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T

This thesis focuses on applying Artificial Intelligence (AIl) methods for detecting,

classifying and predicting the faults in induction motors in order to prevent any failures
happening during their operation due to loading conditions. It is very important to
monitor and detect any faults in the motor during its operation in order to alert the
operators so that potential problems could be avoided. In this study, a new Al
algorithm has been developed and applied to detect, classify and predict the induction
motor faults at an early stage. This is based on a hybrid approach using the Bees
Algorithm (BA) and Data Mining called Bee for Mining (B4M), which overcomes the
drawbacks of current Al methods in achieving higher classification accuracy with
reduced rule set generated from the training data. The proposed B4M algorithm has
been implemented, tested and validated using the University of California at Irvine

(UCI) dataset, and was compared with other well-known classifiers.

Later, the proposed B4M algorithm was applied in dealing with two most common
faults, firstly, that of rotor (one rotor bar, four rotor bars and eight rotor bars), and
secondly, bearing defects (inner race, outer race and ball bearing defects). In this
research, three condition monitoring techniques involving thermal imaging, current
and vibration signal processing have been used to monitor these faults. Further,
features such as image metrics and Discrete Wavelet Transform (DWT) coefficients
were extracted from the thermal images, and DWT coefficients from the current and
vibration signals. Later, five-feature selection methods were applied in order to select
the best features for defect classification. Finally, an improvement to the proposed

B4M was made by producing a new hybrid classification algorithm by combining
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Genetic Algorithm (GA) with B4M referred to as GA-B4M where the GA was used
for feature selection. The new algorithms were successfully implemented on
MATLAB and its performance was tested on real data and compared with other

algorithms using the WEKA software.

The results obtained for the thermal image monitoring data showed 98.97%
classification accuracy with a reduced rule set containing 10 rules for B4M while a
100% accuracy with a larger rule set of 63 and 72 rules were achieved by Decision
Table and OneR classifiers respectively. For the current monitoring data, the
classification accuracy fell to 79.62% with only 8 rules for B4M, while 79.20% with
837 rules was achieved by Random Tree. Similarly, for the vibration monitoring data
the B4M achieved 80.05% with 7 rules in comparison with Naive Bayes tree at 79.25%
with 31 rules. Furthermore, the results achieved by the proposed hybrid approach GA-
B4M on thermal imaging dataset also showed an overall improvement on the
classification accuracy reaching 99.85% with 7 rules. Similarly, on the current and
vibration dataset the GA-B4M obtained 79.98% with 16 rules and 98.74% with 7 rules
respectively. This study has shown that the new proposed classification algorithms
B4M and GA-B4M are able to detect, classify and predict the induction motor faults

more reliably.
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CHAPTER 1

INTRODUCTION AND THESIS OBJECTIVES

“This chapter describes the main purposes of maintenance strategies. It also
introduces condition monitoring and describes the different types of condition
monitoring systems and techniques. Finally, the research aim, objectives and the

thesis structure have been presented”.



Chapter 1: Introduction and Thesis Objectives

1.1 Introduction

The induction machine condition monitoring plays a vital role in the industrial
facilities as it guarantees both the reliability and low cost operation [1]. Condition
monitoring gives an opportunity to maintain the machine at early stage or before any
possible disastrous accident or any dangerous damage. Furthermore, it allows having
a schedule or planned service for the technician, which will decrease the possibility of
production losses. Induction motors (IM) have been widely used in most of industrial
applications due to their robustness, low cost and operation (operate with an easily
available power supply). However, IM may fail far sooner than its designed lifetime
because of the installation issues, duties, and operational environments. Recently, the
approach of “run-to-fail” has been rejected for most manufacturing process and
operations. For that reason, the condition monitoring has been required as an
alternative system to protect the motor based on the motor data collection and analysis
during its operation, which makes it acceptable and more desirable due to its capability
of detecting the motor faults in early stage [2]. Moreover, most of the companies and
industries are searching/looking for the best condition monitoring methods in order to
reduce the damage to the environments or the maintenance cost, which may mitigate
any possible injuries to the operators or technicians. There are three essential

maintenance strategies as follows [3], [4]:

a) Preventive maintenance (time-based-maintenance): the machine are
thoroughly inspected and tested at a set of intervals, and any necessary

maintenance has to be carried out to remedy faults present within the system.
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b) Breakdown maintenance: the machines are run until they completely fail,
this kind of maintenance it considered as a very expensive in terms of machine

damage and lost output, or it may also lead to dangerous occurrences.

¢) Predictive maintenance: this strategy requires a continuous monitoring in
order to detect and diagnose any defects happened to the machine. If the
defects have been detected, the maintenance must be planned and executed as

soon as possible.

The main objectives of these maintenance are assisting the machine for productivity
improvements, extend the machine life, minimise the number of maintenance and
replacements routine and producing a high quality products [1], [5]. In the induction
motors, faults could be occur in the rotor, bearing, stator or any other peripheral
devices that are connected to the induction motor. These faults have been broadly
classified into broken rotor bars, bearing faults, eccentricity, gearbox failure and many
others. In other word, the mentioned faults may produce one or more symptoms such
as unbalanced line current and voltages, excessive heating, torque pulsations, vibration

and noise and other symptoms.

The recent development in the computer software and electrical equipment based on
the Artificial Intelligence (Al) systems (machine learning) attract the attention of the
electrical engineers to lunch an extensive researches to apply the Al techniques for
motor fault detection and diagnosis [6]. The Al techniques such as Artificial Neural
Network (ANN), Fuzzy Logic (FL), Genetic Algorithm (GA) and many others have
been applied to induction motor faults detection and diagnosis. These techniques have
used association, reasoning and decision-making process as would the human brain in

solving diagnosis problems [7].
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1.2 Research Aim and Objectives

The aim of this research is to investigate and recommend a new condition monitoring
technique based on three common approaches, which are thermal image, motor current
signal analysis and vibration signal analysis. The thermal image has been captured
using FILR thermal camera, the motor current signals have been collected using
current transformers and the vibration signals have been collected using laser

vibrometer.

Specifically, the aim of this research is:

e To develop and improve a new artificial intelligence technique based on Bees
Algorithm (optimization algorithm), data mining and Genetic Algorithm to be

used for detecting, classifying and predicting the motor faults at an early stage.

1.2.1 Research Objectives

In the last decades, there has been a huge amount of research into creating a new
condition monitoring technique for electrical machines based on Al [8]-[10]. The
research and development of designing a newer and alternative diagnostic system is
continuous. However, since condition monitoring and fault diagnosis system should
always suite new, the condition monitoring based on the Al has been developed
rapidly to cover all the induction motor situations under any circumstances. This
continuous development and research have argued by the fact that there is no specific
system/technique could be considered generally or the best for all existing
applications, since an operator must treat each motor drive as a unique entity. In this

respect, the fundamental causes, mechanical load characteristics, potential failure
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modes and operational conditions have to be carefully taken into consideration when

designing a monitoring system for specific applications [11].

Additionally, all previous studies that are carried out in the field of condition
monitoring show that there have been many challenges and opportunities for engineers
and researchers to focus on. Several solutions and recommendations concerning the
condition monitoring methods have been given in this area, generally depending on
the machine type, operating conditions (loading), size, cost constraints, available
instruments etc. Besides, several fields of technology and science such as thermal,
electrical, mechanical and sometime chemical engineering should be considered and
combined whenever possible, in order to allow analysts to correlate different aspects
of each technology to troubleshoot symptoms and determine a course of action to avert
failures. This is also a stringent requirement when aiming to build or design a

competitive condition monitoring system.

In this research, three computational tools would be extensively used. These are NI
LabVIEW, MATLAB and WEKA software’s. NI LabVIEW is systems engineering
software for applications that require test, measurements and control with rapid access
to hardware and data insight. MATLAB is a very ubiquitous scientific and technical
computing tool that has found wide applicability. WEKA is a machine learning
environment created by University of Waikato. This research was oriented to achieve

the following objectives:

In terms of machine learning

1- To develop a new innovative, non-intrusive, accurate, reliable and simple

artificial intelligence technique based on Bees Algorithm (optimization
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2.

3-

algorithm) and data mining approach, called Bee for Mining (B4M) that is able

to detect and diagnose the motor faults in an early stage.

To validate the new proposed classification algorithm based on the University
of California at Irvine Machine Learning Repository (UCI machine learning

datasets).

To compare the capability of the new algorithm with other well-known

classification algorithms based on the UCI machine-learning datasets.

In terms of condition monitoring

1-

To explore induction motor failures modes and understand condition-

monitoring techniques.

To design and construct a test rig with the associated instrumentation for
induction motor faults to collect the real data from the induction motor with
seven faulty cases and three different condition monitoring technique, thermal

image, motor current signature analysis and vibration signal.

Apply different feature extraction and feature selection methods with purpose
of extracting and selecting the best fault information from the raw images and

signals for all three condition-monitoring techniques.

To apply the new proposed classification algorithm that are relaying on the
Bees Algorithm and Data Mining approaches (B4M) in the suggested

condition monitoring techniques.
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5- To compare the capability of the new algorithm with other well-known
classification algorithms based on the thermal image, current and vibration

signals.

In terms of the machine learning hybrid system

1- To build a new hybrid classification system based on the Genetic Algorithm
and the proposed classification algorithm (B4M), which is called (GA-B4M),
in order to make the classification system more robust and accurate for

classifying the motor faults correctly.

2- To apply the new hybrid system to the seven faulty cases and three suggested

condition-monitoring techniques.

1.3 Thesis Outline

e Chapter 1: Introduction and Thesis Objectives. It presents the research

objectives and the thesis outline.

e Chapter 2: Induction Motors and Related Faults. Since the induction motor
is aimed to study in this research, this chapter introduces background
information about the induction motor such as induction motor structure and
principle. It also introduces the most common types of electrical and

mechanical faults, because they are the problems that are aimed to be solved.

e Chapter 3: Literature Review. The previous related work on condition

monitoring is presented in this chapter.
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e Chapter 4: Proposed Bee for Mining (B4M). In this chapter, the combination
of the Bees Algorithm and Data Mining have been described in detail in order

to produce the proposed Bee for Mining (B4M).

e Chapter 5: Proposed Methods for Data Pre-Processing and Feature
Selection. In this chapter, the proposed methods for pre-processing the
induction motor dataset have been explained for all condition monitoring

approach, thermal image, current and vibration signals.

e Chapter 6: Genetic Algorithm based Feature Selection for B4M (GA-
B4M). This chapter explains how the Genetic Algorithm has been used as

feature selection method and how it works theoretically.

e Chapter 7: Experimental Setup and Measurements. The practical work of
this research starts in this chapter. It shows what equipment was used in
experiments, how the induction motor test rig was built, and the procedure of
the experiments, how the required measurements were taken and how the
acquired data were stored in order to be proceeded in the next chapter. It also
shows the induction motor healthy and the faulty signals and how the faults

have been generated.

e Chapter 8: Data and Signal Analysis. It explains how to analyse the motor
data and signals based on the proposed methods that are explained in previous
chapters. It also shows the signal analysis for all three condition monitoring

approaches (thermal image, current and vibration condition monitoring).

e Chapter 9: Results and Discussion. The results that were obtained from the

induction motor conditions (healthy and faulty) are discussed using MATLAB
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and WEKA software’s. Then, the results of the other classification algorithms

have been discussed and compared with the proposed technique.

e Chapter 10: Conclusions and Future Work. All the discussions about the
results of testing the proposed techniques in both simulation and practical work
are concluded in this chapter. It also introduces some recommendations for

future work.
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CHAPTER 2

INDUCTION MOTORS AND RELATED FAULTS

“In this chapter, the concept of induction motor and a brief review of what are the
main types of induction machine faults are presented. In order to cover the
understanding of the induction motors, the induction motor structure and its
fundamental are introduced first. Then brief review of induction motors symptoms and

mechanisms of the electrical and mechanical faults are presented”.



Chapter 2: Induction Motor and Related Faults

2.1 Induction Motor Structure

Induction Motors are also known as asynchronous motors and are typically Alternative
Current (AC) electric motors. In induction motors, electric current is required to
generate the torque to drive the motor [12]. It has been considered as asynchronous
machine since they operate at speed lower than the synchronous speed. Worth noting,
asynchronous speed is the speed of rotating magnetic field, which depends upon the
machine pole numbers and the supplied frequency. The driving torque is achieved by
electromagnetic induction that is obtained from the electromagnetic field of the stator
coils. IM contains magnetic circuits, which are connected to two electric circuit, these

circuits are:

a) Magnetic circuit, which is responsible for carrying the magnetic flux that is

made of laminated magnetic material generally steel.

b) Electrical circuit, which is normally made of insulated aluminium or copper to

carry the current.

These two circuits are very important for rotating the main part of the induction motor,

which is rotating part (rotor) as illustrated in figure 2-1.

_ Terminal box

Coollng fan

L5 “-stator
% Rotor

Figure 2-1: Parts of induction motor [13].
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A series of thin aluminium pieces permanently attached to a laminated cylinder make
up the rotor structure. The rotor pieces are attached in a horizontal fashion and parallel
to the rotor shaft. Towards the edge of the rotor, aluminium plates are intertwined with
a shorting ring. There are two types of rotor: wound and squirrel cage rotors. The
wound rotor of an induction motor is similar to a three-phase stator winding because
it carries a poly-phase winding. In addition, three isolated slip rings are connected to
a rotor winding which are mounted on rotor shaft. In this type of rotor (wound rotor)
as shown in figure 2-2, an external changeable resistance is connected to the slip rings

in order to limit the rotor heating and starting current.

Figure 2-2: Induction motor wound rotor [14].

During starting up, the inserted resistance to the wound rotor produces less starting
current with high starting torque than the squirrel cage rotor [13]. So far, wound rotor
has been concerned; the structure and functions of squirrel cage rotor will be
explained. It consists of parallel slots with a laminated cylinder core in order to carry
rotor conductor, no wires are connected but it has a thick bars of aluminium or copper.
Furthermore, it has two end rings that are braced or welded, and these ends are short
circuit. For that reason, it is impossible to connect or add any external variable
resistance. The shaft is usually not parallel to the rotor bars, it is a little bit skewed, as

shown in figure 2-3.
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Figure 2-3: Induction motor squirrel cage rotor [19].

The squirrel cage rotor is different from the wound rotor in a number of aspects. The
main difference is that the squirrel cage rotor is economical, simpler and more rugged
than the wound rotor. Additionally, if a constant frequency and constant voltage
connected to the squirrel cage rotor, it produces a constant speed. Thus, it is compatible
with stationary speed drive system [13][14]. Otherwise, many industries required
adjustable speed or various speed for products applications. In addition, it is important
to ask why squirrel cage induction motors are preferred in most industries than DC

motors.

In terms of Direct Current (DC) motor has been used in order to obtain adjustable
range of speeds. Nevertheless, because of the DC motors are very expensive and the
brushes and commutators need to be serviced frequently, the squirrel cage induction
motors are preferred in most industries because as mentioned above, rugged, cheap
and no need for commutators. Recently, the squirrel cage motors are used in high and

low-performance applications owing to its versatility.

Moving on now to consider the stator, it is fabricated in such a way that windings of

low resistance (copper) wire coils are permanently attached to the motor body/frame.
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Whenever a current and high potential is applied to the stationary runs/coils, a strong
magnetic field is induced in the stator coils [15]. The stator windings are arranged in
a pattern that the magnetic field appears to synchronously rotate around the motor
housing [16]. Through the electromagnetic induction, the power will transfer from one
part to other. When stator windings are powered from a three-phase AC source, a
rotating magnetic field is induced, then it converts electrical energy into mechanical

energy [17].

Stator Slot

Stator Laminatlons

Rotor Laminations

Rotor Slot

Figure 2-4: Induction motor rotor and stator magnetic circuit [18].
Induction motors operate under a complex system of current, voltage and magnetic
field in a synchronized manner to induce the rotary effect. For the case of three-phase
AC induction motors, however, no excitation is required for it to start. Instead, the
motor is a self-starting device [15]. In between the rotor and stator, an air gap/space
allows free movement for the rotor during its operation [18] as illustrated in figure 2-4
above. In effect, a synchronous speed is established in the stator. An electromotive
force (EMF) is induced in the rotor bars by the magnetic field produced in the stator
windings. Afterwards, a current is generated in the rotor and a separate magnetic field

is generated within the rotor windings, whose polarity is opposite to that of the stator
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windings. This current is created due to the relative speed between rotor conductor
and the rotating flux. Consequently, a magnetic flux generate a force that pulls the
field in the rotor, thereby inducing a turning effect on the rotor. As described in Lenz’s
Law, the rotor spins in a similar direction in order to reduce the causing effect that is
the relative speed. The resultant rotation is in accordance with Faraday’s law of
electromagnetic induction “EMF is induced in a circuit due to changing magnetic flux

linkage experienced within the circuitry.”

In addition to the above two main parts of induction motor, there are other parts which

arc:

a) Bearings: two bearings have been used for supporting the rotor at each end in
order to rotate the shaft.

b) End flanges: two flanges are placed in both ends of induction motor for
supporting the bearings, and

¢) Shaft: is used for transmitting the generated torque to load.

Another significant aspect on induction motors is that these motors are generally
suitable for continuous speed operations. Furthermore, compared to other alternatives,
induction motors are cheaper to acquire and maintain. While designing induction
motor, operational features can be examined using several calculations described in
the subsequent subsections. By applying these calculations, an electrical engineer will
be in a position to select a motor that best suits a particular job. The section below

describes briefly the IM principles.

QROIF  Cardiff University Page | 15

Gaow  Prifysgol Caerdydd



Chapter 2: Induction Motor and Related Faults

2.2 Induction Motor Principle

The magnetic field distribution between the air gap and the rotation is one of the most
fundamental concept. Because of non-ideal winding distribution, the effect of the
space harmonic and slots have been neglected. The sinusoidal current in the three-

phase induction machine is impressed on the stator winding, as it is given below [19]:

ig = I, cosw,t
i, = I, cos(w,t —120") (2-1)
i = I, cos(w,t +1207)

Where: I,,,: maximum current, w,: line frequency.

In order to produce Magnetic Motive Field (MMF) wave and distribute it sinusoidally,
each phase will work individually to produce the MMF, which pulses about the X-axis
and Y-axis. The expressions of instantaneous MMF at spatial angle (8) are given

below [19]:

F,(0) = Ni,cosf
Fy(8) = Niy cos(8 — =) (2-2)
F.(6) = Ni.cos(6 + 2?”)

Where: N: number of turns in each phase winding, 6: spatial angle.
The MMF are:

F(0) = F,(0) + F,(0) + F.(6)
. . 21 . 2T
F(6) = Ni,cos8 + Nij,cos (9 - ?) + Ni.cos(6 + ?) (2-3)
The MMF has been distributed sinusoidally, which rotates the air gap at frequency

(w,). Furthermore, for two poles induction motors the current variation has one
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revolution per cycle, which is created by F (8, t). Thus, the rotational speed for P-pole

motor can be as given below:
fo=22, No=2F (2-4)

Where: N;: synchronous speed (RPM), f: stator frequency (Hz), P: number of pole

pairs.

The motor synchronous speed indicates the speed of rotation for stator magnetic field.
N; is a function of pole number and the frequency of the power source in the motor as
explained above in the equation (2-4). The rotor conductors are subjected to rotating
magnetic field when the induction motor rotor is stationary and inducing the short
circuit rotor current to rotate at the same rotor frequency. Hence, the interactions
between the rotor MMF and the air gap flux will produce the torque. The difference
between the rotor speed and synchronous (stator) field speed gives the slip speed. The
slip speed of an induction motor is calculated and expressed as a fraction of the
synchronous speed. Slip speed is an important parameter in the motor because without
slip, the induction motor will produce a torque equivalent to zero. The motor slip

equation is expressed as follows:

Ns—Nj
N

S= (2-5)
Where: S: slip, N,.: rotor speed (RPM).

Furthermore, the motor efficiency should also be considered. This is determined by
comparing the input and output power. Higher efficiency is desired in induction

motors since they are used for energy conversion. Low values of efficiency implies

that the motor is less productive and it should be substituted.
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_ output power % 100% (2-6)

input power

2.3 Faults of Induction Motors

Induction motors are reliable electric machines [9]. However, they are susceptible to
several electrical and mechanical faults as shown in figure 2-5. Flaws in induction
motor often lead to unbalanced stator current and voltages [20], reduction in

efficiencies, torque oscillations, excessive vibrations, overheating and torque

reduction.
‘ Induction Motor Faults ‘
T
o v
| Winding Faults ‘ Electrical Faults ‘ ‘ Mechanical Faults J
‘Broken Bar Faults
% Bearing Faults ‘

‘Broken End Ring Faults ' Rotor Faults

Misalignment }

Winding Faults

Stator Faults

Eccentricity Faults }

External Faults

Figure 2-5: Block diagram of IM faults [21].

As illustrated in figure 2-6 [21], faults in induction motor occur in varied magnitudes
with bearing faults assuming higher probabilities of occurrence followed by stator
faults, but rotor faults assume the least probability of occurrence but it still need to

monitored due to the environment change.

10%
H Rotor fault
0
40% 12%

B Miscellaneous faults

Stator winding

faults
m Bearing faults

38%

Figure 2-6: Probability of fault-occurrence in induction motors [21].
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The most common electrical and mechanical faults of the induction motors will be

explained below.

2.3.1 Electrical Faults

Electrical faults in an IM can stem from rotor bars and stator faults, which are briefly

explained below.

2.3.1.1 Rotor Faults

Figure 2-7 shows a squirrel cage for an AC induction motor that comprises of end
rings and rotor bars. A broken bar can be completely or partially cracked. Such bars
are susceptible to breaking due to constant starts at rated voltages, manufacturing

defects, mechanical stresses or thermal stresses caused by metal fatigue [22].

Rotor bar

Figure 2-7: Squirrel cage of IM broken rotor bar [23].

Many reasons of causing broken rotor bar, due to manufacturing fault, such as irregular
metallurgical stress might happen during brazing processes, which sometimes lead to
rotor rotation failure, and an extra stress on the rotor bars due to large centrifugal force,
which caused by heavy end ring. These faults have also effect on the rotor currents

asymmetrical distribution [24]. In addition, some faults have been occurred in
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different locations of the rotor such as at the joint between end ring and bars. A.
Bonnet and G. Soukup [25] stated that the most rotor faults are happened at the joint
between the end ring and bars due to manufacturing fault or any other possibilities, for
instance if the motor is subject to stop and start frequently or long time to start up.
Recently, broken rotor bars are common faults in induction motors. Furthermore, the

main reasons that causes the faults in induction motors rotors are described below [26]:

a) Manufacturing defects as mentioned earlier in the last section.

b) Thermal stress, which is caused by the hot spot, sparking, excessive losses or

thermal overload.

¢) Mechanical stress due to bearing failure, fatigued parts and lose lamination.

d) Magnetic stress due to unbalance magnetic pull, vibration, electromagnetic

force and electromagnetic noise.

e) Dynamic stress due to cyclic stress, shaft torques and centrifugal forces.

f) Environmental stress due to moisture and chemical into the rotor material.

A broken bar in an induction motor induces a series of side effects. One of the
commonly known effect is the appearance of sideband components. The so-called
sidebands are observed in the power continuum of the stator current towards the right
edges and left sides of the fundamental frequency. The lower side band element is
triggered by magnetic and electrical asymmetries of the rotor cage within AC
asynchronous motors. Consequently, constant speed ripples produced by the resulting

force pulsations instigate the right side band element. These side band frequencies are
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determined by classical twice slip frequency sidebands, therefore occur at + 2s f;

around the supply frequency as follows [27]:

k
fo=f(Ga=-9)ts) (2-7)
Where f;: fundamental frequency, S =1,5,7, 11, 13... due to normal configuration

of winding, s: slip per unit.

Sideband elements, as explained earlier, are widely used for reorganization/correction
of induction motor faults. Other electric properties created by the broken bars
including stator current envelopes, oscillations speed, instantaneous power

oscillations and torque ripples have been used for motor fault detection [28].

The previous section has explained the squirrel cage rotor faults in induction motors.
Turning now to wound rotor faults, rotor windings of wound rotor are linked to
external resistance via slip rings. By adjusting the resistance, it is possible to control
the torque/speed properties of the induction motor. Further, it is possible to start the
motor with low in-rush current through insertion of high- resistance windings in the
rotor circuit. However, as the motor accelerates towards higher speed, the resistance
of winding decreases, which is leading to faults. In addition, slip rings that are used in
wound rotor motors are susceptible to damage. Subsequently, current in the rotor
windings drops below the expected values [29]. Just like stator windings, rotor

windings are also susceptible to failure due to a number of catastrophe issues such as:
a) Insulation faults due to motor breakdown.

b) Overheating which is caused by an electrical overload, leading to power-surge
within the rotor coils or unbalanced motor supply voltage, and open-rotor bars

could lead to winding overheating.
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¢) Rotor locks emanating from mechanical faults can generate current that
exceeds the starting current. However, rotor overheating may increase rotor
losses. At a heightened levels, the motor temperatures may increase up to 350

°C.

2.3.1.2 Stator Faults

Stator faults are caused by one of the following factors, which create short-circuiting

and effects on the stator coils:

a) Mechanical forces and stresses.

b) Thermal stresses and normal ageing process.

¢) Environmental pollution.

d) Switching transient and electrical overloads.

Short-circuiting in stator windings is common feature in induction motors. It occurs
between turns of two phases, or between turns of a single phase, or between turns of
all phases. In addition, short-circuiting is observed between the stator core and
windings of the conductor. The following section summarizes the faults in stator

windings:

Short circuiting effects between turns of a similar phase as illustrated in figure 2-8a
below. Winding short circuits are illustrated in figure 2-8b. Figure 2-8c and figure 2-8d
illustrate short-circuiting between stator core and windings respectively. Similarly,
figure 2-8e captures short-circuiting throughout the connections, while figure 2-8f

illustrates short-circuiting between two phases due to abrasion and stator voltage
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transients [30]. Over-rated and sub-rated voltage supplies could also create these

faults [31].

Figure 2-8: Different stator windings faults caused by insulation damage [30].

The stator faults could also be effected by an external faults as described briefly below:

a) Single-Phase Faults

The induction motors are subjected to loss one of their phases and this issue will
have an effect on the power system distribution. This kind of fault causes a serious
problem, because it prevents the motor to operate in actual horsepower.
Furthermore, to detect the single-phase fault, for some cases the negative phase

current has been used during the motor operation. Thus, the motor voltage and

C‘*R“"f Cardiff University Page | 23

» Prifysgol Caerdydd



Chapter 2: Induction Motor and Related Faults

current measurement was used for detecting the phase fault before loading the

motor.

b) Phase Unbalance Faults

The probability of the unbalance faults is less than full phase faults, but if it
happened, it may have similar consequences. Recently, more attention has been
paid for the new induction motor installation in order to distribute the balance

equally.

Having discussed the electrical faults and their causes, the final section of this chapter

addresses the most common mechanical faults in induction motors.

2.3.2 Mechanical Faults

Mechanical faults can be caused by either of the following faults: bearing faults,
eccentricity and misalignment. These faults account for 40% to 50% of the total faults

observed in the motor [32].

2.3.2.1 Bearing Faults

Bearing faults are complications encountered in either the rolling element or the ball
bearings that touch the inner and outer rings [9]. Ball bearings or the rolling elements
continuously rotate in tracks inside the bearing ring. Bearing fault defects on outer
ring, ball or inner ring. These faults could occur by internal stresses, vibrations,
currents and inherent eccentricity that influence the formation of mechanical faults. A
clear analysis of motor history helps to arrive at a conclusive statement that motors
were previously driven by variable frequency drives lead to exhibited several

premature failures. Misalignment faults and bearing faults within the load drive system
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may generate periodic variations to motor. Figure 2-9 illustrates four types of rolling

bearing misalignments [33].

(a)

(b)

T,

(c)

Ao el foffo aorpoz‘

e

(d)

Figure 2-9: Bearing faults [33].

2.3.2.2 Eccentricity Faults

Eccentricity fault is also known as air gap eccentricity, which occurs in two primary
forms namely, dynamic and static forms [34]. In static eccentricity fault, rotation of
the axis is displaced from the centre with the position of the least air gap length being
fixed in space. The fault occurs due to inaccurate positioning of the stator or/and rotor
during the construction phase [35]. The displacement of the rotor from the central axis
within the stator bar makes the distribution field in the air gap to be asymmetrical. As
a result, a non-uniform air gap is created, thus generating a radial force of the
electromagnetic origin. The effect is commonly termed as “Unbalanced Magnetic

Pull” (UMP) which works towards the minimum air gap.
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Furthermore, static eccentricity stimulates dynamic eccentricity as well. In dynamic
eccentricity, the rotor does not spin within its own axis, but the least air gap spins with
the rotor. Dynamic eccentricity may lead to several problems: For example; it might
cause bending to the shaft, may lead to mechanical resonance, misalignment, bearing
wear or may cause the static eccentricity [36]. Figure 2-10 illustrates several
eccentricity faults in an induction motor where: a) without eccentricity, b) static

eccentricity, ¢) dynamic eccentricity, d) mixed eccentricity respectively.

Figure 2-10: Different types of IM eccentricity faults [37].

2.3.2.3 Misalignment Faults

There are three common types of misalignment faults, which are parallel, angular and
combination as shown in figure 2-11.

Parallel Misalignment Angular Misalignment

== ==

Combination Misalignment

Figure 2-11: Misalignment types [38].
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a) Parallel misalignment: this fault occurs when the centre line of both shafts
are parallel. These shafts could be displaced right/left, offset

vertically/horizontally.

b) Angular misalignment: this fault occurs when the driven equipment are set
to angle with the motor. The mismatch angle could be to below/above, or to
right/left. The centre line of the driven equipment and the motor can be cross
each other if they are extended rather than in parallel. By the time this fault can

damage both the drive equipment and the motor.

¢) Combination misalignment: this fault occurs when both shafts are suffering

from parallel misalignment besides the angular misalignment.

Currently, AC induction motors have been widely used in the industries. In fact, over
85% of induction motors are in consumer and industrial markets. They are grouped as
polyphase, or single phase. Induction motors are distinct from DC motors since they
are consistently manoeuvre higher workloads that exceed a horsepower i.e. (746
Watts). Notably, 3-phase induction motors are required for intensive, power-driven

applications [39], [40].

What follows next is an account of faults that occur in all kind of the induction motors.
Electrical machines are considerably insecure because of detrimental operating
environments or exposed unexpected fault which depend on the special circumstances
such as start/stops, overload, unstable cooling, insufficient lubrication, etc. Thus, all
these conditions are predicted to put all motors beneath risks of failures [41].
According to the IEEE standard 493-1997, table 2-1 [42] stated the most common
faults in induction motors and statistical appearances recorded, based on different

faults in industry.
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Table 2-1: Common faults in induction motors [42].

Number of faults/failures

Type of Induction Synchronous Wound DC All
faults rotor
motors motors motors motors
motors

Bearing 152 2 10 2 166
Winding 75 16 6 - 97
Rotor 8 1 4 - 13
Shaft 19 - - - 19
Brushes or

o -- 6 8 2 16
slip rings
External

‘ 10 7 1 - 18

device
Others 40 9 - 2 51

The next chapter explains the way of protecting the induction motors by using the
traditional and artificial intelligence methods for three common condition monitoring

techniques thermal image processing, current and vibration signals processing.
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CHAPTER 3

LITERATURE REVIEW

“In this chapter, condition monitoring methods on induction motor faults detection
have been presented. For example, traditional methods (motor current signature
analysis MCSA, signal processing techniques) and artificial intelligence techniques.

Additionally, this review will also cover the development of the condition monitoring

from earlier studies to most recent”.



Chapter 3: Literature Review

3.1 Introduction

Condition monitoring and fault diagnosis of induction motors are quite challenging
for electrical engineers. There are several methods of condition monitoring, which are
thermal, current, vibration monitoring, etc. However, thermal and vibration
monitoring require very sensitive sensors and highly specialized equipment. In both
cases of motor faults electrical and mechanical, an effective condition monitoring
technique should be able to provide adequate warning about the machine fault before
failing in its critical component. This process will prevent any maintenance schedule
or any other cost that causes by the fault. The technology provides highly selective,
sensitive and cost effective techniques for online/offline diagnosing and monitoring

of industrial machinery.

3.2 Thermal Monitoring

Last decades there have been a numerous approaches to monitor the operation of
induction motors by thermal protection technique by using for example relays,
thermocouples, thermography (thermal cameras) and others, which are suitable for
low cost applications. Providing thermal protection for induction machines, different
types of relays have been already developed for overload and thermal monitoring [43].
Table 3-1 illustrates the sources of abnormal heating and their possible causes.

Table 3-1: Sources of abnormal temperature and causes [43].

Origen Faults

Thermal Finishing problem, lubricant refrigeration and deficient cooling.

Environmental Lubricate contamination, dust and dirtiness.

Mechanical Overload, bearing, transmission problem and misalignment.
Supply voltage, connection defects, broken rotor bars, voltage

Electrical o _
unbalance and harmonic distortion.
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In order to avoid the thermal overload, thermal sensors have been widely used for
stator winding monitoring. However, these sensors are highly undesirable for some

applications.

Moving on now to consider some reasons of having both electrical stress and high
thermal faults on the rotor cage and stator winding. The most common reasons are the
high current and long starting time, which have an effects on the rotor cage or stator
winding, which make it unable to be cooled. As results of these stresses, the small

induction motors take long starting time than the large motors [44].

Most of induction motors start with high torque and high starting current with low
voltage. Throughout the motor starting time, the current of the rotor and the stator are
much higher than rated current, which cause very high thermal stress for rotor and
stator. Thus, the temperature peak of induction motor is naturally appears during the
motor starting instead of loading condition. Figure 3-1 illustrates the temperature of
the rotor cage and stator winding during and after starting [45]. Furthermore, the rotor

cage temperature could be rise to 600°C in some induction motors [46].
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Figure 3-1: Sample of thermal signature for induction motor (during and after
starting) [45].
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As previously stated, the rotor will be affected by the high temperature, which reduces
not only the mechanical performance, but also it could lead to dilate the rotor, all these
are lead to rotor cage failure. Consequently, the thermal protection for the rotor and
the stator of the induction motor is essential during both cases of steady and transient

state in order to prevent the catastrophic failure in the motors.

3.2.1 Thermal Protection based on Traditional Methods

Rotor temperature contains many information about the motor status, thus it is very
important that researchers take the rotor temperature into account for detecting and
diagnosing the induction machine faults. There are two important rotor-monitoring
temperature approaches, the first approach is relying on the rotor resistance [47]-[49].
The second approach is direct measurement of the rotor temperature by different
thermal sensors such as infrared cameras, thermocouples, etc. The first approach has
been proposed in order to overcome the disadvantages of the direct measurements, but

this technique requires advance knowledge of rotor speed and parameters.

Many researches have proposed parameter-based approaches in order to estimate the
rotor temperature from rotor resistance variations. Beguenane et al [47] published a
paper in which they described the Model Reference Adaptive System (MRAS) and
apply it for rotor flux observer based on the inverse time constant and rotor speed. The
results indicate that the proposed method has ability to be applied to an Indirect Field
Oriented (IFO) control of induction motor without speed sensors but it requires high
performance of torque control in order to be suitable to apply for induction motor

vector control.

Habetler et al [48] have proposed a new method for estimating the rotor and stator

resistance based on Model Reference Adaptive System (MRAS) for the purpose of
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monitoring the rotor conductor and stator winding temperature. Their results show that
the MRAS provides an accurate estimation in case of the motor is heavily loaded and
it has the ability to track Rs (stator resistance) and R: (rotor resistance). While, a
sensorless rotor temperature estimator based on the harmonic spectral estimation of
the current has been proposed. Experimental results have been proven that the
proposed system was suitable for rotor thermal protection because it was very reliable

and accurate [49].

Gao et al [50] pointed out an investigation in the estimated rotor temperature error
with the unbalance supply and the impaired cooling by applying the Goertzel
algorithm to the voltage space vector and complex current. Goertzel algorithm has
been widely used in touch-tone telephone services in order to detect the signals with
multi-frequencies, which is employed to a complex space vector for extracting the

efficient and fast component of positive sequence of fundamental frequency.

Gao et. al. [51], which are related to the latter articles, proposed a pipelined
architecture for estimating rotor temperature (squirrel cage induction motors) in both
steady state and dynamic operations. This was based on the current and voltage
measurements without including any (temperature or speed) sensors. Two super-
heterodyne receivers have been also applied on a complex current vector, which are
operated in parallel with pipelined architecture. The first super-heterodyne receiver
has been used for detecting the motor speed based on the instantaneous rotor slot
harmonic frequency, which is extracted from the complex current vector, and the latter
one has been used for the same complex current vector in order to extract a new
complex fundamental current vector. The results indicate that the proposed system

allows the modern microprocessors to handle all the data in parallel, as a result in the
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superior performance during rotor temperature estimation in the absence of speed and

temperature sensors.

Reigosa et al [52] have suggested a new approach for estimating the rotor temperature
based on a high-frequency signal injection, the results show that the worst case has
been happened in the thermal transients. The estimated temperature error in the
transients state was < 5°C, while in the steady state reduces to < 2°C. Furthermore,
Huang and Giihmann [53] proposed an implementation for fourth order Kalman
filter algorithm in Wireless Sensor Network (WSN) for the purpose of rotor
temperature estimation. Six sensors have been used for acquiring current and voltage
data from the stator, which means that the temperature could be estimated correctly
without recording the mechanical load and rotor speed as long as the current goes
through the stator windings. The experimental results have been proved that the
Kalman filter implementation is suitable for real time rotor temperature estimation.
Consequently, the approach of rotor resistance estimation has shown its robustness for
rotor fault detection in many applications but it still needs further testing, since some
parameters or values of the typical per-unit of induction motors are different from each
other. In addition to this, the accuracy of these approaches are limited in case of fast
transient state such as starting, because they have been designed for slow transient or

steady state.

International Electrical Testing Association (NETA) proposed a standard to rotating
machinery and electrical systems for thermal inspection [54], these guidelines have
helped for estimating and detecting faults severity. Singh and Naikan [55] have tested
the thermal image monitoring (FLIR E60 camera) based on the two hot spot profiles

of stator temperature for induction motor faults (cooling system failure and inter-turn),
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which has been used in compliance with International Electrical Testing Association
(NETA). The results show that the proposed profiles have efficiently diagnosed the

motor faults.

Lim [56] has demonstrated omnidirectional thermal imaging system for condition
monitoring by designing a custom and specific Infrared (IR) reflected hyperbolic
mirror set. In this study, log-polar mapping technique has been applied to have a
panoramic form by unwarping the captured thermal image. The results show that the

proposed system obtain high accuracy for detecting the machine faults.

Turning on to the experimental evidence on the traditional current monitoring
technique and discuss the most helpful method for motor fault detection based on the

current signal.

3.3 Current Monitoring

High performance electrical drives currently employ sophisticated control techniques.
In fact, the demand for such drives are currently on the rise. This demand has been
necessitated by cost, size and efficiency of induction motors. Currently, research is
being undertaken to examine load oscillation, unsymmetrical supply voltage and
motor monitoring techniques to enhance the safety and serviceability. The Motor
Current Signature Analysis (MCSA) has been employed for decades as a tool for
diagnosing the motor faults. In spite of these efforts, induction motors are still faced
myriad of uncontrolled challenges that reduce their lifespan [57]. Squirrel cage motors
are preferred than other types of induction motors since they are robust and work under

fault conditions longer for a reasonable period before they fail.
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3.3.1 Current Protection based on Traditional Methods

MCSA has been applied to identify most of motor faults for example, broken rotor
bars, short-circuited turns and eccentricity. Furthermore, MCSA technique can also be
applied to determine mechanical faults such as load oscillations, bearing and gearbox.
By using the current harmonics, it is possible to detect the type of fault within
components of the rotating flux. Fault monitoring and diagnosis based on MCSA

proceeds as shown in figure 3-2.
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Figure 3-2: Flow chart for motor current measurement [37].

To diagnose faults in a motor, figure 3-3 illustrates the basic MCSA equipment system,

MCSA uses current spectra, which has potential information of motor faults.
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Figure 3-3: Basic MCSA equipment system [58].
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Past decades have seen the rapid development of condition monitoring and series of
reviews have been made by many researchers. They offer a good overview on how
current monitoring progress has been made. MCSA is the state-of-the-art techniques
[59]. This technique has many advantages. It is non-invasive, where stator current is
measured and monitored and no other special equipment is needed. Numerous faults
can be diagnosed using MCSA: damaged rotor bar, such as, broken rotor bars,
eccentricities; for example, due to unbalanced rotor; bearing defects; stator winding

short circuit [24][60].

A notable change is in the progress from the use of traditional Fourier transform e.g.
Fast Fourier Transform (FFT) to the use of Wavelet Transform (WT) e.g., Discrete
Wavelet Transform (DWT), to identify fault based on current spectrum and extract a
unique features for fault diagnosis. In addition, FFT is a traditional tool for MCSA
analysis, it has been able to locate individual fault based on current spectrum. This
approach has been successfully used for broken rotor bars and eccentricities faults

detection [15].

Schoen et. al. [61] have addressed the application of MCSA to detect the rolling-
element bearing damage in induction machines. This study investigates the efficacy
of current monitoring for bearing fault detection by correlating the relationship
between vibration and current frequencies caused by incipient bearing failures.
Experimental results, clearly illustrate that the stator current signature can be used to

identify the presence of bearing fault.

Benbouzid et al [60] have stated that the preventive maintenance of electric drive
systems with induction motors by monitoring their operation for detecting the

abnormal electrical and mechanical conditions, because this may lead to a system
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failure. Intensive research efforts have been done on the motor current signature
analysis. This technique utilizes the results of spectral analysis of the stator current.
Their investigations show that the frequency signature of some asymmetrical motor
faults can be well identified using the Fast Fourier Transform (FFT), which is leading
to a better interpretation for the motor current spectra. Furthermore, the laboratory
experiments indicate that the FFT based motor current signature analysis is a reliable

tool for asymmetrical faults detection.

Thomson et. al. [62] have presented an appraisal of on-line current monitoring
techniques to detect airgap eccentricity in three-phase induction motors. On-line
current monitoring is proposed as the most applicable method in the industrial
environment. The results verify that the interpretation of the current spectrum

proposed in this study was successful in diagnosing airgap eccentricity problems.

Benbouzid et. al. [16] have investigated in the efficacy of current spectral analysis on
induction motor fault detection. The frequency signatures of some asymmetrical motor
faults, including air gap eccentricity, broken bars, shaft speed oscillation, rotor
asymmetry and bearing failure were identified. This work verified the feasibility of
current spectral analysis. Current spectral analysis was applied to other types of
electrical machines too. For example, [59], [62] verified that the use of the current
spectrum was successful in diagnosing air gap eccentricity problems in large, high-

voltage, three-phase induction motors but not with low voltage motors.

Benbouzid [9] made a review of MCSA as a medium tool for fault detection. This
study introduces in a concise manner the motor signature analysis for motor faults
detection and localization that indicate or may lead to a failure of induction motors. It

is based on the behaviour of the current at the side band associated with the fault. It
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has been explained that when the load torque varies with rotor position, the current
will contain spectral components, which coincide with those caused by the fault
condition. Researchers have concluded that Fourier analysis is very useful for many
applications where the signals are stationary. However, it is not appropriate for
analysing a signal that has a transitory characteristic such as drifts, abrupt changes and
frequency trends. To overcome this problem, Fourier analysis has been adapted to
analyse small sections of the signal in time; this technique is known as the Short Time
Fast Fourier Transform (STFT). STFT represents a sort of compromise between time

and frequency-based views of a signal and provides information about both.

Arkan et al. [63] have presented a non-invasive online method for stator winding
faults detection in three-phase induction motors from the observation of negative
sequence supply current. A Power Decomposition Technique (PDT) was used to
derive positive and negative sequence components of measured voltages and currents.
The results show that the negative sequence impedance could vary between 10% and

50% during an inter-turn short circuit.

Miletic and Cettolo [64] have acknowledged that Motor Current Signature Analysis
(MCSA) is one of the widely used as diagnostic method. This method is based on
measurement of sidebands in the stator current spectrum. These sidebands are usually
located close to the main supply frequency. Frequency converter causes changing in
the supply frequency slightly in time as a result of some additional harmonics in the
current spectrum. These harmonics could be easily misinterpreted as sidebands, which
are caused by the rotor faults. In this study, the experimental results of fault diagnosis
carried out using standard supply and using frequency converter were presented and

compared.
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In current spectral analysis, the actual harmonics measured from a running machine
are always compared with known values (thresholds) obtained from a healthy motor.
In practical applications, the thresholds change with motor operating conditions.
Therefore, Obaid and Habetler [65] have proposed tracking method for the normal
values of a healthy motor at different load conditions. For each load condition, a
corresponding threshold was determined and compared with the on-line measurement
to determine the motor condition. Besides, the FFT technique used in spectral analysis,
other techniques in advanced digital signal processing and pattern recognition have
been applied to motor current signal as well. Five different motor conditions were
studied (the healthy machine and having up to four broken rotor bars), each at nine
different loads. The results of this study show that if there is any broken rotor bar will
directly affect the induced voltages in the stator windings and the waveform of the
stator currents. Therefore, the spectrum analysis of the line current (motor current
signature analysis) is one of the best non-intrusive method. While [66] utilized the
result of spectral analysis of stator current to diagnose rotor faults. The diagnosis
procedure was performed by using virtual instrumentation (VI). Several virtual
instruments (VIs) were built up in LabVIEW. These VIs were used for both controlling
and data processing. The measured current signals were processed using the Fast
Fourier Transformation (FFT). The power spectral density of the measured phase
current was plotted. The results obtained from the healthy motor and those having
rotor faults were compared, especially looking for the sidebands components those are
appeared in the special frequencies. The significance presence of some well-defined

sidebands frequencies are clearly indicate the motor rotor faults.

Stack et. al. [67] have proposed a method for detecting bearing faults via stator

current. Current-based condition monitoring offers significant economic savings and
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implementation advantages over vibration-based techniques. This method filter the
stator current and remove the frequency content that is unrelated to bearing faults. As
bearing health degrades, the modelled spectrum deviates from its baseline value; the
mean spectral deviation is then used as the fault index. This fault index is able to track
changes in machine vibration due to developing bearing faults. Due to the initial
filtering process, this method is robust to many influences including variations in
supply voltage, cyclical load torque variations, and other (non-bearing) fault sources.
Experimental results from 10 different faulty bearings are used to verify the

proficiency of this method.

An experiment to diagnose the induction motor broken rotor bar fault conducted in
[68]. The Motor Current Signature Analysis (MCSA) has been used to diagnose the
rotor fault. The rotor bar was damaged by drilling into the rotor. The spectra of healthy
and faulty motors were compared. Stator current spectrum of faulty motor shows the
side bands at particular frequencies due to presence of broken rotor bars with great
reliability. Finally, researchers concluded that the MCSA is a reliable technique for

diagnosing the broken rotor bar faults.

Jung et. al. [69] have proposed an online induction motor diagnosing system using
MCSA with advanced signal and data processing algorithms. The advanced
algorithms were made-up of the optimal slip-estimation algorithm. The optimal slip-
estimation algorithm suggested the optimal slip-estimator based on the Bayesian
method of estimation. To verify the generality of the suggested algorithm, laboratory
experiments were performed with 3.7 kW and 30 kW squirrel-cage induction motors.

The proposed system was able to discover four kinds of motor faults and diagnose
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them. Experimental results have successfully verified the operations of the proposed

diagnosis system and algorithms.

Frosini et. al. [70] have proposed a new approach of using the induction motor stator
current and its efficiency as indicators of rolling-bearing faults. This study illustrates
the experimental results on four different types of bearing defects: crack in the outer
race, hole in the outer race, deformation of the seal and corrosion. Another novelty
introduced by this study is to analyse the decrease in the efficiency of the motor with
a double purpose: as alarm of incipient faults and as evaluation of the energy waste

resulting from the fault condition before the machine breakdown.

Different fault diagnosis methods by means of data processing in LabVIEW were
compared in [71]. The results obtained by experiments verified that the three-phase
current vector, the instantaneous torque and the outer magnetic field could be used for
diagnosing the rotor faults. At last, authors stated that due to its simplicity, the MCSA

is the mostly used in industrial applications.

This section has described the traditional methods of induction motor fault diagnosis
based on the current spectral, and has argued that the MCSA is the best-known fault
diagnosis techniques used today. In fact, MCSA requires simplified sensor calibrations
and installations. However, the main drawback to MCSA is that the stator current data

must be sampled whenever the motor attains steady-state speeds.

The next section of this chapter will describe another condition monitoring technique

(vibration), and how it diagnoses the machine faults.
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3.4 Vibration Monitoring

Vibration analysis is one of the most important condition monitoring and fault
diagnosis tool for all rotating machinery because the majority of the rotating machine
problems are caused by bearing defects which in turn effects the shaft [72]. Rotating
machinery generate a vibration signal during their operation, this signal has many
information about the machine. It generates three types of vibration signals, which are
stationary, noise and random vibrations. These signals are used for detecting the motor
faults based on digital signal processing [73]. In the electrical machines, the vibration
and noise could be caused by many forces such as mechanical, magnetic and
aerodynamic [74]. Consequently, various types of asymmetries and faults in the
electric machine could be detected by analysing the vibration signals [75]. Bearing
faults, unbalanced rotor, rotor eccentricity and gear faults have been detected by the

vibration signals.

3.4.1 Vibration Protection based on Traditional Methods

Dorrell and Smith [76] have suggested an analytical model for static eccentricity fault
in induction motor. In this approach, the air gap between the stator magneto-motive
forces and rotor has been used for producing unbalanced magnetic pull. In addition to
this, an experiment has been done in order to confirm the model results and they have
found that both the measured and predicted results are good for two cases at low slip
in the rotor cage, when using blank rotor. They have concluded that the winding
harmonics order and the skew of the rotor have a big impact on the unbalanced

magnetic pull.

Finley et. al. [77] have analysed the electromagnetic force of stator and rotor based

on the vibration patterns. These two forces are subjected to reach their peaks when the
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stator magnetizing current flow has reached its maximum value. However, these
signals are very sensitive to some problems especially for motor base stiffness and

frame and eccentricity.

Trutt [78] has studied the relationships between two induction motor components,
which are electrical winding damage and vibration faults. The results show that these
two faults has good quantifiable correlation, which was probably used as a basis in

condition monitoring for induction motors.

Miiller and Landy [79] have investigated in the factors that effects on the axial force
based on broken rotor bar which have been done theoretically and experimentally. A
mathematical model has been developed in this study in order to find the interaction
of the stator flux and the inter-bar current with axial direction force. The results have
been experimentally confirmed, but the main disadvantage of this study is that it could

only be applied for the devices that have inter-bar current.

The Pulse Width Modulation (PWM) inverter has been used as feeder for induction
motors, which has been studied and investigated in [80] by comparing the healthy and
faulty signals based on current and vibration monitoring. The vibration signal has been
collected at different frequencies, which can be used for detecting the stator winding
faults at an early stage. In order to have a full view, the results should be updated for
any changes in the motor status in predictive program. The results indicate that
establishing condition monitoring for induction motor from one data set was probably

unachievable and undesirable.

Vandevelde and Melkebeek [81] have designed a Finite Element Method (FEM)
model for analysing and predicting the induction motor faults numerically based on

noise and vibration signals, which are resulted from magnetic equivalent circuit of
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electromechanical analysis. It has been claimed by the researchers that their results
overcome the weaknesses inherited in the model analysis but all the analyses were not

made of lower order forces.

Zhang et. al. [82] have demonstrated the Wavelet Pocket Transform (WPT) and
Power Spectral Density (PSD) for monitoring the turbo generator based on the
vibration monitoring. The results show that the WPT overcome the drawbacks of
constant time-frequency resolution in feature extraction, and it was promising

compared to Fourier-based approach.

Stack et. al.[83] have developed a fault signature model and detection scheme for
detecting the inner race defect of induction motor bearing faults using vibration signal.
It examines the spectrum of vibration signal for peaks with the phase-coupled
sidebands that occurring at predicted spacing by the model. The results show that the
inner race faults could be easily detected, and it can possibly handle the cage or rolling

element defects.

Rahman and Uddin [84] have used the vibration and current signals of unbalanced
rotor and analysed them by several techniques: Fast Fourier Transform (FFT), Hilbert
Transform (HT), and Discrete Wavelet Transform (DWT) in order to detect the fault
severity and its location at different conditions. The Daubechies wavelet has been
selected for analysing the healthy and faulty signals. The results show that the DWT
is best for identifying the fault locations. However, wavelet analysis may not be

accurate in analysing some of the harmonics presence.

Artigao et. al. [5] have used the vibration signal for detecting the wind turbine bearing
fault mainly based on the frequency domain of vibration signal that has been analysed

by FFT. In this research 1.5 MW wind turbine has been used with doubly-fed induction

GROIF  Cardiff University Page | 45

Gaow  Prifysgol Caerdydd




Chapter 3: Literature Review

generator. The results conducted that the FFT was helpful for detecting the bearing

faults in the wind turbine.

Previous sections have demonstrated traditional methods for induction motor fault
detection based on different condition monitoring techniques. It is now necessary to
explain the course of artificial intelligence (Al) techniques and their applications for

saving the rotating machinery and avoid catastrophic consequence.

3.5 Artificial Intelligence Techniques for Motor Faults Diagnosis

Recently, artificial intelligence has grown significantly in popularity because of its
powerful capabilities. It has been widely used for improving the effectiveness and
efficiency of fault detection and prediction in the electrical machine especially in
rotating machinery. Artificial intelligence technique for motor fault diagnosis was
achieved through the notion of human intelligence in machine operations to mimic the
human features and thinking process [85]. Al comprises a series of branches including
Artificial Neural Network (ANN), Genetic algorithms (GA), Problem Solving and
Planning (PSP), Fuzzy Logic (FL), Logic Programing (LP) and so forth. These
techniques deal in vast quantities of data and handle non-linear problems. Upon
training, they can produce a model for predicting the class for new incoming data [18].

Figure 3-4 illustrates the steps of Al in induction motors faults diagnosis [86].
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Figure 3-4: Al flow chart for IM fault diagnosis [86].

3.5.1 Thermal Monitoring based on Al

Thermal imaging has been widely used and successfully applied in many fields as a
fault diagnosis method such as medical, mechanical system, energy and electronics
and electrical systems. It becomes an important technology for protecting and monitor
the behaviour of the most rotating machinery in industries, which may have effects on
product quality, productivity, time efficiency and maintenance cost [87]. Furthermore,
the electrical device preservation has been increasing (induction motors, transformers
and generator ) so as for improving the power supply, enhancing the reliability of

operation, reducing the operating cost and superior service to customer [88].

Infrared Thermograph (IRT) is a non-intrusive and non-contact measuring technique.
It has advantage of capability to display the temperature distribution in real time and
any changes in the object temperature. Lately, the most common method for condition
monitoring and fault diagnosis for electrical equipments is Infrared Thermography

(IRT) or thermal monitoring [89]. This could be done by comparing a hot spot of

OWOIF  Cardiff University Page | 47

Gaow  Prifysgol Caerdydd



Chapter 3: Literature Review

healthy thermal image (reference) and a hot spot of the faulty image. The reliability of
the input power for the electrical equipment must be checked frequently in order to be
sure that all equipment working normally. However, if the temperature of any machine
has exceeded the limit, it will lead to a fail of the certain machine. Meanwhile, to
diagnose and detect the faults for the electrical equipments by IRT, some of image
processing methods have been applied for extracting the best features from the healthy
and faulty images. Thermal images have a vital information on radiation of machine
temperatures. This information could be extracted by using different image processing

techniques and classified by using different classification algorithms.

In the classification field, Nunez et. al. [90] have proposed a low cost thermographic
analysis for detecting the induction motor bearing faults by applying the thermal
differential technique in order to make the faults detectable even if there is any
changing in the surrounding environment. The result prove that the low cost thermal
camera has been able to detect the bearing faults and it has been also found that the
absolute thermogram was not enough for the determining the bearing defects unless

by considering the ambient temperature.

A. Glowacz and Z. Glowacz [91] have produced a new method for extracting the
features from the thermal image of three-phase induction motors called “Method of
Areas Selection of Image Differences”, (MoASoID). Three types of induction motor
faults have been considered in this study, which are healthy, squirrel cage ring fault
and two broken rotor bars. Then, three classification methods have been applied for
detecting the faults severity (Nearest Neighbour NN, Back Propagation Neural
Network BPNN and k-means clustering) by using the best-extracted features from the

thermal images based on MoASoID. The proposed technique was very useful for
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detecting the induction motor faults and it could be used for other rotating machinery

(generators, DC motors, and synchronous machines) for fault detection.

Khamisan et. al. [92], 300 thermal images have been captured for detecting the
normal and abnormal of induction motor bearing faults. The SURF (Speeded-Up
Robust Features) feature based selection method, active contour segmentation and
RGB (Red, Green and Blue) colour space statistical algorithms have been applied for
feature selection in order to differentiate between the normal and abnormal images.
The results show that the proposed technique has been able to distinguish between the
normal and abnormal of motor state and it could be implemented and used for

improving the classification accuracy.

Huo et. al. [93] have proposed a new self-adaptive method using infrared
thermography for induction motor bearing fault detection. Six bearing faults with
different conditions have been experimentally tested, which are healthy, inner race,
multi-fault, outer race, worn damage and roller element damages. In addition, wavelet
approximation coefficient and decomposition level of “dmey” have been used for
feature extraction from the image based on histogram of approximation coefficients.
Furthermore, Genetic Algorithm (GA) has been used for feature selection and Nearest
Neighbour (NN) for classification. The experimental results indicate that the proposed
method was able to achieve above 95% of classification accuracy for detecting the

motor faults.

Younus et. al. [94] have applied different classification algorithms such as Support
Vector Machine (SVM), Parzen Probabilistic Neural Network (PPNN), Adaptive
Resonance Theory Neural Network (ART-NN) and Fuzzy K-Nearest Neighbour (FK-

NN) for induction motor faults detection based on thermal imaging. In addition,
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Principal Component Analysis (PCA) and Independent Component Analysis (ICA)
have been applied for reducing the data dimensionality. The results show that the ICA
provide better clustering performance than the PCA and the SVM has achieved better

classification accuracy (98.33%) than other classification algorithms.

Lim et. al. [95] have suggested and developed an intelligence feature-based fault
diagnosis based on the thermal images (FILIR, SC 5000) of motor faults detection
(normal, bearing fault and misalignment) and then compare the results with the
vibration signal. In this paper, Support Vector Machine (SVM) has been used for
classifying the machine faults. The results indicate that the proposed method obtained
95% classification accuracy using thermal image based on three features only, while
the classification accuracy was 96.25% using vibration signal based on over four

features.

Table 3-2 shows some previous research experimental setup for induction motor faults

detection based on thermography [93 — 98].
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Chapter 3: Literature Review

3.5.2 Current Monitoring based on Al

Electrical monitoring such as current signature, negative-sequences and zero-
sequences current monitoring, Park’s vector and other more have been used for
monitoring the motor status and analysing the stator current signal for diagnosing the
faults severity. Consequently, the current monitoring has been used as sensorless
method for fault detection, could be implemented and applied without any extra

hardware.

Considerable amount of literatures have been published on the current monitoring
technique as briefly discussed in the following, Haji, and Toliyat [102] have
developed a pattern recognition technique based on Biyes minimum error classifier to
detect broken rotor bar faults in induction motors at steady state. The proposed
algorithm uses only stator current as input without the need for any other variables.
First, the rotor speed is estimated from the stator current, and then appropriate features
are extracted. Once normalized mean and variance plus mean and covariance of each
class, the technique can be used in online condition monitoring. The theoretical
approach and experimental results show that the strength of the proposed method
without loss of generality, the algorithm could be revised to include other faults such

as eccentricity and phase unbalance.

Nejjari and Benbouzid [103] have applied the artificial neural network (ANN) for
induction motor fault detection by examining the shapes and the patterns of the Park’s
vector of supplied faults based on the backpropagation algorithm. The method has
been experimentally tested and the results show that the accuracy level was

satisfactory.
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Bouzid et. al. [104] have used a feed forward Multi-Layer Perceptron Neural Network
(MLPNN) for detecting and locating the stator inter-turn short circuit automatically
based on the backpropagation technique. The input for the NN is the phase differences
between the line current and the phase voltage of IM and the output is set to either (0
or 1). Thus, if there is a short circuit fault in the stator the NN will give 1, otherwise it

gives 0.

Sonje et. al. [105] have proposed a machine learning classifier for multi class to
diagnose the faults. The classification system based on random forest classifier for
individual and mix faults. After acquiring the stator current data with different load
conditions, fourteen statistical parameters (minimum, maximum, mean, median,
standard deviation, variance, sum, skewness, kurtosis, energy, R.M.S value, absolute
value of sum, shape factor and peak factor) have been extracted from the signal to be
used as input for the classifier. Thus, the result shows that the proposed system was
more accurate and obtained better performance comparing to the Multi-Layer

Perceptron Neural Network (MLPNN)).

Martins et. al. [106] have studied the unsupervised NN for online fault detection
based on stator current data. This method has been used alfa-beta stator currents as
input variables. This system has applied with help of the Hebbian-based unsupervised
NN, which was used to extract principle component from the stator current dataset.

The result was satisfactory for detecting and verifying the faults severity.

Abid et. al. [107] have presented a support vector machine (SVM) classifier for
detecting bearing faults by motor current signature analysis. The authors proposed a
novel strategy for detecting the rotating machinery faults using Directed Analytic

Graph Support Vector Machine (DAG-SVM) and Stationary Wavelet Packet
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Transform (SWPT). Four bearing fault conditions (Normal, Inner, Outer and Cage
defects) have been tested. The experimental results show that the proposed method is
considerably reduces the number of descriptors from 4 to 2 under 5 different load

conditions, as a result the classification accuracy was above 95%.

The wavelet NN and fuzzy logic systems have been proposed by Abiyev and Kaynak
[108] for controlling and identifying the fault of uncertain system. In this work, the
gradient decent algorithm has been used for updating the wavelet parameters. The test
results show that the proposed system has more adaptive and fast for classifying new

data.

A novel hybrid techniques of MCSA and fuzzy logic has been presented by Soomro
et. al. [109] for induction motor mechanical faults (eccentricity and bearing) detection.
The MCSA was used for locating the fault by using particular harmonics of line
current spectral analysis, while the Fuzzy logic was used for assessing the motor
operating condition and detect the faults severity. The test results show that the
proposed technique has been able to detect and locate the faults successfully, thus it

could be used to analyse all major motor faults.

Glowacz et. al. [110] have presented three different types of classifiers (Nearest
Neighbour, Linear Discriminant Analysis and Bayes) for detecting four types of faults.
These faults are healthy, one rotor bar, two rotor bars and ring of squirrel cage. The
best features have been selected by using Method of Selection of Amplitudes of
Frequencies-Ratio 15% (MSAF-RATIO15). The results obtained from three
classifiers were good in classification accuracy (above 90%), which indicate that they

have been able to protect other electrical rotating machinery.
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3.5.3 Vibration Monitoring based on Al

The time-frequency domain analysis and neural network has been implemented and
used in [111] for detecting rolling bearing faults based on vibration signal. In [112]
the Short Time Fourier Transform (STFT) has been adopted for processing and
analysing the vibration signal and use it as input for NN, then use analytical
redundancy to train the model for motor fault detection. This system has used the

spreading of vibration signal and its random nature for detecting the fault.

Chow et. al. [8] have used the NN approach for detecting the rolling bearing faults
based on the vibration signal. The method has been simulated and experimentally
tested. The results indicate that this system able to detect a range of motor faults based
on the vibration signal. Furthermore, they have used the FFT in order to obtain the
vibration spectrum, which has specific frequencies based on the defect. The maximum
amplitude, mean and kurtosis parameters have been also considered in NN training

model.

Jack and Nandi [113] have combined two Al techniques, which are genetic algorithm
and ANN, in order to select the most important features for detecting the IM faults
based on the estimation of vibration signal. A large set of vibration data has been
collected and only six important features have been selected by genetic algorithm for
fault identification. The result of classification accuracy was at 99.8%, which is good

for detecting the fault correctly.

Wu and Chow [114] have developed the radial-basis function (RBF) of ANN for
motor faults detection. Four features have been extracted from the power spectrum of
the vibration signal and they used them as input for the developed system. These

features are skewness, total average frequency and normalized of vibration signal. The
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proposed system was used for electrical and mechanical faults at different speeds. For
electrical fault, the inter-turn short circuit fault for the stator was injected by
connecting an additional resistor across the phase to change the stator electromagnetic
force. For mechanical fault, they have removed one of the screws that have been used
for holding the motor. Consequently, the results indicate that the system is not only be

able to detect the faults but also able to estimate the fault extension.

The Deep Learning approach has been developed for the purpose of learning the best
features from the distributed frequency in the vibration signal relying on the Deep
Belief Network (DBN) [115]. It has been built by using restricted Boltzmann machine
and train it layer-by-layer (pre-training algorithm), which combine the extracted
features with a well-known classification algorithm in order to detect the induction
motor faults. The test results point out that this system able to model large dimensional
data and learn the best representation of multiple layers. Accordingly, the

classification accuracy has been improved and less training error has been obtained.

Patel and Giri [116] have used random forest classifier for induction motor bearing
faults detection based on the vibration signal, which was collected by accelerometer
sensor. The random forest classifier used the extracted features from the vibration
signal. Four types of faults (normal, outer race, ball fault and inner raceway) have been
generated and the results have been compared with neural network. The results
indicate that the proposed classifier false prediction was only two out of 1600 dataset,

while the neural network false prediction was 14 out of 1600 dataset.

Samanta [117] has studied the comparison of support vector machine and artificial
neural network for detecting gear faults. In this study, two cases have been applied for

the feature extraction: one was using GA for selecting the input features and the other

OWOIF  Cardiff University Page | 58

Gaow  Prifysgol Caerdydd



Chapter 3: Literature Review

without GA. The obtained results with the use of GA-based selection have produced
equal classification accuracy by using both SVM and ANN, but SVM produces higher

classification accuracy than ANN without using GA-based selection.

Similarly in [118] GA-based selection has been applied for selecting the best input
features and use them as input for different ANN classifier in order to detect the
bearing faults using vibration signal. The outcomes show that the GA-based selection

was very effective for increasing the ANN classification accuracy.

Satish and Sarma [119] have demonstrated the combination of two artificial
intelligence techniques to create a cost effective and approach hybrid system of ANN
and Fuzzy back propagation (Fuzzy-BP) for detecting and predict the medium and
small bearing faults. This system has been built to overcome the individual
disadvantages of each system. The results confirm that the proposed system was well

suitable for bearing fault detection based on vibration signal.

Saimurugan et. al. [120] have considered two faults of rotating machinery, which are
bearing and shaft based on the vibration signal. In this study, two types of SVM
classification (cSVC and nuSVC) have been used for detecting both faults. In the same
time the Decision Tree (DT) classifier has been used for selecting the best features to
be used as input for four different kernel function types of SVM (linear, three degree
polynomial, radial basis function (RBF) and Sigmund). The results indicate that the
four different speeds of RBF in cSVC model produce better classification accuracy

than nuSVC model.

Saravanan et. al. [121] have used a piezoelectric transducer for collecting the
vibration data from the rotating machinery. In this study, Continuous Wavelet

Transform (CWT) (multilevel 1 D wavelet decomposition) with Morlet wavelets have
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been applied for extracting the important features from the vibration data, then
decision tree J48 has been used for identifying and selecting the best features by using
MATLAB software. The selected features were used as input to two different
classification algorithms (Proximal Support Vector Machine (PSVM) and Artificial
Neural Newark (ANN)) by using “Weka” software. The results show that the Morlet
wavelet and the decision tree J48 for extracting and selecting the features respectively,
have the ability to increase the classification accuracy of PSVM and ANN algorithms,

which was above 90%.

3.6 Common Softwares for IM Fault Detection

Many different softwares have been used for induction motor fault diagnosis, these
softwares were able to be used in both traditional and artificial intelligence techniques.
These softwares include: MATLAB software, LabVIEW software, ABAQUS
software, COMSOL Multiphysics software, Ansys software, JMAG software,
Solidwork software, Motor Mointor software, PAM software, COSMOS work
software, Fault tolerance software, STRANDS7 software, Nueral net. Software, Free
Master software, Sim 20 software, Maxwell PC software, SAMCEF software and

many others.

Having discussed how to construct an Al system for detecting and predicting the faults
in induction motor, the final section of this chapter addresses ways of how data mining
approach has been combined with the most well-known optimization algorithms in

order to build a strong system for early fault detection.
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3.7 Data Mining for Classification Task

The recent growth in IT infrastructure and data storage have made large volumes of
data to become more readily available and afordable. However, raw data in itself has
no value unless knowledge is extracted from it. One of the methods used for
manipulating and customizing raw data is Data Mining (DM). DM is the most
common method used for the classification, regression and clustering of large data.

Three important categories in the data mining should be considered:

a) Discovery: a process of searching in the entire database in order to find the

hidden patterns without default preset.

b) Predictive modelling: a process to discover patterns in the databases and

employ them to predict the future.

c) Forensic analysis: a process to apply the extracted patterns to find out unusual

elements.

In data mining all statistical features such as standard deviation, variance, mean, etc.
could be used to illustrate all related properties with a signal. Motor faults can be
classified effectively by using these features. Obtaining information from the motor
signal by using a suitable signal processing technique followed by a good technique
of data mining, which plays a vital role in order to monitor the behaviour of induction
motors. In addition to this, DM technique is able to improve the fault classification

accuracy even in poor condition [122].

The modern techniques of fault classifications were used to avoid the limitations of
the traditional methods because it does not need any previous knowledge about the

induction motor parameters and it is capable to encompass a numerous range of motor
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behaviour operations. These technologies motivate the researcher to improve an
efficient memory based data driven approach for fault discrimination. Thus, by
discovering a useful knowledge from thermal image, motor current or vibration signals

in a different form is very important step to develop many algorithms.

Furthermore, rule discovery is one of the DM processes, which is commonly used by
interdisciplinary fields, such as artificial intelligence, statistics, knowledge
engineering and other domains [123]. The aim of classification rule discovery is to
assign the given data to the most suitable class in the dataset. There are many factors
that make classification rule discovery a challenging task. Firstly, the bigger the
dataset the more complex the task of rule discovery and rule identification. Secondly,
the noise in the data may lead to insufficient and irrelevant rule generation. Thirdly,
in addition to others, the overfitting problem is difficult to overcome because it affects
data classification [124]. Hence, an algorithmic approach is necessary to overcome
these issues. As such, the evolutionary algorithm was very popular because of its use
in DM [125], which includes many biologically-inspired algorithms used in DM, such
as Genetic Algorithm (GA) [126], Particle Swarm Optimization (PSO) [127] and Ant

Colony Optimization (ACO) [128].

3.7.1 Optimization Algorithms based on Data Mining for Classification Tasks

In the recent literature, many optimization approaches and algorithms have been
developed and proposed in DM in order to solve several problems in the field of

classification.

Traditional methods use different strategies for handling datasets, such as conquer and
separate. Some algorithms have their own measurements for calculating the

performance of the extracted rules upon the dataset. Nevertheless, most of those

GROIF  Cardiff University Page | 62

Gaow  Prifysgol Caerdydd




Chapter 3: Literature Review

algorithms produce a very long list of complex rules, and might have an overfitting
issue depending on the dataset [129]. For instance, a GA has been applied in DM in
order to carry out both tasks: feature selection and mining the data simultaneously by
improving the chromosome structure [130]. A Support Vector Machine (SVM) has
been used with fuzzy rules in order to extract fuzzy “IF-THEN” rules from the training
dataset as the SVM provides the extraction mechanisim for fuzzy rules [131]. In
addition, A PSO algorithm has been used in DM, which is based on coordinated
movement in bird flocks [127]. The use of PSO in DM was proposed by Silva et al.
[132]. Sarath and Ravi [133] have developed a binary patrical swarm optimization
based on assoccation rule miner and it has been applied for real bank datset which
produced good results compared to a Priori Algorithm (PA). Furthermore, ACO has
been successfully applied for data classification for generating multiple rule sets,
which is called AntMinermbe (AntMiner multiple-based classifiers) [134].
Correspondingly in [135] ACO has been developed for rule extraction and applied for
acoustic emission for classification tasks. Another optimization algorithm which is
Artificial Bees Colony (ABC) has been used in DM for classification tasks, which are

based on the search dimension of the bees and best food source [136].

Most of the optimization algorithms were converted for the use of data classification
through data mining rule discovery as mentioned above, but these algorithms still have
problems with classification accuracy, validation accuracy and number of rules, which
all play a vital role in data classification. Lately, researchers have considered
combining two or three algorithms together in order to overcome the disadvantages of

each algorithm and gain accurate rules for big data classification.
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Up to now, the researchers have tended to focus on the Bees Algorithm (BA)
(optimization algorithm) rather than other well known optimization algorithm, this is
because it is different from other swarm intelligance methods since it merges
neighbourhood search and random search together based on the natural bee swarms
for finding the best food sources [137]. The BA has been effectively applied to a
number of optimization problems and multi-objective optimization problems. Several
studies have indicated that the BA has been used for many applications. For example,
it has been successfully applied for feature selection with Multi-Layer Perceptron
(MLP) whereby the combination features with the lowest classification error are
selected. Moreover, many engineering problems have been solved by using the BA,
such as machine shop scheduling [138], dynamic control problems [137], non-linear
model identification [139], pattern classifier training [140] and robotic swarm
coordination [141]. It has also been used successfully with slope angle and hill
climbing algorithms with the aim of improving the performance of the BA for solving

single machine scheduling [142].

Equally important, the BA has been applied for the identification of defects in wood
veneer sheets [143]. In [144], a new version of BA was introduced by using
pheromone as a new technique to recruit the bees in order to conduct the local and
global random searches. It has been successfully applied for optimizing Fuzzy C-Mean
(FCM) clustering [145]. Simultaneously, Tapkan et al. [146] have proposed a
combination of BA with a cost-sensitive classification algorithm, known as BEE-
Miner, for classification tasks. It achieved good results, relying on the
misclassification cost and classification accuracy. However, the problem of the
accuracy and the number of rules still exist when compared to other classification

algorithms.
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3.8 Previous Work Observations

As was pointed out in the literature review, the history of condition monitoring and
fault diagnosis is as old as the induction motor itself. The induction motors have been
initially relied on simple protection such as over-current and over-voltage to ensure
safe operation. In spite of these tools, many companies are still faced unexpected
system failures and reduced motor lifetime. Redundancy and conservative design
techniques have been adopted for improving the reliability of induction motor drive
systems against a variety of faults that could occur. However, these techniques are

expensive to realize.

Condition monitoring is leading to incipient fault detection and prediction of induction
motors, which has attracted many researchers in the past few years owing to its
considerable influence on the safe operation of many industrial processes. Early
detection, prediction and correct diagnosis of incipient faults could allow preventive
maintenance to be performed and provide sufficient time for controlling the shutdown
of product line. It could reduce the financial losses and avoid catastrophic
consequences. As discussed above this topic could be treated under three headings:
thermal, current and vibration monitoring. These methods have its own advantages
and disadvantages, this is the reason of why that the thermal monitoring and vibration
monitoring have been paid less attention than current monitoring. Previous studies of
condition monitoring have not dealt with thermal monitoring and have paid less
attention because of the thermal sensors, which are needed to access the motor
performance such as thermocouples, resistance temperature detectors (RTD), winding
thermostat and thermistor. It has been reported that the thermal monitoring was

important because any overheating to the stator winding will decrease the motor coil
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insulation life, which have effects on the motor resistance to either environmental or

mechanical effects [147], [148].

Such approaches, however, have failed to address the induction motor faults without
thermal monitoring technique. In one hand, recently, the researchers have used thermal
cameras to monitor the rotating machinery and read the device temperature in healthy
and faulty conditions without any access to the motor (contactless) based on the image
processing technique to detect the motor faults. On the other hand, up to now, the
research has tended to focus on the current monitoring (electrical monitoring) because
it does not need to any additional sensors, as the current and voltage transformers are
connected to the protection system at all times. Thus, the MCSA was very popular for
monitoring the induction motor since it is non-intrusive detection (does not disconnect
the electrical circuit), safe to operate (no contact between the motor and the current
transformer) and remote sensing (current transformer could be place anywhere for

monitoring) [9], [69], [149]-[152].

All the studies reviewed so far, however, suffer from the fact that MCSA is not
appropriate for analysing the non-stationary signals. Another problem with this
approach is that it fails to take the low signal to noise ratio into account, which makes
the MCSA non-sensitive under certain conditions such as in inverter-fed motor as
stated in [4], [147], [153], [154]. There would be therefore a definite need for vibration
monitoring for mechanical faults detection because it allows different locations for
sensors to be mounted on the motor, while MCSA relying on the radial rotor
movement. Consequently, in case of bearing fault, the MCSA has difficulty in

distinguishing non-drive-end or drive-end if two bearings have similar physical
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characteristics. Furthermore, the vibration signal has higher signal to noise ratio than

the MCSA as shown in table 3-3 [155].

Table 3-3: Common differences between the vibration and current signals [152].

Fault type VIB MCSA
Electrical faults detection X N
Radial rotor movement analysis X \
Cheap installation X \
Able to apply in rough environment X V
Mechanical faults detection at early stage V X
Easy to distinguish between different bearings X
Mean Time To Failure (MTTF) \ X
Higher signal to noise ratio v X

Moving on to consider the Al techniques for induction motor faults detection based
on data mining. As indicated previously, most of Al techniques such as (ANN, GA,
NN and SVM) have been applied and validated successfully for diagnosing the motor
faults with different classification accuracy. Although extensive research has been
carried out on the use of Al for induction motor fault detection and prediction, no
single study exist shows that there is one best technique for all kind of motors to
diagnose the faults. This is because, the bigger the dataset the more complex task for
classifiation, the noise in the data may lead to insufficient and irrelevant to orginal
class, and the overfitting problem is difficult to overcome because it affects the
classification system. Therefore, several studies have revealed that the development
of induction motor fault detection based on Al techniques is still in its early stages.
Consequently, despite that the considerable work have been done in this field, much
more work are required to bring such techniques into the mainstream of induction
motor fault diagnosis. Due to the limitations and strengths of these techniques, the

findings from these studies suggest that the combinations of intelligence techniques
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could have an effect on the developing on the rotating machinery condition monitoring

for fault diagnosis scheme.

The previous sections have shown that many researches have been performed for IM
fault detection by relying on the traditional methods and some Al techniques.
Furthermore, the problem of IM fault still exists in many manufacturing applications.
For that reason, the need for data mining algorithms are very important to detect and
predict the fault before it happens based on the motor previous behaviour (data) in

order to reduce the breakdowns of the electric machines.

Considering the aforementioned shortcomings of the methods that were used in motor
condition monitoring, this research is aimed to address these disadvantages by
presenting new classification technique. This technique is based on data mining rule
discovery that are simple in algorithm design, and easy to apply for three kinds of
condition monitoring technique, which are thermal, current and vibration monitoring,

based on simple digital image and signal processing.

The next chapter describes the proposed hybrid approach by combing the Bees
Algorithm and Data Mining methods that are used for condition monitoring in order

to detect, classify and diagnose the induction motor faults at an early stage.
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PROPOSED BEE FOR MINING (B4M)

“In this chapter, the combination of the proposed methods Bees Algorithm and Data
Mining for induction motor faults detection have been described and explained in
details, so called Bee for Mining (B4M). The proposed method (B4M) has been tested
and validated based on the UCI dataset and its performance has been compared with
other well-known classifiers. The proposed method has been translated as a software

code or toolbox package using MATLAB software version “R2015a”".



Chapter 4: Proposed Bee for Mining (B4M)

4.1 The Bees Algorithm (BA)

The Bees Algorithm is one of the most important types of swarm intelligence
algorithm used to find the optimal solution inspired by honeybees’ natural foraging
behaviour. The BA will require from the user to set values for the parameters as

described in table 4-1 before it can start to optimize the given problem.

Table 4-1: BA parameters.

Description Symbol
Number of scout bees n
Number of selected bees m
Number of elite bees e
Number of recruited bees for elite (e) sites nep
Number of recruited bees for other best (m-e)

sites P
Neighbourhood size for each selected patch ngh

(local search)

First, in the search space, the basic BA begins with a number of scout bees arriving at
random positions for global search or exploration. These bees will evaluate their
positions and maximize the solutions to the problem by ranking them from the highest
to the lowest according to their fitness value. The second stage is to select (m) best
sites for local search or exploitation and abandon the remaining sites. Then the best of
the best sites, which is called the elite sites (e), are chosen for intense exploitation.
Further, the size of the neighbourhood search space is chosen for recruitment the bees,
where fewer bees will be assigned for the non-elite sites (m-e), while more bees for
the elite sites (e) in order to conduct the local search. Simultaneously, while the
recruited bees are busy exploiting around the neighbourhood of the best solutions

found so far, the global search will be carried out on the remaining sites where the
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scout bees will be sent randomly [142]. This procedure will be repeated iteratively as

shown in figure 4-1until one of the following stopping criteria given below is met:
a) A solution has been found, which is equal to real optimum value.
b) The iteration number has reached the preset value.

c) Ifthere is no improvement over a preset number of iterations.

Initialise a population of n scout bees

v

Evaluate the fitness of the population <

v

Select m sites for neighbourhood
search
v
Recruit bees for selected sites (More
bees for the best sites)

Select representative bee from each
patch

Assign the (n-m) remaining bees to
random search

v

New population of scout bees

Figure 4-1: Basic BA flowchart.

Procedure and concept for the proposed Bee for Mining (B4M) will be introduced in

the following sections.
4.2 Proposed Bee for Mining (B4M)

The Bees Algorithm which has been reconfigured in a novel way to enable it to act as

a Data Mining (DM) tool and it is referred to as Bee for Mining (B4M) in this research.
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The main thrust of B4M is its ability for rule discovery and rule pruning. The proposed
B4M utilizes the basic Bees Algorithm within its process. Among other steps, the steps
followed by the proposed B4M are as follows. When the rule discovery process is
faced with an ambiguous situation, it will rely on the newly introduced parameters
namely quality and coverage weight in the proposed B4M to overcome this issue, the
details are graphically shown in figure 4-2. This has been done through a process of
Meta-Pruning i.e., examining the discovered rules by referring to itself and measuring
their contribution to the class assignment in terms of their quality and coverage before
pruning. The main steps followed by the proposed B4M are summarised and described

here below:

1) Data Pre-Processing.

2) Evaluation Function (fitness function).

3) Rule Format.

4) Rule Discovery and Extraction.

5) Rule Pruning.

6) Prediction Strategy.
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B4M

Basic BA

| Initialize the scout bees population |

| |

| |

| |

Fitness fi N luati B Calculate sensitivity and |
itness function evaluation |<=» I specificity

v I 7 |

| |

Select the site for nighbohood | [ |
r—-r——""—""~>"~"~~"T T~ - l
| Rule discovery phase

Recruit bees for selected site (- —

Y | | Select class X |<—
each Palh Generate the rules using B4M |

Assign rcmdmlné bee to random
search
v
New population of scot bees |—

| Add all rules to rules set |

| Represented bee selected from |

Remove all instances covered
by the rule

No instances belong to Class X |

| All classes selected |—

Y

| Rule discovery phase |‘

Rule Pruning

|
|
|
4 /| Arguments and
| i |< | rules pruning

Pruning phase

I

|

: Remove all
A | unnecessary

1

|

|

| Prediction phase |§ arguments and
repeated rules

incoming data

Calculate the Cover
Percentage

v

Calculate the prediction values
for each rule

v
final class will be selected
depending on the highest
prediction value

v Prediction phase ]
Predictthe class fornew | . = ~_ |}——f—"—F—F—————————-——=-=-
|

|

|

|

|

|

|

|

|

|

|

|

Figure 4-2: Proposed B4M flowchart.

4.2.1 Data Pre-Processing

In data pre-processing stage, there is a need to delete all non-coherent and incomplete
data, since some data can confuse the algorithm when detecting the class based on the
features provided. Otherwise, this can lead to having inaccurate classification rules
(overlapping problem) for the new and unseen data presented for prediction and

generalisation.
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4.2.2 Evaluation Function (fitness function)

BA has been used to minimize the fitness function as the best and nearest food source,
but in the classification task the fitness function will be used to evaluate the fitness
value of the rules, as defined in the equation below [146]:

TP % TN
(TP +FN) (TN +FP)

Fitness function = Sensitivity X Specificity = (4-1)

Where TP (True Positive): the records or datasets that have been covered by the rules
and these rules have predicted their class correctly. FN (False Negative): the records
that have not been covered by the rules, but the rules have predicted their class
correctly. FP (False Positive): the records that have been covered by the rules and the
rules have not predicted their class correctly and TN (True Negative): the records that
have not been covered by the rules and the rules have not predicted their class

correctly.

In addition, there are two important concepts that need to be considered in the rule

discovery, as described below:

a) The algorithm will measure and examine all data features. If the value of the
feature is between the lower and the upper bounds then this feature is covered

by the rule.

b) If the class predicted by the rule is the same as the evaluated class then this

indicates that this class has been predicted by the rule correctly.
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4.2.3 Rule Format

The format of the classification rule has two parts namely antecedent and consequent
as shown in table 4-2. The antecedent part deals with the condition and the consequent

part deals with the outcome.

All datasets have their own features starting with feature 1 to feature N. Each feature
or attribute has its own values, which are divided into two categories, the lowest value
(Lower Bound) and the highest value (Upper Bound) for the rule. Furthermore, three
important values related to the classification rule discovery namely fitness value, class
prediction and cover percentage, which are described in the following section, should
be taken into account.

Table 4-2: classification rule format.

Antecedent Consequent
If (Xj < Uij) and (Xj > Lij) then class 'X'

4.2.4 Rule Discovery and Extraction

The most important part in the classification method is the rule set phase because it
identifies the group of data into a specific class. Therefore, figure 4-3 shows the

flowchart of B4M rule discovery procedure.
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‘ Initialization ‘

‘ Select a class X }4—
v

Generating the rules by
running bees algorithm

Add all new rules into rule
set

v

Remove all instances covered ‘

by the rule

v

- .
- -
- -

No ///'A/re there aﬁf&“‘x,&
_<a instances belong to >

-
~_ classX -~

"
HH““*H\ - _
IYes
X
/"/. \'H...
- S~
7 ..\

/../-/A/H classes has beéﬁ'“-\__

~.
~_ selected

No

: N
( End )

Figure 4-3: B4M rule discovery flowchart.
The values for all the attributes will be calculated and set in the dataset by using two

equations as given below [156]:

Lower Bound (LB) = f — ki X (fimax — fmin) (4-2)
Upper Bound (UB) = f + ky X (fmax - fmin) (4-3)

Where k;, k, are two different random numbers between 0 and 1 and f represents the
original feature values. The f,,;, and f;,,4, are the minimum and the maximum values
of the attribute, which represent the range of the feature. k;, and k, have been created

in order to discover the rules. LB and UB represent the lower and upper bound
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respectively. The rules will be generated automatically for each class by using the
classification rule-mining algorithm. This process will be repeated for each class until
all instances that belong to that class are covered. Moreover, at the end of rule
discovery process the rule set will have many rules, and each rule will abide by the

rule structure.

4.2.5 Rule Pruning

This is where the redundant rules are removed. Once all the rule sets have been
generated for each class, each rule will be subject to rule pruning. The main purpose
of pruning rules is to remove all unwanted rules, which may affect the classification
accuracy. Rule pruning helps the algorithm to increase the classification accuracy due
to the removal of some dispensable attributes or rules which negatively affects the
classification results. This process will keep running until the performance of the
reduced rules set cannot be improved further. In this work, a “Meta-Pruning” process
is followed where the discovered rules themselves are made subject to the rule pruning

mechanism.

4.2.6 Prediction Strategy

After the pruning process, the obtained rules set can be used for predicting the class
of new incoming data. If more than one rule lead to the same class then some strategies
need to be applied in the prediction stage in order to be sure that the class has been

predicted correctly. Here, three approaches to determine the correct class are proposed:

1) Cover all the test data, by calculating the prediction value for all the rules.

2) Gather all the predicted values in order to determine all possible classes for

each attribute.
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3) Select the final class based on the highest prediction value.

This strategy has further assisted by the following measures. The True Positive (TP)
which is the records or datasets that have been covered by the rules and these rules
have predicted their class correctly, and the rule coverage percentage is calculated as

given below:

Coverage Percentage = % (4-4)

Where N represents the total value of the predicted class by the rules.

The function for the calculation of Prediction Value (PV) for each rule is computed
by the equation below [157]:

Prediction Value = (a X rfv) + (B X rcp) (4-5)

0 < Quality-weight < 1, 0< Coverage-weight < 1

Where rfv is the rule fitness value and rcp is the rule coverage percentage. While a
(a0 € [0, 1]) represents the quality-weight and B (p = (1-a)) represents the coverage-
weight, are associated with rule fitness value and rule cover percentage respectively.
These two values (a and B) applied on the discovered rules from the dataset to avoid
any ambiguous situations during the prediction phase and making it suitable for any

classification problem.

The main purpose of the prediction strategy is to balance the influence of coverage
percentage and fitness value with respect to the prediction value, which determines
the final predicted class. Furthermore, the value of a and  should be chosen carefully,
because they have a big impact on the predicted classification accuracy. The proposed
approach presented in this study is the development of a mechanism for data

classification based on the swarm based optimization algorithm, which is the BA.
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Figure 4-4 demonstrates a new classification procedure based on the BA. The first
stage is data pre-processing, which includes deletion of all non-numerical and missing
data. Step two, involves calculating the maximum and minimum values for each
attribute and category followed by the evaluation of the fitness function for the rules.
Then BA is applied to search for the best values (food sources). The BA will run
iteratively forming new populations so that it will keep searching for the best data until
it reaches the near optimum solution. After convergence, rules are generated for output
data and are assigned to their class in order to cover all data instances. Finally, all
instances which are not covered by the rules are removed and checked to see if any
other classes are covered by the rules. In the following chapter, the proposed B4M will

be tested on five different UCI datasets in order to examine its overall performance.

‘ Pre-processing data ‘

v

Calculate the minimum and
maximum for each attribute
and for each class

7 F—_——————— — — —
—b{ Ewvaluate fitness function [
3 I
I

Run bees algorithm to
search for the best data

| Fitness evaluation | | Fitness evaluation |

I

I

— — — — — —_— e — — —
Ye T e
L - ~

s . ~
< New populations >
— =

|
|
Elite site (e) |Best site (1n*e)J |
|
|
|

Automatic rule
discovery stage

r
Rule generation by bees
| algorithm

Remove all instances
| covered by the rule

‘____ij ______ ]

— —

— -
No _—4All classes have —_
— 5
—_been selected _—
— //

Yes

~
End )

P
.

Figure 4-4: Classification procedure of proposed B4M.
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4.3 Testing of B4M Performance on selected UCI Datasets

This section presents the test results obtained to show the performance of the proposed
B4M algorithm on five selected UCI datasets in terms of its classification accuracy
and its ability for rule discovery. Further, the proposed B4M has been compared with
other classifiers such as C5.0, C4.5, Jrip and other evolutionary algorithms in order to
show its strengths and weaknesses. The description of the datasets used in the test is

given below.

4.3.1 Description of Datasets

The UCI datasets were used to evaluate and compare the performance of the proposed
B4M algorithm. The UCI machine learning repository has about 351 datasets on its
machine learning research group web page [158]. In this study, five datasets have been
used namely Iris, Wine, Soybean, Breast Tissue and Image Segmentation in order to
evaluate B4M performance[159]. The reason for choosing them is that all five datasets
have different characteristics. For example, one has integer and real attributes, three
have only real attributes, and one has categorical attributes with varying sample sizes
and number of classes. This allows the proposed B4M to be tested if it is capable of
dealing with different types of feature attributes similar to the real world datasets.
Table 4-3 shows the characteristics of the five selected UCI datasets that were used to
evaluate the B4M performance. In the following section the parameter values used in

the B4M algorithm in three different trials and the test results are given.
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Table 4-3: Five selected UCI dataset characteristics.

No. of No. of Attribute No. of
Dataset name .

samples attributes type classes
Iris 150 4 Real 3
Wine 178 13 Integer, Real 3
Soybean 47 35 Categorical 4
Breast Tissue 106 10 Real 6
Image

2310 19 Real 7
Segmentation

4.3.2 The B4M Parameters
The eight parameters used to study the performance of the proposed B4M algorithm

are shown in table 4-4.

Table 4-4: B4M parameters.

Parameter Value
n 500

m 20

e 10

nl 15

n2 30
Ngh 0.0234

Quality-weight 0.5
Coverage-weight 0.5

The tests were repeated three times by changing only the number of iterations from
500 to 1500 in steps of 500 (500: trial 1, 1000: trial 2, 1500: trial 3) in order to study
their convergence. The number of iterations could be made higher than 1500 but this
will have an effect on the processing time. Therefore, T-test and P-value were
calculated between the three trials based on the overall classification accuracy

achieved by the B4M. The three trials were compared statistically by evaluating each
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pair 1-2, 1-3 and 2-3 respectively based on the average classification accuracy, as
shown in table 4-5. In the T-test, all datasets have been chosen because they have
different types of attributes and number of classes. The T-test results point out that
there are statistically significant differences between these comparisons for some of
the datasets. The results show that trial 3 outperformed trial 2 for the iris and soybean
datasets because the P-values are lower than 0.05, while trial 2 outperformed trial 1
for the iris dataset, and trial 3 outperformed trial 1 for the soybean dataset only.
Therefore, trial 3 has been selected for testing B4M on UCI datasets because it has

two values lower than the threshold value (0.05).

Table 4-5: P-value for B4M parameters based on T-test.

Dataset Trial 1-2 Trial 1-3 Trial 2-3
Iris 0.04 0.41 0.01
Wine 0.47 0.21 0.24
Soybean 0.32 0.05 0.04
Breast Tissue 0.34 0.41 0.30
Image Segmentation 0.31 0.46 0.31

4.3.3 The B4M Test Results

In testing the proposed B4M, 10-fold cross-validations have been used for each dataset
to evaluate the performance by validating the predicted class. Two parameters namely
quality-weight (o) and coverage-weight () required for class prediction should be set
after generating the final rule set. During the B4M tests, these parameters were set to
0.5 empirically because it has been found that this value is the best for rule prediction,
as explained in section 4.2.6. In addition, the ngh value was chosen in such a way to

minimise the overlapping regions of the search space between the bees.
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The proposed B4M method has been applied on five UCI datasets containing different
numbers of classes (3, 3, 4, 6 and 7) to see its capability on handling multiple classes
and its ability in assigning the unseen data to the correct class. After running 10-fold
cross-validation, the test results were analysed statistically by calculating the average
(mean) and standard deviation for the classification and validation accuracy. Table 4-6
shows the Classification Accuracy (CA) on the training data and Validation Accuracy
(VA) on the unseen data with 10-fold cross-validation for all datasets. According to
the results in table 4-6, the proposed B4M classification method was able to classify
the data with an average classification accuracy (CA) ranging between 88.83% and
99.10%. In terms of validation, since the performance of the B4M not only depends
on how well it can perform on the training dataset but also on the test dataset, the
proposed B4M achieved an accuracy of 88.66% the highest for Iris dataset and 68.57%
the lowest for the Image segmentation dataset. The results were assessed based on the
classification accuracy on the training set and their validation accuracy on the test set.
These results indicate that the proposed B4M was operating efficiently to predict the
classes for the unseen data. In addition, table 4-6 shows that the B4M performance in
terms of the average (mean) validation accuracy is the highest for Iris dataset and worst
for the Image Segmentation. In terms of standard deviation obtained for validation
accuracy the performance of B4M was the best for Soybean dataset and worst for
Image Segmentation dataset because the Image Segmentation dataset was unclear and

has unrecognized features between its classes.
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Table 4-6: Classification and Validation Accuracy with 10-fold cross-validation

using B4M.
itljroz;t(i)(fn Iris Wine Soybean %‘se::ls(: IslggriZntation

CA% VA% CA% VA% CA% VA% CA% VA% CA% VA%
1 97.67 9333 9926 61.11 98.55 7500 9138 5833 9897 3333
2 98.44 100.00 9854 77.77 99.63 75.00 89.66 66.66 96.06 76.19
3 9845 7333 9925 8333 99.85 75.00 88.14 5833 9783 7142
4 97.69 80.00 9841 88.88 98.61 87.50 89.47 75.00 9894 9047
5 97.67 86.66 9925 61.11 99.65 75.00 8793 75.00 97.89 85.71
6 99.22 86.66 9990 8333 97.79 87.50 9225 91.66 94.61  66.66
7 98.45 9333 9851 61.11 98.85 75.00 89.66 5833 9348  66.66
8 96.18 93.33 9851 7222 98.69 62.50 86.21 91.66 9474  42.86
9 96.92 9333 9992 100.00 99.61 75.00 8833 5833 9789  80.95

10 96.92 86.66 99.24 5555 99.74 75.00 8525 7500 9399 7142
Average 97.76 88.66 99.08 7444 99.10 76.25 88.83 70.83 96.44 68.57
STD 0.91 7.73 0.57 1463 0.69 7.10 214 13.18 2.11 17.98

CA = Classification Accuracy VA = Validation Accuracy

After applying the proposed B4M for all UCI datasets, the validation accuracy has
been compared with and without quality-weight (o) and coverage-weight (3) as shown
in figure 4-5. It can be seen that the inclusion of quality-weight and coverage-weight
resulted in an increase in the validation accuracy because it produced accurate rules to

predict the correct class for new unseen data.
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® Without quality and coverage weight ® With quality and coverage weight
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Figure 4-5: Comparison of classification accuracy (X - different methods; Y - %

classification accuracy) achieved by B4M with other methods for five UCI datasets.

4.4 Comparison of B4M with Other Algorithms

A comparison was carried out between the B4M performance and other classification
methods such as C5.0, C4.5, Jrip, REGAL, PART, ATM, cAnt-Miner, BEE-Miner,
CART and CN2 based on the average classification accuracy (given as a %) and the
average number of rules (given as a real number). The average classification accuracy
and the average number of rules discovered by different classification methods for the
five UCI datasets are presented in table 4-7. All the algorithms including B4M have
been tested using 10-fold cross-validation method. It is clear from the table that the
proposed B4M classification accuracy is better than other classification algorithms for
four out of five UCI benchmark datasets. In addition, the proposed B4M classification
achieved higher accuracy for Wine, Soybean, Breast Tissue and Image Segmentation
in terms of classification accuracy and number of rules. However, the performance of
B4M is lower than REGAL [160] and it is in the second place in terms of classification

accuracy for the Iris dataset, but in terms of the number of rules, it was higher than
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REGAL and others. The results show that B4M has the ability to generate less number

of rules with higher classification accuracy.

Table 4-7: Comparison the results of B4M with other classification algorithms.

. . Breast Image
Compared Iris Wine Soybean Tissue Segmentation
algorithms CA% No.of CA% No.of CA% No.of CA% No.of CA% No. of

rules rules rules rules rules

C5.0[161] 92.00 5.00 * * 9340 32.00 * * 96.3  10.05
C4.5 [162],

9532 620 91.03 890 8560 5590 66.16 1940 * *
[163]
Jrip [162],

96.00 3.00 92.68 540 * * 60.18 7.50 94.58 17.20
[164]
REGAL[160] 99.00 11.00 97.00 60.00 * * * * * *
PART [162],
[164] 9333 3.80 91.54 520 9140 20.60 6436 21.80 9561 27.90
ATM [163] 96.20 420 95.15 560 8740 50.00 6520 12.00 * *
cAnt-

93.24 492 9357 475 80.00 2230 67.10 6.55 * *
Minerpg[162]
cAnt-Miner

9421 4.00 9138 4.10 * * * * 93.72 12.22
[164]
pcAnt-Miner

95.65 840 93.82 4.07 * * * * 94.64 16.13
[164]
BEE-Miner

90.22 576  96.08 3.13 * * * * * *
[146]
CART[163] 9390 440 9330 550 87.60 3540 64.70 7.80 * *
CN2 [162],

94.66 9.50 9496 790 97.30 18.80 7535 23.60 * *
[165]
PSO/ACO

94.67 3.00 * * 87.01 2420 * * * *
[166]
B4M 97.76 3.00 99.08 3.10 99.10 4.60 88.83 6.10 96.44 7.60

CA = Classification Accuracy VA = Validation Accuracy
*: Data is not available.

Figure 4-6 and figure 4-7 show the average classification accuracy and average
number of rules achieved by different methods for the five UCI datasets. It can be
clearly seen that the proposed B4M has above average performance in terms of

classification accuracy and the number of rules in four out of five datasets. However,
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the processing time for all the applied algorithms have been not considered as the other
algorithms have been taken from the references and it is difficult to be calculated, but
the proposed algorithms have taken less than 60 seconds to detect the motor faults
which is also depends on the how large is the dataset. Consequently, the results have
proved that the proposed B4M is able to handle the classification data successfully and
obtain equally good results if not better when compared with other classification

algorithms.
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CHAPTER 5

PROPOSED METHODS FOR DATA PRE-
PROCESSING AND FEATURE SELECTION

“In this chapter, the proposed methods of induction motor data pre-processing have
been described and explained in detail. The proposed feature extraction methods from
the thermal image have been described. Afterward, Wavelet Transform has been also
explained and how it is applied to the thermal image, current and vibration signals.
Finally, the feature selection methods have also been described and explained in
detail. These methods have been translated as a software code or toolbox package

using MATLAB software version “R2015a”".



Chapter S: Proposed Methods for Data Pre-Processing and Feature Selection

5.1 HSV Colour Model

The Hue-Saturation-Value (HSV) colour model is defined as how the human eyes
senses colours. It also known as Hue-Saturation-Brightness (HSB), Hue-Saturation-
Lightness/luminance (HSL), and Hue-Saturation-Intensity (HSI). The following
formulae have been used to convert RGB image into HSV colour model in terms of

three components as stated below:

«* In Terms of Hue:

It represents the colour types. Hue value could be calculated from the red,
green and blue colours by measuring the distance from its arise. The colour
was described as angle degree between (0° - 360°) in Hue. As shown in
table 5-1, 0°- 60° for red colour, 60°-120° for yellow and 120°-180° for green,
and so on. Hue region is very helpful for detection the hottest region because
it works opposite with saturation as it is less meaningful when the saturation is
0 or when intensity is 0 or 1, and more meaningful when the saturation is 1.
Consequently, Hue region has been used for further processing for motor fault

detection.

Table 5-1: HSV colour space distribution.

Angle 0°-60° 60°-120° 120°-180° 180°-240° 240°-300° 300°-360°

Colour  Red Yellow Green Cyan Blue Magenta

The formula of calculating the Hue value is explained below:

H‘f if B<G
“1360— 0 ifB >G
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R: Red, G: Green, B: Blue

1(R-G)+ (R-B
(R-G)+ (R-B)] J 5-1)
2

0 = cos‘l{
[(R-G)?+ (R-B)(G-B)]

«* In Terms of Saturation:

The colour range is from 0 to 100%. It also known as purity. The faded colour
and greyness have been appeared when the saturation value is low. Thus, the
range of the greyness is from 0 to 1, if the value is ‘0’ the colour is grey, while
the colour is primary colour (white colour) if the value is ‘1°. In addition, the
higher the faded the greyer colour based on the following formula (S:

saturation):

S=1

~ RGIE) [min(R, G, B)] (5-2)

s In Terms of Value:

The value represents the color brightness, which varies based on the saturation.
The value ranges are between 0 - 100%. The colour is black when the value is
‘0’, and the colour brightness will be change and show varies color when the

value increases based on the following formula:

1=§(R+G+B) (5-3)

Generally, RGB colour has been widely used in the optical instruments and digital
images. However, RGB is not sensitive and helpful to statistical analysis and human
visual. Consequently, the non-linear transformation of HSV or HSI from RGB colour
provides important information with more accuracy than the RGB colour. As results,

it has been decided to use it for processing and analyzing the thermal image of
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induction motors in order to extract the best and accurate colour information for fault

classification.

5.2 Image Segmentation

Image segmentation is a process of partitioning image into several or multiple
segments (sets of pixels). Basically, the result of image segmentation are set of pixels
that may have similar characteristics such as texture, colour, or intensity. It has three

different approaches for image segmentation:

a) Finding the thresholds based on the pixel properties distribution, which is
counted as a simplest way for image segmentation. This technique has been
applied onto the image pixel intensity value. Thus, it converts the digital image

into binary image for further processing.

b) Finding the boundaries between all the regions by relying on the
discontinuities in intensity level. The image has been divided into sub-regions
based on the method rules such as all the image pixels must have the same gray
level if it is in one region. Furthermore, it relies on the neighbouring pixels
clustering, which sometimes referred as region according to their functional

and anatomical roles.

¢) Finding the regions directly for any abrupt changes in the intensity value. It is
known as edge or boundary based method. Generally, edge detection methods

have been used for finding the discontinuities in gray level.

Accordingly, image segmentation technique should be chosen based on the problem
that needs to be segmented. The next section will discuss most common edge detection

techniques that have been used in this research for image segmentation.
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5.2.1 Image Segmentation based on Edge Detection

The edge detection methods of an image reduce the image data quantity to be
processed and contain essential information regarding the object shape in the scene.
They have been able to extract the exact edge line for all object in the image with good
orientation as well as more literature about these techniques are available and applied
in many applications such as biometrics, medical image processing, security,
monitoring the electrical devices and many others. However, there is no study
indicates and judges the performance of these techniques because all the judgment that

have been done by authors are always separately based on their applications.

Several methods such as “Sobel”, “Prewitte”, “Roberts”, “Canny”’, “LoG” and “Otsu”
have been used for finding and extracting the hottest region from the thermal images
by calculating the gradient based edge detection. The following sub-sections will

review these techniques briefly.

5.2.1.1 Sobel Edge Detection

The Sobel edge detection method was introduced by Sobel in 1970 [167]. It proceeds
the edge at those points where the gradients are higher. The gradient (Vf) is the
differences between the columns and rows of neighbourhood 3x3 which is calculated
by Sobel operators, table 5-2 below shows the center pixel in each column and raw
[168].

Table 5-2: Image neighbourhood (center pixel).

Z1 72 73
74 75 76
77 738 79

Vf=S:+S; (5-4)
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Where S, & S,, are Sobel operators in the X and Y- axis respectively.

Masks for S, and S, direction in Sobel operators as shown in table 5-3 and table 5-4

Table 5-3: Masks for S, direction.

1 2 -1

0 0 0

1 2 1
Table 5-4: Masks for Sy direction.

-1 0 1

-2 0 2

-1 0 1

5.2.1.2 Prewitt Edge Detection

The Prewitt edge detection has proposed by Prewitt in 1970 as well [167]. It estimates

the magnitude and orientation of image object edge. It is limited to eight possible

directions. Nevertheless, the result shows that the most direction estimates are not

perfect than the first 8. The gradient-based edge detector is estimated in the 3*3

neighbourhood for 8 directions as shown in table 5-5 and table 5-6. Thus, if all the

eight convolution masks are calculated, one of the masks will be selected for data

processing.
Table 5-5: Masks for S, direction.
-1 -1 -1
0 0 0
1 1 1
Table 5-6: Masks for S,, direction.
-1 0 1
-1 0 1
-1 0 1
QROME  Cardiff University Page | 94

Gaow  Prifysgol Caerdydd




Chapter S: Proposed Methods for Data Pre-Processing and Feature Selection

Prewitt edge detection technique is slightly simple to implement than the Sobel

detection, but it tends to produce somewhat noisier results.

5.2.1.3 Roberts Edge Detection

Lawrence Roberts introduced the Roberts edge detection method in 1965 [169]. It
performs a simple, quick to compute, 2-D spatial gradient measurements to the image.
Each point of the output image represents the estimated absolute magnitude of the
spatial gradient of the input image at that point. In case of 2*2 gradient operator as
shown in table 5-7 and table 5-8, Roberts operator has been used for calculating the

difference between adjacent pixels.

Table 5-7: Masks for S, direction in Roberts operators.

-1 0
0 1

Table 5-8: Masks for S,, direction in Robert’s operators.

0 -1
1 0

5.2.1.4 Canny Edge Detection

Canny edge detection is considered as multi-step method that can detect all object edge

in the image with noise reduction [170], as shown in the following steps:

5.2.1.4.1 Noise Reduction

Gaussian filter has been applied to reduce the noise and unwanted details in the image

based on the following equation:

g(m, Tl) = Go‘ (m, n) * f (m' Tl) (5'5)
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Where g(m,n) is the gradient operators, G, (m,n) is the Gaussian filter, o is the

standard deviation and f (m, n) is the adaptive filter.

Where the G, is computed by:

G, =

m2+n2)

1
e (- (5-6)

5.2.14.2 The Gradient Computation

The gradient magnitude and direction have been calculated at every single point based
on the Sobel kernel for both directions vertical (G,,) and horizontal (G,). The gradient

can be calculated for each pixel from two images as follows:

Edge Gradient (G) = /G + G} (5-7)
Angle () = tan™1! ((G;_y) (5-8)

Where G, and G,, are the derivatives directions of X and Y points.

In this step, two cases have been considered for gradient: the first is high gradient,
which means that there is a significant change in the colour (implying edge), and the
second is low gradient, which means that there is no substantial change (no edge). It

is rounded into four angles, which are two diagonal directions, horizontal and vertical.

5.2.14.3 Non-Maximum Suppression

In this step, full scanning for the image will be done to remove any unwanted pixels
that may not constitute as edge. Every pixel will be checked, whether it is a local
maximum or not. If it is not a local maximum, the pixel will be set to zero, otherwise
it will considered as edge. Consequently, at the end, the results will be a binary image

with a thin edge. As illustrated in the following example in figure 5-1:
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The edge on the point A is in a vertical direction and the gradient direction as normal,
which is point B. Therefore, point A will be checked, if it is in local maximum, it will

be considered as edge, otherwise, it will considered as suppressed and set to zero.

C A B C A B
& B &> -9 o »
Gradient Gradient
Direction Direction
Yedge edge

Figure 5-1: How to detect the edge by non-maximum suppression.

5.2.14.4 Hysteresis Thresholding

In this stage, the decision will be made to all pixels to be really edge or not. In this
case, two values for thresholding is needed, maxVal and minVal. Any values of edges
with the intensity gradient less than minVal are non-edge (discarded) and those with
more than maxVal are edge. The values that are lie between these two values, they
will be checked based on the connectivity to decide either it is an edge or not. If they
are connected to non-edge pixels, they will be considered as not edge. Otherwise, they

will be considered as edge.

Unlike Sobel and Roberts, the Canny edge detection is not very susceptible to noise,

if Canny detector worked well it would be superior.

5.2.1.5 LoG Edge Detection

Laplacian of Gaussian (LoG) has been proposed by Marr (1982) [171]. It is a second

order of derivative. LoG has two important effects; it smooths the image and computes
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the laplacian, which yields a double edge image and locates the edges and finding the
zero crossings between the double edges. The following masks have been used for

implementing the laplacian function as shown in table 5-9 and table 5-10.

Table 5-9: Masks for G, direction in Log.

0 1 0
-1 4 -1
0 -1 0

Table 5-10: Masks for Gy direction in LoG.

-1 -1 -1
-1 8 -1
-1 -1 -1

The LoG has been used for finding the pixel of an edge whether it is on dark or on

light side.

5.2.1.6 Otsu Method

This method has been widely applied for thermal image processing in order to detect
the hot regions. It is automatically perform clustering based on image threshold. Every
image has two classes of pixels, and then it separates these classes by calculating the
optimum threshold with the aim of minimal into the intra-class variance. Four
important steps need to be followed in this method to obtain the Otsu image, which

are explained below [172]:

1) Select average value of image intensity (estimated threshold).

2) Divide the image into two regions Ri1 and Rz, and then calculate the mean p,

and p, values for each region.
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3) Select a new threshold

T= > (u+ i) (5-9)

4) Repeat steps 2-4 until g, and p, values do not change.

All the proposed edges detection methods above have been used for extracting the
hottest region from the thermal image in order to have the exact and best hotspot in
the induction motor thermal image. In addition, the results that are obtained from the
edge detection methods have been used for extracting the best image metrics such as
mean, mean square error and peak signal to noise ratio, variance, standard deviation,
skewness and kurtosis with the purpose of using them in classification algorithms by
assigning them to proper class. The following section describes and discusses the

image metrics based on the edge detection results.
5.3 Image Metrics

After implementing all edge detection techniques for thermal images, the most
common image metrics have been applied in order to extract the best features that
could be used for distinguishing between the motor faults. The most common and
widely image metrics used is Mean (u), Mean Squire Error (MSE) and Peak Signal to
Noise Ratio (PSNR), Variance (V), Standard Deviation (SD), Skewness (S) and

Kurtosis (K). as described below [173][174]:
a) Mean (u)

The mean is a most basic of all statistical measures. The mean has been widely
used in geometry and analysis, a wide range of means have been developed for
these purposes. In contest of image processing filtering using mean is classified

as spatial filtering and used for noise reduction. It also calculates the average
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b)

values and extract the brightness information from the image. Many types of
means have been discussed in [171] such as arithmetic mean, geometric mean,
harmonic mean and contra-harmonic mean. All these previous means have
been relied on the arithmetic mean for reducing the image noise, which could

be calculated by the equation below [171]:
1
H= EZ(r,c)EW g(r,0) (5-10)
Where g is the noisy image, r,c¢ is the row and column coordinates

respectively, within the size of m * n of image (W).
Mean Square Error (MSE) & Peak Signal to Noise Ratio (PSNR),

MSR is measure the differences between the reference image pixel and
threshold image based on the average of the square intensity. PSNR value is

relying on the MSE value as shown in the following formulae:

1 . .
MSE = MN (i Zﬁ-”=1(x(l,1) -y (i, ))? (5-11)
Where x (i,)) is the reference image, y (i,)) is the threshold image, N and M is

the height and width of reference image respectively.

(2"-1)?

PSNR = 10 logyo ===

(5-12)

Variance

It measures of how far a set of numbers is spread out [175]. It is one of the
several descriptors of a probability distribution, which describes how far the
numbers lie from the mean. Particularly, the variance is one of the distribution

moments and it is part of systematic approach to distinguish between
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d)

probability distributions. In image processing, it can be utilized to determine

the edge position. Mathematically variance is given by:

2
— Y reew 9(r,0)) (5-13)

2:

o

mn mn

1
1 Z(T‘,C)GW (g (T‘, C) -
Standard Deviation (SD)

It has been widely used statistically for measuring variability or diversity. In
terms of image processing, it shows how much variation/disruption exists from
the average (mean). In case of low standard deviation the data point tend to be
very close to the mean, while in case of high standard deviation, the data points
spread out over the range of values. Consequently, the standard deviation could

be mathematically calculated by using the following formula:

1
mn—1

mn—1

1 2
Oy = \/ Z(r,c)EW (g (T‘, C) - Z(T,C)EW g(r, C)) (5'14)
By using standard deviation filter, it may be able to recognize some important

patterns. Therefore, this study will apply the standard deviation for induction

motor thermal image for extracting the best image features.
Skewness

It measures the asymmetry, or more precisely, the lack of symmetry. A
distribution, or data set, is symmetric if it looks the same to the right and left
of the centre [176]. It can be positive, negative or undefined [177].
Qualitatively, a positive value indicates that the tail on the right side is longer
than the left side and the bulk of the values lie to the left of the mean. However,
a negative value indicates that the tail on the left side of the probability density

function is longer than the right side and the bulk of the values lies to right of
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the mean, and the zero value (undefined) indicates that the values have been

distributed on both sides of the mean, which is defined as:

3
¢ — _mn= 1Z(rc)ew(mn 1Z(rc)eW(9(T C)—mn 1Z(rc)ewg(r C)))

(5-15)

3
2

(mn T2(r, c)eW(mn Tu(r, c)eW(g(r =S reew 9(7, C))) )

In image processing, the darker and the glossier surfaces tend to be more
positively skewed than the lighter and matt surfaces. Thus, the skewness have

been used for making judgments between the image surfaces.
f) Kurtosis

It calculates ratio of the four central moment of distribution. In other word, it
measures whether the data are heavy or light tailed relative to the distribution
[176], [178]. Thus, the data set with high Kurtosis tend to have heavy tails, or
outliers, and if the data with low kurtosis tend to have light tails or lack of outliers

as defend below:

K = _mn= 1Z(rc)ew(mn 1Z(TC)EW(g(r C)—mZ(rc)ewg(r C)))z i (5-16)

(mn 1 Ned c)eW(mn 1 X, c)eW(g(T C)—mn 1 Yroew 9(T, C))) )

In digital image processing, Kurtosis are interpreted in combination with noise
and resolution measurement. High Kurtosis goes hand in hand with low noise and

resolution.

The previous sections have discussed that the image metrics are very important for
extracting the important image features, and they are very helpful for distinguishing
the important differences between the images (healthy thermal image and faulty

thermal image). Thus, these metrics have been adopted in this research for classifying
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the IM faults, as they are easy and fast to be calculated by using “MATLAB R2015b”
software for coding and organise them as “Excel” file sheet in order to be used as input
data for the classification algorithms. Figure 5-2 illustrates the procedure of thermal

image processing.

Thermal Image (TT)

!

HSV Image
I
I v v
No Load 50% Load 100% Load

_____________________________________________________________________

Image segmentation
(edge detection)

S S S S SN S

Sobel Prewitt Roberts Canny Log Otsu

""" éiéés}ﬁéé}{dﬁ""l""""'""""""i
B4M , Jrip, OneR, Decision table, PART, i

LMT, NB tree, Random tree.

Fault diagnosis

Figure 5-2: Thermal image processing diagram.

The structure and functions of Wavelet Transform (WT) will be explained in the
following section, which has been also adopted as an image and signal processing for
all induction motor thermal images in addition with the image metrics and for

processing the current and vibration signals.
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5.4 Wavelet Transform for Thermal Image, Current and Vibration Signals

Over the past ten years, there has been a significant increase in the use of wavelet
transform for signal decomposition. The novel concept of wavelet was first put
forward by Morlet in 1984. However, at that time, Morlet faced much criticism from
his colleagues. Later, with the help of Grossman, Morlet has formalised the
Continuous Wavelet Transform (CWT). In 1985, Meyer constructed a beautiful
orthogonal wavelet base with good time and frequency localization properties. The
year after, Meyer and Mallat have developed the idea of multiresolution analysis
(MRA), which makes it easy for constructing other orthogonal wavelet basis. Before
long, Daubechies proposed an orthogonal wavelet bases in a simple and ingenious
way. Furthermore, he has done many researches based on the wavelet analysis frames
in order to allow more liberty in the choice of wavelet basis at a little expenses of some

redundancy.

In the wavelet transformation there are number of basis functions that can be used as
a wavelet mother (wavelet function). It determines the wavelet transform results
because it produces all wavelet functions that are used for translating and scaling the
signals. It could be classified into two fundamental classes: orthogonal and bi-

orthogonal as explained briefly below:

a) Orthogonal Wavelet

The coefficient of this filter are real numbers. It has the same length and
not symmetric. The low pass filter, Go and the high pass filter Ho are related
to each other. These filters are alternated flip of each other. It automatically
gives double shift orthogonality between the low and high pass filters. The

possibility of obtaining perfect reconstruction could be done by alternating
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b)

flip. In addition, orthogonal filters offer high number of vanishing
moments, which make them useful for signal and image processing

applications.

Bi-orthogonal Wavelet

In this case, the low and high pass filters do not have the same length as in
the orthogonal filters. The low pass filter is always symmetric, while the
high pass filter could be either symmetric or asymmetric. It produces two
kinds of coefficient either integer or real numbers. Furthermore, for
obtaining perfect reconstruction from the signal, the bi-orthogonal filter
bank has all odd length or all even length filters. These two analysis filters
could be one symmetric and other one asymmetric with even length, and

only symmetric with odd length.

0 05 1 0 1 2 1 0 2 1 o ! 2 3
(a) () © (d)
1 H 08
06
0.5 43
04
] 0 02
0
-0.5 -05 -
-5 0 5 8 6-4-2 0 2 4 6 8 8 -8-4-2 02 4 6 8
® ® €3]

Figure 5-3: Wavelet families (a) Harr, (b) Daubechies, (c) Coiflet, (d) Symlet,

(e) Meyer, (f) Morlet, (g) Mexican Hat [179].
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Consequently, the details of particular application should be taken into account and
choose the appropriate wavelet mother for translating the signal effectively. Figure 5-3

illustrates the most common wavelet functions.

Haar wavelet is one of the oldest and simplest wavelets. Daubechies wavelets are the
most popular wavelets among both digital signal processing and image processing.
The Haar, Daubechies, Coiflet, and Symlet have used in orthogonal wavelet bank

filters.

These wavelets together with the Meyer wavelets have been able to obtain perfect
signal reconstruction. Moreover, the Meyer, Morlet and Mexican Hat wavelets are
considered as symmetric in shape. In addition, the wavelets have been chosen based

on their shapes and abilities for analysing signals in some particular applications.

On the other hand, the wavelet transform provides a multiresolution decomposition of
a signal or image in a bi-orthogonal bank filter, which results in a non-redundant signal
or image representation. There are many functions could be generated by wavelet from
one single function, which is called wavelet mother, based on translations and

dilations.

Another significant aspect of the wavelet transform is that it uses for multi-scale of
signal through translation and dilation in both time and frequency domains, rather than
FFT, STFT and other transformation functions [180]. It has been able to analyse the
non-stationary signals. Thus, recently, the WT have obtained great success in machine
fault diagnosis as it is not only having the ability in analysing the non-stationary
signals but also has distinct advantages. Afterwards, Daubechies and Mallat have been

credited with the development of wavelet from the Continuous Wavelet Transform
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(CWT) to Discrete Wavelet Transform (DWT) [181] as described in the following

subsections.
5.4.1 Continuous Wavelet Transform (CWT)

The same as the Fourier Transform (FT), which obtains the correlation coefficients
between the analysed and sinusoidal one. The WT obtains the correlation coefficients

between the signal and an orthonormal function, which is called “wavelet function”.

The CWT allows the signals to be analysed through the correlation coefficients of that
signals instead of using the whole signal information. The mathematical formula for

determining CWT is shown below [179]:

1 - (t=b
Wila,biy) = a2 [x()p = () dt (5-17)
Where a is the scale parameter, b is the time parameter, Y (t) is an analysing wavelet,

and 1 is the complex conjugate of 1.

CWT is known as one of the best tools available to detect signal singularity, which is
carried out with the local maxima lines [179]. It has been applied for diagnosing the
notched rotor [182], where it has been demonstrated that both CWT and changes in
the second harmonics could be used as robust indicators. Furthermore, the CWT
coefficient has been used as input into the Artificial Neural Network (ANN), and it
has been investigated to show that their system has been able to detect combined faults
shaft crack and unbalance [183]. CWT has been adopted in most of engineering
applications for machine fault detection in the form of scalogram. The scalogram is
known as the square of CWT modulus. However, currently, the use of CWT for
diagnosis the faults in the rotating machinery is still relatively rare, this is due to the

fact that the visual interpretation of wavelet results is often difficult. Thus, more efforts
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have been made for extracting the best signal features for analysing the residual

wavelet scalogram [184].
5.4.2 Discrete Wavelet Transform (DWT)

The most important part of DWT is that it uses the discrete data as a scale parameter.
In the DWT, the scale a and the time b as described in the last equation above are

discretised as follow [181]:
a = aj, b =naj'b, (5-18)

Where m and n are integers, thus the CWT function 1, ,(t) in the equation above

converted to the DWT by the following formula:

-m

Yma(®) = ag” P (ag™t — nby) (5-19)
The discretisation of the scale parameter and time parameter leads to the discrete

wavelet transform, which defined as:

W,(m,n; ) = aOfo(t)tp* (ag™t — nby) dt (5-20)
The DWT has two important approaches to discrete the signal at different scale and
position (resolution levels and different frequency), which are decomposing the signal
into approximations (A) and details (D). The approximation information could be
obtained from the low pass filter, while the detail information could be obtained from

the high pass filter as explained in figure 5-4.

QROIF  Cardiff University Page | 108

&ipw  Prifysgol Caerdydd




Chapter S: Proposed Methods for Data Pre-Processing and Feature Selection

X
F=[0-n ]
N samples
v v
Low pass filter High pass filter
Approximation Detail
F=[0-n/2 ] F=[n/2-n ]
N/2 samples N/2 samples

Figure 5-4: DWT decomposition signal to approximation and detail using filters
[181].

Figure 5-5 shows how to analyse and synthesis the signal, the input signal goes through
two one-dimensional filters, one for high pass filter (Ho), and one for low pass filter
(H1). These filters have filtering operation and followed by subsampling by factor of
2. Then, the signal will be reconstructed by first up sampling, after that, filtering and

summing the sub bands will be followed.

_ Ho —> |2 > 12 > F,
Input signal Output signal
— > Analysis Synthesis — >
Hl > |2 > — 12> F

Figure 5-5: DWT two channel filters [185].

The synthesis filters Fo and F1 have to be adapted for analysing the Ho and Hi filters
in order to achieve perfect reconstruction. It is very easy to obtain satisfying
relationship between the 2-channal filters by considering Z-transform function. After

analysis, the two sub bands will be as follows [186]:

%[Ho (z%)X (zg) + H, (—z%)X (—z%)] (5-21)
U, (22)x(2) + 1, (=22 x (-22))] (5-22)

QROIF  Cardiff University Page | 109

&ipw  Prifysgol Caerdydd




Chapter S: Proposed Methods for Data Pre-Processing and Feature Selection

The combination of these filters are:

R(2) = L [Fo@Ho(2) + F(DH, ()X (2) + 2 [Fo(2)Ho(~2) +
Fy(2)Hy(z -)IX(~2) (5-23)

In order to overcome the problem of aliasing and distortion, the following conditions

should be considered [186]:
Fo(z) =Hi(-2) &  Fi(2) = —Ho(-2)

The multiscale pyramid decomposition and reconstruction of an image or signal with

high and low pass filters has been illustrated in figure 5-6 and figure 5-7 below.

Rows : Columns

HH

Hy —>»{2|1 —>
H1 —»{2]1 —> HL

Hy —» 2|1 —>» LH
HI —> 2|1 —> LL

Figure 5-6: Filter bank structure of the DWT analysis [185].

Original image

i .
Columns : Rows

HH —»{ 112 F X2 | i

RSN PN fn—>|;

HL — 112 — F, {x2 — |

Original image

LH —»1f2—> Fy —» X2 — !

> 211 —»{ F,

LL —» 12— F, —{ X2 — !

Figure 5-7: Filter bank structure of the reverse DWT synthesis [185].

After one level of decomposition, there will be four frequency bands, which are Low-
Low (LL), Low-High (LH), High-Low (HL), and High-High (HH). The next

decomposition level will be applied to the LL band, which forms a recursive
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decomposition procedure. Consequently, an N-level of decomposition will have 3N+1
different frequency bands, which includes 3N high frequency and one LL bands.

Table 5-11 illustrates a brief comparison between the performance of CWT and DWT.

Table 5-11: Comparison of the performance of CWT and DWT [187].

CWT DWT

a) Ituses exponential scales with a base  a) It uses exponential scales with the
smaller than 2. base equal to 2.

b) Large computational resources b) Less computational resources
required to compute the CWT. required to compute the DWT.

c) Itis a shift-invariant. c¢) It not shift-invariant.

o d) Is also redundant but less than the
d) It is highly redundant transform.
CWT.
e) Itis orthonormal transform. e) Itis orthonormal vector.
f) The outputs are not down sample but  f) The outputs are down sampled, but
not better than DWT. better than CWT.
g) It provides perfect signal

reconstruction upon inversion,

g) The inverse of CWT could be which means that the DWT of
implemented but usually the signal signal coefficients could be used to
reconstruction is not perfect. synthesise and exact reproduction

of the signal with numerical

precision.

The DWT has been widely used for analysing the induction motor signal (thermal
image, current and vibration signals) due to its excellent decorrelation property, it has
been used as a transform stage in many modern image and video compression systems
[188]. Image compression is one of the most important visible applications of

wavelets.
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Traditionally, in the field of image processing a Discrete Wavelet Transform (DWT)
has been adopted for image compression due to its simplicity and practicality. It has

been applied for many different types of images such as JPEG, MPEGZ, PNG, etc.

In this work, the DWT technique has been adopted for extracting the best features
from the IM thermal image. Among the various DWT techniques, Daubechies wavelet
is considered for analysing the thermal image, as it is multilevel decomposition
wavelet. The names of the Daubechies family wavelets are written as dbN, where N
is the order, and db is the “surname” of the wavelet. The dbl wavelet is the same as
the Haar wavelet, which is one of the wavelet functions as mentioned above.

Figure 5-8 illustrates the nine members of the db family [189].

e WA B HH P

B/ R o g
db7 db8 db3 db10

Figure 5-8: Daubechies wavelet families [189].

The wavelet toolbox in MATLAB software (version R2015a) has been used for

analysing the thermal image, current signature and vibration signal.

Two-dimensional discrete wavelet analysis tool based on the Daubechies wavelet
(db7) with 7 vanishing moments and 3 levels, db73 has been used for analysing the

thermal images.

Procedure for thermal image analysis using DWT are below and explained in

figure 5-9 :
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Chapter S: Proposed Methods for Data Pre-Processing and Feature Selection

a) Read the thermal image and convert it to the HSV colour in order to obtain
the discrete pixel values.

b) Transformation: apply two-dimensional DWT using db7 with level 3.

c) Save the extracted features from the image to the MATLAB workspace for
further processing.

d) Calculate the histogram for the approximation and the details coefficients.
e) Save the data of the histogram.

f) Repeat the same process for other images.

Y

Import thermal image

v
Convert it to HSV
colour

v
Apply two-dimensional DWT
(db73)

!

Export the image coefficient to the
MATLAB workspace

!

Calculate the histogram for the
image details and approximation

!

Save the histogram
data

!

Repeat the process for
other images

Figure 5-9: Procedure for thermal image analysis in MATLAB using wavelet

toolbox.

One-dimensional discreet wavelet analysis tool has been used for analysing the current

and vibration signals, the procedure of analysing these signals are as follows:

a) Import the current/vibration signals.
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b) Apply the DWT to extract the signal features.
c) Save the extracted features for further processing.
d) Repeat the process for all faulty signals.

In terms of current/vibration signal, figure 5-10 illustrates the procedure of the signal

analysis for the current and vibration in more details.

Import current/
vibration signal

\ 4
Apply one-dimensional DW'T
(db75)

\ 4

Export the new signal coefficient
to the MATLAB workspace

\ 4

Calculate the histogram for the
signal details and approximation

\ 4
Save the histogram
data

\ 4
Repeat the process for
other signals

|

Figure 5-10: Current and vibration signals processing procedure.

Moving on now to consider feature selection method, because it plays a vital role in
the field of classification. It has the ability to choose the best features among all
dataset. Two important reasons for using the feature selection method: the first one is

to reduce the data dimensionality, which is also reduce the processing time. The
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second reason is to choose the features that increase the classification accuracy by

removing the unwanted ones.

5.5 Feature Selection Methods

Feature Selection or Feature Subset Selection is an important topic in data mining
especially for high dimensional datasets. It is a process commonly used in machine
learning, wherein subsets of features available from the data are selected for
application of a learning algorithm [190]-[192]. The best subset contains the least
number of dimensions that most contribute to accuracy, whereas discard the remaining
[193]. It is counted as a main stage in data pre-processing, which is used for avoiding
the curse of data dimensionality. Feature selection could be decomposed into three

search classes: filter, wrapper and embedded as explained in table 5-12 [194].
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Chapter S: Proposed Methods for Data Pre-Processing and Feature Selection

It has been able to search in two ways forward and backward. sequential feature

selection has two main components [195][196]:

e An objective function, called the criterion, which seeks to minimize over all
feasible feature subsets. Common criteria are mean squared error (for

regression models) and misclassification rate (for classification models).

e A sequential search algorithm, which adds or removes features from a
candidate subset while evaluating the criterion. Since an exhaustive
comparison of the criterion value at all 2n subsets of an n-feature dataset is
typically infeasible (depending on the size of n and the cost of objective calls),
sequential searches move in only one direction, always growing or always

shrinking the candidate set.

In this research, four feature selection methods based on the wrapper method have
been used for reducing and improving the processing time and classification accuracy,
which are Sequential Forward Selection (SFS), Sequential Backward Selection (SBS),
Sequential Floating Forward Selection (SFFS), and Sequential Floating Backward

Selection (SFBS). A brief description of these algorithms has been explained below:

5.5.1 Sequential Forward Selection (SFS)

SFES is classified as a simple greedy search algorithm. This method starting from
empty set, sequentially add the feature x* that resulted in the highest objective
function J(Yi+x") when combined with the features Yk that have already been

selected.
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Chapter S: Proposed Methods for Data Pre-Processing and Feature Selection

e Algorithm

1. Start with the empty set Yo= {Q}.

2. Select the next best feature x" = argmax [J(Yi+x)]; X& Y.

3. Update Yir1=Yi+ x*; k=k+1.

4. Go to step two.
SFS performs best when the optimal subset has a small number of features.
Furthermore, when the search is near the empty set, a large number of states can
be potentially evaluated. Towards the fullest, the region examined by SFS is
narrower since most of the features have already been selected. Thus, the search
space is drawn as an ellipse to emphasis the fact that there are fewer states towards

the full or empty sets. In addition, the main disadvantages of SFS is that it is unable

to remove the obsoleted features after the addition of the new feature.
5.5.2 Sequential Backward Selection (SBS)

SBS works in opposite direction of SFS, which also known as Sequential
Backward Elimination (SBE). It starts from a full set and sequentially remove the
feature x” that resulted in decreasing the value of the objective function J (Y-x").
Notice that the removal of feature may actually lead to an increase in the objective

function J (Yk-x") > J(Yk). Such functions are said to be non-monotonic.

e Algorithm

1. Start with the full set Yo=X.

2. Remove the worst feature x” = argmax [J(Y«k - X)]; x€Yk.
3. Update Yk+1= Yk — X ; k=k+1.
4

Go to step two.

SBS works best when the optimal feature subset has large number of features,

since SBS spends most of its time visiting large subsets. Thus, the main limitation
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of SBS is its inability to revaluate the usefulness of a feature after it has been

discarded.

5.5.3 Sequential Floating Selection

The floating variant, SFFS and SBFS, could be considered as extensions to the
simpler SFS and SBS algorithms. The floating algorithms have an additional
exclusion or inclusion step to remove features once they were included or
excluded. Thus, a larger number of feature subset combinations can be sampled. It
is very important to emphasise that this step is conditional and only occurs if the
results of feature subset assessed as “better” by the criterion function after removal

or addition of particular feature. There are two floating methods:

5.5.3.1 Sequential Floating Forward Selection (SFFS)

Starts from empty set. After each forward step, SFFS performs backward

steps as long as the objective function increases.

5.5.3.2 Sequential Floating Backward Selection (SFBS)

Starts from the full set. After each backward step, SFBS performs forward

steps as long as the objective function increases.

e Sequential Floating Selection algorithm ( the SFFS and the SFBS
is analogous)

1. Start with empty set Yo= {O}.

2. Select the best feature
x" = argmax [J(Yk+x)]; X¢Yk.
Yi=Yit+ x*; k=k+1.

3. Select the worst feature
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x” = argmax [J(Yk - X)]; XEYk
4. IfJ (Yk-x) > J(Yx) then
Y=Ykt x; k=k+1.
Go to step three.
Else

Go to step two.

Having discussed how to construct the B4M, image processing methods, wavelet
transform analysis and feature selection methods, the next chapter addresses the ways
of using the most popular machine-learning algorithm for feature selection, which is

Genetic Algorithm (GA)
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CHAPTER O

GENETIC ALGORITHM BASED FEATURE
SELECTION FOR B4M (GA-B4M)

“In this chapter, the proposed hybrid approach of Genetic Algorithm (GA) and
proposed Bee for Mining (B4M) methods have been described and explained in detail.
In addition to this, the new hybrid technique (GA-B4M) will be used for selecting the
features, detect, classify and predict the induction motor faults at an early stage. These

methods have also been translated as a software code using MATLAB software version

“R2015a™".



Chapter 6: Genetic Algorithm based Feature Selection for B4M (GA-B4M)

6.1 Introduction

Volumetric features have big impact on the system density and most of the time it does
not lead to higher prediction accuracy. However, they are not independent and might
be correlated. A bad feature could completely disgrace the system performance.
Therefore, it is very important to select the best features before use them as training
data. These features are selected during or before the training phase in order to describe
the training data. Consequently, two important point could be concluded in this case,
the first is the smaller quantity of features are able to reduce the computational outlay,
which plays vital role for real-time applications, and the second is leading to the higher
classification accuracy. In this chapter, Genetic Algorithm (GA) has been used to
select as few features as possible in order to gain best description for the training data.
It has been also used to determine the important relationship between all different
features to select the good subset of features. This system called a hybrid system of
two machine-learning algorithms, Genetic Algorithm (GA) and Bee for Mining
(B4M), with purpose of improving the proposed B4M classification accuracy based

on the GA for feature selection.

In 1975, the Genetic Algorithm was developed by John Holland, University of
Michigan, for providing an efficient technique for machine learning applications to
solve all the optimization problems. The GA algorithm technique is based on the
mechanics of biological evaluation for inheritance, mutation, natural selection and
crossover (recombination) [197], [198]. It is also considered as a heuristic algorithm,

which survive or select the best individual among all population.
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6.2 Genetic Algorithm

GA algorithm is a computational model. It works on a set of candidate for finding the
best solution, each candidate called “chromosome”, while all the set of candidate
solution called “population”. It allows the chromosomes to move from one population
to another by iterative process, these iterations called “generations®. Furthermore, GA
has many forms for solving or optimizing problems, a simple version which is called
static population model has been used for most of experiments [199]. In this model
each chromosome has been ranked based on the fitness value. Two chromosomes
(individuals) have to be selected and use them as parents for reproduction. The GA

operators has been described below.

e Genetic Algorithm Operators

Genetic algorithm operators that are used in the Genetic Algorithm is to
maintain the genetic diversity. It is analogues to the natural world: selection or
survival fittest, reproduction (recombination or crossover) and mutation. The
genetic diversity (level of biodiversity) refers to the total number of genetic
characteristics in the genetic makeup of each species. The operations of GA as

follows:

a) Parent Population Initialization

The population of each individual has been maintained within the search
space of GA, which represent a possible solution to a given problem. The
population size depends on the number of chromosomes in each
generation. If the number of chromosomes are few, thus the GA will have

few possibilities to perform the crossover and lead to explore small part of
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search space. Each individual in the GA has been coded as a finite length
vector of variables, in terms of binary alphabet {0, 1} as shown in
figure 6-1. Thus, to continue the genetic analogy, all the individuals have

been linked to chromosomes.

Chromosomes 1 11100010
Chromosomes 2 01111011
Population Chromosomes 3 10101010
Chromosomes 4 11001100
Chromosomes 5 11101101

Figure 6-1: Population in GA

b) Evaluation

An ideal fitness function has been assigned to each solution representing
the abilities of an individual to compete. The GA searches for each
individual that has the best fitness value (score). Therefore, the GA aims
to select best individual (solution) for the given problem in order to
produce offspring better than parents by combining the chromosomes

information.

Selection

In this step, all individuals (chromosomes) that have high fitness score are
given more chance to be selected for reproduction. Several methods could
be used in this step such as tournament selection, basic roulette wheel,
elitist selection, rank selection, hierarchical selection and steady state

selection.
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d) Crossover / Recombination

In this stage, parent’s portions could exchange with the purpose of

producing or generating more adapted solution as shown in figure 6-2.

Parent 1 Parent 2
1J1]ofof1]o]1]1 1JoJoJoJt]1]1]o
Child 1 Child 2
1[1]o]of1]1]1]0 1foJofof1]o]1]1

Figure 6-2: Crossover structure.

e) Mutation

This could be done by randomly selecting one chromosome from the

population and change its information as illustrated in figure 6-3.

[t]t]ofojt]ofu]t]

a. Before mutation

[L]t]ofofofoft]1]

b. After mutation

Figure 6-3: Mutation changing.
The benefit of this process is to produce a new genetic (generation) by
randomly change the chromosomes information to avoid the stagnation around

local minima.
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6.3 GA Theoretical Background

The GA works with random population for finding the optimum solutions. It evaluates
the fitness of each chromosome based on specific objective function. Thus, in order to
simulate the natural survival of the fittest process, the best chromosome information
has been chosen to produce new offspring chromosomes. The new offspring will be
involved and evaluated in the population if they provide better solutions than the weak
population members. Generally, the search process will be continued for a large
number of generation to obtain the best-fit value (optimum solution). Figure 6-4
illustrates the GA procedure sequence. Four important parameter have an effects on
the GA performance; population size, number of generation, crossover rate and
mutation rate. Therefore, the large population size and number of generations could
increase the likelihood of gaining the global optimum solution, but significantly

increase the processing time.

Create initial population

}

Evaluate fitness l—

-~ Better
. solution?

N

>
- ,
o
N

’ End lNo

Reproduction

l

Mutation

I

Figure 6-4: GA flow chart.
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The following steps explain the GA procedure:
a) Choose the initial population of individuals.
b) Evaluate the fitness value of each individuals in the population.
c) Repeat the following on the generation until the termination: (sufficient fitness
achieved, etc.)
i.  Select the best fit of individuals for reproduction.
ii. Breed the new individuals through crossover and mutation
operations to give birth offspring.
iii.  Evaluate the fitness value of new individuals.

iv.  Replace fit population with new individuals.

First, define the representation of the chromosomes for a given problem because each
chromosome represent a candidate solution to the problem. The most common form
that define the chromosome is binary form. Then choose the specific objective

function to find the optimal solution (fitness function).

Generate an initial population for the chromosomes. In general, the initialization could
be done randomly, but most cases this initialization has been done by the
chromosomes that are already known in order to have better performance. In case of
using random initialization, each chromosome will be set to 0’s or 1°s randomly based
on the probability (initialization probability). Then, the evaluation of fitness function
will be carried out to find the most appropriate chromosome based on the higher fitness
value. Two individuals have been selected from the individual population relying on

the fitness function value, which are called, parents.

Eventually, the crossover operation will be applied on the selected chromosomes as

explained above. Each chromosome will be divided into two segments. These segment
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are exchanged in order to create two new chromosomes (two children). The second
segment of parent 1 will be the second segment of child 2 and vice versa. This
operation has been performed with the purpose of creating new generation that could
be adapted better than the selected one. The crossover operation is very important
because it makes the feature space exploration bigger to find a near optimal solution.
In case of all the individuals are identical, the crossover operation will generate the
same chromosome, which means that this operator unable to generate new

chromosomes.

Consequently, the population diversity could be performed by applying the mutation
operator. The mutation of two chromosomes are randomly changing the altering value
of each element in the chromosomes based on the mutation probability. For example,
if the component value is binary, the mutation converting the value from 0 to 1 or
inverse. Then, evaluate the fitness value of the new created chromosomes and
replacing the less adapted chromosomes by the new highest value. Go back and stop

the algorithm when the maximum number of generation has reached.

6.4 GA based Feature Selection

As stated above, GA can be defined as population based and algorithmic search
heuristic methods that mimics natural evolution process of man [197], [200]. Table 6-1

illustrates the comparative terminology to human genetics [201].
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Table 6-1: Comparative terminology to human genetics [201].

SN Human Genetics GA Terminology

1  Chromosomes Bit strings

2 Genes Features

3 Allele Feature value

4  Locus Bit position

5  Genotype Encoded string

6  Phenotype Decoded genotype

The values of each chromosome are evaluated using a special function, which
commonly referred to fitness function or objective function. In other word, the fitness
function returns numerical values of each chromosome that are used to rank the
chromosomes in the population. Thus, five issues in the GA should be considered,
which are encoding the chromosome, population initialization, evaluate the fitness

value, selection (genetic operators) and criteria to stop GA as shown in figure 6-6.

In the GA, the chromosomes are a bit strings because the GA works with binary search
space. To begin with, the initial population has been created (randomly) and evaluated
by using the fitness function. The binary chromosomes have been used in this research,
a gene value “1” represents that the particular feature indexed has been selected.

Otherwise, the feature should not be selected for chromosome evaluation.
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Start GA
N /)

+

‘Feature selection set

v

N-by-20 initial population of binary chromosomes
Chrom 1: 111000 .... 000101

P
I."

Chrom 2: 111100 .... 101100
Chrom N: 100000 .... 111111

| Fitness evaluation (error rate fom KINN) |

|
L 4

Parent chromosomes selection
(Tournament of size 2)

I J
w ¥
—» Elite children ‘ Crossover children ‘ Mutation children ‘

—»{ MNew population
¥

‘ Fitness evaluation ‘

+

// s

“Termination ™_

. condition ~
%

‘ Best chromosome ‘

Figure 6-5: GA based feature selection.

After using the feature index (“1”’), the chromosomes will be ranked and put them in
the ranking index, the top fittest kids will be selected to survive the next generation.
The fitness evaluation has been done by using the algorithm in figure 6-7 below. After
automatically pushing the elite individuals to the next generation, the remaining
individuals in the population will passes to the crossover and mutation operations in
order to create new individuals. As stated above, crossover is a combination of two
chromosomes (individuals) to create new chromosome, while the mutation is used for
genetic perturbation of each gene in the chromosome through bits flipping based on
the mutation probability as shown in figure 6-5. The configuration of the GA for this

research has been explained in table 6-2.
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Table 6-2: GA parameters values.

Parameter of GA Value

Population size 100

Genomelength 100

Population type Bitstrings

Fitness function KNN-base classification error

Number of generations 300

Crossover Arithmetic crossover
Crossover probability 0.8

Mutation Uniform mutation
Mutation probability 0.1

Selection scheme Tournament of size 2

Elitecount 2

The following steps have been considered for feature selection using genetic

algorithm:

A. Initial Population Generation

In this research, the initial population is a matrix of two dimension, which are
chromosome length and the population size that are containing only binary digits. The
chromosome length (Genomelength) is the bit number of each chromosome, and the
population size is the chromosome number in the population size. It has been
recommended to make the population size equal to the value of chromosome length in

order to span the search space [202]. The Pseudo code for the initial population is:

1- Procedure POPFUNCTION()
2- Pop Binary matrix (population size * Genomelength)

3- Return pop

4- End procedure

Figure 6-6: Pseudo code for creation the initial population.
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B. Fitness Function

The most important part of the feature selection based on the GA is the fitness
function; it has to be defined for evaluating the discriminative capability for each
subset of feature. In this work, the fitness function that has been used for evaluating
the chromosomes is KNN (K-Nearest Neighbour)-based fitness function. The
KNN algorithm has been used for solving the classification problems by looking

for the shortest distance between the training and the test data in the feature search
space based on the euclidean distance (D (X5, X;)), as expressed in the equation

below:

D (x¢eses 1) = /Yoty (Xpest — X%1)? (6-1)
The KNN has been able to count each category in the class information (as
accumulated as count (xm)) by using 3 Nearest Neighbours, after that it provides
a report classification results and classification error based on the expression

below:

argmax(count(x,,)) (6-2)
Subject to : Y™, count(x,,) = class (6-3)
The position of “1” is selected for each genes, which indicates the particular
feature index. Otherwise, if the genes value “id” is 0, it will not be selected for
the chromosome evaluation. Thus, the current population will be evaluated and
ranked based on the KNN classification error. In addition to this, the individuals
that have the lower fitness value, they have a chance to be survived for the next
generation. Meanwhile, the iterations that are run the GA will be part of reducing
the error rate by picking up the chromosome with the lowest error rate as the

error rate of each chromosome has been reported (recorded), and then the
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smallest error rate will be kept or picked up by GA at the end. The expression

for the fitness function is explained below:

fit = Nif + exp(;]—;) (6-4)
a= KNN-based classification error.
N¢= number of selected features.
The above expression has been used for learning the GA in order to minimize
the error rate and reducing the number of features. Figure 6-7 shows the Pseudo

code for the above expression in the GA.

1- Procedure fit()

2- Featindex (indices of one 1’s from binary chromosome)

3- Newdataset (dataset indexed by Featindex)

4- Numfeat (number of elements in Featindex)

5- 3 (number of neighbours)

6- KNNerror (classifier KNN (dataset, class information, number of
neighbours KNN))

7- Return KNNerror

8- End procedure

Figure 6-7: GA fitness function based on the KNN.

C. Individual Generation for New Population

In this step, the new population has been created by using the genetic operators
and elitism (mutation and crossover). In the MATLAB toolbox, GA consists three
types of individuals (children): elite children, crossover children and mutation

children.
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a)

b)

d)

Elite Children

These children have been automatically pushed to the next generation.
In the GA MATLAB toolbox, the elitism has been identified as
“Elitecount” and the default value is 2 as shown in table 6-2, which is
bounded by the population size. Thus, based on the “Elitecount”, GA
will pick up the best two chromosomes (the lowest fitness value) and
then push them to the next generation. For example, if the number of
features are 200, the remaining chromosomes are 198 that they will

proceed with the crossover and mutation operators.

Crossover Children

This kind of operator sometimes called crossover fraction. In this
search, the value of crossover is 0.8, because if it is set to 1, then the
mutation operators will not be proceed in GA. Therefore, the value of
this operator will be crossover = number of remaining

chromosomes*0.8 (198*0.8=158) as stated in the example above.

Mutation Operator

The number of mutation operator will be calculated as mutation
operator = number of features - elite operator - crossover operator (198-

158-2=38).

GA Selection Mechanism

The most important part of GA is the selection mechanism because it

selects the best-improved individual’s value in the population. It also
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helps the GA to discard the bad individuals and keep the best one. The
GA toolbox has many selection mechanisms, one is the stochastic
uniform (default size is 4) and the other one is tournament. In this
research, the tournament selection mechanism has been used since it is
fast, simple and more efficient as stated in [203]-[205]. In addition to
this, the tournament selection has been able to enforce the GA to make
sure that the worst individual will not go to next generation [201],
[206]-[211]. Tournament selection needs two functions to be able to
apply in the GA, the first function is individual generation and the
second one is picking up the best individual out of the population (the
winner). The tournament selection value here is 2, which means that
there are two chromosomes should be selected from the population
after taken out the elite children. It keeps repeating until filling up the

new population.

GA Termination

The GA will be stopped if it reaches to the optimal solution, which is
called stopping criteria (condition). This research has two stopping
conditions:

a) Maximum number of individuals.

b) Limit the generation stall.

The GA could be able to terminate the whole process prematurely, if the

individuals are not set properly. The value of individuals has been set to

300, while the value of the genomelength has been set to 100. In this case,

if the difference in the average value of the fitness function, which is
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related to the genomelength, is equal to or less than 0.000001, the GA will
be terminated. Consequently, this will affect the genetic homogeneity
between chromosomes, then at the end the GA will produce the best

chromosome.

In the previous chapters, all methods that are used in this research have been explained
and how they are adapted for IM motor fault classification. The chapter follows moves

on to consider the IM test rig setup in order to collect the required data for further

processing.
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CHAPTER /

EXPERIMENTAL SETUP AND MEASUREMENTS

“This chapter describes all the equipment that has been used in this research to carry
out the experimental tests. The test rig and the data acquisition have been also
described. Furthermore, the data collection procedure has been explained. It also
presents the healthy and faulty signals of the induction motor to be used to detect the

IM faults using thermal image as well as current and vibration signals”.



Chapter 7: Experimental Setup and Measurements

7.1 Introduction

Previous chapters have explained the methods that will be used in this research which
are proposed classification algorithm Bee for Mining (B4M), feature extraction,
feature selection and the hybrid system of Genetic Algorithm based feature selection
for Bee for Mining (GA-B4M). In this chapter, the equipments and experimental setup
that have been used for collect the required data (thermal images, current and vibration

signals) for classification process (motor protection) have been explained.

A series of experiments have been conducted and the required data have been collected
to verify the proposed algorithms for induction motor fault classification. Tests have
been carried out under different load conditions with different types of faults. A three-
phase squirrel-cage induction motor has been used in this research. “FLIR C2” thermal
imaging camera has been used for capturing the motor thermal images, stator current
has been collected by using current transformers (one for each phase), and vibration
levels has been collected by using laser vibrometer “OFV 303”. A general description
of the experiment test rig that are used in this investigation has been explained in the

following sections.

7.2 Condition Monitoring Scheme

The general condition monitoring scheme for the proposed algorithms is shown in
figure 7-1. Two common phases have been adapted in this research, which are training
and prediction phases as shown in figure 7-2 . The most important phase is the training
phase because it prepares the data and learn the classification algorithm (train model),
while the prediction phase depends on the training phase for predicting the new

incoming data (unseen data). Several induction motors have been tested to check
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whether they work in a healthy or faulty conditions. In case of healthy conditions, the
overall signal condition should be identified by the machine learning algorithms and
keep the motors running safely. However, if the machine learning indicates that the
motor has fault in any parts, then the maintenance action should be taken immediately
and repair or change the motor in order to prevent the catastrophic issues. Figure 7-2
illustrate the research framework and the procedure that are followed to reach the main

goal, which is classifying the motor faults accurately.

Laser Vibrometer

Oscilloscope
Power Supply Flexible Power Supply
30/416V/50Hz Coupling 10/240V/50Hz

Load

RPM _| Unite |¢
Torque’ Control

Dynamometer

NI-DAQ

\

“FLIR C2” Thermal
Imaging Camera

Figure 7-1: Condition monitoring scheme.
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7.3 Test Rig Equipments and Data Collection

A test bed has been built and located at Cardiff University, School of Engineering, and
it has been used to perform all the experimental tests for this work. The experimental

test rig in this research consists of:

a) Three-Phase Induction Motor

Three-phase squirrel cage induction motor and its specification has been illustrated

in figure 7-3, which has delta connection.

Motor model Clarke motor 80B/4
Frequency 50Hz
Output power 0.75 kW

Output horse power 1.0 hp
Speed 1480 rpm
No. of phase 3

Figure 7-3: Induction motor specification.
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b) AW Dynamometer

AW dynamometer is used for creating the load to induction motor by increasing

the load torque using the control panel and monitor the motor torque and speed by

the dynamometer sensor panel as illustrated in figure 7-4.

: Fr——
m mm
RPM. POWER

TORQUE % TORQUE RISE

COMPUTER FUN:

&
AW DYNAMOMETER  COLFAX, IF. 61728 T T

Figure 7-4: Dynamometer parts: a- Electric motor dynamometer, b- Dynamometer

sensor (R.P.M., torque, power, and torque rise), c- Dynamometer barker control.
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¢) Current Transformer

Three current transformers have been used for stator current reading (three

phases) as shown in figure 7-5, the specification of current transformer has been

Figure 7-5: Current transformer setup for collecting the stator current.

described in table 7-1. Three 50 Watts and 1Q resistors have inserted in series
between current transformers and the DAQ in order to have the actual individual

current value, through measuring voltages crossing them.

Table 7-1: Current transformer specification.

Attribute Value

Current Ratio 40:5

Maximum Cable Diameter 21mm

Overall Height 65mm
Overall Width 45mm
Overall Depth 30mm
Minimum Temperature -30°C
Maximum Temperature +85°C

d) National Instrument Data Acquisition Card

The output data (signal) that are received from the current transformers will be

connected to National Instrument Data Acquisition card (NI-DAQ USB-6211, 16
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Al multifunction I/O). The LabView version 2015 software has been used in order
to save the current data as “Excel” or “csv” file to be used for further processing.
The DAQ card and the LabView circuit has been illustrated in figure 7-6 and

figure 7-7 respectively.

S

NATIONAL
w'”“nUMEN'r s

.......

Figure 7-6: National Instrument Data Acquisition card (NI DAQ USB-6211 16 Al
multifunction 1/O).
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Figure 7-7: LabView circuit for collecting the stator current data.
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e) Thermal Camera

FLIR C2 thermal camera has been used in this experiment in order to capture the
thermal image for the healthy and faulty motor. The specification of this camera

has been illustrated in the figure 7-8 below:

Focal length 1.54 mm

Size (L*W*H) 124.46*78.74*12.44 mm

IR sensor 80*60 (4,800 measurement pixel)
Operating temperature range -10°C to +50°C

Storage temperature range -40°C to +70°C

Digital camera 640*480 pixel

Image frequency 9 Hz

Accuracy +2°C

Thermal sensitivity <0.10°C

Figure 7-8: Thermal image specifications.
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f) Laser Vibrometer

The vibration signal has been collected by using the laser vibrometer “OFV-303”
optical head via OFV-2200 front panel. This device uses the laser to sense the
motor vibration, and then the output from the front panel has been connected to an
oscilloscope in order to save the data as “Excel” or “csv” file for further
processing. Figure 7-9 shows the laser vibrometer optical head, front panel and the
oscilloscope. Two important factors in this device need to be caliborated before
collecting the data, which are velocity and displacement range. The first one has
been set to 25 mm/s/V and the latter was set to 80 pm/V. For example if the voltage

is 1.2 V the displacement range will be 1.2*¥80*10° = 0.096 mm.

Figure 7-9: Laser vibrometer: a: Front panel, b: Optical

head and c: Oscilloscope.
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7.4 Rig Setup

All devices that have been described above have been connected together in the
Wolfson Centre for Magnetics at Cardiff University Queens building (school of

engineering) in the UK as shown in figure 7-10.

” f — Laser
441 Vibrometer
= 11 Dynamometer
Oscilloscope Three-phase u
power supply m— §
Computer
= 7 o, = Thermal Camera
E CT
. - Control Unit
LV front panel DAQ & 2

Figure 7-10: The experimental test rig.

7.5 Fault Generation

Two types of faults have been deliberately made on several induction motors. The first
one is rotor fault and the second one is bearing fault. Each type of fault has a three
kinds of fault. For the rotor, the faults are, one bar, four bars and eight bars; while for
the bearing, the faults outer race, ball bearing and inner race as illustrated in
figure 7-11. The thermal image, current and vibration signals have been collected for
all the IM faults to be used for classification system. Faults description have been

explained in the following sections.
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—> Current
> One bar > Vibration

> Thermal

—> Current
> Rotor > Four bars > Vibration

> Thermal

—> Current
»  Eight bars > Vibration

Healthy
/Y
—> Thermal
Induction motor —» Faulty —

—> Current
> Outer > Vibration

> Thermal

—> Current
g Bearing > Ball > Vibration

—> Thermal

—> Current
> Inner > Vibration

> Thermal

Figure 7-11: IM faults scheme.
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7.6 Healthy Motor

This test were carried out in order to save the reference signal for further processing
as shown in figure 7-12. Three types of loads have been applied for the motor, which
are no load, 50% load and 100% load, by using an eddy current brake within the
dynamometer. The motor under test was operating at steady state with load about 50%

of full load at speed 750 rpm.

Three- R

phase Ra
power

supply Rec

Figure 7-12: Healthy condition.

The thermal mages; current and vibration signals have been collected from this

machine at three load conditions, as illustrated in figure 7-13 and figure 7-14.

Figure 7-13: Thermal image for healthy motor, a: No load, b: 50% load c: 100%
load.
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Figure 7-14: The current and vibration signals of healthy IM, a, b, and c represent the
current signals at (a) no load, (b) 50% load and (c) 100% load respectively, while d,

e and f represent the vibration signal at different load conditions.

7.7 Faulty Rotor

Induction motor failure through broken rotor bars, initiated by cracking in the rotor
conductor, are common in many industrial applications. One of the most common
reason for this kind of fault to be happened is that the large starting current occur when

the motor is relatively cold, which causes a mechanical and thermal stress (maximum).
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Thus, the inductance of this failure mode is greatest when the start-up time is relatively
long especially for frequent starts that are required as apart of heavy duty-cycle.
Figure 7-15 presents how the circuit of the rotor cage are composed of the potential of
the bars inside the rotor core [212] (Rb and Lb represent the resistance and leakage
inductance of each bar respectively, while Re and Le represent the resistance and
leakage inductance of each end ring segment between adjacent part respectively). In
this research, these bars has been artificially cut by using 4mm drilling holes in order
to see its effect on the motor temperature, current and vibration signals. Rotor faults

description have been illustrated in the following sections.

Figure 7-15: IM rotor circuit diagram.

7.7.1 One Bar Rotor Fault

One of the rotor bars has been removed from the rotor. This rotor has been tested in
three different load conditions (no load, 50% load and 100% load) as mentioned above.
During the measurements, three types of data have been collected, which are thermal
image, current and vibration signals at the same time as illustrated in the following

figures.
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Figure 7-16 demonstrates the faulty rotor circuit and the faulty IM rotor (one bar). The
fault has been created by using drill holes with 4mm wide and 14mm depth dimensions

in order to cut the bar resistance.

End region

AYYVY Ia'a'a'a)
\AAd LA A vV \AA4 VVV
Le Re Le Re Le Re e Re Le
Core region
o Rl
Lz Re Le Re L) Re Le Re Le Re
LYY TN AAA LYY AAA TAA'A'AVIVY LYY AAN LT AAA

Lb
End region

Rb

Figure 7-16: One bar fault in the experiment (left figure) and description of the rotor

cage-related faults in circuit diagram (right figure).

Figure 7-17 illustrates the thermal images, which are captured in three different load
condition, while figure 7-18 represents the signal of one rotor bar fault, current and

vibration signals in three different load conditions.

Figure 7-17: Thermal images of one bar rotor fault: a: No load, b: 50% load and c:

100% load.
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Figure 7-18: The current and vibration signals for one bar fault, a, b, and c represent
the three-phase current signal at (a) no load, (b) 50% load and (c) 100% load
respectively, while d, e and f represent the vibration signal at different load

conditions.

7.7.2 Four Bars Rotor Fault

Four of the rotor bars have been disconnected from the rotor cage of the induction

motor. This rotor has been tested in three different load conditions (no load, 50% load
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and 100% load) as mentioned above. During the measurements, three types of data

have been collected, which are thermal image, current and vibration signals.

Figure 7-19 demonstrates the faulty rotor (four faulty bars) circuit. The fault

dimensions were the same as the one bar fault.

End region

Core region

XYY N AAA
Lb
End region
Rb
Le_ Re

Figure 7-19: Four bars fault in the experiment (left figure) and description of the

rotor cage-related faults in circuit diagram (right figure).

Figure 7-20 illustrates the thermal images, which are captured with three different load
conditions, while figure 7-21 represents a portion of current and vibration signals for

four bars rotor faults at three different load conditions.

Figure 7-20: Thermal images of four rotor bars fault: a: No load, b: 50% load and c:
100% load.
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Figure 7-21: The current and vibration signals for four bars rotor faults, a, b, and ¢
represent the three phase current signal at (a) no load, (b) 50% load and (c) 100%
load respectively, while d, e and f represent the vibration signal at different load

conditions.

7.7.3 Eight Bars Rotor faults

Eight of the rotor bars have been disconnected from the rotor cage. This rotor has been
tested with three different load conditions (no load, 50% load and 100% load). During

the measurements, three types of data have been collected, which are thermal image,

T Cardiff University
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current and vibration signals. Figure 7-22 demonstrates the faulty rotor circuit and the
faulty rotor (eight bars). The same hole dimensions have been used for all rotor bars

faults.

End region

Core region

Le Re
NYY\A\.AVAV
Lb
End region
Rb
Le Re

Figure 7-22: IM rotor circuit diagram with eight bars rotor fault and eight rotor bar
faults has been created artificially in the experiment.

Figure 7-23 illustrates the thermal images, which are captured in three different load
conditions, while figure 7-24 represents a part of current and vibration signals for eight

bars rotor faults at three different load conditions.
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Figure 7-23: Thermal images of eight rotor bars fault: a: No load, b: 50% load and c:

100% load.
—— Phase A 20
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Figure 7-24: The current and vibration signals for eight rotor bars fault, a, b, and ¢

represent the three-phase current signal at (a) no load, (b) 50% load and (c) 100%
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load respectively, while d, e and f represent the vibration signal at different load

conditions.

7.8 Faulty Bearings

Bearing faults are widespread in industry. The bearing faults have been categorized
into two types, generalized roughness fault and single point fault. The generalized
roughness fault could be caused by lack or loss of lubricant, contamination and
misalignment, while the single point fault usually caused by overloading during
operation, which may lead to fatigue crack in the bearing surface until piece of metal
drops off. The deep groove ball bearings (6204-Z) have been used in the tests as
specified in table 7-2. The tests were focusing on three faulty bearings (outer race, ball
bearing and inner race) as described in the following sections. The first step was
collecting the data for the healthy bearing in order to acquire base line measurements.

Then, three types of bearing faults were tested and the data collected.

Table 7-2: Bearing specifications.

Attribute Value
Inside diameter 20mm

Outside diameter 47mm

Ball bearing type ~ Deep groove

Race width 14mm
Number of rows 1
Static load rating ~ 6.55kN
Material Steel
Ball material Steel
Cage material Steel
Race material Steel
Race type Plain
Dynamic lad rating 13.5kN
Bore type Parallel
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7.8.1 Outer Race Bearing Fault

In the experiment, the faulty bearing has been created by drilling a 0.2 cm hole into

outer race as shown in figure 7-25.

0.2 cm outer race bearing defect

Figure 7-25: Bearing with outer race defect.

This fault has an effect on three important parameters of IM such as temperature,
unbalance rotor and vibration behaviour than the healthy one. Figure 7-26 and
figure 7-27 demonstrate the thermal images that have been captured from the
experimental tests with outer race bearing fault, the current and vibration signals by

applying three types of load (no load, 50% load and 100% load) respectively.

Figure 7-26: Thermal images of outer race bearing defect: a: No load, b: 50% load,
and c: 100% load.
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Figure 7-27: The current and vibration signals for outer race bearing defect, a, b, and
c represent the three phase current signal at (a) no load, (b) 50% load and (c) 100%
load respectively, while d, e and f represent the vibration signal at different load

conditions.

7.8.2 Ball Bearing Fault

One ball with its cage has been removed from the bearing in order to investigate the
most popular bearing faults, which is ball crashing during the load operation.
Figure 7-28 shows the bearing ball defect. In addition, figure 7-29 and figure 7-30
illustrate the thermal images, current and vibration signals with ball bearing defect and

three load conditions.

T Cardiff University Page | 160

Gaow  Prifysgol Caerdydd



Chapter 7: Experimental Setup and Measurements

Figure 7-29: Thermal images of ball bearing defect: a: No load, b: 50% load and c:

100% load.
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Figure 7-30: The current and vibration signals for ball bearing defect, a, b, and c
represent the three-phase current signal at (a) no load, (b) 50% load and (c) 100%
load respectively, while d, e and f represent the vibration signal at different load

conditions.

7.8.3 Inner Race Bearing Fault

This fault has been also created by drilling a 0.2 cm hole into inner race as shown in
figure 7-31. This fault has the same effects on the three parameters of IM as mentioned
earlier. Figure 7-32 and figure 7-33 demonstrate the thermal images that have been
captured from the experiment tests with outer race bearing fault and the current and
vibration signals by applying three types of load (no load, 50% load and 100% load)

respectively.

0.2 cm inner race defect

Figure 7-31: Bearing with inner race defect.
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Figure 7-32: Thermal images of inner race defect: a: No load, b: 50% load and c:

100% load.
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Figure 7-33: The current and vibration signals for inner race defect, a, b, and ¢

represent the three-phase current signal at (a) no load, (b) 50% load and (c) 100%
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load respectively, while d, e and f represent the vibration signal at different load

conditions.

The analytical procedure and the results obtained from the IM faults are described in

the next chapter.
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CHAPTER 8

DATA AND SIGNAL ANALYSIS

“This chapter reports the collected data for the faulty induction motors for a range of
loads. This database is used to provide the baseline representing the motor behaviour
for different faults and load conditions in order to detect and classify the fault
correctly. Then, the data has analysed to provide a number of statistical parameters
for the healthy and faulty motors with purpose of detecting, diagnosing and assessing

the severity of the seeded faults: one bar, four bars and eight bars rotor faults, outer

race, ball bearing and inner race bearing fault”.



Chapter 8: Data and Signal Analysis

8.1 Thermal Image Analysis

First of all, the IM motor should be checked and the images have been captured when
it is run in the normal condition (healthy). The normal condition data has been
collected in order to be used as base line measurements (reference signal). The
captured images have been used for both troubleshooting motor problems and
condition monitoring because it is very useful tool for this kind of tasks.
Thermography images of the induction motors reveal their operation conditions as
reflected by their surface temperature, capturing infrared temperature measurements
of motor temperature profile as a two-dimensional image. The infrared camera has
been able to capture the object temperature at thousands of points instantaneously for
all of the critical components of a motor. As discussed above in the previous chapter,
two faulty cases have been created for the induction motor, which are the rotor and the
bearing faults, and each of these faults have different kind of fault. The following
sections discuss one faulty case for the induction motor at different load conditions,
while the other cases have been placed in the appendixes in order to reduce the pictures

in this chapter and prevent the repetition of each graph.

8.2 Thermal Images Analysis for Rotor Faults

The thermal images have been captured for the rotor bar (one bar, four bars and eight
bars) faults with different load conditions. The thermal camera has been placed in a
fix position in order to capture the same image dimensions for all motor as it has effects

on the pixel values.

After capturing the thermal images, the next stage is to analyze these images in order

to extract the best information to be used for classification system. As explained in the
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chapter four section 5.2, different image-processing methods have been used for
extracting the best data features from the thermal images (Hue, Sobel, Prewitt,
Roberts, Canny, LoG and Otsu) as described before. MATLAB “R2015b” software

has been used for applying these methods and calculating the image matrices.

8.2.1 Thermal Image Analysis for Four Bars Rotor Fault

Figure 8-1 illustrates the thermal images for four bars rotor fault with no load
condition, and the analyzed images have also been explained based on the proposed
method HSV image. It was noticed that the Hue method technique shows the hottest
region in the induction motor at temperature 26.7°C, which is a little bit higher than
the room temperature. Hence, the value and saturation images have been considered
but it appears that they are less helpful than the Hue image for distinguishing between
the motor faults. Thus, the other proposed segmentation methods (Sobel, Prewitt,
Roberts, Canny, LoG and Otsu) have been applied for the Hue image to extract the
best and most useful features from the faulty raw thermal image, which are clearly

illustrated in the same figure.
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Otsu Image
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Figure 8-1: Thermal image analysis for four bars rotor fault with no load condition a)

original image, b) HSV image, ¢) Hue image, d) Saturation image, ¢) Value image, f)
Sobel image for Hue, g) Prewitt image for Hue, h) Roberts image for Hue, 1) Canny
image for Hue, j) LoG image for Hue, k) Otsu image for Hue.

Figure 8-2 shows the induction motor thermal image for rotor fault (four bars) with
50% load condition at temperature 41.6°C, which is very clear that the motor
temperature has been raised and became much bigger than the no load condition.
Furthermore, the Hue image and other segmentation methods have been extended
based on the temperature profile. This figure indicates that the proposed segmentation
methods have been worked successfully and could be more useful for discriminating
between the IM faults, and will be very helpful for the classification system to have

better accuracy.
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Figure 8-2: Thermal image analysis for four bars rotor fault with 50% load condition
a) Original image, b) HSV image, ¢) Hue image, d) Saturation image, ¢) Value
image, f) Sobel image for Hue, g) Prewitt image for Hue, h) Roberts image for Hue,

1) canny image for Hue, j) LoG image for Hue, k) Otsu image for Hue.

In addition to this, the 100% load condition thermal image for four rotor bars fault
have been captured and segmented based on the proposed method (Hue image), as
shown in figure 8-3 the hottest spot was 63.4°C temperature. It was clearly that the
induction motor temperature has been raised and concentrated at some points of the
image. All three induction motor thermal images have different temperature profile
because of the faulty rotor; it increases the stator current in the motor by increasing
the load, which is lead to increasing the temperature. In this case, the pixel values will

be a little different from each other except the hotspot in the image will be more

affected.
THM Im:; HSV Image
Hot = ag_e' = Hot
region S , region

(2)
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Otsu Image

)

Figure 8-3: Thermal image analysis for four bars fault with 100% load condition a)

Original image, b) HSV image, c) Hue image, d) Saturation image, ) Value image,
f) Sobel image for Hue, g) Prewitt image for Hue, h) Roberts image for Hue, 1)
Canny image for Hue, j) LoG image for Hue, k) Otsu image for Hue.

After applying all the proposed image segmentation methods for all healthy and faulty
thermal images, the following step is calculating the image matrices (MSE, PSNR,
Variance, Mean, Standard Deviation, Skew and Kurtosis) as mentioned in chapter 5-
section 5.3. Figure 8-4a shows the MSE values for six different segmentation methods
(Sobel, Prewitt, Roberts, Canny, LoG, Otsu), it was clearly that the MSE values of no-
load condition is much bigger than the other two load conditions (50%, 100%).
Besides, the Otsu values with no-load condition has lower values than the other load
conditions. In addition to this, figure 8-4b illustrates the PSNR values, which are also
plays vital role in the motor fault detection, here the values having opposite trend to
those of figure 8.4a. The no-load condition values are lower than all segmentation
methods, whereas the Otsu values with no-load is larger than other Otsu values (50%
and 100% load conditions). Thus, these values will be very helpful for the

classification system for detecting the fault severity.
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Thermal Image Mean Square Thermal Image Peak Signal-to-
Error Noise Ratio
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Figure 8-4: a) The MSE values, and b) The PSNR values for three different load
conditions.

Figure 8-5 a and b, illustrate two important features that may help the classification
system for detecting the motor faults correctly, which are the variance and mean. It
was obvious that these two values have the same behaviour for all load conditions but
the differences were approximately in the range of (0 - 0.25) and (0 — 0.55) for the
variance and mean respectively. In general, the variance and mean in this case have
almost the same value in all segmentation methods, hence, for that reason the feature
selection methods have been applied for selecting the best feature to avoid overlapping
problems. The feature selection methods have their own decision for selecting the most

suitable feature in order to have more accurate classification system.

Thermal Image Varience Thermal Image Mean

® Variance no load ® Variance 50% Load = Variance 100% Load = Mean at no load ®Mean at 50 % load = Mean at 100% load
0.3 0.6

0.25 0.5

0.2 0.4
0.15 0.3

0.1 0.2
0.05 I I 0.1 I
Sobel Prewitt Robets Canny LoG Otsu Sobel Prewitt Robets Canny  LoG Otsu

Figure 8-5: a) The variance value, and b) The mean values for different load

conditions.
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On other hand, figure 8-6, demonstrate the Skew and the Kurtosis values. These values
have been calculated using MATLAB “R2015b” based on the formulae as mentioned
in chapter 5-section 5.3. Figure 8-6 a shows that the values of Skew has a slight change
in the first three segmentation methods (Sobel, Prewitt and Roberts) among three load
conditions, but has large difference between the Canny, LoG and other methods, which

makes it helpful for recognizing the faults in an early stage.

Furthermore, figure 8-6b illustrates the values of the Kurtosis, which almost the same
as the Skew values but its range is far different from the Skew. The Sobel, Prewitt,
Roberts and LoG have different values in three load conditions, while Otsu values in
both Skew and Kurtosis are very low in all load conditions based on the pixels values.
Nevertheless, they are still need to be taken into account for the classification system
as it has negative values in the case of Skew and positive values in the case of Kurtosis.
Therefore, every single point or value in the thermal image should be considered in

order to classify the IM motor faults correctly.

Thermal Image Skew Thermal Image Kurtosis
m Skew no load ® Skew 50% Load Skew 100% Load m Kurtosis no load ®Kurtosis 50% load = Kurtosis 100% load
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Figure 8-6: a) The thermal image Skew values and b) Thermal image Kurtosis values

for different load conditions.

QRDIFF Cgrdifoniversity Page | 175

Gikow  Prifysgol Caerdydd



Chapter 8: Data and Signal Analysis

8.2.2 Thermal Image Wavelet Analysis for Rotor Bars Fault

Thermal image analysis based on 2D wavelet transform analysis has been widely used
because it has been able to extract the most useful features by using more than one
level for different types of wavelet such as Haar, Daubechies (db), Sym, etc. as
mentioned in chapter 5-section 5.4. In this research, the Discrete Wavelet Transform
(DWT) analysis has been included in the IM fault investigation in order to have variety

of feature for detecting the motor faults in a correct way.

Initially, the N level and the wavelets types should be selected, after that, the thermal
image coefficients have been determined by using 2D DWT. To do image
decomposition, it is very important to decide over many selections, such as the types
of mother wavelet, the decomposition level, types of coefficients and etc.. In this
research, the Daubechies (db) seven mother wavelet has been applied and the
decomposition level was three. The wavelet type and decomposition level are the same
for all the wavelet thermal image analysis in order to obtain the same features for all
faulty thermal images, which are db7 and 3 levels. Due to the thermal image data
dimension, the level 3 has been chosen because there is no data for decomposition
after the selected level and the image will lose most of its features. Having performed
the mother wavelet and the decomposition level, two kinds of wavelet coefficients are
very important to find from each class of machine conditions data. These coefficients
are Approximation (a) and Details (d). Approximation coefficients that are passes
through the low pass filter are considered for feature extraction as the low pass
frequency signal contain most important parts of original signal. On the other hand,
other wavelet coefficient except approximation could be useful for monitoring the

machine fault diagnosis.
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The wavelet analysis and its coefficients have been demonstrated in figure 8-7, the
wavelet type was db7 using 3 levels. The purpose of using the Discrete Wavelet
Transform (DWT) for analysing the thermal image is to decompose the image and
extract the best coefficients that are helpful to be used for further processing. It has
been clearly shown that the reconstructed image after 3 levels of decomposition was

able to detect the hottest region and calculate the pixels value.

Reconstructed image

Hot
region

Recons. Approximation coel. of level 3

100
150
200 b

50 100 150 200 250 300 \\

Synthesized Image

idwt

D HH 11 13
Decompeostiion-atiever3

Figure 8-7: Thermal image wavelet analysis for four bars rotor fault with no load

condition.

The 50% load condition thermal image has been captured for the induction motor as
shown in figure 8-8. This figure shows the wavelet analysis for four bars rotor faults
with 50% load and its decomposition level. Furthermore, the difference between the
thermal image analysis with no-load condition and the thermal image with 50% load
condition have been visibly appeared by simply looking for the hottest region in the

reconstructed image.
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Figure 8-8: Thermal image wavelet analysis for four bars rotor faults with 50% load

condition.
Figure 8-9 illustrates the four bars rotor fault with 100% load condition, the wavelet
has been applied same as the above figures. It was obvious that the motor temperature
in the reconstructed image became more focused than the other load conditions (no-
load and 50% load). Wavelet analysis has been applied successfully for the faulty rotor
thermal images. Consequently, all thermal images based on wavelet analysis have

been adapted to extract more and best features to achieve good classification accuracy.
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Figure 8-9: Thermal image wavelet analysis for four bars rotor faults with 100% load

condition.

The comparison of the thermal image approximation coefficients of the same class
with different load conditions at the same level have been shown in figures below. The
histogram of approximation coefficients are shown at the same conditions and the
difference is either in ranges of histogram or amplitude. Figure 8-10 demonstrates the
histogram of approximation coefficients at level 1 for four bars rotor fault with
different load conditions. It is noticeably clear that the coefficient level at no-load
condition, 50% load and 100% load, could be categorized by ranges. The histogram
peaks of these conditions for the machine lie in different ranges, which could be used

to distinguish between different machine faults.
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Figure 8-10: Approximation coefficients level (a1) for four bars rotor fault at

different load conditions.
Approximation coefficients at level 2 are illustrated in figure 8-11, they also have
different ranges and are counted as very important features for discriminating between
the IM faults detection. In case of no-load condition two-approximation coefficients
peaks have been extracted from the image. The first approximation coefficient peak
range was approximately between “35-170 at the peak of 0.055, while the second one
lies between “800-1000” at a peak of 0.12. However, in case of 50% and 100% load
conditions, both have almost the same approximation ranges, which were between
about (670-900), but their peaks are different in both 50% and 100% load conditions

at 0.11 and 0.17 respectively.
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Figure 8-11: Approximation coefficients level (az) for four bars rotor fault at

different load conditions.
In figure 8-12, the level 3 of approximation coefficients for all load conditions have
been illustrated. The different between all the load conditions were obvious, which
could be easily useful for classification system to distinguish between the faults

severities of induction motor.
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Figure 8-12: Approximation coefficients level a3 for four bars rotor fault at different

load conditions.

In other words, the entire approximation coefficients that have been described earlier
have their own signatures for each fault, which will be very good features for the
machine learning algorithms to discriminate between the IM faults. Moreover, these
features will be combined with the features of the image segmentation methods in
order to have a very strong attributes for each fault. The stronger the features, the more

accurate classification system can be achieved.

In this section, the approximation coefficients for one sample of induction motor fault
have been presented, because the extracted features for other faults have been done in
the same procedure. The results that are obtained have been used for feeding the

classification system (see appendix A).
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Having discussed how to extract the rotor features based on the thermal images, the
next section of this chapter addresses ways of extracting the features from the stator

current and vibration signals based on the wavelet transform.

8.3 Current and Vibration Signals Analysis based on DWT

It is well known that induction machines play a dominate role in the field of
electromechanical energy conversion. Induction machines are widely adopted in a
variety of diverse industries product line, ranging from mining industry, process
manufacturing, automation applications, heating and air conditioning, transportation,
aerospace and marine propulsion applications to the health care industry [1]. Although
induction machines are usually well designed and constructed to be robust, however,
the possibility of incipient fault is inherent in the machine due to the stress involved

in the conversion of electrical energy to mechanical energy and vice versa.

Recently, the motor current signature analysis has been widely applied in condition
monitoring in order to monitor the induction machine behaviour in both online and
offline. The digital signal processing have been applied for extracting the signal
information, as the signal itself is not helpful for recognizing the fault. Discrete
Wavelet Transform (DWT) is one of the most popular signal processing technique that
has been adopted for extracting the most important features from the signal in order to
be used for fault classification as mentioned in the chapter 5-section 5.4.2 . Provided
a certain sampled of signal S, the DWT decomposes it onto several wavelet signals
(an approximation signal an and n details signals dj) [213][214]. The decomposition
coefficients can be determined through convolution and implemented by using a filter
[185]. LPF represents the Low Pass Filter and HPF represents the High Pass Filter.

The decomposition process can be iterated with successive approximation being
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decomposed in turn, so that one signal is broken down into many resolution
components. Moreover, due to the automatic filtering performed by the wavelet
transform, this tool provides a very attractive flexibility for the simultaneous analysis
of the transient evolution of different frequency components present in the same
signal. At the same time, in comparison with other tool, the computational
requirements are low. Thus, the DWT is available in standard commercial software

packages, so no special or complex algorithm is required for its application

In this research, MATLAB Wavelet Toolbox has been used to analyse the current and
vibration signals. Prior to the application of the DWT, some considerations have to be
done regarding the different parameters of the DWT decomposition, such as the type
of mother wavelet, the order of the mother wavelet or the level of decomposition

levels.

The first step in the DWT is selecting the mother wavelet to carry out the signal
analysis. The selected mother wavelet is related to the coefficients of the filters used
in the filtering process inherent to the DWT [214]. Many wavelet families have been
proposed in the last decades but some families have shown better results for particular
applications. Nevertheless, regarding the transient extraction of fault components, the
experience achieved after the development of multiple tests shows that a wide variety

of wavelet families can lead to satisfactory results.

Once the wavelet family is selected, it is advisable to carry out the DWT using high-
order mother wavelet, this is, a wavelet with associated filter with a large number of
coefficients. If a low-order wavelet is used, the frequency response get worse, and the
overlap between the adjacent frequency bands increases. Daubechies or any other

mother wavelet with high orders has shown satisfactory results.
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Consequently, Daubechies 7 has been selected as the mother wavelets used for DWT

analysis as mentioned in chapter 5-section 5.4.2.

The second step is to select the number of decomposition levels, which are determined
by the low frequency components to trace. The lower the frequency components to be
extracted, the higher the number of decomposition levels of DWT [185]. Typically,
for the extraction of the frequency components caused by rotor asymmetries, the
number of decomposition levels should be equal or higher than that of the detail signal

containing the fundamental frequency.

Finally, the number of decomposition levels nais related to the sampling frequency of
the signal being analysed, in this research the decomposition level is 5. This parameter
has to be chosen in such a way that the DWT supplies at least three high-level signals
(i.e., two details and one approximation) with frequency bands below the supply

frequency [213].

Additionally, due to the non-ideal filtering carried out by the wavelet signals, it is
advisable not to set the limits of the band of the wavelet signal containing the
fundamental frequency very close to this frequency. Otherwise, this component could
partially be filtered within the adjacent bands, masking the evolution of other
components within these bands due to its much higher amplitude. Sampling frequency
of 1024 sample/s, enables good resolution analysis. Table 8-1 illustrates the frequency

levels of the wavelet function coefficients.
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Table 8-1: Frequency levels of wavelet coefficients.

Wavelet analysis Frequency components (Hz)

AS 0-18.75
D5 18.75-37.5
D4 37.5-75
D3 75-150
D2 150-300
DI 300-600

Once the mother wavelet and the number of decomposition level have been selected,
it is possible to carry out the DWT of the signal; the obtained results of the analysed

signals have been described in the following sections.

8.3.1 Current Signal Analysis

After preparing and selecting the DWT parameters, the DWT is now ready for
analysing the IM current signal for extracting the information to discriminate between

the motor faults.

8.3.1.1 Current Signal Analysis of Healthy and Faulty Motor

Figure 8-13 illustrates the motor healthy rotor details coefficients based on db7 at 5
levels. The wavelet coefficients di-ds represents the detail coefficients for healthy
motor (current signal) with different load conditions (No-load, 50% load and 100%

load).
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Figure 8-13: Wavelet analysis for healthy current signal with three different load
conditions a) No-load, b) 50 % load, c) 100% load.

Figure 8-14 demonstrates the wavelet coefficients (current signal) for four bars with
different load conditions. This level of wavelet has very helpful data for distinguishing
between the motor faults even if it has too small difference. This is because in the
motor environment every single change in the signal of the motor means that the motor
has something wrong except the applied load may increase the amplitude of the

current, which is normal. The difference between the wavelet coefficients were
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obvious in all the details levels between the healthy and four bars faulty rotor. The
difference has been happened in the signal amplitude (+4) and the signal shape, which
could be easier for the classification system to classify the fault severity and diagnose
it correctly. This difference has been occurred because the faulty rotor need more
current to be rotated as some of its bars missing, and by increasing the load; the current
will rise dramatically. Thus, the more missing bars the more current needs to rotate

the rotor.
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Figure 8-14: Wavelet analysis for four bars faulty rotor based on current signal for

with three different load conditions a) No-load, b) 50 % load, c) 100% load.

The healthy rotor current signal is different from the faulty rotor current signal in a
number of respects as shown in following figures. Two different details coefficients
have been extracted to explain the differences between the healthy and faulty rotor.
Figure 8-15 illustrates the ds, d3 for the healthy and faulty rotors (four bars) with no

load condition. The difference between these signals have been detected by red oval
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shape. The healthy ds and faulty ds has the same range approximately between (£ 0.05)
but the shape of the signal has different points, while the difference is very clear
between the healthy d; and the faulty d; as the magnitude has been reduced

significantly comparing to the healthy signal.
0.05 F T T T T I T I T
0.05 | \ | I I | \ N
0.1F T T T T T T T
0.05
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0.05 [ :
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0.1 i

10 1000

Healthy

Figure 8-15: The ds and ds wavelet analysis coefficients for healthy and faulty rotor
based on the current signal with no load condition.
Additionally, figure 8-16 demonstrates the ds and d> for the healthy and faulty rotor
(four bars) current signals with 50% load condition. By looking to this figure, the
difference between the healthy and faulty signals are obvious and the behaviour of the
current signal are completely different in the shape and the range of the signal. Thus,
the coefficients will be very strong for classification system to distinguish between the

induction motor faults.
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Figure 8-16: The ds and d> wavelet coefficients for healthy and faulty (four bars)

rotor current signal with 50% load condition.
Similarly, figure 8-17 shows the ds and d3 wavelet coefficients for healthy and faulty
(four bars) with 100% load condition. The signals are totally changed. It is clearly that
the rotor current has been able to be used for IM fault detection as it has very helpful

coefficients. Therefore, the extracted features will be robust for classifying the motor

faults.
Healthy
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Figure 8-17: The ds and d3 wavelet coefficients for healthy and faulty rotor (four

bars) current signal with 100% load condition.
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8.3.2 Vibration Signal Analysis

The measurements of vibration signals have been collected from two different faults
condition in addition to the healthy condition, which are rotor fault (one bar, four bars
and eight bars) and bearing fault (outer, inner and ball). These faulty signals have been

collected with different load conditions (no load, 50% load and 100% load).

8.3.2.1 Vibration Signal Analysis of Healthy and Faulty Motor

The following describes two IM cases, which are healthy and four bars faulty rotor,
based on vibration signal. As mentioned in chapter 7- section 7.1, the vibration signals
have been collected by using laser vibrometer with the same displacement for all

healthy and faulty conditions.

The faulty rotor has a big impact on the motor balance, which may effects on the motor
vibration performance. The vibration signal of healthy machine has been demonstrated
in figure 8-18. It shows the details coefficients of DWT analysis. The same
decomposition levels have been applied as in the current signal in order to reduce the
data dimensionality and time consumption. It is clear from the figure below that the
vibration signal of healthy motor has almost the same behaviour in three different load
conditions. As its healthy machine, the vibration signal will be the same and it may
vary in the range (d5 (£0.2), d4 (+0.1), d3 (£0.1), d2 (£0.1), d1 (£0.2)) based on the
applied load. Therefore, this signal contains important data to be used for further

processing.

QRO Cardiff University Page | 192

&ikw  Prifysgol Caerdydd




Chapter 8: Data and Signal Analysis

! 1 ! ! ! ! I ! ! 1
100 200 300 400 500 600 700 800 900 1000

T T T T T T T T T T
0.1
IJI 0
0.1
02 I I I I I I

1 1 1 1
100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

Figure 8-18: Wavelet analysis for healthy vibration signal of induction motor with

three different load conditions a) No-load, b) 50% load and c) 100% load.

The detailed coefficients of DWT for IM four bars rotor fault have been illustrated in
figure 8-19. The range of faulty signal are far less than the healthy signal in all
decomposition levels (ds(£0.005), d4(£0.005), d3 (£0.005), d2(£0.005), di (0.05)). By
adapting the vibration signal for induction motor faults detection, the classification

system will classify the bearing and unbalanced rotor fault correctly.
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Figure 8-19: Wavelet analysis for faulty rotor (four bars) vibration signal of with

three different load conditions a) No-load, b) 50% load and c) 100% load.
The comparison between the healthy and faulty vibration signal is shown in the
following figures. Figure 8-20 demonstrates ds and ds wavelet coefficients of the
vibration signal for healthy rotor and faulty rotor (four bars) with no-load condition.

It is obvious that both signals has very good attitude to distinguish between the IM
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faults. The healthy rotor vibration signal in ds and ds have a very high displacement

than the faulty rotor (four bars), which have low displacement by (1073).

Healthy

Faulty
rotor

Figure 8-20: The ds and d3 wavelet coefficients for healthy and faulty rotor (four

bars) based on the vibration signal with no-load condition.

The vibration signal for the healthy and faulty rotor (four bars) with 50% load
condition have been illustrated in figure 8-21. A comparison has been carried out with
ds and d> wavelet coefficients. These four signals are completely different in every
single point. Thus, by using this kind of signal, it will be possible to detect the fault

straight away only by looking at its curve.
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Figure 8-21: The ds and d> wavelet coefficients for healthy and faulty rotor (four

bars) based on the vibration signal with 50% load condition.
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In figure 8-22, the ds and d3 wavelet coefficients for the healthy and faulty rotor (four

bars) with 100% load condition have been demonstrated and it was very appropriate

for motor faults detection to pick up these two coefficient because they are

considerably different from each other.

5 | I I I

100 200 300 400

Figure 8-22: The ds and d3 wavelet coefficients for healthy and faulty rotor (four

bars) based on the vibration signal with 100% load condition.
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CHAPTER 9

RESULTS AND DISCUSSION

“This chapter presents the results and discussion on innovative, non-instructive,
accurate and reliable methods for the early detection and diagnosis of faults in an
induction motor (IM) using the proposed B4M classification algorithm. The proposed
B4M and other proposed algorithm have achieved very good results for detecting the
induction motor faults. It also discuss the limitations of the proposed algorithms. The
confusion matrix for all condition monitoring classification have been also

presented”.



Chapter 9: Results and Discussions

9.1 B4M Classification based on Thermal Image for Fault Detection

9.1.1 Feature Extraction

The acquired raw thermal image consists of information that specifics the induction
motor faults as described in chapter 5. After applying 2D-DWT for 7" induction motor
conditions (healthy, one bar rotor fault, four bars rotor faults, eight bars rotor faults,
outer race bearing fault, ball bearing fault and inner race bearing fault) with different
load conditions, three features have been extracted from the decomposition level in
addition to 7 features of image matrices, as discussed in chapter 5 - section 5.2.
Overall, 10 features have been extracted from the thermal image and each feature
contains 250 samples. These features have been labelled correctly in order to be
recognized by the classification system. Table 9-1 illustrates sample of the induction
motor extracted features with no-load condition from the thermal images, for the all

thermal image processing see Appendix A.

In this research, induction motor fault data for all load conditions have been combined
together as the load level is not as important as the motor fault. For example, if the
motor has ball bearing fault, it does not need to be loaded to indicate that the motor
has fault by the classification system because it does not matter if it loaded or not, the
important thing is to detect the motor fault at an early stage. For that reason, the
features and the samples contain all the three load conditions are presented as one

package.
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Chapter 9: Results and Discussions

9.1.2 Feature Selection

All features contribute to the classification system and there is a need for selecting the
best feature before classification. Researchers have been carried out studies to select
the best feature selection technique that makes them more robust across various
classifiers. The classification accuracy increased by approximately 3-5% across a wide
range of classifiers using feature selection methods [215]. Four feature selection
methods have been used in this research (as described in chapter 5-section 5.5) in order
to select and compare which feature selection technique is suitable for motor fault
detection based on B4M classification algorithm. These methods are Sequential
Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Floating

Forward Selection (SFFS) and Sequential Floating Backward Selection (SFBS).

The feature selection methods have been ran using MATLAB “R2015a” feature
selection package, which is created by [216]. The feature selection approach is
employed to choose the most robust feature among the whole dataset which showed
increase in classification accuracy of about 10% higher for all classifiers when

compared with previous results as stated in [217].

After applying the feature selection methods, the selected features have been
illustrated in table 9-2. It was clearly that few features have been selected in all feature
selection algorithm, which means that these features have strong data that make the

classifier to discriminate between the motor faults.
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Table 9-2: The selected features for the thermal image dataset.

Feature Selection Method
SFS SBS SFFS SFBS
MSE Y MSE MSE \ MSE N

o

PSNR vV PSNR x PSNR v PSNR
Mean X Mean v Mean X Mean X
Variance x Variance V Variance x Variance x
SD V' SD x SD x SD \
Skew x Skew X Skew \  Skew v
Kurtosis x Kurtosis x Kurtosis x Kurtosis v
DWT-L1 v DWT-L1 v DWT-L1 v DWT-L1 x
DWT-L2 Y DWT-L2 ¥ DWT-L2 v DWT-L2 +
DWT-L3 v DWT-L3 v DWT-L3 v DWT-L3 +

9.1.3 Classification Results

The classification process splits the data points depending on the percentage level of
data given for training and testing sets. Training set means learning the data points to
perform the correlation tasks, which is storing the data by giving set of rule to perform
further operations. Testing set helps to find the classification accuracy of the trained
data points. Furthermore, a cross validation technique is used to evaluate the predictive
models by partitioning the original samples into training set to train the model and
testing set to evaluate the model. The data sets were given as an input to the algorithm
for training and testing which gives out the rules, classification accuracy and confusion
matrix. The features have been extracted and selected, the induction motor faults data
are ready to be fed for the most classification system, especially the classification
systems that are accepting the categorical attributes. In this research, 10-folds cross

validation have been used for training and testing the system. Moreover, all the data
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have been labelled from 1 to 7 to be defined as motor faults for the B4M classification
algorithm as shown in table 9-3.

Table 9-3: Thermal image dataset description.

No. of

Machine Condition Class — No. of Training No. of Testing
Label samples Samples
Samples
Healthy 1 250 240 10
Ball bearing fault 2 250 240 10
Bearing Inner race
250 240 10
fault
Bearing outer race
250 240 10
fault
One bar rotor fault 5 250 240 10
Four bars rotor fault 6 250 240 10
Eight bars rotor fault 7 250 240 10
Total Samples 1750 1680 70

Before applying the proposed B4M classification method, some parameters need to be
defined, which are already chosen as described in (chapter 4 - section 4.3.2). The B4M

has been applied for five different datasets:

e Datasets without feature selection (Full).

e Datasets with Sequential Forward Selection (SES).

e Datasets with Sequential Backward Selection (SBS).

e Datasets with Sequential Floating Forward Selection (SFFS).

e Datasets with Sequential Floating Backward Selection (SFBS)
All the above datasets have been used as input for B4M classification algorithm with
10-folds cross validation. By applying the B4M classification method, the efficiency
of 10 given features, which are obtained from feature extraction for seven conditions,

are illustrated in table 9-4.
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Table 9-4: The proposed B4M classification results.

Dataset type ljlfl.e:f Classification accuracy (%)
Full 15 80.93
SES 10 98.97
SBS 7 96.16
SFFS 7 92.04
SFBS 7 94.23

As can be seen in table 9-4, the results were satisfactory because they have achieved
more than 90% for all the four feature selection methods rather than the full datasets
(without feature selection). This indicates that the B4M classification algorithm is well
trained and could be applied for diagnosing the motor faults. In other words, the lowest
classification accuracy and higher number of rules were obtained by using the full
datasets, while the highest classification accuracy has been recorded by using
Sequential Feature Selection (SFS) method with less number of rules. Furthermore,
the other feature selection methods have obtained slightly less classification accuracy
than each other but the number of rules was lower than the full and the SFS datasets.
In this case the number of rules are very important to be very low as they have an
effects on the classification system for detecting the motor faults at an early stage by
reducing the checking time (time consuming). Thus, the SBS feature selection method
is considered as the best because it has gained more than 96% of classification

accuracy and lower number of rules as shown in figure 9-1.
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Figure 9-1: The proposed B4M classification accuracy and number of rules based on

thermal image dataset.

Table 9-5 shows the confusion matrix for the proposed B4M based on the SBS feature

selection method.

Table 9-5: Confusion matrix of the proposed B4M for the thermal image dataset.

Predicted Class

True Class Healthy Ball Inner Outer One Four Eight

bearing race race bar bars bars
Healthy 239 0 0 0 1 0 0
Ball bearing 2 230 3 3 0 2 0
Inner race 4 5 228 0 0 3 0
Quter race 1 1 4 232 2 0 0
One bar 8 0 0 4 226 2 0
Four bars 0 0 0 0 0 240 0
Eightbars 0 0 0 0 0 0 240

The interpretation of confusion matrix is as follows:

e The diagonal elements in the confusion matrix show the correctly classified
instances. The first row is belong to “healthy motor” good class with only one
misclassification, which is 239 correct out of 240 samples. The ball bearing

fault obtained 230 correct class out of 240 (10 samples are misclassified).
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While, 228 out of 240 instances were correctly classified in class “inner race
bearing fault”, which means only 12 instances have been misclassified. In
addition, 232 out of 240 have been classified correctly for “outer race bearing

fault”, which is slightly lower than other bearing faults.

¢ Interms of rotor fault, 226 out 240 were correctly classified as they depend on
the signal compared with the healthy condition. All the instances from class
“four bars rotor fault” and ““eight bars rotor fault” were classified correctly 240
out 240, which means that the B4M have good discrimination between the

motor faults.

The results indicate that the proposed B4M classification algorithm has been applied
successfully for detecting the induction motor faults; the results were very acceptable
as the misclassification instances for the motor faults are very low. Even though the
classification accuracy was about 96.16% but the rules that produces by the B4M were
very good to save the time and cost. Many reasons that prevent the B4M from
achieving the 99% classification accuracy and lower number of rules, the most
important one is the overlapping between the dataset attributes, which may enforce
the algorithm to misclassify some classes. Consequently, dominant and discriminatory
fault characteristics in seven fault of induction motor conditions could be extracted
from the thermal image matrices, approximation and details coefficients by DWT was
very helpful features for motor fault detection without touching the motor

(contactless).

9.1.4 Comparison of B4M Performance with other Classification Algorithms

The accuracy of the proposed B4M classification algorithm has been compared with

other eight well-known classification algorithms (Decision Table (DT), RIPPER
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(Repeated Incremental Pruning to Produce Error Reduction), OneR (One Rule), PART
(Projective Adaptive Resonance Theory), J48, LMT (Logistic Model Tree), Naive
Bayes tree and Random Tree). All these methods have been ran using the most popular
software, which is called “WEKA” (Waikato Environment for Knowledge Analysis).
The WEKA software is a machine learning software written in Java. It has been
developed at the University of Waikato in New Zealand. It contains a collection of
visualization tools and algorithms for data analysis and predictive modelling, together
with graphical use interfaces for easy access to these functions. It has been created to
support several standard data mining tasks, more specifically, data pre-processing,

clustering, classification, regression, visualization and feature selection.

In order to obtain statistically significant results and to prove the performance of the
proposed diagnosis methodology, the other classification algorithm have been trained
and tested under 10-folds cross validation scheme. Thus, considering all the
conditions, the same dataset has been used to be applied for these algorithms with
purpose of comparing the classification performance with the proposed B4M at same
conditions. The same selected features have been used for classifying the induction

motor faults.

In terms of classification accuracy, the proposed classification algorithm (B4M) has a
compatitive results compairing to other classification algorithm as shown in figure 9-2.
Figure 9-2 illustrates the classification accuracy results for different classification and
feature selection methods including the proposed B4M. Clearly from the figure that
there are two classificaiton algorithms have obtained 100% accuracy which is counted
in the machine learning field as an excellent classifires because they have achived

100% with no missclassified data. However, the problem of these classifires have
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produced too many rules for predicitng the new incoming data. Thus, this problem
will have an effect on the fault detection process as it will take long time to go throw
all the rule set to dicide wether the new data is faulty or not. It can be seen that the
feature selection methods have positive and negative impacts on all classifires. For
instance, in “Naive Bayes” classifire the full dataset (without feature selection) has
been ranked as the highest among all other feature selection algorithm, while in other
classifires has ranked the lowest. Besides, SFS feature selection method has achived
the highest accuracy in the proposed B4M 98.97% among other classifires, but also
got lower accuracy in Naive Bayes classifire. This is the most significant reson of
using feature selection methods as it is good to reduce the data dimentionality and may

rise or decline the classifire accuracy.
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Figure 9-2: Comparison of the classification accuracy for different feature selection

and classification algorithms based on the thermal image dataset.

Overall, the proposed B4M classification algorithm has acquired very good and
competitive results compairing to other classification algorithms, since it is counted
as new released classification algorithm. The obtained results were good enough to
detect the induction motor faults at an early stage. All the classification algorithms

have achived good results depending on the dataset, if the dataset has overlapping
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between its features the classification accuracy will be affected directly. The more
clear dataset the more accureate classificaiton system. The B4M result were not the
higher classification accuracy. A possible explaination for this might be that the
proposed B4M need more improvments for its parameters or objective function to be
considred as calssification system with high accuracy. Another possible explanation
for this is that the proposed B4M has limited local and global searches and it may
prevent it from finding the best value for each class. Another possible expalination for
these results may be the lack of adquate iterations for the proposed B4M. All
classification methods are differents from the proposed B4M in a number of respects.
The proposed B4M is a combination between optimaization algorithm (Bees
Algorithm) and data mining rule discovery as the main job for the BA is providing the
optimal solutions for many engineering problems as mentioned in the litreture. The
challenging part here is how to convert the work of BA from optimization to
classification, while the other classification methods have been designed for classfying

the data.
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Figure 9-3: Comparison of the number of rules for different feature selection and

classification algorithms based on the thermal image dataset.
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In terms of number of rules, the proposed B4M obtained the best and lower number
of rules among all other classification algorithms as shown in figure 9-3. This is owing
to the rule pruning strategy that are adopted in the proposed B4M, which removes the
unrelated rules and keep the better rules in order to classify the data correctly.

The number of rules are the most important factor in the machine learning algorithms
as it shows the strength of the classification algorithm. When the number of rules are
low, it means that the classification system has been focused on the best values among
all the dataset features. The higher number of rules, the more time needed to decide
the best class for the new data. In figure 9-3, most of the classification algorithms have
fallen to produce rules lower than the proposed algorithm. The other classifiers have
obtained a satisfactory result for producing the lower number of rules. In the
meantime, the proposed B4M has shown its ability to focus on both the classification
accuracy and the number of rules, as some classifiers produce far different number of
rules with the same dataset, but this has not happened with the proposed B4M. The
proposed B4M keeps holding the best values for each class while it searches for the
other best one. This advantage makes it the best from other classifiers and produce

lower number of rules.

The induction motor fault detection based on the thermal image using proposed B4M
classification algorithm has been discussed and the next section will describe the

induction motor fault detection based on the motor current signature analysis.

9.2 B4M Classification based on Current Signal for Fault Detection

9.2.1 Feature Extraction

The database includes seven different faults and three load conditions (no load, 50%

load and 100% load). There are three distinct recordings, each of which belong to one
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phase of the motor for each load condition. The number of raw data vector and the
dimension are the same for the current signal in each phase. Hence, only one phase
signal has been selected for further processing in order to exploit in the experimental
stage. The wavelet coefficients have been extracted from the raw current signals
contains large amount of information about the motor status. The 1D DWT have been
applied for 6 fault conditions in addition to healthy condition (one bar rotor fault, four
bars rotor faults, eight bars rotor faults, outer race bearing fault, ball bearing fault and
inner race bearing fault) with different load conditions in order to extract the best fault
information from the current signal. Ten features have been extracted from the raw
current signal, five features belong to DWT details coefficients and five features are
belong to DWT approximation coefficients with the aim of having all possibilities for
induction motor faults detection as explained in chapter 5 - section 5.4. The data
belong to each class in the database consists of 10 attributes, each of which has 750
samples as each fault consists of 250 samples for no load, 250 samples for 50% load
and 250 samples for 100% load. Therefore, 10 features vectors with the size of 750
samples for seven faults (5250 samples) were obtained for each class in the dataset.
All these features have been labelled properly for their class with the purpose of
recognising by the classification system. Table 9-6 shows sample of extracted features

from the current signal based on DWT. For full signal, see Appendix B.

As stated in the previous section, the induction motor faults data for all load conditions

have been combined together as the load level is not important than the motor fault.
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9.2.2 Feature Selection

The feature selection method is the next stage. Generally, the number and type of input
features affect the precision performance and computation efficiency of the machine
learning algorithms. Therefore, it is essential to select the best features to acquire good
results. Here the feature selection methods play vital role to reduce the data
dimensionality as the dataset have more than 5000 samples. The bigger the dataset
size, the more time needed for classification process. Similarly, four most common
feature selection methods (Sequential Forward Selection (SFS), Sequential Backward
Selection (SBS), Sequential Floating Forward Selection (SFFS) and Sequential
Floating Backward Selection (SFBS)) have been used in this part (as described in
chapter 5 - section 5.5) to select and compare which is the best and more helpful
feature for motor fault diagnosis based on B4M classification algorithm. MATLAB

“R2015a” has been used for running all the feature selection methods.

After applying feature selection methods, the selected features of DWT-based current

signal have been illustrated in table 9-7.

Table 9-7: The selected features for the current signal dataset.

Feature Selection Method

SFS SBS SFFS SFBS

DWT-LI v DWT-LI ¥ DWT-LI x DWT-L1

2::) DWT-L2 x DWT-L2 x DWT-L2 v DWT-L2 x
%2 DWT-L3 Vv DWT-L3 ¥ DWT-L3 Vv DWT-L3 x
2% DWT-L4 YV DWT-L4 \ DWT-L4 Y DWT-L4
© DWT-L5 ¥ DWT-L5 x DWT-L5 ¥ DWT-L5 x
= DWT-LI v DWT-LI ¥ DWT-LI x DWT-L1
-‘ég DWT-L2 x DWT-L2 x DWT-L2 Vv DWT-L2 x
£Z DWT-L3 v DWT-L3 + DWT-L3 x DWT-L3
§‘§ DWT-L4 x DWT-L4 Y DWT-L4 \ DWT-L4 x
§o DWT-L5 x DWT-L5 x DWT-L5 ¥ DWT-L5
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It can be seen from table 9-7 that the feature selection methods have neglected some
features and kept some others, as these features may have big impact on the
classification accuracy, which lead to have too many misclassified data. The selected
features have been used as input data for the proposed B4M classification method in

order to classify induction motor faults.

9.2.3 C(lassification Results

The DWT-based current signal are ready for classification task. The dataset should
split into two sets, training and testing sets. 100-folds cross validation has been also
used for splitting this data in order to validate the system and check the time
consumption as these are very important targets to be improved. The data have been
labelled from 1 to 7 to be recognized by the proposed B4M and other classification

systems. The datasets descriptions have been illustrated in table 9-8.

Table 9-8: Current signal dataset description.

. .o Class No. of No. of No. of
Machine Condition Label samples Training Testing
Healthy 1 750 650 100
Ball bearing fault 2 750 650 100
Bearing Inner race 750 650

3 100
fault
Bearing outer race 750 650
4 100
fault
One bar rotor fault 5 750 650 100
Four bars rotor fault 6 750 650 100
Eight bars rotor fault 7 750 650 100
Total Samples 5250 4550 700
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The proposed B4M classification algorithm have been applied with the same
parameters, which are already chosen as described in (chapter 4 - section 4.3.2). Five

different datasets have been fed to the B4M as stated below:

e Datasets without feature selection (Full).

e Datasets with Sequential Forward Selection (SFS).

e Datasets with Sequential Backward Selection (SBS).

e Datasets with Sequential Floating Forward Selection (SFFS).

e Datasets with Sequential Floating Backward Selection (SFBS)
All the above dataset have been used as input for B4M classification algorithm with
100-folds cross validation. By applying the proposed classification method, the system
efficiency of 10 given features that are obtained from feature extraction has been

illustrated in table 9-9.

Table 9-9: The proposed B4M classification results.

Dataset type No. of rules Classification Accuracy (%)

Full 7 75.44
SFS 8 79.62
SBS 7 74.36
SFFS 7 77.05
SFBS 10 77.81

The result that is obtained by the proposed B4M classification algorithm was very
good as it exceeds 70%. In addition to this, all possible induction motor faults have
been recognized by the proposed B4M because the more faults occurred the more
complex data for the classification system to discriminate between the fault correctly.
Furthermore, most of various studies about fault diagnosis were generally concerned

about only one or few faults using current signal, but this study defeats a gap in fault
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diagnosis literature by diagnosing all possible induction motor faults with new
proposed classification algorithm. In other word, the current signal was very helpful
for diagnosing either electrical or mechanical motor faults by proposed B4M, which
could prevent the motor from failure by detecting the faults at an early stage. As can
be seen in table 9-9, the classification percentage is varying based on the selected
features, which means that some features have affected critically on the classification

accuracy.

In terms of number of rules, the proposed B4M produces very small number of rules
for diagnosing the motor fault. This is another advantage that the B4M has low number
of rules. To put it simply, the lower the number of rules, the less time consumption to
detect the fault for new incoming data (unseen data). Moreover, the sequential feature
selection (SFS) method has been adopted for motor fault diagnosis as it has the highest

classification accuracy with low number of rules but not the lower.

Consequently, the proposed B4M has been successfully applied for detecting the
induction motor faults based on the current signal. All extracted features from the
current signal by DWT have very helpful information for sensing the faults by the

classification system as shown in table 9-9.

Table 9-10 shows the confusion matrix of the proposed B4M based on current signal

using the SFS feature selection method.
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Table 9-10: Confusion matrix of the proposed B4M for the current signal dataset.

Predicted Class

True Class Healthy Ball Inner Outer One Four Eight

bearing race race bar bars bars
Healthy 600 10 16 0 20 4 0
Ball bearing 32 520 40 40 10 8 0
Inner race 55 38 407 95 45 10 0
Outer race 10 95 120 408 17 0 0
One bar 27 0 10 18 580 15 0
Four bars 0 0 5 5 35 585 20
Eight bars 0 0 0 28 48 52 522

The confusion matrix describes the way of how the B4M classifying the data:

e The most important part of the confusion matrix is the diagonal elements,
because all the elements that are classified correctly have been placed in the
diagonal. The healthy motor class has been classified correctly by diagnosing
600 elements out of 650, which indicates that the B4M has been able to classify
more than 90% of all healthy features. However, the misclassified instances
have been spread in all other motor faults but the highest was with one bar fault

since its current signal was very similar to the healthy signal.

e For the bearing faults, the ball bearing fault achieved 520 correct sample out
of 650 (only 130 samples have been misclassified), which is the lowest
comparing to other bearing faults. While 234 samples have been misclassified
for the inner race bearing fault (407 correct out of 650 samples). Furthermore,
408 samples out of 650 have been classified correctly for the outer race bearing
fault. Consequently, the results show that the proposed classification system
has been able to detect and discriminate between the induction motor faults

correctly. Additionally, the induction motor bearing faults have been obtained
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the lowest correct sample out of 650 samples since the current signals for these
faults (ball, inner race, outer race) have been overlapped in some elements and

it may effect on the classification accuracy.

o The classifications results for the rotor faults were very good as can be seen in
table 9-10. In this case, the correctly classified elements have been the higher
than bearing faults. For one rotor bar fault, 580 elements out of 650 elements
have been classified correctly, which means only 70 elements have been
misclassified and most of them have been recorded as healthy. As stated earlier
the reason was the signal similarity between the healthy and one bar fault.
Besides, for four bars rotor fault, 585 elements out 650 elements have been
classified correctly, which is slightly more than one rotor bar faults.
Furthermore, the eight bars rotor fault have obtained 522 correct sample out of
650, which is the lowest among all the rotor bar faults due to mentioned

reasons.

Accordingly, the proposed classification system (B4M) has been successfully applied
for diagnosing the induction motor faults based on current signal with the help of DWT
and feature selection methods. The extracted features by DWT were very supportive
to make the raw current signal clearer to be distinguished among all the motor faults.
In addition to this, the feature selection methods have been played a crucial role in the
classification process by selecting the most strongest features to be used as input for
the classification system, as some features have negative impact on the system fault

diagnosis.

Most studies in the field of condition monitoring have only focused on the current

signal for detecting either rotor or bearing faults, while in this research the current
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signal has been adopted for detecting both the rotor and bearing faults together with
different types of faults and conditions. Since the current signal having much more
information about the behaviour the motor rotor, it is also helpful for bearing faults as
it changes the motor balance during heavy load. The classification accuracies of the
proposed B4M were reasonable, as the dataset were very large and complex. As
mentioned earlier that in the field of the machine learning, these classification
accuracy are acceptable because they are obtained 80% approximately, which is good
for new released classification system without any improvements. One reason why the
proposed B4M has classification accuracy less than 90% is that the dataset has
overlapped in some elements, which may lead the B4M to misclassify some classes.
Furthermore, the proposed B4M produces low number of rules, which is another
advantage as the number of rules could effect on the processing time for classifying a
new incoming data. Consequently, the proposed B4M classification algorithm has
been able to detect the induction motor faults based on the current signal and produced

satisfactory results.

9.2.4 Comparison of B4M Performance with other Classification Algorithms

The current dataset have been used with other eight classification algorithms (Decision
Table, JRIP, OneR (One Rule), PART (Projective Adaptive Resonance Theory), J48,
LMT (Logistic Model Tree), Naive Bayes tree and Random Tree) with the purpose of
comparing their performances with the proposed classification method (B4M)
performance. Similarly, the WEKA software has been used to run all the mentioned
classification systems. 100-fold cross validation was used for all classifiers in order to
compare their performances at same conditions. In addition, the selected features have

been used for these eight classifiers.
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Most of the classification algorithms have been applied successfully as shown in

figure 9-4. The proposed classification algorithm has been recorded as the higher in
two-feature selection algorithms among all other classifiers, 79.62% and 77.81% for
the sequential forward selection and sequential floating backward selection
respectively. Thus, the proposed B4M classification algorithm has been used for motor
fault detection successfully with very impressive results. Few classification systems
have obtained very low classification accuracy, while some others acquired very
acceptable results. For example, OneR classifier has achieved the lower accuracy,
whereas the NB tree has reasonable results in most of dataset. The reason is that all
classifiers depend on the dataset. If the dataset have clear and distinguishable features,
the classification accuracy will be very high. Therefore, if the OneR obtained low
classification accuracy, it does not mean that the classifier is not good, because it may
obtain very accurate results by applying other dataset. So forth, the proposed
classification algorithm, it may has very high classification accuracy based on the

dataset itself.
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Figure 9-4: Comparison of the classification accuracy for different feature selection

and classification algorithms based on current signal dataset.
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In terms of rules, figure 9-5 shows the number of rules that are produced from all the
applied classification systems. It can be seen that the proposed B4M has the lower
number of rules among all the other classifiers. This advantage makes the proposed
classification system more robust and less time consumer as the lower number of rules
the less time consumption for classifying the new data as explained earlier. The
number of rules has been varied for all other classifiers, some have many rules such
as RT system and some have low rules such as JRIP system. The number of rules are
also relying on system calculations and the dataset dimensionality because the
complex and large samples of dataset could lead to produce more rules. Here the rule
pruning is needed to reduce the number of rules and choose the most powerful rule for
classifying the new data with less error as happened with the proposed B4M. The
proposed B4M has a rule pruning strategy to remove all the unrelated rules from the

rule set as explained in chapter 4 section 4.2.5.
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Figure 9-5: Comparison of the number of rules for different feature selection and

classification algorithms based on current signal dataset.

The induction motor fault detection based on the current signal using the proposed
B4M classification algorithm has been discussed and the next section will describe the

induction motor fault detection based on the motor vibration signal analysis.
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9.3 B4M C(lassification based on Vibration Signal for Fault Detection

9.3.1 Feature Extraction

Similarly, the feature extraction procedure for the vibration signal is the same as in the
current signal. The datasets consist of three load conditions (no-load, 50% load and
100% load) with seven different faults (one bar rotor fault, four bars rotor faults, eight
bars rotor faults, outer race bearing fault, ball bearing fault and inner race bearing
fault). The 1-Dimentional DWT has been also applied for healthy and faulty conditions
with same mother wavelet and decomposition level to extract the best features from
the vibration signal. 10 features have been extracted from the raw vibration signal as
the vibration signal itself are not clear enough for diagnosing the motor faults. These
features have been splitted to 5 for DWT details coefficients and 5 for the DWT
approximation coefficients. Thus, the dataset consists of 10 features for healthy and
faulty conditions. Each fault has 750 samples for each feature. All datasets have been
labelled accurately for each class to make them easy for the classification system to
recognise the fault. Table 9-11 illustrates sample of the vibration dataset to be used for

further processing. For full vibration signal, see Appendix B.
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9.3.2 Feature Selection

Four feature selection methods (Sequential Forward Selection (SFS), Sequential
Backward Selection (SBS), Sequential Floating Forward Selection (SFFS) and
Sequential Floating Backward Selection (SFBS)) have been used for selecting the
most helpful features, as the feature selection have been used for reducing the data
dimensionality to increase the classification system accuracy (as mentioned earlier).
MATLAB “R20152a” has been used for running the feature selection methods.

After applying feature selection methods, the selected features of DWT-based

vibration signal have been illustrated in table 9-12.

Table 9-12: The selected features for the vibration signal dataset.

Feature Selection Method

SFS SBS SFFS SFBS

2 DWT-LI x DWT-LI x DWT-LI x DWT-L1
2 § DWT-L2 x DWT-L2 ¥ DWT-L2 ¥V DWT-L2
£2 DWT-L3 Y DWT-L3 V DWT-L3 x DWT-L3 x
A% DWT-L4 x DWT-L4 YV DWT-L4 x DWT-L4 x

O DWT-L5 x DWT-L5 ¥ DWT-L5 Vv DWT-L5 x
g . DWTLI v DWT-LI x DWT-L1 ¥ DWT-L1
£ £ DWT-L2 v DWT-L2 x DWT-L2 v DWT-L2
€5 DWT-L3  DWT-L3 v DWT-L3 v DWT-L3 +
Z& DWT-L4 x DWT-L4 YV DWT-L4 x DWT-L4 x
Eé DWT-L5 x DWT-L5 x DWT-L5 v DWT-L5
<

It can be seen from table 9-12 that the feature selection methods have disregard some
features and kept some others, as these features may overlapped with each other, which
may lead to have many misclassified data. The selected features have been used as
input data for the proposed B4M classification method in order to classify induction

motor faults.
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9.3.3 Classification Results

The vibration dataset is ready to be used as input for the proposed B4M classification
algorithm. The dataset has been divided into training and testing sets. 100-folds cross
validations have been applied for this dataset to check the classification system
performance. Similarly, the dataset has been labelled from 1 to 7 to be used for the
proposed and other classification systems. Table 9-13 shows the vibration dataset

description for all induction motor faults.

Table 9-13: Vibration signal dataset description.

Machine Condition ICJ:;)s:l ls\;(;l;)){es 1"l\fl(')z.li(:lfing ¥3;t?£g
Healthy 1 750 650 100
Ball bearing 2 750 650 100
Bearing Inner race 3 750 650 100
Bearing outer race 4 750 650 100
One bar rotor 5 750 650 100
Four bars rotor 6 750 650 100
Eight bars rotor 7 750 650 100
Total Samples 5250 4550 700

The proposed B4M classification algorithm have been applied with the same
parameters, which are already chosen as described in (chapter 4 - section 4.3.2). Five

different datasets have been fed to the B4M as stated below:

e Datasets without feature selection (Full).

e Datasets with Sequential Forward Selection (SFS).

e Datasets with Sequential Backward Selection (SBS).

e Datasets with Sequential Floating Forward Selection (SFFS).

e Datasets with Sequential Floating Backward Selection (SFBS)
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All the above datasets have been used as input for B4M classification algorithm with
100-folds cross validation. By applying the B4M classification method, the proposed

system accuracy of 10 given features has been demonstrated in table 9-14.

Table 9-14: The proposed B4M classification results.

Dataset type No. of rules Classification accuracy (%)

Full 9 60.00
SES 7 80.50
SBS 7 45.75
SFFS 12 48.75
SFBS 7 70.68

The proposed B4M classification algorithm has obtained good outcomes in some
datasets and poor in others. Perhaps the most serious disadvantage of this classification
is that it needs to reset its parameters (by increasing or reducing the number of
iterations or number of bees, etc.) or needs more than one run to obtain the best results.
In this research, the parameters of the proposed B4M have been kept the same for all
the motor condition in order to be compared with other condition monitoring
approaches and check the strength and the weakness of the proposed classification
algorithm. As a result, all the results will be compared based on two main things, either
on the feature selection method or on the dataset. Here the proposed B4M has obtained
very good results by relying on the SFS and SFBS feature selection methods with very
low number of rules, while it has obtained very poor results with other feature selection
methods. Thus, the DWT features that are obtained from the vibration signal have been
very cooperative for detecting the induction motor faults correctly and the proposed
B4M has been successfully applied for the detecting induction motor faults based on

the vibration signal.
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Table 9-15 shows the confusion matrix for the proposed B4M based on vibration

signal using the SFS feature selection method.

Table 9-15: Confusion matrix of the proposed B4M for the vibration signal dataset.

Predicted Class

True Class Healthy Ball Inner Outer One Four Eight

bearing race race bar bars bars
Healthy 543 4 23 78 2 0 0
Ball bearing 6 596 20 28 0 0 0
Inner race 20 25 556 42 3 4 0
Outer race 19 20 38 545 20 8 0
One bar 52 12 12 32 522 20 0
Four bars 23 0 0 33 64 487 43
Eight bars 0 62 12 34 41 88 413

The confusion matrix describes the way of how the B4M classifying the vibration

dataset:

e As stated previously, the diagonal elements are the most important part in the
confusion matrix because they show the correct classification elements among

all the features that are belong to specific class or correctly classified.

e In terms of the healthy conditions, the proposed B4M has classified 543
samples out of 650 (only 107 samples are misclassified), which means that the

B4M has recognized the healthy motor among six fault conditions.

e In terms of bearing fault, the proposed B4M has obtained the highest correct
elements in ball bearing defect than all other faults (596 out of 650), while the
inner race fault has achieved the second highest than other bearing faults (556
out of 650). In addition, the outer race-bearing fault has obtained about 545

correct samples. Consequently, despite of the classification accuracy and the
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number of misclassification samples, the proposed B4M has good attitude to
classify the bearing faults correctly without any further implementation or

improving in the objective function.

e In terms of rotor bars fault, the correct classification elements were lower than
the bearing faults as the vibration signal is more suitable for the bearing faults
than the rotor faults. Thus, 522 samples of one rotor bar fault out of 650 have
been classified correctly by the proposed B4M, whereas 487 samples have
been classified correctly to detect the four bars rotor fault. In addition, 413
correct samples have been classified as eight rotor bars fault by the proposed
B4M. Since the dataset has very large number of data in each class, there is no
doubt that the misclassification could be happened in such dataset. Many
reasons for the misclassification or low classification accuracy that might be
happened. First, the complex the dataset is, the higher possibility of
misclassification samples can occurred. Second, the dataset overlapped with
each other, which may lead the classification system to miss the correct class

for these data.

In view of that, the proposed classification algorithm (B4M) has obtained good results
for discriminating and detecting the motor faults in an early stage based on the
vibration signal. The DWT features have positive outcome as they have extracted the
important information from the raw vibration signal, as well as the feature selection
methods that have been used for reducing the data dimensionality and select the best

features.

As mentioned earlier that most studies have focused on current signal for detecting

either the rotor or bearing faults, while in the vibration signal also has concentrated
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for detecting the mechanical faults only, whereas in this research the vibration signal
has been used for detecting the mechanical and electrical fault simultaneously.
Moreover, the results show that the vibration signal could also be used for detecting
the rotor faults as the rotor fault has negative impact on the motor balance, which may
lead to change the motor vibration behaviour. The number of rules that are produced
from the B4M are very acceptable comparing to the dataset size because the higher
number of rules, the longer time for classification system needed to classify the new
data. Therefore, the proposed classification algorithm is capable to detect the induction

motor faults.

9.3.4 Comparison of B4M Performance with other Classification Algorithms

Similarly, eight classification algorithms (Decision Table, JRIP (Repeated
Incremental Pruning), One R (One Rule), PART (Projective Adaptive Resonance
Theory), J48, LMT (Logistic Model Tree), Naive Bayes tree and Random Tree) have
been applied for the vibration dataset in order to compare the performance of the
proposed B4M classification algorithm. The same dataset has been used for all these
classifiers. The dataset has been divided into training and testing sets as mentioned
above. In order to validate the classification performance 100-folds cross validation

have been applied for these classifiers.

The classification systems have been successfully applied for all different datasets
(full, SFS, SFFS, SBS and SFBS). The proposed B4M have obtained good results in
two datasets (SFS and SFBS) with 80.5% and 70.68% classification accuracy
respectively as shown in figure 9-6. Figure 9-6 shows that the proposed B4M has

ranked the first among all the classification algorithms with sequential feature
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selection method, while it classified as the second after random tree algorithm with

the sequential floating backward feature selection method.

mFull mSFS ®mSFFS mSBS ®SFBS
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Figure 9-6: Comparison of the classification accuracy for different feature selection

and classification algorithms based on the vibration signal dataset.

On the other hand, the proposed B4M has achieved less than 50% accuracy in both the
sequential floating forward selection and sequential backward selection algorithms by
48.75% and 45.93% accuracy respectively. There are several possible explanation for
this result. This inconsistency may due to the vast overlapping between the features or
the attributes, as the vibration signal was very sensitive and sometimes the
classification systems have difficulties to discriminate between the data classes. The
other contradictory result may be due to the feature selection algorithm, as the feature
selection method may fails to choose the best features since the feature selection

methods play a vital role in classification accuracy results.

Additionally, figure 9-7 illustrates the number of rules for all classification algorithms.

As shown in figure 9-7, the proposed B4M obtained the lower number of rules among
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all 8 classification algorithms. As mentioned above, the number of rules relying on the
classification system calculations and the dataset dimensions. The proposed B4M has
produced the lower number of rules as it has rule pruning strategy, which is different
from other classifiers. The rule pruning is responsible to remove the unrelated rules
from the rule set and keep the better rules that cover all data samples as explained in

chapter 4 - section 4.2.5.
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Figure 9-7: Comparison of the number of rules for different feature selection and

classification methods based on the vibration signal dataset.

9.4 GA-B4M

For improving the proposed B4M classification algorithm, the GA has been adapted
for selecting the best feature in addition to the previous feature selection methods. The
GA has been used widely in the field of optimization, clustering, classification and
feature selection. It has been successfully applied and it has positively effects on the

classification accuracy for many classification algorithms.

The selected features for thermal image, current and vibration signals datasets by the

GA have been illustrated in table 9-16.
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Table 9-16: The selected features for all condition monitoring dataset
based on GA.

Dataset Features
Thermal Current Vibration
MSE v DWT-L1 x DWT-L1

PSNR x DWT-L2 x DWT-L2
Mean x DWT-L3 x DWT-L3 x

Variance x DWT-L4 x DWT-L4 x
SD x DWT-L5 x DWT-L5 +
Skew v DWT-LI v DWT-LI x
Kurtosis Y DWT-L2 v DWT-L2 x
DWT-L1 v DWT-L3 v DWT-L3 x
DWT-L2 x DWT-L4 x DWT-L4 x

DWT-L3 x DWT-L5 x DWT-L5 x

After applying the GA for feature selection, the new selected features have been
applied for the same classification algorithms (Decision Table, JRIP, OneR, PART,

J48, LMT, Naive Bayes tree and Random Tree) along with the proposed B4M method.

9.4.1 C(lassification Results

The classification systems have been applied with the same parameters and conditions
as in the previous systems. The results were very good and there are improvements in
the classification accuracy for not only the proposed B4M but also for other

classification algorithms as shown in figures 9-8, 9-9 and 9-10.

In terms of thermal image features, the results of the proposed B4M have been ranked
as the highest classification system among all other systems (DT, Jrip, PART, J48 and
NB tree). There are two likely causes for the differences between the results with the
full, SFS, SBS, SFFS, SFBS feature selection methods and the results with feature

selection based on the genetic algorithm. The first one is that the features became very
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few as only 4 feature out of 10 have been used for classification since some algorithms
does not have the ability to classify such a dataset with small number of features, as
system calculation itself has not been able to calculate the best rules or classify the
dataset. The second is might be because of the dataset have overlapping in the selected
features. However, eight classification algorithms have been able to classify the
thermal image dataset successfully with very good classification accuracy as shown in

figure 7-8.
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Figure 9-8: The comparison of classification and number of rules for different

classification methods based on the thermal image dataset.

In terms of current signal, all the classification algorithms have been successfully
applied and have obtained very good results as illustrated in figure 9-9. The
classification accuracy has been raised up in some classification systems and went
down for some others. Nevertheless, the proposed B4M has achieved very competitive
result comparing to other classification algorithms. For example, the classification
accuracy for the proposed B4M was 79.74% with 16 rules, which is ranked the 6 out
of 9 classification systems. While the highest classification accuracy was recorded by

the LMT algorithm (81.31%) with 47 rules. Thus, still the proposed B4M algorithms
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has the lowest number of rules among all other classification algorithms as shown in

figure 9-9.
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Figure 9-9: The comparison of classification accuracy and number of rules for

different classification methods based on the current signal dataset.

Similarly, dealing with the vibration signal, the highest classification accuracy and the
lowest number of rules have been recorded by the proposed classification algorithm

(B4M), which is 98.74% and 7 rules as shown in figure 9-10.
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Figure 9-10: The comparison of classification accuracy and number of rules for

different classification algorithms based on the vibration signal dataset.
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9.5 Classification Results for Testing Dataset based on B4M

After obtaining the classification accuracy for the training dataset, the following
results have explained the classification test accuracy for the test dataset based
classification accuracy of training dataset relying on the SFS feature selection method.
Figure 9-11 illustrates the classification test accuracy of the thermal image test dataset.
It was clearly from the figure below that the proposed classification algorithm (B4M)
has obtained the highest classification accuracy comparing to other classifiers. These
results have indicated that the proposed algorithm has been able to detect, classify and
predict the motor faults correctly better than other classifier. The reason of having
good results is that the features that are extracted for the thermal images make the
classifier able to discriminate between the motor faults with less misclassification
percentage. Another reason is that the feature selection method has select the most
helpful attributes among all other features. However, the DT and OneR classifiers have
obtained 100% classification accuracy for the training dataset as mentioned above,
while the classification test accuracy were the lower for both 76.36% and 52.20%
respectively. One reason why these classifiers results have declined is that they may
consider the new data as noisy data which make them unable to classify the data
correctly, or the new data may overlapped between each other which may assigned to
the incorrect class. Thus, it now understood that the dataset plays an important role in

the classification accuracy.
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Figure 9-11: Classification accuracy for test dataset of thermal image.

In terms of current signal, the proposed B4M has achieved 76.35% classification test
accuracy based on the current test dataset, which was the second highest classifier after

NB tree (76.70%) as shown in

figure 9-12. The most likely causes of low classification test accuracies among all the
classifiers are the data overlapping and data similarity. Furthermore, the feature
selection method is an important factor for reducing or increasing the classification
accuracy based on the clarity of dataset. The other classifiers have obtained similar
accuracy, which were between 70.00% to 76.33%. While the DT and the OneR

classifiers have obtained 63.02% and 52.20% respectively, due to the reasons above.
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Figure 9-12: Classification accuracy for test dataset of current signal.

QARDIE Cardiff University Page|238

Geowp  Prifysgol Caerdydd



Chapter 9: Results and Discussions

In terms of vibration signal, the proposed B4M has acquired 93.85% classification test
accuracy based on the vibration test dataset, which was the forth-highest classifier
after NB tree (95.00%), OneR (95.00%) and PART (93.99%) as illustrated in
figure 9-13. As mentioned above the dataset and the feature selection method are
important driving factors of reducing and increasing the classification system
accuracy. The dataset is generally seen as factor strongly related to the classification
accuracy as the more accurate the dataset, the more accurate classification system. The
same issue for other classifiers, this is why that there is no single study exist shows

that there is one best technique for all kind of classifications.
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Figure 9-13: Classification accuracy for test dataset of vibration signal.

9.6 Classification Results for Testing Dataset based on GA-B4M

The proposed hybrid approach (GA-B4M) has been applied for the all condition
monitoring methods in order to compare the performance of the proposed
classification algorithm (B4M) with other classifiers, does the GA has improved the

classification accuracy or not.

Figure 9-14 illustrates the classification test accuracy of thermal image test dataset

based on the GA-B4M. The results show that the GA have a positive impact on all
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classifiers as it has increased their classification accuracies better than without GA as
explained above. The proposed B4M has obtained 98.92% classification accuracy,
which was the highest comparing to other classifiers. In addition, the test classification
accuracy of the DT and OneR classifiers have increased to 90.10% and 79.60%
comparing to the test classification accuracy without GA. Consequently, the GA is a
significant contributory factor to the development of classification accuracy not only

for the proposed B4M but also for other well-known classifiers.
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Figure 9-14: Classification accuracy of thermal image test dataset based on GA-
B4M.

Figure 9-15 shows the classification test accuracy for the current dataset based on GA-
B4M. The results show that the proposed classification method (B4M) has achieved
82.88% accuracy, which is counted as the third highest classifier after J48 (89.76%)
and PART (85.39%). Similarly, the classification test accuracy for all classifiers has
been increased based on GA as the GA has the ability to choose and reduce the data
dimensionality by selecting the best features to be used to fed the classification

systems.
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Figure 9-15: Classification accuracy of current test dataset based on GA-B4M.

In terms of vibration test dataset, figure 9-16 demonstrates the classification test
accuracy based on the GA-B4M. The proposed B4M has achieved the second highest
accuracy after OneR (98.56%) which is 98.36%. the results have indicated that the
proposed B4M has been able to detect, classify and predict by achieving good
accuracy and at the same time produce less number of rules. Furthermore, the results
show that it was not only effective and more robust, but also more efficient, making it

at least as good as other methods.
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Figure 9-16: Classification accuracy of vibration test dataset based on GA-B4M.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

“This chapter illustrates contribution to knowledge. It summarises the achievements
of this research and explains how the objectives stated in chapter one were achieved.

The chapter concludes the study findings and suggests some aspects for future work”.



Chapter 10: Conclusions and Future Work

10.1 Overview

The purpose of this research was to advance the field of condition monitoring and fault
diagnosis for three-phase induction motors. The wide usage of the induction motors in
the industrial applications have increased the need for the condition monitoring to keep
the motor working safely. The literature review has presented and summarized the
state of the art for most condition monitoring techniques that are related to the
proposed methods. Fault diagnosis based on the artificial intelligence is the focus of
this research. Previously, the condition monitoring was relying on the traditional
methods like monitoring the stator current waveform or vibration signals based on the
basic devices, but due to advance in science and technology, digital signal processing
based techniques and artificial intelligence approaches, which were not known before,
have recently been introduced to condition monitoring for induction motor protection.
These techniques provide the means to enhance the classical protection principles to
be faster, more secure, low cost and reliable protection for the induction motors. In
addition, the advance techniques have improved the time consumption of fault
detection that have an effect on the production line. All this will change the practice

for the induction motor protection.

Recently, the most common artificial intelligence techniques for the condition
monitoring and fault diagnosis of induction motors are ANN, FLS, GA and many
others in combination with data mining, which are used for classifying the motor faults
in early stage. These techniques have been applied for a very complex and non-linear
systems. However, it was possible to conclude from the review that no single approach
would suffice for both classification and diagnosis. Furthermore, it is increasingly

recognised that most individual artificial intelligence techniques suffer from specific

QROIFF  Cardiff University Page | 243

Gikow  Prifysgol Caerdydd



Chapter 10: Conclusions and Future Work

drawbacks, for that reason a new classification methods and hybrid approach are
needed in most practical situations. Besides, most of the machine learning algorithms
(optimization algorithms) have been converted to a classification algorithm based on
data mining for the purpose of reducing the data dimensionality and make the machine

learning algorithms more robust for analysing the complex (experimental data) data.

Finally, the classification algorithms based on data mining are still used in the
differential condition monitoring although they have some disadvantages as
mentioned in the literature. Each method mentioned in the literature was trying to
overcome the disadvantages of previous methods. The proposed classification
methods are also doing the same but the challenge of these methods are having
simplicity in algorithm design, producing less number of rules and good classification
accuracy for discriminating between the induction motor faults. This makes the

proposed new methods a competitive alternative to existing methods.

10.2 Conclusions

This research has proposed a novel framework for condition monitoring and fault
diagnosis of small induction motors. The DWT has been performed on the thermal
image, current and vibration signals in order to extract the data (feature extraction)
with more information related to the fault. In addition to this, the four feature selection
methods (Sequential Forward Selection (SFS), Sequential Backward Selection (SBS),
Sequential Floating Forward Selection (SFFS) and Sequential Floating Backward
Selection (SFBS)) have been applied to the extracted features with purpose of
choosing the most helpful features that are assisted the classification systems to obtain

more accurate results for fault detection.
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Additionally, this research has answered the primary aims which can be summarised
as: addressing whether the Bees Algorithm based on data mining is suitable for
induction motor fault diagnosis system, improving sensitivity to incipit faults in
comparison to a conventional approach, implementing and evaluating a framework to
condition monitoring and fault diagnosis for induction motor and accurately

diagnosing results.

The research work carried out in this thesis included a number of important aspects
that were novel and not previously implemented by other researchers or practitioners

in a similar manner. These aspects of novelty are summarized below:

1- In Terms of Machine Learning

a) This research proposes a novel tool known as “Bee for Mining” (B4M)
for classification tasks, which enables the Bees Algorithm (BA) to
discover rules automatically. In the proposed B4M, two parameters
namely quality-weight and coverage-weight have been added to the BA
to avoid any ambiguous situations during the prediction phase. The

contributions of the proposed B4M algorithm are two-fold:

» The first novel contribution is in the field of swarm intelligence,

using a new version of BA for automatic rule discovery.

» The second novel contribution is the formulation of a weight
metric based on quality and coverage weight of the rules
discovered from the dataset to carry out Meta-Pruning and
making it suitable for any classification problem in the real

world.
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b) The proposed algorithm was implemented and tested using five
different benchmark datasets: Iris, Wine, Soybean, Breast Tissue and
Image Segmentation from University of California, at Irvine (UCI
Machine Learning Repository) and was compared with other well-
known classification algorithms. The results obtained using the
proposed B4M show that it was capable of achieving better
classification accuracy and at the same time reduce the number of rules
in four out of five UCI datasets. Furthermore, the results show that it
was not only effective and more robust, but also more efficient, making
it at least as good as other methods such as C5.0, C4.5, Jrip and other

evolutionary algorithms, and in some cases even better.

2- In Terms of Condition Monitoring

a)

b)

The proposed novel method (B4M) has been successfully applied in three
main induction motor faults detection scheme such as thermal, current and

vibration condition monitoring.

The proposed B4M classification based on the induction motor thermal
images has obtained very good results for diagnosis the IM faults correctly
with minimum number of rules. The thermal images have been captured
from different machine conditions with different types of faults including
the healthy condition (reference signal). The classification accuracy of the
proposed B4M has achieved competitive results comparing to other
classification algorithms with very low number of rules. Furthermore, the
proposed image processing technique (Sobel, Prewitt, Roberts, Canny,

LoG and Otsu) with the help of feature selection methods have
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d)

significantly assisted in improving classification accuracy of B4M for

classifying the induction motor faults correctly.

The new classification algorithm has been applied to induction motor faults
detection based on the motor current signature analysis (MCSA). The
MCSA has been collected from three different motor conditions (no load,
50% load and 100% load) with seven different types of faults (one rotor
bar, four rotor bars, eight rotor bars, outer race bearing, ball bearing and
inner race bearing fault) including the healthy condition (reference signal).
The proposed classification algorithm has obtained very good results by
using the current signal coefficients that are extracted by Discrete Wavelet

Transform (DWT) and feature selection methods.

The new proposed classification algorithm has been also applied to
induction motor fault detection based on the vibration signal with the same
condition of DWT as in the current signal. The B4M acquired very

satisfying results compared to other classification algorithms.

The new proposed method is not like other methods for induction motor faults

detection. For instance, some methods detect the fault based on the load conditions as

they have divided the faults relying on the motor load. In this case, some faults does

not appear during low load or have difficulties to be detected by the classification

system. However, the proposed algorithm is not depending on the motor load

condition because all the different load conditions have been combined together as

one fault or one package. Therefore, there is no need to wait for the motor to be loaded

to detect the faults because if the faults are happened and the motor does not loaded,

the motor could be fail to run. Consequently, the motor faults detection based on B4M
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have overcome this problem and become very sensitive for any changing in the motor
signals behaviour to detect and diagnose the most common induction motor faults

correctly.

3- In Terms of Machine Learning Hybrid System

a) A new hybrid system has been proposed which is a combination between
the Genetic Algorithm and B4M classification algorithm. The purpose of
this system was to use the GA as feature selection method. Two important
reasons of creating this system, the first one is to reduce the data
dimensionality, and the second one is to increase the classification system
accuracy. Then, the selected features were fed to the proposed B4M

algorithm to detect the motor fault correctly.

b) The proposed hybrid system has been applied to three induction motor
condition approaches; thermal image, current and vibration signals. The
system achieved very competitive results comparing to other classification
algorithms. The Genetic Algorithm based feature selection has positive
impact in supporting the classification system to gain very good

classification accuracy.

In general, the research has presented a new competitive methods over those
mentioned in the literature particularly classification algorithm, which is still
dependable and widely used in condition monitoring up to now. The competition was
based on two factors, the classification accuracy and the number of rules.
Simultaneously, the improvement of these factors was not at the cost of lower

reliability and security. The proposed methods have shown a very high accuracy in all
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the tests performed on the induction motor. The efficiency and effectiveness of these
methods were proved by both simulation in MATLAB software and practical
experiments. In simulation, the proposed B4M has been validated based on the UCI
datasets. While practically, the data have been collected experimentally from the

induction motors with different load conditions and types of faults.

10.3 Future Work

The purpose of the work presented in this thesis was to advance the research in the
two fields: machine learning and induction motor condition monitoring for faults
diagnosis. After this objective has been achieved, there is generally still much work to
implement this new knowledge into widespread applications. Nevertheless, there is
still additional work required to apply this new classification system scheme in

industry. Suggestions for future research directions are summarised below:

1- In Terms of Machine Learning

a) Find out other optimization algorithms and study their abilities to be
converted to classification algorithm based on data mining rule discovery,
since each algorithm has different calculations and it may help rise the

capability of the artificial intelligence to solve the real world problems

properly.

b) Develop a new hybrid classification system to obtain very high

classification accuracy.

¢) Generalize the proposed classification algorithm to other types of motors,
or apply it in other application such as engine, surface crack (concrete),

and many others.
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2- In Terms of Condition Monitoring

a)

b)

d)

Apply the proposed method on other induction motors (different size) to

see the effect of the motor rates on the classification accuracy.

Simulate and seed other types of common failure mode, for instance, stator
fault, air gap eccentricity fault etc. In this research, each fault was
simulated individually (one fault at a time). Future work could explore
simultaneous faults and faults combining e.g. phase imbalance and rotor

bar together, or two bearing faults together (outer race and ball bearing).

In using a wavelet transform, different wavelets have different impacts in
revealing fault features. It would be more complementary if some criteria
could be established, with regard to which types of wavelets are more
suitable for certain types of non-stationary events. One type of wavelet has
been studied in this work. Therefore, enhancement of fault features in
wavelet analysis should be investigated by using different mother wavelet

analysis.

Apply empirical mode decomposition level based techniques for different

types of induction motor faults.

Investigate the effectiveness of other image processing technique.

The analysis carried out in this research was “offline” condition
monitoring. Future work should be developed and concentrated on

“online” condition monitoring.
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APPENDIX A - THERMAL IMAGE ANALYSIS
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Figure A-2: Thermal image analysis for healthy motor with 50% load.
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Appendix A — THERMAL IMAGE ANALYSIS
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Figure A-3: Thermal image analysis for healthy motor with 100% load.
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Figure A-4: Thermal image analysis for one bar fault with no load.
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Appendix A — THERMAL IMAGE ANALYSIS
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Figure A-5: Thermal image analysis for one bar fault with 50% load.
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Figure A-6: Thermal image analysis for one bar fault with 100% load.
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Appendix A — THERMAL IMAGE ANALYSIS
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Figure A-7: Thermal image analysis for eight bars fault with no load.
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Figure A-8: Thermal image analysis for eight bars fault with 50% load.
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Appendix A — THERMAL IMAGE ANALYSIS
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Figure A-10: Thermal image analysis for ball bearing fault with no load.
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Figure A-11: Thermal image analysis for ball bearing fault with 50% load.
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Figure A-12: Thermal image analysis for ball bearing fault with 100% load.
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Figure A-13: Thermal image analysis for inner race bearing fault with no load.
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Figure A-14: Thermal image analysis for inner race bearing fault with 50% load.
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Appendix A — THERMAL IMAGE ANALYSIS
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Figure A-15: Thermal image analysis for inner race bearing fault with 100% load.
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Figure A-16: Thermal image analysis for outer race bearing fault with no load.
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Appendix A — THERMAL IMAGE ANALYSIS
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Figure A-17: Thermal image analysis for outer race bearing fault with 50% load.
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Figure A-18: Thermal image analysis for outer race bearing fault with 100% load.
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APPENDIX C — MATLAB CODE

1- MATLAB code for the proposed B4M

Clear all
cle
[num,txt,raws] = xlsread('Dataset.xIsx");
% import numerical data:
X =num;
[N,M] = size(X);
% calculate the minimum and maximum for each variables
Xmin = min (X);
Xmax = max(X);
% import category names:
category = txt(2:end,end);
categ = unique(category,'stable");
K = size(categ,1);
% convert category to group from 1 to k
[tf,group] = ismember(category,categ);
% calculate the minimum and maximum for each variables and for each categories
XmaxK = zeros(K,M);
XminK = zeros(K,M);
fori=1:K
XmaxK(i,:) = max(X(group==i,:));
XminK(i,:) = min(X(group==i,:));
end;
XmaxK = reshape(XmaxK',1,K*M);
XminK = reshape(XminK',1,K*M);
%%%%%%Setting Parameter for the Bees Algorithm %%%%%
tic;
n =100; % number of scout bees (e.g. 40-100)
itr = 10; % number of iterations (e.g. 1000-5000)
m =10; % number of best selected patches (e.g. 10-50)
e =10; % number of elite selected patches (e.g. 10-50)
nl =20; % number of recruited bees around best selected patches (e.g. 10-50)
n2 =70; % number of recruited bees around elite selected patches (e.g.10-50)
ngh = 0.0000000000234;
%%%%%Scoutbees: random search (only once)%%%%%%
U = ones(n,1)*XmaxK + 2*ngh*(-rand(n,K*M));
L = ones(n,1)*XminK + 2*ngh*(rand(n,K*M));
Group = group*ones(1,n);
Par_Q = sortrows([U, L, fitnessfun(Group,categori(X,U,L))],-2*K*M-1);
XXXX=categori(X,U,L);
clear U L Best
%%%%%%Iterations of the algorithm %%%%%%
for k=1:itr
forj=1:e % number of elite selected patches
fori=1:n2 % number of bees around elite patches
U = beedance(ngh, Par Q(j,1:K*M));
LL = reshape((ones(K,1)*Xmin)',K*M,1);
L=LL + rand(1,K*M).*(U-LL);,
if fitnessfun(group,categori(X,U,L))> Par_Q(j,2*¥*K*M+1)
Par_Q(j,:)=[U, L, fitnessfun(group,categori(X,U,L))];
end
end
end
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forj=et+l:m % number of best selected patches
fori=1:n1 % number of bees around best patches
U = beedance(ngh, Par Q(j,1:K*M));
LL = reshape((ones(K,1)*Xmin)',K*M,1);
L =LL + rand(1,K*M).*(U-LL);
if fitnessfun(group,categori(X,U,L))> Par_Q(j,2*¥*K*M+1)
Par_Q(,:)=[U, L, fitnessfun(group,categori(X,U,L))];
end
end
end
% Rule Pruning
U = ones(n-m,1)*XmaxK + 2*ngh*(-rand(n-m,K*M));
L = ones(n-m,1)*XminK + 2*ngh*(-rand(n-m,K*M));
Group = group*ones(1,n-m);
Par Q(m+1:n,:) = sortrows([U, L, fitnessfun(Group,categori(X,U,L))],-2*K*M-1);
Par Q = sortrows(Par_Q,-2*K*M-1);
Best(k,:) =Par_Q(1:15,2*K*M+1)';
if mod(k,1)==0
disp(sprintf('Interation Number: %02.0f,k));
end;
end
Xmax;
Xmin;
U =Par Q(1,1:K*M);
L =Par Q(1,K*M+1:2*K*M);
Lower = reshape(L,M,K)';
Upper = reshape(U,M,K)";
% Rules before optimization

disp(")
disp('Rules before optimization:")
disp(")
fori=1:K
str=['if'];
forj=1:M
str = [str'( x_'num2str(j) ' < ' num2str(Upper(i,j)) ' ) and '];
end

str = str(1:end-5);
str = [str ' then class " categ{i} ""];
disp(str)
end
% Rules after optimization
Lower = reshape(L,M,K)';
Upper = reshape(U,M,K)'";
disp(")
disp(‘'Prunning Rules:")
disp(")
fori=1:K
str=['if '];
forj=1:M
if Lower(i,j)>=Xmin(j)
str = [str '( x_'num2str(j) ' >="num2str(Lower(i,j)) ' ) and '];
end;
end;
str = str(1:end-5);
str = [str ' then class " categ{i} ""];
disp(str)
end;
% Testing the test data
[numb,txtt,rawss] = xIsread('test.xIsx");
XX = numb;
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[MM,NN]=size(XX);

X1 =numb; % use all data for fitting

Y1 = category;

Conf Mat = confusionmat(group,categori(X,U,L))
x = sum (diag(Conf Mat));

y = sum (sum (Conf Mat));

Accurancy = x/y*100

correctly = Accurancy * N /100

misclassified = N-correctly

toc;

2- MATLAB code for the all the proposed feature selection methods

function varargout = DEMO(varargin)
gui_Singleton = 1;
gui_State = struct('gui Name',  mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFen', @DEMO_OpeningFen, ...
'gui_OutputFen', @DEMO_OutputFen, ...
'gui_LayoutFen', [], ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfen(gui_State, varargin{:});
end
return
% --- Executes just before DEMO is made visible.
function DEMO_OpeningFcn(hObject, eventdata, handles, varargin)
global FSSettings StopByUser
FSSettings.ErrorEstMethod = 'SFS';

FSSettings.FSMethod ='SFS";
Yo------- Classifier Settings -------
FSSettings. GammaParam =0.025;
FSSettings.ConfMatSwitch = 0;
FSSettings.PercTest = 10;

%-- Sequential Selection Settings -----
FSSettings.MahallnfoLossMethod = 'on';
FSSettings.TotalNStepsThres = 250;
FSSettings.LogViewOfIntStep = 1;

%o=mmmmmmm - ReliefF --------mmmm--
FSSettings.NCorePatterns = 250;
FSSettings.NHits =10;

%

handles.output = hObject;

StopByUser = 0;

axes(handles.YelLinesAxes); set(gca, 'Visible', 'off);
handles.SliderValue = 10;

warning off all

guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.
function varargout = DEMO_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
varargout{1} = handles.output;

%0 =m=mmmmmmmme e Data Load and View
function OpenDataFile ClickedCallback(hObject, eventdata, handles)
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handles.file = uigetfile('*.*");
global StopByUser
if handles.file~=0
% Only for viewing purpose
[Patterns, Targets] = DatalL.oad AndPreprocess(handles.file);
handles.PatternsToRunFS = Patterns;
handles.TargetsToRunFS = Targets;
StopByUser = 0;
[NPatterns, KFeatures] = size(Patterns);
axes(handles.FeatSelCurve);cla reset;
axes(handles.ClassResAxes); cla reset;
axes(handles.ClassesLegendAxes); cla reset;
set(gca, Visible','off");
axes(handles.YelLinesAxes); set(gca, 'Visible', 'off');
axis manual
axes(handles.PatternsFeaturesAxes);cla reset;
title(handles.file);
colorbar;
set(findobj(gcf, Tag','ListSelFeats'), 'String','Press Start to select features');
guidata(hObject, handles);
end
return
%
function RunFeatSelection_ClickedCallback(hObject, eventdata, handles)
global StopByUser FSSettings
set(findobj(gcf, Tag','ListSelFeats"), 'String', []);
axes(handles.FeatSelCurve); cla reset;
axes(handles.YelLinesAxes); cla reset; set(gea, Visible','off', "YDir','reverse');
StopByUser = 0;
guidata(hObject, handles);
FSSettings.FSMethod
if stremp(FSSettings.FSMethod,'SFS")|| stremp(FSSettings.FSMethod,' SFFS")
[ResultMat, ConfMatOpt, Tlapse, handles.OptimumFeatureSet, OptimumCCR]= ForwSel main(handles.file,
FSSettings, handles);
elseif stremp(FSSettings.FSMethod,'ReliefF")
[FeatureWeightsOrdered, FeaturesIndexOrdered, handles.OptimumFeatureSet] = ReliefF(handles.file,
FSSettings,handles);
elseif stremp(FSSettings.FSMethod,'SBS") || strcmp(FSSettings.FSMethod,'SFBS')
[ResultMat, ConfMatOpt, Tlapse, handles.OptimumFeatureSet, OptimumCCR]= BackSel main(handles.file,
FSSettings, handles);
end
handles.OptimumFeatureSet = sort(handles.OptimumFeatureSet);
guidata(hObject, handles);
%
function StopFeatSelButton ClickedCallback(hObject, eventdata, handles)
global StopByUser
StopByUser = 1;
guidata(hObject, handles);
return
%
function ListSelFeats CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'));
set(hObject,'BackgroundColor','white');
end
set(hObject,'String','None Selected yet');
%
function LoadAndClassifyButton_ClickedCallback(hObject, eventdata, handles)
handles.fileToClassify = uigetfile("*.mat');
PatternsToClassify = Datal.oad AndPreprocess(handles.fileToClassify);
handles.PatternsToClassify = PatternsToClassify(:, handles.OptimumFeatureSet);
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NPatternsToClassify = size(PatternsToClassify,1);
if NPatternsToClassify >= 10
set(findobj(gcf, Tag','ClassResSlider"), ...
'Max', NPatternsToClassify,...
'Min', 10, ...
'Value', 10, ...
'SliderStep',[1 1]/(NPatternsToClassify-10),'Enable', 'on');
else
set(findobj(gcf, Tag','ClassResSlider'), 'Enable’, 'off");
end
handles.SliderValue = 10;
guidata(hObject, handles);
DEMO('ClassifyAndPlot',guidata(gcbo));
guidata(hObject, handles);
%
function ClassResSlider Callback(hObject, eventdata, handles)
handles.SliderValue = get(hObject,' Value');
guidata(hObject, handles);
DEMO('ClassifyAndPlot',guidata(gcbo));
guidata(hObject, handles);
%
function ClassResSlider CreateFen(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor"), ...
get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
%
function ClassifyAndPlot(handles)
PatternsToRunFS = handles.PatternsToRunFS(:, handles.OptimumFeatureSet);
ProbsClass = BayesClassValidationSet(PatternsToRunFS, handles.TargetsToRunFS,
handles.PatternsToClassify);
NPatternsToClassify = size(ProbsClass,1);
SumProbsClass = sum(ProbsClass,2);
for IndexPatterns = 1:NPatternsToClassify
ProbsClass(IndexPatterns,:) = ProbsClass(IndexPatterns, :) /SumProbsClass(IndexPatterns);
end
[Dummy, PredictionClass] = max(ProbsClass, [], 2);
[NPatterns, CClasses] = size(ProbsClass);
axes(handles.ClassResAxes); cla reset;
set(gca,'YDir','reverse','Color',[.925 .914 .847));
axis([-0.5 1.5 0.5 10.5));
CumProbsClass = [zeros(NPatterns,1) cumsum(ProbsClass,2)];
ColorsToUse = 'rgbycmk';
YLocat =0;
handles.SliderValue = 10 + NPatterns - ceil(handles.SliderValue);
for IndexPattern = (handles.SliderValue-9):handles.SliderValue
YLocat = YLocat + 1;
if IndexPattern <= NPatterns
for IndexClass = 1:CClasses
hold on
text(-0.15, YLocat, num2str(IndexPattern), 'Horizontal Alignment', 'right");
plot(CumProbsClass(IndexPattern, IndexClass:(IndexClass+1)), Y Locat*ones (1,2),
ColorsToUse(IndexClass), 'LineWidth', 5);
end
end
end
text(-0.9 ,0.5,'Pattern #");
text(0.2 ,0.5,'P(x[\Omega 1)");
text(1 0.5, Predict");
axis([-0.5 1.5 0.5 10.5));
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set(gca,'Visible','off");
drawnow
axes(handles.ClassesLegend Axes);
for IndexClass = 1:CClasses

text(0.1, IndexClass*0.5, ['Class ' num2str(IndexClass)], 'Color', ColorsToUse(IndexClass));
end
axis([0 1.5 0.5 5])
0 ==mmmmmmmmmn- Menu Functions
function OpenDataMenu_Callback(hObject, eventdata, handles)
DEMO('OpenDataFile ClickedCallback',gcbo,[],guidata(gcbo));
function RunFsMenu_Callback(hObject, eventdata, handles)
DEMO('RunFeatSelection ClickedCallback',gcbo,[],guidata(gebo));
function StopFSMenu_Callback(hObject, eventdata, handles)
DEMO('StopFeatSelButton ClickedCallback',gcbo,[],guidata(gcbo));
function StandardCrossMenu_Callback(hObject, eventdata, handles)
global FSSettings
FSSettings.ErrorEstMethod = 'Standard';
set(hObject,'Checked','on");
set(findobj(gcf, Tag','ResubMenu'),'Checked','off");
set(findobj(gcf, Tag','Proposed A CrossMenu'),'Checked','off");
set(findobj(gcf, Tag','Proposed ABCrossMenu'),'Checked', off');
guidata(hObject, handles);
function ProposedACrossMenu_Callback(hObject, eventdata, handles)
global FSSettings
FSSettings.ErrorEstMethod = 'ProposedA';
set(hObject,'Checked','on");
set(findobj(gcf, Tag', ResubMenu'),'Checked', off');
set(findobj(gcf, Tag','Proposed ABCrossMenu'),'Checked', off');
set(findobj(gcf, Tag','StandardCrossMenu'),'Checked','off");
guidata(hObject, handles);
function ProposedABCrossMenu_Callback(hObject, eventdata, handles)
global FSSettings
FSSettings.ErrorEstMethod = 'Proposed AB';
set(hObject,'Checked','on");
set(findobj(gcf, Tag','ResubMenu'),'Checked','off");
set(findobj(gcf, Tag','Proposed ACrossMenu'),'Checked','off");
set(findobj(gcf, Tag','StandardCrossMenu'),'Checked','off");
guidata(hObject, handles);
function ResubMenu_Callback(hObject, eventdata, handles)
global FSSettings
FSSettings.ErrorEstMethod = 'Resubstitution';
set(hObject,'Checked','on");
set(findobj(gcf, Tag','Proposed ABCrossMenu'),'Checked', off');
set(findobj(gcf, Tag','Proposed ACrossMenu'),'Checked','off");
set(findobj(gcf, Tag','StandardCrossMenu'),'Checked','off");
guidata(hObject, handles);
Opmmmmmmm e FS Menu Functions
function SFS_Callback(hObject, eventdata, handles)
global FSSettings
FSSettings.FSMethod = 'SFS';
FS Method_ClearAllChecks(hObject, handles)
set(hObject,'Checked','on");
guidata(hObject, handles);
function SFFS_Callback(hObject, eventdata, handles)
global FSSettings
FSSettings.FSMethod ='SFFS";
FS Method ClearAllChecks(hObject, handles)
set(hObject,'Checked','on");
guidata(hObject, handles);
function ReliefF_Callback(hObject, eventdata, handles)
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global FSSettings

FSSettings.FSMethod = 'ReliefF";

FS Method_ClearAllChecks(hObject, handles)
set(hObject,'Checked','on’");

guidata(hObject, handles);

function SBS_Callback(hObject, eventdata, handles)
global FSSettings

FSSettings.FSMethod = 'SBS';

FS Method_ClearAllChecks(hObject, handles)
set(hObject,'Checked','on");

guidata(hObject, handles);

function SFBS_Callback(hObject, eventdata, handles)
global FSSettings

FSSettings.FSMethod ='SFBS";

FS Method_ClearAllChecks(hObject, handles)
set(hObject,'Checked','on’");

guidata(hObject, handles);

function FS_Method_ClearAllChecks(hObject, handles)
set(findobj(gcf, Tag','ReliefF'),'Checked','off");
set(findobj(gcf, Tag','SFFS"),'Checked','off");
set(findobj(gcf, Tag','SFS"),'Checked','off");
set(findobj(gcf, Tag','SFBS"),'Checked','off");
set(findobj(gcf, Tag','SBS"),'Checked','off");
guidata(hObject, handles);

%
function SettingsMenu_Callback(hObject, eventdata, handles)
global FSSettings

FSSettings = SettingsMenuFig;

3- MATLAB code for GA-based feature selection

function Feat Index = Genetic_Algorithm
clear all
% global Data
Data = load('Dataset.mat'); % This is available in Mathworks
GenomeLength =8; % This is the number of features in the dataset
tournamentSize = 2;
options = gaoptimset('CreationFcn', {@PopFunction},...
'PopulationSize',50,...
'Generations', 100,...
'PopulationType', 'bitstring',...
'SelectionFen', {@selectiontournament,tournamentSize} ...
'MutationFen', {@mutationuniform, 0.1},...
'CrossoverFen', {@crossoverarithmetic,0.8},...
'EliteCount',2,...
'StallGenLimit',100,...
'PlotFens',{@gaplotbestf},...
'Display’, 'iter");
rand('seed’,1)

nVars =8; %
FitnessFcn = @FitFunc KNN;
[chromosome,~,~,~,~,~] = ga(FitnessFcn,nVars,options);

Best chromosome = chromosome; % Best Chromosome

Feat Index = find(Best_chromosome==1); % Index of Chromosome

end

%%% POPULATION FUNCTION

function [pop] = PopFunction(GenomeLength,~,options)

pop = (rand(options.PopulationSize, GenomeLength)> RD); % Initial Population
end

%%% FITNESS FUNCTION You may design your own fitness function here
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function [FitVal] = FitFunc_ KNN(pop)

% global Data

Data = load('vvv.mat');

FeatIndex = find(pop==1); %Feature Index
X1 = Data.X;% Features Set

Y1 = grp2idx(Data.Y);% Class Information
X1 =XI(:,[FeatIndex]);

NumPFeat = numel(FeatIndex);

Compute = ClassificationKNN.fit(X1,Y 1, NSMethod','exhaustive',' Distance','euclidean");
Compute.NumNeighbors = 3; % kNN =3
FitVal = resubLoss(Compute)/(34-NumFeat);
end
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