, as T → ∞.

It means that the sum S1T
P−→ 0, as T → ∞.

For the general term Sik
2T of the sum S2T and any ρ > 0, R > 0,

P
{∣
∣
∣Sik

2T

∣
∣
∣ ≥ ρ

}
≤ P6 + P8, P8 = P

{∣
∣
∣Sik

2T

∣
∣
∣ ≥ ρ, ‖dT (α0) (̂αT − α0)‖ ≤ R

}
.
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Under condition ‖dT (α0) (̂αT − α0)‖ ≤ R using assumptions N3(ii) and N3(iii) we get
as in the estimation of the probability P5

∣
∣
∣Sik

2T

∣
∣
∣ ≤

⎛

⎜
⎜
⎝T − 1

2

T∫

jσ
n

|ε(t)|dt

⎞

⎟
⎟
⎠ ·

(

d−1
ik,T (α0) sup

t∈[0,T ], u∈vc(R)

∣
∣
∣gik

(
t, α0 + d−1

T (α0)u
)∣
∣
∣

)

·
(

d−1
iT (α0)d

−1
kT (α0)dik,T (α0)

)
· |diT (α0)(̂αiT − αi0)| · |dkT (α0)(̂αkT − αk0)|

≤ cik(R)c̃ik T − 3
2

T∫

0

|ε(t)|dt · |diT (α0)(̂αiT − αi0)| · |dkT (α0)(̂αkT − αk0)| .

By Lemma 1

T − 3
2

T∫

0

|ε(t)|dt ≤ 1

2
T − 1

2 + 1

2
T − 3

2

T∫

0

ε2(t)dt
P−→ 0, as T → ∞.

So, by condition N1 P8 → 0, as T → ∞, that is S2T
P−→ 0, as T → ∞. For j ≤ 0 the

reasoning is similar, and

�T (Tn)
P−→ 0, T → ∞.

�

Lemma 8 Let the function ϕ(λ, θ)w(λ) be continuous in θ ∈ c for each fixed λ ∈ R with

|ϕ(λ, θ)| ≤ ϕ(λ), θ ∈ c, and ϕ(·)w(·) ∈ L1(R).

If θ∗
T

P−→ θ0, then

I
(
θ∗

T

) =
∫

R

ϕ
(
λ, θ∗

T

)
w(λ)dλ

P−→
∫

R

ϕ(λ, θ0)w(λ)dλ = I (θ0).

Proof By a Lebesgue dominated convergence theorem the integral I (θ), θ ∈ c, is a con-

tinuous function. Further argument is standard. For any ρ > 0 and ε = ρ

2
we find such a

δ > 0, that |I (θ) − I (θ0)| < ε as ‖θ − θ0‖ < δ. Then

P
{|I (θ∗

T ) − I (θ0)| ≥ ρ
} = P9 + P10,

where

P9 = P
{
|I (θ∗

T ) − I (θ0)| ≥ ρ

2
, ‖θ∗

T − θ0‖ < δ
}

= 0,

due to the choice of ε, and

P10 = P
{
|I (θ∗

T ) − I (θ0)| ≥ ρ

2
, ‖θ∗

T − θ0‖ ≥ δ
}

→ 0, as T → ∞.

�
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Lemma 9 If the conditions A1,C2 are satisfied and sup
λ∈R, θ∈c

|ϕ(λ, θ)| = c(ϕ) < ∞, then

T −1
∫

R

ϕ(λ, θ∗
T )εT (λ)sT (λ, α̂T )dλ

P−→ 0, as T → ∞,

T −1
∫

R

ϕ(λ, θ∗
T )|sT (λ, α̂T )|dλ

P−→ 0, as T → ∞.

Proof These relations are similar to (12), (13), and can be obtained in the same way. �
Lemma 10 Let under conditions A1,A2 there exists an even positive Lebesgue measurable
function v(λ), λ ∈ R, and an even Lebesgue measurable in λ for any fixed θ ∈ c function
ϕ(λ, θ), (λ, θ) ∈ R × c, such that

(i) ϕ(λ, θ)v(λ) is uniformly continuous in (λ, θ) ∈ R × c;

(ii) sup
λ∈R

w(λ)

v(λ)
< ∞;

(iii) sup
λ∈R, θ∈c

|ϕ(λ, θ)|w(λ) < ∞.

Suppose also that θ∗
T

P−→ θ0, then, as T → ∞,
∫

R

I ε
T (λ)ϕ(λ, θ∗

T )w(λ)dλ
P−→

∫

R

f (λ, θ0)ϕ(λ, θ0)w(λ)dλ.

Proof We have
∫

R

I ε
T (λ)ϕ(λ, θ∗

T )w(λ)dλ =
∫

R

I ε
T (λ)

(
ϕ(λ, θ∗

T ) − ϕ(λ, θ0)
)
v(λ)

w(λ)

v(λ)
dλ

+
∫

R

I ε
T (λ)ϕ(λ, θ0)w(λ)dλ = I5 + I6.

By Lemma 3 and the condition (iii)

I6
P−→

∫

R

f (λ, θ0)ϕ(λ, θ0)w(λ)dλ, as T → ∞. (19)

On the other hand, for any r > 0 under the condition (i) there exists δ = δ(r) such that for∥
∥θ∗

T − θ0
∥
∥ < δ

|I5| ≤ r
∫

R

I ε
T

w(λ)

v(λ)
dλ, (20)

and by the condition (ii)
∫

R

I ε
T

w(λ)

v(λ)
dλ

P−→
∫

R

f (λ, θ0)
w(λ)

v(λ)
dλ. (21)

The relations (19)–(21) prove the lemma. �
Proof of Theorem 2 By definition of the MCE θ̂T , formally using the Taylor formula, we get

0 = ∇θUT (θ̂T , α̂T ) = ∇θUT (θ0, α̂T ) + ∇θ∇′
θUT (θ∗

T , α̂T )(θ̂T − θ0). (22)
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Since there is no vector Taylor formula, (22)must be taken coordinatewise, that is each row of
vector equality (22) depends on its own random vector θ∗

T , such that ‖θ∗
T − θ0‖ ≤ ‖θ̂T − θ0‖.

In turn, from (22) we have formally

T
1
2 (θ̂T − θ0) = (∇θ∇′

θUT (θ∗
T , α̂T )

)−1
(
−T

1
2 ∇θUT (θ0, α̂T )

)
.

As far as the condition N4 implies the possibility of differentiation under the sign of the
integrals in (10), then

−T
1
2 ∇θUT (θ0, α̂T ) = −T

1
2

∫

R

(

∇θ log f (λ, θ0) + ∇θ

(
1

f (λ, θ0)

)

IT (λ, α̂T )

)

w(λ)dλ

= T
1
2

∫

R

(∇θ f (λ, θ0)

f 2(λ, θ0)
I ε
T (λ) − ∇θ f (λ, θ0)

f (λ, θ0)

)

w(λ)dλ

+ (2π)−1T − 1
2

∫

R

(
2Re

{
εT (λ)sT (λ, α̂T )

}
+|sT (λ, α̂T )|2

) ∇θ f (λ, θ0)

f 2(λ, θ0)
w(λ)dλ

= A(1)
T + A(2)

T + A(3)
T .

(23)
Similarly

∇θ∇′
θUT (θ∗

T , α̂T ) =
∫

R

(

∇θ∇′
θ log f (λ, θ∗

T ) + ∇θ∇′
θ

(
1

f (λ, θ∗
T )

)

IT (λ, α̂T )

)

w(λ)dλ

=
∫

R

{(∇θ∇′
θ f (λ, θ∗

T )

f (λ, θ∗
T )

− ∇θ f (λ, θ∗
T )∇′

θ f (λ, θ∗
T )

f 2(λ, θ∗
T )

)

+
(

2
∇θ f (λ, θ∗

T )∇′
θ f (λ, θ∗

T )

f 3(λ, θ∗
T )

− ∇θ∇′
θ f (λ, θ∗

T )

f 2(λ, θ∗
T )

)

×

× (I ε
T (λ) + (πT )−1 Re{εT (λ)sT (λ, α̂T )} + (2πT )−1|sT (λ, α̂T )|2)

}
w(λ)dλ

= B(1)
T + B(2)

T + B(3)
T + B(4)

T ,

(24)
where the terms B(3)

T and B(4)
T contain values Re{εT (λ)sT (λ, α̂T )} and |sT (λ, α̂T )|2, respec-

tively.
Bearing in mind the 1st part of the condition N4(i), we take in Lemma 7 the functions

ϕ(λ) = ϕi (λ) = fi (λ, θ)

f 2(λ, θ)
w(λ), i = 1, m.

Then in the formula (23) A(2)
T

P−→ 0, as T → ∞.

Consider the term A(3)
T = (a(3)

iT )m
i=1,, in the sum (23)

a(3)
iT = (2π)−1T − 1

2

∫

R

|sT (λ, α̂T )|2ϕi (λ)dλ,
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where ϕi (λ) are as before. Under conditions C1,C2,N1 and (1) of N4(i) A(3)
T

P−→ 0, as
T → ∞, because

|a(3)
iT | ≤ c(ϕi )T

− 1
2 �T (̂αT , α0)

≤ c(ϕi )c0‖T − 1
2 dT (α0) (̂αT − α0) ‖ ‖dT (α0) (̂αT − α0) ‖ P−→ 0, as T → ∞.

Examine the behaviour of the terms B(1)
T − B(4)

T in formula (24). Under conditions C1

and N4(iii) we can use Lemma 8 with functions

ϕ(λ, θ) = ϕi j (λ, θ) = fi j (λ, θ)

f (λ, θ)
,

fi (λ, θ) f j (λ, θ)

f 2(λ, θ)
, i, j = 1, m,

to obtain the convergence

B(1)
T

P−→
∫

R

(∇θ∇′
θ f (λ, θ0)

f (λ, θ0)
− ∇θ f (λ, θ0)∇′

θ f (λ, θ0)

f 2(λ, θ0)

)

w(λ)dλ, as T → ∞. (25)

Under the condition N5(i) we can use Lemma 9 with functions

ϕ(λ, θ) = ϕi j (λ, θ) = fi j (λ, θ)

f 2(λ, θ)
w(λ),

fi (λ, θ) f j (λ, θ)

f 3(λ, θ)
, i, j = 1, m,

to obtain that

B(3)
T

P−→ 0, B(4)
T

P−→ 0, as T → ∞.

Under conditions C1 and N5

B(2)
T

P−→
∫

R

(

2
∇θ f (λ, θ0)∇′

θ f (λ, θ0)

f 2(λ, θ0)
− ∇θ∇′

θ f (λ, θ0)

f (λ, θ0)

)

w(λ)dλ, (26)

if we take in Lemma 10 in conditions (i) and (iii)

ϕ(λ, θ) = ϕi j (λ, θ) = fi (λ, θ) f j (λ, θ)

f 3(λ, θ)
,

fi j (λ, θ)

f 2(λ, θ)
i, j = 1, m.

So, under conditions C1,C2,N4(iii) and N5

∇θ∇′
θUT (θ∗

T , α̂T )
P−→

∫

R

∇θ f (λ, θ0)∇′
θ f (λ, θ0)

f 2(λ, θ0)
w(λ)dλ

=
∫

R

∇θ log f (λ, θ0)∇′
θ log f (λ, θ0)w(λ)dλ = W1(θ0),

(27)

because W1(θ0) is the sum of the right hand sides of (25) and (26).
From the facts obtained, it follows that for the proof of Theorem 2 it is necessary to study

an asymptotic behaviour of vector A(1)
T from (23):

A(1)
T = T

1
2

∫

R

(∇θ f (λ, θ0)

f 2(λ, θ0)
I ε
T (λ) − ∇θ f (λ, θ0)

f (λ, θ0)

)

w(λ)dλ.
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We will take

ϕi (λ) = fi (λ, θ0)

f 2(λ, θ0)
w(λ), i = 1, m,

�(λ) =
m∑

i=1

uiϕi (λ), u = (u1, . . . , um) ∈ R
m,

YT =
∫

R

I ε
T (λ)�(λ)dλ, Y =

∫

R

f (λ, θ0)�(λ)dλ,

and write
〈
A(1)

T , u
〉
= T

1
2 (YT − E YT ) + T

1
2 (E YT − Y ).

Under conditions (1) and (2) of N4(i) (Bentkus 1972b; Ibragimov 1963) for any u ∈ R
m

T
1
2 (E YT − Y ) −→ 0, as T → ∞. (28)

On the other hand

T
1
2 (YT − E YT ) = T − 1

2

T∫

0

T∫

0

(ε(t)ε(s) − B(t − s)) b̂(t − s)dtds

with

b̂(t) =
∫

R

eiλt (2π)−1�(λ)dλ.

Thus we can apply Lemma 5 taking b(λ) = (2π)−1�(λ) in the formula (18) to obtain for
any u ∈ R

m

T
1
2 (YT − E YT ) ⇒ N (0, σ 2), as T → ∞, (29)

where

σ 2 = 4π
∫

R

�2(λ) f 2(λ, θ0)dλ + γ2

⎛

⎝
∫

R

�(λ) f (λ, θ0)dλ

⎞

⎠

2

.

The relations (28) and (29) are equivalent to the convergence

A(1)
T ⇒ N (0, W2(θ0) + V (θ0)) , as T → ∞. (30)

From (27) and (30) it follows (15).

Remark 4 From the conditions of Theorem 2 it follows also the fulfillment of Lemma 6
conditions for functions â and b̂. Really by condition A1 â ∈ L1(R) ∩ L2(R) and we can
take p = 1 in Lemma 6. On the other hand, if we look at b = (2π)−1� as at an original
of the Fourier transform, from N4(i)1) we have b ∈ L1(R) ∩ L2(R). Then according to the
Plancherel theorem b̂ ∈ L2(R) and we can take q = 2 in Lemma 6. Thus

2

p
+ 1

q
= 5

2
,

and conclusion of Lemma 6 is true.
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5 Example: Themotion of a pendulum in a turbulent fluid

First of all we review a number of results discussed in Parzen (1962), Anh et al. (2002), and
Leonenko and Papić (2019), see also references therein.

We examine the stationary Lévy-driven continuous-time autoregressive process ε(t), t ∈
R, of the order two ( C AR(2)-process ) in the under-damped case (see Leonenko and Papić
2019 for details).

The motion of a pendulum is described by the equation

ε̈(t) + 2αε̇ + (
ω2 + α2) ε(t) = L̇(t), t ∈ R, (31)

in which ε(t) is the replacement from its rest position, α is a damping factor,
2π

ω
is the

damped period of the pendulum (see, i.e., Parzen 1962, pp. 111–113).
We consider the Green function solution of the equation (31), in which L̇ is the Lévy

noise, i.e. the derivative of a Lévy process in the distribution sense (see Anh et al. 2002;
Leonenko and Papić 2019 for details). The solution can be defined as the linear process

ε(t) =
∫

R

â(t − s)d L(s), t ∈ R,

where the Green function

â(t) = e−αt sin(ωt)

ω
I[0,∞)(t), α > 0. (32)

Assuming E L(1) = 0, d2 = E L2(1) < ∞, we obtain

B(t) = d2

∞∫

0

â(t + s)â(s)ds = d2
4(α2 + ω2)

e−α|t |
(
sin(ω|t |)

ω
+ cos(ωt)

α

)

. (33)

The formula (33) for the covariance function of the process ε corresponds to the formula
(2.12) in Leonenko and Papić (2019) for the correlation function

Corr (ε(t), ε(0)) = B(t)

B(0)
= e−α|t | (cos(ωt) + α

ω
sin(ω|t |)

)
.

On the other hand for â(t) given by (32)

a(λ) =
∞∫

0

e−iλt â(t)dt = 1

α2 + ω2 − λ2 + 2iαλ
.

Then the positive spectral density of the stationary process ε can be written as (compare with
Parzen 1962)

f2(λ) = d2
2π

|a(λ)|2 = d2
2π

· 1
(
λ2 − α2 − ω2

)2 + 4α2λ2
, λ ∈ R. (34)

It is convenient to rewrite (34) in the form

f2(λ) = f (λ, θ) = 1

2π
· β
(
λ2 − α2 − γ 2

)2 + 4α2λ2
, λ ∈ R, (35)
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where α = θ1 is a damping factor, β = −κ
(2)(0) = d2(θ2) = θ2, γ = ω = θ3 is a damped

cyclic frequency of the pendulum oscillations. Suppose that

θ = (θ1, θ2, θ3) = (α, β, γ ) ∈ 

= (
α, α

)×
(
β, β

)
×
(
γ , γ

)
, α, β, γ > 0, α, β, γ < ∞.

The condition C3 is fulfilled for spectral density (35).
Assume that

w(λ) = (
1 + λ2

)−a
, λ ∈ R, a > 0.

More precisely the value of a will be chosen below.
Obviously the functions w(λ) log f (λ, θ), w(λ)

f (λ, θ)
are continuous on R × c. For any

� > 0 the function |log f (λ, θ)| is bounded on the set [−�, �] × c. The number � can
be chosen so that for R\[−�, �]

1 <
8π

β
α2λ2 ≤ f −1(λ, θ) ≤ 2π

β

(
2
(
λ4 + (

α2 + γ 2)2
)

+ 4α2λ2
)

.

Thus the function Z1(λ) in the condition C4(i) exists.
As for condition C4(ii), if a ≥ 2, then

sup
λ∈R, θ∈c

w(λ)

f (λ, θ)
< ∞.

As a function v in condition C5 we take

v(λ) = (
1 + λ2

)−b
, λ ∈ R, b > 0.

Obviously, if a ≥ b, then sup
λ∈R

w(λ)
v(λ)

< ∞ (condition C5(ii)), and the function v(λ)
f (λ, θ)

is

uniformly continuous in (λ, θ) ∈ R × c, if b ≥ 2 (condition C5(i)).
Further it will be helpful to use the notation s(λ) = (

λ2 − α2 − γ 2
)2 + 4α2λ2. Then

fα(λ, θ) = ∂

∂α
f (λ, θ) = −2αβ

π

(
λ2 + α2 + γ 2) s−2(λ);

fβ(λ, θ) = ∂

∂β
f (λ, θ) = (2πs(λ))−2 ;

fγ (λ, θ) = ∂

∂γ
f (λ, θ) = 2βγ

π

(
λ2 − α2 − γ 2) s−2(λ).

(36)

To check the condition N4(i)1) consider the functions

ϕα(λ) = fα(λ, θ)

f 2(λ, θ)
w(λ) = −4πα

β

(
λ2 + α2 + γ 2)w(λ);

ϕβ(λ) = fβ(λ, θ)

f 2(λ, θ)
w(λ) = 2π

β2 s(λ)w(λ);

ϕγ (λ) = fγ (λ, θ)

f 2(λ, θ)
w(λ) = 8πγ

β

(
λ2 − α2 − γ 2)w(λ).

(37)

Then the condition N4(i)1) is satisfied for ϕα and ϕγ when a > 3
2 , for ϕβ when a > 5

2 . The
same values of a are sufficient also to meet the condition N4(i)2).
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To verify N4(i)3) fix θ ∈ c and denote by ϕ(λ), λ ∈ R, any of the continuous functions
ϕα(λ), ϕβ(λ), ϕγ (λ), λ ∈ R. Suppose |1 − η| < δ < 1

2 . Then

sup
λ∈R

|ϕ(ηλ) − ϕ(λ)| = max

(

sup
η|λ|≤�

|ϕ(ηλ) − ϕ(λ)| , sup
η|λ|>�

|ϕ(ηλ) − ϕ(λ)|
)

= max (s1, s2) ,

s2 ≤ sup
|λ|>�

|ϕ(λ)| + sup
η|λ|>�

|ϕ(λ)| = s3 + s4.

By the properties of the functions ϕ under assumption a > 5
2 for any ε > 0 there exists

� = �(ε) > 0 such that for |λ| > 2
3� |ϕ(λ)| < ε

2 . So, s3 ≤ ε
2 . We have also s4 ≤

sup
|λ|> 2

3�

|ϕ(λ)| ≤ ε
2 . On the other hand,

s1 ≤ sup
|λ|<2�

|ϕ(ηλ) − ϕ(λ)| , |ηλ − λ| ≤ 2�δ = δ′,

and by the proper choice of δ

s1 ≤ sup
λ1,λ2∈[−2�, 2�]

|λ1−λ2|<δ′

|ϕ(λ1) − ϕ(λ2)| < ε,

and condition N4(i)(3) is met.
Using (37) we get for any θ ∈ c, as λ → ∞,

ϕ′
α(λ) = −8πα

β
λw(λ) − 4πα

β

(
λ2 + α2 + γ 2)w′(λ) = O

(
λ−2a+1) ;

ϕ′
β(λ) = 2π

β2

(
s′(λ)w(λ) + s(λ)w′(λ)

) = O
(
λ−2a+3) ;

ϕ′
γ (λ) = 16πγ

β
λw(λ) + 8πγ

β

(
λ2 − α2 − γ 2)w′(λ) = O

(
λ−2a+1) .

Therefore for a > 3
2 these derivatives are uniformly continuous on R (condition N4(i)4). So,

to satisfy condition N4(i) we can take weight function w(λ) with a > 5
2 .

The check of assumption N4(ii) is similar to the check of C4(i).
As λ → ∞, uniformly in θ ∈ c

| fα(λ, θ)|
f (λ, θ)

w(λ) = |ϕα(λ)| f (λ, θ)w(λ)=2α
(
λ2 + α2 + γ 2) s−1(λ)w(λ)= O

(
λ−2a−2) ;

∣
∣ fβ(λ, θ)

∣
∣

f (λ, θ)
w(λ) = ϕβ(λ) f (λ, θ)w(λ) = β−1w(λ) = O

(
λ−2a) ;

∣
∣ fγ (λ, θ)

∣
∣

f (λ, θ)
w(λ) = ∣

∣ϕγ (λ)
∣
∣ f (λ, θ)w(λ)=4γ

∣
∣λ2 − α2 − γ 2

∣
∣ s−1(λ)w(λ)= O

(
λ−2a−2) .

(38)
On the other hand, for any � > 0 the functions (38) are bounded on the sets [−�, �] × c.
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To check N4(iii) note first of all that the functions uniformly in θ ∈ c, as λ → ∞,

f 2α (λ, θ)

f 2(λ, θ)
w(λ) = ϕα(λ) f (λ, θ) = 8α2 (λ2 + α2 + γ 2)2 s−2(λ)w(λ) = O

(
λ−2a−4) ;

f 2β (λ, θ)

f 2(λ, θ)
w(λ) = ϕβ(λ) f (λ, θ) = β−2w(λ) = O

(
λ−2a) ;

f 2γ (λ, θ)

f 2(λ, θ)
w(λ) = ϕγ (λ) f (λ, θ) = 16γ 2 (λ2 − α2 − γ 2)2 s−2(λ)w(λ) = O

(
λ−2a−4) .

(39)
These functions are continuous on R × c, as well as the functions

fα(λ, θ) fβ(λ, θ)

f 2(λ, θ)
w(λ) = ϕα(λ) fβ(λ, θ) = −2α

β

(
λ2 + α2 + γ 2) s−1(λ)w(λ);

fα(λ, θ) fγ (λ, θ)

f 2(λ, θ)
w(λ) = ϕα(λ) fγ (λ, θ) = −8αγ

(
λ4 − (

α2 + γ 2)2
)

s−2(λ)w(λ);
fβ(λ, θ) fγ (λ, θ)

f 2(λ, θ)
w(λ) = ϕβ(λ) fγ (λ, θ) = 4γ

β

(
λ2 − α2 − γ 2) s−1(λ)w(λ).

(40)
Moreover, uniformly in θ ∈ c, as λ → ∞,

fαα(λ, θ)

f (λ, θ)
w(λ) = −4

(
λ2 + 3α2 + γ 2) s−1(λ)w(λ) + 8α

(
λ2 + α2 + γ 2) s−2(λ)s′

α(λ)w(λ)

= O
(
λ−2a−2) ;

fββ(λ, θ)

f (λ, θ)
w(λ) = 0;

fγ γ (λ, θ)

f (λ, θ)
w(λ) = 4

(
λ2 − α2 − 3γ 2) s−1(λ)w(λ) − 8γ

(
λ2 − α2 − γ 2) s−2(λ)s′

γ (λ)w(λ)

= O
(
λ−2a−2) ;

fαβ(λ, θ)

f (λ, θ)
w(λ) = −4α

β

(
λ2 + α2 + γ 2) s−1(λ)w(λ) = O

(
λ−2a−2) ;

fαγ (λ, θ)

f (λ, θ)
w(λ) = −8αγ s−1(λ)w(λ) + 16αγ

(
λ4 − (

α2 + γ 2)2
)

s−2(λ)w(λ)= O
(
λ−2a−4) ;

fβγ (λ, θ)

f (λ, θ)
w(λ) = 4γ

β

(
λ2 − α2 − γ 2) s−1(λ)w(λ) = O

(
λ−2a−2) .

(41)
Note that the functions (41) are continuous on R × c as well as functions (39) and (40).

Therefore the condition N4(iii) is fulfilled.
Let us verify the condition N5(1). According to equation (39), uniformly in θ ∈ c, as

λ → ∞,

f 2α (λ, θ)

f 3(λ, θ)
w(λ) = 16πα2

β

(
λ2 + α2 + γ 2)2 s−1(λ)w(λ) = O

(
λ−2a) ;

f 2β (λ, θ)

f 3(λ, θ)
w(λ) = 2π

β3 s(λ)w(λ) = O
(
λ−2a+4) ;

f 2γ (λ, θ)

f 3(λ, θ)
w(λ) = 32πγ 2

β

(
λ2 − α2 − γ 2)2 s−1(λ)w(λ) = O

(
λ−2a) .

(42)

123



Statistical Inference for Stochastic Processes

Therefore the continuous in (λ, θ) ∈ R×c functions (42) are bounded in (λ, θ) ∈ R×c,
if a ≥ 2.

Using equations (40) and (41) we obtain uniformly in θ ∈ c, as λ → ∞,

fαα(λ, θ)

f 2(λ, θ)
w(λ) = −8π

β

(
λ2 + 3α2 + γ 2)w(λ)+ 16πα

β

(
λ2 + α2 + γ 2) s−1(λ)s′

α(λ)w(λ)

= O
(
λ−2a+2) ;

fββ(λ, θ)

f 2(λ, θ)
w(λ) = 0;

fγ γ (λ, θ)

f 2(λ, θ)
w(λ) = 8π

β

(
λ2 − α2 − 3γ 2)w(λ) − 16πγ

β

(
λ2 − α2 − γ 2) s−1(λ)s′

γ (λ)w(λ)

= O
(
λ−2a+2) ;

fαβ(λ, θ)

f 2(λ, θ)
w(λ) = −8πα

β2

(
λ2 + α2 + γ 2)w(λ) = O

(
λ−2a+2) ;

fαγ (λ, θ)

f 2(λ, θ)
w(λ) = −16αγ

β
w(λ) + 32παγ

β

(
λ4 − (

α2 + γ 2)2
)

s−1(λ)w(λ)= O
(
λ−2a) ;

fβγ (λ, θ)

f 2(λ, θ)
w(λ) = 8πγ

β2

(
λ2 − α2 − γ 2)w(λ) = O

(
λ−2a+2) .

(43)
So, continuous on R × c functions (43) are bounded in (λ, θ) ∈ R × c, if a ≥ 1.

To check N5(ii) consider the weight function

v(λ) = (
1 + λ2

)−b
, λ ∈ R, b > 0.

If a ≥ b, then function w(λ)
v(λ)

is bounded on R (condition N5(iii)). Using (42) we obtain
uniformly in θ ∈ c, as λ → ∞,

f 2α (λ, θ)

f 3(λ, θ)
v(λ) = 16πα2

β

(
λ2 + α2 + γ 2)2 s−1(λ)v(λ) = O

(
λ−2b

)
;

f 2β (λ, θ)

f 3(λ, θ)
v(λ) = 2π

β3 s(λ)v(λ) = O
(
λ−2b+4

)
;

f 2γ (λ, θ)

f 3(λ, θ)
v(λ) = 32πγ 2

β

(
λ2 − α2 − γ 2)2 s−1(λ)v(λ) = O

(
λ−2b

)
.

(44)

In turn, similarly to (40) it follows uniformly in θ ∈ c, as λ → ∞,

fα(λ, θ) fβ(λ, θ)

f 3(λ, θ)
v(λ) = −4πα

β2

(
λ2 + α2 + γ 2) v(λ) = O

(
λ−2b+2

)
;

fα(λ, θ) fγ (λ, θ)

f 3(λ, θ)
v(λ) = −16αγ

β

(
λ4 − (

α2 + γ 2)2
)

s−1(λ)v(λ) = O
(
λ−2b

)
;

fβ(λ, θ) fγ (λ, θ)

f 3(λ, θ)
v(λ) = 8πγ

β2

(
λ2 − α2 − γ 2) v(λ) = O

(
λ−2b+2

)
.

(45)

The functions (44) and (45) will be uniformly continuous in (λ, θ) ∈ R × c, if they
converge to zero, as λ → ∞, uniformly in θ ∈ c, that is if b > 2.
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Similarly to (43) uniformly in θ ∈ c, as λ → ∞,

fαα(λ, θ)

f 2(λ, θ)
v(λ) = O

(
λ−2b+2

)
; fββ(λ, θ)

f 2(λ, θ)
v(λ) = 0; fγ γ (λ, θ)

f 2(λ, θ)
v(λ) = O

(
λ−2b+2

)
;

fαβ(λ, θ)

f 2(λ, θ)
v(λ) = O

(
λ−2b+2

)
; fαγ (λ, θ)

f 2(λ, θ)
v(λ) = O

(
λ−2b

)
;

fβγ (λ, θ)

f 2(λ, θ)
v(λ) = O

(
λ−2b+2

)
.

(46)
Thus the functions (44)–(46) are uniformly continuous in (λ, θ) ∈ R × c, if b > 2.

Proceeding to the verification of conditionN6, we note that for any x = (
xα, xβ, xγ

) 
= 0

〈W1(θ)x, x〉 =
∫

R

(
xα fα(λ, θ) + xβ fβ(λ, θ) + xγ fγ (λ, θ)

) w(λ)

f 2(λ, θ)
dλ.

From equation (36) it is seen that the positive definiteness of the matrix W1(λ) follows from
linear independence of the functions λ2 +α2 + γ 2, s(λ), λ2 −α2 − γ 2. Positive definiteness
of the matrix W2(θ) is established similarly.

In our example to satisfy the consistency conditionsC4 andC5 the weight functionsw(λ)

and v(λ) should be chosen so that a ≥ b > 2. On the other hand to satisfy the asymptotic
normality conditions N4 and N5 the functions w(λ) and v(λ) should be such that a > 5

2 and
a ≥ b > 2.

The spectral density (35) has no singularity at zero, so that the functions v(λ) in the
conditions C5(i) and N5(ii) could be chosen to be equal to w(λ), for example, a = b = 3.
However we prefer to keep in the text the function v(λ), since it is needed when the spectral
density could have a singularity at zero or elsewhere, see, e.g., Example 1 (Leonenko and
Sakhno 2006), where linear process driven by the Brownian motion and regression function
g(t, α) ≡ 0 have been studied. Specifically in the case of Riesz-Bessel spectral density

f (λ, θ) = β

2π |λ|2α(1 + λ2)γ
, λ ∈ R, (47)

where θ = (θ1, θ2, θ3) = (α, β, γ ) ∈  = (α, α) × (β, β) × (γ , γ ), α > 0, α < 1
2 ,

β > 0, β < ∞, γ > 1
2 , γ < ∞, and the parameter α signifies the long range dependence,

while the parameter γ indicates the second-order intermittency (Anh et al. 2004; Gao et al.
2001; Lim and Teo 2008), the weight functions have been chosen in the form

w(λ) = λ2b

(
1 + λ2

)a , a > b > 0; v(λ) = λ2b′

(
1 + λ2

)a′ , a′ > b′ > 0, λ ∈ R.

Unfortunately, our conditions do not cover so far the case of the general non-linear regres-
sion function and Lévy driven continuous-time strongly dependent linear random noise such
as Riesz-Bessel motion.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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Appendix A: LSE consistency

Some results on consistency of the LSE α̂T in the observation model of the type (1) with
stationary noise ε(t), t ∈ R, were obtained, for example, in Ivanov and Leonenko (1989,
2004, 2007, 2008), Ivanov (1980, 2010), Ivanov et al. (2015) to mention several of the rele-
vant works. In this section we formulate a generalization of Malinvaud theorem (Malinvaud
1970) on α̂T consistency for linear stochastic process (4) and consider an example of nonlin-
ear regression function g(t, α) satisfying the conditions of this theorem and conditions C1,
C2. Then we consider another possibilities of C1 and C2 fulfillment.

Set

wT (α1, α2) =
T∫

0

ε(t) (g(t, α1) − g(t, α2)) dt, α1, α2 ∈ Ac,

�T (u1, u2) = �T

(
α0 + T

1
2 d−1

T (α0)u1, α0 + T
1
2 d−1

T (α0)u1

)
.

For any fixed α0 ∈ A, the function �T (u1, u2) is defined on the set UT (α0) × UT (α0),

UT (α0) = T − 1
2 dT (α0) (Ac − α0).

Assume the following.

(1) For any ε > 0 and R > 0 there exists δ = δ(ε, R) such that

sup
u1,u2∈UT (α0)∩vc(R)

‖u1−u2‖≤δ

T −1�T (u1, u2) ≤ ε. (48)

(2) For some R0 > 0 and any ρ ∈ (0, R0) there exist numbers a = a(R0) > 0 and
b = b(ρ, R0) such that

inf
u∈UT (α0)∩(vc(R0)\v(ρ))

T −1�(u, 0) ≥ b; (49)

inf
u∈UT (α0)\vc(R0)

T −1�(u, 0) ≥ 4B(0) + a. (50)

It was proven in Lemma 1 that under condition A1

E
(
ν∗

T − B(0)
)2 = O

(
T −1) . (51)

Lemma A.1 Under condition A1,

Ew4
T (α1, α2) ≤ c�2

T (α1, α2), α1, α2 ∈ Ac. (52)

Proof By formula (7)

Ew4
T (α1, α2) =

∫

[0,T ]4
c4(t1, t2, t3, t4)

4∏

i=1

(g(ti , α1) − g(ti , α2)) dt1dt2dt3dt4

+ 3

⎛

⎝

T∫

0

T∫

0

B(t1 − t2) (g(t1, α1) − g(t1, α2)) (g(t2, α1) − g(t2, α2)) dt1dt2

⎞

⎠

2

= I7 + 3I 28 .
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By condition A1 and Fubini-Tonelli theorem

|I8| ≤ 1

2

T∫

0

T∫

0

|B(t1 − t2)|
[
(g(t1, α1) − g(t1, α2))

2 + (g(t2, α1) − g(t2, α2))
2] dt1dt2

≤ d2
∥
∥â
∥
∥2
1 ,

∥
∥â
∥
∥
1 = ∫

R

|â(t)|dt .

On the other hand by formula (8)

|I7| ≤ d4

∫

R

ds
∫

[0,T ]4

4∏

i=1

∣
∣
∣â(ti − s) (g(ti , α1) − g(ti , α2))

∣
∣
∣dt1dt2dt3dt4

≤ 1

2
d4

∫

R

ds
∫

[0,T ]4

4∏

i=1

∣
∣â(ti − s)

∣
∣
[(

g(t1, α1) − g(t1, α2)
)2(

g(t2, α1) − g(t2, α2)
)2+

+(g(t3, α1) − g(t3, α2)
)2(

g(t4, α1) − g(t4, α2)
)2
]
dt1dt2dt3dt4 = I (1)

7 + I (2)
7 ;

I (1)
7 = 1

2
d4

∫

R

ds

T∫

0

T∫

0

∣
∣â(t1 − s)â(t2 − s)

∣
∣
(
g(t1, α1) − g(t1, α2)

)2

× (
g(t2, α1) − g(t2, α2)

)2
dt1dt2

·
T∫

0

T∫

0

∣
∣â(t3 − s)â(t4 − s)

∣
∣dt3dt4

≤ 1

4
d4
∥
∥â
∥
∥2
1

T∫

0

T∫

0

(
g(t1, α1) − g(t1, α2)

)2(
g(t2, α1) − g(t2, α2)

)2

·
⎛

⎝
∫

R

[
â2(t1 − s) + â2(t2 − s)

]
ds

⎞

⎠ dt1dt2

≤ 1

2
d4
∥
∥â
∥
∥2
1 �2

T (α1, α2).

For integral I (2)
7 we get the same bound. So, we obtain inequality (52) with

c = d4
∥
∥â
∥
∥2
1

∥
∥â
∥
∥2
2 + 3d2

2

∥
∥â
∥
∥4
1 .

�
Theorem A.1 If assumptions (1), (2), and A1 are valid then for any ρ > 0

P
{∥
∥
∥T − 1

2 dT (α0) (̂αT − α0)

∥
∥
∥ ≥ ρ

}
= O(T −1), as T → ∞.

Proof The proof of this Malinvaud theorem generalization is similar to the proof of Theorem
3.2.1. in Ivanov and Leonenko (1989) and uses the relations (51) and (52).
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Instead of C2 consider the stronger condition.
C′
2. There exist positive constants c0, c1 < ∞ such that for any α ∈ Ac and T > T0

c1
∥
∥dT (α) (α1 − α2)

∥
∥2 ≤ �T (α1, α2) ≤ c0

∥
∥dT (α) (α1 − α2)

∥
∥2, α1, α2 ∈ Ac. (53)

Point out a sufficient condition for C2’ fulfillment. Introduce a diagonal matrix

sT = diag
(

siT , i = 1, q
)
, siT → ∞, as T → ∞, i = 1, q.

C′′
2. (i) There exist positive constants ci , ci , i = 1, q , such that for T > T0 uniformly in

α ∈ A
ci < s−1

iT diT (α) < ci , i = 1, q. (54)

(ii) For some numbers c∗
0 . c∗

1 and T > T0,

c∗
0

∥
∥sT (α1 − α2)

∥
∥2 ≤ �T (α1, α2) ≤ c∗

0

∥
∥sT (α1 − α2)

∥
∥2, α1, α2 ∈ Ac.

Under condition C′′
2 as it is easily seen one can take in C′

2

c0 = c∗
0

(

min
1≤i≤q

ci

)−1

, c1 = c∗
1

(

max
1≤i≤q

ci

)−1

.

The next example demonstrates the fulfillment of the condition C′
2 [compare with Ivanov

and Orlovskyi (2018)].

Example A.1 Let

g(t, α) = exp {〈α, y(t)〉} ,

with 〈α, y(t)〉 =
q∑

i=1
αi yi (t), regressors y(t) =

(
y1(t), . . . , yq(t)

)′
, t ≥ 0, take values in a

compact set Y ⊂ R
q . Suppose

JT =
⎛

⎝T −1

T∫

0

yi (t)y j (t)dt

⎞

⎠

q

i, j=1

→ J = (
Ji j
)q

i, j=1 , as T → ∞,

where J is a positive definite matrix, and the set A in the model (1) is bounded. Set

M = max
α∈Ac, y∈Y

exp {〈α, y〉} , L = min
α∈Ac, y∈Y

exp {〈α, y〉} .

Then for any δ > 0 and T > T0

L2 (Jii − δ) < T −1d2
iT (α) < M2 (Jii + δ) , i = 1, q,

and condition C′′
2(i) is fulfilled with matrix sT = T

1
2 Iq , Iq is identity matrix of order q , and

ci = L2 (Jii − δ), ci = M2 (Jii + δ), i = 1, q .
Let us check the condition C′′

2(ii). We have

e〈α1, y(t)〉 − e〈α2, y(t)〉 = e〈α2, y(t)〉 (e〈α1−α2, y(t)〉 − 1
)

.

As far as (ex − 1)2 ≥ x2, x ≥ 0, and (ex − 1)2 ≥ e2x x2, x < 0, then
(

e〈α1−α2, y(t)〉 − 1
)2 ≥ � 〈α1 − α2, y(t)〉2 , � = min

{
1, e2〈α1−α2, y(t)〉} .
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Thus

e2〈α2, y(t)〉 (e〈α1−α2, y(t)〉 − 1
)2 ≥ e2〈α2, y(t)〉� 〈α1 − α2, y(t)〉2 ≥ L2 〈α1 − α2, y(t)〉2 ,

and for any δ > 0 and T > T0

�T (α1, α2) ≥ L2

q∑

i, j=1

Ji j,T

(
T

1
2 (αi1 − αi2)

) (
T

1
2 (α j1 − α j2)

)

≥ L2(λmin(J ) − δ
) ∥∥
∥T

1
2 (α1 − α2)

∥
∥
∥
2
,

where λmin(J ) is the least eigenvalue of the matrix J .
On the other hand,

∣
∣
∣e〈α1, y(t)〉 − e〈α2, y(t)〉

∣
∣
∣ =

∣
∣
∣
∣
∣

q∑

i=1

yi (t)e
〈y(t), α1+η(t)(α2−α1)〉(αi1 − αi2)

∣
∣
∣
∣
∣

≤ M

∣
∣
∣
∣
∣

q∑

i=1

yi (t)(αi1 − αi2)

∣
∣
∣
∣
∣
,

η(t) ∈ (0, 1), and

�T (α1, α2) ≤ M2

T∫

0

( q∑

i=1

yi (t)(αi1 − αi2)

)2

dt ≤ M2(λmax(J ) + δ
) ∥∥
∥T

1
2 (α1 − α2)

∥
∥
∥
2
,

where λmax(J ) is the maximal eigenvalue of the matrix J . It means that condition C′′
2(ii) is

valid for matrix sT = T
1
2 Iq .

So the conditionC′
2 is valid as well and in (53) one can choose for T > T0 some numbers

c0 >
M2λmax(J )

L2 min
1≤i≤q

Jii
, c1 <

L2λmin(J )

M2 max
1≤i≤q

Jii
.

Inequalities (53) can be rewritten in the equivalent form

c1
∥
∥u − v

∥
∥2 ≤ T −1�T (u, v) ≤ c0

∥
∥u − v

∥
∥2, u, v ∈ UT (α), α ∈ A. (55)

From the right hand side of (55) it follows (48). Similarly, from the left hand side of (55)
taking ν = 0 we obtain (49) for any R0 > 0 and it is possible to choose R0 > 0 satisfying
(50).

In our example A1 due to inequalities (54) with siT = T
1
2 , i = 1, q, the set UT (α) is

bounded uniformly in T and it is not necessary to use condition (50). However in Malinvaud
theorem we can not ignore the condition (50) of parameters distinguishability in the cases
when the sets UT (α) expands to infinity as T → ∞ or the set A is unbounded.

It goes without saying not all the interesting classes of nonlinear regression functions
satisfy consistency conditions of Malinvaud or, say, Jennrich (1969) types. The important
example of such a class is given by the trigonometric regression functions.

Example A.2 Let

g(t, α) =
N∑

i=1

(Ai cosϕi t + Bi sin ϕi t) , (56)

123



Statistical Inference for Stochastic Processes

α = (α1, α2, α3, . . . , α3N−2, α3N−1, α3N ) = (A1, B1, ϕ1, . . . , AN , BN , ϕN ), 0 < ϕ <

ϕ1 < . . . < ϕN < ϕ < ∞.
Under some conditions on angular frequencies ϕ = (ϕ1, . . . , ϕN ) distinguishability (see

Walker Walker 1973; Ivanov 1980; Ivanov et al. 2015) it is possible to prove that at least

T −1�T (̂αT , α0)
P−→ 0, as T → ∞, (57)

α̂T = (A1T , B1T , ϕ1T , . . . , AN T , BN T , ϕN T ), α0 = (
A0
1, B0

1 , ϕ0
1 , . . . , A0

N , B0
N , ϕ0

N

)
,

(
C0

k

)2 = (
A0

k

)2 + (
B0

k

)2
> 0, k = 1, N .

The convergence in (57) can be a.s. In turn, form (57) it follows (see cited papers)

AiT
P−→ A0

i , BiT
P−→ B0

i , T
(
ϕiT − ϕ0

i

) P−→ 0, as T → ∞. (58)

Note that

T −1d2
3k−2,T (α0), T −1d2

3k−1,T (α0) → 1

2
, T −3d2

3k,T (α0) → 1

6

((
A0

k

)2 + (
B0

k

)2)
,

as T → ∞, (59)

k = 1, N .
From (58) and (59) we obtain the relation of condition C1 for trigonometric regression:

T − 1
2 dT (α0) (̂αT − α0)

P−→ 0, as T → ∞.

To check the fulfillment of the condition C2 for regression function (56) we get
∣
∣Ai cosϕi t + Bi sin ϕi t − A0

i cosϕi t − B0
i sin ϕi t

∣
∣ ≤ ∣

∣Ai − A0
i

∣
∣

+ ∣
∣Bi − B0

i

∣
∣+ (|A0

i | + |B0
i |) t

∣
∣ϕi − ϕ0

i

∣
∣ ,

(60)

k = 1, N , and therefore

�T (̂αT , α0)

≤ 3N
N∑

i=1

(

T
(

Ai − A0
i

)2 + T
(
Bi − B0

i

)2 + 1

3

(|A0
i | + |B0

i |)2 T 3 (ϕi − ϕ0
i

)2
)

.

Using again the relation (59) we arrive at the inequality of the condition C2.

�T (α, α0) ≤ c0
∥
∥dT (α0) (α − α0)

∥
∥2, α ∈ Ac. (61)

with constant c0 depending on A0
i , B0

i , i = 1, N .

The next lemma is the main part of the convergence (57) proof.

Lemma 11 Under condition A1

ξ(T ) = sup
λ∈R

∣
∣
∣
∣
∣
∣
T −1

T∫

0

e−iλtε(t)dt

∣
∣
∣
∣
∣
∣

P−→ 0, as T → ∞. (62)

Proof Since
∣
∣
∣
∣
∣
∣

T∫

0

e−iλtε(t)dt

∣
∣
∣
∣
∣
∣

2

=
T∫

−T

e−iλu

T −|u|∫

0

ε(t + |u|)ε(t)dtdu =2

T∫

0

cos λu

T −u∫

0

ε(t+u)ε(t)dtdu,
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then

Eξ2(T ) ≤ 2T −2

T∫

0

E

∣
∣
∣
∣
∣
∣

T −u∫

0

ε(t + u)ε(t)dt

∣
∣
∣
∣
∣
∣
du ≤ 2T −2

T∫

0

K
1
2 (u)du.

By formula (7)

K (u) =
T −u∫

0

T −u∫

0

E ε(t + u)ε(s + u)ε(t)ε(s)dtds =
T −u∫

0

T −u∫

0

c4(t + u, s + u, t, s)dtds

+ (T − u)2B2(u) +
T −u∫

0

T −u∫

0

B2(t − s)dtds

+
T −u∫

0

T −u∫

0

B(t − s + u)B(t − s − u)dtds

≤ K1(u) + K2(u) + K3(u) + |K4(u)|,
and

Eξ2(T ) ≤ 2T −2

T∫

0

(

K
1
2
1 (u) + K

1
2
2 (u) + K

1
2
3 (u) + |K4(u)| 12

)

du. (63)

By formula (8)

K1(u) = d4

∫

R

⎛

⎝

T −u∫

0

â(t + u − r)â(t − r)

⎞

⎠

2

dr

≤ d4

∫

R

⎛

⎝

T −u∫

0

â2(t + u − r)dt

T −u∫

0

â2(t − r)dt

⎞

⎠ dr

≤ d4
∥
∥â
∥
∥2
2

T −u∫

0

dt
∫

R

â2(t + u − r)dr ≤ d4
∥
∥â
∥
∥4
2 (T − u),

that is

T −2

T∫

0

K
1
2
1 (u)du ≤ d

1
2
4

∥
∥â
∥
∥2
2 T −2

T∫

0

√
T − u du = 2

3
d

1
2
4

∥
∥â
∥
∥2
2 T − 1

2 . (64)

Obviously,

T −2

T∫

0

K
1
2
2 (u)du = T −2

T∫

0

(T − u)|B(u)|du ≤ 3− 1
2 ‖B‖2T − 1

2 , (65)

T −2

T∫

0

K
1
2
3 (u)du ≤ 2

3
‖B‖2T − 1

2 , (66)
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T −2

T∫

0

K
1
2
4 (u)du = T −2

T∫

0

⎛

⎝1

2

T −u∫

0

T −u∫

0

(
B2(t − s + u) + B2(t − s − u)

)
dtds

⎞

⎠

1
2

du

≤ 2

3
‖B‖2T − 1

2 . (67)

From inequalities (63)–(67) it follows

E ξ2(T ) = O
(

T − 1
2

)
, as T → ∞.

�

The result of the lemma can be strengthened to a.s. convergence in (62). Note also that in
the proof we did not use the condition â ∈ L1(R).

Appendix B: LSE asymptotic normality

Cumbersome sets of conditions on the behavior of the nonlinear regression function are used
in the proofs of the LSE asymptotic normality of the model parameter can be found, for
example, in Ivanov and Leonenko (1989); Ivanov (1997); Ivanov et al. (2015), and it does
not make sense to write here all of them. We will comment only on the conditions associated
with the proof of the CLT for one weighted integral of the linear process ε in the observation
model (1).

Consider the family of the matrix-valued measures μT (dx; α) =
(
μ

jl
T (dx; α)

)q

j,l=1
,

T > T0, α ∈ A, with densities

μ
jl
T (x; α) = g j

T (x, α)gl
T (x, α)

⎛

⎝
∫

R

∣
∣
∣g

j
T (x, α)

∣
∣
∣
2

dx
∫

R

∣
∣
∣gl

T (x, α)

∣
∣
∣
2

dx

⎞

⎠

− 1
2

, x ∈ R,

(68)
where

g j
T (x, θ) =

T∫

0

eixt g j (t, θ)dt, j = 1, q.

(1) Suppose that the weak convergence μT ⇒ μ as T → ∞ holds, where μT is defined
by (68) and μ is a positive definite matrix measure.

This condition means that the element μ jl of the matrix-valued measure μ are complex
measures of bounded variation, and the matrix μ(A) is non-negative definite for any set
A ∈ Z, with Z denoting the σ -algebra of Lebesgue measurable subsets of R, and μ(R) is
positive definite matrix, (see, for example, Ibragimov and Rozanov 1978).

The following definition can be found in Grenander (1954), Grenander and Rosenblatt
(1984), Ibragimov and Rozanov (1978) and Ivanov and Leonenko (1989).

Definition B.1 The positive-definite matrix-valued measureμ(dx; α) = (
μ jl(x; α)

)q
j,l=1 is

said to be the spectral measure of regression function g(t, α).
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Practically the components μ jl(x; α) are determined from the relations

R jl(h; α) = lim
T →∞ d−1

jT (α)d−1
lT (α)

T∫

0

g j (t + h, α)gl(t, α)dx

=
∫

R

eiλhμ jl(dλ; α), j, l = 1, q, (69)

where it is supposed that the matrix function
(
R jl(h; α)

)
is continuous at h = 0.

Continuing Example A.2 with the trigonometric regression function (56) from
“Appendix A”, we can state using (69) that the function g(t, α) has a block-diagonal spectral
measure μ(dλ; α) (see e.g., Ivanov et al. 2015) with blocks

⎛

⎝
κk iρk βk
−iρk κk γ k
βk γk κk

⎞

⎠ , k = 1, N , (70)

where

βk =
√
3

2Ck

(
Bkκk + i Akρk

)
, γk =

√
3

2Ck

(−Akκk + i Bkρk
)
, Ck =

√
A2

k + B2
k , k = 1, N .

In (70) the measure κk = κk(dλ) and the signed measure ρk = ρk(dλ) are concentrated at
the points ±ϕk , and κk

({±ϕk}
) = 1

2 , ρk
({±ϕk}

) = ± 1
2 .

Returning to the general case let the parameter α ∈ A of regression function g(t, α) be
fixed. We will use the notation d−1

iT (α)gi (t, α) = biT (t, α) and condition

(2) sup
t∈[0, T ]

|biT (t, α)| ≤ ci T − 1
2 , i = 1, q .

The next CLT is an important part of the proof of LSE α̂T asymptotic normality in the
model (1) and fully uses condition A1.

Theorem B.1 Under conditions A1, 1) and (2) the vector

ζT = d−1
T (α)

T∫

0

ε(t)∇g(t, α)dt =
⎛

⎝

T∫

0

ε(t)biT (t, α)dt

⎞

⎠

q

i=1

(71)

is asymptotically, as T → ∞, normal N (0, �),

� = 2π
∫

R

f (λ)μ(dλ; α) = d2

∞∫

−∞
|a(λ)|2μ(dλ; α).

Proof For any z = (
z1, . . . , zq

) ∈ R
q set

ηT = 〈ζT , z〉 =
T∫

0

ε(t)ST (t)dt, ST (t) =
q∑

i=1

biT (t, α)zi .

By condition (1)

σ 2(z) = lim
T →∞ E η2T = 2π

∫

R

f (λ)μz(dλ; α),
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μz(dλ; α) =
q∑

i, j=1
μi j (dλ; α)zi z j .

To prove the theorem it is sufficient to show for any z ∈ R and ν ≥ 1, that

lim
T →∞ E ηn

T = E ηn =
{

(n − 1)!!σ n(z), n = 2ν,

0, n = 2ν + 1.
(72)

Use the Leonov–Shiryaev formula (see, e.g., Ivanov and Leonenko 1989). Let

I = {1, 2, . . . , n}, Ip = {
i1, . . . , il p

} ⊂ I , c(Ip) = cl p

(
ti1 , . . . , til p

)
.

Then

m(I ) = mn (t1, . . . , tn) =
∑

Ar

r∏

p=1

c(Ip), (73)

where
∑

Ar

denotes summation over all unordered partitions Ar =
{

r⋃

p=1
Ip

}

of the set I into

sets I1, . . . , Ir such that I =
r⋃

p=1
Ip , Ii ∩ I j = ∅, i 
= j .

Since

E ηn
T =

∫

[0, T ]n

mn(t1, . . . , tn)

n∏

k=1

RT (tk)dt1 . . . dtn, (74)

then the application of formula (73) to (74) shows that to obtain (72) it is sufficient to prove

I (l) =
∫

[0, T ]l
cl(t1, . . . , tl)

l∏

k=1

RT (tk)dt1 . . . dtl −→ 0, as T → ∞. (75)

for all i = 3, n. Taking into account the equality E ε(t) = 0, from (75) will follow that
in (72) all the odd moments E η2ν+1 = 0. On the other hand, for even moments E η2ν we
shall find that in (74) thanks to (73) only those terms correspond to the partitions of the
set I = {1, 2, . . . , 2ν} into pairs of indices will remain nonzero, i.e. “Gaussian part” : all
l p = 2. In (73) it will be (2ν − 1)!! of such terms and each of them will be equal to σ 2ν(z).

Let us prove (75). We note that condition (2) implies

sup
t∈[0, T ]

|RT (t)| ≤ ‖c‖ ‖z‖ T − 1
2 , c = (

c1, . . . , cq
)
, z = (

z1, . . . , zq
)
.

Then using formula (8) we have

|I (l)| =

∣
∣
∣
∣
∣
∣
∣

∫

[0, T ]l
cl(t1 − tl , . . . , tl−1 − tl , 0)

l∏

k=1

RT (tk)dt1 . . . dtl

∣
∣
∣
∣
∣
∣
∣

≤ |dl |

∣
∣
∣
∣
∣
∣
∣

∫

R

ds
∫

[0, T ]l

(
l−1∏

i=1

â (ti − tl − s)

)

â(−s)
l∏

k=1

RT (tk)dt1 . . . dtl

∣
∣
∣
∣
∣
∣
∣

≤ |dl |
∫

R

∣
∣â(−s)

∣
∣

T∫

0

⎛

⎝

T∫

0

∣
∣â (t − tl − s) RT (t)

∣
∣ dt

⎞

⎠

l−1

|RT (tl)| dtlds
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≤ |dl |
(
‖c‖l−1‖z‖l−1

∥
∥â
∥
∥l
1 T − l−1

2

) (
‖c‖ ‖z‖ T

1
2

)
=

= |dl |
(‖c‖ ‖z‖ ∥∥â

∥
∥
1

)l
T

−
(

l
2−1

)

→ 0, as T → ∞, l ≥ 3. (76)

To obtain (76) we have used â ∈ L1(R) only.
Using the theorem, just as in the works cited above (for definiteness, we turn our attention

to Ivanov et al. 2015), it can be proved that, if a number of additional conditions on the
regression function are satisfied, the normalized LSE dT (α0) (̂αT − α0) is asymptotically
normal N

(
0, �L SE

)
, with

�L SE =2π

⎛

⎝
∫

R

μ(dλ; α0)

⎞

⎠

−1 ∫

R

f (λ)μ(dλ; α0)

⎛

⎝
∫

R

μ(dλ; α0)

⎞

⎠

−1

d2

⎛

⎝
∫

R

μ(dλ; α0)

⎞

⎠

−1 ∫

R

|a(λ)|2μ(dλ; α0)

⎛

⎝
∫

R

μ(dλ; α0)

⎞

⎠

−1

.

Note that, firstly, our conditions N3, (1), (2) are included in the conditions for the LSE
asymptotic normality of Ivanov et al. (2015), and, secondly, the trigonometric regression
function (56) satisfies the conditions of Ivanov et al. (2015). Moreover, using (70) and (59)
we conclude that for the trigonometric model the normalized LSE

(
T

1
2
(

A1T − A0
1

)
, T

1
2
(
B1T − B0

1

)
, T

3
2
(
ϕ1T − ϕ0

1

)
, . . . ,

T
1
2
(

AN T − A0
N

)
, T

1
2
(
BN T − B0

N

)
, T

3
2
(
ϕN T − ϕ0

N

))

is asymptotically normal N
(
0, �T RI G

)
, where�T RI G is a block diagonal matrix with blocks

4π f
(
ϕ0

k

)

(
C0

k

)2

⎛

⎜
⎝

(
A0

k

)2 + 4
(
B0

k

)2 −3A0
k B0

k −6B0
k

−3A0
k B0

k

(
B0

k

)2 + 4
(

A0
k

)2
6A0

k−6B0
k 6A0

k 12

⎞

⎟
⎠, k = 1, N .

The matrix �T RI G is positive definite, if f
(
ϕ0

k

)
> 0, k = 1, N . Hovewer it follows from our

condition A2(iii).
Note also that condition N2 is satisfied, for example, for the trigonometric regression

function (56). Indeed, in this case

g′(t, α) =
N∑

i=1

(−ϕi Ai sin ϕi t + ϕi Bi cosϕi t) ,

and similarly to (60)

∣
∣−ϕi Ai sin ϕi t + ϕi Bi cosϕi t + ϕ0

i A0
i sin ϕ0

i t − ϕ0
i B0

i cosϕ0
i t
∣
∣

≤ ϕ
(∣
∣Ai − A0

i

∣
∣+ ∣

∣Bi − B0
i

∣
∣
)+ (|A0

i | + |B0
i |) (1 + ϕt)

∣
∣ϕi − ϕ0

i

∣
∣ , i = 1, N

which leads to the inequality of condition N2 similar to (61), but with a different constant c′
0
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Appendix C: Levitan polynomials

Some necessary facts of approximation theory adapted to needs of this article are represented
in this Appendix. All the definitions and results are taken from the book (Akhiezer 1965).

In complex analysis entire function of exponential type is said to be such a function F(z)
that for any complex z the inequality

F(z) ≤ AeB|z| (77)

holds true, where the numbers A and B do not depend on z. Infinum σ of the constant B
values for which inequality (77) takes place is called the exponential type of function F(z)
and can be determined by formula

σ = lim sup
|z|→∞

ln |F(z)|
|z| .

Denote by Bσ the totality of all the entire functions F(z) of exponential type ≤ σ with
property sup

λ∈R
|F(λ)| < ∞.

Let C be linear normed space of bounded continuous functions ϕ(λ), λ ∈ R, with norm
‖ϕ‖ = sup

λ∈R
|ϕ(z)| < ∞. Consider further some set of functions M ⊂ C. For the function of

interest ϕ ∈ M suppose that

lim
η→1

sup
λ∈R

|ϕ(ηλ) − ϕ(λ)| = 0, (78)

and write

Aσ [ϕ] = inf
F∈Bσ

‖ϕ − F‖.

Let h(λ), λ ∈ R, be uniformly continuous function. Denote by

ω(δ) = ω(δ; h) = sup
|λ1−λ2|≤δ

|h(λ1) − h(λ2)| , λ1, λ2 ∈ R, δ > 0,

the modulus of continuity of the function h. Obviously ω(δ), δ > 0, is nondecreasing
continuous function tending to zero, as δ → 0.

Let the set M introduced above consists of differentiable functions such that for ϕ ∈ M

the derivatives ϕ′(λ) = h(λ), λ ∈ R, are uniformly continuous on R. Then for function ϕ

satisfying the property (78) there exists a function Fσ ⊂ Bσ such that (see Akhiezer 1965,
p. 252)

Aσ [ϕ] = ‖ϕ − Fσ ‖ ≤ 3

σ
ω

(
1

σ
; h

)

. (79)

The inequality (79) means that for the described function ϕ and any δ > 0 there exists a
number σ = σ(δ) and a function Fσ ∈ Bσ such that

‖ϕ − Fσ ‖ < δ.

As it has been proved in the 40s of the 20th century by B.M. Levitan for any function
F ∈ Bσ it is possible to build a sequence of trigonometric sums Tn(F; z), n ≥ 1, bounded on
R by the same constant as the function F , that converges to F(z) uniformly in any bounded
part of the complex plane. In particular, for any compact set K ∈ R

lim
n→∞ sup

λ∈K
|F(λ) − Tn(F; λ)| = 0.
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Put s = σ
n , n ∈ N; c(n)

j = s Es( js), j ∈ −n, n;

Es(x) = (2π)−1
∫

R

e−ixu
(
2 sin su

2

su

)2

F(u)du, x ∈ R.

Then the sequence of the Levitan polynomials that corresponds to F can be written as

Tn(F; z) =
n∑

j=−n

c(n)
j ei jsz .
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