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Abstract

Bacillus anthracis and Yersinia pestis are zoonotic bacteria capable of causing severe and

sometimes fatal infections in animals and humans. Although considered as diseases of

antiquity in industrialized countries due to animal and public health improvements, they

remain endemic in vast regions of the world disproportionally affecting the poor. These

pathogens also remain a serious threat if deployed in biological warfare. A single vaccine

capable of stimulating rapid protection against both pathogens would be an extremely

advantageous public health tool. We produced multiple-antigen fusion proteins (MaF1 and

MaF2) containing protective regions from B. anthracis protective antigen (PA) and lethal fac-

tor (LF), and from Y. pestis V antigen (LcrV) and fraction 1 (F1) capsule. The MaF2

sequence was also expressed from a plasmid construct (pDNA-MaF2). Immunogenicity

and protective efficacy were investigated in mice following homologous and heterologous

prime-boost immunization. Antibody responses were determined by ELISA and anthrax

toxin neutralization assay. Vaccine efficacy was determined against lethal challenge with

either anthrax toxin or Y. pestis. Both constructs elicited LcrV and LF-specific serum IgG,

and MaF2 elicited toxin-neutralizing antibodies. Immunizations with MaF2 conferred 100%

and 88% protection against Y. pestis and anthrax toxin, respectively. In contrast, pDNA-

MaF2 conferred only 63% protection against Y. pestis and no protection against anthrax

toxin challenge. pDNA-MaF2-prime MaF2-boost induced 75% protection against Y. pestis

and 25% protection against anthrax toxin. Protection was increased by the molecular
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adjuvant CARDif. In conclusion, MaF2 is a promising multi-antigen vaccine candidate

against anthrax and plague that warrants further investigation.

Author summary

Anthrax and plague are ancient infectious diseases that continue to affect people living in

poor, endemic regions and to threaten industrialized nations due to their potential use in

biowarfare. Candidate vaccines need improvement to minimize non-desirable effects and

increase their efficacy. The purpose of this work was to develop and evaluate a single sub-

unit vaccine capable of conferring protection against Bacillus anthracis and Yersinia pestis.
To this end, specific regions from their genome or key protective protein sequences from

both microorganisms were combined to obtain either recombinant plasmids or recombi-

nant proteins and tested as vaccine candidates in mice. The recombinant protein MaF2

induced specific antibody responses and afforded full and partial protection against Y. pes-
tis and B. anthracis, respectively. Meanwhile, the DNA vaccine equivalent to MaF2 con-

ferred only partial protection against Y. pestis, which increased when combined with an

MaF2 protein boost. MaF2 emerged as a promising dual pathogen recombinant vaccine

that warrants further investigation.

Introduction

Bacillus anthracis and Yersinia pestis are zoonotic bacteria capable of causing severe and some-

times fatal infections in animals and humans. Although considered as diseases of antiquity in

the developed world, they remain endemic in low- and middle-income countries, dispropor-

tionately affecting the poor. Even though the threat of natural infection has been markedly

reduced in industrialized nations, the same cannot be said for the threat posed by their un-nat-

ural use in the context of biowarfare. The ease with which they can be disseminated coupled

with high mortality rates, has resulted in their classification as Tier-1 biothreat agents by the

US Centers for Disease Control and Prevention (CDC) [1].

B. anthracis, the etiological agent of anthrax, is a Gram-positive, aerobic, spore-forming

bacillus which expresses two major plasmid-encoded virulence factors, a tripartite toxin and

an anti-phagocytic capsule. The tripartite toxin is responsible for most of the pathology and

comprises a 776-amino acid (aa) metalloprotease called lethal factor (LF), a 767-aa cyclic AMP

modulator called edema factor (EF), and a 735-aa non-toxic, cell-binding component called

protective antigen (PA), which transports LF and EF into the cell cytosol. PA is the principal

protective immunogen in UK- and US-licensed human anthrax vaccines [1–4]. Both of these

vaccines require multiple doses to induce protection and because of the manner by which they

were developed, they are relatively crude products containing trace amounts of LF, EF, and

other bacterial antigens that contribute to the reactogenicity experienced by some individuals

[5]. LF and its individual domains have been shown to stimulate a protective antibody

response in animals and humans [2, 6, 7].

While it is technically feasible to express and purify individual immunogens, combining the

protective regions into a single fusion protein is a more efficient, cost-effective, and practical

approach. We have shown that a fusion protein comprising the N-terminal PA binding

domain of LF (LFn) and the host-cell-binding C-terminal domain of PA can protect mice

against lethal challenge with B. anthracis [6]. A single vaccine comprising the protective
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regions from LF and PA would be easier to produce and would confer broader spectrum of

protection than one containing PA alone [8].

Yersinia pestis, the causative agent of plague, is a Gram-negative bacterium primarily transmit-

ted to humans by the bite of infected fleas, although infection can also occur through direct con-

tact, inhalation, or ingestion of infected materials [9]. Inhalational exposure is a primary concern

when considering the use of this organism as a biological weapon because it is often fatal if not

treated promptly [10]. Presently, there are no approved vaccines to prevent plague infection. Cur-

rent vaccines are crude products consisting of either whole-cell formaldehyde-inactivated bacteria

or a live-attenuated variant of the pathogen called EV76 [11, 12]. Concerns over their protective

efficacy and residual virulence has limited their use and stimulated efforts to develop non-toxic

recombinant protein vaccines based on Y. pestis virulence factors LcrV and F1.

The LcrV antigen is a key regulator of the bacteria’s type III secretion system, which is

responsible for the delivery of cytotoxic proteins into the cytosol of mammalian cells [13]. The

second vaccine target, F1, is a capsule-like protein that surrounds the bacterium and is thought

to inhibit phagocytosis [14]. Passive protection studies in animals using antibodies from

humans immunized with a vaccine comprising the F1 and LcrV antigens have confirmed the

protective efficacy of these antigens [15]. Vaccination with recombinant F1 [16], LcrV [17]

alone or in combination has been shown to protect mice [18, 19] and macaques [20] against

plague. Two recombinant protein vaccines based on LcrV and F1 have undergone human tri-

als [21]; they differ in that one comprises a mixture of the LcrV and F1 proteins while the

other is a single fusion protein of F1LcrV, which is easier to manufacture.

While these vaccine candidates have been shown to be protective across a range of animal

models, they are considered to be suboptimal with regards to the spectrum of antibody

responses they generate [22]. For example, the majority of antibodies elicited by PA are non-

neutralizing and some have been shown to enhance infection [23, 24]. A similar mixed

response has been reported in mice immunized with LFn [23]. This has prompted the investi-

gation of epitope-based vaccines comprising only those regions of PA, LF, and F1 that are key

to protection [22]. A single fusion protein consisting of protective regions and immune-stimu-

latory motifs would induce a rapid and effective immune response, be simpler to produce,

stockpile, and administer to populations at risk of exposure to B. anthracis and Y. pestis [9, 25].

The clinical evaluation of a one-component vaccine would be simpler and product approval

could be expedited.

To develop such a vaccine, a DNA-based approach might also be useful. In addition to sim-

plifying the antigen production process, the DNA platform offers flexibility in manipulation of

the vaccine candidate, and the ability to incorporate immunostimulatory components such as

cytosine and guanine motifs (CpG) and the RIG (retinoic acid-inducible gene) adaptor protein

CARDif (caspase activation and recruitment domain inducing interferon) [26, 27].

In multiple studies, plasmid DNA vaccines have been shown to protect animals against

anthrax [28, 29] and plague [30, 31]. However, efforts to develop a multi-agent DNA vaccine

against both anthrax and plague have been limited.

Williamson et al. demonstrated the feasibility of protecting mice against lethal challenge

with Y. pestis using a prime-boost regimen in which animals were primed with plasmids

encoding PA and LcrV, and then boosted with the protein form of LcrV [32]. This immune

enhancing effect was confirmed in a subsequent study in which the protective efficacy of a

plasmid encoded LcrV-Lfn fusion protein was potentiated by the co-administration of a PA-

expressing plasmid [33]. It was postulated that this was due to the presence of immunostimula-

tory CpG motifs in the backbone of the PA plasmid.

Although popular, CpG motifs rely on expression of its receptor, toll-like receptor 9

(TLR9), which is limited to specialized immune cells [34]. The utility of more ubiquitous
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immune stimulatory receptors such as RNA helicases has been investigated [27]. Through its

interaction with RNA helicase RIG-I, CARDif increases the production of type-I interferon

and potentiates immune responses [27].

The aim of this study was to advance the development of a practical, effective, and low-cost,

single vaccine formulation against B. anthracis and Y. pestis containing only key protective

regions. Two constructs consisting of LcrV-LFn fusion supplemented with linear B-cell epitopes

from PA and F1 were produced. Immune responses were examined in mice, and the protein

candidate MaF2 was selected for further studies. A DNA vaccine encoding MaF2 regions and

the molecular adjuvant CARDif was also engineered. Both the multi-antigen fusion protein and

DNA vaccine were tested in homologous and heterologous prime-boost combinations. Immune

responses and protective efficacy following anthrax and plague challenge were investigated.

Materials and methods

Fusion protein design

Genes encoding the PA (Accession AF268967) and LF (Accession M29081) of B. anthracis,
and the V antigen (Accession EFA45641) and F1 capsule (Accession CAB55265) of Y. pestis
were used as templates for the fusion proteins described in this study.

A multi-agent fusion protein, LcrV-PA.F1-LFn (MaF1; 719 aa, 82.3 kDa; Fig 1A), was engi-

neered to include the following elements: At the N-terminus, the entire sequence of Y. pestis
LcrV (aa 1–336; shown in dark blue), followed by a linker (ACELGT; aa 337–342). The next

region comprised individual protective B-cell linear epitopes from B. anthracis, LF domain 1

(LFD1) (SDVLEMYKAIGGKIYIVDGDITKHISLEAL; aa 343–372; shown in yellow) and

domain 3 (LFD3) (DSLSEEEKELLNRIQVDSS, aa 373–390; also shown in yellow) [35]. The

PA element (IKLNAKMNILIRDKRFHYDRNKKYNDKLPLYISNPNYKVNVYA; aa-391-433

shown in green) is a composite of two different regions of PA containing B and T cell epitopes.

It has been reported that IKLNAKMNILIRDKRFHYDRN is recognized in part by the murine

protective MAbs 2D3, 2D5, 10D2, and 10G4 [36]. It has also been shown that serum from

human volunteers immunized with the anthrax vaccine precipitated (AVP) contained anti-

bodies that competed with 2D3 for binding to PA, which suggests that this region is recognized

by the human immune system [37]. The small loop region of PAD4 (YNDKLPLYISNPN) is

also thought to be the binding site of a number of protective MAbs including 14B7 [6, 37]. An

immunodominant CD4 T-cell epitope (YNDKLPLYISNPNYKVNVYA) was identified in PA

from aa 682 to 701 [38], and a subsequent experiment that mapped the binding site of a pri-

mate toxin-neutralizing antibody also identified a linear epitope within PAD4 (PLYISNPNY);

this sequence in PA stretches from aa 686 to 694 [39]. The next element derived from F1 (aa

434–466; shown in red) was a potential protective linear B-cell epitope (AADLTASTTATATL-

VEPARITLTYKEGAPITIM) identified by mapping the binding sites of a protective murine

monoclonal antibody called F104AG1 [40]. The final element was the complete sequence of B.

anthracis LFD1; aa 467–719; shown in grey); together with the LFD1 and LFD3 B epitopes,

these elements were added to boost LF-induced immunity. It was also of interest to examine

the immune stimulation of the LFD1 and LFD3 B-cell epitopes outside of their natural context

(i.e. away from the rest of the LFD1 protein). The LDF1 region has been exploited in multiple

studies as a carrier protein to deliver foreign antigens to the immune system, resulting in the

stimulation of CD8+ and CD4+ T cell-mediated immunity [41, 42]. The 3-D structure model,

as predicted by I-TASSER, obtained the following scores: C-score of 0.81, exp. TM-score of

0.82±0.08, and exp. RMSD of 6.3±3.9.

A second fusion protein, LcrV-LFnPA.F1 (MaF2; 698 aa, 80.2 kDa), was constructed by

relocating the LF-, PA- and F1-specific epitopes to the C-terminus region (Fig 1B). Three
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terminal aa were added to LFD1 (SLE; aa 590–592), the linear B-cell epitope from LFD1 was

removed, while the LFD3 epitope was retained. To enhance peptide processing of the PA-

derived sequences, an additional short peptide sequence, QDGKTFIDF, from the small loop of

PAD4, a region recognized by several protective PA-specific MAbs was incorporated immedi-

ately prior to a dibasic lysine protease cleavage site (KK-aa 664–665; shown in pink) [6, 37, 43].

A second KK site was incorporated at the end of the PA-specific region. The 3-D structure

model, as predicted by I-TASSER, obtained the following scores: C-score of -3.25, exp.TM-

score of 0.35±0.12, and exp. RMSD: 16.4±3.0.

Construction and expression of recombinant proteins

Recombinant fusion proteins including PA, biologically inactive LF (LF7, a mutant in which

cysteine replaces glutamic acid at position 687), and fusion proteins MaF1 and MaF2 were

cloned and expressed from Escherichia coli (SG13009 or M15) as recombinant N-terminal his-

tidine-tagged proteins using a commercially available expression system (pQE30 or pQE80L,

Qiagen, Inc.). Because of the high AT nucleotide content of the recombinant proteins, the cor-

responding gene sequences were codon-optimized for expression in E. coli (GenScript Corp.).

Once constructed, all expression vectors were stored at -70˚C until required.

Recombinant proteins were produced as previously described [2]. Briefly, recombinant

proteins were expressed in E. coli and purified with Talon metal affinity resin (Clontech Labo-

ratories). Concentrated protein stocks were maintained in HEPES buffer (10 mM HEPES, 50

mM NaCl, pH 7.5) at -20˚C. The identities of the proteins were confirmed by SDS-PAGE and

Fig 1. Design and construction of recombinant fusion proteins. Structure prediction was conducted using

I-TASSER, and models were selected based on the C-score as calculated by I-TASSER. Ribbon diagrams and amino

acid sequences demonstrating the location of individual elements incorporated into fusion proteins. A)

MaF1-incorporating antigens from multiple agents; LcrV from Y. pestis (blue), protective linear B-cell epitopes derived

from B. anthracis LF domains 1 and 3 (yellow), linear B- and T-cell epitopes from within domain 4 of B. anthracis PA

(green), a potential protective linear B-cell epitope from Y. pestis F1 (red). B) MaF2 contained all elements described

for MaF1, except that the PA- and F1-specific epitopes were relocated to the C-terminus region.

https://doi.org/10.1371/journal.pntd.0007644.g001
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western blot analysis (Bio-Rad Laboratories). Recombinant Y. pestis LcrV and F1 were also

produced in E. coli. Protein bands were detected at the expected size either by staining with

Coomassie blue, or after electrophoretic transfer onto nitrocellulose membranes (Bio-Rad

Laboratories), using mouse polyclonal antigen-specific sera. The endotoxin content of the dif-

ferent protein preparations was determined by the Limulus amoebocyte lysate kinetic-QCL

assay according to the manufacturer’s instructions (Lonza). Protein concentrations were deter-

mined using the BCA protocol (Pierce, Thermo Scientific).

Plasmid DNA constructs

The molecular adjuvant (MA) plasmid DNA (pDNA) construct NTC7162-mIPS-1

[pDNA-MA] was derived from the SV40-CMV promoter version of the pDNAVACCUltra

plasmid [44] as follows: (1) NE sequence added: this sequence contains a splicing enhancer

comprised of SR protein binding site (GAAGAAGA 3x) in exon 2, prior to the start codon for

the gene of interest; (2) ISS sequence added: this sequence contains several non-repetitive

immunostimulatory CpG motifs; and (3) a DNA fragment encoding the IPS-1 gene was iso-

lated from the plasmid pUNO-IPS-1 and cloned into NTC7162.

The pDNA parental vector, NTC7382-SEAP (pDNA-EV) was derived from the NTC7162

plasmid described above as follows: (1) HTLV-I R-U5 sequence inserted in place of part of

CMV intron, for improved eukaryotic expression, (2) Fd gene VIII terminator and tonB bidi-

rectional terminator deleted, for improved E. coli productivity, (3) Homo sapiens placental

alkaline phosphatase (SEAP) gene was cloned into the NTC7382 cloning site replacing TPA

(native mSEAP secretion sequence used).

The DNA vaccine NTC7383 LcrV-LFnPA.F1 (pDNA-MaF2) was constructed by transfer-

ring the LcrV-LFnPA.F1 gene from the pQE30 expression vector into the NTC7372-HoPaHo

vector, replacing the HoPaHo transgene (Fig 2). The 5’ BamHI site was downstream of TPA,

so the NTC7382-LcrV-Lfn.PA.F1 construct had the TPA secretion signal upstream and in

frame with LcrV-Lfn.PA.F1.

For preparation of stocks of plasmid DNA, CompactPrep Plasmid Giga Kits were used

(Qiagen, Inc.). The kit uses a modified alkaline lysis procedure, followed by isolation and puri-

fication of plasmid DNA on the silica membrane of the CompactPrep column. Plasmid stocks

were resuspended in normal saline (Quality Biologicals Inc.) and stored at -20 oC.

Mouse immunization and challenges

Recombinant protein immunization. Female BALB/c mice (8 to 10 weeks old from

Charles River Laboratories) were randomly allocated to different groups (10 per group) and

immunized intramuscularly (i.m.) on days 0 and 28 with 10 μg of each of the following pro-

teins: PA, LF, LcrV, F1, MaF1, or MaF2 adsorbed to 25% v/v Alhydrogel (a 100-μL dose was

administered as 50 μL in each hind leg). Serum samples were collected on days 0, 13, 27, 42,

and 56 after vaccination. Protein-adjuvant adsorption was performed the day before vaccina-

tion: the protein was mixed with Alhydrogel (Brenntag Biosector, Denmark) and incubated

for 20 minutes at room temperature and then overnight at 4˚C.

DNA vaccine and protein prime-boost immunization. Groups of 20 female BALB/c

mice (8 to 10 weeks old) were immunized as follows (Table 1): (1) for homologous pDNA

prime-boost, mice were immunized i.m. with 50 μg pDNA-MaF2 on days 0, 28, and 56

(prime) and again on day 91 (boost); (2) for homologous protein prime-boost, mice were

immunized i.m. with 2.5 μg MaF2 plus 25% v/v Alhydrogel on days 0 (prime) and 91 (boost);

(3) for heterologous pDNA prime-protein boost, mice were immunized i.m. with either 50 μg

pDNA-MaF2, 25 μg pDNA-MaF2 plus 25 μg pDNA-MA, or with 50 μg pDNA-EV (parental

Multiple-antigen vaccine against anthrax and plague
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vector) on days 0, 28, and 56 (prime) followed by 2.5 μg of MaF2 adsorbed to Alhydrogel at

day 91. Unvaccinated mice that received Phosphate-buffered saline (PBS) were also included

as controls. All pDNA vaccinations were prepared with 0.25% (v/v) bupivacaine hydrochloride

in a final volume of 100 μL PBS [45]. Serum samples were collected on days 0, 27, 55, 84, 105,

and 119 after vaccination. Protein-Alhydrogel adsorption was performed the day before vacci-

nation, as described above.

Y. pestis and B. anthracis challenges. Mice (8 per group) were challenged 31 days after

the boost (day 122) with either anthrax lethal toxin, 48 μg of PA and 20 μg of LF (2.5 LD50) in

200 μL of PBS, given intravenously (i.v.) [46], or with Y. pestis EV76 (8 x 104 Colony Forming

Units) in 200 μL PBS given i.v. (597 LD50) in the presence of FeCl2 (40 μg/mouse in 100 μL

Fig 2. Plasmid DNA construct maps. A) NTC7162 mIPS (pDNA-MA), B) NTC7382 SEAP (pDNA-EV), and C)

NTC7382 MaF2 (pDNA-MaF2).

https://doi.org/10.1371/journal.pntd.0007644.g002

Table 1. Evaluation of MaF2 and the MaF2-encoding DNA vaccine in prime-boost immunization.

Prime Boost

Immunization Day 0 Day 28 Day 56 Day 91

DNA/DNA 50 μg pDNA-MaF2 50 μg pDNA-MaF2 50 μg pDNA-MaF2 50 μg pDNA-MaF2

Protein/Protein 2.5 μg MaF2 - - 2.5 μg MaF2

DNA/Protein 50 μg pDNA-MaF2 50 μg pDNA-MaF2 50 μg pDNA-MaF2 2.5 μg MaF2

DNA+MA/Protein 25 μg pDNA-MaF2 25 μg pDNA-MaF2 25 μg pDNA-MaF2 2.5 μg MaF2

25 μg pDNA-MA 25 μg pDNA-MA 25 μg pDNA-MA

Vector/Protein 50 μg pDNA-EV 50 μg pDNA-EV 50 μg pDNA-EV 2.5 μg MaF2

PBS/PBS PBS PBS PBS PBS

https://doi.org/10.1371/journal.pntd.0007644.t001
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sterile water intraperitoneally) as previously described [47]. Animals were monitored for sur-

vival and signs of disease for 14 days post-challenge. Humane endpoints were strictly observed;

any animal that displayed clinical signs indicative of severe infection (e.g., piloerection, pos-

ture, dehydration, and mobility problems) was promptly euthanized.

Antibody responses

Serum IgG specific for B. anthracis PA and LF and Y. pestis LcrV and F1 were measured by

enzyme-linked immunosorbent assay (ELISA) as previously described [48]. Briefly, plates

were coated with LF (1 μg/mL in PBS), PA (2 μg/mL in PBS), F1 (0.5 μg/mL in PBS), or LcrV

(0.5 μg/mL in carbonate buffer pH 9.6) for three hours at 37˚C. All samples were tested in

duplicate, and a positive calibrated control was included in each assay. The avidity of PA-, LF-,

and LcrV-specific IgG antibodies was measured by ELISA with an additional 10-minute 6M

urea elution step [49]. Avidity index was calculated as the percentage of residual activity (end-

point titer) after treatment with urea. Anthrax toxin-neutralizing activity (TNA) antibodies

were measured as previously described [50].

Antibody-secreting cell (ASC) ELISPOT

The frequency of IgG PA-, LF-, LcrV-, and F1-specific IgG ASC was measured in mice immu-

nized twice with MaF1 and MaF2 fusion proteins as described above (second experiment).

Spleens were obtained from 10 mice per group on day 56; The method was performed as previ-

ously described [49]. Spots from control wells were subtracted from experimental wells.

Results were expressed as mean IgG ASC counts per 106 cells from quadruplicate wells.

Ethics statement

All animal experiments were approved by the University of Maryland Animal Care and Use

Committee under protocol: 0806019. Animal use at University of Maryland at Baltimore com-

plies with the Animal Welfare Act, Public Health Service (PHS) Policy on Humane Care and

Use of Laboratory Animals, the Guide for the Care and Use of Laboratory Animals and other

applicable regulations, policies, and procedures.

Statistical analysis

Antibody titers were log-transformed for calculation of geometric mean titer and confidence

intervals. For MaF1 immunogenicity experiments, differences in titers between groups at each

time point were analyzed with Mann-Whitney Rank Sum Test. For the comparison of homol-

ogous and heterologous prime-boost regimes, differences in titers within and between groups

were assessed by ANOVA with Bonferroni post-hoc comparison. Unpaired t-tests considering

samples with equal variances were performed for avidity indices and IgG ASC responses. TNA

titers were compared by Kruskal-Wallis one-way ANOVA with Dunns. A p-value of<0.05

was considered statistically significant. Animal survival curves were analyzed using the Gehan-

Breslow-Wilcoxon test; for this test a p-value of<0.02 was considered statistically significant.

Statistical analysis was performed using SigmaStat (Systat Software, Inc.) and GraphPad soft-

ware (Prism Software).

Results

Design and construction of fusion proteins

To construct a vaccine capable of conferring protection against anthrax and plague, two fusion

proteins, MaF1 and MaF2, were conceived to include protective regions from both pathogens.

Multiple-antigen vaccine against anthrax and plague
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The fusion proteins were engineered to allow presentation of these protective epitopes in alter-

nate conformations. MaF1 (719 aa, 82.3 kDa; Fig 1A) contained, at the N-terminus, the entire

sequence of Y. pestis LcrV followed by protective B-cell linear epitopes from B. anthracis LF

domains 1 and 3. Domain 1 of the LF (aa 467–719) was located at the C-terminus. MaF2 (698

aa, 80.2 kDa) contained similar elements but had PA- and F1-specific epitopes relocated to the

C-terminus of the fusion protein (Fig 1B); the rearrangement was sought to enhance immune

stimulation.

Design and construction of DNA vaccines

Besides the recombinant proteins, DNA vaccination was used as a platform for immunization

with MaF2. Plasmid DNA construct maps are depicted in Fig 2. An MA plasmid (A), parental

vector (B), and pDNA-MaF2 (C) were constructed by molecular cloning to be employed as

sources of vaccine components.

Antigenicity of fusion proteins

To confirm the antigenic capacity of each component in the fusion configuration, recombi-

nant proteins were expressed and purified from E. coli, and analyzed by immunoblot. As

expected, antigen-specific murine serum recognized the corresponding full-length PA protein

(Fig 3A). Chimeric fusion proteins MaF1 and MaF2 were clearly recognized by anti-LF and

anti-LcrV antisera (Fig 3B and 3C). Even though a degradation pattern was detected, the more

evident bands were at the expected molecular size (~82.3 kDa for MaF1 and ~80.2 kDa for

MaF2). Although robust signals were seen against LcrV and LF, this was not the case for PA

and F1. The strongest reactions to each fusion protein were seen against LcrV and LF using

specific antisera, which was expected given that these regions comprised a substantial part of

each fusion protein. In contrast, the PA- and F1-specific regions were engineered into the pro-

tein as much smaller fragments (PA: 44 aa; F1: 32 aa), which may partially explain the lack of

recognition by PA- and F1-specific antisera (Fig 3A and 3D). Another possibility is that cryptic

epitopes of PA and F1 were formed.

Fig 3. Antigenicity of MaF1 and MaF2 fusion proteins. MaF1 and MaF2 proteins were separated for SDS-PAGE,

electrotransferred to nitrocellulose membranes, blocked, and probed with different mouse polyclonal sera: A) anti-PA,

B) anti-LF, C) anti-LcrV, and D) anti-F1. Full-length recombinant proteins (�) were used as positive controls. Anti-LF

sera contained traces of anti-LcrV IgG.

https://doi.org/10.1371/journal.pntd.0007644.g003
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Immunogenicity of the MaF1 and MaF2 fusion proteins

In a first attempt to assess immunogenicity of the fusion proteins, mice were immunized i.m.

with 10 μg of PA, LF, LcrV, F1, or MaF1 proteins twice, 28 days apart, and the kinetics of anti-

gen-specific serum IgG responses were determined by ELISA. Mice immunized with the

MaF1 fusion mounted a strong LcrV-specific IgG response similar to that seen in mice

immunized with full-length LcrV (Fig 4C). This was expected because the fusion protein was

engineered to incorporate the whole sequence from LcrV at the N-terminal. The MaF1-immu-

nized mice also mounted a robust LF-specific IgG response although somewhat lower than

that seen with full-length LF (Fig 4B), presumably because only the N-terminal region of LF

was included in the fusion protein. Antibody responses to LF and LcrV further increased after

the MaF1 boost at day 28 (Fig 4B and 4C). In contrast, MaF1 failed to induce serum IgG

responses to PA and F1 (Fig 4A and 4D); this observation agrees with the lack of PA and F1

signals in the immunoblot analysis.

Fig 4. Kinetics of antibody responses elicited by fusion protein MaF1 and full-length proteins. A) PA-, B) LF-, C) LcrV-,

and D) F1-specific serum IgG titers. Mice (10 per group) were immunized i.m. with 10 μg of each protein plus alum. Vertical

lines indicate days of immunization, dotted lines represent prime (day 0), dashed lines represent boost (day 28). Data

represent geometric mean titers and ± 95% confidence intervals. � indicates significant differences between groups (p<0.05).

https://doi.org/10.1371/journal.pntd.0007644.g004
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In a second study, the serum IgG responses induced by MaF1 and MaF2 were compared

to determine whether the relocation of the PA- and F1-derived sequences to the C-terminus

of the protein in MaF2 would enhance host immunity to these antigens. Like MaF1, immu-

nization with MaF2 resulted in high (and similar) levels of LF- and LcrV- specific serum IgG

(Fig 5B and 5C), and these antibodies exhibited similar avidity index (Fig 5E). Mice immu-

nized with either fusion protein also developed LF- and LcrV-specific systemic IgG ASC

(indicative of vaccine-induced functional B cells that can replenish plasma cells in circula-

tion), although the frequency of LcrV-IgG ASC was higher in the MaF2-immunized group

(Fig 5F). In this experiment, mice immunized with MaF1 and MaF2 had detectable, although

low, PA-specific serum IgG responses while no responses were seen against F1 (Fig 5A and

5D). These results suggest that the relocation of the PA sequences had little effect on immu-

nogenicity and that the F1-derived sequences, as incorporated in the fusion proteins, did not

seem to engage the murine immune system. Given the fact the MaF1 failed to stimulate a

detectable PA antibody response in the first experiment and elicited somewhat lower PA

IgG titers as compared to MaF2 in the second experiment, MaF2 was selected for further

studies.

Immunogenicity of pDNA-MaF2 and MaF2 homologous prime-boost

immunization

To compare the immunogenic capacity of the DNA vs the recombinant multi-fusion protein

in a homologous prime-boost regimen, mice were immunized with 50 μg pDNA-MaF2 or

with 2.5 μg of MaF2-alum (Fig 2). Mice were primed with MaF2 on day 0 and boosted on day

91. The groups that received pDNA-MaF2 were primed on days 0, 28, and 56 (because pDNA

is known to be less immunogenic than protein) and boosted on day 91 (Table 1).

Both the pDNA-MaF2 and MaF2 vaccines stimulated LF- and LcrV-specific serum IgG

(Fig 6C and 6E), although significantly higher titers were produced by the group that received

MaF2 (p<0.001). The fusion protein elicited prompt and robust IgG responses that persisted

for up to three months and further increased after the boost. In contrast, DNA vaccination

resulted in lower responses despite multiple priming doses. Different from LF and LcrV

responses described above, both MaF2 and pDNA-MaF2 failed to stimulate detectable PA- or

F1-specific IgG (Fig 6A and 6G).

Immunogenicity of pDNA-MaF2 and MaF2 fusion protein heterologous

prime-boost regime

We next compared antibody responses produced by pDNA-MaF2 prime followed by MaF2

boost in a heterologous prime-boost regimen. Mice received pDNA-MaF2 as described

above; additional groups received pDNA-MaF2 admixed with an MA or pDNA-EV as con-

trol for priming. All were boosted with MaF2. An unvaccinated (PBS) group served as nega-

tive control. Serum IgG responses to F1 were again negligible (Fig 6H), while a marginal

increase in PA-specific IgG was detected in the pDNA-MaF-primed MaF2-boosted groups

(Fig 6B).

The LF- and LcrV-specific IgG responses greatly improved in the pDNA-MaF2-primed

mice following the MaF2 boost, with titers surpassing those of unprimed controls (parental

vector). The overall kinetics of IgG production for both antigens was similar among the groups

(Fig 6D and 6F). In both the homologous and heterologous prime-boost experiments, IgG

responses to LcrV were faster and of higher magnitude than those against LF.

The molecular adjuvant (pDNA-MA) did not improve antibody responses induced by

pDNA-MaF2.
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Fig 5. Antibody responses elicited by multi-agent MaF1 and MaF2 fusion proteins. A) PA-, B) LF-, C) LcrV-, and

D) F1-specific IgG titers. Mice (10 per group) were immunized i.m. with 10 μg of each protein plus alum. Vertical lines

indicate days of immunization, dotted lines represent prime (day 0), dashed lines represent boost (day 28). Data are

shown as geometric mean titers ± 95% confidence intervals. E) Avidity index of LF- and LcrV-specific serum IgG at

day 56. Results represent mean avidity index± SE from 10 mice per group. F) LF- and LcrV-specific IgG spleen ASC

measured on day 56. Results are shown as mean IgG ASC per 1×106 cells ± SE of replicate wells. � indicates significant

difference (p<0.05) compared to MaF1.

https://doi.org/10.1371/journal.pntd.0007644.g005
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Fig 6. Antibody responses of mice immunized with a homologous and a heterologous prime-boost immunization

schedule. A-B) PA-, C-D) LF-, E-F) LcrV-, and G-H) F1-specific serum IgG titers. Mice (20 per group) were primed

on days 0, 28, and 56 with pDNA vaccine constructs or on day 0 with MaF2; all groups were boosted on day 91 (see

Table 1). Dotted lines indicate prime immunizations and dashed lines represent boost. Data represent geometric mean

titers and 95% confidence intervals. � indicates a significant increase in titer (p<00.5) compared with the previous time

point.

https://doi.org/10.1371/journal.pntd.0007644.g006
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Anthrax toxin neutralizing responses

The ability to generate antibodies capable of neutralizing the activity of the lethal toxin of B.

anthracis has been associated with protective efficacy of anthrax vaccines in animal studies

[51, 52] and serum toxin-neutralizing antibody activity is an accepted correlate of protection

for purposes of anthrax vaccine development. Importantly, despite the low PA-specific IgG

levels detected by ELISA, mice immunized with MaF2 had elevated serum anthrax toxin-neu-

tralizing antibodies, with titers surpassing those of all other groups (Fig 7).

Protection against challenge with B. anthracis lethal toxin and Y. pestis
To determine protective capacity of the various immunization regimens against B. anthracis
lethal toxin and Y. pestis lethal infection, mice immunized as described above were challenged

31 days after the last immunization with either anthrax lethal toxin i.v. (2.5 LD50) or Y. pestis
EV76 i.v. (597 LD50) supplemented with iron (to increase virulence).

Homologous MaF2 prime-boost immunization conferred the highest degree of protection

(88%) against lethal anthrax toxin challenge, which was in agreement with the high toxin-neu-

tralizing titers in this group (superior to all other treatments). In contrast, modest protection

(<40%) was observed in mice primed with pDNA-MaF2 and boosted with MaF-2 (Fig 8A).

The MaF2 prime-boost conferred complete protection against Y. pestis lethal challenge (Fig

8B). Similarly, a high level of protection (75%) was attained by pDNA-MaF2-prime followed

by MaF2-boost. Interestingly, mice primed with pDNA-MaF2 and the MA, and even mice

primed with the parental vector, achieved complete protection after the MaF2 boost, which

suggests that protective immunity could be attained with a single MaF2 immunization.

Among mice primed and boosted with pDNA-MaF2, 63% survived the Y. pestis challenge

prime-boost although this survival rate did not reach statistical significance (p = 0.26) com-

pared to the unvaccinated (PBS) control.

Fig 7. Toxin-neutralizing activity titers induced by and pDNA-MaF2 and MaF2 prime-boost immunization. Mice

were immunized as described in Table 1. Data represent individual TNA titers and geometric mean from 10–20 mice

per group. � indicates a significant difference (p<0.05) compared to other treatments.

https://doi.org/10.1371/journal.pntd.0007644.g007
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Discussion

Prior immunization of individuals would greatly reduce the impact of both a natural outbreak

and a bio-terror attack using either Y. pestis or B. anthracis. Intentional exposure of unpro-

tected civilians to these organisms would cause many casualties and major socio-economic dis-

ruption. Therefore, safe and effective alternatives for treatment and prophylaxis for prevention

of these two neglected diseases remains a high public-health priority.

A major goal of anthrax vaccine manufacturers has been to develop non-toxic recombinant

protein vaccines based on PA [1, 53]. Although these next-generation products are likely to

elicit fewer side effects [22], there are concerns that they may stimulate a less robust immune

response and thus afford less protection. A vaccine containing both PA and detoxified LF

would confer broad protection, particularly against strains of B. anthracis in which PA has

been genetically modified, either by nature or by man [54].

Similar to PA for anthrax, LcrV + F1 are considered the main vaccine targets for a plague

vaccine due to their capacity to elicit protective immunity in a variety of model animal species.

However, the spectrum of antibody responses generated by these antigens in humans may not

be optimal [8, 22, 55]. A region of LcrV (amino acids 271–300) have been shown to suppress

the host immune response while F1 tends to form heterogeneous aggregates, which might neg-

atively affect the quality of the vaccine and ensuing immune responses [56, 57].

For rapid mass immunization programs, as would be required in the face of a bioterrorist

attack, the use of multiple vaccines is impractical because of cost and logistical challenges. A

multi-agent vaccine capable of conferring protection following a single dose would be more

cost effective and easier to implement. This approach has been tested by combining separate

recombinant proteins from both microorganisms, and it has been shown that PA, F1, and

LcrV can be successfully co-delivered without decreasing their protective efficacy [25]. A

Fig 8. Survival rates of pDNA-MaF2 and MaF2 immunized mice following anthrax lethal toxin and Y. pestis lethal challenge. Mice were

immunized as described in Table 1 and challenged 31 days post boost with A) anthrax lethal toxin or B) Y. pestis EV76 plus iron. Curves represent

survival rates from 8 mice per group; � indicates significant difference (p<0.02) compared with unvaccinated (PBS) group.

https://doi.org/10.1371/journal.pntd.0007644.g008
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recent study confirmed the feasibility of a two-dose immunization with a fusion protein com-

prising full length F1, LcrV, and PA combined with alhydrogel for protection of mice, rats,

and rabbits against lethal challenge with B. anthracis and Y. pestis [52].

Thus, we investigated the feasibility of developing a combined vaccine capable of conferring

protection against both plague and anthrax in a single formulation and potentially using a sin-

gle immunization. To eliminate regions that might decrease the robustness of the immune

response, we constructed fusion proteins based on full-length LcrV, the N-terminal region of

LFn, and individual epitopes derived from PA and F1.

A single dose of the fusion protein MaF2 stimulated complete protection against Y. pestis
(Fig 8B), which could be attributed to the production of high levels of LcrV-specific IgG. Two

doses of the fusion protein also induced a high level of protection against anthrax lethal toxin.

The efficacy of MaF2 with a 3-month delayed boost is noteworthy and appealing, as such a vac-

cine could be useful for priming high-risk individuals who could be boosted (ensuing rapid

anamnestic response) later, if needed. Although an increase in PA antibody titers was observed

after boosting, the contribution of this response to protection is unclear, given that LF-IgG

titers were higher and LF is also able to stimulate the production of toxin-neutralizing

antibodies.

In the context of the PA-specific response, this result was disappointing, given that the

prime reason for employing an epitope-based approach was to eliminate those regions of PA

that subtracted from the quality of the protective immune response. The sequences used were

identified by monoclonal antibody mapping studies. The PA-derived CD4 T-cell epitope, on

the other hand, although immunodominant for humans, might not have been recognized by

the mice used in this study [38].

We next sought to determine whether similar levels of protection could be achieved when

MaF2 was expressed from a DNA vaccine. Different from the recombinant proteins, DNA vac-

cines are simple to design and engineer, and can incorporate multiple vaccine targets, as well

as immune-stimulatory sequences and regulators, into a single vector. They can be freeze-

dried, making them more cost-effective to stockpile, and can be delivered using needle-free

approaches, reducing the logistical burden of immunizing large numbers of people during a

natural outbreak or a bioterrorist threat [58, 59].

The group primed with pDNA-MFa2 and boosted with MaF2 exhibited substantial protec-

tion against Y. pestis. The presence of the MA CARDif and the parental plasmid vector during

the priming immunization seemed to have enhanced survival post challenge, suggesting that

the DNA itself may have immunostimulatory properties. While the homologous pDNA-MaF2

prime-boost immunization elicited some protection against Y. pestis, the survival rate was not

statistically significantly different from that of the PBS control, indicating that further work

would be needed to enhance the immunogenicity of the DNA vaccine. In contrast to plague,

the pDNA-MaF2 prime-boost resulted in only partial and non-significant protection against

anthrax toxin, confirming that the immunogenicity of this construct was not optimal. Inter-

ventions that could improve immunogenicity include the use of other routes of vaccination

(i.e. intradermal) and the incorporation of additional immune stimulatory factors, such as

CpG motifs, into the DNA vector backbone. The addition of an immunostimulatory oligo-

deoxynucleotide compound (CpG 7909) as an adjuvant to enhance the immunogenicity of

BioThrax, is currently being investigated in humans [60].

In conclusion, the MaF2 fusion protein conferred complete (100%) protection against Y.

pestis, and high levels of protection (88%) against anthrax toxin in mice. Work is in progress to

enhance the efficacy of the B. anthracis-derived elements, to reduce the size of the LcrV region,

and to enhance the F1 specific response. The protective efficacy of these optimized constructs

will be examined in more complex challenge systems involving other forms of disease. The
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experimental evidence obtained will facilitate its evaluation in human clinical studies. The cre-

ation of a single dose vaccine capable of being stockpiled and of stimulating rapid protection

in the event of a covert biological attack would markedly reduce the impact of such a tragic

event. Indeed, such a resource would be a highly valuable public health tool to protect at-risk

populations around the world.
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