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Summary 

 

The objective of the experiments described in this thesis was to optimise transplantation 

protocols to improve the outcome of striatal mouse-to-mouse grafts in lesion models of 

Huntington’s Disease. There is a need to develop the model since the results observed, both 

in published studies and from within the lab, show typically small and pencil-like grafts, with 

little integration into the host compared to the widely-used rat model. 

The starting point was current practice – procedures based on the efficacious rat model - 

with studies designed to probe the effect of altering key components of the protocol. These 

are grouped into three experimental chapters; 

• Exploring the effect of host 

These experiments examine potential reasons a poorer outcome is seen in mice. By 

comparing the mouse and rat quinolinic acid lesion models it was shown that mice maintain 

a greater inflammatory response. This result prompted studies into the effect of delaying 

grafting until beyond peak post-lesion inflammation, and if the inflammatory response was 

strain-specific. Whilst no differences were detected, it was concluded that group sizes were 

not adequate to make a definitive conclusion. 

• Exploring the effect of donor 

The first experiment focussing on donor parameters compared different methods of cell 

preparation and identified that E14 single-cell suspension yielded the best results. However, 

all groups demonstrated large variance in the graft outcome. This led to the exploration of 

the cell suspension and cell viability, finding that the trypan blue method may not be ideal 

for measuring the health of cell suspensions. 

• Functional outcome measures 

These experiments demonstrated a variety of graft outcomes; however, none could describe 

which were ‘best’ in terms of functional efficacy, a fundamental outcome for cell 

transplantation therapies. A field-wide lack of systematic behavioural testing of the mouse 

quinolinic acid models was identified, and the final experiments describe a comprehensive 

motor and cognitive characterisation of the model, culminating in recommendations for 

appropriate test batteries to identify functional recovery. 

 



  Contents 

 
  

Contents 

              Summary i 

1 Chapter 1 - Introduction  

1.1 Huntington’s disease 1 

1.2 Animal models of Huntington’s disease 6 

1.3 Potential therapeutic options in HD 9 

1.4 Factors affecting the quality of transplants 17 

1.5 Outcome measures in preclinical graft assessment 20 

1.6 Aims 23 

2 Chapter 2 - Methods  

2.1 Animal models 24 

2.2 Surgical procedures 25 

2.3 Histological techniques 29 

2.4 Cell culture procedures 35 

2.5 Behavioural testing 37 

3 Chapter 3 - Exploring the effect of host in QA lesion models  

Experiment 1 – A species comparison of excitotoxic lesions  

3.1 Summary 54 

3.2 Introduction 56 

3.3 Methods 59 

3.4 Results 62 

3.5 Discussion 71 

3.6 Conclusions and future work 75 

Experiment 2 – Extending the post-lesion period and the effect of 
host age  

3.7 Summary 77 

3.8 Introduction 78 

3.9 Methods 79 

3.10 Results 82 

3.11 Discussion 88 

3.12 Conclusions and future work 91 

Experiment 3 – The effect of host and donor strains  

3.13 Summary 92 

3.14 Introduction 93 

3.15 Methods 96 

3.16 Results 100 

3.17 Discussion 109 

3.18 Conclusions and future work 111 
 



  Contents 

 
  

Chapter 4 – Exploring the effects of donor tissue and cell 
preparations 

4  

Experiment 4 – The effect of tissue preparation and donor age  

4.1 Summary 113 

4.2 Introduction 115 

4.3 Methods 119 

4.4 Results 126 

4.5 Discussion 137 

4.6 Conclusions and future work 143 

Experiment 5 – The viability of cell suspension during the 
surgery period 

 

4.7 Summary 144 

4.8 Introduction 145 

4.9 Methods 148 

4.10 Results 151 

4.11 Discussion 156 

4.12 Conclusions and future work 159 

Chapter 5 – The functional assessment of the QA lesioned 
mouse model 

5  

5.1 Summary 161 

5.2 Introduction 162 

Experiment 6 – Characterisation of deficits in a unilateral 
dorsolateral QA lesion mouse model 

 

5.3 Methods 164 

5.4 Results 169 

5.5 Experimental Discussion 186 

Experiment 7 – Characterisation of deficits in a bilateral 
dorsomedial QA lesion mouse model 

 

5.6 Methods 189 

5.7 Results 194 

5.8 Experimental Discussion 211 

5.9 Chapter Discussion 214 

5.10 Conclusions and future work 221 

Chapter 6 – General Discussion 6  

6.1 Key findings 224 

6.2 The effect of host 225 

6.3 The effect of donor 227 

6.4 Functional assessment 227 

6.5 Conclusions 228 

7 Bibliography 230 

8 Appendix 1 – Solution recipes 259 

9 Appendix 2 – Antibodies 261 

10 Appendix 3 – Operant test parameters 262 

Appendix 4 – Published article 267 
 



Chapter 1  Introduction 

1 
 

Chapter 1 

Introduction 

 

1.1 Huntington’s disease 

 
Huntington’s disease (HD) is a debilitating disorder characterised by motor, cognitive and 

psychological disturbances, for which the prognosis is extremely poor. Diagnosis is typically 

made when motor symptoms begin to manifest (Huntington Study Group, 1996), usually 

from around 35-40 years of age, although they can present at any age (Foroud et al., 1999). 

Chorea, loss of balance or perceived clumsiness are commonly the first reported signs, which 

can progress to dystonia, bradykinesia, rigidity, dysarthria and dysphagia (Novak and Tabrizi, 

2010). Preceding diagnosis, however, the patient will often have had a period of subtle but 

worsening cognitive and psychological changes (Paulsen et al., 2008, 2001). These signs tend 

to be detected by close family members many years before the apparent disease onset, and 

often are not recognised by the patient themselves. Cognitive signs can include decline in 

executive function and difficulty in organising thoughts, problems initiating movement, 

perseveration of movement, increased impulsivity and distractibility, and difficulty in 

learning new information. Psychiatric features associated with the disease can include 

depression, anxiety, apathy, irritability and suicidal tendencies (Paulsen et al., 2005). Sleep 

disturbance and personality changes are also commonly seen. Any one of these symptoms 

in themselves can have a severely damaging effect on a patient’s life, which makes HD a 

devastating disease not only for the patient but for their family, not least because of its 

hereditary nature.  

Most patients will survive for just 10 to 20 years post-disease onset (Foroud et al., 1999), 

with symptoms becoming progressively more severe, resulting in a rapid deterioration in 

quality of life. The most common causes of death come from inter-related complications, 

such as pneumonia or cardiovascular problems, rather than as a direct result of the disease. 

There is currently no known treatment that can inhibit the progression of the disease and 

symptomatic relief is minimal.  
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The prevalence of HD in Europe and western countries is often reported to be between 

5-7 in 100,000 people (Walker, 2007), however more recent estimates increased this to 12.3 

in 100,000 (Evans et al., 2013). HD is genetically inherited and caused by an expansion of the 

trinucleotide repeat cytosine-adenine-guanine (CAG) in exon 1 of the Huntingtin gene (HTT) 

on chromosome 4, first identified in 1993 by the Huntington’s Disease Collaborative 

Research Group (HDCRG, 1993). As an autosomal dominant disease with full penetrance, any 

person carrying the mutated gene (mHTT) will develop the disease and have a fifty percent 

chance of passing it on to any offspring. While the inheritance of mHTT accounts for the vast 

majority of HD cases, it is thought that 1-3% of new cases are due to sporadic mutations 

(Myers et al., 1993). Since symptoms will often present after childbearing age, and previous 

generations often have been misdiagnosed, it is common for patients to have had children 

before knowing about the condition – meaning diagnosis impacts greatly on the whole 

family. Genetic testing is available to confirm the presence of mHTT, however most people 

at risk decide not to take the test (Creighton et al., 2003), possibly due to the risk of negative 

social discrimination or the thought that it is unnecessary due to the lack of a cure, or simply 

because they would rather not know.  

The age at which the onset of symptoms occurs is closely correlated to the mHTT CAG repeat 

length (Langbehn et al., 2004). Individuals in the normal population have <10 - 29 CAG 

repeats in the gene sequence (Kumar et al., 2010), whereas HD patients have an extended 

CAG repeat length of 36 or more. While the mean age of onset occurs around mid-life, those 

with repeats towards the lower end of the scale tend to have symptoms which manifest later 

in life, while juvenile onset of symptoms, and greater symptom severity, occurs in those with 

more than ~60 CAG repeats (Lee et al., 2012; Zdzienicka et al., 2002). It is thought that 

environmental factors and as yet unidentified genetic factors can also play a modifying role 

in the age of disease onset (The U.S.-Venezuela Collaborative et al., 2004). 

The huntingtin protein (HTT), for which HTT codes, is known to be active in neural 

development, and also is thought to have many other functional roles in the body including 

intracellular vesicular trafficking, synaptic transmission, neuronal transcription and 

autophagy (Caviston and Holzbaur, 2009; Gauthier et al., 2004; Marcora and Kennedy, 2010; 

Martin et al., 2014; Steffan, 2010). The exaggerated length of the mHTT gene in people with 

HD translates an expanded polyglutamine repeat in the HTT protein which causes misfolding 

and interferes with its normal function and interactions (Borrell-Pagès et al., 2006).   
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The appearance of aggregated mutant huntingtin (mHTT), and its formation into insoluble 

inclusion bodies in neuronal cells throughout the brain, is a characteristic feature in HD. It 

remains unclear if these inclusions are protective or pathogenic in nature (Walker, 2007) as 

the exact pathological mechanisms of HD are yet to be determined. Some of the earliest 

pathological deterioration occurs in the olfactory tubercles and the caudate putamen, and is 

focussed specifically on the medium spiny neurons (MSNs) (Graveland et al., 1985) which 

constitute 90 – 95% of the total adult striatal neuron count. The progressive dysfunction and 

degeneration of these cells from the basal ganglia network trigger the cognitive, psychiatric 

and behavioural disruption seen in patients, possibly initiated through early synaptic 

dysfunction (Duff et al., 2007; Harrington et al., 2012; Paulsen et al., 2008; Twelvetrees et 

al., 2010). However, neurochemical alterations, mitochondrial dysfunction, oxidative stress, 

neuroinflammation and excitotoxicity have all been linked to the deterioration of MSNs and 

their associated neural networks (Alexi, 2000; Beal, 1994; Crotti et al., 2014; Tang et al., 

2005).  

 

1.1.1 The cortico-striatal circuitry in the normal brain 
 

Striatal MSNs project and carry signals to the thalamus and output targets beyond, and the 

remaining 5-10% of striatal neurons (excitatory cholinergic interneurons) work to modulate 

their action (Difiglia and Rafols, 1988; Lanciego et al., 2012; Wang et al., 2006). MSNs are 

GABAergic, secreting the inhibitory γ-aminobutyric acid (GABA) neurotransmitter which acts 

to dampen activity of post-synaptic target neurons. Movement, cognition and behaviour are 

thought to be controlled by the neuronal circuits of the cerebrum and basal ganglia (Albin et 

al., 1989; Brown and Robbins, 1989; Phillips and Carr, 1987; Steiner and Gerfen, 1998; Suri 

et al., 1997), with functionally distinct cortico-striatal loops mediating different aspects of 

behaviour (Alexander et al., 1986; Lopez-Paniagua and Seger, 2011). Together with the 

globus pallidus (GP), substantia nigra (SN) and subthalamic nucleus (STN), the striatum is one 

of the major nuclei of the basal ganglia of humans and other primates, and is the primary 

afferent structure. It receives input from the cerebral cortex, thalamus, SN and brain stem, 

and extends efferent neurons to the GP and SN (Lanciego et al., 2012), Figure 1.1 A.  

Within the striatum MSNs are organised into two parallel processing circuits known as the 

direct and indirect pathways, each predominantly innervated by different dopaminergic 

receptor sub-populations. Dopamine D1 receptors are predominantly located on the MSNs 

of the direct pathway, while D2 receptors are associated more with the MSNs of the indirect 
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pathway (Doig et al., 2010), although there is thought to be some crossover between the 

two. The substantia nigra innervates phasic dopaminergic input into the basal ganglia, and 

differentially induces excitation and inhibition of the direct and indirect pathways 

respectively. The net balance of these two opposing circuits is critical for the stimulation of 

the thalamo-cortical feedback mechanisms which drive the system and determine optimal 

behaviour outputs (Albin et al., 1989; DeLong, 1990), as such, normal functioning control is 

coordinated through the action of the direct and indirect pathways. If the balance is 

disturbed, functional integrity is lost, resulting in a broad range of consequent effects on 

movement and cognitive ability. For example, through selective loss of MSNs as in HD, or 

through loss of dopamine through nigral cell loss as in Parkinson’s disease, (Albin et al., 

1989). 

 

1.1.2 The cortico-striatal circuitry in Huntington’s disease 
 

The loss of MSNs from the indirect pathway is thought to be the principal cause of the 

neuropathological symptoms in HD (Albin et al., 1989; DeLong, 1990), disrupting the balance 

of the two signalling pathways of the basal ganglia, Figure 1.1 B, and inducing the progression 

of psychiatric, cognitive and motor deficits characteristic of HD. 

As the disease progresses, the pathology extends to the neurons of the direct pathway and 

patients become progressively more hypokinetic. In the later stages, the pathology becomes 

more extensive and eventually develops into a whole brain disease (Aylward et al., 1998; 

Rosas et al., 2002). 



  

 
 

 

 

 

  

A B 

Figure 1.1 A Diagram to show the anatomical connections of the basal ganglia. Afferent dopaminergic neurones (DOPA) input the striatum from the substantia nigra pars 

compacta (SNc) and exert both an excitatory (direct pathway) and inhibitory (indirect pathway) influence through stimulation of the D1 or D2 receptors respectively.   The 

direct and indirect pathways act in synergy to provide optimal stimulation of the thalamocortical loop and allow striatal-mediated functions to proceed. B Diagram to show 

the effect of Huntington’s disease on the anatomical connections of the basal ganglia. Thicker arrows indicate an increase of influence while reduced interactions are denoted 

by thinner lines. During the early stages of Huntington’s disease, the MSNs of the indirect (D2) pathway become dysfunctional, destroying the inhibitory control over the 

efferent globus pallidus connections. As a result, excitatory input from the cortical efferent neurons and inhibition from nigral dopaminergic neurons stimulate the excitatory 

direct pathway but fails to modulate activity via the inhibitory indirect pathway. The cumulative effect of this disturbed balance is to reduce inhibitory mediating influences 

on the thalamocortical loop causing striatal-mediated functions to be over-activated and uncontrolled. 

5 
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1.2 Animal models of Huntington’s disease 

 

Aside from the pathogenic progression of HD, the mechanisms of the disease are still not 

completely understood. To fully explore the contribution of potential underlying aberrant 

processes and to test the capacity of novel treatments to ameliorate them, animal models 

must play a critical role. An appropriate model must reproduce some aspects of the disease, 

preferably relatable to signs exhibited in patients, from which the disease mechanisms can 

be explored.  

Two of the major hallmarks of HD make it relatively amenable to modelling in animals. Firstly, 

it is caused by an identified single genetic mutation, enabling a plethora of transgenic and 

knock-in models to be constructed. Secondly, its primary pathogenic feature is loss of MSNs 

from the striatum, an aspect which can be replicated through striatal injection of excitotoxins 

which cause targeted cell death. 

 

1.2.1 Genetic models of HD 

 

Through replicating the genetic nature of HD, genetic models offer insight into its progressive 

features, as well as providing a method of understanding key molecular and cellular 

disturbances induced by the disease. This provides an opportunity to not only test the impact 

of pharmaceutical and other interventions on disease progression, but also to identify 

relevant pre-symptomatic changes which could be used to identify optimal timings for early 

therapeutic interventions, before the onset of cell loss.  

There is now a wide array of HD mouse models commercially available, incorporating 

transgenics - in which all or part of the mouse or human mutant gene are inserted randomly 

into the genome, and knock-in models, where the mutation is inserted specifically into the 

huntingtin gene exon 1 locus. Whilst each of the models present a differing array of disease 

signs and severity, they commonly show progressive behavioural motor and cognitive 

deficits, and the presence of widespread intra-nuclear inclusions (Heng et al., 2008; Menalled 

and Chesselet, 2002). The first transgenic mouse models (R6/1 with ~115 CAG repeats and 

R6/2 with 150 CAG repeats) exhibit a rapid development of cognitive (learning and memory), 

motor (abnormal gait, clasping ability, hyperactivity) and physical decline (weight loss and 

muscle wastage), as well as early pathological signs (formation of intranuclear mHtt 

inclusions). The R6/2 model has a particularly aggressive disease progression and a life 
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expectancy of just 13-16 weeks. More recent models, such as the knock-in hdhQ175 line 

(~175-190 CAG repeats), are slower to develop inclusions and show signs of cognitive decline 

only after age 6 months. This makes them more amenable to longer-term studies and 

intervention probes than the R6s, which may not live long enough to benefit from treatment. 

In addition, a series of lines has been developed in which a range of CAG lengths have been 

incorporated, from 50 to 250 repeats, with the onset of HD signs occurring earlier, and 

disease severity increasing in proportion to the number of CAG repeats present. Cognitive 

decline in genetic HD mouse models has been demonstrated through attentional deficits 

(e.g. five-choice serial reaction time task), memory deficits (e.g. Morris water maze task) and 

decline in cognitive plasticity (e.g. set shifting tasks). Motor deficits have been shown 

through gait analysis, reduced motor coordination (e.g. rotarod, balance beam) and poorer 

manual dexterity (paw reaching) compared to wildtype controls. 

Currently, a minimal number of transgenic rat models of HD have been developed, and the 

majority of transgenic work has been conducted in mice due to the ease of genetic 

manipulation in this species compared to rats (Brooks et al., 2009; Manfré et al., 2015). 

Whilst clearly having the benefit of exhibiting high face validity and the genetic construct of 

the disease, critically, the genetic models demonstrate only minimal striatal cell loss (Brooks 

et al., 2012b, 2012c; Gil and Rego, 2008; Turmaine et al., 2000). Some degree of neuronal 

loss was evident in the YAC 128 model, although not until after 9 months of age (Slow et al., 

2003). For studies examining this aspect of the disease, maintaining animals for so long 

before experiments is costly. In addition, if surgical interventions are to be performed, the 

impact on welfare is increased when conducted in older, more unwell animals, rather than 

younger and otherwise healthy animals.  Importantly, reducing the period for which animals 

are kept, and improving welfare are priorities for animal research. Therefore, acute models 

of neurodegeneration present a viable alternative for studies focussed on this aspect of HD. 

 

1.2.2 Excitotoxic lesion models of HD 

 

Glutamatergic excitotoxicity is thought to be a major mechanism of neurodegeneration in 

HD. Binding of the neurotransmitter glutamate (GLU+) to the N-methyl-D-aspartate (NMDA) 

receptors, located on the dendrites of neurons, causes a massive and detrimental influx of 

Ca2+ into the cell. MSNs have a relatively high number of NMDA receptors, and as such they 

are inherently more susceptible to the actions of the excitotoxin. As intracellular levels of 

Ca2+ increase, a toxic series of metabolic disturbances and pathological damage is triggered, 



Chapter 1  Introduction 

8 
 

including mitochondrial Ca+ overload (Beal, 1994; Tang et al., 2005) and the induction of 

apoptotic cell death (Beal et al., 1991, 1986; Schwarcz et al., 1979). Compromised cellular 

metabolism, such as that seen in the MSNs in HD, is thought to confer an increased 

predisposition to excitotoxic vulnerability, thus triggering cell death in response to normal 

levels of excitotoxins in the brain.  

Quinolinic acid (QA) is an endogenous GLU+ analogue which acts upon the NMDA receptors 

and replicates some of the chemical pathways thought to play a role in the degeneration of 

MSNs (Beal et al., 1986; Bruyn and Stoof, 1990). Neurons with dendritic NMDA receptors 

stimulated by the excitotoxin exhibit specific depolarization and rapid degeneration (Foster, 

1983). Therefore, the specific striatal neurodegeneration observed in early HD can be 

emulated in animal models through intracranial injection of QA directly into the striatum 

(Beal et al., 1991; Portera-Cailliau et al., 1995), whereby the NMDA-rich MSNs within the 

area of QA infusion will be subjected to its excitotoxic action, leading to their localised cell 

death. Much like in HD, the axons and non-neuronal tissue in this model are spared, as well 

as the cholinergic interneurons and non-spiny NADPH-diaphorase neurons (Beal et al., 1991; 

Davies and Roberts, 1988).  

Other neurotoxins have been utilized in lesion models including GLU+, kainic acid (KA), 

ibotenic acid (IBO), and NMDA. The GLU+ analogues, KA and IBO, were developed as they 

were found to have an increased potency over GLU+ (Coyle et al., 1983), however each had 

shortcomings including the development of extra-striatal lesions, in the case of KA (Guldin 

and Markowitsch, 1981), and degeneration of striatal target neurons and bi-lateral reduction 

of dopamine with IBO (Narang et al., 1993). The targeted action of QA lends the excitotoxin 

an advantage over other similar neurotoxins by inducing an acute working recapitulation of 

HD which produces the cellular dysfunction and many of the core symptoms associated with 

the disease (Beal et al., 1991). In addition, the ability to independently lesion just one 

hemisphere allows the use of the contralateral side as a within-subject control for lateralised 

deficits.  

Whereas the genetic mouse models of HD have been extensively behaviourally characterised 

(Brooks et al., 2012a, 2012b, 2012c; Heng et al., 2008), the striatal QA lesion mouse model 

has not undergone such a systematic behavioural or pathological characterisation.  

Protocols for testing cognitive function, and the effect of therapeutic strategies on these 

functions, are often based on traditional rat models of disease. The translation to mice is 

often expensive in time and resources, thus in certain fields of research, such as 
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transplantation therapy, there is rich history of trials in the rat that is largely absent in the 

mouse (Björklund et al., 1980a, 1980b; Dunnett and Björklund, 1997; Gage et al., 1997). In 

addition to benefitting from a comprehensive catalogue of established testing protocols, the 

larger size of the rat confers an advantage where the therapeutic application is surgical 

(Abbott, 2004; Bugos et al., 2009). A comparison of the pathology and response to QA 

lesioning in the rat and mouse models is discussed further in Experiment 1, and an in-depth 

characterisation of the behavioural deficits of the QA mouse model in Chapter 5. 

 

1.3 Potential therapeutic options in HD 
 

There is currently no treatment available which can reverse or slow the progression of HD. 

The burden of the disease is managed through physiotherapy and support from family and 

physicians, as well as through symptomatic pharmacological treatment, which can often 

cause problematic side-effects (Coppen and Roos, 2017).  

A number of potential therapies are under consideration for clinical application, each 

tackling a different aspect of the disease, such as prevention of protein aggregation 

(Huntington Study Group, 2015), increasing beneficial neurotrophic factors in the brain 

(Reilmann et al., 2014), or most recently, promising trials aimed at lowering the amount of 

mHTT through suppression of the RNA (NIH, 2017).  

These approaches show great promise for people in the pre-symptomatic and early stages 

of HD, however it remains unclear how appropriate they might be once significant 

neurodegeneration has occurred. Whilst preventing loss of affected cells is obviously 

extremely valuable, these approaches cannot repair those cells which have already been lost. 

The relatively targeted nature of the neurodegeneration in HD presents an opportunity to 

replace those lost striatal cells with new MSNs, with the aim of restoring connections, and 

potentially to even reverse the progress of the disease. 

 

1.3.1 Cell transplantation as a viable therapeutic option in HD 

 

Transplantation of whole ganglionic eminences (WGEs), which include the site of MSN 

precursors in foetal development, has been shown to be a viable therapeutic strategy. 

Clinical trials have so far focussed on safety and procedural aspects of the therapy, and 
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demonstrated long-term survival of grafts, with no graft-induced side effects or exacerbation 

of the disease (Freeman et al., 2000; Hauser et al., 2002; Rosser, 2002). With the focus 

primarily on safety, studies have shown limited functional improvement, however, 

improvements in neurological assessments have been reported in some cases. A review by 

Bachoud Lévi et al., (2017) reports the outcome of 30 patients transplanted with hPF tissue 

for all trials where clinical data and follow-up details are available. Of these, 4 have 

demonstrated long-term functional efficacy, including improvements in motor and cognitive 

function over 4 – 6 years. An additional 4 patients showed more transient improvements or 

slowing of symptom progression compared to non-transplanted patients in the cohort.  

Post-mortem analysis of grafts have demonstrated successful integration of the transplanted 

tissue and differentiation into relevant striatal phenotypes  (Capetian et al., 2009; Freeman 

et al., 2000), in some but not all cases, highlighting the need for continued refinement of 

transplantation procedure. The efficacy and consistency of this approach must be improved 

before it can be developed as a clinical treatment. 

Cell replacement therapy has the potential to be a powerful therapeutic strategy for the 

treatment of HD, however, more work is required to test whether foetal transplantation can 

reliably improve function in people with HD.  

Human transplantation trials have so far used primary foetal (hPF) tissue from termination 

of pregnancy as a source of neuronal precursors, and this is currently viewed as the gold 

standard for graft outcome measures. However, the recruitment of multiple embryos is 

necessary to obtain the cell numbers required for a transplantation in HD, making the 

process difficult to manage logistically due to the limited availability of tissue. In addition, 

the quality of the tissue can be inconsistent, leading to difficulties in replicating protocols 

from patient to patient.  

Other obstacles facing the use of hPF tissue as a mainstream treatment, other than being a 

topic of controversy, include strict regulation and ethical constraints, and the need for 

patients to undergo an immunosuppressive regime to avoid immune rejection of the 

transplanted tissue. Advances in the use of embryonic stem cells (ESC) and mesenchymal 

stem cells (MSC) derived from adult bone marrow, have opened up the possibility of 

increasing not only the supply of donor cells, but also of improved quality control over the 

cell product (Dunnett and Rosser, 2007). Furthermore, the development of induced 

pluripotent stem cells (iPSC) and induced neurons (iN) allow conversion of adult somatic cells 

into the required cell types, which could lead the way in producing personalised treatment 
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products. Transplanting patient-derived cells could negate the requirement for 

immunosuppression and its associated side effects, and potentially improve the long-term 

graft outcome. However, cells taken from people with HD would retain a dysfunctional 

genotype and, as transplanted cells, could follow the same path of disease progression as 

those they are replacing. New techniques in the field have enabled the correction of CAG 

repeat length in manipulated iPSCs and have shown they can differentiate into new cells free 

of the expanded codon (An et al., 2012), thus furthering the potential of iPSCs for use in cell 

replacement therapies. This may be confounded however, by studies which show that even 

non-diseased transplanted cells will start to undergo degeneration in line with disease 

progression over time (Cicchetti et al., 2009).  

These donor cell sources have great potential to benefit the field of cell replacement therapy, 

however, much preclinical work is still required before moving them forward to clinic. The 

time frame of transplantation studies in patients can range over decades and progress is 

often slow, which highlights the need for further work in animal models to address many 

issues in a much shorter term to progress the therapy. 

 

1.3.2 Transplantation in rodents as model therapeutic systems 

 

The techniques of transplantation have been studied since the 1970’s (Seiger and Olson, 

1977), with work mostly concentrated on rat lesion models and demonstrating the successful 

reversal of functional deficits and integration of donor tissue with the host striatum. A broad 

range of studies have shown healthy looking grafts which have connected extensively with 

the host tissue and alleviated some HD-like signs induced by lesioning (Brasted et al., 2000; 

Döbrössy and Dunnett, 2008, 2005; Dunnett and White, 2006; Mazzocchi-Jones et al., 2009), 

Figure 1.2. Rat grafts typically incorporate most of the lesioned striatum and, as a result of 

protocol refinement, are able to produce a high proportion of dopamine and cAMP regulated 

phosphoprotein (DARPP-32) positive MSN tissue. Typically, grafted tissue is organised into 

striosomal-like morpholology, with areas of dense DARPP-32 staining striatal-like P-zones,  

and non-P-zones where this staining is much reduced or absent (Graybiel et al., 1989; Isacson 

et al., 1987). It has been suggested that these non-P-zones contain non-DARPP-32 neurons 

and glial cells (Nakao et al., 1996). Efferent projections from grafts are seen extending into 

the globus pallidus, as detected using retrograde tracers such as Flourogold. Furthermore, 

afferent host cortical neurons and dopaminergic fibres are often observed innervating the 

grafted tissues, thus mirroring the natural patterns of the basal ganglia circuitry (Watts et al., 
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2000b; Wictorin et al., 1989). Differentiation of transplanted tissue however, has been 

shown to be transplant site-specific, with donor cells apparently responding to local signals 

from within the host parenchyma (Campbell et al., 1995; Fricker et al., 1999). 

The advancement of stem-cell derived precursors and the many advantages these hold over 

primary tissue, such as manipulations in labelling and genetics, along with the development 

of new genetic models of HD, meant that there was leap from transplanting primary tissue 

in the rat models to transplanting stem cells in mice. As a result, existing protocols were 

transferred directly to the mouse models, and systematic optimisation of methods 

translating from rat to mice were largely overlooked.  

Few mouse transplantation studies have been published, and even fewer of these use mouse 

primary embryonic tissue (mPF). In contrast to those seen in rats, transplants of WGE in HD 

mouse models have generally produced relatively small grafts. Despite most studies 

reporting high graft survival rates, cell survival is low and the resultant grafts are often thin 

and pencil-like, with relatively little host interaction (Brasted et al., 2000; Cisbani et al., 2014; 

Dunnett and White, 2006; El Akabawy et al., 2012; Johann et al., 2007; Kelly et al., 2009, 

2007), Figure 1.3. It is worth considering that often the best-looking grafts from an 

experiment may be the ones chosen for published images, even so, the mouse grafts do not 

compare to those depicted in rat studies. Table 1.1 summarises the protocols and quantified 

graft outcomes reported in the literature for striatal mPF transplants in HD mouse models 

and demonstrates the small graft volumes and lack of consistency.  

Graft outcome measures have mostly focussed on morphology rather than any functional 

assessments, however, a study of transplantation in the R6/2 transgenic mouse did test for 

graft-induced functional recovery (Dunnett et al., 1998). In this case no improvement was 

found, possibly due to a combination of small graft sizes, widespread pathology in the host 

and the reduced R6/2 lifespan restricting the time for adequate graft development. 

Mouse studies of ESC and iPSC transplants are becoming increasingly common (Arber et al., 

2015; Dihné et al., 2006; El Akabawy et al., 2012; Shin et al., 2012), but do not yet produce 

the quality of transplant observed in rat studies. There remains a need to re-evaluate the 

protocols of primary mouse-to-mouse transplantation in order to produce the optimum 

outcomes against which future cell products may be validated. This includes the need to 

optimise the transplantation procedure, from tissue preparation and delivery, to the 

development of precise methods for functional assessment.  
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The experiments described in this thesis compare the rat and mouse QA model and 

modifications to the standard transplantation protocols, with the aim of improving the 

quality of graft outcome. The starting point for these comparisons is based on those mouse 

studies which have produced the largest grafts (Döbrössy et al., 2011) Figure 1.3 G, and the 

protocols and models used in this study are those on which the experiments of this thesis 

are based, see Chapter 2.  

Once robust protocols have been developed in the QA models to ensure healthy and 

integrating grafts can be reproduced consistently, the methods can then be tested in the 

progressive genetic models. Moreover, optimising the protocols for achieving successful 

embryonic WGE grafts will solve many issues that are also relevant to pluripotent stem cell-

derived grafts, which are currently being developed as a more sustainable source of donor 

cells. 

 

 



 

 
 

 

  

Figure 1.2 Images of rat PF striatal transplants into rat hosts collated from existing literature A Isacson et al., (1986), B Mayer et al., (1992), C Fricker et al., (1997), D Watts et al., (2000), 
E Brasted et al., (2000), F Fricker-Gates et al., (2004), G Döbrössy and Dunnett, (2006), H Dunnett and White, (2006), I Mazzocchi-Jones et al., (2009) and J Klein et al., (2013). 
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Figure 1.3 Images of mouse PF striatal transplants into mouse hosts collated from existing literature A Dunnett et al., (1998), B Johann et al., (2007), C Kelly et al., (2007), 
D Magavi and Lois, (2008), E Stefanova et al., (2009), F Precious, (2010), G Döbrössy et al., (2011), H Cisbani et al., (2013), I Evans, (2013) and J Roberton, (2014). 
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Author Lesion 
Host 

strain 
Host 
age 

Time 
post-lesion 

Donor 
strain 

Donor 
age 

Tissue 
type 

Prepar-
ation 

Ice Cells/µl 
Cells 

transplanted 
Survival 
rate (%) 

Graft cell 
number 

Graft volume 
(mm3) 

Dunnett et 
al., (1998) 

X 
R6/2 

10w n/a C57BL/6 
E13-
14 

LGE CS N ½ WGE 1 WGE 
100 - - 

CBA X 
C57BL/6 

100 - - 

Johann et 
al., (2007) 

QA C57BL/6 
Adult 2, 7 & 14d 

EGFP- 
C57BL/6 

E14 
Cultured 
WGE / 

NSC 

CS / 
Neuro-
spheres 

- 200,000 200,000 
- 3 – 20,000 0.03 – 0.20 

X R6/2 
EGFP-
R6/2 

- 3 – 20,000 0.03 – 0.20 

Kelly et al., 
(2007) 

QA C57BL/6 Adult - C57BL/6 E14 WGE CS Y 250,000 500,000 95 30,000 1.8 

Magavi and 
Lois, (2008) 

X CD1 
8w – 
13m 

n/a 
CD1-
GFP 

E14 LGE TP Y 5,000 5,000 - 2 – 4,000 - 

Stefanova 
et al., 
(2009) 

3-NP 
C57BL/6 

Adult 3d C57BL/6 E13.5 WGE CS N ½ WGE 1 WGE - - 0.8 – 1.0 PLP-
αSYN 

Precious, 
(2010) 

QA C57BL/6 Adult 14d C57BL/6 E14 
WGE 

CS Y 125,000 250,000 
- 1,000 0.75 

LGE - 750 1.5 
MGE - 450 1.4 

Mazzocchi-
Jones et al., 

(2011) 
QA C57BL/6 Adult 7d EGFP E13 WGE CS Y 200,000 400,000 100 - - 

Döbrössy et 
al., (2011) 

QA CD1 8w 10d 
C57BL/6 
(±GFP) 

E14 WGE CS N 150,000 300,000 100 - - 

Cisbani et 
al., (2013) 

X 
YAC128 

8m n/a 
C57BL/6 
(±GFP) 

E13.5 LGE CS Y 100,000 100,000 
100 6,000 0.014 

C57BL/6 100 6,500 0.02 

Evans, 
(2013) 

QA C57BL/6 Adult 6 – 10d C57BL/6 
E14 

WGE CS N 
250,000 500,000 78 - 1.25 

E12 1 WGE 2 WGE 86 - 4.4 

Roberton, 
(2014) 

QA 
CD1 8w - CD1 E14 WGE CS N 125,000 300,000 37 - - 

Table 1.1 Summary of mouse PF striatal transplants into mouse hosts. “-“ denotes where information is unavailable. LGE = lateral ganglionic eminence, WGE = whole ganglionic eminence. CS 
= single-cell suspension, TP = tissue-piece preparation. 

1
6 
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1.4 Factors affecting the quality of transplants 

 

The process of transplanting cells, from the source of the tissue and the way it is processed, 

to the surgical protocols and the host into which it is being implanted, are subject to a huge 

range of potential variables, all of which could have a great impact on the outcome of cell 

transplantation. The current protocols for transplantation in rodents have been developed 

in the rat lesion model following studies aimed at optimising the conditions for large grafts 

containing a high proportion of striatal-like tissue and demonstrable functional efficacy 

(Barker, 1995; Schmidt et al., 1981).  Such studies included probing the effects of embryonic 

dissection, donor age, the lesion-transplantation time window and the degree to which 

tissue is dissociated. However, very few of these experiments were conducted in mouse 

models. 

 

1.4.1 Host effects 
 

The immune response of the central nervous system (CNS) 

The development and maturation of transplanted embryonic MSN precursors has been 

shown to be dependent on extrinsic factors relating to the host environment (Ivkovic and 

Ehrlich, 1999). This highlights that the environment into which the cells are deposited can 

have a direct effect on graft outcome. The host CNS immune response to transplanted tissue 

has become recognised as one of the most important features of graft survival (Barker and 

Widner, 2004), despite the CNS historically being considered an immunologically privileged 

site (Barker and Billingham, 1978). Whilst the blood brain barrier can limit the infiltration of 

some peripherally circulating large molecules and immune cells into healthy brain 

parenchyma, the tight junctions it forms, separating the CNS from the periphery, can become 

more permeable when under stress or damaged during the process of transplantation 

surgery (Finsen et al., 1991), as well as during the lesioning process in preclinical models. In 

these conditions, the neural tissue is not only exposed to circulating immune cells (Hickey et 

al., 1991), but the inflammatory and immune response within the CNS itself can also be 

activated.  

The primary inflammatory and immune cells in the CNS are the microglia. In normal healthy 

individuals, microglia actively survey the brain in a ramified ‘resting’ state searching for 

foreign material, damaged tissue and debris. If these are encountered, the microglia can 
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transform into an ‘activated’ state and act as macrophages to engulf the offending material 

(Karperien et al., 2013; Olah et al., 2011; Streit et al., 2004), Figure 1.4.  

In development, microglia are responsible for the pruning of unnecessary dendrites and 

synaptic connections, and in adulthood will remove those connections that are not used or 

dysfunctional (Perry and Teeling, 2013). An increase in activated microglia has been seen at 

an early disease stage in the brains of both people with HD (Tai et al., 2007a, 2007b) and the 

in genetic mouse models (Kwan et al., 2012), with the mHTT-expressing microglia showing 

an increased tendency to induce neuronal death (Crotti et al., 2014). Furthermore, otherwise 

healthy neurones can be phagocytised if they become stressed in the presence of activated 

microglia, a process which is exacerbated in HD and other neurodegenerative diseases in 

which patient exhibit dysfunctional microglial activity (Brown and Neher, 2014). 

The microglia are highly reactive to insult and will increase in number to combat damage, 

recruiting non-local microglia to the region. This can lead to damage of healthy neural tissue 

if there is a sustained reaction to chronic insult. These reactive microglia could potentially be 

detrimental to transplanted cells being introduced during this reactive phase (Giulian, 1993). 

Conversely, some reports have hypothesised that the presence of microglia could be 

beneficial to the transplanted cells through supporting re-growth into damaged areas since 

they have been associated with the promotion of neural tissue repair by the secretion of 

neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in vitro, (Miwa et al., 

1997), however it is clear that in vivo, the reaction to transplanted tissue can be detrimental 

and severe (Cicchetti et al., 2011; Lawrence et al., 1990). Microglia and macrophages in fixed 

brain sections can be identified through immunohistochemical staining of antibodies, such 

as Ionized calcium binding adaptor molecule 1 (Iba1), and cell morphology used to predict 

the state of activation, as described in Figure 1.4. A more definitive description of the 

activated state of microglia could be achieved through double-labelling brain tissue with a 

combination of resting-state and activated-state specific antibodies, such as F4/80 and 

Cluster of differentiation 40 (CD40) respectively. An abundance of one marker over another 

could potentially inform on the type of effect that the microglia are exuding on the 

transplants, with increased numbers of CD40+ microglia indicating an activated state and 

inflammatory/hostile response to the transplant. Alternatively, more F4/80+ cells could 

indicate that the resting state microglia are contributing to a more anti-inflammatory, 

favourable environment. Using quantitative assays such as an enzyme-linked 

immunosorbent assay (ELISA), quantitative polymerase chain reaction (qPCR, for RNA 

transcription) and Western blots (for protein transcription) it is possible to further distinguish 
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between potentially beneficial or detrimental microglial presence in tissue using markers to 

identify what type of substances they are secreting, for example brain derived neurotrophic 

factor (BDNF) and Interleukin-10 (IL-10) would indicate beneficial/anti-inflammatory 

properties, while conversely QA and CD16 would show an inflammatory response. 

Microglia clearly play an important role in both HD and in the survival of transplanted cells, 

and the microglial response in the QA lesion models and transplanted mice is discussed 

further in Chapter 3. 

It is often assumed that mice will function and behave as a smaller version of the rat, 

however, there are underlying differences between the way that rats and mice respond to 

cells transplanted into the lesioned striatum. Whether there are disparities between the two 

species in their physical or chemical response to lesioning, in how the striatum responds to 

transplantation, or how the donor tissue responds to being transplanted has not been fully 

explored or dissected. Experiment 1 of this thesis directly compares the lesion response of 

the two species and discusses the differences between them.  

 

  

Figure 1.4 Representation of microglial morphological changes from ramified to activated states. Adapted from 
Karperien et al (2013). 

Ramified 

Activated 
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1.4.2 Donor effects and cell preparation 

Donor age 

The effect of donor age had been explored widely in rat-to-rat models and has been shown 

to impact greatly on the cellular content of the resultant grafts (Fricker et al., 1997; Schackel 

et al., 2013; Watts et al., 2000a, 1997). The embryonic age 14 days (E14) time-point was 

generally adopted and has been widely incorporated into the mouse protocols. However, 

differences between the developmental rates of mice and rats, and specifically the age at 

which the medial and lateral aspects of the WGE emerge, indicate that the optimum age for 

harvesting donor tissue in mice should be different to that of rats. The effects of donor age 

on graft outcome in mice are discussed further in Chapter 4. 

Tissue preparation 

Early animal studies of neural transplantation engrafted chopped tissue pieces into cavity 

lesions generated by direct ablation of the brain parenchyma. This process was refined for 

rat tissue, firstly by introducing the process of cell dissociation (Schmidt et al., 1981), then 

through further systematic refinement of the tissue preparation protocol to improve efficacy 

of striatal grafts (Fricker et al., 1996). As a result, transplantation procedures were fine-tuned 

in the rat-to-rat model which has led to improvements in graft survival, graft volume and 

DARPP-32 content (Gage et al., 1997; Rosser et al., 2011; Watts et al., 2000b). The effects of 

tissue preparation on graft outcome is further discussed in Chapter 4. 

 

1.5 Outcome measures in preclinical graft assessment  
 

The success (or failure) of transplantation in mouse models is typically evaluated by the 

morphological aspects of the grafts, such as cell survival, graft volume and cell type.  

Improvements in graft survival, size and striatal content can be good criteria to which 

protocols can be assessed and are relatively quick and simple to measure. However, they 

cannot by themselves tell us anything about the functional efficiency of the treatment. The 

fundamental aim of late-stage clinical trials is to produce a meaningful improvement in 

motor, cognitive and/or psychological disturbances to the person with HD, and so functional 

output should also be a critical part of pre-clinical studies. Whilst many rat-to-rat studies 

have described motor and cognitive improvements following successful grafting (Fricker et 
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al., 1997; Mayer et al., 1992; Reading and Dunnett, 1995), these outcome measures are 

mostly missing for the mouse. 

 

1.5.1 Morphological outcome measures 

 

Longitudinal monitoring or measuring of transplanted tissue can be difficult and expensive. 

As a result, preclinical grafts are most commonly assessed only at the end of the study, and 

certainly at the end of the subject’s life. Morphological aspects of the grafts are taken as 

markers of ‘success’, such as increased proportion of graft survival, increased cell counts and 

graft volume. In addition, a greater degree of innervation of the transplanted tissue into the 

host parenchyma or a greater accuracy for efferent projections connecting to anatomically 

correct regions can be considered positive markers of success.  

The majority of studies use immunohistochemical staining of tissue using specific antibodies 

to evaluate grafts post-mortem. The number of DARPP-32+ neurons and the amount of 

striatal-like patches of DARPP-32+ tissue (P-zones) within grafts have been shown to affect 

behavioural outcomes,  with grafts exhibiting a greater proportion of P-zones demonstrating 

greater functional recovery in rats (Nakao et al., 1996). However, since these outcomes can 

only easily be measured post-mortem, it is hard to directly assess the progress of treatment.  

 

1.5.2 Functional outcome measures 

 

Transplantation studies in rat models have been able to utilise the large array of behavioural 

tests implemented and characterised for the QA model to gain proxy measures of 

longitudinal survival and graft-induced repair. Whilst some QA lesion-induced behavioural 

deficits have been reported in mice, such as amphetamine-induced rotation (Bernreuther et 

al., 2006), a full characterisation of the QA mouse model has not been published, 

consequently it is difficult to know which of the tests used in rats are the most appropriate 

to use in mice. 

It is well established in rats that a lesion’s location within the striatum impacts greatly on the 

degree and type of functional deficits seen (Hauber and Schmidt, 1994; Joel and Weiner, 

2000; Voorn et al., 2004; Yin and Knowlton, 2006). The dorsal striatum is implicated in 

sensorimotor control, stimulus-response learning and habit learning (Featherstone and 

McDonald, 2004; Yin et al., 2004), whilst the ventral striatum, including the nucleus 

accumbens, is more associated with motivation and rewarded behaviours such as those 



Chapter 1  Introduction 

22 
 

probed in the progressive ratio task (Eagle et al., 1999), with no impairment of motivation 

seen in rats lesioned in the dorsomedial (DMS) or dorsolateral striatum (DLS). However, the 

distinction between the function of the dorsal and ventral regions is blurred with some 

degree of cross-over between them, for example aspects of motivation have been associated 

with the DLS (Lelos et al., 2013). Further studies have dissected the relative contributions to 

different tasks of the DMS and DLS, analogous to the primate caudate and putamen 

respectively (Joel and Weiner, 2000). Featherstone and McDonald (2004), showed that the 

rats with a DLS QA lesion had a performance deficit in an operant conditional discrimination 

task in which they were required to make an appropriate response to a given stimulus, 

whereas DMS lesioned animals did not show impairment. In addition, the DLS rats completed 

fewer trials compared to DMS lesioned animals. Furthermore, cognitive flexibility was linked 

with the DMS by Ragozzino et al. (2002), who demonstrated its involvement in a reversal 

learning task in rats.  

The disparate roles of different ‘compartments’ within the striatum are explained by the 

organisation of its efferent and afferent connections which project to and from distinct 

target regions. The afferent connections from the motor sensory cortex tend to form 

synapses within the dorsolateral striatum, whereas the pre-frontal cortex, associated with 

executive function, connects predominantly to the dorsomedial striatum. If lesions specific 

to these regions can illicit different behavioural outcomes, then it follows that grafts could 

demonstrate diverse types of functional recovery dependant on where they are placed.  

Mid-striatal lesions in mice have shown disruption of acquisition learning and a decrease in 

accuracy in a serial procedural learning task (Brooks et al., 2007; Trueman et al., 2005). 

Although the extent of the penetration of the lesions into the DMS or DLS was not assessed, 

other studies have shown divergent behavioural effects of central dorsal and DMS lesioned 

mice (Baldan Ramsey et al., 2011). 

For studies of mouse-to-mouse transplantation, lesions and grafts are typically targeted to 

the mid-striatum, either because this is a larger target, and/or no examination of behavioural 

outcome is to be performed. As a result, it is unclear as to which deficits are likely to be 

induced through mid-striatal lesioning, particularly as only a slight variance in the positioning 

of the mouse during surgery could alter the degree of medial or lateral spread of the toxin, 

far more so than in the larger rat model.  

There is a need to target specific regions of the striatum in order to test behavioural 

outcomes effectively  
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Important considerations for testing functional efficacy of grafts include the need for a clear, 

relevant, lesion-induced behavioural deficit that can be measured and corrected.  

Additionally, for transplantation studies, a behavioural phenotype should maintain a 

consistent deficit throughout the period in which graft maturation and integration occurs, 

with minimal spontaneous recovery, against which graft-induced recovery can be compared. 

A behavioural characterisation of two QA lesion mouse models is performed and discussed 

in Chapter 5, to develop pertinent test batteries designed to probe specific deficits. 

 

1.6 Aims 

 

The experiments undertaken and presented in this thesis aim to identify the major factors 

influencing the poor outcomes observed when transplanting primary striatal mouse tissue 

into lesion mouse models of HD, and to determine how protocols could be adapted to 

improve results. In addition, they seek to determine if fine-tuning the lesioned models 

themselves can generate a behavioural test battery in which graft-induced functional 

recovery can be tested more precisely.   

The contrast between the quality of rat-to-rat grafts and mouse-to-mouse grafts in QA 

lesioned models is considerable, given that the same protocols are applied to both 

paradigms. The first experiment seeks to identify any overt difference between the two 

models in their response to lesioning by comparing the effects of QA lesion protocols on the 

physical and inflammatory striatal environment. 

The next series of experiments aims to test modifications to the host aspect of mouse 

transplantation protocols that could avoid the negative effects of the differences identified 

previously. The result of protocol manipulations designed to probe the effect of altering the 

length of time between lesioning and transplanting cells, and changing the strains used is 

examined. 

Following this, the subsequent experiments aim to investigate the impact of altering aspects 

of the donor cell preparation protocol by manipulating the donor age and the processing 

treatment of the cells.  

The objective of the final two experiments is to refine the targeting of the mouse QA lesions 

and produce an appropriate system of assessing functional recovery by defining the most 

apposite behavioural tests for assessing long-term graft-induced recovery. 
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Chapter 2 

Methods 

 

2.1 Animal models 
 

All experiments were subject to project, personal and facilities licences and local ethical 

review in accordance with the United Kingdom Animals (Scientific Procedures) Act 1986.  

Animals were housed under standard conditions in a 12:12 light/dark cycle with lights on 

between 6am and 6pm. Temperature and humidity were maintained at 21±2 °C and 60±1% 

respectively. Unless otherwise stated, food and water were available ad libitum. Animals 

were left to acclimatise for at least 1 week after arriving at the facility prior to the 

commencement of any study. 

Mice 

C57BL/6J 

The C57BL/6J (Charles River, UK or Harlan, Bicester, UK) mouse strain was chosen as the 

standard host model for the experiments described in this thesis since this is the most 

commonly used mouse strain in scientific research (The Jackson Laboratory, 2017). Not only 

do the majority of published lesion, transplantation and behavioural studies in mice use 

C57BL/6J mice (see Table 1.1), it is also the background strain most widely used for the 

genetic models of HD. This is an important consideration for applying any potential protocol 

adaptions identified through the work presented here, since the translation from QA model 

studies to genetic models, which are more reflective of the progressive aspects of HD, would 

be the most appropriate step for preclinical studies of HD transplantation. 

Chrm4-EGFP-CD1 

Chrm4-EGFP-CD1 mice (MMRRC, USA) also known as M4-BAC-GFP, are a line expressing the 

enhanced green fluorescent protein (EGFP) within the protein coding Cholinergic Receptor 

Muscarinic 4 gene (Chrm4). In this model, GFP is expressed specifically in mature MSNs 

(Döbrössy et al., 2011). This strain was chosen primarily because it was the donor used in the 

mouse to mouse transplantation study identified by literature review as yielding the largest 
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grafts, see Table 1.1. A further benefit of using EGFP tissue is that it enables easy 

identification of grafted tissue post-mortem, which is often hard to distinguish from the host 

parenchyma - particularly in the case of small grafts. Throughout the experiments described 

in this thesis, the GFP-labelled tissue was detected by immunohistochemical staining rather 

than through direct observation of fluorescence, which presented two benefits; it avoided 

problems arising from auto-florescent background signals, which are known to increase 

within perfused and damaged (lesioned) tissues, and also it improved visualisation of the 

relative positioning of the transplanted tissue within the host. 

CD1 

CD1 mice (Harlan, Bicester, UK) were selected as a comparison strain when exploring the 

effects of host or donor strain on graft outcome. This strain is widely used for transplantation 

experiments investigating immunosuppression and tolerisation methods but much less in 

studies with behavioural outcome measures. It was also the strain used by the Döbrössy et 

al., (2011) study which yielded the largest grafts. 

Rats 

Lister hooded 

Lister Hooded rats (Charles River, UK) where used in species comparison experiments. They 

are a strain commonly used for behavioural rat to rat transplantation studies which 

demonstrate consistent positive graft outcomes. 

 

2.2 Surgical procedures 

 

2.2.1 Lesion surgery 

 

Striatal lesions were generated through direct administration of the neuroexcitotoxin 

quinolinic acid (QA, Sigma-Aldrich, UK, P6320-4) under general anaesthetic and targeted to 

the mid-striatum using stereotaxic coordinates. Fresh 0.09M QA solution was prepared on 

the morning of each surgery session in 0.1 M phosphate-buffer solution (PBS, Thermo Fisher, 

UK, 10010-056, Appendix 1) and stored at room temperature (RT).   

Animals were anaesthetised in an induction chamber using 5% isoflurane gas (Abbott, UK) in 

oxygen, the head shaved and a subcutaneous (s.c.) injection of meloxicam 2.5mg/kg 
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(Metacam, Boehringer Ingelheim, Germany) given as pain relief prior to surgery. Once 

transferred to a stereotaxic frame (Kopf Instruments, Germany), anaesthesia was maintained 

through administration of 1.5 – 3% isoflurane in a mixture of oxygen and nitrous oxide (2:1) 

through a nose mask. The tooth bar was set to 0mm for mice and -2.3mm for rats for flat 

skull positioning. Following swabbing of the surgical site with dilute povidone-iodine solution 

(Ecolab, UK) and 70% ETOH solution, the skull was exposed, and a small hole drilled at the 

anterior-posterior (AP) and medio-lateral (ML) stereotaxic coordinates described in 

Table 2.1.  

A 30-gauge stainless steel cannula attached to a 10µl microvolume syringe (SGE Analytical 

Sciences, Thermo Fisher, UK, 2035) driven by a mechanical pump was used to inject 0.75µl 

of QA per site. The QA was infused over 6 min and the cannula left in position for a further 3 

min to prevent back flow of solution. The cannula was removed, and the incision closed using 

Vicryl dissolvable sutures (5-0 for mice, and 4-0 for rats, Ethicon, UK). 0.9% glucose saline 

(Baxter, UK, FKE1323) was administered subcutaneously during surgery to reduce 

dehydration (0.5ml for mice, 5ml for rats) and a 7.5mg/kg intramuscular injection of 

diazepam (Hameln Pharmaceuticals Ltd, UK) given at the end of anaesthetic to prevent 

seizures. Animals were placed into a warm recovery chamber for 2-3 hours until completely 

awake and returned to clean cages. Daily health checks were performed, and additional wet 

mash of standard food was placed in the cages for at least three days post-surgery.  

Species  TB AP ML DV 

      
Mouse  -0.0 +0.8 -2.0 -3.0 

      

Rat 

Site 1 -2.3 -0.4 -3.4 -4.0 and -4.5 

Site 2 -2.3 +1.4 -2.8 -4.0 and -4.5 

 

 

2.2.2 Preparation of tissue for transplantation 

 

Pregnant Chrm4-EGFP-CD1 mice of gestation age E14 were killed by cervical dislocation and 

the uterine horns collected into Hank’s Balanced Salt Solution (HBSS, Gibco, UK). Embryos 

Table 2.1 Stereotaxic coordinates (in mm) used for standard QA lesions in the mouse and rat. TB = tooth bar, 
AP = anterior-posterior, ML = mediolateral, DV = dorsoventral (as measured from dura). 
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were removed and the brains and both WGEs were dissected, as described in Figure 2.1, 

using a microscope under a laminar flow hood. 

WGE tissue was incubated at 37°C for 10mins in 0.1% bovine trypsin (Worthington, New 

Jersey, USA) + 0.05% DNase (Sigma-Aldrich, UK) in Dulbecco’s Modified Eagle Medium 

(DMEM/F12, Invitrogen, UK). 0.01% bovine trypsin inhibitor (Sigma-Aldrich, UK) was added 

for an additional 5mins, before washing with direct addition of DMEM/F12 and 

centrifugation for 3mins at 1000rpm (*). The resulting pellets were re-suspended in 

DMEM/F12 and triturated using a Gilson pipette with a 200µl tip to mechanically dissociate 

the cells into a single cell suspension. Cell number and viability were determined by trypan 

blue (0.4% trypan blue solution, Sigma) exclusion counting using a haemocytometer, as 

described below. Cell suspensions were transplanted only if viability was greater than 80%. 

Cells were concentrated at 150,000 cells/µl for transplantation in DMEM/F12. All 

suspensions were kept at room temperature and in the dark to minimise potential risks of 

light exposure decreasing the strength of the GFP signal. 

 

For Experiment 4 where tissue pieces were transplanted, the same procedure as described 

above was followed up until *, whereby mechanical dissociation was forgone, and the tissue 

transferred directly to 4µl DMEM/F12 ready for transplantation. 

 

  

Figure 2.1 Diagram depicting the dissection of WGE tissue. 1. Embryo is killed via decapitation. 2. A cut is made at 
the base of the brain, just above the eye towards the back of the head. 3. The skin and meninges are removed 
carefully from around the brain. 4. The brain is prised forward and pinched off at the base.  5. With the brain 
positioned dorsal surface upwards, a cut is made through the medial cortex. 6. The medial cortex flap is folded 
over to expose the WGE on the floor of the lateral ventricle. 7. WGE is removed with a lateral cut. Adapted from 
Dunnett & Björklund (2000). 
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Trypan blue exclusion counting 

10µl of cell suspension was diluted 1:125 with DMEM/F12 and then 1:1 with trypan blue (a 

total dilution factor of 500) before being transferred to a haemocytometer and viewed under 

a microscope. The total number of living and dead cells within five squares of the 

haemocytometer were counted (see Figure 2.2) and the number of cells per µl was estimated 

using the following formula: Cells µl-1 = (Cells counted / 5) x dilution factor x 10. 

Cell suspension viability was calculated using the following formula: Viability (%) = Total live 

cells counted / (total live + dead cells counted) x 100 

 

2.2.3 Transplantation surgery 

 

After a post-lesion recovery time of 7 – 10 days, mice were anaesthetised (as described 

above) to receive unilateral transplantations into the lesioned striatum.  2 µl of suspension 

was injected over two depths (DV: -3.2 mm & -2.8 mm) using an SGE syringe, at the same AP 

and ML coordinates as the QA injection (AP: +0.8 mm, ML: -0.2 mm), depositing 

approximately 300,000 cells in total into the lesioned striatum over 2 min (1 µl/min). The 

syringe was manually depressed by gentle tapping of the plunger periodically. The syringe 

was left in situ for an additional 3 min to allow diffusion and reduce backflow of suspension, 

before being slowly removed, and the skin sutured as above. Animals were allowed to 

recover fully before returning to a clean home cage.  

Figure 2.2 Image depicting live and dead cells stained with trypan blue. Live cells have a bright centre and dark 
edges, whilst dead cells are dark throughout. 
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2.3 Histological techniques 

 

2.3.1 Perfusion and sectioning 

 

Animals received a terminal intraperitoneal injection of sodium pentobarbital (Euthatal) 

(0.3 ml for mice, 1 ml for rats), and were transcardially perfused with a prewash of 0.1M 

phosphate buffered solution (PBS, pH7.3) for 2 minutes using a peristaltic pump (set at 

30.4mlmin-1 for mice and 50mlmin-1 for rats), immediately proceeded by 4% 

paraformaldehyde solution (PFA, pH7.3, Fisher Scientific, Loughborough UK, Appendix 1) for 

5mins at the same rate. Brains were removed, post-fixed in 4% PFA for 4hrs and transferred 

to 25% sucrose solution in PBS (Appendix 1) for at least 48hrs. 

A freezing-stage microtome was used to coronally section the brains at 40µm thickness. 

Sections were stored as 1:12 series in anti-freeze at -20°C. 

 

2.3.2 Cresyl Violet staining 

 

Tris buffered saline (TBS, pH7.4, Appendix 1) was used to wash brain sections (1:12 or 1:6 

series) and mount onto microscope slides double-subbed with 1% gelatine. Slides were 

allowed to dry before being passed through the series of solutions (see Table 2.2), at room 

temperature (RT) and cover slipped using DPX mountant (Fisher Scientific, UK, 12658646). 
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Solution Duration 

70% ethanol 5 mins 

95% ethanol 5 mins 

100% ethanol 5 mins 

1:1 chloroform ethanol 20 mins 

100% ethanol 5 mins 

95% ethanol 5 mins 

70% ethanol 5 mins 

Distilled water 5 mins 

Cresyl Violet solution* 5 mins 

Distilled water 5 mins 

70% ethanol 5 mins 

95% ethanol 5 mins 

2.5% acetic acid in 95% ethanol 2-5 mins (until desired staining obtained) 

95% ethanol 5 mins 

100% ethanol 5 mins 

Xylene 5 mins 

 

 

  

Table 2.2 Summarized protocol for Cresyl Violet staining. *Recipe for Cresyl Violet solution is listed in Appendix 1. 
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2.3.3 Immunohistochemistry on free-floating sections 
 

Tris buffered saline (TBS, pH7.4, Appendix 1) was used to wash brain sections (1:12 or 1:6 

series) before undergoing the basic protocol for immunohistochemical staining of tissue 

listed in Table 2.3. The specific primary and secondary antibodies and associated blocking 

agents and concentrations are listed in Appendix 2.  

Solution Duration 

TBS wash 10 mins x 2 

Quench 5 mins 

TBS wash 10 mins x 3 

Block (3% ns* in TXTBS) 1 hour 

Primary antibody* (in 1% ns in TXTBS) Overnight at RT, or 3 nights at 4°C 

TBS wash 10 mins x 3 

Secondary antibody* (in 1% ns in TBS) 3 hours 

TBS wash 10 mins x 3 

TNS wash 5 mins x 2 

DAB solution Until light brown 

TNS wash 5 mins x 3 

TBS wash 10 mins x 2 

Following staining, the tissue sections were mounted on microscope slides double-subbed in 

1% gelatine and allowed to dry. Slides were subsequently dehydrated by soaking for 5mins 

in 70%, then 95% and finally 100% ethanol solution before clearing in xylene and being 

cover-slipped with DPX mountant. 

 

2.3.4 Quantification of striatal, lesion and graft volumes 

 

Immuno-stained sections were visualised using a Leica DRMBE light microscope, Leica 

DFC420 camera with Leica Application Suite image analysis software.  

Striatal volume and ventricle volume were calculated using a 1:6 series of Cresyl Violet 

stained sections. The dorsal striatal perimeter (see Figure 2.3 A) was traced in 5 sequentially 

anterior sections from ~bregma +0.00mm (or the most posterior section within which the 

two lateral ventricles remain distinct from each other) in the mice, and 9 anterior sections 

from ~bregma +0.60mm in the rats. 

Table 2.3 Summarized protocol for immunohistochemical staining of free-floating brain sections. Recipes and 
protocols for solutions are listed in Appendix 1. *Specific primary and secondary antibodies and associated 
blocking agents and concentrations are listed in Appendix 2. TBS = Tris buffered saline, ns = normal serum, 
TXTBS = Triton X-100 in TBS, TNS = Tris non-saline.  
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Volumes were calculated using the following formula: Volume = (∑a * M) / ƒ¸ where 

a = area (µm2), M = section thickness (µm) and ƒ = frequency of sampled sections. 

Lesion and graft volumes were calculated in a similar way, by tracing DARPP-32 depleted 

regions within the striatum of all affected sections in a 1:6 series for lesions, and by tracing 

all GFP+ staining in the striatum for grafts, Figure 2.3 B & C respectively. 

 

2.3.5 Quantification of striatal and graft cell numbers 

 

Estimates of striatal cell numbers were calculated by unbiased stereology using an Olympus 

C.A.S.T. grid system. A randomised sampling grid (inside the areas outlined previously) was 

used to position counting frames, within which all Cresyl Violet-stained cells were counted. 

In addition, measures of the cell diameter of 10 randomly selected cells for each animal were 

taken. The total number of cells within the striatal volume selected was calculated using the 

following formula: Cell number = ∑c * (∑A / ∑(a * n)) * ƒ * (M / (M + D)), where c = number 

of cells counted, A = area outlined (µm2), a = sample frame area (µm2), n = number of sample 

frames, ƒ = frequency of sampled sections, M = section thickness (µm) and D = mean cell 

diameter (µm). 

The same method was used on NeuN-stained sections to calculate the number of cells within 

large grafts (i.e. containing approximately 1000 cells or more). For smaller grafts unbiased 

stereology would not yield accurate estimates and therefore cells within these grafts were 

manually counted directly from the microscope. In these cases, the following formula was 

used to estimate total grafted cell numbers: Cell number = ∑c * (1 / ƒ) * M. 

 



 

 
 

1 

A 

B C 

2 3 4 5 

= Dorsal striatum = Ventricle 

Figure 2.3 A Schematic diagram (adapted from Paxinos and Franklin, 2004) to show the approximate sections from which volumetric measurements were taken, 1-5. 
B Lesioned area trace in a DARPP-32 labelled section. C Graft area trace in a GFP labelled section. D Activated microglia area trace in an Iba1 labelled section.  

D 

3
3 
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1 2 3 4 0 

Figure 2.4 Schematic diagram to represent the five grades of the microglial activation scale adapted from Duan et al. 
(1995). (0) No specific activated microglia in the graft area; (1) Low number of activated microglia, distributed as 
scattered single cells or clustered in a few small patches in or around the graft; (2) Several activated microglia 
distributed as single cells or clustered in multiple, prominent patches; (3) Dense immunostaining of the graft area and 
a large number of activated microglia in and around the graft; (4) Very dense immunostaining of the whole graft area 
and a very large number of activated microglia in and around the graft. 

2.3.6 Quantification of host inflammatory response  

 

The grading of the host inflammatory response was mostly focussed on the degree of 

microglial activation and was measured with both quantitative and semi-quantitative 

methods, each of which yield different benefits. A quantitative comparison of the total 

volume of the lesioned striatum containing dense Iba1 staining was performed in 

Experiment 1 whereby clear regions of dense microglia were traced and the volume 

calculated in a similar way to that described for striatal volume in section 2.3.4, see Figure 

2.3 D. This method was developed as a quick and easy way to quantify the microglial reaction 

where distinct regions of dense Iba1 staining are discernible. More detailed information on 

the quantity of infiltrating inflammatory cells was obtained through stereological counting 

of the microglia under higher power magnification, using the same method as for cell 

counting described in section 2.3.5. This provided accurate measures for microglial cell 

numbers and density, however, the stereological counting method is more laborious and 

time consuming, and as such was employed at just one critical time-point in Experiment 1, 

in addition to all groups in Experiments 2 & 3. 

A semi-quantitative grading method was utilised in Experiment 4, adapted from 

Duan et al. (1995), whereby all sections from an Iba1 labelled series were categorised into 

grades ranging from 0 to 4 according to the degree of microglial activity observed, Figure 2.4. 

While this method is the simplest, it is the most open to subjectivity of the assessor, and 

therefore a random selection of sections was blindly evaluated by a second assessor to 

validate the sample categorisation. Despite the increased potential for subjective variation, 

it was found that the grading system was highly consistent.  
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2.4 Cell culture procedures 

 

2.4.1 In Vitro cell culture 

 

For experiments in which cell suspensions were to be cultured in vitro, the cells were 

prepared as if for transplantation, as described in section 2.2.2. However, at the final stage, 

the cells were re-suspended in neuronal differentiation media (DMEM/F12 + 1% foetal calf 

serum + 2% B27 + streptomycin) and 30µl of cell suspension containing approximately 

100,000 cells was transferred onto poly-L-lysine treated coverslips within a 24-well plate. 

After 1hr settling time, the wells were flooded with 500µl of differentiation media, and 

incubated at 37°C in humidified 5% CO2 and 95% atmospheric air. Differentiation media was 

refreshed after 3 days in culture by removing half of the medium and pipetting 500µl of fresh 

media prepared at the same concentration described above. After 24 hrs or 7 days in vitro, 

12 wells of each suspension were fixed with 4% PFA for 15mins, then washed three times in 

1 x PBS (Phosphate buffered saline, pH7.4) before being stored at 4°C in PBS until 

immunocytochemical staining. 

 

2.4.2 Immunocytochemistry 

 

PBS was used to wash cultured cells before undergoing the basic protocol for 

immunocytochemical staining of cells listed in Table 2.4. The specific primary and secondary 

antibodies and associated blocking agents and concentrations are listed in Appendix 2. 

Following staining, the coverslips were mounted onto microscope slides using aqueous 

mountant, sealed with clear nail varnish and stored in the dark at 4°C.  

 

2.4.3 Quantification  

 

Labelled cells were imaged using AxioVision software with a Carl Zeiss fluorescent 

microscope. Positive immunolabelled cells were counted over five fields of view at 20x 

magnification, and percentages were calculated based on counts of live cells staining positive 

for Hoechst. 
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Solution Duration 

Quench/permeabilization 
(100% ethanol) 

2 mins 

PBS wash x 3 

Block (3% BSA + 1% serum in PBST) 1 hour at RT 

Primary antibody* 
(in 1% BSA + 1% horse serum in PBST) 

Overnight at 4°C 

PBST wash x 3 

Fluorescent secondary antibody* 
(in PBS) 

2 hours at RT in dark 

PBS wash x 3 

Hoechst counterstain (1:10,000) 5 mins 

PBS wash x 3 

  

 

  

Table 2.4 Summarized protocol for immunocytochemical staining of fixed cultured cells. Recipes and protocols 
for solutions are listed in Appendix 1. *Specific primary and secondary antibodies and associated blocking agents 
and concentrations are listed in Appendix 2. PBS = Phosphate buffered saline, PBST = 0.3% Triton X-100 in PBS.  
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2.5 Behavioural testing 

 

2.5.1 Food and water restriction 
 

For tests requiring motivation for a food reward, mice were maintained on either food- or 

water-restriction to maximise response levels depending on the task. 

Food restriction protocol 

Food was removed from the home cages and a once-daily schedule of food delivery was 

established. Mice were weighed daily, and the amount of food provided per mouse was 

reduced incrementally from excess (~3.5g) until a bodyweight of ~90% of free-feeding weight 

was reached. Mice were then fed as to maintain their weight between 85 and 90% for the 

duration of the testing period. 

Water restriction protocol 

A water restriction regime was implemented over the course of 5 days, with bottles removed 

from home cages for incrementally longer periods until access was restricted to 3hrs (2pm – 

5pm) each day. Mice were weighed daily during the implementation period and weekly 

thereafter for the duration of the testing period.  

 

2.5.2 Motor tests 

 

i) Locomotor activity 

Locomotor activity was measured by recording the movement of animals over a 32hr period. 

Movement was quantified by automated counting of the number of crosses per hour 

through infrared beams traversing a cage.  

Equipment and set-up:  

• A 4 x 4 rack of clear plastic cages each measuring 22 x 38 x 19cm (W x L x H), with a 

clear plastic lid perforated with air holes and 3 parallel infrared beams passing across 

the floor of each cage spaced 10cm apart.  

• MED-PC IV software to record whenever a mouse within the cage crosses through 

an infrared beam. 
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• Enough lamps to light the room (angled away from the mice), set on a timer to 

replicate standard holding room conditions (i.e. on at 6am, off at 6pm).  

• Standard food crushed to a powder placed on the floor at the end of each cage, 

ensuring that pieces are small enough not to disturb the infrared beams, and a 

drinking bottle of fresh water at the opposite end.  

Protocol: 

Mice were placed into the cages at approximately midday on the day of testing, thus allowing 

6 hrs acclimatisation time before commencement of the dark phase of the light cycle. The 

total number of non-consecutive beam-breaks made during each 12hr light and dark phases 

were calculated.  

ii) Open field exploration test 

Behaviour within an open field arena was used to explore general motor performance, as 

well as anxiety-related thigmotaxic behaviour.  

Equipment and set-up:  

• 80 x 80cm arena with white laminated wooden base and plastic walls. 

• The arena is divided by a 4 x 4 grid, creating an inner square zone of 40 x 40cm at the 

centre, and a peripheral zone of width 20cm around the perimeter. 

• Overhead camera connected to a PC running Ethovision software (Version 2.3.19, 

Noldus Information Technology, The Netherlands)). 

• Dimly lit room. 

Protocol: 

The arena was cleaned with 70% ethanol and allowed to dry. Mice were placed into the arena 

in cage groups for a habituation period of 5mins. The following day each mouse was placed 

one at a time into the centre of the arena and tracked by the software for 15mins. The 

distance travelled, velocity, time spent moving, rearing, turning speed (not reported) and 

time spent within the centre or peripheral zones were calculated. 

iii) Rotations 

Lateralised imbalance of striatal neurocircuitry was assessed by automated counts of 

spontaneous or drug-induced rotations made by mice.  

Equipment and set-up:  
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• 8 X 500ml glass beakers. 

• Clear acrylic sheet. 

• Overhead infrared camera connected to a PC running Ethovision software 

(Version XT10, Noldus Information Technology, The Netherlands). 

• Silhouette Tracker v0.11 post hoc video analysis software1 (BH software services, 

Cardiff, UK). 

• Dimly lit room. 

Protocol: 

Beakers were set within the camera’s field of view. Mice were tested on four occasions after 

receiving intraperitoneal injections of either 0.9% saline, 2.5mgkg-1 amphetamine, 1mgkg-1 

apomorphine or 2mgkg-1 apomorphine at volume of 10mlkg-1, with at least two days left in 

between each test. Immediately following injection, mice were placed into the beakers, 

covered with the acrylic sheet and recorded for 1hr. The videos were subsequently processed 

using the Silhouette Tracking software§ and the NET number of rotations per min calculated.  

Assessment of activity levels over the 1hr period determined the peak period of drug activity. 

As such, the mean number of rotations were taken between 25 – 45mins post-injection for 

the spontaneous (saline) and amphetamine probes, and between 5 – 25mins post-injection 

for the apomorphine probes.  

iv) Gait analysis 

Changes in gait were assessed through stride length, fore and hind base width and the 

overlap of fore and hind paws by measurements of footprint tracks. 

Equipment and set-up:  

• Acrylic corridor 5 x 60 x 15cm (W x L x H) with a dark hide box at one end. 

• Child-safe paints (red and blue). 

• Small paintbrush. 

• White paper cut to fit corridor base. 

• Sharp pencil and ruler. 

 
§ Silhouette Tracker is custom-built software designed to track changes in orientation of rodents from 
pre-recorded video files frame by frame. Data was transformed to provide the NET number of 
clockwise and anticlockwise rotations per minute per animal. The software also provides a video file 
displaying the traced outline of each animal and associated cumulative counts, thus allowing for 
manual validation of the counts. Available from BH software services (benhavell@gmail.com). 
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Protocol: 

The corridor was lined with white paper and the hide box with absorbent paper (blue roll). 

Prior to testing, each mouse was placed directly into the hide for 10secs before being 

removed and placed in the corridor just in front of the hide entrance and allowed to re-enter 

the hide for 10secs. The mouse was removed and placed at a successively further distance 

from the hide and allowed to return until it would run the entire length of the corridor 

directly to the hide. Once all mice were trained to run to the hide each was held by the scruff 

and a small amount of red paint applied to the forepaws and blue paint to the hind paws 

using a paintbrush. The mouse was then gently placed at the far end of the corridor and 

allowed to run to hide. Following a successful run (i.e. at least three unfaltering stride 

lengths) the paper was removed from the corridor and allowed to dry whilst the mouse was 

placed in a cage lined with wet blue roll to remove most of the remaining paint before being 

returned to its home cage.  

Gait was analysed from the footprints by using a ruler to draw a straight line between the 

two most extreme digits of each paw and a line from the middle toe (hind-paws) or between 

the two middle toes (fore-paws) through the centre of the pad on each pawprint, 

Figure 2.5 A. A line was drawn between the intersection of these lines for each paw (i.e. left 

fore, right fore, left hind, right hind) for three stride-lengths (black arrows, Figure 2.5 B), and 

the mean distance taken to calculate left and right stride-length. Midway between steps, 

perpendicular lines were drawn across the stride-length lines at three points and the mean 

distance between the hind-paws and fore-paws calculated (purple and red arrows 

respectively, Figure 2.5 B). Overlap was measured as the mean distance between the lines 

drawn across the extreme digits of the hind- and fore-paws for three steps on each side 

(orange arrows, Figure 2.5 B).  

v) Balance beam 

Balance and motor coordination were assessed through the number of foot-slips and time 

to turn on the elevated balance beam.  

Equipment and set-up:  

• A 100cm long beam, 1.5cm wide at one end tapering to 0.5cm wide at the other. 

Wider end elevated 35cm above the base and rising to 50cm above the base at the 

narrower end. A dark hide box situated at the elevated narrow end of the beam. A 

ledge extending 5mm from the base runs the length of the beam. 
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A B 

Figure 2.5 Example of a footprint trace used for gate analysis. A Lines determining the centre point of each paw at 
the cross-section of medial-lateral and anterior-posterior bisections. B Lines determining the distances measured 
for each outcome; black arrows = stride length, purple arrows = hind base width, red arrows = fore base width and 
orange = overlap. 
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• Soft towels 

• 2 x stopwatches 

• 4 x clicker counters 

Protocol: 

The balance beam was placed on top of a trolley and a thick layer of towels placed around 

the base to protect mice in case of a fall from the beam. Prior to testing, each mouse was 

placed directly into the hide for 10secs before being removed and placed back in the home 

cage while the rest of the group were trained in the same way. Next, each mouse was placed 

on the beam, just in front of, and facing, the hide entrance and allowed to re-enter the hide 

for 10secs. Mice were placed at successively further distances from the hide until the entire 

length of the beam was run, and each time being returned to home. Finally, each mouse was 

placed at the far end of the beam facing away from the hide and allowed to turn and run to 

the hide. 

Once all mice were trained, each mouse was placed in turn at the far end of the beam facing 

away from the hide and allowed to run to the hide. With one observer situated on each side 

of the beam, the first used a stopwatch to record the time taken for the mouse to turn from 

facing away from the hide to facing towards the hide and counted the number of times the 

left fore- or hind-paw slipped from the beam onto the underlying ledge during the run up 

the beam. Meanwhile the other observer timed the time taken for the mouse to run the 

length of the beam and counted the number of right fore- or hind-paw slips. This was 

repeated a second time with the observers swapping sides. The mean times and counts from 

both runs were taken as the final measure.  

vi) Rotarod 

Motor coordination was assessed by measuring the duration for which the mice could remain 

on the accelerating rotarod without slipping.  

Equipment and set-up:  

• Accelerating rotarod (Ugo Basil, Italy) 

• Timer 

Protocol: 

Training session 1: Mice were placed onto rotarod turning at 4rpm for a total of 5mins and 

replaced back onto the equipment if they fell before that time. 
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Training session 2: Mice were placed onto the rotarod turning at 4rpm for 15secs before the 

speed was increased for 20secs. The rate was then held for 15secs before being increased 

again for a further 20secs. This was repeated for a total of 5mins. Mice were replaced onto 

the rotarod if they fell within the 5min period.  

Training session 3 – 6: Mice were placed on the rotarod turning at 4rpm. The rate was 

accelerated to 44rpm max over 5mins. When a mouse fell for the first time the duration was 

recorded and the mouse replaced back until 5mins was completed. This was repeated daily 

until the duration for which they could remain on the rotarod plateaued. 

Testing: Testing was performed in the same way as training sessions 3-6 but without 

replacement. Once a mouse fell it was returned to its home cage. Each mouse was tested 

twice per time-point on consecutive days, and the maximum latency to fall was used to 

calculate performance. 

vii) Staircase 

Custom-built staircase chambers as described by Baird et al., (2001) (Figure 2.6), were used 

to detect changes in skilled motor function and manual dexterity of the forelimbs. 

Equipment and set-up:  

• Staircase chambers  

• 20mg sucrose reward pellets (5TUT, TestDiet, UK) 

Protocol: 

Mice were placed on a food restricted regime as described in Section 2.5.1 and sucrose 

pellets were introduced into home cages for 3 days prior to training. 

Training session 1: (15mins) Mice were habituated to the chambers for 15mins with sucrose 

pellets freely available both in the chamber and on the reaching platform itself.  

Training session 2: (15mins) Excess pellets placed into the staircase wells and a few along the 

platform  

Training sessions 3-12: (15mins) Staircase wells each baited with 2 pellets 

Test sessions 1-15: (30mins) Staircase wells each baited with 2 pellets. 

The number of pellets remaining in each well at the end of the 30min test sessions was 

recorded. Data from the final five test sessions at each time-point was used in the analysis. 
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2.5.3 Non-motor tests 

 

i) Reward consumption 

Reward value and a measure of motivation were assessed in consumption tests. 

Equipment and set-up:  

Sucrose consumption test: 

• Clean, empty home cages with lids 

• 35mm plastic petri-dish lids (430588, Appleton Woods, UK) 

• Blutac 

• 20mg sucrose reward pellets (5TUT, TestDiet, UK) 

• Fine balance 

Milkshake consumption test: 

• Clean, empty home cages with lids 

• 50ml falcon tubes (13065723, ThermoFisher, UK) 

• Rubber bungs with drinking spouts  

• Strawberry milkshake (Yazoo, Poundland, UK) 

• Fine balance 

Figure 2.6 Diagram to show a custom-built staircase chamber. Mice can only use their right paw to collect pellets 
from the right and their left to reach pellets from the left wells. Dropped pellets accumulate at the bottom of the 
stairwell. 
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Protocol: 

Reward consumption was tested in four consecutive sessions following completion of 

rewarded behavioural tests. For each session mice were placed into an empty cage at 5pm 

with either ~5g of sucrose pellets in a low-rimmed petri-dish lid, or ~45ml of strawberry 

milkshake in a falcon tube sealed with a rubber bung with drinking spout, each weighed to 

an accuracy of 0.001g. At 9am the following day mice were removed, and the amount 

consumed was calculated by weight of the remaining reward. Consumption data used for 

analysis was calculated using the following formula: Mean g consumed / mean bodyweight.  

ii) Corridor 

Lateralised bias in sensory-motor perception and neglect was assessed with the corridor test, 

first described by Dowd et al., (2005). 

Equipment and set-up:  

• 2x Opaque Acrylic corridor of dimensions 8.5 x 60 x 15cm (W x L x H) 

• 40x 1.5ml microcentrifuge tube lids (TUL-800-190D, ThermoFisher) 

• Strawberry milkshake (Yazoo, Poundland, UK) 

• 1ml syringe 

• Timer 

• 2x clicker counters 

Protocol: 

Mice were placed on water restriction as described in Section 2.5.1.  

Habituation session: Animals were habituated to the equipment for 5mins with droplets of 

milkshake deposited randomly up and down the corridor for two sessions. Empty 

microcentrifuge tube lids were then fixed in pairs on either side along the length of the 

corridor at intervals of 5cm (see Figure 2.7) and mice left to explore for 5mins.  

Test session: Immediately following habituation, mice were placed into one end of an 

identical corridor with ~0.1ml strawberry milkshake syringed into the lids and allowed to 

explore. Each time a reward was investigated by the mouse (i.e. nose into the lid) the visit 

was recorded as left- or right-sided, for a maximum of 20 times, or 5mins - whichever came 

sooner. The test was repeated on three consecutive days at each time-point and the mean 

number of visits for each side was used for analysis. 
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iii) Elevated plus maze 

An elevated plus maze was used to measure anxiety-related behaviour.  

Equipment and set-up:  

• Elevated plus maze consisting of 2 ‘open’ arms and 2 ‘closed’ arms (6 x 42cm) 

enclosed by walls 1.7cm or 14.9cm in height respectively (Figure 2.8) and raised to a 

height of 72cm from the floor. 

• Overhead camera connected to a PC running Ethovision software (Version 2.3.19, 

Noldus Information Technology, The Netherlands). 

• Dimly lit room. 

Protocol: 

The maze was placed in the centre of the room directly beneath the overhead camera. Mice 

were placed in the centre of the of the plus maze and tracked for 15 minutes. The proportion 

of time spent and the number of entries into each arm was recorded and analysed. 

Figure 2.7 Plan showing the distribution of lids in the corridor task.  

Figure 2.8 Image of an elevated plus maze.  
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iv) Spontaneous alternation 

The inherent trend for rodents to spontaneously switch between left and right when 

exploring an environment was tested using the spontaneous alternation test. 

Equipment and set-up:  

• Opaque Acrylic T-maze of 12.8cm height, with a central arm (8.6 x 60cm) leading to 

a perpendicular pair of arms each 12.8 x 25.6cm, see Figure 2.9. Guillotine-style 

doors created an 8.6 x 10cm holding area at the end of the central arm and allowed 

the perpendicular arms to be closed off or opened as required. 

Protocol: 

Mice were placed into holding area for 10secs before the door was raised and they were 

allowed to explore the central arm. As soon as an arm was entered (whole body crossing into 

arm excluding tail) the door to the arm was lowered, holding the mouse for 20secs. The time 

taken for the mouse to cross into an arm and arm choice were recorded. The mouse was 

removed, the maze cleaned with 70% ETOH and the task immediately repeated. An entry 

into the opposite arm in the second trial was classed as an alternation. The test was repeated 

daily for three consecutive days and the proportion of alternation choices was used for 

analysis.  

To maximise the exploratory behaviour of the mice, the context of the T-maze was altered 

at the second time-point by use of a different room, maze floor, wall colour and cleaning 

solution). 

Figure 2.9 Image of a T-maze.  
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Novel object recognition 

Short- and longer-term memory deficits were assessed using a novel object recognition task 

based on protocols adapted from McQuade et al., (2002). 

Equipment and set-up:  

• Acrylic arena 80 x 80cm  

• 2x identical, easily cleanable objects plus 2 similarly sized but different shape and 

colour 

• Timer 

Protocol: 

The mice were introduced to the arena for 10mins with two identical objects placed in 

opposite quadrants before being returned to their home cage. Following a 15min delay one 

object was replaced for a novel one of a different colour and shape but in the same position. 

The mice were reintroduced to the arena for 5mins and the time spent investigating each 

object was recorded before they were returned to their home cage. After 24hrs, the novel 

object was again replaced by a new novel object of different colour and shape, but same 

position and the mice allowed to explore for a further 5mins. The time spent on the familiar 

and novel objects was recorded. 

Operant tasks 

Operant tests were performed in sixteen sound-attenuated automated chambers (Camden 

Instruments, Loughborough, UK), (Figure 2.10) in which mice were trained to respond to light 

stimuli by using their nose to poke into holes in the chamber wall. Correct responses were 

reinforced with strawberry milkshake (Yazoo, Poundland, UK) reward delivered into a 

magazine.  

Operant chambers were controlled using a BehaviourNet Controller BNC MKII operating 

system (Campden Instruments, Loughborough, UK). The chambers of dimensions 

140 x 135 x 35mm were constructed of four aluminium walls and a clear acrylic lid. One wall 

was curved and held an array of nine holes (Figure 2.10 A), each containing a bulb to 

illuminate the hole and an infrared sensor to detect nose entries into the hole. The opposing 

wall contained a magazine (Figure 2.10 B), also with a light bulb and infrared sensor, into 

which strawberry milkshake was dispensed via a peristaltic pump (Figure 2.10 C). Additional 
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holes with bulbs and sensors were located either side of the magazine (Figure 2.10 D), and 

two house-light bulbs were located at the top of the side wall panels to illuminate the 

chamber (Figure 2.10 E).  Through blockading holes, different operational set-ups could be 

applied, dependent on the task.  

 

General operant training 

Mice were placed onto a water restriction schedule as described in Section 2.5.1 one week 

prior to testing. For three days prior to introducing the mice to the operant chambers, 

strawberry milkshake was presented in their home cages to reduce any neophobic response 

to the reward.  

Day 1 – Magazine training (20 minutes) 

Mice were introduced to the chamber; the magazine light was illuminated and 500μl of 

milkshake was delivered. Mice were free to investigate and habituate to the chamber and 

magazine. The number of entries into the magazine was recorded.   

Figure 2.10 Diagram to show an automated operant chamber. A 9-hole array (holes 1 -9 with holes 2, 4, 6 & 8 
blockaded). B Reward magazine. C Peristaltic pump to dispense reward. D Nose-pokes to the left and right of the 
magazine (hole L and hole R respectively). E House lights.  

A 

B 

C 

D D 

E 
E 

1 3 5 7 
9 

L R 
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Day 2-3 – Magazine training (20 minutes) 

Mice were introduced to the chamber; the magazine light was illuminated and 5μl of 

milkshake was delivered. Once the mouse entered the magazine to collect the milkshake its 

light would be extinguished. Upon leaving the magazine a 5sec inter-trial interval (ITI) began 

during which no lights were illuminated. Following the ITI the magazine light would once 

again be illuminated and a 5μl reward delivered. The number of magazine entries was 

recorded. 

Day 4-7 – Hole poke training (20 minutes)  

Mice were trained to poke into the illuminated holes using a fixed ratio response program. 

Initially hole 5 is illuminated (for the delayed alternation task substitute ‘hole 5’ for ‘holes L 

and R’). The mouse is required to make a response into the hole, upon which the light is 

extinguished, the magazine light illuminated and a 5μl reward delivered. Upon collection of 

the reward, all lights are extinguished followed by an ITI of 5secs after which a new trial 

would begin, with hole 5 illuminated again. To encourage the mice to explore the illuminated 

hole, milkshake was painted around and into the back of hole 5. Once mice began initiating 

hole pokes by themselves no further ‘painting’ was needed. Initial training was considered 

complete once a minimum of fifty trials per session was attained. Once all mice were 

achieving the required level of responses, the whole group were moved on to specific tasks, 

as described below. 

v) Bilateral lateralised choice reaction time task  

Set-up: All holes were blockaded with the exception of the centre hole (5) of the nine-hole 

array, and one hole either side of the centre (3 and 7) which were left open, as illustrated in 

Appendix 3 Figure 1. 

Training: After a 5sec delay, hole 5 was illuminated (S1). The mice were required to respond 

in hole 5, upon which the light would be extinguished and either hole 3 or hole 7 would light 

up (S2). Upon making a second response in the appropriate (i.e. illuminated) hole, that light 

would be extinguished, the magazine light would come on and a reward delivered. Following 

collection of the reward all lights were extinguished for an inter-trial interval (ITI) of 2secs 

before the next trial began. A response into the incorrect (i.e. unilluminated) hole for S2 

would cause a time-out (TO) period of 5secs in which all hole and magazine lights were 

extinguished, and the house light illuminated. The task parameters would initially be set at a 



Chapter 2  Methods 

 

51 
 

simple level and gradually increased until enough responses were made at the testing 

standard (see Appendix 3 Table 1).  

Testing: Mice were run for five consecutive days on test parameters and mean values taken 

for analysis of the following parameters; accuracy (correct/incorrect response to S2), 

reaction time (time taken to withdraw nose from S1 once S2 is illuminated), movement time 

(time taken between removing nose from S1 and poking in S2), number of usable trials (trials 

for which an S1 response was made), number of TO errors (number of trials for which no S2 

response was made) and number of premature withdrawals (number of times that nose was 

removed from S1 before S2 was presented).  

vi) Unilateral lateralised choice reaction time task 

Set-up: All holes were blockaded with the exception of the centre hole (5) of the nine-hole 

array, and the two holes adjacent on the side contralateral to lesion (either holes 3 and 4 or 

holes 6 and 7 depending on the mouse being tested), as illustrated in Appendix 3 Figure 2. 

Training: This task was performed following completion of the bilateral version described 

above and therefore no further training was required for this test. However, the task was 

changed so that the second stimulus light was pseudo-randomly presented in either ‘near’ 

(one hole adjacent to hole 5), or ‘far’ (two holes away from hole 5 in the same direction).  

Testing: Mice were run for five consecutive days on same test parameters as for the bilateral 

task (Appendix 3 Table 1) and the following mean values taken for analysis; accuracy 

(correct/incorrect responses to S2 x 100), reaction time (time taken to withdraw nose from 

S1 once S2 is illuminated), movement time (time taken between removing nose from S1 and 

poking in S2), number of usable trials (trials for which an S1 response was made), number of 

TO errors (number of trials for which no S2 response was made) and number of premature 

withdrawals (number of times that nose was removed from S1 before S2 was presented).  

vii) Delayed alternation 

Set-up: All holes were blockaded with the exception of the left (L) and right (R) holes either 

side of the magazine which were left open, as illustrated in Appendix 3 Figure 3. 

Training: At the start of each session the mice were presented with both L and R stimulus 

lights which remained illuminated until a response was made in either hole, at which time 

both were extinguished, and the magazine light illuminated. Following a response to the 

magazine a delay timer was started with a duration ‘X’ (listed in Appendix 3 Table 2), after 
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which both L and R stimuli were illuminated again. The mouse must poke in the opposite 

hole to that of the previous response in order to receive the reward. Following collection of 

the reward the next trial was initiated and the delay timer started again. If an incorrect 

response was made (i.e. into the same hole as the previous response), or no response was 

made, all lights were extinguished for a TO period of 2secs before both stimuli were 

re-presented. Initially the delay values were set to 0sec until the mice were able to perform 

the test to an accuracy of 85%, after which they were moved to the next stage of training. 

After having reached the final stage of training (delay times from 0 up to 10secs) and 

performance was ~85% at the shortest delays and ~50% at the longest delays, the mice were 

tested for a further five days.  

Testing: The mean of the final five days testing values were taken for analysis of the 

following; total accuracy (total correct/total incorrect responses x 100), number of usable 

trials (number of trials in which a response was made before a time out was initiated), 

accuracy at each delay (correct/incorrect x 100) and reaction time (time taken to respond to 

the stimuli once presented). 

viii) Five-choice serial reaction time task 

Set-up: All holes were blockaded with the exception of the holes 1, 3, 5, 7, and 9 of the nine-

hole array, as illustrated in Appendix 3 Figure 4. 

Training: Mice were presented with a 10sec stimulus light in a randomly selected open hole. 

If a correct response was made (into the stimulus hole) within 10secs, a 50µl reward was 

delivered. Once the reward was collected, all lights were extinguished for the duration of a 

2sec inter-trial interval, after which the next trial was started. If an incorrect response 

(poking into an unlit hole) or no response was made within 10secs, a TO period of 5secs was 

initiated whereby the house light would turn on and all other lights were extinguished. 

Following the TO period, the next trial would begin. After ten sessions at 10secs, the 

presentation of the stimulus light was reduced to 2secs for a further ten sessions, followed 

by a further reduction to 0.5secs. The time given before a TO was initiated remained at 

10secs throughout the task. 

Testing: The mean values of the final five days at each stimulus length were taken for analysis 

of the following; accuracy (correct/incorrect x100), response time (time taken to correctly 

respond to the stimulus), number of time outs (no response made during 10secs after 

stimulus presented), usable trials (trials in which a response was made). Following 



Chapter 2  Methods 

 

53 
 

completion of the tests, the mice were run on a one-session distraction probe test which 

used the same parameters as before except that milkshake was made freely available within 

the test chamber at all times.  
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Chapter 3 

Exploring the effect of host in QA lesion models1 
 

3 Chapter summary 
 

Following a review of the literature (Chapter 1.3.2), and from observation of experiments 

conducted within the lab, the current most effective protocol for striatal transplantation of 

primary embryonic tissue in mouse to mouse models was determined to be Chrm-EGFP-CD1 

donor tissue transplanted into unilaterally QA lesioned C57BL/6 hosts, seven to ten days 

post-lesion. The protocols use striatal progenitors of the whole ganglionic eminence (WGE) 

at age E14, dissected and prepared as a dissociated single-cell suspension, stored at room 

temperature and transplanted at a concentration of 150,000 cellµl-1 in two deposits totalling 

300,000 cells.  

The experiments described in this chapter compare different aspects of the host models 

chosen for transplantation studies in mice, and how alterations to this aspect of the protocol 

may improve graft outcome. 

Experiment 1 compared the C57Bl/6 mouse QA lesion model to the Lister Hooded rat model 

to determine if there were species specific differences which could explain the poorer graft 

outcomes observed in mouse studies. Experiment 2 assessed how altering the time between 

lesion and transplantation might improve the quality of the resulting grafts by avoiding the 

post-lesion host inflammatory response. Finally, Experiment 3 aimed to determine if the 

choice of mouse host and donor strains could affect graft outcome by comparing a range of 

strain combinations. 

  

  

 
1 Declaration 
A subsection of rat brains were cut and stained by a visiting student Sarah Rollason as part of her 
student project, and a subsection of stereological counts of microglia was performed by master’s 
student Katrin Wendrich. 
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Experiment 1 

A species comparison of excitotoxic lesions 
 

3.1 Summary 
 

The first experiment described in this chapter was designed to determine whether quinolinic 

acid (QA) lesions affect the physical and inflammatory environment of the striatum 

differently in rat and mouse brains. The aim was to identify potential explanations for the 

relatively poor transplantation outcomes observed in mice as compared to rats. To this end, 

four main questions were addressed: 1) Can we be sure the cells were transplanted into the 

striatum? The post-lesion collapse of the striatum may occur at an accelerated rate in the 

mice compared to rats, thereby reducing the accuracy of calculated transplantation 

coordinates and potentially resulting in mis-injection of cells. 2) Are there species differences 

in the density of the post-lesion striatum which could restrict the space available for 

transplanted cells to develop? 3) Are we transplanting at the right time? Differences in the 

way the striatal inflammatory environment develops post-lesion could mean that the timing 

of transplantation is sub-optimal in the mouse model. 4) Could differences in the intensity of 

inflammatory response result in a more hostile striatal environment in mice?  

To address these questions, Lister Hooded rats and C57Bl/6 mice received a unilateral QA 

lesion and were perfused for histological analysis at time-points up to 90 days post-lesion. 

Immunohistochemical staining was used to assess changes in striatal and ventricular 

structure and inflammatory cell numbers, including measures of microglial activation and 

astrogliosis. 

The results show that it is unlikely that cells are mis-injected in the mice due to changes in 

the striatal and ventricular volumes following lesioning since the transplantation 

co-ordinates remain well within the mid-striatum throughout the typical transplantation 

time window. A greater increase in cell density of the lesioned striatum was observed in the 

mice compared to the rat model, highlighting a difference which could potentially adversely 

affect cell survival in the mice. Labelling of microglia revealed that a peak inflammatory 

response occurs during the post-lesion time window standardly used for transplanting into 

the QA models, and that this inflammatory response is more exaggerated in the mouse 

model.  
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3.2 Introduction 

 

Rats and mice are different models 

 

Historically it has been assumed that a mouse is simply smaller version of a rat, and that 

disease models in these species will function in a similar way to each other. However, there 

are clear differences in size, behaviour (Frick et al., 2000) and developmental rate (Butler and 

Juurlink, 1987), as well as how the peripheral immune system and CNS macrophage cells 

respond to insult (Smialowicz, 1994; Loveless et al., 2008; Wei et al., 2013). Smialowicz 

demonstrated that following administration of the toxin 

2,3,7,8-Tetrachlorodibenzo-p-dioxin, CD8+ T cell counts were reduced in mice, yet enhanced 

in rats. Furthermore, Loveless et al. showed that after toxic doses of ammonium 

perfluorooctanoate, mice and not rats exhibited a suppressed antibody immune response. 

Therefore, assumptions that the standard protocols and temporal design of lesioning and 

transplanting would be the same in both species warrants testing, particularly because 

striatal embryonic transplants into QA lesion mouse models of HD appear to survive less well, 

are smaller and generally more ‘pencil-like’  than those transplanted under similar conditions 

in rats (Watts, Dunnett and Rosser, 1997; Kelly et al., 2007; Klein, Lane and Dunnett, 2013; 

Roberton et al., 2013; Lelos et al., 2016). 

 

Striatal collapse 

 

Following administration of QA, the structure of the lesioned striatum changes over time, 

with the macrostructure of the striatum collapsing laterally due to the loss of cells, and 

consequently causing an increase in ventricular volume (Duan et al., 1998; Shear et al., 1998). 

As the same stereotaxic co-ordinates are utilised for both the lesion and transplantation 

sites, it is critical that any changes that occur before the point of transplantation do not shift 

the anatomical structure of the striatum away from the targeted co-ordinates and onto the 

ventricular space, as proposed in Figure 3.1. 

The standard transplantation time-frame of 2 – 10 days post-lesion does not appear to 

interfere with cell placement in rats since most studies report near 100% presence of grafts 

in the striatum. However, if an increased rate of collapse were to be apparent in mice, this 

could provide an explanation for the reduced number of remaining grafts observed from 

transplants in mouse models, particularly if rapid changes were to occur around the time of 
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transplantation. It is also worth noting that the amount of QA used in the basic protocols 

(1.5µl total for rats  (Kelly et al., 2007; Precious, 2010), 0.75µl for mice (Brooks, Trueman and 

Dunnett, 2007; Döbrössy et al., 2011)) equates to approximately 0.08µl and 0.14µl per mm3 

striatum in the rat and mouse respectively, based on the contralateral striatal volume 

measures described in this chapter. The higher relative amount of QA used in the mouse 

models could therefore exacerbate the collapse of the striatum compared to the rats, despite 

the dose being relatively high in comparison to that used in many rat studies (Dunnett et al. 

2013; Watts et al. 2000, each 1.0µl), and the mouse dose being about average for mouse 

studies (Mazzocchi-Jones et al. 2011; Hargus et al. 2008, 0.48µl and 1.0µl respectively).    

Without the use of imaging to track labelled cells post-transplantation it is not possible to 

confirm the fate of the cells over time in vivo. Instead their fate is assessed using the snapshot 

of time at perfusion, typically 12 weeks after transplantation. Therefore, in the absence of a 

graft, it is difficult to determine if there was once a graft present that had since been rejected 

completely, or indeed, if the cells were ever placed in the striatum in the first place. By 

assessing the post-lesion structure of the two models longitudinally, it is possible to 

determine the extent to which striatal collapse is likely to be contributing to the problem and 

hence if mis-injection of cells is likely. 

In addition, a change in the cell density of the striatum is likely following the QA injection. 

The reduction in MSN cell number, influx of immune cells and the collapse of the striatum 

will disturb the composition of the cells at the site of transplantation (Roberts et al., 1993), 

and this could affect the ability of transplanted cells to grow and thrive. 

 

  

Figure 3.1 Diagram to show how a target based on stereotaxic coordinates could change between injecting an 
excitotoxin A and injecting a cell suspension B. While the coordinates for the lesion are clearly in the striatum 
(Cpu), after the striatum has collapsed the same coordinates could deliver cells into the ventricle (LV) where 
they would not be effective in restoring cell loss. 

 

A B 
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Immune response 

 

Despite the persistence of the common perception that the brain is an immune-privileged 

site, there is an increasing body of evidence to counteract this idea, at least in any absolute 

form. Rejection of transplanted tissue and acute inflammatory responses in the brain show 

that, at best, the blood brain barrier is leaky, particularly following surgery or in disease 

states (Drouin-Ouellet et al., 2015). In addition, the brain’s own immune response can create 

a very hostile environment to foreign cells (Kraft and Harry, 2011). By injecting the QA toxin 

into the striatum an inflammatory response is triggered in the brain, potentially priming the 

environment into which vulnerable cells will be transplanted.  

Differences in the way that the peripheral immune system of rats and mice deal with the 

same toxin have been demonstrated (Smialowicz, 1994), and the extent of response of 

cultured microglia to stimuli has been shown to be greater in mice than rats (Wei et al., 

2013). In addition, the use of immune suppression and desensitisation techniques to 

reduce graft rejection have been shown to be less effective in mice than rats (Roberton et 

al., 2013). If the inflammatory response to QA is more exaggerated in mice, then it is possible 

that the cells are being transplanted into a more hostile environment than those in rats. In 

turn this could limit the survival, proliferation and integration of any potential grafts in the 

mouse model and exacerbate any immune response to the transplanted cells. 

This study used both a rat and mouse QA lesion model of HD to track and compare the 

progression of morphological changes and inflammatory response around the lesioned 

striatum of each species. The objective was to determine if the intensity or rate of change in 

response to the QA lesions at the target site could offer insight into why the rat might yield 

a better transplantation environment than the mouse model. The study examined the 

progression of the lesion response longitudinally to identify a point at which the balance of 

factors favours a supportive rather than a hostile environment for transplanted cells. 
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3.3 Methods 

 

3.3.1 Experimental design 

 

Male C57BL/6J mice (25-30g, n=42) and Lister Hooded rats (400-500g, n=42) (Charles River, 

UK) were housed under standard conditions. Animal numbers were calculated based on data 

from previous experiments and confirmed using sample size analysis software G*Power. The 

animals were left to acclimatise for at least 1 week prior to the commencement of the study. 

Food and water were available at all times ad libitum.  

Mice and rats received unilateral mid-dorsal striatal QA lesions as described in methods 

section 2.2.1, with the intact side acting as a within subject control. Surgeries took place over 

3 days (14 animals per day). Animals were assigned to one of 7 experimental groups (n=6) 

per species, counterbalanced to include individuals from each surgical day to be perfused at 

the following post-lesion time-points: 4, 8, 12, 16, 20, 28 or 90 days (Figure 3.2).  Following 

surgery all animals were returned to their home cages and were unhandled except for 

routine cleaning until the end of the experiment.  

 

  

Figure 3.2 Experimental timeline indicating the progression of the experiment in weeks. 

Time (weeks) 
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3.3.2 Immunohistochemical analysis of lesions 

 

Animals were perfused, and brains were sectioned into 40μm slices as described in methods 

section 2.3.1. Cresyl violet staining was used to label Nissl bodies in a series of 1:6 sections. 

Bright-field microscopy was used to measure the striatal and ventricle areas in five 

sequentially anterior sections from ~bregma +0.26mm (or the most posterior section within 

which the two lateral ventricles remain distinct from each other) in the mice, and nine 

anterior sections from ~bregma +0.60mm in the rats, and the striatal and ventricle volumes 

calculated as described in methods section 2.3.4. The proportional change in the volume of 

the lesioned (ipsilateral) striatum and ventricle compared to the intact contralateral side was 

calculated using the following formula: % change = (Iv / Cv) x 100, where Iv = Ipsilateral 

volume and Cv = Contralateral volume. 

Unbiased stereology was used to estimate the number of all Nissl+ cells in each hemisphere 

within the area defined by the criteria above, as described in methods section 2.3.5. The 

proportional change in cell number of the ipsilateral striatum compared to the contralateral 

side was calculated using the following formula: % change = (Ic / Cc) x 100, where Ic = 

Ipsilateral cell count and Cc = Contralateral cell count. Striatal cell density in the ipsilateral 

side was calculated using the following formula: Density = (Ic / Iv). Proportional change in 

density of the ipsilateral side was calculated by the following formula: % change = (Ic / Iv) / 

(Cc / Cv). 

To calculate mean cell diameter, one striatal cell per section (total of 210 cells for mice and 

378 cells for the rats) was randomly selected and the average width of the widest and 

narrowest diameter recorded. To ensure that a truly random sample was taken, the unbiased 

random placement of the stereology counting frame was utilised, with the cell closest to the 

top right corner of the first counting frame per sample being selected. 

Further stains of DARPP-32, Iba1 and GFAP were performed from sections of frequency 1:12 

as described in Table 3.1.  

Lesion placement was assessed in DARPP-32 stained sections, with the lesioned area 

identified through ablation of positive staining within the ipsilateral striatum. 

Iba1 staining of microglia was used to assess the inflammatory response to the lesion. 

Regions of dense staining incorporating activated microglia were measured and volumes 

determined in a similar method to the volumetric measures detailed above, see methods 
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section 2.3.6. The degree of inflammation was determined by calculating the proportion of 

ipsilateral striatal volume containing regions of activation by using the following formula: % 

volume = (Imv / Iv) x 100, where Imv = Volume of microglial activation and Iv = Ipsilateral 

striatal volume.  

Antibody Marker for 

Cresyl violet Nissl bodies / anatomical measurements 

DARPP-32 MSNs / lesion identification 

Iba1 Microglia 

GFAP Astrocytes 

Table 3.1 List of immunohistochemical stains and associated targets. 

Using unbiased stereology, the number of microglial cells in the ipsi- and contralateral 

striatum at Day 8 were calculated. The increase in microglia in the lesioned striatum was 

calculated using the following formula: % increase = (Imc / Cmc) x 100, where Imc = Ipsilateral 

microglia count and Cmc = Contralateral microglia count. Ipsilateral density of microglia cell 

was calculated using the following formula: Density = (Imc / Iv), where Imc = Ipsilateral 

microglia count and Iv = Ipsilateral striatal volume.  

A measure for astrogliosis was taken using GFAP stained sections. Since the identification of 

individual astrocytes within the lesioned striatum was not possible, an unbiased stereology 

setup was utilised to quantify the response. Using a x40 objective, the number of individual 

fibres or cell bodies crossing into a sampling frame were counted using a setup similar to that 

used for cell counting. A measure of the response was then calculated using the following 

formula: % increase = (Iac / Cac) x 100, where Iac = Ipsilateral GFAP fibre count and 

Cac = Contralateral GFAP fibre count. GFAP fibre density was calculated using the following 

formula: Density = (Iac / Iv), where Iac = Ipsilateral GFAP fibre count and Iv = Ipsilateral striatal 

volume. 

 

3.3.3 Statistical analysis 

 

One mouse assigned to the 8-day post-lesion group died before the brain was able to be 

recovered leaving that group as n=5. In addition, a small number of individual sections were 

damaged beyond use or were only partially stained during processing, and as a result some 

counts were performed on a reduced group size, as indicated in the statistical figures 

presented.  
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All statistical analysis was performed using Genstat (18th edition). ANOVAs or student t-tests 

were performed to compare within-species experimental groups across all time-points. 

Sidak’s post hoc pairwise comparisons were performed to analyse significant interactions, 

correcting for multiple comparisons. Additional analysis of data from Day 8 was undertaken 

separately to probe the conditions in the two species at the standard time for transplantation 

(7-10 days) using a t-test. Significance was taken as p≤0.05. 

Post-hoc power analysis based on final animal numbers was calculated using G*Power 

software and was estimated to be 100% for large effect sizes and 99% for medium effect 

sizes. 

 

3.4 Results 
 

Lesion placement 

Areas of depleted DARPP-32 staining confirmed that the mid-dorsal striatal placement of the 

lesions was consistent throughout the groups, Figure 3.3 A. Lesioned regions were less 

discernible in the mouse striatum at the early time-points but became more obvious by 

Day 12. Clear areas of lesioning were evident in the rats from the first time-point onwards. 

From Day 16 onward the lesions incorporated the majority of the ipsilateral striatum in both 

species.  

Striatal morphological changes 

Measures taken from cresyl violet staining (Figure 3.3 B) showed that the ipsilateral striatal 

volume decreased over time in both species with respect to the contralateral side 

(Time: F6,69=14.83, p<0.001), Figure 3.4 A. The ipsilateral striatum contracted to 58.8%±5.3 

of the contralateral side in the mice and 61.9%±5.9 in the rats by 90 days post-lesion. The 

size of the ipsilateral ventricle increased in comparison to the contralateral side in both 

species (Time: F6,69=4.09, p=0.001) with ipsilateral ventricle volume increasing by 62%±25.2 

and 74.2%±15.7 in the mice and rats respectively by Day 90, Figure 3.4 B. It was observed 

that whilst the rat ipsilateral ventricle volume increased gradually from Day 8, the mouse 

ventricle retained its size until Day 20 when a rapid enlargement occurred (from ~100% of 

contralateral size to ~160%). Although there was no significant statistical interaction to allow 

this to be tested, the change is interesting because the expansion of the ventricle seems to 

correspond to the perceived development of the lesion in the mouse model.  However, no 
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difference in proportional changes in either the striatal or ventricle volume between the rat 

and mouse models was found, (Species: F1,69=2.84, ns; and Species: F6,69=3.47, ns 

respectively). Around the time at which transplantation would occur (Day 8) there were no 

differences between species in the amount of change in either striatal or ventricle volume 

(Day 8: t9=1.55, ns; and Day 8: t9=1.24, ns respectively). In addition, when the target grafting 

coordinates are applied to the lesioned sections, all fall within the striatum including at 90 

days post-lesion (see Xs in Figure 3.3 B).  

The relative ipsilateral neuronal cell counts reduced over time in both mouse and rat models, 

with no difference found between the mice and rats (Time: F6,68=3.07, p=0.01, Species: 

F1,68=2.83, ns), Figure 3.4 C. There was no difference at Day 8 in the proportion of cell loss 

between species (t8=1.21, ns).  

The number of cells per µm3 in the ipsilateral striatum increased over time in both species, 

however the increase was greater in the mouse model compared to the rat (Time: F6,68=7.11, 

p<0.01, Species: F1,68=39.40, p<0.001), Figure 3.4 D. Cell density was also significantly higher 

in the mouse model at Day 8 when compared to the rat (t8=6.53, p<0.001). The proportional 

change in cell density of the lesioned striatum increased over time, seemingly driven by an 

increase at Day 90, but no difference was found between species (Time: F6,68=2.51, p<0.05, 

Species: F1,68=0.20, ns), Figure 3.4 E. 

There was no significant difference in Nissl+ cell size between the two species (t1124=1.63, ns), 

Figure 3.4 F.  



Chapter 3 – Experiment 1  Exploring the effect of host 

64 
 

 

   

Day 4 Day 8 Day 16 Day 20 Day 12 Day 28 Day 90 

Day 4 Day 8 Day 16 Day 20 Day 12 Day 28 Day 90 

A 

B 

M
o

u
se

 
R

at
 

M
o

u
se

 
R

at
 

Figure 3.3 A DARPP-32 staining in the mouse (top) and rat (bottom) models labelling MSNs in the ipsilateral 
striatum. Areas of reduced staining within the striatum (black dashed line) highlight the lesioned area. Clear 
lesioned regions were apparent in the mice from Day 12, and from Day 4 in the rat. Lesions developed over time 
to incorporate the majority of the dorsal striatum in both species. B Cresyl violet staining in the mouse (top) and 
rat (bottom) models labelling Nissl bodies in all neurons for striatal and ventricle measurements. X represents 
the medial-dorsal and dorso-ventral coordinates used in the grafting protocols. Scale bars represent 2mm. 

 



   

 
  

 

Figure 3.4 A Ipsilateral striatal volume expressed as a percentage of contralateral volume. Striatal volume was reduced over time (p<0.001). No difference was found between species. 
B Ipsilateral ventricular volume expressed as a percentage of contralateral volume. Ventricular volume increased over time (p<0.001).  No difference was found between species. 
C Ipsilateral striatal cell number expressed as a percentage of contralateral counts. Striatal cell number was reduced over time (p<0.01). No difference was found between species. 
D Ipsilateral striatal cell density. Striatal cell density increased over time (p<0.01) and was more dense in the mouse striatum than the rat (p<0.001). At day 8 the mouse striatum had a 
higher cell density than the rat (*** p<0.001). E Ipsilateral striatal cell density expressed as a percentage of contralateral density. Ipsilateral striatal density increased over time (p<0.05). 
No difference was found between species. F Mean striatal cell diameter. No difference was found between species. Grey shaded bars highlight representative time-point for 
transplantation under standard protocols. Error bars represent SEM. 
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Inflammatory response to QA lesioning 

 

Iba1 staining of microglia revealed intense staining in the lesioned striatum in both the mice 

and rats from the first time-point, which persisted up to 90 days post-lesion, Figure 3.5. 

Uniformly distributed microglia extending multiple branched processes were observed in the 

contralateral striatum (Figure 3.6 A & B), in contrast to the densely packed cells with 

retracted processes in the ipsilateral side, Figure 3.6 C & D.  

The proportion of ipsilateral striatum containing intense staining of the activated microglia 

changed over time (Time: F6,67=9.42, p<0.001). Both species exhibited a rapid increase in 

activated volume up to Day 8, followed by a lull and a second peak of activity at Day 16, 

Figure 3.7 A. Subsequently, inflammation tended to decrease and, though much reduced, 

was still present after 90 days post-lesion. A greater proportion of the striatum was 

incorporated in the region of inflammation in the mouse model including at Day 8 (Species: 

F1,67=4.47, p<0.05; Day 8: t9=2.61, p<0.05). Microglial cell counts at Day 8 showed that the 

number of microglia in the lesioned side, compared to the intact side, increased to a 

significantly higher degree in the mouse model (t9=9.57, p<0.001), with ipsilateral microglial 

density also greatest in the mouse (t9=6.31, p<0.001), Figure 3.7 B.  

A clear difference could be seen in GFAP staining of astrocytes between the intact and lesion 

sides, Figure 3.6 E-F. Astrocytes in the contralateral striatum appeared to be more sparsely 

distributed, with individual cells and processes distinctly identifiable, whereas many more 

inter-tangled fibres could be seen in the lesioned side making it impossible to discern 

individual cells. It was also noticeable that the intact striatum (used as baseline) of the rats 

contained a greater number of astrocytes than that of the mice, Figure 3.6 E & F. The 

proportion of ipsilateral astrogliosis compared to the contralateral side, as measured by 

GFAP+ fibre density, was increased by the greatest amount in the mice (Species: F1,68=62.39, 

p<0.001), Figure 3.7 C. This difference was evident at Day 8 (t9=2.68, p<0.05).  No significant 

change in the proportion of astrogliosis over time was observed (Time: F6,68=1.63, ns), and 

no difference in ipsilateral GFAP fibre density between the species was observed at Day 8 

(t9=1.28, ns). However, there was an effect of time on ipsilateral GFAP fibre density 

(Time: F6,68=3.84, p<0.01), Figure 3.7 D. The trend of fibre density in the mice followed a 

similar pattern to that seen in microglial activation, with an early increase up to Day 8 

followed by a dip and a second peak at Day 16 before gradually decreasing. The same 

measure in the rat did not follow this pattern and seemed to maintain a more constant 

density over time. This observation was probed through correlation analysis of GFAP fibre 
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density and proportion of microglial activation (Figure 3.7 E), which revealed a very highly 

significant correlation in the mice (r=0.95, p<0.001), however no significance was found for 

the rat model.  
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Figure 3.5 Iba1 staining in the mouse (top) and rat (bottom) with representative examples from each time-point. Resting-state ramified microglia can be observed in the contralateral 
side (Day 4), with clear regions of activated microglia in the ipsilateral striatum. Scale bars represent 2mm. 
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Figure 3.6 A & B Iba1 staining of microglia in the contra- and ipsilateral mouse striatum respectively. C & D Iba1 staining of microglia in the contra- and ipsilateral rat striatum 
respectively. Uniformly distributed ramified microglia are seen in the contralateral side, whilst densely packed microglia with processes withdrawn are observed in the ipsilateral 
striatum. E & F GFAP staining of astrocytes in the contra- and ipsilateral mouse striatum respectively. G & H GFAP staining of astrocytes in the contra- and ipsilateral rat striatum 
respectively. Sparse cells are seen in contralateral mouse striatum, with more observed in the rat model, each with multiple long processes. On the ipsilateral side the staining is 
denser, with an increased number of fibres and shorter processes. All images taken from Day 8 post-lesion group. Main pictures x10 magnification, inset pictures x40 magnification. 
Black scale bars represent 50µm.  

  

Contra Contra Ipsi Ipsi 

M
o

u
se

 

M
o

u
se

 

R
at

 

R
at

 

6
9

 



 

 
   

 

Figure 3.7 A Ipsilateral volume of activated microglia expressed as a percentage of total ipsilateral striatal volume. The percentage volume of activated microglia was higher in the mouse 
than the rat (p<0.05). At day 8 the mice had a significantly higher percentage volume of activated microglia (* p<0.05). A main effect of time was observed (p<0.001). A biphasic peak 
was observed in both species first at day 8, then again at day 16. B Microglia counts from Day 8 time-point presented as a proportion of ipsilateral compared to contralateral counts, and 
density of microglia in the ipsilateral striatum. There was a greater increase in microglia number in the mouse model than the rat (*** p<0.001) and density of microglia cells was greatest 
in the mouse (*** p<0.001). C Increase in astrogliosis presented as the proportion of ipsilateral compared to contralateral fibre counts. The increase in astrogliosis was greater in the 
mouse model (p<0.05). At day 8 the mice had a significantly higher percentage increase in astrogliosis (* p<0.05). D Density of GFAP+ fibres in the ipsilateral striatum. Fibre density was 
greatest in the rat model (p<0.05). A main effect of time was observed (p<0.01). E GFAP+ fibre density plotted against proportion of microglial activation for the mouse (purple) and rat 
(blue) models. Small dots represent individual animals. Large dots represent the group mean with the post-lesion time-point labelled in white. There was a significant correlation between 
the GFAP fibre density and microglia activation in the mouse model (*** r=0.95, p<0.001), however no correlation was detected in the rat model. Error bars represent SEM. 
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3.5 Discussion 

 

The purpose of this experiment was to determine if the way the striatum reacts following a 

QA lesion differs between mouse and rat models to highlight parameters which may be 

detrimentally affecting the success of transplantation in mice. Animals of the two species 

were lesioned and the striatal tissue analysed at time-points spanning up to 90 days post-

surgery to answer four main questions: 1) Can we be sure the cells are being transplanted 

into the striatum? The post-lesion collapse of the striatum may occur at an accelerated rate 

in the mice compared to rats, thereby reducing the accuracy of calculated transplantation 

coordinates and potentially resulting in mis-injection of cells. 2) Are there species differences 

in the density of the post-lesion striatum which could restrict the space available for 

transplanted cells to develop? 3) Are we transplanting at the right time? Differences in the 

way the striatal immunological environment develops post-lesion could mean that the timing 

of transplantation is sub-optimal in the mouse model. 4) Could differences in the intensity of 

immune response result in a more hostile striatal environment in mice?  

1) Changes in striatal and ventricle volume following QA lesioning are not sufficient to affect 

atlas-based coordinates for transplantation in mice 

The structural changes that occur in the striatum following a QA lesion followed a similar 

pattern in the mice and rats. Both had a relative decrease in striatal volume and an increase 

in ventricle volume similar to that observed in a study of QA lesioned Sprague-Dawley rats 

(Martıńez-Serrano and Björklund, 1996) which saw an 15% decrease after 28 days post-

lesion. Others have reported a 95% decrease in neuronal content after 14 days (Roberts et 

al., 1993), however these counts were restricted to the lesion itself rather than in the 

striatum as a whole. No apparent differences between rats and mice in the amount of 

structural change were found at the time-point reflecting the time of grafting (Day 8), and it 

was shown that the relative grafting coordinates were consistently well within the dorsal 

striatum up until at least Day 90. In fact, judging by the delay in ventricular expansion, it was 

the physical structure in the mouse brain which appeared to retain its integrity for longer 

compared to the rats. It was not until Day 12 that the appearance of a definable lesion in the 

mice was observed, and the apparent collapse of the supporting parenchyma (and 

subsequent expansion of the ipsilateral ventricle) was only evident from Day 20.  This 

suggests that intraventricular placement of transplanted cells due to a physical distortion of 
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the striatum is not a likely factor contributing to the comparatively lower yields of grafts in 

the mouse model. 

2) The post-lesion striatum in the mouse has a greater cell density than the rat 

Whilst there was no difference between species in the proportional increase of lesioned 

striatum cell density compared to the intact side, the cell density of the ipsilateral striatum, 

and striatum in general was significantly greater in the mice compared to the rat. This 

difference was evident at the standard time for transplantation (Day 8). A higher density of 

cells could leave less physical space for transplanted cells to grow and thrive in mice. The 

effect of density on graft survival and quality could be probed by comparing transplants in 

standard cell density (Day 7 post-lesion) and an increased density environment (Day 90+ 

post-lesion). A study which incorporates transplanting into animals after a prolonged period 

after lesioning is describe in Experiment 2. 

3) Transplantation occurs at a time of peak inflammatory activity 

An intense microglial reaction was seen from the first time-point up to 28 days post-lesion in 

both rats and mice, with some animals still exhibiting areas of inflammation even after 90 

days. The density of astrocyte fibres in the lesioned mouse striatum was also increased 

although this was more sustained. Inflammatory microglial response is known to begin 

within hours of insult with cells migrating to the site of injury (Duan et al., 1998), and 

previously, high numbers of infiltrating macrophages have been observed up to 70 days 

post-lesion in a longitudinal study of QA lesioned Wistar rats (Shemesh et al., 2009).  

The biphasic pattern in microglia reactivity seen in both mice and rats with an initial peak at 

Day 8, followed by a secondary peak a week later reflects a similar pattern of microglial 

activation markers seen following a facial nerve cut (Raivich et al., 1999) and could indicate 

secondary recruitment of microglia into the region of damage. A study in QA lesioned Wistar 

rats which followed microglia expression up to 90 days also saw a peak in microglial activity 

14 days post-lesion (Arlicot et al., 2014), although in this case by 90 days baseline levels were 

restored.  

At the time at which transplantation is performed the microglial response observed was 

particularly marked, corresponding to other studies which observed peak microglial activity 

at 7-8 days post-insult (Janeczko, 1989; Barker et al., 1996; Moresco et al., 2008). This would 

indicate that this is not the ideal time to introduce transplanted cells. Johann et al. (2007), 

described an experiment in which they transplanted C57BL6/J mice at 2, 7, or 14 days 
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post-lesion and demonstrated that those transplanted at 2 days post-lesion yielded a larger 

graft volume compared to the later time-points in which they also observed an increase in 

microgliosis. Hence it would seem that transplanting before the peak in microglial activity is 

beneficial. However, since the cells transplanted 2 days post-lesion must have had to survive 

throughout the increased microglial activation period, the number of microglial cells cannot 

be the sole factor for any detrimental effects. It is known that the process of lesioning could 

‘prime’ the microglia (Perry and Teeling, 2013) turning them from helpful contributors to 

homeostasis to activated pro-inflammatory cells. It is possible that the priming process has 

not peaked by the early period but had reached deleterious levels at the later time-points. 

Therefore, it is possible that placing cells into the activated microglial environment causes 

detrimental effects to the grafts. If this is the case then it could be that we have picked a 

poor time to transplant our cells, and perhaps it would be better to transplant earlier or to 

wait until all residual activation has dissipated. An experiment designed to test this 

hypothesis by transplanting into animals lesioned 12 months previously is described later 

(Experiment 2). It is important to note that microglial activation can be increased in HD 

mouse models (Ma, Morton and Nicholson, 2003), and patients with HD (Sapp et al., 2001; 

Crotti et al., 2014) and is therefore a problem worth considering for transplantation as a 

therapy. 

4) The microglial and astrocyte reactions are more exaggerated in the mouse then the rat 

The pattern of inflammation was superficially similar in mice and rats. However, the 

proportion of microgliosis and astrogliosis in the lesioned striatum is significantly higher in 

the mice compared to the rats. At the times post-lesion at which transplantation would 

conventionally have been planned, the reaction in the mice observed here is massively 

exaggerated when compared to rats in terms of microglial number and density 

Studies utilising microglial cultures have shown that stimulated mouse microglia will produce 

a greater number of pro-inflammatory markers, such as interleukin-6 (IL-6), tumour necrosis 

factor-α (TNF-α), interleukin 1β (IL-1β) and inducible nitric oxide synthase (iNOS), than 

those derived from rats (Wei et al., 2013). Activated microglia can also produce QA (Heyes 

et al., 1996; Espey et al., 1997), which, in addition to its excitotoxic effects, has been 

implicated in immune cell signalling and, thus the exacerbation of inflammatory processes 

(Moffett et al., 1993). This could indicate that there are not only greater numbers of cells 

in the inflamed mouse striatum, but they are also releasing a greater number of 

inflammatory compounds. Differences in the way that the peripheral immune system of 
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rats and mice deal with the same toxin have been demonstrated (Smialowicz, 1994), so it 

is likely that the immune system of the CNS could also respond differently. In fact, 

differences reported in two rodent models (rat and gerbil) demonstrate that the microglia 

of rats produce significantly less QA in response to ischemic brain injury (Heyes et al., 2002). 

In this experiment, we found a close correlation between the microglia activity measures 

and the astrocyte measures in the mice, but this was absent in the rats. This would imply 

that either the way in which one of these cell types reacts to the lesioning is different, or 

the way one of these cells types interacts with the other is different. Human astrocytes 

have been shown to be neuroprotective whilst in their resting state, producing beneficial 

neuroprotective factors such as dizocilpine (MK-801, a glutamate receptor antagonist) 

which can reduce susceptibility to excitotoxins  (Giulian, 1993), as well as forming 

beneficial glial scars which can aid CNS recovery (Liddelow et al., 2017). However, in the 

presence of activated microglia, astrocytes may lose their ability to protect neurons thus 

inciting neuronal death, or become detrimentally reactive themselves (Liddelow et al., 2017). 

In addition, the microglia will metabolise kynurenine produced by the astrocytes to form 

QA (Guillemin et al., 2001), which has been shown to upregulate chemokines and stimulate 

astrocytes in culture (Guillemin et al., 2003), potentially leading to an escalating 

inflammatory loop. The greater density of resting state astrocyte fibres in the contralateral 

striatum of rats could be indicative of a more protective baseline which might attenuate 

inflammation (Kim et al., 2010), whereas in mice the exaggerated microglia response and 

corresponding astrogliosis could intensify the inflammatory process. 

Whilst it has been argued that this inflammation in itself is not necessarily detrimental to any 

cells being transplanted (Duan et al., 1998) these studies were conducted only in rats. In 

addition, the same authors report that if the immune system is sufficiently stimulated then 

rejection is more likely to occur (Duan, Brundin and Widner, 1997). Since the immune 

reaction has been shown to be more exaggerated in mice, then it is possible that the 

threshold of stimulation to initiate rejection is more easily passed in this species. The 

escalation of inflammation is likely to create a detrimental environment for transplantation 

of cells which, as well as potentially being recognised as foreign bodies, could also be 

targeted due to damage via the process of dissection and suspension (Perry and Teeling, 

2013). 

Notably, it took longer before a lesion could be visualised through DARPP-32 staining in the 

mice than in the rats, Figure 3.3 A. There was a steady decline in ipsilateral cell numbers, so 
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it could be that the supporting parenchyma could only withstand a certain loss before it 

collapsed. This could explain why there was a delay in the expansion of the ventricle in the 

mice. The fact that the lesion seems to manifest earlier in the rats highlights a potential 

difference in the species in the way that MSNs succumb to QA and the cells are destroyed. 

Additionally, it could mean that the injected QA is not processed as quickly in the mice and 

remains for longer at the injection site. This, in addition to the QA potentially being produced 

by the reactive microglia, could have an unfavourable impact on cells being transplanted into 

the region, especially considering that under normal conditions there is virtually no QA to be 

found in the brain parenchyma (at least in rats) (Moffett, Espey and Namboodiri, 1994). A 

comparative longitudinal quantitative assay of striatal QA content would be able to 

determine at which time the exogenous QA has dissipated, for example by gas 

chromatography-mass spectrometry (Smythe et al., 2002; Ghosh et al., 2012). 

 

3.6 Conclusions and future work 

 

The aim of this experiment was to determine if there were differences between the rat and 

mouse QA lesion model which could explain why transplants in the mouse model are small 

in comparison and do not survive as well as those seen in rats.  

The results show that mice exhibited an exaggerated reaction to lesioning compared to rats 

in terms of microglial and astrocytic response, which could lead to a more hostile striatal 

environment into which cells are transplanted. 

To examine the details of the immune response it is necessary to determine the phenotype 

of the cells observed. The assessment of levels of pro-inflammatory cytokines and QA within 

the models at each time-point is necessary to pin down the beneficial or detrimental nature 

of the response. A replicated experiment in which tissue is dissected and qPCR used to 

analyse the level of toxins (QA) or inflammatory factors (e.g. IL-6, TNF-α) could help to 

determine the type of environment the cells are subjected to. 

To avoid transplanting into a primed environment, an extended post-lesion period could be 

left. Even though the very process of inserting the grafting cannula may once again trigger a 

response, this would not be exacerbated by the presence of QA. This hypothesis forms the 

basis of Experiment 2. 
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Whilst the C57BL/6 mice used in this experiment have a highly exaggerated immune 

response compared to the Lister Hooded rats, it is unclear if this is representative of all mice. 

In addition, it is not known what effect this response could have on the survival of 

transplanted cells. Experiment 3 investigates the how the choice of host mice, and the donor 

strain choice could alter the graft outcome.  
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Experiment 2 

Extending the post-lesion period and the effect of host age§1 

 

3.7 Summary 

 

The previous experiment determined that under standard protocols, cells are transplanted 

into a very reactive inflammatory post-lesion environment. The following experiment was 

designed to test if extending the time between lesioning and transplantation, to a point 

beyond which any residual inflammatory response was detectable, could lead to increased 

graft survival and improved neuronal count. The study described compared grafts in mice 

transplanted 7 days post-lesion with those transplanted after 12 months. In addition, it was 

necessary to include an age-matched older control group which were transplanted 7 days 

post-lesion, thus allowing for the separation of transplantation timing and age-related 

effects. 

Graft survival, volume and cell counts were used to evaluate the grafts and inflammatory 

response was assessed through quantification of microglia in the grafted region. 

The results show that neither graft survival or graft volume were improved when the post-

lesion period prior to transplantation was extended to 12 months.  

  

 
§1Declaration 
Lesion surgery was shared with PhD student Victoria Roberton. Tissue dissection was performed by 
Ngoc Nga Vinh. 
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3.8 Introduction 

 

QA lesions invoke an intense immune response in mice 

 

Experiment 1 demonstrated that following QA lesioning there was an intense microglial and 

astrocytic reaction which lasted at least until 28 days post-lesion, and some residual activity 

even after 90 days. It was hypothesised that transplanting into this inflammatory situation 

would mean delivering donor cells into a hostile environment, and thus impact on the 

success of the grafts. By increasing the time between lesion surgery and transplantation 

surgery it was suggested that the reactive and primed microglial environment could be 

avoided, and the graft outcome improved.  

 

The immune system changes in aged mice 

 

As people age there is an increase in microglial activation and dysfunction, as well as a 

reduced ability to supress inflammation (Franceschi et al., 2007; Mosher and Wyss-Coray, 

2014; Sapp et al., 2001). Increases in microglial activation and dysfunction have also been 

reported in the aging rodent brain (Godbout et al., 2005; Perry et al., 1993), although others 

report contrary evidence (Ma et al., 2003). By leaving an extended time between lesioning 

and transplanting the mice will necessarily be more aged at the time of transplantation. To 

separate the effects of extended inter-surgery time and age, an additional experimental 

group of animals was included in the comparison which were aged but transplanted at the 

standard 7 days post-lesion. This addresses an important issue relevant to the clinical 

application of cell transplantation since those patients most likely to receive the treatment 

will be at least in their forties (Foroud et al., 1999), while most preclinical transplantation 

studies are performed in young adult animals.  

This experiment compares transplants performed at the standard 7 days post-lesion in young 

mice (Y7D group) with those carried out one year after lesioning (O12M group), once all 

traces of lesioning would presumably have dissipated. In addition, an age matched 

12-month-old control group was transplanted 7 days after lesioning (O7D group). The 

success of the grafts was assessed on graft survival, volume and neuronal cell numbers, and 

the microglial response was quantified to address the following questions: 
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1) Does transplanting after the post-lesion inflammatory period increase the survival 

and growth of grafts? 

2) Is the immune response to transplantation affected by the age of the host?  

3) Does the age of the host affect the survival and growth of the transplants? 

 

3.9 Methods 

 

3.9.1 Experimental design 

 

Male C57BL/6J mice (n=40, bred in-house) were weaned from litters born in two batches. 

The first batch were divided into two groups with half receiving unilateral mid-dorsal striatal 

QA lesions at 8 weeks old (‘O12M’ group, n=14, ~25g bodyweight), as described in methods 

section 2.2.1, and returned to their home cages whilst the others (‘O7D’ group, n=14) 

remained in their home cages (Figure 3.8). The second batch of mice, born a year later from 

the same breeding colony, received a similar lesion at 8 weeks old (‘Y7D’, n=12, ~25g 

bodyweight), at which point the O7D group were also lesioned at 51 weeks old (~35g 

bodyweight).  

 

 

  

Figure 3.8 Experimental timeline. Y7D = young mice lesioned 1 week prior to transplantation, O7D = old mice 
lesioned 1 week prior to transplantation and O12M = old mice lesioned 52 weeks prior to transplantation. 
Between surgeries mice remained in their home cages until they were perfused.  

Time (weeks) 
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Transplantation surgery 

At 7 days post-lesion (O7D and Y7D groups) and 52 weeks post-lesion (O12M group) mice 

received a unilateral transplant of Chrm4-EGFP-CD1 WGE tissue into the lesioned striatum, 

as described in methods section 2.2.3. Each mouse received 300,000 cells in total, delivered 

in two 1µl deposits of 150,000 cellµl-1 cell suspension, at two depths within the same tract at 

the lesion site. A summary of groups can be found in Table 3.2.  

A total of 34 E14 pups from three pregnant Chrm4-EGFP-CD1 dams were dissected on 3 

consecutive days prior to transplantation. Animals from each group were counter-balanced 

between surgery sessions. The medial transplantation coordinates for the O12M group were 

adjusted to -2.4 (rather than the standard -2.0) to account for striatal collapse and ensure 

striatal placement of cells.  

 

 

 

3.9.2 Immunohistochemical analysis of the grafts and microglia 

  

At 12 weeks post-transplantation all mice were transcardially perfused, as described in 

methods section 2.3.1, and brains transferred to sucrose solution for 48 hours. 

Fixed brains were sectioned at 40µm. GFP, NeuN and Iba1 immunohistochemical DAB 

staining was performed on free floating sections. Graft survival was assessed based on GFP+ 

staining, with those not exhibiting any positive staining deemed to have no surviving grafts. 

Graft volume measures were calculated by measuring cross-sectional areas of GFP+ staining 

across 1:12 series and using the formula: Volume = (ΣA*M)/ƒ, where A = area of graft (µm3), 

M = section thickness (µm) and ƒ = section frequency) and NeuN+ grafted cell numbers were 

manually counted. Graft cell density was calculated from the cell count and volume data.  

Group 
name 

Lesioned age 
(weeks) 

Transplanted age 
(weeks) 

Transplant time 
(weeks post-lesion) 

O12M 8 60 52 

O7D 59 60 1 

Y7D 8 9 1 

Table 3.2 Summary of experimental groups. O12M = old mice lesioned 12 months prior to transplantation, 
O7D = old mice lesioned 7 days prior to transplantation and Y7D = young mice lesioned 7 days prior to 
transplantation. 
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Iba1 antibody was used to stain microglia within the sections. Unbiased stereology was used 

to calculate the number of Iba1+ cells in the contra- and ipsilateral striatum in one section 

per brain at the level of the site of transplantation, including those with no surviving grafts. 

Density calculation of cells/µm3 were used rather than absolute cell counts to account for 

the collapse of the ipsilateral striatum in the O12M group, thus allowing for comparison 

between groups regardless of striatal volume. 

Proportional changes in microglial density in the ipsilateral striatum were calculated using 

the following formula: % increase = (Imd / Cmd) x 100, where Imd = Ipsilateral microglia density 

and Cmd = Contralateral microglia density. 

 

3.9.3 Statistical analysis 

 

Four mice from the Y7D group and one mouse from each of the O7D and O12M groups were 

culled due to ill health prior to transplantation. Therefore, the final groups sizes were as 

follows: Y7D n=8, O7D n=13 and O12M n=13.   

All statistical analysis was performed using Genstat (18th edition). ANOVAs or student’s 

t-tests were performed to compare experimental groups and between hemispheres where 

appropriate. Newman-Keuls’ post-hoc pairwise comparisons were performed to analyse 

significant interactions, correcting for multiple comparisons. Significance was taken as 

p≤0.05. 

Post-hoc power analysis based on final animal numbers was calculated using G*Power 

software and was estimated to be 100% for large effect sizes and 98% for medium effect 

sizes. 
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3.10 Results 

 

Graft survival and placement 

 

GFP staining confirmed that grafts had survived in each group, with survival rates 

summarised in Table 3.3 and Figure 3.10 A. Surviving grafts were located within the dorsal 

striatum (Figure 3.9 A - C), and NeuN+ grafted cells could be identified within regions of 

relative neuronal depletion. Non-specific staining associated with dead or rejected cells were 

found within the striatum of brains with no surviving cells, as well as within some of the 

surviving grafts Figure 3.9 D.  

Graft volume and cell counts 

Graft size was generally small although there was large variability within groups and some 

grafts with less than 100 surviving cells. Mean graft volumes and NeuN+ cell counts are 

summarised in Table 3.3. There was no difference in the GFP+ volume, NeuN+ cell counts or 

NeuN+ cell density between the three groups (Group: F2,20=0.29, ns; F2,20=0.64, ns and 

F2,20=1.7, ns respectively), Figure 3.10 B - D. 

 

 

 

Immune response to grafting 

Iba1 labelling of microglia showed marked ipsilateral activation in all surviving graft groups, 

as well as in the O7D mice with no surviving grafts, Figure 3.11. Microglial density was 

significantly higher in the ipsilateral compared to the contralateral striatum in groups with 

surviving grafts (Side: F2,20=105.98, p<0.001), Figure 3.12 A, however there was no difference 

between these groups (Group: F2,20=0.38, ns). When the proportional increase in ipsilateral 

microglial density was compared, there was a significant effect of group, and a trend towards 

the O12M having a smaller increase when compared to the Y7D and O7D groups, however 

Group 
Number of 

surviving grafts 
Mean graft volume  

(x105 µm3) 
Graft volume 

range (x105 µm3) 
Number of NeuN+ 

cells (x102) 

Y7D 5 of 8 (63%) 97.3±57.9 9.5 - 323.5 14.9±8.9 

O7D 10 of 13 (77%) 101.1±34.8 2.4 - 261.4 6.6±1.6 

O12M 8 of 13 (62%) 149.5±84.8 0.4 - 583.3 12.1±8.1 

Table 3.3 Summary of graft survival, GFP+ graft volume and NeuN+ cell counts. Y7D = young mice lesioned 7 
days prior to transplantation, O7D = old mice lesioned 7 days prior to transplantation and O12M = old mice 
lesioned 12 months prior to transplantation. 
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no significant difference between any group could be determined in the post hoc analyses. 

(Group: F2,20=5.12, p<0.05; O12M and Y7D t20=2.71, ns; O12M and O7D t20=2.83, ns 

respectively), Figure 3.12 B.  

In those groups with no surviving grafts there was still a significant increase in microglial 

density on the ipsilateral side, driven by a significant increase in the O7D group (Group*Side: 

F2,7=14.51, p<0.01; Side (Y7D): t7=0.60, ns; Side (O7D): t7=7.90, p<0.01; Side (O12M): t7=2.38, 

ns), Figure 3.12 C. The ipsilateral density was higher in this group than in either the Y7D or 

O12M groups (t7=6.71, p<0.01 and t7=4.84, p<0.05 respectively), however there was no 

difference in the contralateral side between any group.  The proportional increase in 

microglia density was elevated in the O7D group compared to the Y7D and O12M groups 

(Group: F2,7=20.69, p<0.001; t7=6.28, p<0.01 and t7=4.39, p<0.05 respectively), Figure 3.12 D, 

but no difference was found between the O12M and Y7D groups (t7=1.89, ns).



 

 
 

 

 

 

A B C 

GFP 

NeuN 

GFP GFP GFP GFP 

NeuN 

GFP 

NeuN 

Figure 3.9 A - C DAB labelled GFP+ and NeuN+ cells in the grafted regions 
of; A Young mice lesioned 1 week prior to transplantation (Y7D), B Old 
mice lesioned 1 week prior to transplantation (O7D) and C Old mice 
lesioned 52 weeks prior to transplantation (O12M). Main pictures taken 
at x1.25 magnification, inset pictures taken at x10 magnification. Black 
scale bars represent 50µm. Grafts labelled with *. Dashed lines 
represent the outline of the graft area. D Non-specific DAB labelling of 
dead cells in the tranplanted striatum at x10 magnification (left) and 
x40 magnification (right). Black scale bars represent 100µm. 
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Figure 3.10 Y7D = young mice lesioned 1 week prior to transplantation, O7D = old mice lesioned 1 week prior 
to transplantation and O12M = old mice lesioned 52 weeks prior to transplantation. A Percentage of mice 
with surviving cells 12 weeks post-transplantation (Young mice transplanted 1 week post-lseion (Y7D) 5 of 8; 
old mice transplanted 1 week post-lesion (O7D) 10 of 13; old mice transplanted 52 weeks post-lesion (O12M) 
8 of 13). B GFP+ graft volume. No difference was found between groups. C NeuN+ cell counts within the graft. 
No difference was found between groups. D Neun+ cell density within the graft. No difference was found 
between groups.  
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  A B 

C D 

E F 

i i c c 

i i c c 

i i c c 

Figure 3.11 DAB labelled Iba1+ cells in the contra- and ipsilateral striatum at transplantation site. A Young 
mice lesioned 1 week prior to transplantation (Y7D) with surviving grafted cells and B no surviving grafted 
cells. C Old mice lesioned 1 week prior to transplantation (O7D) with surviving grafted cells and D no 
surviving grafted cells. E Old mice lesioned 52 weeks prior to transplantation (O12M) with surviving grafted 
cells and F no surviving grafted cells. Main pictures taken at x1.25 magnification, inset pictures taken at 
x10 magnification, c = contralateral side, i = ipsilateral side. Black scale bars represent 100µm. 
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Figure 3.12 Y7D = young mice lesioned 1 week prior to transplantation, O7D = old mice lesioned 1 week prior to 
transplantation and O12M = old mice lesioned 52 weeks prior to transplantation. A Microglia cell density in the 
contra- and ipsilateral side in animals with surviving grafts. Microglia density was increased in the ipsilateral side 
compared to the contralateral (p<0.001). No difference was found between groups. B Ipsilateral density of 
microglia in animals with surviving grafts expressed as a percentage of contralateral density. There was a main 
effect of group (p<0.05), and a trend towards the increase in microglial density being less severe in the O12M 
mice compared to the Y7D or O7D groups, although this trend was not statistically significant. C Microglial 
density in the contra- and ipsilateral side in animals with no surviving grafts. An increase in microglia density in 
the ipsilateral side was observed in the O7D group (** p<0.01), but not the Y7D or O12M groups. The density of 
microglia was significantly higher in the ipsilateral side of the O7D group when compared to the Y7D and O12M 
groups (** p<0.01 and * p<0.05 respectively). No difference in the contralateral density was found between 
groups. D Ipsilateral density of microglia in animals with no surviving grafts expressed as a percentage of 
contralateral density. The increase in microglial density was greatest in the O7D mice compared to either the 
Y7D or O12M groups (** p<0.001 and * p<0.05 respectively).  
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3.11 Discussion 

 

The aim of this study was to assess whether graft outcome in the QA mouse model of HD 

could be improved by transplanting into the striatum after all immune reaction to lesioning 

had dissipated. This was achieved by comparing grafts of cells transplanted during a time of 

high post-lesion microglial activation and those transplanted once all traces of the initial 

response to lesioning were deemed to have completely dissipated. In addition, the effect of 

transplanting into aged mice compared to young animals was considered. Three groups were 

transplanted; standard young mice transplanted 7 days post-lesion, mice transplanted 12 

months post-lesion and age-matched older mice transplanted 7 days post-lesion.  The 

following questions were addressed: 1) Does survival and growth of grafts improve if mice 

are transplanted after the post-lesion inflammatory period? 2) Is the immune response to 

transplantation affected by the age of the host? 3) Does the age of the host affect the survival 

and growth of the transplants? 

1) Delaying transplantation beyond the post-lesion inflammatory response does not improve 

graft survival or content 

Delaying transplantation for 12 months after lesioning had no effect on the proportion of 

surviving grafts, the volume of the grafts or the number of surviving cells within the grafts. 

In addition, no difference in the ipsilateral density of microglia between groups with surviving 

grafts 12 weeks after transplantation was found, however, all groups exhibited a profound 

increase compared to the contralateral baseline. This suggests that the microglia response 

to the transplanted cells could supersede, or ‘top up’ any residual response related to 

lesioning.  It was originally hypothesised that the microglia following a lesion were primed 

and as such would result in a more detrimental environment for cells to be transplanted into, 

and these results could suggest that might not be the case. However, it has been shown that 

the activation of microglia begins within hours of trauma (Duan et al., 1998) and so the act 

of inserting the transplantation cannula could in itself initiate priming of microglia in the 

area, in addition to the presence of the transplanted cells themselves. 

The collapse of the striatum in the mice lesioned 12 months previous was pronounced, 

however, the adjusted transplantation coordinates compensated for this. The fact that there 

was no significant difference in graft volume or cell number in the short and long post-lesion 

time groups would suggest that the increased ipsilateral striatal cell density in the 12M 

groups did not have an increased detrimental effect on the grafts as was previously 
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postulated in Experiment 1. Whilst the analysis included only data of graft volume and cell 

counts from those animals in which surviving grafts were detected, it is noted that even when 

all animals were included, with graft volume / cell counts given as 0 where no detectable 

grafts were observed, still no significant differences are identified. However, this does not 

preclude to possibility that the increased density of the mouse striatum in general, compared 

to rats, could influence the ability of the transplanted cells to thrive.  

Poor graft size, cell survival and continued intense microglial activity 12 weeks post-

transplant in all groups with surviving cells, and the presence of dead or rejected cells in most 

animals, might indicate that immune response and graft rejection is an ongoing process in 

all groups. This suggests that any effect of transplanting at a later post-lesion time could be 

lost as soon as the transplantation surgery occurs since the presence of the cells triggers an 

inflammatory process, whether new or ongoing. A previous study assessed the effect of 

transplanting earlier, at 2 days post-lesion, and also found no difference in graft outcome 

(Roberton, 2014), despite some reports that transplanting at this stage, prior to peak 

immune response, improves graft survival (Johann et al., 2007). 

2) The immune response to transplantation is affected by the age of the host  

No difference between contralateral baseline levels of microglia density were found 

between the aged and young mice. Others report an increase in the number of activated 

microglia and increased release of pro-inflammatory cytokines in older animals (Njie et al., 

2012; Norden and Godbout, 2013), although not necessarily an increase in number or density 

of microglia in general. There was a trend towards an increased baseline density in the O12M 

group and it is possible that this would become significant if a larger group size was used. 

The comparative ipsilateral increase in microglia density was significant in all groups, with a 

trend towards the Y7D and O7D mice yielding a greater proportional increase. This was in 

part due to the trend towards an increased contralateral density in this group, rather than a 

lower ipsilateral microglia density. In fact, the O12M group was the only one to demonstrate 

a significant correlation between the microglial density in the two hemispheres (r=0.76, 

p<0.05), which could suggest that the activity of microglia in response to the transplantation 

is more global in those animals that were lesioned a long time before rather than being 

restricted to the ipsilateral side.  One hypothesis could be that this is a result of a priming 

mechanism induced by the original insult, which means subsequent insults induce a greater 

reaction, and further experiments would be able to test this. 



Chapter 3 – Experiment 2  Exploring the effect of host 

90 
 

Dead cells and cell debris were identified within the transplanted striatum of animals with 

no surviving grafts, indicating that the cells had been rejected at some point prior to the 12-

week post-transplantation perfusion time, rather than having been mis-injected. In contrast 

to the brains with surviving grafts, there was a difference detected between groups in 

microglial density changes in animals with no surviving grafts. In groups which were 

transplanted 7 days post-lesion, young animals with no grafts had microglial numbers 

equivalent to contralateral baseline levels, whilst older mice exhibited an increase in 

microglial density. It is possible that the cells were rejected early in the young animals and 

the striatum is in a post-reactive phase. Whereas in the older animals, either the rejection 

was delayed, or the microglial response had taken longer to dissipate. In support of the latter, 

studies have shown a prolonged and exacerbated microglial-related neuroinflammation in 

aged mice compared to younger (Huang et al., 2008; Perry et al., 1993).  

Whilst there was a trend towards the O12M group with no surviving grafts having an elevated 

change in microglial density compared to the Y7D mice, this increase was certainly not as 

marked as in the O7D group, therefore this difference can be assumed to be a consequence 

of either the greater gap between surgeries, or the age at which they were lesioned, although 

it is unclear what the mechanism could be. One possible explanation could be that an 

escalated inflammatory process due to the recent lesioning is less able to be dampened in 

older animals, whereas in those aged mice who have had time to recover from the lesion 

effects are able to manage their response to the new insult more effectively, although not 

as effectively as the younger animals.  

A progressive increase in reactive microglia is often seen in patients with HD (Sapp et al., 

2001; Tai et al., 2007a, 2007b). These findings highlight an important consideration for 

transplantation in patients since not only their age but also the inflammatory processes of 

the disease lead to an increase in microglial activation, which could confound the success of 

transplants in clinical trials. In addition, the hyperactivity of microglia in HD mouse models 

(Björkqvist et al., 2008; Ma et al., 2003) could confound preclinical assessment of the 

treatment.  

3) Transplanting into aged mice did not affect graft survival or cell number 

The age of the host mouse did not affect the survival, size or cell number within the grafts, 

however the size and quality of the grafts was poor in all groups.  Despite the data from the 

animals with no surviving grafts suggesting that age may exacerbate the innate immune 

response and ex vivo studies demonstrating that microglia from aged animals secrete more 
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pro-inflammatory cytokines than younger animals (Njie et al., 2012), this does not appear to 

relate to how well the grafts survive in this case. The intense microglial response within the 

grafted striatum in all groups may suggest that a ceiling level has been reached, after which 

any further release of cytokines due to age has no effect, which would also reflect the poor 

quality of the grafts.  

 

3.12 Conclusions and future work 

 

Delaying transplantation until well past the time any immune response from lesioning has 

returned to normal did not improve the survival or quality of graft outcome. The effect of 

microglia within the grafted site cannot easily be negated since the process of 

transplantation and the presence of the cells themselves are both likely to maintain the 

activated reaction.  

Preventing the activation of microglia in the host could be a potential solution. Studies in HD 

and other disease models have reported reduction of microglial inflammation, and a 

subsequent improvement in disease features, through the use of drugs such as minocycline 

(Sriram et al., 2006) or cox-2 inhibitors (Casolini et al., 2002; Kalonia and Kumar, 2011; 

Sánchez-Pernaute et al., 2004; Vijitruth et al., 2006) which can prevent the switching of 

microglia to their activated state. 

It is also possible that the response seen in the experiments so far are specific to, or more 

exaggerated in, the C57BL/6 strain used. This hypothesis is probed in Experiment 3 which 

compares transplants in three difference mouse strains. 
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Experiment 3 

The effect of host and donor strains 

 

3.13 Summary 

 

As shown previously, the C57BL/6 mice show a marked immune response to lesioning 

compared to the Lister Hooded rats. Transplanting Chrm4-EGFP-CD1 tissue into this strain 

after any expected lesion-induced inflammation had dissipated neither improved the graft 

outcome, nor mediated the microglial response to the transplanted tissue.  

To determine if the intense immune response is an intrinsic characteristic of either the 

C57BL/6 hosts, or the Chrm4-EGFP-CD1 tissue specifically, the following experiment 

examined the effects of transplanting tissue from, and into, multiple donor/host 

combinations. 

Chrm4-EGFP-CD1, C57BL/6 or CD1 tissue was transplanted into hosts of each of the three 

strains and the grafts assessed after twelve weeks. Graft survival, volume and cell number 

were compared to establish the effect of host and donor, as well as the effect of 

transplanting within the same strain or between different strains.  The number of microglia 

and dead cells found within the grafted striatum were used as markers of immune response 

and rejection and compared between the different groups. 

The data did not show a significant difference between the inflammatory response of the 

C57BL/6 hosts and the other strains examined, neither was it shown that the 

Chrm4-EGFP-CD1 neural tissue triggered a greater inflammatory response than that from the 

other strains. Conclusions drawn for the present experiment are cautious since a low graft 

survival rate resulted in very small group sizes which may not be sufficient to demonstrate 

statistically relevant differences.  

  



Chapter 3 – Experiment 3  Exploring the effect of host 

93 
 

3.14 Introduction 

 

Experiment 1 demonstrated an exaggerated immune response to QA lesioning in the 

C57BL/6 mice compared to that observed in the Lister Hooded rat, and Experiment 2 showed 

that there is a significant microglial reaction to transplanted cells in this strain. However, it 

remains unclear if the magnitude of this response is unique to the C57BL/6 strain or whether 

alternative strains might offer a more receptive environment for cell transplantation. 

Similarly, it is not known if the Chrm4-EGFP-CD1 in itself is more immunogenic than striatal 

progenitors from other mouse strains. 

Different mouse strains can exhibit different immunological responses 

Studies of immunogenicity in mice have demonstrated a differential response to viral 

challenges among different mouse strains (Herath et al., 2016; Kaba et al., 2008).  Whilst 

some have shown the C57BL/6 strain to mount a weaker response to virally transfected 

transgenes compared to other mice (Michou et al., 1997), another study demonstrated that 

injury to the CNS in the C57BL/6  triggers  an increased number of inflammatory cells to the 

site when compared to BUB/BnJ mice (Luchetti et al., 2010).  

Genetic background has also been shown to influence the susceptibility of striatal cells to 

excitotoxins, with C57BL/6 mice demonstrating a reduced sensitivity to QA than the other 

mouse strains that were compared, (McLin et al., 2006). In addition, the R6/1 HD mouse line 

bred on a CBAxC57BL/6 background, has shown resistance to QA lesioning  (Hansson et al., 

1999). These experiments were conducted in adult mice and it is unknown if these 

differences extend to the developing primary tissue in the various strains, however, it is 

possible that transplanted cells derived from donors of these backgrounds could be more 

resilient to the hostile environment into which they are being placed, particularly if, as was 

proposed in Experiment 1, QA dissipates from the lesion site at a slower rate in the mouse 

lesion model.  

Different tissues can have different immunogenic effects 

Transplants of peripheral organs in inbred and outbred mice show that outcome success was 

dependent on the genetic background of the donor, with inbred strains having an improved 

outcome over outbred (Reichenbach et al., 2013). However, this was not true of the 

background status of the host. Species differences in the amount of graft outgrowth have 

been shown (Kelly et al., 2007), and it is possible that a between-strain effect could also be 
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seen, albeit to a lesser extent since the disparity in immunogenicity between strains is 

smaller than between species.  

Additionally, the Chrm4-EGFP-CD1 donor used throughout this thesis was chosen because 

observations from within the lab suggested that this strain produced the most substantial 

grafts of those used for mouse transplantation. However, some reports suggest that the 

enhanced green fluorescent protein (EGFP) used to label the cells may aggravate host 

response to the transplants.  Stripecke et al., (1999), reported that EGFP was immunogenic 

in Balb/c mice, and later determined that its immunogenicity is strain dependent (Gambotto 

et al., 2000; Skelton et al., 2001).  However, further investigations by the same lab, in 

agreement with Denaro et al., (2001), determined that EGFP is not inherently immunogenic 

in C57BL/6 models.  

The differences described highlight the variability between donor strain tissues and the need 

to establish the most appropriate models for use in preclinical transplantation studies.  

Matching and mismatched tissue can influence graft survival 

The major histocompatibility complex (MHC) are the genes which encode for surface 

proteins recognised by the immune system. The less closely related individuals are, the more 

dissimilar the proteins are, and therefore the greater the intensity of the host immune 

response to the transplanted tissue. MHC mismatch between host and donor reduces graft 

cell counts and differentiation, and increases microglial activation compared to matched 

pairings (Chen et al., 2011), with the immunogenic effect increasing with the degree of 

mismatch from genetically identical (isogenic) host/donor combinations up to strongly 

mismatched xenografts (Duan et al., 1995). Transplants between outbred strains have been 

shown to have reduced survival in comparison to those between the more genetically similar 

inbred strains (Chen et al., 2011), however the subtle effects of MHC incompatibility and 

chronic immune activation are not well defined. Of the strains most commonly used within 

the lab, the Chrm4-EGFP-CD1 is most closely related to CD1 strain, although the two lines 

originate from separate colonies. The C57BL/6 strain, which is used as the host species in the 

previous experiments and as the background strain of many genetic models of HD and most 

behavioural studies in mice, could be presumed to be more strongly mismatched to the 

Chrm4-EGFP-CD1 donor tissue than the CD1 hosts, the strain used in many histology-based 

transplantation studies (Kelly, 2005; Kelly et al., 2007; Roberton, 2014).  
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The following experiment aimed to examine the effect of host and donor choice on graft 

outcome, in a counter-balanced study involving transplanting tissue derived from each of 

three different mouse strains, C57BL/6, CD1 and Chrm4-EGFP-CD1, into hosts of each of the 

same three strains. Graft survival, volume and cell number were compared for each host and 

donor strain, as well as between matched and mismatched strain combinations. The 

microglial response was also assessed as an indication of inflammatory reaction in the hosts. 
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3.15 Methods 

 

3.15.1 Experimental design 

 

Host animals 

Male C57BL/6J (n=12, 25-30g), CD1 (n=12, 35-45g), and Chrm4-EGFP-CD1 (n=12, 35-45g) 

mice were bred from an in-house colony (originally purchased from Harlan, Bicester, UK 

(C57BL/6J & CD1) and MMRRC, City, USA (Chrm4-EGFP-CD1)) and assigned to age-matched 

groups, Table 3.4. At age ten weeks all mice received unilateral mid-dorsal striatal QA lesions 

(Figure 3.13), counter-balanced over four daily surgery sessions, and were returned to their 

home cages. The same stereotaxic coordinates were used for all strains. 

Host Donor 

 C57BL/6J CD1 Chrm4-EGFP-CD1 

C57BL/6J 4 4 4 

CD1 4 4 4 

Chrm4-EGFP-CD1 4 4 4 

 

 

  

Table 3.4 Summary of planned experimental group numbers.  

Figure 3.13 Experimental timeline.  

Time (weeks) 
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Transplantation surgery 

From ten days post-lesion animals received a unilateral transplant into the lesion site as 

described in methods section 2.2.3. Surgery sessions were planned to be split over four days 

with a counter-balanced number of animals from each group receiving transplants on each 

day, i.e. one of each strain receiving tissue from one of three dissections, Figure 3.14. 

Therefore, for each donor strain, four different suspensions were made (one for each day of 

surgery) thus reducing any effect of any one suspension being of a reduced quality.  

One pregnant female of each strain was dissected each day prior to surgery, and the WGEs 

dissected from E14 embryos and made into single-cell suspensions of 150,000 cellsµl-1 as 

described in methods section 2.2.2.  

 

 

 

 

 

 

 

 

 

Due to problems obtaining pregnant Chrm4-EGFP-CD1 females, one batch of this suspension 

was transplanted on a separate day, and another set was not able to receive transplants at 

all, Table 3.5. 

Each mouse received at total of 300,000 cells split between two 1µl deposits of cell 

suspension at two depths within the same tract at the lesion site. 
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Figure 3.14 Schematic depicting how groups were counter-balanced for each surgery day.   



Chapter 3 – Experiment 3  Exploring the effect of host 

98 
 

3.15.2 Immunohistochemical analysis of the grafts and microglia 

 

At 12 weeks post-transplantation all mice were transcardially perfused as described in 

methods section 2.3.1, and brains transferred to sucrose solution for 48 hrs. 

Brains were sectioned on a freezing-stage microtome into 40µm thick sections and stored in 

anti-freeze at -20°C. Cresyl violet (CV) staining was performed on 1:12 sections as described 

in section 3.3.2, and immunohistochemical staining was performed on free-floating sections 

using GFP, NeuN and Iba1 antibodies. 

Graft location was determined by observing areas of altered parenchyma structure on the 

CV stained sections and graft survival was verified by the presence of cells within the 

relatively NeuN+ depleted lesion at this site. Graft volume and cells counts were measured 

on NeuN+ stained sections, and microglial density from Iba1 stained sections were calculated 

as describe in section 3.9.2.  

The number of dead or rejected cells was assessed in all animals by attributing semi-

quantitative grading scores (adapted from (Duan et al., 1995) between 0 and 6 according to 

the following criteria; (0) No visible dead cells, (1) < 5 dead cells, (2) one group of 5+ dead 

cells, (3) two or more groups of 5+ dead cells, (4) large region with dead cells, (5) multiple 

large regions of dead cells, or (6) dead cells throughout entire grafted region. 

  

3.15.3 Statistical analysis 

 

In the 12-week period between transplantation and perfusion, one CD1 mouse transplanted 

with C57BL/6 tissue, one C57BL/6 mouse transplanted with CD1 tissue and one 

Chrm4-EGFP-CD1 mouse transplanted with CD1 tissue became unwell and were euthanised 

before the end of the experiment. The final experimental group numbers are therefore 

summarised in Table 3.5. 

 

Host Donor 

 C57BL/6J CD1 Chrm4-EGFP-CD1 

C57BL/6J 4 3 3 

CD1 3 4 3 

Chrm4-EGFP-CD1 4 3 3 

Table 3.5 Summary of final group numbers.  
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Statistical analysis was performed using Genstat (18th edition) or IBM SPSS Statistics 23. 

ANOVAs, Kruskal-Wallis or student’s t-tests were performed to compare experimental 

groups and between hemispheres where appropriate. 

Newman-Keuls’ post hoc pairwise comparisons were performed to analyse significant 

interactions, correcting for multiple comparisons. Significance was taken as p≤0.05. 

Post-hoc power analysis based on final animal numbers was calculated using G*Power 

software and was estimated to be 99% for large effect sizes and 83% for medium effect sizes.  

Whilst descriptive data of individual groups was informative, statistical comparisons 

between these groups was not viable since some groups had just two surviving grafts to 

analyse. However, it was possible to analyse main effects of host and donor in the combined  

groups.  
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3.16 Results 

 

Graft survival and placement 

Densely stained areas of parenchymal disruption were observed in the CV-stained sections 

signifying the transplanted region, Figure 3.15 A. Grafted cells were identified in the 

corresponding NeuN+ stained sections, Figure 3.15 B - D. Surviving grafts were located 

centrally within the lesioned striatum in all groups and survival rates are summarised in 

Table 3.6 and Figure 3.16 A. No effect on graft survival of host strain or donor strain was 

found (Host: F2,6=0.29, ns; Donor: F2,6=0.61, ns), Figure 3.16 B - C. Fewer grafts survived in 

the mismatched donor/host combinations than in those which were matched (Strain: 

t6=3.80, p<0.01), Figure 3.16 D. 

Graft volume and cell counts 

While grafts still appeared small and narrow in comparison to those described in rat studies, 

they were generally larger than in the previous experiment, including those transplanted 

under the same conditions Table 3.6. Graft volumes of each group are summarised in 

Figure 3.16 E. There was no effect of host on the volume of the grafts (Host: F2,21=2.97, ns), 

Figure 3.16 F. A main effect of donor on graft volume was observed, however, although there 

was a trend towards the Chrm4-EGFP-CD1 tissue yielding a greater graft volume, no 

significant differences between the Chrm4-EGFP-CD1  and the C57BL/6  or CD1 groups was 

shown in post hoc analyses (Donor: F2,21=4.53, p<0.05; t21=2.24, ns and t21=2.86, ns 

respectively), Figure 3.16 G. There was a trend for the between-strain transplants to produce 

larger grafts than the within-strain transplants, however, this was not significant (Strain: 

t23=1.65, ns), Figure 3.16 H. 

NeuN+ cell counts from each group are summarised in Figure 3.17 A. Whilst a main effect of 

host on cell number was observed, the trend towards CD1 hosts yielding lower counts was 

not statistically different to either the C57BL/6 or Chrm4-EGFP-CD1 group (Host: F2,21=4.55, 

p<0.05; t21=2.67, ns; t21=2.55, ns respectively), Figure 3.17 B. There was no effect of donor 

on cell number (Donor: F2,21=2.45, ns), Figure 3.17 C. There was a trend for the between-

strain transplants to yield a greater number of cells than the within-strain transplants, 

however, this was not significant (Strain: t23=1.81, ns), Figure 3.17 D. 

Figure 3.17 E summarises the cell density within the grafts for each group. There was no 

effect of host on graft cell density (Host: F2,21=3.02, ns), Figure 3.17 F, and no effect of donor 
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strain (Donor: F2,21=3.20, ns), Figure 3.17 G. Neither was there a difference in cell density in 

grafts in the between-strain and within-strain models (Strain: t23=0.62, ns), Figure 3.17 H. 

Dead cell grading 

Dead cells were observed in all groups, examples of which are shown in Figure 3.18 A - B, 

and each mouse was assigned a grade based on how many dead cells were found within the 

grafted region. No difference in grade was found between host strains, donor strains or 

between mismatched groups (χ2(2)=0.15, ns; χ2(2)=1.70, ns and χ2(1)=0.07, ns respectively),        

Figure 3.19 A - C. 

Inflammatory response to grafting 

Activated microglia were seen in the ipsilateral striatum in all host strain groups, Figure 3.20. 

Microglia density was significantly greater in the ipsilateral side compared to the 

contralateral side, (Side: F2,16=166.26, p<0.001), however no effect of host or donor strain 

was seen (Side*Host: F2,2=1.24, ns; Side*Donor: F2,2=1.33, ns), Figure 3.21 A - B. Neither was 

there an effect of between- and within-strain donor/host combinations (Side*Strain: 

F1,1=0.32, ns), Figure 3.21 C. 

There was no effect of host or donor strain on the proportional change in microglial density 

on the lesioned side (Host: F2,16=2.51, ns; Donor: F2,16=1.25, ns), nor of between- and within-

strain combinations (Strain: t23=0.43, ns), Figure 3.21 D-F. 
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Host Donor 
Number of 
surviving 

grafts 

Mean graft 
volume  

(x105 µm3) 

Graft volume 
range 

(x105 µm3) 

Number of 
NeuN+ cells 

(x102) 

C57BL/6 

C57BL/6 4 of 4 (100%) 189.3±39.6 100.6 - 266.6 102.5±11.1 

CD1 2 of 3 (67%) 163.6±113.1 50.5 - 276.6 87.4±66.4 

M4 2 of 3 (67%) 420.3±322.2 98.1 - 742.5 129.1±62.1 

CD1 

C57BL/6 2 of 3 (67%) 41.8±26.31 15.5 - 68.1 29.0±8.5 

CD1 4 of 4 (100%) 35.0±21.4 8.4 - 98.8 16.14±6.5 

M4 2 of 3 (67%) 329.4±12.1 317.3 - 341.5 137.6±6.7 

M4 

C57BL/6 3 of 4 (75%) 276.9±140.9 128.8 - 558.4 112.2±59.1 

CD1 3 of 3 (100%) 277.6±65.1 148.3 - 355.5 124.5±15.7 

M4 3 of 3 (100%) 231.1±52.6 122.0 - 304.4 87.7±16.6 

Table 3.6 Summary of graft survival, NeuN+ graft volume and cell counts. M4 = Chrm4-EGFP-CD1. 



 

 
 

Figure 3.15 A Cresyl violet stained sections used to locate grafted region (circled). B - D 
Representative NeuN+ stained sections for B C57BL/6 host, C CD1 host and D Chrm4-EGFP-CD1 host. 
Main pictures taken at x1.25 magnification, inset pictures taken at x10 magnification. Black scale 
bars represent 100µm. Grafts labelled with *. Dashed lines represent the outline of the graft area.  
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Figure 3.16 A Graft survival in each group (number of surviving grafts / number animals transplanted). B Graft survival grouped by host strain. There was no effect 
of host on graft survival. C Graft survival grouped by donor strain. No effect of donor was found. D Graft survival grouped by between- and within-strain donor/host 
pairing. 100% of within-strain grafts survived whilst ~74% of between-strain grafts survived (** p<0.01). E NeuN+ volume of grafts in each group. F NeuN+ volume of 
grafts grouped by host strain. There was no effect of host. G NeuN+ volume of grafts grouped by donor strain. No statistical difference between donor groups was 
found. H NeuN+ volume of grafts grouped by between- and within-strain donor/host pairing. No effect of strain was found. BL6 = C57BL/6, M4 = Chrm4-EGFP-CD1. 
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Figure 3.17 A NeuN+ cell count of grafts in each group. B NeuN+ cell count of grafts grouped by host strain. There was a main effect of group (p<0.05), however, post-hoc 
analysis was unable to detect a statistical difference between any group pair. C NeuN+ cell count of grafts grouped by donor strain. No effect of donor was found. D NeuN+ cell 
count of grafts grouped by between- and within-strain donor/host pairing. No difference was found. E NeuN+ cell density in grafts in each group. F NeuN+ cell density in grafts 
grouped by host strain. No effect of host on graft cell density was found. G NeuN+ cell density in grafts grouped by donor strain. No effect of donor was detected. H NeuN+ cell 
density in grafts grouped by between- and within-strain donor/host pairing. No effect of strain mismatching was found. BL6 = C57BL/6, M4 = Chrm4-EGFP-CD1. 
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A B 

Figure 3.18 NeuN+ stained sections showing examples of healthy-looking grafted cells (white arrows), dead 
cells (black arrows) and cell which look unhealthy (grey). A An example of a graft scoring 3 in grading scale. 
B  An example of a graft scoring 6 in grading scale. Images taken at x20 magnification. Black scale bars 
represent 100µm. 

Figure 3.19 Grade assigned for number of dead cells found within the grafted region of each animal, grouped 
by A host strain, B donor strain and C as between- or within-strain donor/host pairing. No effect of host, 
donor or strain combination was found. BL6 = C57BL/6, M4 = Chrm4-EGFP-CD1. 
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 A 

B 

C 

Figure 3.20 Iba1 staining of microglia in a representative example A C57BL/6 host, B CD1 host and 
C Chrm4-EGFP-CD1 host. Main pictures taken at x1.25 magnification. Inset pictures of ipsilateral side taken 
at x10 magnification. Black scale bars represent 100µm. 
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A 

Figure 3.21 A Ipsi- and contralateral microglial cell density in hosts with surviving grafts grouped by host 
strain.  Ipsilateral density was greater than the contralateral density (p<0.001). No difference between groups 
was found. B Ipsi- and contralateral microglial cell density in hosts with surviving grafts grouped by donor 
strain. There was no effect of donor. C Ipsi- and contralateral microglial cell density in hosts with surviving 
grafts grouped by between- and within-strain donor/host pairing. No effect of strain mismatching was found. 
D Change in microglia density in hosts with surviving grafts as a proportion of contralateral side grouped by 
host strain. No difference between groups was found. E Change in microglia density in hosts with surviving 
grafts as a proportion of contralateral side grouped by donor strain. There was no effect of donor. F Change 
in microglia density in hosts with surviving grafts as a proportion of contralateral side grouped by between- 
and within-strain donor/host pairing. No effect of strain mismatching was found. BL6 = C57BL/6, M4 = 
Chrm4-EGFP-CD1. 
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3.17 Discussion 

 

This experiment aimed to separate the effects of mouse host and donor strains on graft 

survival and morphology by transplanting tissue derived from three different donor strains 

into three host strains. The resultant grafts were compared and analysed for size, cell content 

and degree of inflammatory response observed. The effect of the matched and mismatched 

tissue combinations was also evaluated.  

C57BL/6 hosts do not have an exaggerated immune response compared to other mouse 

strains 

Very few significant differences or consistent trends were found for a beneficial effect of one 

host strain over another. It is possible that this is due to underpowered tests since individual 

groups were very small once non-surviving grafts had been removed from analysis. A study 

that used increased groups sizes and less comparisons may well give a clearer result, but any 

strain differences that are present are likely to be modest. 

The number of dead cells found in each group was not significantly different, regardless of 

host strain, suggesting that the problem of poor grafts extend beyond an exaggerated 

response from the C57BL/6 strain, but again this interpretation is suggested with the caveat 

that the study is the constrained by small group sizes. 

Chrm4-EGFP-CD1 neural tissue is not more immunogenic compared to neural tissues of other 

mouse strains 

No effect of strain was found in the microglial response to transplanted tissue, and there was 

no consistent difference in graft outcome. However, there was trend towards the 

Chrm4-EGFP-CD1 tissue producing larger grafts than the CD1 or C57BL/6 strains and this is 

certainly suggestive that Chrm4-EGFP-CD1 tissue does not induce a greater inflammatory 

response, nor that these cells are more susceptible to rejection. However, stem cells isolated 

from different strains of mice have shown differences in proliferation rates and 

differentiation potential (Peister et al., 2004), and the inherent strain differences in the 

phenotype of the cells transplanted were not probed in this study. Therefore, it is unknown 

if a particular strain was more proliferative, but subsequently had less cells survive up to the 

12-week time-point. The properties of the progenitor cells of the three strains could be 

assessed by culturing the cell suspensions in vitro before quantifying proliferation and 

differentiation though immunocytochemical stains, such as the mature neuronal marker 
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β-tubulin and early markers of MSN fate CTIP2 and FOXP1. Alternatively, a repeated in vivo 

experiment with groups taken at different time-points during graft development could also 

provide evidence for this. 

Matching donor/host strains increased survival but did not improve graft content 

Whereas graft survival was consistent with the previously described experiment for those 

derived from mismatched donor and host strain, there was improved survival in those from 

matched strains, in fact, matched combinations showed a 100% rate of survival in this 

experiment. However, no improvement in the size or cell numbers within the grafts was 

identified, nor was there any apparent difference in the host microglial response to the 

transplanted tissue. While the greater survival rates might be expected in those transplanted 

between animals of the least MHC disparity (Chen et al., 2011), it would also be expected 

that improved cell survival and graft volume would be observed. It is possible that 

mismatching strains might influence the speed of graft rejection rather than improving the 

conditions for the transplanted cells. Since all were taken at the same time-point it is not 

possible to say whether the matched strain grafts may have undergone a slow rejection 

process later.  

These data should be interpreted with care since, although suggestive, the small group sizes 

mean that a small loss in graft survival creates a large difference in the percentage score. In 

fact, of the mismatched groups, only one graft for each did not contain any surviving cells. 

While there is some evidence here to suggest that the matched strains would lead to 

improved survival, it is necessary for a larger experiment to be carried out to verify the 

observations.  

Graft outcome was inconsistent under similar transplant conditions 

The cells transplanted under the standard conditions in this experiment resulted in a larger 

mean graft volume than those seen in the previous experiment (Experiment 2: M4 tissue into 

BL6 host mean graft volume = 97.3±51.9 x105µm3; Experiment 3: M4 tissue into BL6 host 

mean graft volume = 420.3±322.29 x105µm3). This could be explained by a number of 

reasons: (a) the cell suspensions, despite having a similar viability score upon dissection, may 

have been from higher quality embryos or dissected in a slightly different way, or, 

alternatively, (b) the host animals may have been exposed to fewer pathogens which are 

known to exacerbate inflammation within the CNS (Combrinck et al., 2002; Perry and Teeling, 

2013). However, it is unlikely that these conditions would have changed significantly within 



Chapter 3 – Experiment 3  Exploring the effect of host 

111 
 

the time-course of the experiments. A further difference that could potentially have had an 

effect is (c), that fewer mice were transplanted from each cell suspension in the current 

experiment. Only three mice were transplanted per suspension here, whereas up to fourteen 

were for Experiment 2. It is possible that repeated extraction of cells from the aliquot could 

be detrimental to the remaining cells over time, or that more cells are taken up during earlier 

surgeries leaving fewer left in the suspension for subsequent transplantations. Since the 

timing of transplantation surgeries are counter-balanced between groups and across days, 

this should not affect the results of individual comparisons within experiments, providing 

that the groups are large enough. However, it could be a problem in general and be 

contributing to lower success rates in the mice. Surviving cell numbers from the previous two 

experiments, and Experiment 4, is assessed with respect to the order of surgery at the 

beginning of Experiment 5 in the next chapter.  

Differences in NeuN+ grafted cell morphology 

It is interesting to note that a different NeuN antibody was used in this study, one which was 

raised in rabbit rather than mouse. The resultant immunological stains contained far less 

non-specific staining, possibly previously linked to immunoglobulins released at the site of 

surgery. Therefore, the new antibody allowed for very clear identification of the grafts and 

brought attention to morphological differences between some NeuN+ cells within the grafts.  

While most cells had crisp edges and dark staining, and obviously dead cells were orange-

coloured and spherical, a few cells seemed to be slightly larger, have a slightly paler brown 

staining and a fluffiness to their edges. While these cells were counted in the surviving cell 

counts, it is proposed that these cells may be in the process of undergoing rejection, 

however, it was not possible to confirm this within the scope of the present experiment.  

 

3.18 Conclusions and future work 

 

As a pilot study, this experiment was able to show there may be differences to graft outcome 

driven by donor and host choice in mouse striatal transplantation, such as higher survival in 

within-strain transplants and possible trends that individual combinations may be unsuited. 

However, the group sizes became too small to analyse with statistical confidence. Through 

comparing too many strains, and therefore complicating any donor or host effects, and 

counterbalancing the design across surgery days, potential interactions were lost. A greater 
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number of transplants could have been completed from each suspension if one donor strain 

type had been used each day, however the risk of a poor cell preparation affecting any 

particular group would then be increased. 

A study design with a greater group size and a simplified model comparison is discussed in 

Experiment 4, which was completed in collaboration with another PhD student (VHR) and 

enabled a greater number of surgeries of each type to be completed on each day.  
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Chapter 4 

Exploring the effects of donor tissue and cell preparations  

 

4 Chapter summary 

 

The experiments of the previous chapter predominantly concentrated on the host effects on 

transplantation outcome in lesion models of HD. The next set of experiments will examine 

another part of the equation, the donor tissue. Experiment 3 considered the effect of strain 

choice; however, it is important to also consider the procedural parameters of the cell 

preparation, and how the quality of the suspension, prior to transplantation, may change 

over the surgical period.  

Therefore, the experiments in this chapter aimed to determine how changes to the cell 

preparation protocols, specifically, the effects of donor age and dissociation technique, can 

affect graft outcome (Experiment 4). In addition, the characteristics of single-cell 

suspensions were examined for changes in viability and homogeneity which could impact the 

graft outcome (Experiment 5). 
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Experiment 4 

 

The effect of tissue preparation and donor age§ 

4.1 Summary 

 

The first experiment of this chapter re-examines the effects of altering some of the 

fundamental components of the standard transplantation protocols established in the rat 

model; donor age and tissue dissociation.  

Transplants of WGE tissue of donor age E12 and E14 were compared in combination with 

different degrees of tissue dissociation, either through triturating to a single-cell suspension 

or by processing with minimal dissociation to leave a tissue-piece style preparation. Cells 

were transplanted in two donor/host paradigms; the between-strain Chrm4-EGFP-CD1 tissue 

into C57Bl/6 mice, as predominantly used for the previous experiments in this thesis; and 

the CD1 into CD1 within-strain model§.  

Grafts were analysed after twelve weeks and assessed in terms of volume, cell number, 

DARPP-32+ content and parvalbumin+ interneuron content. The content of the grafts was 

considered in more detail than in previous chapters to establish the effects of treatment on 

the critical MSN content. The host immune response to the transplants was gauged based 

on the severity of microglial response.  

Furthermore, cells from each donor age were assessed in vitro for differences in proliferation 

and differentiation. 

  

 
§ Declaration. 
This experiment was conducted in collaboration with another PhD student; Victoria 
Roberton, who discussed the data relating to the CD1 mice in her thesis (Roberton, 2014). 
Tissue dissections were performed by Ngoc Nga Vinh. Data from this experiment was 
published in Cell Transplantation (2017), Appendix 4. 
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4.2 Introduction 

 

Rat transplantation protocols need to be reassessed for translation to mice 

Protocols have been optimised and are well established for rat to rat striatal transplants, 

with extensive preclinical literature showing consistent large and functional grafts from E14-

E16 WGEs (Fricker et al., 1997; Schmidt et al., 1981). Rat protocols have been refined over 

many years, with donor age and tissue preparation identified as critical factors affecting graft 

survival, morphology and function of rat to rat striatal transplants (Björklund and Stenevi, 

1984; Kromer et al., 1983; Watts et al., 2000a), however, these factors have not been 

systematically investigated in mice. It is evident throughout the literature (Cisbani et al., 

2014; El Akabawy et al., 2012; Johann et al., 2007; Kelly et al., 2007; Roberton et al., 2013), 

and from the data presented in the preceding experiments, that the direct translation of 

these protocols to mice results in considerable graft variability.  

The influence of donor age on graft outcome 

Studies in rat to rat transplants have shown that the optimal donor age varies depending on 

tissue type used, and more specifically on the developmental stage of those particular 

neuronal types (Torres et al., 2007; Kromer et al., 1983). The most effective age is considered 

to be when the precursor cells are at the stage of proliferation and final mitotic division in 

vivo, with survival of cells after this time significantly reduced (Björklund and Stenevi, 1984). 

Rat studies comparing grafts of different neural tissue found that early differentiating tissues, 

such as brainstem and spinal cord were more successful when tissue of early stage embryos 

(E15 – E17) was transplanted, whereas those tissues of later stage development, such as 

hippocampus, were more successful using later stage embryos of E20 – E22, as measured by 

graft volume (Kromer et al., 1983). This accords well with the viability of different 

populations cultured in vitro, explored systematically by Olson et al., (1983). 

When donor age for striatal transplantation of WGE in rats was investigated specifically, it 

was found that the largest grafts, greatest number of MSNs and most improved behavioural 

recovery were generated from tissue taken closest to the time of striatal neurogenesis 

(Fricker et al., 1997; Schackel et al., 2013; Watts et al., 1997).  

Striatal neurogenesis in the rat typically first occurs between E12.5 and E14.5 (Bayer, 1984). 

The majority of rat transplantation studies use tissue at age E14 and produce large, 

functional and DARPP-32+ rich grafts (Döbrössy and Dunnett, 1998; Dunnett and White, 
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2006; Mazzocchi-Jones et al., 2009). In mice the lateral ganglionic eminence (LGE), the source 

of striatal progenitors (Deacon et al., 1994), is visible by E12, while the medial ganglionic 

eminence (MGE), where interneurons are born, is visible as early as E11 (Olsson et al., 1998; 

Smart and Sturrock, 1979). To obtain the neural diversity in grafts closest to that seen in the 

adult striatum, it is necessary to transplant both the LGE and MGE (the whole ganglionic 

eminence – WGE) (Olsson et al., 1998; Watts et al., 2000a), indicating that E12 might be the 

earliest time point for obtaining all the necessary cell types in mice. This is supported by 

comparing the Carnegie stages of development in the mouse and rat, given that age E14 in 

the rat relates to approximately age E12.5 in the mouse (Butler and Juurlink, 1987), Figure 

4.1. 

The different developmental rates seen between the species may suggest that an earlier 

donor of E12 may be more comparable for seeing similar results in the mice. 

The influence of tissue preparation on graft outcome 

Historic clinical trials of striatal cell replacement in Parkinson’s disease (PD) and HD patients 

have typically transplanted suspensions of tissue pieces (A.-C. Bachoud-Lévi et al., 2000; A. 

Bachoud-Lévi et al., 2000; Kopyov et al., 1998), although others have employed dissociated 

single cell suspensions (Rosser, 2002). The effect of the tissue processing and preparation 

methods used prior to implantation is a vital consideration for graft survival and 

development.  

There are potential benefits of delivering the transplant as tissue pieces, rather than 

triturated cell suspensions. Limiting the manipulation of the tissue can reduce disruption and 

death of neuronal populations within the preparation, and the retention of the extracellular 
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Figure 4.1 The relationship between embryonic age and Carnegie stage 
of the rat and mouse. Adapted from (H. and B.H.J. 1987). 
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matrix may protect cells during transplantation (Thomas et al., 1999) and in the initial post-

graft period. However, it has been suggested that the transplantation of whole tissue pieces 

may induce a stronger immune response due to the presence of the intact donor vasculature 

and antigen presenting cells (Chen et al., 2011; Redmond et al., 2008). Although the use of 

non-immunogenic bio-engineered scaffolds could avoid this issue (Newland et al., 2015; 

Wang et al., 2016), protocols generally require dissociation of cells prior to seeding into a 

scaffold, therefore still posing a risk to neuronal populations. Preparing tissue as partly 

digested tissue pieces without trituration (Rath et al., 2012; Watts et al., 2000b) may prevent 

disruption to MSN precursors prior to transplantation and thus improve graft survival.  

The development of trypsinised single cell suspensions provided an advantage over solid 

pieces of tissue by potentially allowing transplanted cells access to the host capillary network 

more easily. The necessity of establishing contact in order to nourish the grafted tissue was 

demonstrated early on in studies implanting on vessel-rich and vessel-poor 

microenvironments (Stenevi et al., 1976). Rat to rat grafts derived from transplantation of 

single-cell suspensions have been shown to produce a greater proportion of striatal-like 

tissue, and larger DARPP-32 expressing cell populations than those of tissue pieces, as well 

as providing greater innervation of the host parenchyma (Watts et al., 2000b), however 

tissue pieces wielded the larger overall graft volume. 

Different tissue preparations could induce different immunological responses 

As highlighted in the previous experiments, mice express an acute microglial inflammatory 

response to lesions, as well as a chronic response to transplanted tissue. The severity of this 

response appears to be unaffected by the timing of the transplantation after lesioning or the 

age or strain of the host, or the between-strain or within-strain combination. However, it 

remains unclear if the immunogenicity of the transplant could be affected by the 

developmental age of the tissue, or by altering the treatment of the cell suspension. 

Differences in the host response to kidney transplants suggest that older tissues elicit a 

greater inflammatory response in humans and rats (Reutzel-Selke et al., 2007; Tasaki et al., 

2014), therefore, reducing the age of the donor tissue may have a beneficial effect in the 

mice.  

Dissociated cell suspensions are also thought to provoke less of a host immune response 

when transplanted because the immunogenic donor vasculature is destroyed prior to 

implantation (Baker-Cairns et al., 1996; Chen et al., 2011). Further benefits include the ability 

to screen the cells for counts, viability and health in advance of implantation, thus allowing 
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an extra quality control. However, the process of trypsinisation and manual trituration 

involved in preparing a dissociated suspension could cause physical damage to the cells and 

reduce the population viability, whereas preparation of tissue pieces is far less disruptive. 

The current study aimed to examine the resulting phenotypes of striatal grafts of mouse 

primary embryonic tissue prepared under a variety of conditions to determine how current 

standard protocols of transplantation could be adapted to produce more reliable and 

effective grafts in mouse models. 

Grafts derived from the most commonly used donor age (E14) were compared with an earlier 

gestation (E12) to determine whether survival and morphology of primary foetal striatal 

transplants in mice could be improved by using younger tissue. In addition, the effect of cell 

suspension preparation was explored by comparing standard dissociated single cell 

suspensions (CS) with non-triturated partially digested tissue piece suspensions (TP), to 

establish whether reducing the amount and severity of tissue manipulation could improve 

the resultant grafts of the transplanted tissue. Both donor ages were compared using each 

preparation method to ascertain the most appropriate method of preparing tissue.  

These conditions were tested in two strain paradigms to determine how the choice of model 

could affect the experimental outcome.  Between-strain and within-strain conditions were 

compared using Chrm4-EGFP-CD1 tissue transplanted into C57BL6/J hosts and CD1 donor 

tissue transplanted into CD1 hosts respectively. To elucidate some of the findings discussed 

in Experiment 3, larger group sizes and a simplified donor/host combination were used, and 

the graft cellular composition was explored in more detail. The host response to 

transplantation, including the disparity in immunological background between donor and 

host, and the preparation of transplanted cells, was also considered. 
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4.3 Methods 

 

4.3.1 Experimental design 

 

Host animals 

Young adult male C57BL6/J (n=33) and CD1 (n=33) mice (20-30g, Harlan, Bicester, UK) were 

used in this experiment. Thirty mice of each strain received unilateral QA Lesions to the mid-

dorsal striatum (methods section 2.2.1), with three mice of each strain retained as intact 

controls. The same stereotaxic coordinates were used for both strains. 

Donor tissue 

Two transplant paradigms were used; a within-strain (W-S) model with CD1 tissue 

transplanted into CD1 hosts, and a between-strain (B-S) model with Chrm4-EGFP-CD1 tissue 

transplanted into C57BL/6J hosts.  

E12 or E14 embryos were dissected from time-mated CD1 and Chrm4-EGFP-CD1 mice from 

an in-house colony (originally purchased from Harlan, Bicester, UK and MMRRC, City, USA 

respectively). Four transplant preparations were made for each donor strain: 1) E12 single 

cell (CS); 2) E12 tissue pieces (TP); 3) E14 CS; and 4) E14 TP. Transplantation surgery was 

spread across multiple days with fresh suspensions made each morning for each group. 

Transplantation surgery 

Approximately 10 days post-lesion mice were randomly assigned to experimental groups 

with 20 C57BL6/J and 27 CD1 mice receiving primary tissue transplants (n=6-7 per group) as 

described in methods section 2.2.3, Figure 4.2. In addition, a group of mice from each strain 

were retained as lesion-only controls (C57BL6/J n=2, CD1 n=3).  
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Single cell preparations 

CS preparations consisted of pooled E12 or E14 WGEs for each strain prepared as described 

in methods section 2.2.2. Cells were concentrated at 250,000 cells/µl for transplantation. 1µl 

of suspension was injected at each of two depths, depositing approximately 500,000 cells in 

total into the lesioned striatum over 2 min. 

Tissue piece preparations 

For TP preparations, no cell counts could be conducted directly from non-dissociated tissue, 

therefore WGE units equating to approximately 500,000 cells (the number of cells 

transplanted in the CS groups) were transplanted. Cell counts calculated from the CS 

dissections showed this to equal approximately a pair of WGEs for E12 tissue and a single 

WGE for E14, see Table 4.1. Each preparation was treated as with CS, however, after gentle 

washing, tissue was transferred directly into ~4µl DMEM/F12 for transplantation, with no 

trituration and minimal mechanical manipulation to maintain integrity of the tissue pieces. 

TP preparations were injected as above, at a rate of 1µl/min over 4 min (2min at each depth). 

Mice were monitored daily until full recovery.  

In vitro primary cultures 

Time-mated CD1 dams were sacrificed at E12 or E14 (n=3 per group), and WGEs dissected as 

previously described. Tissue from each litter was pooled to prepare three separate 

suspensions for each embryonic age and plated down for in vitro culturing as described in 

methods section 2.4.1. After 24 hrs and 7 days in vitro, 12 wells of each suspension were 

fixed with 4% PFA and stored at 4°C until immunocytochemical staining. 

Figure 4.2 Experimental timeline.  

Time (weeks) 
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4.3.2 Immunohistochemistry and immunocytochemistry 

 

At 12 weeks after transplantation surgery, mice were perfused, and the brains processed for 

histological analysis of the grafts, as described in methods section 2.3.1. Brains were cut at 

40µm on a freezing microtome, and sections stored in anti-freeze at -20°C until 

immunohistochemical analysis. 1:12 series were incubated as free-floating sections with 

primary antibodies for NeuN, Iba1, parvalbumin or anti-GFP and labelled with DAB. 

Parvalbumin series were double-stained with DARPP-32 and Vector SG kit.  

Cultured cells were labelled with the following pairs of primary antibodies, as described in 

methods section 2.4.2.; β-tubulin and GFAP or early MSN markers FoxP1 and CTIP2 and 

labelled with the following fluorescent secondary antibodies; Alexa594 (red) for β-tubulin 

and CTIP2 and Alexa488 (green) for GFAP and FoxP1. All cells were counter-stained with 

Hoechst (blue) before being mounted onto microscope slides. Cell counts were conducted 

under fluorescent microscopy with five regions per coverslip counted, and the mean count 

from each suspension recorded. 

 

 



 

 
 

 

 
Donor strain Embryonic age Preparation Cells per WGE 

Proportion WGE 
transplanted 

Number cells 
transplanted 

      

Chrm4-EGFP-CD1 E12 CS 180,769 2.77 500,000 

Chrm4-EGFP-CD1 E12 TP 180,769 2.00 361,538 

Chrm4-EGFP-CD1 E14 CS 577,273 0.87 500,000 

Chrm4-EGFP-CD1 E14 TP 577,273 1.00 577,273 

CD1 E12 CS 357,143 1.40 500,000 

CD1 E12 TP 357,143 2.00 714,286 

CD1 E14 CS 1,041,667 0.48 500,000 

CD1 E14 TP 1,041,667 1.00 1,041,667 

Table 4.1 CS = single cell preparation; TP = tissue piece style preparation. The number of cells per WGE was estimated based of the mean cell counts 
of the CS preparations. The number of WGEs used in the TP preparations was adjusted based on the mean number of cells in the WGE for each 
particular donor strain and age with the aim of transplanting a similar number of cells in each group. Since it was only possible to use whole WGE 
units in the non-dissociated TP preparations, the number of cells transplanted could not be exactly matched but was kept as close to 500,000 as 
possible. Subsequently the proportion of WGE transplanted was used to transform the data to account for the differences in proliferative potential of 
the cells transplanted. 

1
2

2
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4.3.3 Analysis of grafts and microglia 

 

The location of grafts in the C57BL6/J hosts was identified through immunohistochemical 

labelling of the transplanted Chrm4-EGFP-CD1 tissue using an anti-GFP antibody. The 

presence of fully differentiated adult neurons (NeuN+ cells) within the grafted area was used 

to determine graft survival in all groups, and grafts with no positive NeuN staining excluded 

from analyses. These non-surviving transplants were retained in the analysis of microglial 

immune response. 

Volumes were calculated by measuring cross-sectional areas of NeuN+ (total graft volume) 

and DARPP-32+ graft regions (P-zones) across 1:12 series and using the formula: 

Volume = (ΣA*M)/ƒ, where A = area of graft (µm3), M = section thickness (µm) and ƒ = section 

frequency). 

For smaller grafts, total cell numbers were counted manually using Image J software 

following imaging of grafted sections, however, this was not feasible for larger grafts, 

therefore these were calculated by unbiased stereology. Mean cell diameter was obtained 

for NeuN+, DARPP-32+ and parvalbumin+ cells by measuring the minimum and maximum 

diameters of ten cells per graft using Image J. 

Iba1 labelled series were used to grade the host microglial response in the grafted area using 

an established semi-quantitative rating scale (Duan et al., 1995). Each section was graded 0-

4 according to the following categories; (0) No specific activated microglia in the graft area; 

(1) Low number of activated microglia, distributed as scattered single cells or clustered in a 

few small patches in or around the graft; (2) Several activated microglia distributed as single 

cells or clustered in multiple, prominent patches; (3) Dense immunostaining of the graft area 

and a large number of activated microglia in and around the graft; (4) Very dense 

immunostaining of the whole graft area and a very large number of activated microglia in 

and around the graft. Activated microglia were easily identified by their darker staining and 

morphological appearance (Boche et al., 2013). The highest grade given to any section for 

each animal was the grade assigned to that animal. 

As TP were not dissociated, transplants were prepared by WGE units rather than by cell 

number. Embryos used for CS and TP were collected from the same litters, so although cell 

number could not be determined, an estimate of the number of cells per WGE at each age 

was calculated using total counts from the CS and dividing by the total number of WGEs 

dissociated, see Table 4.1. Since E12 WGE contained approximately half the number of cells 
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of E14 WGE, a pair of E12 WGEs were transplanted for each E14 WGE to maintain a 

consistent total cell number, as close to 500,000 as possible. However, transplanting 

different proportions of WGE raises the issue that the E12 TP grafts of two WGEs may have 

twice the proliferative potential of the single WGE E14 TP. As it is not possible to control for 

both cell number and quantity of WGE transplanted, graft outcome measures were 

subsequently transformed to account for the proportion of WGE transplanted as described 

below; 

Cell counts and volume data were corrected for the proportion of WGE transplanted, to yield 

values per unit WGE at each age, using the following transformations; Tn = n / proportion of 

WGE transplanted and Tvol = vol / proportion of WGE transplanted, where proportion of WGE 

transplanted = number of cells transplanted / mean number of cells in WGE, Tn = corrected 

cell count, n = actual cell count, Tvol = corrected volume and vol = actual volume. 

 

4.3.4 Statistical analysis 

 

After accounting for loss of animals due to ill health, the final group sizes are summarised in 

Table 4.2. 

Transformed data from successful grafts in all groups were analysed together using ANOVAs 

using Genstat (18th edition) or Kruskal-Wallis tests as appropriate. Between-strain and 

within-strain groups were subsequently analysed in separate ANOVAs. For immune response 

data, transplanted mice with no detectable surviving grafts, as well as lesion only controls 

were also included in the analyses. 

Sidak’s post hoc pairwise comparisons were performed to analyse significant interactions, 

correcting for multiple comparisons. Significance was taken as p≤0.05. 

Post-hoc power analysis based on final animal numbers was calculated using G*Power 

software and was estimated to be 99% for large effect sizes and 83% for medium effect sizes.  

  



Chapter 4 – Experiment 4  Exploring the effect of donor tissue 

125 
 

Group C57BL6/J CD1 

Intact control 3 3 

Lesion only control 2 3 

E12 CS 5 6 

E12 TP 5 7 

E14 CS 4 7 

E14 TP 6 7 

 

 

  

Table 4.2 Summary of final group numbers. 



Chapter 4 – Experiment 4  Exploring the effect of donor tissue 

126 
 

4.4 Results 

 

Graft survival and placement 

The presence of DAB-labelled GFP+ Chrm4-EGFP-CD1 donor cells corresponded with areas of 

NeuN+ and DARPP-32+ staining in the C57BL6/J hosts, confirming the donor origin of the cells, 

Figure 4.3 A - B. Transplanted cells could be clearly identified within the lesioned host 

striatum on NeuN stained sections. The proportion of surviving grafts for each group, and 

raw untransformed data for surviving grafts are shown in Table 4.3. A high proportion of 

grafts survived in all groups (80 – 100%) except for E14 TP, of which only 5 out of 13 (38%) 

transplanted mice had NeuN+ cells in the grafted region after 12 weeks, Figure 4.4 A. There 

was no difference in graft survival between the between-strain (Chrm4-EGFP-CD1 tissue into 

C57BL6/J hosts; B-S) and within-strain (CD1 tissue into CD1 hosts; W-S) groups (t6=0.20, ns). 

Graft volumes varied both within and between groups, ranging from just 12x106 µm3 up to 

588x106 µm3. 

Graft volume and cellular composition 

Figure 4.4 B shows the volumes of NeuN+ tissue in the surviving grafts for each group and a 

comparison of mean graft volume of the B-S and W-S groups. Grafts from the W-S group 

were significantly larger than those observed in the B-S group (Strain: F1, 27=19.08, p<0.001). 

E14 tissue yielded larger graft volume than the E12 in both the B-S and W-S groups (Age: 

F1, 11=4.90, p<0.05 and F1, 16=12.21, p<0.01 respectively). CS yielded larger graft volume than 

TP in the W-S groups only (B-S Preparation: F1, 11=0.03, ns; W-S F1, 16=15.68, p<0.001). 

Preparations of E14 CS yielded significantly larger grafts than E14 TP in the B-S model, while 

the younger E12 tissue produced larger grafts when prepared as TP than as CS 

(Age*Preparation: F1, 11=16.93, p<0.01; E12 (Preparation): t11=2.79, p<0.05; E14 

(Preparation): t11=3.04, p<0.05). In the W-S model, E14 CS also yielded significantly larger 

grafts compared to E14 TP, however there was no significant difference between grafts 

derived from different preparations of E12 tissue (Age*Preparation: F1, 16=12.21, p<0.001; 

E12 (Preparation): t16=0.13, ns; E14 (Preparation): t16=5.73, p<0.001). 

Distinct regions of DARPP 32+ staining were observed within all surviving grafts (Figure 4.3 C). 

The volume of DARPP-32+ patches (P-zones) within each graft is shown in Figure 4.4 C. W-S 

transplants yielded significantly larger total P-zone volumes than B-S (Strain: F1, 27=6.50, 

p<0.05). The was no main effect of Age on DARPP-32+ in either B-S or W-S groups although 
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in both cases this approached significance (B-S Age: F1, 11=4.66, p=0.054; W-S 

F1, 16=4.12, p=0.059). No main effect of preparation on DARPP-32+ volume was seen in either 

the B-S or W-S groups (B-S Preparation: F1, 11=0.86, ns; W-S F1, 16=0.00, ns). B-S transplants 

contained larger P-zone volumes when transplanted as CS than TP at E14, while the reverse 

was true for E12 tissue (Age*Preparation: F1, 11=21.30, p<0.001; E12 (Preparation): 

t11=2.61, p<0.05; E14 (Preparation): t11=3.93, p<0.01).). A similar trend was observed in the 

W-S groups; however, a statistically significant interaction was not found (Age*Preparation: 

F1, 16=4.06, ns).  

There were no differences in the proportion of DARPP-32+ P-zone volume in B-S and W-S 

groups (Strain: F1, 27=0.05, ns), Figure 4.4 D. There was no effect of Age in either the B-S or 

W-S groups (Age: F1, 11=0.50, ns; F1, 16=2.18, ns respectively), and TP yielded a higher 

proportion of DARPP-32+ tissue than CS in the W-S group only (B-S Preparation: 

F1, 11=0.92, ns; W-S F1, 16=13.88, p<0.01). B-S transplants showed a trend towards higher 

proportion of P-zones in E14 CS compared to E14 TP, although this was not statistically 

significant (Age*Preparation: F1, 11=1.84, ns). No trend in the B-S E12 preparations was 

observed. W-S E12 groups again showed a tendency for higher proportions of P-zone tissue 

from E12 transplants as TP rather than CS. At E14, TP tended towards a larger DARPP-32+ 

proportion compared to CS (Age*Preparation: F1, 16=0.27, ns). 

There was no difference between B-S and W-S transplants in the total number of mature 

NeuN+ neurons within the grafts (Strain: F1, 27=0.18, ns), Figure 4.5 A. No main effects of Age 

or Preparation were found in the B-S groups (Age: F1, 11=0.37, ns; Preparation: 

F1, 11=0.14, ns), however, for the W-S groups, E14 tissue and TP yielded a greater cell number 

than E12 and CS respectively (Age: F1, 16=7.68, p<0.05; Preparation: F1, 16=12.22, p<0.01). Cell 

counts reflected the data patterns observed in graft volume, with E14 CS yielding more cells 

than E14 TP and E12 TP yielding more cells than E12 CS in both strain types, however despite 

a significant Age*Preparation interaction in the B-S group, the post hoc comparisons did not 

reach significance (B-S Age*Preparation: F1, 11=10.23, p<0.01; E12 (Preparation): t11=2.53, ns; 

E14 (Preparation): t11=2.01, ns). (W-S Age*Preparation: F1, 16=13.08, p<0.01; E12 

(Preparation): t16=0.09, ns; E14 (Preparation): t16=5.03, p<0.001). 

The W-S grafts contained more DARPP-32+ cells than B-S (Strain: F1,27=21.43, p<0.001), 

Figure 4.5 B. Grafts of E14 tissue contained more DARPP-32+ cells than those of E12 origin in 

both B-S and W-S groups (Age: F1,11=7.83, p<0.05 and F1,16=13.60, p<0.01 respectively), 

although there was no effect of preparation (B-S Preparation: F1, 11=3.82, ns; W-S 
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F1, 16=3.03, ns).  E14 tissue yielded higher DARPP-32+ content when transplanted as CS than 

TP, while there was a trend for E12 to produce more as TP in both the B-S (Age*Preparation: 

F1,11=20.11, p<0.001; E12 (Preparation): t11=1.79, ns; E14 (Preparation): t11=4.56, p<0.01) and 

W-S groups (Age*Preparation: F1,16=8.94, p<0.01; E12 (Preparation): t16=0.88, ns; E14 

(Preparation): t16=3.34, p<0.01). 

Parvalbumin+ cells constituted 6.2%±0.79 of the NeuN+ cell population, with significantly 

more parvalbumin+ cells found in W-S transplants compared to B-S (F1, 27=20.67, p<0.001), 

Figure 4.5 C. In addition, E14 generated more parvalbumin+ cells than E12 tissue in both B-S 

and W-S groups (Age: F1, 11=16.50, p<0.01 and F1, 16=19.39, p<0.001 respectively), and CS 

yielded more than TP preparations (Preparation: F1, 11=9.39, p<0.05 and F1, 16=4.49, p<0.05 

respectively), although this effect was mostly due to very high numbers in the E14 CS groups 

compared to all other combinations. E14 CS grafts contained significantly more parvalbumin+ 

cells than E14 TP in both the B-S and W-S groups and there was a trend for E12 TP to yield 

more than E12 CS but this did not reach significance (B-S Age*Preparation: F1, 11=11.81, 

p<0.01; E12 (Preparation): t11=0.26, ns; E14 (Preparation): t11=4.61, p<0.001) (W-S 

Age*Preparation: F1, 16=18.40, p<0.001; E12 (Preparation): t16=1.54, ns; E14 (Preparation): 

t16=4.54, p<0.001). 

Microglial response 

Iba1 labelling revealed dense areas of microglial activation, not only within the grafted area, 

but extending beyond the transplant boundaries to the host striatum in all mice except for 

intact control animals Figure 4.3 D. Numerous dead cells and cellular debris were observed 

within most grafts and needle tracts, visible in sections stained with DAB as spherical clusters 

of paler staining.  

Figure 4.6 shows the graded microglial response for each group, including the lesion only 

and intact control animals. Activation of microglia within grafted groups was significantly 

higher in B-S than W-S groups (χ2(1)=22.53, p<0.001). There was no difference in the 

microglial reaction in response to preparation type (χ2(1)=0.09, ns), or donor age  

(χ2(1)=1.38, ns). 

There was no difference in the degree of microglial activation within the B-S grafted groups 

(χ2(3)=0.73, ns), or the W-S groups (χ2(3)=7.38, ns). 

The intact control did not exhibit any signs of microglial activation, whereas the lesion only 

controls presented a moderate degree of activation which was not significantly different to 
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the grafted animals (Surgery: χ2(2)=58.00, p<0.001; Intact-Lesioned: χ2=28.90, p<0.05; 

Intact-Grafted: χ2=29.0, p<0.001 and Lesioned-Grafted: χ2=0.11, ns). 

Differentiation in vitro 

To investigate the development and maturation of cells from E12 and E14 donor embryos 

independently of the host environment, CS from CD1 embryos were prepared as described 

for transplantation and cultured for 24hrs and 7 days in vitro, Figure 4.7. As TP preparations 

were not dissociated, it was not possible to culture these comparably. Cell counts from 

primary cultures are shown in Figure 4.8. There was no difference in the proportion of 

β-Tubulin+ cells across any age or time-point (DIV: F1,8=2.09, ns; Age: (F1,8=4.04, ns). Very few 

GFAP+ cells were found in any group, however there were significantly more after 7 days 

compared to 24 hours in vitro (DIV: F1,8=16.99, p<0.01), but no effect of donor age was found 

(Age: (F1,8=1.37, ns). There was a significant increase in the proportion of CTIP2+ cells at 7 DIV 

compared to 24 hrs (DIV: F1,8=44.52, p<0.001) but no effect of embryonic age (Age: 

(F1,8=1.88, ns). FoxP1+ MSN precursor cells also accounted for a higher proportion of the 

population at 7 DIV compared to 24 hrs (DIV: F1,8=78.21, p<0.001) with no effect of 

embryonic age (Age: (F1,8=4.84, ns). 

 



 

 
 

 

Host strain Group 
Number of 

surviving grafts 
Graft volume 

(x106 µm3) 
Number of NeuN+ 

cells (x103) 
P-zone volume 

(x106 µm3) 
Number of DARPP-32+ 

cells (x103) 
% DARPP-32+ 

patches 

        

C57BL6/J E12 CS 4 of 5 (80%) 110.3±52.4 11.1±5.1 61.2±42.4 1.4±0.7 51.0% 

C57BL6/J E12 TP 5 of 5 (100%) 301.6±88.5 28.4±8.0 180.6±67.7 2.5±0.8 55.5% 

C57BL6/J E14 CS 4 of 4 (100%) 188.9±32.7 12.9±4.1 127.6±5.7 2.4±0.4 74.4% 

C57BL6/J E14 TP 2 of 6 (33%) 97.0±16.3 6.8±0.5 44.7±3.7 0.8±0.5 48.1% 

CD1 E12 CS 5 of 6 (83%) 226.0±52.9 11.1±2.4 91.1±31.1 2.1±0.5 34.0% 

CD1 E12 TP 6 of 7 (86%) 335.6±46.5 16.4±2.8 237.5±66.4 4.2±0.7 68.4% 

CD1 E14 CS 6 of 7 (86%) 194.0±21.6 9.6±1.4 84.3±16.9 2.3±0.4 44.3% 

CD1 E14 TP 3 of 7 (43%) 146.9±36.8 6.6±1.6 119.0±25.6 2.5±0.3 89.9% 

Table 4.3 CS = single cell preparation; TP = tissue piece preparation. Untransformed data presented ±SEM. High graft survival rates were seen in most groups with the exception of those 
derived from E14 TP. Large differences in graft volume and cell numbers were observed within groups. 
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A B C D 

Figure 4.3 Photomicrographs of typical large and smaller grafts (top and bottom row respectively). A GFP+ 
staining identifying Chrm4-EGFP-CD1 grafted tissue (*) within the host parenchyma. Paler areas of non-MSN cell 
types are seen within the graft (indicated by arrow). Black scale bar represents 500µm. B NeuN+ staining of 
mature neurons. Areas of grafted cells can be clearly identified within the lesioned striatum (*). Black scale bar 
represents 500µm. C DARPP-32+ staining (blue) shows distinct P-zones within the grafts (indicated by *). 
Parvalbumin+ interneurons (brown stain) (white arrow) are present throughout the grafts. Black arrows highlight 
the non-specific orange-coloured staining of spherical dead cells. White scale bar represents 100µm. D Iba1+ 
staining of microglia. Resting-state ramified cells (white arrow) can be seen on the peripheral cortex areas. 
Clusters of darker, amoeboid activated cells (black arrow) can be seen within the grafts (*) and the surrounding 
striatum. Black scale bar represents 500µm. 
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Figure 4.4 A Graft survival (number of surviving grafts / number of animals transplanted). The E14 TP transplants had the lowest survival rates in both the B-S and W-S 
groups. B NeuN+ graft volumes. W-S transplants were larger than the B-S (*** p<0.001). E14 tissue produced larger grafts then E12 in the B-S (p<0.05) and W-S (p<0.01) 
groups. E14 tissue yielded a larger volume than E12 tissue when transplanted as CS in both the B-S (* p<0.05) and W-S strain (*** p<0.001) models. E12 tissue yielded 
a larger volume when transplanted as TP than CS in the B-S model only (* p<0.05). C DARPP-32+ graft volumes. W-S transplants contained a larger volume of DARPP-32+ 
tissue than the B-S (* p<0.05). E14 tissue yielded a larger volume when transplanted as CS than TP (** p<0.01). E12 tissue yielded a larger volume when transplanted as 
TP than CS (* p<0.05). D Proportion of DARPP-32+ graft tissue. There was no difference in the proportion of DARPP-32+ tissue in the different models, however, TP 
yielded a higher proportion of DARPP-32+ tissue than CS in the W-S group (p<0.01). All data presented B - D is adjusted for proportion of WGE transplanted. 
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Figure 4.5 A NeuN+ graft cell counts. No effect of model on neuronal cell 
counts was detected. E14 tissue yielded a greater number of neurons when 
transplanted as CS than as TP in the W-S group (** p<0.01). B DARPP-32+ cell 
counts. More DARPP-32+ cells were present in the W-S grafts than the B-S 
(*** p<0.001). E14 tissue produced more DARPP-32+ cells than E12 in both 
the B-S (p<0.05) and W-S (p<0.01) models. E14 tissue yielded a higher 
DARPP-32+ cell count when transplanted as CS than TP in the B-S (** p<0.01) 
and W-S (** p<0.01). C Parvalbumin+ cell counts. A greater number of 
parvalbumin+ interneurons were present in the W-S model than the B-S (*** 
p<0.001). E14 tissue yielded a greater number of parvalbumin+ interneurons 
than E12 in both the B-S (p<0.01) and W-S (p<0.001) models. TP produced 
more interneuron than CS in the B-S (p<0.05) and W-S (p<0.05) groups. E14 
tissue yielded a higher parvalbumin+ cell count when transplanted as CS than 
TP in the B-S (*** p<0.001) and W-S (*** p<0.001) models. All data 
presented is adjusted for proportion of WGE transplanted. 
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Figure 4.6 Grading score for activated microglia (0-4) in the striatum of grafted groups, lesion only and intact control animals. Higher 
levels of activated microglia were found in between-strain transplants (blue circles) than within-strain (pink circles) (*** p<0.001). 
No differences between B-S groups or between W-S groups were found. The lesion only control animals had a greater degree of 
microglial activation compared to the intact controls (* p<0.05) and there was no difference between lesion controls and grafted 
animals. 
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A 

B 

Figure 4.7 Immunofluorescent photomicrographs of E12 and E14 WGE cells cultured for 24 hours or 7 days. 
A Cells labelled for mature neuronal marker β-Tubulin (red), astrocyte marker GFAP (green) and nuclear 
counter-stain Hoeschst (blue). B Cell labelled for MSN precursor markers CTIP2 (red), FOXP1 (green) and 
Hoeschst (blue). 
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Figure 4.8 Cell counts from plate-downs of 100,000 cells from E12 and E14 single cell suspensions after 24hrs and 7 days in vitro. No differences 
were observed in the number of mature neurons across groups (βTub+ staining). Compared to 24hrs, the cultures at 7DIV contained a significantly 
higher percentage of astrocytes (** GFAP+, p<0.01) and MSN precursors (*** CTIP2+, p<0.001; *** FOXP1+, p<0.001). However, no effect of donor 
age was found. 
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4.5 Discussion 

 

The effect of donor age, cell preparation and donor/host strain combination on primary 

embryonic striatal graft development, and the host microglial response were investigated.  

Preparation as a CS is the method most routinely used, with trituration following enzymatic 

digestion to form a quasi-single cell suspension. The tissue-piece style of preparation used in 

this study, although not an identical treatment to other chopped tissue piece preparations 

(A.-C. Bachoud-Lévi et al., 2000; Redmond et al., 2008), provides a less severe treatment than 

standard CS protocol (Rath et al., 2012; Watts et al., 2000b). Cells underwent the same 

enzymatic digestion to aid in the transplantation process, but did not undergo manual 

trituration, thus leaving the tissue relatively intact, thus theoretically reducing cell stress. To 

provide information on how model selection could affect the host response to transplants 

and subsequent graft survival/development, two different donor/host strain combinations 

were used; a between-strain (B-S) model transplanting Chrm4-EGFP-CD1 tissue into 

C57BL6/J hosts, and a within-strain (W-S) model with CD1 tissue transplanted into CD1 mice. 

A high percentage of graft survival was found across all groups, except for E14 TP in both 

strains, which was the least effective transplant protocol in terms of graft survival, see 

Table 4.3. These data show that transplanted cells can survive under a variety of protocol 

conditions, yet survival rates were still not as high as usually seen in rat studies, and 

considerable variation in graft volume and content was seen within experimental groups. 

Graft cells were analysed for the expression of the mature neuron marker NeuN, MSN 

marker DARPP-32 and the interneuron marker parvalbumin. Some NeuN+ cells did not 

appear to express either DARPP-32 or parvalbumin, and could be either immature cells, 

non-striatal neural cells, non-parvalbumin interneurons or a non-neuronal tissue type.  

Donor age 

In general, E14 tissue produced grafts containing a higher number of mature neurons, 

DARPP-32+ MSN cells and parvalbumin+ interneurons compared to preparations 

transplanted using E12 tissue after considering the number of progenitor cells transplanted. 

Neural graft volume was larger for E14 preparations than E12 in both the W-S and B-S groups. 

CS preparations produced more NeuN+ cells, larger graft volumes, and more DARPP-32+ and 

interneuron content when harvested at E14 than at E12. Additionally, B-S transplants of E14 

CS produced a higher proportion of P-zone tissue than E12 CS. In contrast, there was no 
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effect of age on TP in any of the above measures, although a consistent trend was apparent 

showing the opposite effect, with TP yielding better grafts at E12 than at E14. Striatal 

transplants of E14 preparations in rats have been shown to produce larger grafts and 

DARPP-32+ P-zones within the graft compared to older tissue, as well as the greatest 

functional recovery (Fricker et al., 1997; Schackel et al., 2013; Watts et al., 1997). Given that 

the developmental stage at E14 in rats is equivalent to age E12.5 in mice, by comparing the 

Carnegie stages of development (Butler and Juurlink, 1987), it would be expected that E12 

TP in mice should reflect the results seen in E14 TP rat studies. It is possible that the digestion 

process and trituration of the mouse CS has more of a detrimental effect on the cells at this 

younger age than at E14, or that mouse CSs are less tolerant to the treatment than rat cells. 

This could lead to a reduced capability of mouse E12 CS cells to survive and develop post-

transplantation. 

No effect of donor age was found in the in vitro measures investigated, including numbers 

of mature neurons (β-tubulin), early MSNs (FoxP1, CTIP2), and astrocytes (GFAP). E12 and 

E14 cells were equally viable at the time of transplantation/cell plating. However, these 

conditions do not match those seen in vivo since the cells are maintained in an optimised 

environment and supported through culture media, separate from any host interaction. In 

addition, it is possible that the Carnegie stages are not perfectly translated from rat to mouse 

and E12 could be more representative of a younger stage than the estimated E14 rat stage. 

This could have important implications for foetal age selection in primary human tissue 

transplants. The differences seen in vivo may suggest that it is the interaction of cells with 

the host environment affecting the apparent differences in development. It has been shown 

that neuronal cells under stress are more likely to be destroyed by the host (Brown and 

Neher, 2014), therefore if younger cells are more susceptible to stress, they may be more 

susceptible to the host immune response. The high levels of activated microglia seen within 

the grafted regions, and even in the lesion only controls, confirm that the immune response 

could play a critical role in the long term survival of cells (Roberton et al., 2013). 

Parvalbumin+ cells were more abundant in grafts derived from E14 CS than those from any 

other, an indication that these grafts may contain a greater interneuron population than the 

other groups, thereby presenting a cell population more characteristic of the normal 

striatum (Fentress et al., 1981). To obtain the neural diversity in grafts closest to that seen in 

the adult striatum, it is necessary to transplant both the lateral ganglionic eminence (LGE) 

and the medial ganglionic eminence (MGE) (Olsson et al., 1998; Watts et al., 2000a). In mice, 

the LGE, the source of striatal progenitors (Deacon et al., 1994), is visible by E12, while the 



Chapter 4 – Experiment 4  Exploring the effect of donor tissue 

139 
 

MGE, where interneurons are born, is visible as early as E11 (Olsson et al., 1998; Smart and 

Sturrock, 1979), indicating that E12 might be the earliest time point for obtaining all the 

necessary cell types in mice. It is known that interneuron populations contribute to normal 

striatal function and development (Olsson et al., 1998) and these may be playing a supportive 

role in the development of the MSNs within the graft (Gerfen et al., 1985). The MGE is much 

larger at E14 than at E12, and as the origin of interneuron progenitors would most likely 

contribute a greater proportion of interneurons to the transplanted population (Anderson 

et al., 1997; Campbell et al., 1995). In turn, this may have resulted in the improved 

development of E14 grafts (Olsson et al., 1998; Watts et al., 2000a). The relative contribution 

of MGE to the cell population within the suspension could be defined through sectioning of 

the dissected WGEs at each age and labelling the tissue for relatively LGE and MGE specific 

markers, such as  Gsh2  and Nkx2.1  respectively (Corbin et al., 2003; Yun et al., 2003). This 

would allow for the topographic proportion of each within the E12 and E14 WGE to be 

compared.   
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Cell preparation 

The results show a significant difference in the effect of preparation type on graft 

morphology depending on the age of the tissue used. E14 tissue prepared as CS produced 

grafts that are phenotypically superior to those transplanted as TP in almost all parameters, 

including graft survival. Previously studies suggest this could be a result of the immunogenic 

donor vasculature in single-cell preparations being at least partially destroyed prior to 

implantation (Baker-Cairns et al., 1996; Chen et al., 2011). In addition, CS preparations could 

have an advantage over solid pieces of tissue through improved access to the host capillary 

network (Stenevi et al., 1976). Rat to rat grafts from CS transplants have also produced a 

greater proportion of striatal-like tissue, with more DARPP-32 expressing cell populations 

than those from TP, as well as providing greater innervation of the host parenchyma (Watts 

et al., 2000b). Cells transplanted as TP within a surrounding matrix may be restricted in terms 

of migration and integration into the host brain. The present study suggests the benefits of 

transplanting dissociated cell suspensions may outweigh those of a supportive matrix 

provided by TP transplants, and that the trituration process is not too harsh to affect survival 

of the transplant at E14. 

Conversely, E12 tissue produced larger grafts with greater striatal-like content when 

prepared as TP over CS. Previous studies in rats have shown that, for transplants of TP, older 

donor tissue is tolerated less and that younger tissue has a better chance of survival 

(Björklund and Stenevi, 1984; Kromer et al., 1983; Stenevi et al., 1976) corresponding to what 

we find in mouse TP transplants. It is unclear why the dissociation processes involved in CS 

preparation would reverse this trend, although, as discussed above, it seems that mouse 

WGE tissue is better able to withstand dissociation when processed at E14 than at E12 as 

evidenced through E14 CS transplants yielding improved long-term graft survival and larger 

grafts. Studies have suggested that different sub-populations of rat neurons are more 

sensitive to trypsinisation than others (Björklund and Stenevi, 1984). Mouse cells may also 

be more sensitive, particularly at different developmental stages, warranting a systematic 

study of the effect of trypsinisation on mouse precursors.  

E12 TP survived transplantation with an improved capacity to produce successful grafts, 

although it is unclear why the same results are not reflected with E14 TP. Potentially, the less 

mature cells within the E12 TP are more proliferative and migratory at this early stage of 

development, therefore not restricted by the surrounding matrix. The particularly low 

survival rate in E14 TP preparations may indicate that TP at this age are not as amenable to 
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integration as those at E12, possibly due to an increased potential of their vasculature and 

antigen presenting cells (APCs) to induce an immune response in the host (Chen et al., 2011). 

Whilst this was not demonstrated through the quantification of microglial response, other 

immune responses, such as T cell activation, were not investigated in the current experiment.  

In addition, following expulsion from the graft cannula, cells within the E14 TP might be more 

densely packed within the host striatum than single cells which could impede diffusion and 

timely integration with the capillary (Baker-Cairns et al., 1996; Cisbani et al., 2014). 

Strain effects 

The two most commonly used transplantation paradigms within the host laboratory were 

selected for the purposes of this study, with the aim of determining how the choice of these 

models could affect the graft outcome.  

The use of the different W-S and B-S models did not affect the number of surviving grafts. 

However, the transplants in the W-S model yielded the largest grafts in terms of neuronal 

volume compared to the B-S paradigm and had a higher number and proportion of 

DARPP-32+ cells. The CD1 grafts also contained more interneuron cells. A previous study 

using the same Chrm4-EGFP-CD1 donor tissue observed much larger grafts and survival 

(Döbrössy et al., 2011), although notably this CD1 derived tissue was transplanted into CD1 

hosts, rather than the C57BL/6.  

In contrast, grafts of CD1 tissue into CD1 hosts observed in Experiment 3 appeared smaller 

than those seen in the Chrm4-EGFP-CD1 in the C57BL/6 hosts. The results from this 

experiment provide clearer evidence to suggest that the choice of strain and matching of 

donor and host animals for transplantation studies, in particular for mice, could be critical in 

achieving robust results, possibly due to simplifying the number of strain comparisons and 

the larger group sizes. Iba1 staining revealed a significant amount of microglial activation 

within the grafted areas of all mice except the intact controls, including those in the lesion 

only group and those with no detectable surviving grafts, although a significantly higher 

grading of activated microglia was found in the B-S than the W-S groups. Allotransplants are 

known to elicit a greater immune response than isogenic tissue, and whilst neither of the 

models investigated here are inbred strains, it is clear that the response is increased when 

immunological disparity is greater (Chen et al., 2011). This, in turn, can be linked to reduced 

transplant survival. Since the CD1 hosts received tissue derived from the same strain and 

cohort, it is likely that this was tolerated more than the tissue in the mismatched B-S groups. 

Some studies have shown that the GFP marker associated with the Chrm4-EGFP-CD1 donor 
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tissue could in itself be immunogenic (Stripecke et al., 1999), although this did not appear to 

be the case when the Chrm4-EGFP-CD1 tissue was compared in Experiment 3. It might also 

be plausible that the C57BL/6 strain is inherently more prone to an exaggerated 

inflammatory response compared to the CD1 mice since the strain has been shown to have 

a strong bias to M1 inflammatory reaction, whereas other strains, such as Balb/c, tend 

towards a more supportive M2 response (Mills et al., 2000). However, this also was not seen 

when the C57BL/6 hosts were compared in Experiment 3.  

The higher levels of activated microglia in the C57BL6/J hosts could explain the lower 

surviving cell number and graft volume (Perry and Teeling, 2013; Raivich et al., 1999). It was 

noted that the area of activation exceeded the area of transplantation, suggesting secondary 

activation or recruitment of microglia to the site of transplantation. In agreement with 

observations made in Experiment 2, the glial response appeared reduced in individuals with 

rejected grafts, presumably because the transplanted cells had already been subjugated and 

the immune response had entered a post reactive phase. The ongoing proliferation of 

activated glial cells in and around the grafts is suggestive of ongoing reactivity with the 

surviving implanted cells. This could be an indication that the grafts surviving to 12 weeks 

may be hampered long-term by the immune response of the hosts. Therefore, the study of 

immunosuppressive regimes in mouse to mouse transplantation could be a key to resolving 

the less than optimum quality of the grafts seen, as immunosuppression is generally only 

considered to be required for xenotransplant models. 
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4.6 Conclusions and future work 

 

Both donor age and tissue preparation technique were shown to be important factors 

affecting the morphology of mouse primary foetal grafts. The data from this study suggest 

that more successful grafts are derived from single cell preparations of E14 tissue or from 

less-dissociated tissue pieces at E12. Across all measures assessed it appears that the E14 CS 

is the best combination of age and cell preparation to use in mouse transplants. 

However, a large variation was observed in grafts across all the experimental groups, which 

implies the influence of other factors that may be more fundamental than the 

methodological modifications investigated in this study. Any impact of changes in cell 

preparation or donor age may be reduced by other more influential factors in the mouse to 

mouse model, highlighted by the differences between the strains investigated here. High 

levels of activated microglia in the grafted zones, particularly in the between-strain 

transplants, and the presence of dead cells in all groups suggest that further investigation 

into immune response of mouse hosts to specific tissues is warranted.  

The grafts observed in the preceding experiments have shown a large degree of variation 

within experimental groups, from few or no obvious surviving cells to large grafts with 

thousands of cells. The fact that the conditions in which these cells were transplanted was 

consistent suggests that a possible source of the variation comes from changes in the cell 

preparation itself. The experiments described in the next part of this chapter will investigate 

how changes in the quality of the cell suspension may vary over time, and potentially impact 

on graft outcome. 
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Experiment 5 

The viability of cell suspension during the surgery period1 

 

4.7 Summary 

 

The previous in vivo experiments have demonstrated a variability in graft outcome, often 

observed even within experimental groups. The purpose of the final experiment of this 

chapter was to determine if any of these differences may be accounted for by variability in 

cell suspensions within the surgical period.  

Cells were prepared as if for transplantation and the qualities of the suspension examined 

over time. Measures of viability and the number of live cells taken up by the surgical cannula, 

as well as the numbers left within the cannula following a deposit, were each measured for 

eight hours after the cells were prepared. The homogeneity of the suspension, in addition to 

the susceptibility of cells to cell death, were also assessed.  

Furthermore, a study trialling an alternative method of aliquoting cell preparations for 

surgery was considered, with the aim of improving the loss of cell numbers from preparations 

over time.  

The results indicate that trypan blue viability staining may not be the most reliable method 

for assessing cell preparations prior to surgery since it cannot accurately measure the health 

of the cells in the suspension. Furthermore, the data suggest that cells suspensions do not 

remain homogenous for the duration of a surgical period, potentially providing an 

explanation of the variability seen in graft size and cell counts within experimental groups in 

vivo. It was shown that a significant number of cells remain within a transplantation canula 

after expulsion of preparation, suggesting that these cells should be considered when 

estimating the number of cells being transplanted. 

The susceptibility of cells to death was not shown to increase with age of suspension, 

although trypan blue may not be considered the optimum technique for testing this. Finally, 

the variability of the number of cells taken up in successive samples was not improved by 

preparing individual preparations.   

 
1 Declaration – Dissection of tissue for cell suspensions performed by Ngoc Nga Vinh 
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4.8 Introduction 

 

Meta-analysis of previous data 

The results of the transplantation experiments discussed in Experiments 2 - 4, show a large 

variation in graft cell counts transplanted under the same conditions, with very large and 

very small grafts found within experimental groups. The range in cell number for some of the 

groups is presented in Figure 4.9 A, where range is the difference between the largest and 

smallest grafts within a group, excluding those with no detectable graft. In some cases, there 

were discrepancies of over 20,000 cells. Given that all other variables were kept constant, 

this could suggest that factors outside the independent variables that were explicitly 

investigated may be affecting the graft outcome. One potential source for this variation, 

other than inherent differences between individual animals, may come from variability in 

the cell suspension itself.   

To probe this further, NeuN+ cells counts from the transplantations from Experiments 2 - 4 

which used the standard transplantation protocols were collated. Cell counts were ranked in 

the order in which the mice were transplanted for each cell preparation used, and the effect 

of surgery order on graft cell number was analysed using the Kendall’s tau correlation test in 

the IBM SPSS 23 statistics program. There was a significant correlation between surgical 

order and cell count (τ=-.32,p<0.05) 
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This data indicates that there could be a reduction in cell suspension viability over time, or 

that the number of cells being taken up for transplantation is reducing over time. Potential 

explanations for this could be that more cells are being removed in the first few extractions 

during a surgical period leaving fewer for the subsequent surgeries, or the suspension is 

becoming more clumped over time with the larger clumps not being taken up the syringe 

cannula as the suspension ages, or both.  

Does viability screening represent the suspension quality? 

Even though cells to be transplanted are screened for greater than 80% viability prior to 

surgery, it was noted that, even for the first few surgeries from a preparation, there was a 

wide variation in graft size, Figure 4.9 B. Trypan blue viability tests determine the proportion 

of alive and dead cells as snapshots at the beginning and end of surgery, however, at least 

for murine striatal cells, it is also not known how the viability measure changes over time. 

Time-course studies of the viability of neuronal tissue preparations at room temperature 

have shown that rat CNS neurons can remain viable for several hours, although this 

timeframe was dependent on both the age of the donor tissue and the brain region of origin 

(Brundin et al., 1985). 

 Since dead cells can only be identified for a limited period before cytolysis removes them 

from the sample, we cannot necessarily know the proportion of cells which have died. 

Furthermore, we determine if a cell is alive, but not how healthy it is. Cells that are in perfect 

condition are counted along with those struggling, therefore, assessing the viability 

longitudinally could help determine if the viability measure is accurate for the duration of its 

use. If viability declines significantly during the time-course of surgery, it would be expected 

that those animals transplanted later in the day would have reduced-quality graft outcome. 

Could the homogeneity of the cell suspension change over time? 

Standardly, one suspension is utilised for at least half a day’s surgery, possibly up to eight 

hours, and sometimes incorporating 10 or more animals. Despite the preparation being 

triturated into a “single-cell” suspension prior to surgery, cells tend to settle to the bottom 

of the aliquot quickly and may become clumped together. While the suspension is agitated 

between surgeries to re-suspend the cells, this is kept to a minimum to avoid damage and 

may not be sufficient to fully re-dissociate the cells. In addition, the primary tissue 

preparations are kept at room temperature, so it’s possible some dehydration could occur, 

thereby increasing the viscosity of the preparation. In fact, it was noted during 
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transplantation that despite trituration between surgeries, cell suspensions sometimes seem 

to become more glutinous and clumped throughout the day. These factors could contribute 

to a non-homogenous suspension and result in an uneven allocation of cells between 

animals, or cause cells to stick within the transplantation cannula. In either case it is unclear 

how many cells each animal would receive during transplantation and could explain why 

there are such differences in graft outcome within groups.  

Are older cell suspensions more susceptible to cell death than fresh? 

The robustness of cells, in terms of how easily damaged or susceptible to cell death they are, 

is another factor which could determine how well they survive in vivo. The conditions within 

the suspension media presumably become less ideal the longer that it is supporting cells. 

Therefore, we might expect the cells towards the end of surgery to be in a poorer condition 

to cope with the process of transplantation that those from a fresh nutrient-rich preparation. 

As discussed above, while trypan blue viability measures can tell us the proportion of alive 

and dead cells, it cannot tell us the condition of the cells. 

The following experiment aimed to establish if the quality of the cell suspension changes 

detrimentally over the duration of a surgical period, and if the single cell preparations remain 

homogenous during this time.  

Cell suspensions were prepared, and a transplantation cannula was used to withdraw 

samples in a way similar to surgical conditions. Measures of cell number and viability were 

taken each hour for eight hours and the number of cells deposited from the cannula, and the 

number of residual cells left in the cannula were counted. The number of clumping cells was 

also quantified. In addition, since it is known that the trypan blue stain is cytotoxic and will 

rapidly cause cell apoptosis (Awad et al., 2011), samples of the fresh and aged suspension 

were left in the stain for a prolonged period to assess if either was more susceptible to cell 

death.  

To investigate if the problem of dwindling cells numbers in successive cell extractions during 

a surgical period could be avoided, an additional experiment was performed. A standard 

pooled suspension providing multiple aliquots was compared to a series of individual 

preparations made to provide a single aliquot. Viability and cell counts were again measured 

hourly over an 8-hour period.  
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4.9 Methods 

 

4.9.1 Experimental design 

 

Cell suspension viability and cell counts 

A total of twelve pups at age E14 were dissected from two female Chrm4-EGFP-CD1 mice 

and three single-cell suspensions prepared as described in methods section 2.2.2. 

Preparation one constituted of WGE’s from pups taken from the first litter, preparation two 

was a mixture from both litters and preparation three was derived solely from the second 

litter to provide suspensions from a mix of different donor animals. Each suspension was 

made up to a concentration of 250,000 cellsµl-1 and stored at room temperature in the dark, 

the same conditions as if for transplantation. The cells were gently triturated every 15 

minutes with a 10ml SGE transplantation syringe to imitate the conditions of surgery. In 

addition, every hour, from 0hr until +8hr, a 1µl sample was removed for analysis using the 

transplantation syringe and slowly expelled from a vertical position into 100µl of DMEM-F12 

media. After gently mixing, 10µl was transferred into 10µl of 0.4% trypan blue.  10µl of this 

suspension was taken and viewed under a microscope using a haemocytometer and viability 

and cell count recorded. In this way the number of cells, which in surgical conditions would 

have been transplanted, could be calculated. 

Counting residual cells 

Once the test sample had been collected, 3 x 10µl of DMEM-F12 media was used to flush out 

the syringe and 10µl of this transferred into 10µl of trypan blue to count the number of 

residual cells remaining within. This was used to approximate the number of cells which may 

be left in a syringe after surgical deposits have been made. 

Quantifying clumpiness 

Photographs of the five counting grid squares of the haemocytometer for each sample were 

taken to quantify cell clumping.  The cells seen in each grid photo were counted and recorded 

depending on how many cells were in each clump with eight categories defined as follows; 

single cell, or group of 2, 3, 4, 5, 6, 7 or 8+. Cell in groups much larger than 8 were recorded 

as multiples based on estimated size, Figure 4.10. Subsequently the categories were 

simplified to either dissociated cells (1-3 cells) or clumped cells (4+ cells).  
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Assessing cell susceptibility  

The rate at which cell death occurs after being stained with trypan blue was used as an 

indirect measure of cell susceptibility. The three samples of cell suspension taken at 0hr and 

5hr above, were retained within the haemocytometer in trypan blue solution. Photographs 

of the counting grid were taken every 30 seconds for 5 minutes for analysis later. The number 

of live cells within the grid were counted in the 0hr images and tracked through each photo, 

Figure 4.11. The proportion of original cells surviving at each time-point was calculated.  

  

A B 

Figure 4.10 Photographs of cells on haemocytometer. A Cells in groups of 1 – 3 were classed as ‘dissociated’. 
B Cells in groups of 4 or more were classed as ‘clumped’ . 

A B 

Figure 4.11 A Photograph of cells on haemocytometer taken immediately after suspension was made and B 
five minutes later. Circles indicate cells that have undergone cell death in the time between the photos were 
taken. 
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Following on from the experiment described, the problem of reduced live cell concentrations 

in repeatedly sampled suspensions was investigated. The standard pooled WGE cell 

suspensions, for transplanting multiple surgeries, were compared with preparations made 

from individual WGE suspensions allocated to one surgery per preparation. 

For this, a total of twenty-three pups at age E14 were dissected from two female Chrm4-

EGFP-CD1 mice. Four or five embryos were pooled together for each of three single cell 

suspensions of 150,000 cellsul-1, each of which was stored in the dark at room temperature 

and sampled every hour for 8 hours. The remaining nine embryos were individually 

processed into separate suspensions and stored in the same conditions, with one suspension 

being sampled for each time-point. To sample, the suspension was gently triturated using a 

200µl pipette tip before a 10µl sample was taken for trypan blue exclusion counting as 

described in methods section 2.2.2. 

 

4.9.2 Statistical analyses 

 

Unless otherwise stated, all statistical analysis was using GenStat (18th edition). One-way 

ANOVAs were performed to analyse the effect of time on cell suspension measures. 

Significance was taken as p≤0.05. 
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4.10 Results 

 

Viability and cell counts 

The initial viability of the three suspensions was 94.7%±2.3 which was consistent with the 

level considered appropriate for transplantation (80%+). The viability of the samples 

decreased with time although there was no significant change until 7 hours after the 

preparations were made (Time: F8,16=3.59, p<0.05), Figure 4.12 A. Even after 8 hours the 

viability remained above 80%. 

The number of live cells deposited from the syringe in the first samples 

(349,333±81,258 cellsµl-1) was higher than the calculated cell concentration 

(250,000 cellsµl-1) but declined with time (Time: F8,16=5.54, p<0.01), Figure 4.12 B. After just 

2 hours the number of live cells deposited was below that which was expected and after 8 

hours was reduced to just 61,133±7,249 cellsµl-1. The number of dead cells was also greatest 

in samples taken just after the preparation, although no effect of time was found 

(Time: F8,16=1.41, ns), Figure 4.12 C.  

The total number of cells remaining within the syringe following sample expulsion was 

between approximately 5,000 and 20,000 and did not change significantly for the duration 

of the experiment (Time: F8,16=0.88, ns), Figure 4.12 D.  

Cell dissociation and clumping 

The number of ‘dissociated’ cells counted within the haemocytometer grid decreased with 

suspension age (Time: F8,16=6.95, p<0.001), and whilst there was a trend for the number of 

‘clumped’ cells to decrease, this was not found to be significant (Time: F8,16=2.41, ns), 

Figure 4.13 A. Approximately 20% of the cells within the samples deposited were found to 

be clumped in groups of 4 or more and this was not affected by age of suspension 

(Time: F8,16=0.29, ns), Figure 4.13 B. 

Trypan blue cell death 

The proportion of cell death that occurred after exposure to trypan blue did not differ 

between the fresh preparations and those which were 5 hours old (Age: F10,22=0.91, ns), 

Figure 4.13 C. Neither was there significant cell death over the 5-minute observations 

(Time: F10,20=1.59, ns). 
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For the second part of the experiment in which the pooled and individual suspension were 

compared, there was no difference in the viability of the pooled suspension over time 

(Time: F8,16=0.59, ns), Figure 4.14 A. As before, the number of alive cellsµl-1 declined over 

time (Time: F8,16=3.22, p<0.05), but no change in the number of dead cells was detected 

(Time: F8,16=0.46, ns), Figure 4.14 B - C.  

Since only one individual preparation was measured at each time-point, it was not possible 

to perform statistical analysis with the data. However, it was observed that all but the first 

viability scores were approximately 80%, Figure 4.14 D. The sample taken immediately after 

the suspension was prepared had the lowest viability measure. The number of live cells 

counted in each of the suspensions varied between approximately 200,000 and 500,000 

cellsµl-1, and the number of dead cells ranged from 100,000 to 30,000 cellsµl-1, but neither 

seemed to relate to the age of the preparation, Figure 4.14 E - F.  
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4.11 Discussion 

 

Graft cell count is correlated to surgery order 

The meta-analysis of the grafts from previous experiments demonstrated the variability of 

graft outcome within experimental groups and showed that the number of cells counted 

within surviving grafts was correlated to the order in which they were transplanted. Those 

transplanted earliest end up with a greater number of surviving cells.  

This was further investigated by assessing the viability and cell counts within cell suspensions 

over a time equivalent to a reasonable surgical period. Three suspensions composed of 

dissections from E14 embryos were treated as they would be in a surgical situation. Each 

hour over an eight-hour period, a sample was withdrawn using a surgical syringe cannula and 

the number of cells deposited was counted, as well as the number of residual cells left within 

the cannula. The susceptibility of the cells to the trypan blue toxin and the homogeneity of 

the suspensions was also measured. 

Trypan blue viability measures are not reflective of the quality of the cell suspension 

Currently, viability of a cell preparation is typically calculated using a simple trypan blue stain 

to highlight dead and alive cells within the suspensions prior to being used in surgery. Any 

suspension falling below 80% viability would lead to the suspension being rejected. All 

suspensions used in this experiment were above this criterion, and in fact retained a high 

viability throughout the eight hours of sampling. However, over time there was a clear 

reduction in the number of live cells in the preparations. Since the number of dead cells 

counted did not rise correspondingly, it might be assumed that as the cells died, they 

underwent degeneration (cytolysis) and after a while did not appear in the cell counts at all. 

Therefore, despite still having a high live:dead viability ratio, the number of viable cells in the 

suspensions was depleted. Whilst trypan blue staining has been adopted as a relatively quick 

and easy method for assessing preparation viability, historically the acridine orange / 

ethidium bromide method was used (Dunnettt and Bjorklund, 1992; Shiigi and Mishell, 

1996), which was able to classify both live and dying or unhealthy cells. Given the results 

discussed here, the benefits of the simplicity of the trypan blue stain might need to be 

reconsidered against the potentially more reliable acridine orange / ethidium bromide 

measure. 
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In addition, some of the ‘missing’ cells could still be present within the preparation but were 

not sampled. Despite the regular agitation of the cells, it was possibly not sufficient to 

completely re-dissociate the cells. The cells were withdrawn from the preparations using a 

transplantation cannula, rather than a pipette tip as they might be usually when calculating 

cell counts and viability, and since this has a finer bore, any cells which may have clumped 

together up to a certain size may not be withdrawn so easily into the cannula. This could 

mean that only those more dissociated cells were being sampled, and hence not a reflection 

of the true number of cells in the preparation, but perhaps a more accurate representation 

of that which would actually be transplanted.  

The counts of dissociated and clumped cells seem to support this hypothesis. When the cell 

counts were broken down into the type of cell in the sampled suspension (i.e. dissociated or 

clumped), it was still evident that the number of dissociated cells was reducing. This could 

be a result of cells clumping together in larger groups as the age of the suspension increased. 

An increase in the proportion of clumped cells was not observed, however, as discussed 

above, larger clumps would be less able to be withdrawn into the cannula and therefore not 

counted. This could be tested by also sampling the suspension with a 1ml pipette tip and 

observing under the microscope for large groups of cells. In any case, the number of cells 

actually being taken up for the hypothetical transplants was significantly reduced over time 

and thus providing an explanation for the decline seen in association with surgery order. 

Overly manipulating the suspension is avoided to cause minimal disruption of the cells, 

however, if the suspension is not fully dissociated then cells could remain in small clumps. If 

these clumps are small enough to fit into the cannula lumen then any given quantity of 

suspension with these clumps in would contain a disproportionally higher concentration of 

cells than the intended concentration. If these smaller clumps of cells are taken up each time 

an animal is transplanted, then the pool of cells left subsequently is depleted. It is possible 

that a combination of these events may be impacting on those grafts occurring later in the 

surgery order.  

Cells are left within the surgical cannula after deposits have been expelled 

By rinsing the cannula after each deposit was counted, the number of residual cells remaining 

in the syringe were able to be counted. While this did not change significantly over the eight-

hour period, there was quite a substantial number left behind. At the later time-points, 

residual cells accounted for a higher proportion of cells taken up into the cannula. While it 
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may be difficult to change this when in a surgical situation, it is worth considering when 

calculating how many cells are required for any transplantation protocol. 

Cells in an older suspension were not more prone to cell death from trypan blue than those 

from fresh 

Since trypan blue is known to be toxic to cells, exposure to it was used as a proxy measure 

for the susceptibility to cell death of cells within the suspensions. During the five-minute 

exposure period observed, there was no more cell death in suspensions which were five 

hours old compared to fresh preparations. This could imply that the reason for smaller cell 

numbers in those animals transplanted later is more likely to be due to non-homogeneity of 

the cell suspensions as discussed above, rather than the cells having increased susceptibility 

to apoptosis. It is worth noting however that this test was conducted over just five minutes, 

whereas once transplanted, cells may be under more chronic stress from their environment. 

The trend observed at the end of the five-minute period may suggest that if the cells were 

left for longer in the trypan blue, a difference in the rate of cell death could have become 

apparent. 

Alternatively, other methods of determining cell viability may provide a more useful insight 

on the condition of the cells. Rather than simply seeing if cells are alive or dead, assays such 

as the LIVE/DEAD Cell vitality Assay Kit (Hu et al., 2002), enabled a graded labelling of cells 

which convey their metabolic state, and therefore their state of health. Decisions on the 

suitability of suspension for surgery could then be assessed on the proportion or number of 

healthy cells to give a more accurate representation of how many might be more likely to 

survive. 

Preparing individual suspensions did not improve variability between samples 

The pooled preparations measured in the second part of the experiment demonstrated the 

same cell loss pattern as previously, with a consistently high viability measure and a cell 

number declining over time. The individual preparation samples typically had a higher cell 

number than the pooled, and did not appear to decline over time, thereby indicating that 

successive sampling of a suspension has a greater impact on subsequent samples than the 

effect of time per se. However, the disparity between counts was noticeable. This is likely 

due to individual differences between the embryos, or their dissections, an effect which, in 

a pooled suspension, would be reduced since tissue is shared between samples. The first 

sample taken had the lowest viability and highest dead cell count. This could be because the 
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sample was examined while the cells were still undergoing cell death due to the recent 

dissociation process or could have just been a poor-quality embryo. This experiment would 

need to be repeated with a greater number of samples to test this.  

 The disparity between individual embryos could easily be overcome by creating a pooled 

preparation as normal and apportioning the suspension into individual aliquots immediately 

after. This would remove the chances of surgical order affecting the number of cells 

transplanted due to unequal distribution of cells between animals. It would also be useful if 

the aliquots to be transplanted were at the correct volume required per animal, since then 

the entire fraction could be drawn up to ensure that all cells were used.  

During clinical application of cell replacement therapy, the suspension is drawn up in a 

single dose and held within the cannula for depositing. This could last for several hours and 

it could be important to understand what happens to the cells within the cannula, since 

this is likely to have a different impact than keeping them in Eppendorf tubes. Studies 

exploring the behaviour of cells within cannula show that they can settled within the lumen 

and consequently, are expelled in an uneven distribution (Torres et al., 2015). In the 

preclinical experiments conducted here, the suspension remains in the cannula for just two 

minutes, so within-cannula settling is less likely to be so much of a problem, however 

clinical surgeries often take hours to complete. Therefore, the settling of cells, and 

potential changes to its viscosity and clumpiness could be major factors in graft outcome 

in clinic.  

 

4.12 Conclusions and future work 

 

Experiment 5 investigated how the state of cell suspension changed over time and how this 

might impact on the graft outcome. It was found that the number of cells within samples 

withdrawn from the preparations decreased with time, and this corresponded to the 

observed pattern of cell numbers within surviving grafts in vivo.  

The decline in cell numbers seems likely to be caused by incomplete dissociation of cells into 

a single cell suspension, or a re-aggregation of cells over time. This could potentially be 

resolved through retaining DNAse in the media, more thorough trituration of the 

suspensions prior to each surgery, perhaps with a wider bore pipette tip, or through 

aliquoting the cells out for each surgery at the time at which they are prepared. However, 
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the balance between the potential damage caused by the extra manipulation or through 

being stored in smaller aliquots of media would need to be investigated since previously 

excess dissociation has been shown to detrimentally affect cells (Fricker et al., 1996). 

Another aspect of the cell preparations which should be considered is the media in which 

they are dissociated and stored. It might be possible to improve the cell survival by adding 

beneficial factors into the media, such as free radical-inhibiting lazaroids (Nakao et al., 1994) 

or growth factors such as GDNF (Brundin et al., 2000). 

Finally, a comparison of the trypan blue method of assessing viability and other more graded 

assays and the graft outcome could be beneficial by potentially avoiding the transplantation 

of cells which would otherwise have appeared healthy. 

In conclusion, the proposed optimal parameters for mouse donor cells in future experiments 

are: 

• Use single-cell suspensions of donor tissue aged E14. 

• Calculate suspension viability based on cell ‘health’ rather than by trypan blue 

exclusion. 

• Increase the number of cells to be transplanted by ~5% to account for residual cells 

in the transplantation cannula. 

• Retain DNAse in the suspension to reduce clumping of cells. 

• Aliquot separate cell suspensions for each individual prior to surgery. 
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Chapter 5 

The functional assessment of the quinolinic acid lesioned 

mouse model§2 

5.1 Summary 

 

The experiments described in this chapter aim to determine the most effective behavioural 

tests for assessing functional changes in the QA lesion mouse model of HD ready for cell 

transplantation. A comprehensive battery of tests describing the behavioural deficits of this 

commonly used model has not been previously identified, therefore the object of this study 

was to identify clear and stable deficits in the lesioned animals against which potential 

functional recovery could be evaluated in future experiments. 

Behavioural changes induced from unilateral lesions of the dorsolateral striatum, and from 

bilateral lesions of the dorsomedial striatum were assessed, designed to represent disruption 

to the motor and non-motor pathways of the basal ganglia respectively. 

Following initial behavioural training, mice received QA lesions to the striatum and were 

tested at an early (from 1-week post-lesion) and late (from 16 weeks post-lesion) time-point 

in a broad selection of motor and cognitive behavioural assays. Brain tissue was collected 

and processed to assess the characteristics of the lesions and compare with the associated 

behaviour observed. 

Tests were considered appropriate for use in assessment of cell transplantation therapy if a 

significant deficit was determined compared to sham treated controls, which was sustained 

throughout the late time-point. Transient deficits were not deemed apposite since 

spontaneous recovery or compensation later on could mask or mimic potential graft-induced 

recovery which may not be seen until the maturation and / or integration is complete.  

 
§2Declaration 
A subset of non-licenced behavioural tests described in this chapter were carried out by 
undergraduate student Harry Potter and submitted as his professional training year project report. 
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5.2 Introduction 

 

Therapeutic studies require an outcome measure 

 

The results for the previous experiments within this thesis show that the methods and 

models used for striatal transplantation in mice can be optimised and adapted to improve 

the size and cell survival of grafts. While this information can give an indication that changes 

to protocols are moving in a beneficial direction, ultimately, we need to know if these 

changes translate to effective reduction of disease symptoms. If transplantation is to be used 

as a therapeutic strategy, efficacy of grafts in improving function and behaviour must be 

demonstrated, and in order to show an improvement, a deficit must first be detected. 

Whilst the rat QA models have been extensively characterised and show many measurable 

deficits (Dunnett et al., 1999; Eagle et al., 1999; Shear et al., 1998) there are fewer 

behavioural outcome measures defined for the QA mouse model, with transplantation 

studies almost exclusively focussing on morphology or a few token motor tests such as 

rotarod performance (Gharaibeh et al., 2016; Lin et al., 2011), rotations (Bernreuther et al., 

2006), open field (Ma et al., 2012) or less often, gait analysis (Zimmermann et al., 2016). 

Results from a single behavioural test could be open to many interpretations, but by 

incorporating a larger battery of tests, the observations made can be more accurately 

attributed to specific behavioural deficits. In addition, many of the tests performed using 

striatal lesions are within just a few weeks of the lesion surgery with no long term assessment 

of the deficits (Brown and Robbins, 1989; Hauber and Schmidt, 1994). The expertise and time 

required to train animals and run behavioural tests are potential reasons for this lack of 

testing, but additionally, a lack of systematic investigations of appropriate assays for mouse 

QA models is also a problem.  

Any behavioural test must detect appropriate HD related motor or cognitive deficits in the 

mice, and these deficits must be stable in the long-term to enable adequate measures of 

potential therapeutic recovery. A comprehensive guide to the tests that reveal HD relevant 

deficits would be an incredibly useful tool in all areas of testing HD therapeutics in these 

models. 
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Behaviour is affected by lesion position 

 

Typical non-behavioural grafting experiments target the mid-striatum as the site for lesion 

and graft placement because the histological experimental outcomes will not be affected by 

the precise position within the striatum. However, if behavioural outcome measures are to 

be examined then specific lesion placement becomes an essential consideration.  Studies of 

QA lesioned rats have shown that the mediolateral position of the lesion within the striatum 

is critical in relation to the resultant behavioural outcomes observed (Brown and Robbins, 

1989; Devan and White, 1999; Hauber and Schmidt, 1994). The dorsal striatum is organised 

with a mediolateral gradient of afferent connections, with the lateral aspect receiving most 

input from the sensorimotor cortex and affecting motor aspects of performance measures, 

and the medial regions receiving more inputs from the prefrontal cortex and involving more 

cognitive components of behaviour (Voorn et al., 2004). 

This experiment set out to characterise two QA lesion mouse models, one directed towards 

a motoric deficit, through targeting of the unilateral dorsolateral striatum (DLS), and the 

other focussing on cognitive deficits through lesioning of the bilateral dorsomedial striatum 

(DMS). Unilateral rather than bilateral lesions were utilised in the DLS groups primarily for 

animal welfare reasons. It has been previously observed that bi-lateral QA lesions in this 

region can cause severe weight loss and poor recovery rates in the days following surgery. 

This is likely caused through disruption of the regions responsible for eating, chewing and 

swallowing – signs often apparent in HD patients. This effect is reduced if one hemisphere is 

left intact. A further benefit to the lateralised nature of the lesion is that the ipsilateral side 

acts as a within-subject control, with many deficits in motor performance restricted to the 

contralateral side of the body. Therefore, contralateral deficits displayed by individuals in 

many tasks can be directly compared to or expressed as a proportion of performance of the 

ipsilateral side. In contrast, bilateral lesions to the dorsomedial striatum do not present such 

a severe detriment to the general health of the animals. Furthermore, it has been shown that 

bilateral disruption of cortico-striatal circuitry is required in order to confer cognitive losses 

(White and Dunnett, 2006). 

For this study two experiments were performed, the first using the unilateral DLS lesion 

model and the second using the bilateral DMS lesion model, to establish an effective battery 

of behavioural tests against which different aspects of graft-mediated functional recovery 

could be judged. 
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Experiment 6 

Characterisation of deficits in a unilateral dorsolateral QA lesion 

mouse model 

 

The first experiment described in this chapter utilised unilateral DLS lesions designed to elicit 

motoric deficits in the QA mouse model of HD.  A battery of motor and non-motor 

behavioural tests was employed at an early and late time-point post-lesion to establish if 

stable deficits could be detected. 

 

5.3 Methods 

 

5.3.1 Experimental design 

 

Thirty-two six-week-old C57/BL6J mice (Harlan Laboratories, Bicester, UK) were used in this 

study, housed under standard conditions. Animal numbers were calculated based on data 

from previous experiments and confirmed using sample size analysis software G*Power. On 

arrival mice were left to acclimatise for one week prior to testing. Animals were initially 

housed in groups of eight, however, following the lesion surgery the groups had to be 

separated due to severe fighting and from one-week post-lesion all animals were housed 

individually.  

Behavioural tests were selected based on those most commonly used in rat QA lesion / 

transplant behavioural studies and which reflect aspects of HD, see Table 5A. 

Mice were sorted into experimental groups based on their performance in the pre-lesion 

lateralised choice reaction time task (LCRTT). Inherent side-bias, number of trials completed, 

and accuracy were used to rank the mice and allocate them into one of two counter-balanced 

groups; lesion (n=20) and intact sham-lesion controls (n=12). To eliminate side-bias as a 

confounding factor when assessing the effect of the lesion, animals were split into left- and 

right-hand surgery groups, with half of the left- or right-side biased animals being allocated 

to each group. 
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5.3.2 Pre-lesion training 

 

All mice were placed on a food restricted feeding schedule and maintained at ~90% of free-

feeding body weight before commencing training in both the staircase reaching task 

(methods section 2.5.2 vii) and LCRTT in operant 9-hole boxes (methods section 2.5.3 vi). 

From commencement of operant training to completion of the full LCRTT was approximately 

eight weeks. During this time pre-lesion baseline performance was recorded and mice were 

returned to free-food for one week prior to undergoing surgery, at which time the mice were 

sixteen weeks of age. 

 

5.3.3 Lesion surgery 

 

Surgery was performed using the standard protocols described (Methods section 2.2.1), with 

the stereotaxic co-ordinates adapted for a lateralised placement for the purpose of this 

experiment. 

The lesioned mice received 0.2µl 0.9M QA at two sites using the following coordinates: 

AP = +1.2, ML = +2.4 (for left) or -2.4 (for right), DV = -2.4 and AP = +2.2, ML = +1.8 (for left) 

or -1.8 (for right), DV = -2.4. The sham lesion animals received injections of 0.2µl 0.9% saline 

at the same coordinates. 

 

5.3.4 Post-lesion testing 

 

Following a one-week post-surgery recovery period, mice were tested in non-food restricted 

tests before being returned to food restriction for reward dependent tasks, as listed in 

Table 5.1. These ‘early time-point’ tests were complete within a post-lesion time of 1-7 

weeks, (17 to 23-week age range), before mice were returned to ab lib feeding. 

Four months following surgery, the testing schedule was repeated with the addition of 

rotational behaviour measures. This ‘late time-point’ comprised post-lesion times of 16-23 

weeks, and an age range of 32 to 39 weeks old. 

The complete experimental timeline is shown in Figure 5.1 A. All behavioural protocols are 

described in methods section 2.5. 
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Behavioural test Measure 

 

Locomotor activity General activity levels 

Open Field Anxiety, speed 

Spontaneous rotations Dopamine receptor loss 

Amphetamine-induced rotations Dopamine receptor loss 

Apomorphine induced rotations Dopamine receptor loss 

Footprint analysis Gait 

Balance beam Balance 

Rotarod Motor coordination 

Staircase test (FR) Manual dexterity 

Sucrose consumption test Reward value perception 

Corridor test (FR) Lateralised neglect 

LCRTT (FR) Visuospatial processing 

Elevated plus maze Anxiety 

 Table 5.1 Complete list of all behavioural tests performed in the DLS mice and the behavioural measure they 
probe. (FR) indicates tests requiring mice to be food restricted, all other tests were performed under an ab lib 
feeding regime.  



 

 
 

Figure 5.1 A Experimental timeline. The diagonally shaded regions span the duration of all behavioural tests for each time-point. The blue filled regions represent 
the time for which animals were food restricted. B Schematic diagram (adapted from Paxinos and Franklin, 2004) to show the approximate sections from which 
volumetric measurements were taken, 1-4. 
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5.3.5 Immunohistochemical analysis of lesions 

 

Following completion of all behavioural tests, mice were perfused, and brains cut into 30μm 

sections as described in methods section 2.3.1. Immunohistochemical stains of MSN marker 

DARPP-32 and neuronal marker NeuN were applied to 1 in 6 sections. 

Bright-field microscopy of the DARPP-32+ labelled tissue was used to identify the location 

and volume of the lesions within the striatum. Ipsi- and contralateral dorsal DARPP-32+ 

striatal volume, as well as ventricular and ventral striatal volume were measured, see 

Figure 5.1 B. Volumetric measures were recorded from four sequentially anterior sections 

from ~ bregma +0.26mm (or from the most posterior section within which the two lateral 

ventricles remain distinct from each other). 

 

5.3.6 Statistical analysis 

 

Two mice from the lesioned group died following surgery and were excluded from the 

experiment completely. Five mice became ill and were perfused prior to completion of the 

late time-point and have been included in analysis for only those tests that were completed. 

Following histological examination, one animal was removed retrospectively from all 

behavioural analyses due to very small lesion size (less than 2 standard deviations from the 

mean, and no behavioural deficits observed). Consequently, the final group sizes for 

behavioural analyses were; control group n=12, and lesion group n= 14 to 17 (dependant on 

the task). 

Of the prematurely terminated mice, one brain was not able to be recovered prior to 

perfusion, and therefore could not be included in lesion and volumetric analyses. 

All statistical analysis was performed using Genstat (18th edition). ANOVAs were performed 

to compare experimental groups and either contra- and ipsilateral measures, or early and 

late time-points. Sidak’s post hoc pairwise comparisons were performed to analyse 

significant interactions, correcting for multiple comparisons. Correlation analysis was used 

to identify significant correlations between behavioural data and lesion volume. Only those 

that reached significance are presented. Significance was taken as p≤0.05. 

Post-hoc power analysis based on final animal numbers was calculated using G*Power 

software and was estimated to be 97% for large effect sizes and 69% for medium effect sizes. 
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5.4 Results 

 

Histological analyses 

DARPP-32 staining revealed a loss of DARPP-32+ striatal cells in the lateral region of the 

lesioned striatum, with relative sparing to the medial striatum, see Figure 5.2 A - B. Minimal 

lateralised sparing was seen in the mid to anterior striatum (Bregma +1.70 to +0.26mm) with 

greater sparing seen in general towards the more posterior regions of the striatum (Bregma 

+0.26 to -0.70mm). 

The QA injections resulted in a mean lesion volume of 0.81 ±0.06 mm3, with a range of 

0.25 - 1.21 mm3, Figure 5.2 C. Following the removal of the animal with the smallest lesion 

from the group (as discussed above) the mean lesion volume was 0.84 ±0.05 mm3, with a 

range of 0.45 - 1.21 mm3. These lesions equated to an ipsilateral loss of 78.2% ±2.7 

DARPP-32+ striatal volume in the DLS group, with no changes detected in the sham animals 

(Surgery*Side: F1, 24=400.56, p<0.001; Sham (Side): t24=1.16, ns; Lesion (Side): t24=27.15, 

p<0.001), Figure 5.3 A. The lesions produced an increase of 99.7% ±18.6 in ipsilateral 

ventricle volume, when compared to the intact contralateral side with no changes observed 

between the hemispheres in the sham lesion group (Surgery*Side: F1, 24=50.12, p<0.001; 

Sham (Side): t24=1.05, ns; Lesion (Side): t24=11.05, p<0.001), Figure 5.3 B. 

Measures of the ventral striatum showed no difference in DARPP-32+ volume between the 

ipsi- and contralateral hemispheres, confirming that the lesions were correctly placed in only 

the dorsal region of the striatum, with the nucleus accumbens remaining unaffected, 

Figure 5.3 C. 

There was a significant inverse correlation between the volume of remaining ipsilateral 

DARPP-32+ tissue and the volume of the lesion, r=-0.64, p<0.01, and a significant positive 

correlation between lesion volume and the ipsilateral ventricle, r=0.64, p<0.05, see 

Figure 5.3 D - E. 
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Figure 5.2 A Graphical representation of the size and position of each unilateral QA lesion of mice included in the results. The scale represents the proportion of animals with lesions in 
the coloured area. B Photomicrographs of a typical cross section of a lesioned brain labelled with DARPP-32. Lesions are clearly visible through lack of DAB staining (*) in the striatum. 
C Graph representing lesion volume and group spread, as measured on DARPP-32 labelled brain sections. The red dot represents the animal which was removed from the behavioural 
analyses due to inadequate lesion volume. Scale bar represents 2mm. 

* * * * * 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
o

lu
m

e 
(m

m
3 )

1
70

 



Chapter 5 – Experiment 6  Functional assessment of QA lesions 

171 
 

  

Figure 5.3 A Volume of the contra- and ipsilateral dorsal striatum as measured by DARPP-32+ 
staining. The ipsilateral dorsostriatal volume was reduced in the QA lesioned group compared to 
the contralateral side (*** p<0.001), whilst there was no difference between the sides of the sham 
animals. B Contra- and ipsilateral ventricle volume. The ipsilateral ventricle volume was increased 
in the QA lesioned group compared to the contralateral side (*** p<0.001). No difference was 
seen in the sham group. C Volume of the contra- and ipsilateral ventral striatum as measured by 
DARPP-32+ staining. No significant differences were found. D Plot showing the correlation between 
ipsilateral dorsostriatal volume and lesion volume. DARPP-32+ volume decreased as lesion size 
increased, ** r=-0.64, p<0.01. E Plot showing the correlation between ipsilateral ventricle volume 
and lesion volume. Ventricle volume increased proportionally to lesion volume, * r=0.64, p<0.05. 
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Weight 

Following surgery the sham group maintained a stable body weight, however the DLS lesion 

group saw a gradual decline of nearly 2% of their pre-surgery weight over seven days and 

had a higher proportion of bodyweight loss than the sham group from days 4 to 6 post-lesion 

(Surgery*Time: F7, 189=10.51, p<0.001; Surgery (Day 1): t82=1.80, ns; Surgery (Day 2): 

t82=1.20, ns; Surgery (Day 3): t82=1.67, ns; Surgery (Day 4): t82=3.65, p<0.01; Surgery (Day 5): 

t82=4.16, p<0.01; Surgery (Day 6): t82=4.84, p<0.01; Surgery (Day 7): t82=3.95, p<0.01), 

Figure 5.4 A. 

This difference was transitory, and no significant difference was observed between the 

free-feeding body weights of the sham and lesion groups during the testing period (t27=1.58, 

ns). During food-restriction however, despite both groups maintaining just over 90% of their 

free-feeding weight, the QA lesion group weighed less than the sham group, (t27=2.36, 

p<0.05), see Figure 5.4 B. 

Motor tests 

Locomotor activity 

The number of beam breaks during the dark (i.e. active) period between 6pm and 6am was 

significantly increased in the QA lesioned group compared to the sham control group, 

indicating hyperactivity in the lesioned group, (Surgery: F1, 27=15.23, p<0.001), Figure 5.5 A. 

Activity levels were significantly greater at the late time-point compared to the early 

time-point (Time: F1, 27=15.17, p<0.001). 

Open field 

The total distance moved, velocity and movement time during the open field test was greater 

in the DLS lesion group (Surgery: F1, 27=15.99, p<0.001, F1, 27=16.00, p<0.001 and F1, 27=14.27, 

p<0.001 respectively), Figure 5.5 B - D. The distance moved, and velocity increased at the 

late time point (Time: F1, 27=13.79, p<0.001 and F1, 27=13.77, p<0.001 respectively), however 

there was no change in time spent moving between the two time-points (Time: F1, 27=1.32, 

ns). There were significantly fewer bouts of movement (movement frequency) in the QA 

lesion group (Surgery: F1, 27=18.59, p<0.001), and a decrease in the number of bouts at the 

late time point (Time: F1, 27=7.14, p<0.05), Figure 5.5 E. 
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Rotations 

Neither the sham nor the QA lesion group exhibited any spontaneous rotation behaviour, 

however, during the amphetamine drug probe the QA lesion group performed a higher net 

rotation rate than the sham group (Surgery: t23=2.36, p<0.05), Figure 5.6 A. In the probes 

using both the low (1mgkg-1) and higher (2mgkg-1) dose of apomorphine the QA lesion group 

rotated at a higher rate than the sham controls (Surgery: t22=3.65, p<0.001 and t22=5.08, 

p<0.001 respectively). A significant correlation between lesion volume and net rotations 

during the higher apomorphine dose was noted (r=0.56, p<0.05), Figure 5.6 B, although no 

correlation could be made at the lower dose, nor with amphetamine induced rotations. 

Gait 

Footprint analysis revealed a trend towards a reduced stride length in the QA lesioned 

animals, however this result was not statistically significant (Surgery: F1, 27=3.83, p=0.06). 

Stride length was increased at the late time-point compared to the early time-point (Time: 

F1, 48=105.06, p<0.001), but there was no difference between ipsi- and contralateral stride 

length in either group (Side: F1, 27=0.28, ns), Figure 5.6 C. 

There was no difference between the QA lesion and the sham controls in either hind- or 

forelimb base-width, (Surgery: F1, 27=0.14, ns, and F1, 27=0.00, ns, respectively), although hind 

limb base-width was increased at the late time-point (Time: F1, 24=11.39, p<0.01), see 

Figure 5.6 D. A similar change was not seen for forelimb base width (Time: F1, 24=0.59, ns). 

A significant reduction in the amount of overlap between the placement of the fore- and 

hind paws was observed in the QA lesion group when compared to the sham controls, 

(Surgery: F1, 27=5.12, p<0.05), Figure 5.6 E. At the late time-point the degree of overlap 

increased overall compared with the early time-point (Time: F1, 48=7.66, p<0.01), but there 

was no effect on side (Side: F1, 51=0.66, ns). 

Balance beam 

The time taken to turn around on the balance beam task was increased in the DLS lesion 

group compared to the sham controls (Surgery: F1, 27=8.05, p<0.01), however this effect was 

driven by the difference at the early time-point only, and no difference was seen between 

the groups at the late time-point (Surgery*Time: F1, 25=7.62, p<0.01; Surgery (Early): t47=3.90, 

p<0.001; Surgery (Late): t47=0.63, ns), Figure 5.7 A. There was no difference between groups 

on time to cross the beam (Surgery: F1, 27=0.05, ns), and both took longer to traverse the 

beam at the late time-point (Time: F1, 25=29.34, p<0.001), Figure 5.7 B. 
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No difference in the number of foot-slips was found between the DLS lesion and sham groups 

(Surgery: F1, 27=3.30, ns), Figure 5.7 C. The number of foot-slips increased between the early 

and late time-points (Time: F1, 25=34.27, p<0.001), and although there was a trend indicating 

a more extreme increase in the QA lesion group, this did not reach significance 

(Time*Surgery: F1, 25=3.78, p=0.06). 

Rotarod 

The QA lesioned mice fell from the rotarod earlier than the sham controls (Surgery: 

F1, 27=18.66, p<0.001), Figure 5.7 D. This deficit was maintained through both the early and 

late time-points (Time*Surgery: F1, 27=7.44, p<0.05; Surgery (Early): t38=2.80, p<0.05; Surgery 

(Late): t38=5.05, p<0.001). The sham group were able to improve performance at the late 

point (Time (Sham): t27=3.06, p<0.05), however, no improvement was seen in the QA lesion 

group (Time (Lesion): t27=0.77, ns). 

Staircase 

No lateralised bias was observed in the staircase task in either group (Side: F1, 27=1.11, ns), 

although an overall deficit in the total number of pellets retrieved was seen in the QA lesion 

group compared to the sham animals (Surgery: F1, 27=5.92, p<0.05), Figure 5.8 A. Both groups 

saw an increase in the total number of pellets obtained from the early to the late time-point 

(Time: F1, 48=51.28, p<0.001). 
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Figure 5.4 A Mean daily body weights of the mice in the week following surgery. The DLS QA lesion group had a 
higher proportion of bodyweight loss than the sham group from days 4 to 6 post-lesion (** p<0.01). B Mean body 
weights during ad-lib feeding and during food restriction periods. There was no difference between groups during 
free food phases, however the QA lesion group weighed less than the sham group during food restriction periods 
(* p<0.05). 
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Figure 5.5 A Number of beam breaks during the dark phase of locomotor activity test. DLS lesioned animals were 
significantly more active compared to the shams (*** p<0.001). Activity levels increased at the late time-point 
compared to the early time-point (p<0.001).  B Distance travelled in open field. The DLS lesioned group travelled 
a greater total distance than the sham (*** p<0.001). Distance travelled increased in the late time-point 
compared to the early time-point (p<0.001). C Velocity in open field. DLS lesioned animals moved faster than the 
sham (*** p<0.001). Animals moved at a greater speed in the late time-point compared to the early time-point 
(p<0.001). D Time spent moving in open field. The DLS lesioned animals were moving for a greater length of time 
than the shams (*** p<0.001). There was no difference in time spent moving between the early and late time-
points. E Number of bouts of movement in open field. The DLS lesioned mice had fewer separate bouts of 
movement time than the shams (*** p<0.001). The number of bouts decreased between the early and late time-
points (p<0.05). 
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points (* p<0.05; *** p<0.001). 
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Non-Motor tests 

Reward consumption 

The amount of sucrose consumed per kg was increased in the QA lesion group compared to 

the sham controls in the consumption test (Surgery: F1, 27=29.09, p<0.001), Figure 5.8 B. 

Corridor 

In the corridor task the DLS lesion group made significantly more nose pokes on their 

ipsilateral side compared to the contralateral side, while sham animals did not exhibit any 

bias toward contra- or ipsilateral nose pokes (Surgery*Side*Time: F1, 48=6.48, p<0.05; Side 

(Sham): t48=2.18, ns; Side (Lesion): t48=9.62, p<0.001), Figure 5.8 C. There was a significant 

correlation between lesion volume and contralateral side bias, with the proportion of bias 

away from the contralateral side increasing as lesion volume increased (r=-0.61, p<0.05), 

Figure 5.8 D. 

Bilateral lateralised choice reaction time task (BLCRTT) 

The QA lesion mice were less accurate in the BLCRTT than the sham group (Surgery: 

F1, 26=14.59, p<0.01), Figure 5.9 A. Reduced accuracy on the contralateral side was observed 

at the early time-point, driven by a deficit in the QA lesioned group’s contralateral 

performance (Time*Side: F1, 48=14.16, p<0.001. Early (Side): t33=2.66, p<0.05). Due to a 

reduction in ipsilateral performance at the late time-point in both groups, the trend for the 

lesioned group to perform worse on the contralateral side did not reach significance (Late 

(Side): t33=0.12, ns). A Side*Surgery interaction was not quite significant (Side*Surgery: 

F1, 26=4.04, p=0.055), so the trend for contralateral deficits in accuracy in the DLS lesioned 

animals could not be tested post hoc, although it is likely that with improved numbers there 

would be a significant ipsilateral bias in these animals.  

No difference was observed in the reaction time between the groups, nor between contra- 

and ipsilateral sides (Surgery: F1, 27=0.62, ns; Side: F1, 25=0.92, ns), Figure 5.9 B. 

Movement time was increased in the QA lesioned group in comparison to the sham group 

(Surgery: F1, 27=35.93, p<0.001), Figure 5.9 C. The movement time was greater for ipsilateral 

responses; however, this was driven by a transitory increase in ipsilateral response time in 

the QA group at the early time-point, (Time*Surgery*Side: F1, 45=11.53, p=0.001; Early Lesion 

(Side): t51=5.29, p<0.001); Late (Lesion (Side): t51=0.73, ns). 
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The total number of usable trials (TTUs) generated was greater in the sham animals 

compared to the QA lesion group (Surgery: F1, 27=35.38, p<0.001), Figure 5.9 D. The sham 

animals generated fewer TTUs at the late time-point than at the early time-point, however 

the DLS lesion group maintained the number of trials generated (Time*Surgery: F1, 25=7.36, 

p<0.05; Sham (Time): t25=3.62, p<0.01; Lesion (Time): t25=0.21, ns).  

A greater proportion of the QA lesion group’s usable trials resulted in a time-out (TO) error 

than the sham group (Surgery: F1, 27=23.78, p<0.001). There was no difference between the 

groups in the number of premature withdrawals made (Surgery: F1, 27=1.21, ns). A significant 

correlation between the total number of usable trials (TTU) and lesion volume was observed, 

with TTU decreasing as lesion volume increased at both the early and late time-points 

(r=-0.54, p<0.05 and r=-51, p<0.05 respectively), Figure 5.9 E. 

Unilateral lateralised choice reaction time task (ULCRTT) 

Both groups were able to respond accurately to the near contralateral hole in the ULCRTT 

but were significantly less accurate in the far contralateral hole (Hole: F1, 21=626.60, p<0.001) 

at both the early and late time-points, Figure 5.10 A, however there was no effect of 

lesioning (Surgery: F1, 25=0.52, ns). 

Reaction time was unaffected by surgery (Surgery: F1, 25=2.28, ns), but was higher in response 

to the furthest hole compared to the near hole (Hole: F1, 20=17.90, p<0.001), Figure 5.10 B. 

Movement time to the far contralateral hole was greater than to the nearer hole (Hole: 

F1, 20=34.11, p<0.001), Figure 5.10 C. The QA lesion group took longer to move to the holes 

than the sham group (Surgery: F1, 25=18.60, p<0.001). 

The sham group generated a greater number of TTUs than the QA lesion group (Surgery: 

F1, 27=28.00, p<0.001), Figure 5.10 D, and both groups generated more trials at the late 

time-point compared to the early time-point (Hole: F1, 24=33.64, p<0.001). The percentage of 

TTU resulting in a TO error was greater in the QA lesion group compared to the sham animals 

(Surgery: F1, 27=37.04, p<0.001), with the lesion group, but not the shams, reducing the 

proportion of TO errors in the late time-point compared to the early time-point 

(Time*Surgery: F1, 24=5.07, p<0.05; Time (Sham): T24=1.59, ns; Time (Lesion): T24=4.76, 

p<0.001). There was no difference in the number of premature withdrawals between the 

groups (Surgery: F1, 27=0.04, ns). A significant correlation between the total number of usable 

trials (TTU) and lesion volume was observed, with TTU decreasing as lesion volume increased 

at the early time-point (r=-0.51, p<0.05), Figure 5.10 E.  
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Elevated plus maze 

The QA group spent less time in the closed arm of the elevated plus maze compared to the 

sham group (Surgery: F1, 27=4.69, p<0.05), Figure 5.11 A, choosing instead to explore the open 

arms or be in the centre of the maze investigating the entrance to the open arms. While 

there was no difference in the total number of entries made into the arms of the maze 

(Surgery: F1, 27=2.38, ns), the QA group entered into open arms more frequently than the 

sham group (Surgery: F1, 27=4.57, p<0.05). However, there was no difference between groups 

in the number of entries into the closed arms (Surgery: F1, 27=0.13, ns), Figure 5.11 B. 

Open field 

During the open field test, the DLS lesioned animals crossed into the central zone more 

frequently than the sham group, and spent more time there (Surgery: F1, 27=10.91, p<0.01 

and F1, 27=6.65, p<0.05 respectively), Figure 5.11 C. Fewer entries into the central zone were 

made at the late time-point compared to the early time-point (Time: F1, 27=27.26, p<0.001), 

however a greater amount of time was spent there (Time: F1, 27=13.12, p<0.001). There was 

no difference in rearing frequency between groups (Surgery: F1, 27=0.00, ns), however the 

sham group reared more in the late time-point compared to the early time-point whereas 

the QA lesion group did not (Time*Surgery: F1, 27=4.75, p<0.01; Sham (Time): T27=3.37, 

p<0.01, Lesion (Time): T24=0.40, ns), Figure 5.11 D. 
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Figure 5.9 A Mean accuracy in the bilateral lateralised choice reaction time task (BLCRTT) (correct/(correct + incorrect)). DLS lesioned mice were less accurate compared to the sham animals 
(p<0.01). Contralateral accuracy was reduced in the early time-point (p<0.05) but not at the late time-point. B Mean reaction time in the BLCRTT. No difference in reaction time between groups 
or between side were observed. C Mean movement time in the BLCRTT. The DLS group had an increased movement time compared to the shams (p<0.001). Ipsilateral movement time was 
increased compared to the contralateral in the DLS lesioned group in the early time-point (***p<0.001), but not the late time-point. D Total usable trials achieved in BLCRTT, percentage of 
usable trials resulting in a time out error and number of premature withdrawals per usable trial. The DLS lesion mice initiated fewer usable trials than the shams (*** p<0.001). Sham animals 
generated fewer usable trials at the late time-point than at the early time-point (p<0.01), whereas the lesioned animals maintained their trial number. A greater proportion of time-out errors 
were made by the lesioned group (*** p<0.001). No difference in the number of premature withdrawals was seen between groups. E Plot showing the correlation between the total usable 
trials in the BLCRTT and lesion volume at the early and late time-point. The number of usable trials was inversely proportional to lesion volume at both the early and late time-points, * r=-0.54, 
p<0.05 and * r=-0.51, p<0.05 respectively.  
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Figure 5.10 A Mean accuracy in the unilateral lateralised choice reaction time task (ULCRTT) (correct/(correct + incorrect)). Accuracy in responses to the far hole was lower compared to the near 
hole (p<0.001). No effect of lesioning was detected. B Mean reaction time in the ULCRTT. Reaction time to the far hole stimulus was reduced compared to the near hole (p<0.001). No difference 
was detected between groups. C Mean movement time in the ULCRTT. The DLS lesioned mice took longer to move to the holes than then the sham group (p<0.001). Movement time to the far 
hole was greater than to the near hole (p<0.001). D Total usable trials achieved in ULCRTT, percentage of usable trials resulting in a time out error and number of premature withdrawals per 
usable trial. The DLS lesion group generated fewer trials than the sham animals (*** p<0.001). More trials were generated at the late time-point than the early time-point (p<0.001). A higher 
proportion of trials resulted in a time-out in the DLS lesion group than the shams (*** p<0.001). The proportion of time-outs from DLS lesion animal trials was reduced at the late time-point 
(p<0.001) but was maintained in the sham animals. No difference in premature withdrawals was found between groups. E Plot showing the correlation between the total usable trials in the 
ULCRTT and lesion volume at the early time-point. The number of usable trials was inversely proportional to lesion volume, * r=-0.51, p<0.05. 
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Figure 5.11 A Proportion of time spent in each arm of the elevated plus maze. DLS lesioned mice spent a greater 
proportion of time in the open arms compared to the sham group (p<0.05).  B Number of entries made into each 
arm of the elevated plus maze. The lesioned mice made a greater number of entries into the open arms than the 
shams (p<0.05), but there was no difference in number of crosses into the closed arms. C Number entries made 
into the central zone of the open field arena and the percentage of time spent within the central zone. The DLS 
lesioned animals crossed into the central zone more often than the shams (** p<0.01). Less entries to the central 
zone were made at the late time-point than the early time-point (p<0.001). The lesioned animals also spent a 
larger proportion of their time in the central zone compared to shams (* p<0.05). More time was spent in the 
central zone at the late time-point compared to the early time-point (p<0.001). D Frequency of rearing behaviour 
in the open field test. No effect of surgery was observed. 
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5.5 Experiment Discussion 

 

The objective of this study was to establish a battery of apposite tests able to detect 

long-term lesion-induced deficits in a QA mouse model of HD designed to illicit motoric 

deficits through lesions of the DLS. The purpose of this was to enable their use in future 

investigations to efficiently test for functional improvements brought about by cell 

transplantation studies or other therapeutic interventions. 

Lesion quality 

The immunohistological staining results show that the unilateral lesions were located within 

the DLS and were of a sufficient volume to elicit behavioural deficits in many of the tests 

implemented. One mouse was excluded which had a lesion volume of just 0.25mm3, 

equating to just under 20% loss of DARPP-32+ volume. No behavioural deficits were detected 

in this individual, suggesting that a loss of more than 20% DARPP-32+ dorsal striatal volume 

at least was required in order to elicit detectable behavioural disturbances in the tests used. 

The direct correlation between lesion volume and ventricle volume implies that the lesion 

induced not only loss of DARPP-32+ from the striatum, but also induced cell loss and collapse 

of the parenchyma on the ipsilateral side, as observed in Chapter 3. Therefore, volumetric 

measures of DARPP-32+ loss cannot relate an absolute measure of lesion size, since the 

parenchyma collapses and reduces the volume of the affected tissue. It can be assumed then 

that the actual extent of the lesion would be larger than that measured. Nevertheless, the 

fact that there was a direct correlation between the measured lesion volume and spared 

DARPP-32+ volume, and to many behavioural deficits, demonstrates that measures taken in 

this way are adequate in assessing the magnitude of lesions. 

DLS QA lesions had no effect on volumetric measures of DARPP-32+ staining in the ventral 

striatum, demonstrating the sparing of damage in this region. The assertion that the ventral 

striatum was not disturbed removes the implication that damage directly to the nucleus 

accumbens could have directly affected aspects of reward motivation (Saddoris et al., 2015)  

or its control in modulating activity levels (Kalivas et al., 1984). 
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Weight 

The QA-lesioned animals exhibited a transitory free-feeding weight loss in the week following 

surgery that was not seen in the sham group, however, there was no difference in weight at 

the time of testing in non-restricted tasks. Since weight can influence performance in tests 

such as rotarod, balance beam and footprint, it is important to note that this was not a factor 

in this case. During periods of food restriction, the QA group weighed less than the control 

animals, however, bodyweight has less influence on those tasks for which food restriction 

was required.  

It is important to note that seven mice of the twenty mice receiving the DLS lesion died or 

were culled in the post-surgical period. Of these, five were critically injured due to increased 

aggression and fighting within the home cages. This behaviour was sustained and led to the 

animals being house individually from one week post-surgery. Irritability and aggressive 

behaviour in people with HD has been reported previously (Shiwach and Patel, 1993), as well 

as in some genetic HD mouse models, particularly in males (Shelbourne et al., 1999), and 

should be a consideration when designing studies in these models. It would be interesting to 

include tests of aggression, such as the resident intruder test, in cell replacement therapy 

behavioural studies since few non-motor deficits have been shown to be resolved 

pre-clinically. 

The effect of unilateral DLS lesions  

The outcome of the tests explored is summarised in Table 5.2. Those tests which were able 

to detect a sustained deficit across the two time-points are marked. 

Behavioural results are discussed in detail at the end of this chapter.  
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Test 
Long-term 

deficits 
Measure observed 

   

Locomotor activity  Hyperactivity 

Open Field  
Increased distance, velocity  & 

duration of movement 
Increased time in central zone 

Spontaneous rotations  No effect 

Amphetamine-induced rotations  Dopamine receptor loss 

Apomorphine induced rotations  Dopamine receptor loss 

Footprint analysis  Reduced overlap 

Balance beam  Early effect only on time to turn 

Rotarod  Reduced motor co-ordination 

Staircase test  Reduced manual dexterity 

Sucrose consumption test  Increased consumption 

Corridor test  Lateralised visuospatial bias 

BLCRTT  

Lateralised visuospatial deficit & 
usable trials 

Increase in movement time & 
time-out errors 

ULCRTT  
Reduction in usable trials 

Increase in movement time & 
time-out errors 

Elevated plus maze  Increased entry into open arms 

 

 

 

Table 5B Summary assessment of tests performed.  indicates a test was able to demonstrate stable 
DLS lesion-induced deficit,  indicates either no detectable deficits or transient deficit. 
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Experiment 7 

Characterisation of deficits in a bilateral dorsomedial QA lesion 

mouse model 

 

The second experiment described in this chapter used bilateral DMS lesions designed to elicit 

non-motor deficits in the QA mouse model of HD.  A battery of non-motor and motor 

behavioural tests were employed at an early and late time-point post-lesion to establish if 

stable deficits could be detected. 

 

5.6 Methods 

 

5.6.1 Experimental design 

 

Thirty-two six-week old C57/BL6J mice (Harlan Laboratories, Bicester, UK) were used in this 

study, housed under standard conditions. Animal numbers were calculated based on data 

from previous experiments and confirmed using sample size analysis software G*Power. On 

arrival mice were left to acclimatise for one week prior to testing. Animals were initially 

housed in groups of eight, however, following the lesion surgery the groups had to be 

separated due to severe fighting and from one-week post-lesion all animals were housed 

individually.  

Behavioural tests were selected based on those most commonly used in rat QA lesion / 

transplant behavioural studies and which reflect aspects of HD, see Table 5.3.  

Mice were allocated into one of two counter-balanced experimental groups based on pre-

lesion accuracy performance in the DA task; DMS lesion (n=20) or intact sham-lesion controls 

(n=12).  
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5.6.2 Pre-lesion training 

 

All mice were placed on a water restriction protocol with access to three hours of water per 

day and trained in the delayed alternation (DA) task in skinner-style operant boxes (methods 

section 2.5.3 vi). Initiation of training to completion of the full DA task lasted approximately 

15 weeks. During this time the pre-lesion baseline performance was recorded, and mice were 

returned to free-water for one week prior to undergoing surgery, at which time the mice 

were twenty-two weeks of age. 

 

5.6.3 Lesion surgery 

 

Surgery was performed using the standard protocols described in methods section 2.2.1, 

with the stereotaxic coordinates adapted for bilateral dorsomedial placement of the lesion.    

The DMS lesioned mice received 0.1µl 0.9M QA at eight sites (four per hemisphere) at the 

following coordinates from bregma: AP = +1.2, ML = ±1.4, DV = -3.0/-2.0 and AP = +2.2, 

ML = ±1.2, DV = -2.8/-2.2. The sham lesion animals received injections of 0.1µl 0.9% saline at 

the same coordinates. 

 

5.6.4 Post-lesion testing 

 

Following a one-week post-surgical recovery period, mice were tested in the non-water 

restricted tests before being returned to water restriction for the reward dependant tasks, 

as listed in Table 5.3. These ‘early time-point’ tests were complete within a post-lesion time 

period of 1-7 weeks, (23 to 29-week age range), and mice returned to ad lib water access.  

Four months following surgery, the testing schedule was repeated. This ‘late time-point’ 

comprised post-lesion times of 16 to 27 weeks (38 to 49 weeks of age). 

The complete experimental timeline is shown in Figure 5.12. All behavioural protocols are 

described in methods section 2.5. 
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Behavioural test Measure 

 

Delayed alternation (WR) Working memory, rule learning 

5CSRTT (WR) Attention 

Milkshake consumption test Reward value perception 

Novel object recognition Short & long-term memory 

Elevated plus maze Anxiety 

Open Field Anxiety, speed 

Nest building Natural behaviour 

Locomotor activity General activity levels 

Footprint analysis Gait 

Balance beam Balance 

Rotarod Motor coordination 

Corridor test (WR) Lateralised neglect 

 

  

Table 5.3 Complete list of all behavioural tests performed in the DMS mice and the behavioural measure they 
probe. (WR) indicates tests requiring mice to be water restricted, all other tests were performed under an ab lib 
water regime.  



 

 
 

 

 

  

Figure 5.12 Experimental timeline indicating the progression, in weeks, of the experiment. The diagonally shaded regions span the duration of all 
behavioural tests for each time-point. The blue filled regions represent the time for which animals were water restricted.  
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5.6.5 Immunohistochemical analysis of lesions 

 

Following perfusion, the tissue was processed as described in section 5.3.5. 

 

5.6.6 Statistical analysis 

 

Three mice from the DMS lesioned group died following surgery and were excluded from the 

experiment completely. Following histological examination, a further seven mice were 

removed retrospectively from all behavioural analyses due to having no detectable lesion in 

either one or both hemispheres. Consequently, the final group sizes for behavioural analyses 

were; sham control group n=12, and DMS lesion group n=10.  

All statistical analysis was performed using Genstat (18th edition). ANOVAs were performed 

to compare experimental groups and early and late time-points. For tests in which complex 

comparisons were made, i.e. delayed alternation, 5CSRTT and novel object recognition tasks, 

the early and late time-points were analysed in separate ANOVAs to simplify the 

interpretation of data. Sidak’s post hoc pairwise comparisons were performed to analyse 

significant interactions, correcting for multiple comparisons. Correlation analysis was used 

to identify significant correlations between behavioural data and lesion volume. Only those 

that reached significance are presented. Significance was taken as p≤0.05.  

Post-hoc power analysis based on final animal numbers was calculated using G*Power 

software and was estimated to be 95% for large effect sizes and 61% for medium effect sizes.  
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5.7 Results 

 

Histological analyses 

Lesions were identified through loss of DARPP-32+ staining in the medial striatum, with 

sparing of tissue in the lateral regions observed, Figure 5.13 A & B. Spread of the lesion into 

more lateral areas was observed within the anterior striatum (Bregma +1.70 to +1.18mm) 

and some sparing of tissue at the striatal-ventricle margin, and in the most dorsal aspect of 

the medial striatum was seen in more posterior areas (Bregma +0.74 to -0.58mm). Some 

lesions were observed extending posteriorly to parts of the globus pallidus.  

The bilateral QA injections resulted in a mean total lesion volume of 0.73 ±0.10 mm3, with a 

range of 0.23 – 1.35 mm3, Figure 5.13 C. These lesions equated to a loss of 34.5% ±6.24 total 

DARPP-32+ striatal volume compared to the shams (Surgery: t20=3.73, p<0.001) and affected 

an increase of 47.0% ±14.0 in ventricle volume when compared to the mean sham 

measurements (Surgery: t20=2.73, p<0.05), Figure 5.14 A - B. 

Measures of the ventral striatum showed no difference in DARPP-32+ volume between the 

sham and DMS lesioned groups, confirming that the lesions were correctly placed in only the 

dorsal region of the striatum, with the nucleus accumbens remaining unaffected by the 

lesion (Surgery: t20=0.20, ns), Figure 5.14 C. 

There was a significant inverse correlation between the volume of remaining DARPP-32+ 

tissue and the volume of the lesion, r=-0.72, p<0.001, and a significant positive correlation 

between lesion and ventricle volume, r=0.57, p<0.05, see Figure 5.14 D - E. 
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0% 

100% 

A 

Figure 5.13 A Graphical representation of the size and position of each bilateral QA lesion of mice included in the 
results. The scale represents the proportion of animals with lesions in the coloured area. B Photomicrographs of 
a typical cross section of a lesioned brain labelled with DARPP-32. Lesions are clearly visible through lack of DAB 
staining (*) in the striatum. C Graph representing total bilateral lesion volume and group spread, as measured on 
DARPP-32 labelled brain sections. The red dots represent the animal which were removed from the behavioural 
analyses due to no visible lesion in one or both hemispheres. Scale bar represents 2mm. 
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Figure 5.14 A Total volume of dorsal striatum as measured by DARPP-32+ staining. The DMS QA dorsal striatal 
volume was reduced compared to the sham animals (*** p<0.001). B Total ventricle volume. The DMS QA 
ventricle volume was increased compared to the sham group (* p<0.05 C Total volume of ventral striatum as 
measured by DARPP-32+ staining. No significant differences between groups were found. D Plot showing the 
correlation between dorsal striatal volume and lesion volume. DARPP-32+ volume decreased as lesion size 
increased, *** r=-0.72, p<0.001. E Plot showing the correlation between ventricle volume and lesion volume. 
Ventricle volume increased proportionally to lesion volume, * r=0.57, p<0.05. 
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Weight 

Following surgery there was no difference between the sham and DMS lesioned groups in 

mean change body weight (Surgery: F1, 20=1.87, ns), Figure 5.15 A. Neither was there an effect 

of surgery on bodyweight during the testing periods for either ad lib or water-restricted 

periods (Surgery: t20=0.15, ns; and t20=0.55, ns respectively), Figure 5.15 B. 

Non-motor tests 

Delayed alternation 

The DMS lesioned mice were consistently less accurate compared to the shams in the DA 

task (Surgery: F1, 20=14.45, p<0.001), Figure 5.16 A. The number of usable trials performed 

was comparable at the early time-point, however at the late time-point the lesioned group 

were completing more trials than the shams (Surgery*Time: F1, 20=18.57, p<0.05; Surgery 

(Early): t29=1.02, ns; Surgery (Late): t29=2.69, p<0.05), Figure 5.16 B.  

Accuracy by delay data was analysed separately for the early and late time-points in order to 

clarify the complicated comparisons, (N.B. No significant Surgery*Time interaction was 

shown when analysed together (Surgery*Time: F1, 20=3.34, ns)). When accuracy was broken 

down into delay trials it was shown that at the early time-point the sham animals performed 

to a greater accuracy than the DMS lesioned mice in the shorter delays (0 - 6s), and 

performance declined at the longer delays whereby there was no difference between groups 

(Surgery*Delay: F1, 100=18.14, p<0.001; (0s): t67=5.92, p<0.001; (2s): t67=7.56, 

p<0.001; (4s): t67=5.06, p<0.001;  (6s): t67=2.82, p<0.05; (8s): t67=0.75, ns; (10s): t67=0.17, ns), 

Figure 5.16 C. During the late time-point testing the accuracy of the DMS lesioned mice was 

lower compared to the shams (Surgery: F1, 20=4.94, p<0.05), however no interaction of 

surgery and delay was found (Surgery*Delay: F1, 100=1.66, ns), Figure 5.16 D. 

Response time (time taken to make a correct response) was increased in the DMS lesioned 

group compared to the shams at the early time-point, only (Time*Surgery: F1, 20=9.31, 

p<0.01; Early (Surgery): t38=2.91, p<0.05; Late (Surgery): t38=0.82, ns), Figure 5.16 E. 

Spontaneous alternation 

No difference in spontaneous alternation behaviour was found between the DMS lesion and 

sham groups (Surgery: F1, 20=0.02, ns), Figure 5.16 F. 
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Figure 5.15 A Mean daily body weights of the DMS mice in the week following surgery. There was a no significant 
difference between the sham and lesion groups. B Mean body weights during ad-lib feeding and during water 
restriction periods. There was no difference between groups during free water phases or during food restriction 
periods. 
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Figure 5.16 A Total accuracy in the delayed alternation (DA) test. Accuracy calculated as 
(correct trials / (correct + incorrect)) x 100. The DMS lesioned mice had a lower proportion of correct trials 
compared to the sham group (*** p<0.001). B Total usable trials in the DA test. There was no difference 
between the DMS lesion group and the sham group in the number of usable trials at the early time-point, 
however the lesioned group completed more than the shams at the late time-point (* p<0.05). C Accuracy 
by delay at the early DA time-point. Sham animals performed to a greater accuracy than the DMS lesioned 
mice in the shorter delays (0 - 6s) (*** p<0.001; * p<0.05). D Accuracy by delay at the late DA time-point. 
Accuracy of the DMS lesioned mice was lower compared to the shams (* p<0.05), however no interaction of 
surgery and delay was found. E Reaction time in the DA task. The DMS had a slower reaction time compared 
to the shams at the early time-point only (* p<0.05). F Proportion of alternating trials in the spontaneous 
alternation test. There was no effect of surgery in the amount of alternating trials. 
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Five-choice serial reaction time task 

5CSRTT data was analysed separately for early and late time-points to simplify the complex 

comparisons. (N.B. No significant Surgery*Time interactions were shown when analysed 

together (Accuracy Surgery*Time: F1, 19=3.09, ns; RT Surgery*Time: F1, 19=0.27, ns; TO 

Surgery*Time: F1, 19=2.73, ns; TTU Surgery*Time: F1, 19=2.26, ns)).  

Surgery had no effect on attention, as measured by accuracy, in the 5CSRTT at either the 

early or late time-points (Surgery: F1, 20=2.14, ns; and F1, 19=0.17, ns respectively), 

Figure 5.17 A. There was no difference between groups in performance during the 

distraction probe, during which milkshake was made freely available within the operant 

chamber (Surgery: t20=0.06, ns). 

The DMS lesioned animals were quicker to make correct responses than the shams at both 

the early and late time-points (Surgery: F1, 20=20.59, p<0.001; F1, 19=24.53, p<0.001), however 

there was no difference between groups during the distraction probe (Surgery: t20=0.12, ns), 

Figure 5.17 B.  

The number of time-out penalties generated during the early time-point was no different 

between the DMS lesion group and the shams (Surgery: F1, 20=4.33, ns), however the DMS 

lesioned animals made fewer time-out errors than the shams at the late time-point (Surgery: 

F1, 19=24.25, p<0.001), Figure 5.18 A. No difference was found during the distraction probe 

(Surgery: t20=1.53, ns respectively). 

DMS lesioned mice generated more usable trials than the sham mice at both the early and 

late time-points (Surgery: F1, 20=6.79, p<0.05 and F1, 19=30.44, p<0.001 respectively), but 

there was no difference between groups in the distraction probe (Surgery: t20=0.81, ns), 

Figure 5.18 B. 

Reward consumption 

There was no effect of surgery on the amount of milkshake consumed in the consumption 

test (Surgery: F1, 19=0.04, ns), Figure 5.19 A. 

Novel object recognition 

Early and late time-point data for the novel object recognition task were analysed separately 

to simplify the complex comparisons. (N.B. No significant Surgery*Time interactions was 

found when analysed together (Surgery*Time: F1, 36=0.14, ns)). 
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At the early time-point, the DMS lesioned mice spent significantly less time than the shams 

exploring the novel object after the short (15 minute) delay, but there was no difference 

after the long delay (24 hrs) (Surgery*Delay: F1, 18=6.37, p<0.05; Short (Surgery): 

t36=2.44, p<0.05; Long (Surgery): t36=1.17, ns), Figure 5.19 B. At the late time-point animals 

spent less time exploring the novel object after the long delay compared to the short delay 

(Delay: F1, 18=13.80, p<0.01), but no difference between groups was found. The mean 

proportion of time spent exploring the novel object was compared to chance (50%) for each 

probe. At the early time-point, the shams but not the DMS lesioned mice spent more time 

exploring the novel object than the familiar one after the short delay (Sham Early Short: 

t11=4.35, p<0.001; DMS Early Short: t9=0.77, ns). Following the long delay, the shams did not 

spend significantly longer on the novel object, but the DMS group did (Sham Early Long: 

t11=1.47, ns; DMS Early Long: t9=2.72, p<0.05). At the late time-point, both the sham and 

DMS groups spent longer exploring the novel object compared to the familiar after the short 

delay (Sham Late Short: t11=3.42, p<0.01; DMS Early Short: t7=4.54, p<0.01), however after 

the long delay, only the sham animals spent significantly more time on the novel object 

(Sham Late Long: t11=2.54, p<0.05; DMS Late Long: t7=0.29, ns). 

Elevated plus maze 

There was no difference between the DMS lesion group and the sham group in the time 

spent in the open or closed arms of the elevated plus maze (Surgery: F1, 20=0.00, ns), 

Figure 5.19 C, and neither was there a difference in the number of entries made into the 

open or closed arms (Surgery: F1, 20=0.58, ns; and Surgery: F1, 20=2.99, ns respectively), 

Figure 5.19 D. 

Open field 

The DMS lesion group entered the central zone of the open field arena a greater number of 

times compared to the shams (Surgery: F1, 20=6.24, p<0.05), however there was no difference 

in the amount of time spent in the central zone (Surgery: F1, 20=0.36, ns), Figure 5.20 A. 

The lesioned mice reared more frequently compared to the sham group (Surgery: 

F1, 20=23.42, p<0.001), Figure 5.20 B. 
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Figure 5.17 A Response accuracy in the 5CSRTT in the early, late and distraction tests. No effect of surgery on 
accuracy was found. B Reaction time of correct responses in the early, late and distraction 5CSRTT. DMS 
lesioned animals were quicker to respond than the shams at both the early and late time-points, but there was 
no difference during the distraction probe (*** p<0.001). 
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Figure 5.18 A Number of time-out errors in the 5CRTT during the early, late and distraction tests. There 
was no difference between groups at either the early time-point or distraction probe, however the DMS 
lesioned animals made fewer time-out errors than the sham at the late time-point (*** p<0.001). 
B Number of usable trials in the 5CRTT during the early, late and distraction tests. The DMS lesioned mice 
generated more usable trials then the sham mice at both the early and late time-points (* p<0.05, 
*** p<0.001), but there was no difference between groups in the distraction probe. 
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Figure 5.19 A Quantity of milkshake consumed per kg of bodyweight. No difference between groups was 
found. B Time spent exploring novel objects at the early and late time-points during the habituation, short 
delay (15mins) and long delay (24hr) trials. No effect of time was observed. At the early time-point The DMS 
lesion group spent less time than the shams exploring the novel object after the short delay (* p<0.05) but 
there was no difference after the long delay. At the late time-point animals spent less time exploring the novel 
object after the long delay compared to the short delay (p<0.01), but no difference between groups was found. 
When the mean time spent exploring the novel object was compared to chance (50%), the sham animals spent 
significantly longer in both the early (*** p<0.001) and late short delay probes (** p<0.01) and in the late long 
delay (* p<0.01). The DMS lesioned animals spent longer exploring the novel object in only the long probe of 
the early test (* p<0.05) and the short probe in the late test (** p<0.01). C Proportion of time spent in each 
segment of the elevated plus maze. There was no difference between groups in the time spent in the open 
arms. D Number of entries into each arm of the elevated plus maze. There was no difference between groups 
in the number of entries into either the open or closed arms. 
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Figure 5.20 A Number of entries made into the central zone of the open field arena and the percentage of time 
spent within the central zone. The DMS lesion group entered the central zone a greater number of times 
compared to the shams (* p<0.05), however there was no difference in the amount of time spent in the central 
zone. B Frequency of rearing behaviour in the open field test. The DMS lesioned animals reared more frequently 
compared to the shams (*** p<0.001).  
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Motor tests 

Locomotor activity 

More beam breaks were made by the DMS animals during the dark period compared to the 

sham group (Surgery: F1, 20=22.89, p<0.001), Figure 5.21 A. Fewer beam breaks were made 

at the late time-point compared to the early time-point (Time: F1, 20=24.84, p<0.001). 

Open field 

The DMS lesion group moved a greater distance and at a higher speed than the sham animals 

(Surgery: F1, 20=16.56, p<0.001; and Surgery: F1, 20=16.56, p<0.001 respectively), 

Figure 5.21 B & C. They also spent a higher proportion of time in motion than the shams at 

the early time-point (Surgery*Time: F1, 20=4.77, p<0.05; Surgery (Early): t39=3.17, p<0.01; 

Surgery (Late): t39=0.22, ns), and had fewer breaks in movement time (Surgery: 

F1, 20=24.42, p<0.001), Figure 5.21 D & E. 

Gait 

No effect of surgery was observed in any gait analysis measures (Stride length Surgery: 

F1, 20=2.98, ns; Hind base-width Surgery: F1, 20=4.18, ns; Fore base-width Surgery: 

F1, 20=0.00, ns; Overlap Surgery: F1, 20=0.02, ns), Figure 5.22 A - C. 

Balance beam 

There was no difference between groups in the time taken to turn on the balance beam 

(Surgery: F1, 20=0.18, ns), Figure 5.22 D, however the DMS lesioned group were faster at 

crossing the beam than the shams (Surgery: F1, 20=4.91, p<0.05), Figure 5.22 E.  The time 

taken to cross was increased at the late time-point compared to the early time-point (Time: 

F1, 20=22.26, p<0.001). DMS lesioned animals made a greater number of foot-slips than the 

shams at the early time-point only (Surgery*Time: F1, 20=10.53, p<0.01; Surgery (Early): 

t38=3.33, p<0.05; Surgery (Late): t38=0.71, ns), Figure 5.22 F.  

Rotarod 

No difference between groups in the latency to fall from the rotarod was found (Surgery: 

F1, 20=1.46, ns), Figure 5.23 A, however the animals fell sooner at the late time-point 

compared to the early time-point (Time: F1, 20=32.06, p<0.001). 
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Corridor 

There was no effect of surgery on the side bias of animals in the corridor task (Surgery: 

F1, 19=1.22, ns), Figure 5.23 B. 
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Figure 5.21 A Number of beam breaks during the dark phase of locomotor activity. DMS animals were more 
active compared to the shams (*** Surgery: F1, 20=22.89, p<0.001). Activity levels were decreased at the late 
time-point compared to the early time-point (Time: F1, 20=24.84, p<0.001). B Distance moved in the open field 
test. The DMS lesioned group moved a greater distance compared to the shams (*** Surgery: 
F1, 20=16.56, p<0.001). C Velocity in open field. The DMS group moved at a greater speed than the shams (*** 
Surgery: F1, 20=16.56, p<0.001). D Time spent in motion in open field. The DMS animals spent a greater amount 
of time moving compared to the shams at the early time-point only (Surgery*Time: F1, 20=4.77, p<0.05; 
Surgery (Early): ** t39=3.17, p<0.01; Surgery (Late): t39=0.22, ns). E Number of bouts of movement during 
open field tests. The DMS lesioned mice made fewer separate bouts of movement when compared to the 
shams (*** Surgery: F1, 20=24.42, p<0.001). 
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Figure 5.22 A Mean stride length as measured by footprint analysis. No effect of lesion on stride length was found (Surgery: F1, 20=2.98, ns), neither was there a 
different between the early and late time-points (Time: F1, 20=1.38, ns). B Mean base width of the hind and fore paws. No effect of surgery was seen on either hind- 
or forelimb base-width (Surgery: F1, 20=4.18, ns, and F1, 20=0.00, ns, respectively). C Mean overlap of the placement of hind and fore paws. A positive measure 
represents the placement of the hind paw in front of the fore paw when taking a step. There was no difference in the amount of overlap in the DMS mice compared 
to sham (Surgery: F1, 20=0.02, ns). D Mean time to turn around after placement on the elevated balance beam. No effect of surgery was found in the time taken to 
turn (Surgery: F1, 20=0.18, ns). E Mean time to cross the balance beam. The DMS animals were slower to cross compared to the shams (* Surgery: F1, 20=4.91, p<0.05). 
Time to cross increased at the late time-point compared to the early time-point (Time: F1, 20=22.26, p<0.001). F Total foot-slips made whilst crossing the balance 
beam. The DMS mice made more foot-slips then the shams at the early time-point only (Surgery*Time: F1, 20=10.53, p<0.01; * Surgery (Early): t38=3.33, p<0.05; 
Surgery (Late): t38=0.71, ns).  
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Figure 5.23 A Latency to fall from the accelerating rotarod. There was no difference between groups in the 
time taken to fall (Surgery: F1, 20=1.46, ns). The animals fell sooner at the late time-point compared to the 
early time-point (Time: F1, 20=32.06, p<0.001). B Side bias in the corridor task. No effect of lesion was found 
(Surgery: F1, 19=1.22, ns).  
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5.8 Experiment Discussion 

 

This study aimed to establish a behavioural test battery able to detect long-term lesion-

induced deficits in a QA mouse model of HD designed to induce cognitive deficits through 

lesions of the DMS. The purpose of this was to enable their use in future investigations to 

efficiently test for functional improvements brought about by cell transplantation studies or 

other therapeutic interventions. 

Lesion quality 

Bilateral dorsomedial lesions were confirmed in just 10 of the surviving 17 mice, with the 

remaining being removed from the study due to no detectable lesion in one or both 

hemispheres. It is unclear if this was a problem with lesion cannula blocking during surgery 

or, if in targeting a more medial placement, some toxin was injected into the ventricle in 

error. Of the lesions that were detected, most were close to the medial edge of the striatum, 

however in many animals there was sparing of medial tissue, and in all cases at least some 

sparing of tissue in the most dorsal aspect of the medial striatum.  

The variability in lesion accuracy makes an effective bilateral DMS lesion model more difficult 

to obtain than the DLS, although through refinement of coordinates and perhaps additional 

injections of toxin at a more dorsal site in the tract could improve the outcomes seen. 

The lesions were sufficient to cause a loss of just over 34% of DARPP-32+ volume and induce 

behavioural deficits in some of the behavioural test battery. A similar study into DLS and DMS 

lesioning in rats had similar medial sparing and were able to show a deficit in a simple 

reaction time task (Hauber and Schmidt, 1994). 

As with the DLS lesions, the correlation between lesion volume and the expansion of the 

ventricles implies that there is tissue loss within the striatum, and therefore the 

non-DARPP-32+ volume cannot be taken as an absolute measure of cell loss but is a valid 

indication of the extent of the lesion. 

No disturbance of the ventral striatum was observed; however, it was noted that some 

lesions extended posteriorly into the globus pallidus extrna (GPe) and interna (GPi). Since 

the cells of the GP are GABAergic, like the striatal MSNs, it can be assumed that some 

excitotoxic cell loss occurred in this region. As part of the basal ganglia, a disturbance of the 

inhibitory effect of the GP efferent projections could have an excitatory effect on the 
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thalamus and hence motor cortex output. Isacson et al. (1986), demonstrated that ibotenic 

acid lesions to the DMS or GP can cause hyperactive behaviours, therefore any behavioural 

deficits observed within this chapter cannot necessarily be assumed to be DMS driven since 

the effects cannot be separated from potential GP disturbances.   

Weight 

Bodyweight was unaffected by DMS lesioning and therefore it was assumed to not factor in 

the results seen.  

The effect of bilateral DMS lesions  

The outcome of the tests explored is summarised in Table 5.4. Those tests in which a 

sustained deficit was detected across the two time-points are marked. 
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Test 
Long-term 

deficits 
Measure observed 

   

Delayed alternation  Decrease in accuracy 

Spontaneous alternation  No effect 

5CSRTT  Decrease in response time only 

Milkshake consumption test  No effect 

Novel object recognition  Disruption to memory  

Elevated plus maze  No effect 

Open Field  
Increased distance, velocity, 

movement duration & rearing 
Increased central zone entries 

Nest building  No effect 

Locomotor activity  Hyperactivity 

Footprint analysis  No effect 

Balance beam  Decreased time to cross 

Rotarod  No effect 

 Corridor test  No effect 

  Table 5.4 Summary assessment of tests performed.  A  indicates test was able to demonstrate stable 
DLS lesion-induced deficits, a  indicates either no detectable deficits or transient deficit. 
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5.9 Chapter Discussion 

 

The experiments described in this chapter aimed to establish a range of behavioural tests 

which could detect long-term deficits in QA mouse models of HD. Experiment 6 utilised a 

unilateral DLS lesion model intended to probe more motoric impairments, whilst 

Experiment 7 used a bilateral DMS lesion model to explore more non-motor behavioural 

deficits. The two cohorts were lesioned and assessed in a battery of tests at an early (from 

one-week post-lesion) and late (from sixteen weeks post-lesion) time-point. 

DLS lesions provided more robust lesions compared to DMS 

The number of animals excluded from the experiments due to insufficient lesion volume was 

far greater in the DMS group (n=7) than the DLS (n=1). It might be expected that more would 

be excluded from the bilateral lesion group simply because each animal must receive two 

good lesions rather than one. Interestingly, it has previously been shown that DLS lesions of 

ibotenic acid will diffuse into the tissue more to encompass a greater volume, thereby 

increasing the chances of obtaining a sufficient lesion. Medial injections, however, tended to 

remain more confined to the immediate area of injection (Fricker et al., 1996). This also 

seems to have been the case in this study since those medial lesions that were detectable 

were mostly small compared to the lateralised lesions. To resolve this problem, it might be 

necessary to increase the volume of solution injected in the DMS model and include an extra 

deposit of toxin in a more dorsal site of the injection tract to cover the tissue sparing seen in 

this region. Throughout the experiments in this thesis the group sizes have been 

unexpectedly reduced due to poor health of animals following the QA lesioning. Therefore, 

rather than increasing the amount of toxin per se, injecting a greater volume of a less 

concentrated toxin may be a better solution. 

DLS and DMS lesions elicited different behavioural phenotypes 

From the tests which were performed by both DLS and DMS lesioned groups it is clear that 

the placement of the lesions induced divergent behavioural deficits. Whilst this study did not 

test if the standard mid-striatal placement of lesions (most commonly used for histology-

based transplantation studies) could cause detectable behavioural changes, it did show that 

the positioning of the lesion is a critical consideration to test certain aspects of behaviour, 

and therefore therapy-induced recovery. For example, there was a persistent deficit in 

rotarod performance of the DLS QA group, which was absent in the DMS lesioned group. The 
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fixed speed or accelerating rotarod test are widely used to test motor coordination, often as 

the sole test of functional changes, and these results show that the accelerating rotarod is 

sensitive to the changes induced by dorsolateral striatal lesions. Studies employing lesions 

more centrally placed within the striatum are also able to demonstrate deficits (Gharaibeh 

et al., 2016; Lin et al., 2011). Since mid-striatal lesions do not target the DLS specifically, there 

is sparing of much of the lateral parenchyma, so it could be inferred that rotarod 

performance is sensitive to small QA induced changes.  

The coordination and balance deficits observed in the rotarod test in the DLS lesioned mice 

were not apparent in the balance beam test. A transient effect on the time to turn at the 

early time-point only suggests that either the lesions were not of sufficient size to induce a 

deficit, or the balance beam is not sensitive enough to detect them, or a combination of both. 

Interestingly there was a decrease in the “time to cross” measure in the DMS lesioned group, 

possibly linked to their increased speed and hyperactivity (discussed later), whereas this was 

not seen in the DLS groups despite similar increases in activity and velocity measures in the 

open field test. A possible explanation for this could be that the DMS lesioned mice, 

unimpeded by motor impairments, could simply traverse the beam at a greater speed, 

however, the impaired DLS lesioned animals show a deficit by not crossing faster than the 

sham group, as the DMS group do.  

Footprint analysis of gait detected a decrease in the amount of overlap between the hind-

and forepaws in the DLS lesioned mice only. Less overlap of paw placement infers less 

flexibility and more rigid gait posture. In addition, a trend towards reduced stride length in 

the lesioned animals may have become significant if a larger group size was used. Lesion 

induced deficits in QA lesioned mice have been shown previously  (Ma et al., 2012; 

Zimmermann et al., 2016), however the lesions in these cases were substantially larger than 

those discussed here, indicating that a clearer effect might have been seen with greater 

tissue loss. In addition, the referenced studies utilised automated systems to analyse gait 

which is likely to be more sensitive to subtle disturbances. 

Both DLS and DMS lesions induce a hyperactive phenotype 

Both the locomotor activity and open field demonstrated a significant increase in the 

locomotor activity levels in both lesioned groups. Since motor impairments in people with 

HD tend to impede the speed of movement, it was unexpected to find an opposing response 

in the QA model. However, hyperactivity in lesion rat models of HD has been well reported 

(Borlongan et al., 1997; Isacson et al., 1986; Sanberg et al., 1986; Shear et al., 1998), and has 
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also been observed in the early stages of disease progression in the YAC 128 (Slow et al., 

2003) and hdhQ175+/- knock-in mouse models of HD, (Harrison et al., unpublished).  

In addition to increased locomotor activity, the open field tests confirmed that the QA 

lesioned mice were also faster, were active for longer, rested less, and, consequently, moved 

a greater distance than the sham controls. While superficially these behaviours may seem to 

be the opposite of the expected deficits, they do represent an imbalance in normal activity 

control. Since there was no physical disturbance of the ventral striatum, which has been 

linked to hyperactivity in rats (Costall et al., 1977), it can be assumed that changes in activity 

are a result of circuitry disturbances originating within the dorsal striatum, particularly in the 

DLS lesioned animals. This is less clear in the DMS lesioned animals because of the 

involvement of the GP as previously discussed. 

Since these differences are pronounced, consistent and sustained long-term, in addition to 

being very simple to run, locomotor activity and open field would make useful tests to assess 

therapy-induced recovery in animal models of HD.  

Detecting motor deficits in DLS lesioned mice 

In addition to the tests described above, the amphetamine and apomorphine rotations were 

able to demonstrate a significant lesion effect in the motor behaviour of DLS lesioned 

animals, with the 2mgkg-1 apomorphine probe demonstrating the greatest effect. Since we 

would not expect cell therapies to be able to completely restore behaviours to normal levels, 

it is essential that there is enough of a difference between lesioned animals and the control 

groups to allow for smaller changes to be identified. For the higher apomorphine dose there 

is a greater difference in net rotations between the sham and lesioned animals, making it the 

more effective probe to pull out potential improvements in this behaviour. Importantly, the 

number of rotations was significantly correlated with lesion volume in the 2mgkg-1 

apomorphine probe, suggesting that improvement in number of rotations could be used to 

predict the extent of the lesion prior to histological analyses, and potentially measure the 

effectiveness of grafted MSNs in this model. The lesions in this experiment were shown to 

span the anterior-posterior striatum, which has been shown to be a factor affecting rotation 

behaviour. A study utilising ibotenic acid lesions in rats of the anterior or posterior striatum 

demonstrated that a posterior rather than anterior lesion placement was required for the 

rats to exhibit apomorphine-induced rotations (Fricker et al., 1996). 
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For long-term experiments it is worth noting that post-synaptic super-sensitivity to 

apomorphine in rats can be induced with repeated stimulation of dopamine receptors, 

depending on how regularly it is administered (Castro et al., 1985; Mattingly and Rowleti, 

1989), and this effect has been shown to be exaggerated when administration is paired with 

environmental cues, such as the rotation equipment, (Mattingly and Gotsick, 1989). 

Therefore, any behavioural measures utilising repeated exposure to apomorphine should be 

analysed with this in mind.  

A general impairment in skilled paw-reaching was identified in the staircase test, with DLS 

lesioned animals collecting fewer pellets than those in the sham group. When assessed in 

conjunction with the sucrose consumption result, this is unlikely to be due to a reduction in 

palatability or perceived reward value in the lesioned mice since when given free access to 

the pellets they consumed more than the shams. However, the amount of food restriction 

could have had a significant impact on the amount of effort mice put in to this task. A clearer 

result may have been achieved if the mice were restricted to ~85% rather than 90% free 

feeding weight. With a higher incentive, it is possible the sham animals could have improved 

their performance to reach more, whereas if the QA lesioned mice were closer to their 

performance limit, a difference between the groups could be more likely detected. Unilateral 

lesioned rats tested in the staircase reaching tasks demonstrated a significant bias towards 

the ipsilateral paw that was not observed in the mice (Fricker et al., 1996), despite similar 

lesion placement and comparative volume. Applying the idea that increased incentive for the 

reward could improve the performance in shams to the reach of ipsi- and contralateral sides 

of the lesioned animals, it’s possible that with extra motivation the DLS lesioned mice could 

have reached more pellets with their ipsilateral paw and thereby revealed an otherwise 

undetected lateralised bias.  

Another potential reason for the lack of lateralised deficits observed includes the physical 

manoeuvring the animals must do to get in a good reaching position. The task requires the 

mice to lie flat and reach using one paw and it is assumed that a lateralised impairment would 

affect only that paw. However, to reach down the animal must use their ipsilateral limb for 

balance or purchase, and therefore impairments on this paw could affect the reaching 

capacity of the non-affected paw. This may be unlikely since this does not seem to be an 

issue with the rats. 

The motoric deficits shown in the LCRTT (increased movement time, time-out errors and 

reduced number of trials) provide a good baseline from which functional improvement could 
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be measured. However, assessment of motivational changes or information processing 

deficits would also need to be included in any test battery to determine if any observed 

effects are purely motoric. 

DLS lesions produced some non-motor effects 

Despite DLS lesions being considered as affecting predominantly motor systems, a number 

of non-motor effects were also detected. Since the medial striatum was unaffected by the 

lateral lesions it might be theorised that some non-motor synaptic loops could also be 

associated with the lateral aspect of the striatum. For example, the DLS lesion caused the 

mice to increase the amount of sucrose they consumed in the consumption test. The DLS has 

been shown to be involved in the regulation of ingestive behaviours in rats (Lelos et al., 

2013), however this was evident only under altered physiological conditions. Other studies 

have shown motoric but not motivational impairments to consumption in rats with DLS 

lesions (Eagle et al., 1999). The nucleus accumbens (NAc) is typically associated with 

perceived reward value (Self and Nestler, 1995), however there was no evidence that the 

ventral striatum had been disrupted in the histological assessment of the tissue. It is possible 

that the loss of tissue on the DLS causes compensatory upregulation of the dopamine 

receptors in the ventral system, and since dopaminergic afferents into this region are 

associated with the ‘wanting’ incentives (or incentive salience) of reward (Berridge and 

Robinson, 1998), this could have caused a disruption in the balance of this system, however 

this would need to be shown through additional experiments. 

Visuospatial processing was tested in the BLCRTTs and the DLS lesioned animals showed a 

deficit in accuracy in responses on the side contralateral to the lesion. In addition, the 

corridor task demonstrated contralateral neglect of reward pots. This is thought to reflect a 

disruption in the process of directing a motor response to that side, rather than a deficit in 

motor ability to move there (Brasted et al., 1997), or visual impairment, as supported in the 

unilateral version of the task where the mice were able to respond perfectly into the same 

stimulus hole when presented with only stimuli on the contralateral side. The results shown 

in the mice reflect lateralised impairments in ibotenic DLS lesioned rats demonstrated 

previously (Brown and Robbins, 1989), as well as studies in unilaterally dopamine depleted 

rat and mouse models (Dowd and Dunnett, 2004; Heuer et al., 2013). The BLRTT results also 

reflect the same differences previously observed between these dopamine lesioned rat and 

mouse studies, in that the reaction time and number of premature withdrawals was not 

affected in the mouse lesions, but both were increased in the rat model. Other rat studies 
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however saw no increase in RT with DLS lesions using alternative RT tests (Brown and 

Robbins, 1989; Hauber and Schmidt, 1994). 

The time spent within the central zone in the open field test, and the number of entries into 

the open arms of the elevated plus maze were increased in the DLS lesioned animals. It could 

be hypothesised that the mice are demonstrating inhibition of anxiety related behaviours 

(Holmes et al., 2003). A normal mouse would tend to spend more time at the edges of the 

open field or within the closed arms. However, a less anxious mouse may be inclined to 

exhibit more exploratory rearing behaviour, which was not the case with the DLS mice. 

Furthermore, the observed results could simply be a consequence of the hyperactive mice 

moving around in a less controlled way. It is not possible to separate these two potential 

causes with the data collected without further exploration. Anxiety measures could be 

further probed through a light-dark exploration test in which avoidance of exploration of 

brightly lit compartments is probed (Crawley and Goodwin, 1980), or through the 

novelty-induced hypophagia test in which anxiolytic drugs are used to assess how animals 

respond to high value food rewards in novel environments (Dulawa and Hen, 2005). 

Non-motor deficits in DMS lesioned mice 

The DMS lesioned mice exhibited a significant deficit in accuracy on the DA task. This was 

particularly pronounced at the early time-point. Since there was no impairment in 

spontaneous alternation behaviour, these effects are likely not attributed to generalised 

deficits in alternation, but most likely due to disruption to executive function, with the 

animals unable to implement the rule. Impairments to working memory are unlikely to 

contribute to the results observed since there was no decline in performance in relation to 

time, and the DMS mice were significantly less accurate in the task even when there was no 

delay applied. 

Some degree of spontaneous recovery or compensation seemed to improve their 

performance by the late time-point. Spontaneous recovery in the task has been observed in 

lesioned rats (Dunnett and White, 2006), however the performance of the control groups in 

this case were able to continue to improve their performance at the same rate as the 

lesioned animals and thus maintain a significant difference in accuracy score. The DMS 

lesions did have some medial tissue sparing, leaving some of the cortico-striatal circuitry 

intact and thus potentially reducing the impact of the deficit. The outcome of this task could 

be improved with more complete lesions, and potentially by reducing the difficulty of the 

task by shortening the maximum delay within the trials. In the rat experiments, even though 
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the delay extends up to 20 seconds, the intact animals can still perform at over 70% accuracy, 

whereas the sham mice were down to 50% accuracy with a 10 second delay, thus reducing 

the baseline to which the lesioned animals were compared.  

No attentional deficits were shown in the 5CSRTT, in contrast to previous rat studies in which 

the same cortico-striatal loops were disrupted (Muir et al., 1996), and in mid-striatum 

lesioned mice (Trueman et al., 2005). In fact, the lesioned mice were able to respond faster 

than the sham animals. This may be a result of their increased speed and hyperactivity 

despite the same increase in response time being absent in the DA task. An important 

distinction is that the DA task requires the mice to remember a previous response and decide 

where to poke, whereas the 5CSRTT is more straight-forward since they simply have to see 

a light and poke in it rather than having to make a choice. The relative simplicity of the 

5CSRTT may be part of the reason why no deficit was seen, since in a more complex task such 

as DA, a relatively small disturbance could be enough to disrupt performance. However, it 

may be that a much greater loss is required in order to elicit a deficit when the processes 

involved in making a correct response is simplified.  

When the contingency was degraded in the 5CSRTT (i.e. the reward was freely available 

regardless of action outcome) the number of responses were diminished in both the sham 

and lesioned animals, thus indicating that the lesioned animals were able to inhibit their 

responses in the boxes (Yin and Knowlton, 2006). However, previous work has implicated the 

DMS in inhibitory behaviours in the rat (Eagle and Baunez, 2010). It is possible that an 

alternative probe, such as extinction testing or reward devaluation, could reveal some 

deficits in this behaviour, or it could be that more complete lesioning is required to elicit 

these behavioural changes.  

The DMS mice demonstrated an early post-lesion deficit on “short-term” memory in the 

novel object recognition test but “long-term” memory was unaffected. However, when 

tested at the late time-point the early “short-term” deficit had resolved and an apparent 

deficit in “long-term” memory had emerged. The DA test did not show any memory deficits, 

although the delays in the task are significantly shorter than those probes in the novel object 

task. Previous studies link the DMS with memory processing in rats (Pauli et al., 2012; White 

and McDonald, 2002), and memory loss is a key feature in people with HD. Short-term 

memory deficits have been reported in the R6/1 mouse model when under acute stress (Mo 

et al., 2013). It is possible that the mice could be experiencing a state of stress following 

lesion surgery which may impact on their behaviour. In addition, short-term disruption 
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within the DMS caused by the QA could interfere with the process of either storing memory 

or accessing it. At the late time-point, once the lesion has developed, it is possible that 

different neural loops are degraded and thereby somehow affecting longer-term memory 

differentially. It is not possible to draw conclusions from just this one test; however, the data 

provide an interesting result which could be explored further. If the effect is real, then the 

novel object recognition task, or other memory tests such as Morris water maze or radial 

arm mazes could provide a useful tool for probing the efficacy of transplant in attenuating 

deficits associated with memory. 

 

5.10 Conclusions and future work 

 

The experiments described in this chapter aimed to identify a battery of apposite behavioural 

tests which could detect long-term deficits against which therapeutic interventions, such as 

cell replacement therapy, could be assessed. 

The study found several motor and non-motor behavioural deficits, detection of which was 

dependant on the lesion placement and volume. Of the tests that were employed, the DLS 

lesions produced the greater number of demonstrable deficits. This was due partly because 

of the increased quality of the lesions themselves (i.e. accurate positioning and minimal 

tissue sparing). Since the DMS lesions were small, only tests capable of detecting subtler 

lesion-induced disturbances were able to demonstrate changes in behaviour. It is likely that 

more complete lesioning would confer a greater range of detectable deficits, however these 

appear to be harder to achieve consistently in the DMS model.   

Furthermore, fewer non-motor probes were tested. The number of non-motor tests able to 

be implemented was restricted by the length of time it takes to train and test mice. Training 

in the DA task alone took 15 weeks to complete, as a result, fewer cognitive behaviours were 

probed. Once the mice were trained to respond in the operant boxes it was easy to switch 

to the 5CSRTT since no further training was required, even so, to complete this test takes an 

additional three weeks in itself. This is likely to be a major contributing factor to why so few 

of these tests are carried out in other studies. However, cognitive problems are often cited 

as having the greatest impact on day to day living by people with HD so characterising these 

deficits and testing potential therapies should form an essential part of the preclinical 

process. 
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To confirm the findings of this experiment, a replication study in different hands would 

ensure that the models are reproducible, and that the tests are robust against individual 

interpretation. The DMS model could be improved by increasing the volume of toxin or 

increasing the number of sites at which the toxin is delivered to reduce the amount of tissue 

sparing, and through adjusting the posterior coordinates to avoid disruption of the GP to 

enable a clearer interpretation of the results.  

These tests could then be used to assess if changes to the transplantation protocols lead to 

improved behavioural outcomes, rather than basing improvement solely on the 

morphological appearance of the grafts, since it is the efficacy of the treatment in improving 

symptoms which will lead to its use as a therapy in practice.  

In conclusion, the proposed lesion parameters and functional tests for future mouse 

transplantation experiments are: 

• Unilateral QA lesion placement 

• Dorsolateral coordinates covering both anterior and posterior striatum (AP=+1.2, 

ML=+2.4, DV=-2.4 and AP=+2.2, ML=+1.8, DV=-2.4). 

• 0.2µl 0.9M QA per injection site. 

• Apomorphine rotations (2mgkg-1). 

• Rotarod. 

• Sucrose consumption. 

• Corridor. 

• Bilateral / unilateral choice reaction time tasks. 

• Elevated plus maze. 
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Chapter 6 
 

General discussion 

 

Cell replacement therapy offers a unique approach to helping treat people with HD, with the exciting 

potential of rebuilding lost neural networks and reversing some of the debilitating symptoms of this 

progressive disease. Preclinical work has been able to show the type of functional effects that a 

successful treatment could provide, however, the results of the small number of in-patient trials have 

delivered mixed results for a variety of reasons (study design, incorrect outcome measures etc). 

Despite this, there have been a number of patients which have exhibited an impressive improvement 

in quality of life, and for this reason the continued research into understanding the complex 

mechanisms and interactions of the treatment is essential to progress and refine cell replacement 

therapies. 

Although the success of the technique has been robustly demonstrated in rat models, the mouse 

models have provided a less successful outcome. This has obstructed the utilisation of the array of 

genetically altered mouse models which can be more easily manipulated to explicate the mechanisms 

underlying recovery, and to present the progressive aspects of HD lost in the lesion models.  

The objective of the experiments presented in this thesis was to determine factors which may be 

hindering the success of mouse grafts, and to improve upon the current protocols. The QA model was 

selected as the basis of the experiments since the best results seen so far have been demonstrated in 

the QA rat models. The overall aim of the project was to optimise transplantation protocols in the 

acute QA model so that they may be later applied to the more progressive models. 
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6.1 Key findings 

The key findings of each experiment are summarised in the table below; 

Ex
p
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t 
1

 

 

• The collapse of the striatum following QA lesioning is not sufficient to affect 
atlas-based co-ordinates for transplantation 

• The QA lesioned mouse striatum has a greater cell density than that of the rat  

• Transplantation typically occurs at a time of peak inflammatory activity 

• The inflammatory response to lesioning is more exaggerated in C57BL6/J mice than 
in Lister hooded rats 
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• Delaying transplantation beyond peak inflammatory response does not improve 
graft survival or content 

• Inflammatory response is affected by the age of the host mouse 

• Transplanting into aged mice has no effect on graft or cell survival 
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• Chrm4-EGFP-CD1 tissue does not provoke a greater inflammatory response than 
other non-EGFP tissue in vivo 

• Matching host and donor strains increases graft survival, but not the size or quality 
of the surviving grafts 

• Graft outcome is inconsistent under similar transplantation condition 
  

Ex
p

e
ri

m
e

n
t 

4
 

 

• WGE cell suspensions yield better graft outcomes when transplanted at E14 than 
at E12  

• Younger tissue survives better when it was not completely dissociated into a single 
cell suspension 

• Large differences in the appearance of grafts is evident throughout all groups 
suggesting other factors may be influencing outcome to a greater extent to those 
being investigated 
 

Ex
p

er
im

e
n

t 
5

 

 

• Animals transplanted earlier within a session had a greater number of surviving 
cells within grafts 

• Trypan blue exclusion does not accurately reflect cell viability 

• Cells remain within the grafting cannula following aliquot expulsion 

• Creating individual suspensions for each animal did not improve outcome 
variability 
 

Ex
p

er
im

e
n

t 
6

  

• The following behavioural tests were able to detect long-term deficits in unilateral 
DLS lesioned mice; locomotor activity, open field, drug-induced rotations, footprint 
analysis, rotarod, staircase, sucrose consumption, corridor, BLCRTT, ULCRTT and 
elevated plus-maze 
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7

 
 

• The following behavioural tests were able to detect long-term deficits in bilateral 
DMS lesioned mice; delayed alternation, novel object recognition, open field, 
locomotor activity 

• DLS lesions provided more robust lesions compared to DMS 

• DLS and DMS lesions elicited dissimilar behavioural phenotypes 
 

 

6.2 The effect of host 

 

Whilst most of the present experiments investigating the different effects of host on graft outcome 

did not in themselves yield clear results in terms of graft-improving protocol adaptations, they did 

highlight potential problems which may have been overlooked previously. Whilst it remains necessary 

to diagnose the impact of increased microglial activity in the transplanted region and to quantify the 

activation state of the microglia, the fact that the inflammatory response of mouse hosts is 

significantly more vigorous than that seen in the rat model was most interesting. The results indicated 

that further investigations into dampening this effect could be essential in producing a more 

favourable environment within which transplanted cells could thrive. In fact, the non-steroidal anti-

inflammatory drug (NSAID) Metacam, which is used peri-operatively to relieve pain, is a known 

inhibitor of microglial activation. Therefore, an experiment in which an elongated period of Metacam 

administration is introduced throughout the time in which grafts are left to mature, might determine 

if reducing the inflammatory response can aid in graft and/or cell survival. Delaying the 

transplantation surgery until a period of low post-lesion microglial activity did not resolve this issue, 

perhaps because the reaction was re-established during the process of transplantation itself. Indeed, 

it was shown in rats that inserting the transplantation cannula and waiting for at least one hour before 

injecting cells led to a three-fold increase in dopamine cell survival in the grafts (Sinclair, Fawcett, & 

Dunnett, 1999). It is proposed that by delaying implantation, exposure of the cells to the hyperacute 

inflammatory response of the host due to cannula insertion was reduced. 

One experiment that did not make it into this thesis was a comparison of grafts transplanted into the 

intact and lesioned striatum. This would have presented a good opportunity to determine how much 

of an effect the QA lesion is having on graft outcome, and whether the inflammatory response is 

indeed impacting of the transplanted cells. Unfortunately, the tissue derived from the experiment was 

lost due to bacterial infection. Interestingly, neural transplants in rats were shown to be larger in the 

QA lesioned striatum where increased numbers of microglia, astrocytes and macrophages were 

present than in intact striatum (W.-M. Duan, Widner, Cameron, & Brundin, 1998). The authors of this 
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study concluded that inflammation does not lead to rejection. Smaller grafts in the intact striatum 

could potentially be a result of lack of space in which cells can proliferate. Experiment 1 has shown 

that the mouse striatum becomes denser after lesioning (and denser than in the rat on the intact side 

too), so could the increased cell density of the host parenchyma make it a less appropriate substrate 

in which to transplant?  

Whilst the inflammatory response of the hosts was observed in the current experiments, immune 

response specifically was not covered within their scope. In fact, the investigation into immune 

reaction to tissues behind the blood brain barrier could be an entire thesis in itself. Cells within the 

brain are now known to not be completely protected from the peripheral immune system by the blood 

brain barrier.  For example, microglia can interpret and propagate inflammatory signals that are 

initiated in the periphery in order to mount an appropriate response to peripheral infection (Norden 

& Godbout, 2013). Furthermore, cytotoxic T cells, also known as killer T cells, can infiltrate the brain 

at the site of injury where the blood brain barrier is disrupted, in addition to regions where the barrier 

may be leaky, such as at the 5th lumber cord (Arima et al., 2013), thereby increasing the risk of graft 

rejection. These T cells can migrate to and destroy damaged or compromised neuronal cells by 

expressing cytotoxins that activate cell apoptosis (W.-M. M. Duan, Widner, & Brundin, 1995). Once 

activated the cytotoxic T cells can increase in number and remain at the site of injury for a prolonged 

period (Wakim, Woodward-Davis, & Bevan, 2010). Additionally, activated T cells can trigger activation 

in the microglia, exacerbating the inflammatory process and contributing to chronic transplant 

rejection processes (Raivich et al., 1999). This process may be exacerbated in cases of transplantation 

in HD patients since the barrier can become more permeable with aged or unwell individuals (Drouin-

Ouellet et al., 2015; Erdő, Denes, & de Lange, 2017). Further examination of the tissues for peripheral 

immune cells may reveal other differences between the rat and mouse models that lead to the 

observed poorer outcome in mice.  

It has been suggested that the glial component of rat grafts might release immunosuppressive factors 

and thus enable graft survival in rat models (Devajyothis et al., 1993; Frei et al., 1994). It has not 

currently been resolved as to whether there is a similar population of cells within mouse grafts 

releasing protective factors, or if they are absent.  Future experiments investigating the 

transplantation of mouse tissue into rat and vice versa could help to understand this by analysing 

the presence of these factors within the host and comparing the survival of the grafts. Such 

secretion could be specific to species, cell type or even donor cell age.   
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6.3 The effect of donor 

 

One way of increasing the proportion of surviving grafts was ensuring host and donor strain matched, 

however this did not seem to affect the quality of those grafts that survived. Another potential 

mismatch with the potential to influence rejection is the sex-type of the transplanted tissue. The sex 

of the embryos that are dissected is not checked and it can be assumed that the cell suspensions used 

contained a mix of male and female tissue. This could introduce some variance in the way that the 

host reacts to the cells, particularly if some litters have a skewed sex ratio. This may potentially provide 

a reason as to why some cells don’t survive as well as other. It is possible that sex-matching host and 

donor tissue may result in improved acceptance of donated tissue. In hindsight, this test could have 

been incorporated into Experiment 5 in which individual suspensions were created from single pups. 

Had these suspensions been sex-typed and transplanted – perhaps into both male and female animals 

– it could have gone some way to suggesting if tissue sex, or indeed host sex, influence the survival of 

grafts. 

Throughout the present experiments surviving grafts were observed in all experimental groups, 

however, this is also true for dead or ‘unhealthy’ looking cells. It is possible that all the grafts were in 

a continuing state of rejection, albeit at differing rates. The grafts were only taken at twelve weeks 

post-transplantation, so it remains unclear as to whether graft survival rates would continue to decline 

beyond that point. 

 

6.4 Functional assessment 

 

Without an established battery of functional outcome measures for detecting efficacy of grafts, it was 

not practicable to test if any protocol changes affected behavioural deficits, despite showing no 

obvious signs of improved morphological outcome. Whilst targeting lesions to more specific regions 

of the striatum is technically more difficult than simply producing a lesion within the whole striatum, 

it seems clear that doing so increases the reliability of induced behavioural deficits, and therefore 

produces a background against which functional improvements can be assessed. The final 

experiments of this thesis have identified behavioural deficits in the QA mouse model that could be 

easily added to any grafting experiment, and if functional improvements can be shown it will enable 

us to understand more fully the attributes of grafts that lead to the better outcome. Whilst it’s true 

that many of these factors have been identified in rat models, as these experiments have shown, this 

does not necessarily translate to the mouse. 
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It is possible that transplanted WGE cells are more inclined to differentiate towards certain types of 

MSN within the host parenchyma, such as those of the dorsomedial striatum which receive 

connections from the prefrontal cortex regions, or those of the lateral striatum which receive more 

connections from the motor-cortex for example. Further investigation into the type of MSNs within 

grafts and the potential they have for re-instating connections to specific anatomically correct regions 

could elucidate how some grafts may be more effective than others. Matching DMS lesions with DMS-

precursors for example, could provide better functional results than transplanting cells from a 

contrasting region. 

 

6.5 Conclusions 

 

The experiments described in this thesis have shown that deficits in the outcome of striatal transplants 

in the QA lesion mouse models of HD are contributed to by a combination of host and donor attributes, 

cell suspension treatment, surgery order and the absence of functional assessments. A disparity in the 

magnitude and nature of inflammatory responses between the rat and mouse hosts raises important 

considerations for immunosuppression regimes in mice subject to allografts. Whilst the measures of 

inflammation used showed no direct correlation on graft size or survival in these experiments, it was 

postulated that additional factors may be obscuring effects by creating large variations in graft 

outcome since experimental groups treated under the same transplantation conditions yielded 

inconsistent results. Metanalysis of all groups, and in vitro experiments probing the qualities of cell 

suspensions over time, revealed that surgery order could be a major source of variation. Therefore, 

one of the most important steps towards the optimisation of transplant protocols in mice would be 

to ensure consistent delivery of cells to every individual. Undertaking measures such as screening the 

health of cells, and aliquoting properly dissociated suspensions prior to surgery, should reduce 

variability and allow other components of the protocols to be investigated more rigorously.  

Furthermore, it was shown that targetting lesions to specific regions of the striatum enables the use 

of focused behavioural outcome measures which can detect graft-induced functional improvements.  

The list of potential factors that could influence the success of transplantation is very long.  The 

experiments presented here aimed to probe a few of those deemed most likely to influence the grafts 

in order to affect a more successful outcome. The results highlight many potential areas for further 

investigation which may not have been identified otherwise, and in combination with robust 

functional testing, it should be possible to progressively apply adaptations to the transplantation 

methodology to provide a robust system for which many of the ever-advancing genetic models and 
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techniques can be applied, and progress cell replacement therapies towards becoming a viable 

treatment option for people with HD. 



  Bibliography 

230 
 

Bibliography 
 

Abbott, A., (2004). Laboratory animals: the Renaissance rat. Nature 428, 464–6. 

 

Albin, R.L., Young, A.B., Penney, J.B., (1989). The functional anatomy of basal ganglia disorders. Trends 

Neurosci. 12, 366–75. 

 

Alexander, G.E., DeLong, M.R., Strick, P.L., (1986). Parallel organization of functionally segregated 

circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–81. 

 

Alexi, T., (2000). Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and 

Huntington’s diseases. Prog. Neurobiol. 60, 409–470. 

 

An, M.C., Zhang, N., Scott, G., Montoro, D., Wittkop, T., Mooney, S., Melov, S., Ellerby, L.M., (2012). 

Genetic Correction of Huntington’s Disease Phenotypes in Induced Pluripotent Stem Cells. Cell Stem 

Cell 11, 253–263. 

 

Anderson, S.A., Qiu, M., Bulfone, A., Eisenstat, D.D., Meneses, J., Pedersen, R., Rubenstein, J.L.R., 

(1997). Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and 

differentiation of late born striatal neurons. Neuron 19, 27–37. 

 

Arber, C., Precious, S. V., Cambray, S., Risner-Janiczek, J.R., Kelly, C., Noakes, Z., Fjodorova, M., Heuer, 

A., Ungless, M.A., Rodríguez, T.A., Rosser, A.E., Dunnett, S.B., Li, M., (2015). Activin A directs striatal 

projection neuron differentiation of human pluripotent stem cells. Development 142, 1375–1386. 

 

Arima, Y., Kamimura, D., Sabharwal, L., Yamada, M., Bando, H., Ogura, H., Atsumi, T., 

Murakami, M., 2013. Regulation of immune cell infiltration into the CNS by regional neural 

inputs explained by the gate theory. Mediators Inflamm. (2013), 898165. 

 

Arlicot, N., Tronel, C., Bodard, S., Garreau, L., Guilloteau, D., Antier, D., Chalon, S., (2014). 

Neuroinflammation follow-up in a quinolinic acid rat model of excitotoxicity by translocator protein 

(18 kDa) mapping with CLINDE. J. Nucl. Med. 55, 1796–1796. 

 

Awad, D., Schrader, I., Bartok, M., Mohr, A., Gabel, D., H, U., (2011). Comparative Toxicology of Trypan 

Blue, Brilliant Blue G, and Their Combination Together with Polyethylene Glycol on Human Pigment 

Epithelial Cells. Investig. Opthalmology Vis. Sci. 52, 4085. 



  Bibliography 

231 
 

Aylward, E.H., Anderson, N.B., Bylsma, F.W., Wagster, M. V, Barta, P.E., Sherr, M., Feeney, J., Davis, 

A., Rosenblatt, A., Pearlson, G.D., Ross, C.A., (1998). Frontal lobe volume in patients with Huntington’s 

disease. Neurology 50, 252–8. 

 

Bachoud-Lévi, A.-C., Gaura, V., Brugières, P., Lefaucheur, J.-P., Boissé, M.-F., Maison, P., Baudic, S., 

Ribeiro, M.-J., Bourdet, C., Remy, P., Cesaro, P., Hantraye, P., Peschanski, M., (2006). Effect of fetal 

neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up 

study. Lancet Neurol. 5, 303–309. 

 

Bachoud-Lévi, A.-C., Rémy, P., Nǵuyen, J.-P., Brugières, P., Lefaucheur, J.-P., Bourdet, C., Baudic, S., 

Gaura, V., Maison, P., Haddad, B., Boissé, M.-F., Grandmougin, T., Jény, R., Bartolomeo, P., Barba, G.D., 

Degos, J.-D., Lisovoski, F., Ergis, A.-M., Pailhous, E., Cesaro, P., Hantraye, P., Peschanski, M., (2000). 

Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. 

Lancet 356, 1975–1979. 

 

Bachoud-Lévi, A., Bourdet, C., Brugières, P., Nguyen, J.P., Grandmougin, T., Haddad, B., Jény, R., 

Bartolomeo, P., Boissé, M.F., Barba, G.D., Degos, J.D., Ergis, A.M., Lefaucheur, J.P., Lisovoski, F., 

Pailhous, E., Rémy, P., Palfi, S., Defer, G.L., Cesaro, P., Hantraye, P., Peschanski, M., (2000). Safety and 

tolerability assessment of intrastriatal neural allografts in five patients with Huntington’s disease. Exp. 

Neurol. 161, 194–202. 

 

Baird, A.L., Meldrum, A., Dunnett, S.B., (2001). The staircase test of skilled reaching in mice. Brain Res. 

Bull. 54, 243–250. 

 

Baker-Cairns, B.J., Sloan, D.J., Broadwell, R.D., Puklavec, M., Charlton, H.M., (1996). Contributions of 

donor and host blood vessels in CNS allografts. Exp. Neurol. 142, 36–46. 

 

Baldan Ramsey, L.C., Xu, M., Wood, N., Pittenger, C., (2011). Lesions of the dorsomedial striatum 

disrupt prepulse inhibition. Neuroscience 180, 222–8. 

 

Barker, C.F., Billingham, R.E., (1978). Immunologically Privileged Sites, in: Advances in Immunology. 

Academic Press, pp. 1–54. 

 

Barker, R., (1995). A comparative study of preparation techniques for improving the viability of nigral 

grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplant. 4, 173–200. 

 

 

 



  Bibliography 

232 
 

Barker, R.A., Dunnett, S.B., Faissner, A., Fawcett, J.W., (1996). The time course of loss of dopaminergic 

neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp. 

Neurol. 141, 79–93. 

 

Barker, R.A., Widner, H., (2004). Immune problems in central nervous system cell therapy. NeuroRX 

1, 472–481. 

 

Bayer, S.A., (1984). Neurogenesis in the rat neostriatum. Int. J. Dev. Neurosci. 2, 163–75. 

 

Beal, M.F., (1994). Neurochemistry and toxin models in Huntington’s disease. Curr. Opin. Neurol. 7, 

542–547. 

 

Beal, M.F., Ferrante, R.J., Swartz, K.J., Kowall, N.W., (1991). Chronic quinolinic acid lesions in rats 

closely resemble Huntington’s disease. J. Neurosci. 11, 1649–59. 

 

Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., Martin, J.B., (1986). Replication of 

the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–71. 

 

Bernreuther, C., Dihne, M., Johann, V., Schiefer, J., Cui, Y., Hargus, G., Schmid, J.S., Xu, J., Kosinski, 

C.M., Schachner, M., (2006). Neural Cell Adhesion Molecule L1-Transfected Embryonic Stem Cells 

Promote Functional Recovery after Excitotoxic Lesion of the Mouse Striatum. J. Neurosci. 26, 11532–

11539. 

 

Berridge, K.C., Robinson, T.E., (1998). What is the role of dopamine in reward: hedonic impact, reward 

learning, or incentive salience? Brain Res. Rev. 28, 309–369. 

 

Björklund, A., Dunnett, S.B., Stenevi, U., Lewis, M.E., Iversen, S.D., (1980a). Reinnervation of the 

denervated striatum by substantia nigra transplants: functional consequences as revealed by 

pharmacological and sensorimotor testing. Brain Res. 199, 307–33. 

 

Björklund, A., Schmidt, R.H., Stenevi, U., (1980b). Functional reinnervation of the neostriatum in the 

adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. 

Cell Tissue Res. 212, 39–45. 

 

Björklund, A., Stenevi, U., (1984). Intracerebral neural implants: neuronal replacement and 

reconstruction of damaged circuitries. Annu. Rev. Neurosci. 7, 279–308. 

 

 



  Bibliography 

233 
 

Björkqvist, M., Wild, E.J., Thiele, J., Silvestroni, A., Andre, R., Lahiri, N., Raibon, E., Lee, R. V., Benn, C.L., 

Soulet, D., Magnusson, A., Woodman, B., Landles, C., Pouladi, M.A., Hayden, M.R., Khalili-Shirazi, A., 

Lowdell, M.W., Brundin, P., Bates, G.P., Leavitt, B.R., Möller, T., Tabrizi, S.J., (2008). A novel pathogenic 

pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med. 

205. 

 

Boche, D., Perry, V.H., Nicoll, J.A.R., (2013). Review: Activation patterns of microglia and their 

identification in the human brain. Neuropathol. Appl. Neurobiol. 39, 3–18. 

 

Borlongan, C. V, Koutouzis, T.K., Freeman, T.B., Hauser, R.A., Cahill, D.W., Sanberg, P.R., (1997). 

Hyperactivity and hypoactivity in a rat model of Huntington’s disease: the systemic 3-nitropropionic 

acid model. Brain Res. Protoc. 1, 253–257. 

 

Borrell-Pagès, M., Zala, D., Humbert, S., Saudou, F., (2006). Huntington’s disease: from huntingtin 

function and dysfunction to therapeutic strategies. Cell. Mol. Life Sci. 63, 2642–60. 

 

Brasted, P.J., Humby, T., Dunnett, S.B., Robbins, T.W., (1997). Unilateral Lesions of the Dorsal Striatum 

in Rats Disrupt Responding in Egocentric Space. J. Neurosci. 17, 8919–8926. 

 

Brasted, P.J., Watts, C., Torres, E.M., Robbins, T.W., Dunnett, S.B., (2000). Behavioral recovery after 

transplantation into a rat model of Huntington’s disease: dependence on anatomical connectivity and 

extensive postoperative training. Behav. Neurosci. 114, 431–6. 

 

Brooks, S., Fielding, S., Döbrössy, M., von Hörsten, S., Dunnett, S., (2009). Subtle but progressive 

cognitive deficits in the female tgHD hemizygote rat as demonstrated by operant SILT performance. 

Brain Res. Bull. 79, 310–5. 

 

Brooks, S., Higgs, G., Janghra, N., Jones, L., Dunnett, S.B., (2012a). Longitudinal analysis of the 

behavioural phenotype in YAC128 (C57BL/6J) Huntington’s disease transgenic mice. Brain Res. Bull. 

88, 113–20. 

 

Brooks, S., Higgs, G., Jones, L., Dunnett, S.B., (2012b). Longitudinal analysis of the behavioural 

phenotype in Hdh(CAG)150 Huntington’s disease knock-in mice. Brain Res. Bull. 88, 182–8. 

 

Brooks, S.P., Janghra, N., Workman, V.L., Bayram-Weston, Z., Jones, L., Dunnett, S.B., (2012c). 

Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington’s disease 

transgenic mice. Brain Res. Bull. 88, 94–103. 

 



  Bibliography 

234 
 

Brooks, S.P., Jones, L., Dunnett, S.B., (2012d). Comparative analysis of pathology and behavioural 

phenotypes in mouse models of Huntington’s disease. Brain Res. Bull. 88, 81–93. 

 

Brooks, S.P., Trueman, R.C., Dunnett, S.B., (2007). Striatal lesions in the mouse disrupt acquisition and 

retention, but not implicit learning, in the SILT procedural motor learning task. Brain Res. 1185, 179–

188. 

 

Brown, G.C., Neher, J.J., (2014). Microglial phagocytosis of live neurons. Nat. Rev. Neurosci. 15, 209–

16. 

 

Brown, V.J., Robbins, T.W., (1989). Elementary processes of response selection mediated by distinct 

regions of the striatum. J. Neurosci. 9, 3760–5. 

 

Brundin, P., Isacson, O., Björklund, A., (1985). Monitoring of cell viability in suspensions of embryonic 

CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res. 331, 251–9. 

 

Brundin, P., Karlsson, J., Emgård, M., Kaminski Schierle, G.S., Hansson, O., Petersén, Å., Castilho, R.F., 

(2000). Improving the Survival of Grafted Dopaminergic Neurons: A Review Over Current Approaches. 

Cell Transplant. 9, 179–195. 

 

Bruyn, R.P.M., Stoof, J.C., (1990). The quinolinic acid hypothesis in Huntington’s chorea. J. Neurol. Sci. 

95, 29–38. 

 

Bugos, O., Bhide, M., Zilka, N., (2009). Beyond the rat models of human neurodegenerative disorders. 

Cell. Mol. Neurobiol. 29, 859–69. 

 

Butler, Juurlink, (1987). An atlas for staging mammalian and chick embryos. 

 

Campbell, K., Olsson, M., Björklund, A., (1995). Regional incorporation and site-specific differentiation 

of striatal precursors transplanted to the embryonic forebrain ventricle. Neuron 15, 1259–1273. 

 

Capetian, P., Knoth, R., Maciaczyk, J., Pantazis, G., Ditter, M., Bokla, L., Landwehrmeyer, G.B., Volk, B., 

Nikkhah, G., (2009). Histological findings on fetal striatal grafts in a Huntington’s disease patient early 

after transplantation. Neuroscience 160, 661–675. 

 

Casolini, P., Catalani, A., Zuena, A.R., Angelucci, L., (2002). Inhibition of COX-2 reduces the age-

dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral 

impairments in the rat. J. Neurosci. Res. 68, 337–43. 



  Bibliography 

235 
 

Castro, R., Abreu, P., Calzadilla, C.H., Rodriguez, M., (1985). Psycho pharmacology Increased or 

decreased locomotor response in rats following repeated administration of apomorphine depends on 

dosage interval. Psychopharmacology (Berl). 85, 333–339. 

 

Caviston, J.P., Holzbaur, E.L.F., (2009). Huntingtin as an essential integrator of intracellular vesicular 

trafficking. Trends Cell Biol. 19, 147–55. 

 

Chen, Z., Phillips, L.K., Gould, E., Campisi, J., Lee, S.W., Ormerod, B.K., Zwierzchoniewska, M., Martinez, 

O.M., Palmer, T.D., (2011). MHC mismatch inhibits neurogenesis and neuron maturation in stem cell 

allografts. PLoS One 6, e14787. 

 

Cicchetti, F., Saporta, S., Hauser, R.A., Parent, M., Saint-Pierre, M., Sanberg, P.R., Li, X.J., Parker, J.R., 

Chu, Y., Mufson, E.J., Kordower, J.H., Freeman, T.B., (2009). Neural transplants in patients with 

Huntington’s disease undergo disease-like neuronal degeneration . Proc. Natl. Acad. Sci.  106, 12483–

12488. 

 

Cicchetti, F., Soulet, D., Freeman, T.T.B., (2011). Neuronal degeneration in striatal transplants and 

Huntington’s disease: potential mechanisms and clinical implications. Brain 134, 641–52. 

 

Cisbani, G., Saint Pierre, M., Cicchetti, F., (2014). Single cell suspension methodology favours survival 

and vascularization of fetal striatal grafts in the YAC128 mouse model of Huntington’s disease. Cell 

Transplant. 23, 1267–1278. 

 

Combrinck, M.I., Perry, V.H., Cunningham, C., (2002). Peripheral infection evokes exaggerated sickness 

behaviour in pre-clinical murine prion disease. Neuroscience 112, 7–11. 

 

Coppen, E.M., Roos, R.A.C., (2017). Current Pharmacological Approaches to Reduce Chorea in 

Huntington’s Disease. Drugs 77, 29–46. 

 

Corbin, J.G., Rutlin, M., Gaiano, N., Fishell, G., (2003). Combinatorial function of the homeodomain 

proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development 130, 4895–4906. 

 

Costall, B., Naylor, R.J., Cannon, J.G., Lee, T., (1977). Differentiation of the dopamine mechanisms 

mediating stereotyped behaviour and hyperactivity in the nucleus accumbens and caudate-putamen. 

J. Pharm. Pharmacol. 29, 337–342. 

 

Coyle, J.T., Ferkany, J.W., Zaczek, R., (1983). Kainic acid: insights from a neurotoxin into the 

pathophysiology of Huntington’s disease. Neurobehav Toxicol Teratol 5, 617–624. 



  Bibliography 

236 
 

Crawley, J., Goodwin, F.K., (1980). Preliminary report of a simple animal behavior model for the 

anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav. 13, 167–170. 

 

Creighton, S., Almqvist, E., MacGregor, D., Fernandez, B., Hogg, H., Beis, J., Welch, J., Riddell, C., 

Lokkesmoe, R., Khalifa, M., MacKenzie, J., Sajoo, A., Farrell, S., Robert, F., Shugar, A., Summers, A., 

Meschino, W., Allingham-Hawkins, D., Chiu, T., Hunter, A., Allanson, J., Hare, H., Schween, J., Collins, 

L., Sanders, S., Greenberg, C., Cardwell, S., Lemire, E., MacLeod, P., Hayden, M., (2003). Predictive, 

pre-natal and diagnostic genetic testing for Huntington’s disease: the experience in Canada from 1987 

to 2000. Clin. Genet. 63, 462–475. 

 

Crotti, A., Benner, C., Kerman, B.E., Gosselin, D., Lagier-Tourenne, C., Zuccato, C., Cattaneo, E., Gage, 

F.H., Cleveland, D.W., Glass, C.K., (2014). Mutant Huntingtin promotes autonomous microglia 

activation via myeloid lineage-determining factors. Nat. Neurosci. 17, 513–521. 

 

Davies, S.W., Roberts, P.J., (1988). Sparing of cholinergic neurons following quinolinic acid lesions of 

the rat striatum. Neuroscience 26, 387–93. 

 

Deacon, T.W., Pakzaban, P., Isacson, O., (1994). The lateral ganglionic eminence is the origin of cells 

committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res. 

668, 211–9. 

 

DeLong, M.R., (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 

13, 281–5. 

 

Denaro, M., Oldmixon, B., Patience, C., Andersson, G., Down, J., (2001). EGFP-transduced EL-4 cells 

from tumors in C57BL/6 mice. Gene Ther. 8, 1814–1815. 

 

Devajyothis, C., Kalvakolanus, I., Babcocks, G., Vasavadag, H., Howes, P., Ransohoffsli, R., (1993). 

Inhibition of interferon-gamma-induced major histocompatibility complex class II gene transcription 

by interferon-beta and type beta 1 transforming growth factor in human astrocytoma cells. Definition 

of cis-element. Bio. Chem. 268(26), 18794-18800. 

 

Devan, B.D., White, N.M., (1999). Parallel Information Processing in the Dorsal Striatum: Relation to 

Hippocampal Function. J. Neurosci. 19, 2789–2798. 

 

Difiglia, M., Rafols, J.A., (1988). Synaptic organization of the globus pallidus. J. Electron Microsc. Tech. 

10, 247–63. 

 



  Bibliography 

237 
 

Dihné, M., Bernreuther, C., Hagel, C., Wesche, K.O., Schachner, M., (2006). Embryonic stem cell-

derived neuronally committed precursor cells with reduced teratoma formation after transplantation 

into the lesioned adult mouse brain. Stem Cells 24, 1458–66. 

 

Döbrössy, M.D., Dunnett, S.B., (2008). Environmental Housing and Duration of Exposure Affect Striatal 

Graft Morphology in a Rodent Model of Huntington’s Disease. Cell Transplant. 17, 1125–1134. 

 

Döbrössy, M.D., Dunnett, S.B., (2006). Morphological and cellular changes within embryonic striatal 

grafts associated with enriched environment and involuntary exercise. Eur. J. Neurosci. 24, 3223–

3233. 

 

Döbrössy, M.D., Dunnett, S.B., (2005). Training specificity, graft development and graft-mediated 

functional recovery in a rodent model of Huntington’s disease. Neuroscience 132, 543–52. 

 

Döbrössy, M.D., Dunnett, S.B., (1998). Striatal grafts alleviate deficits in response execution in a 

lateralised reaction time task. Brain Res. Bull. 47, 585–593. 

 

Döbrössy, M.D., Klein, A., Janghra, N., Nikkhah, G., Dunnett, S.B., (2011). Validating the use of M4-

BAC-GFP mice as tissue donors in cell replacement therapies in a rodent model of Huntington’s 

disease. J. Neurosci. Methods 197, 6–13. 

 

Doig, N.M., Moss, J., Bolam, J.P., (2010). Cortical and thalamic innervation of direct and indirect 

pathway medium-sized spiny neurons in mouse striatum. J. Neurosci. 30, 14610–8. 

 

Dowd, E., Dunnett, S.B., (2004). Deficits in a lateralized associative learning task in dopamine-depleted 

rats with functional recovery by dopamine-rich transplants. Eur. J. Neurosci. 20, 1953–1959. 

 

Dowd, E., Monville, C., Torres, E.M., Dunnett, S.B., (2005). The Corridor Task: A simple test of 

lateralised response selection sensitive to unilateral dopamine deafferentation and graft-derived 

dopamine replacement in the striatum. Brain Res. Bull. 68, 24–30. 

 

Drouin-Ouellet, J., Sawiak, S.J., Cisbani, G., Lagacé, M., Kuan, W.-L., Saint-Pierre, M., Dury, R.J., Alata, 

W., St-Amour, I., Mason, S.L., Calon, F., Lacroix, S., Gowland, P.A., Francis, S.T., Barker, R.A., Cicchetti, 

F., (2015). Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: Potential 

implications for its pathophysiology. Ann. Neurol. 78, 160–177. 

 

Duan, W.-M., Brundin, P., Widner, H., (1997). Addition of allogeneic spleen cells causes rejection of 

intrastriatal embryonic mesencephalic allografts in the rat. Neuroscience 77, 599–609. 



  Bibliography 

238 
 

Duan, W.-M., Widner, H., Cameron, R.M., Brundin, P., (1998). Quinolinic acid-induced inflammation 

in the striatum does not impair the survival of neural allografts in the rat. Eur. J. Neurosci. 10, 2595–

2606. 

 

Duan, W.-M.M., Widner, H., Brundin, P., (1995). Temporal pattern of host responses against 

intrastriatal grafts of syngeneic, allogeneic or xenogeneic embryonic neuronal tissue in rats. Exp. brain 

Res. 104, 227–42. 

 

Duff, K., Paulsen, J.S., Beglinger, L.J., Langbehn, D.R., Stout, J.C., (2007). Psychiatric symptoms in 

Huntington’s disease before diagnosis: the predict-HD study. Biol. Psychiatry 62, 1341–6. 

 

Dulawa, S.C., Hen, R., (2005). Recent advances in animal models of chronic antidepressant effects: The 

novelty-induced hypophagia test. Neurosci. Biobehav. Rev. 29, 771–783. 

 

Dunnett, S.B., Björklund, A., (1997). Basic neural transplantation techniques. I. Dissociated cell 

suspension grafts of embryonic ventral mesencephalon in the adult rat brain. Brain Res. Brain Res. 

Protoc. 1, 91–9. 

 

Dunnett, S.B., Carter, R.J., Watts, C., Torres, E.M., Mahal, A., Mangiarini, L., Bates, G., Morton, A.J., 

(1998). Striatal transplantation in a transgenic mouse model of Huntington’s disease. Exp. Neurol. 154, 

31–40. 

 

Dunnett, S.B., Nathwani, F., Brasted, P.J., (1999). Medial prefrontal and neostriatal lesions disrupt 

performance in an operant delayed alternation task in rats. Behav. Brain Res. 106, 13–28. 

 

Dunnett, S.B., Rosser, A.E., (2007). Stem cell transplantation for Huntington’s disease. Exp. Neurol. 

203, 279–292. 

 

Dunnett, S.B., White, A., (2006). Striatal grafts alleviate bilateral striatal lesion deficits in operant 

delayed alternation in the rat. Exp. Neurol. 199, 479–489. 

 

Dunnettt, S.B., Bjorklund, A., (1992). Neural Transplantation: A Practical Approach. IRL Press. 

 

Eagle, D.M., Baunez, C., (2010). Is there an inhibitory-response-control system in the rat? Evidence 

from anatomical and pharmacological studies of behavioral inhibition. Neurosci. Biobehav. Rev. 34, 

50–72. 

 

 



  Bibliography 

239 
 

Eagle, D.M., Humby, T., Dunnett, S.B., Robbins, T.W., (1999). Effects of Regional Striatal Lesions on 

Motor, Motivational, and Executive Aspects of Progressive-Ratio Performance in Rats. Behav. 

Neurosci. 113, 718–731. 

Eagle, D.M., Humby, T., Howman, M., Reid-Henry, A., Dunnett, S.B., Robbins, T.W., (1999). Differential 

effects of ventral and regional dorsal striatal lesions on sucrose drinking and positive and negative 

contrast in rats. Psychobiology 27, 267–276. 

 

El Akabawy, G., Rattray, I., Johansson, S.M., Gale, R., Bates, G., Modo, M., El-Akabawy, G., (2012). 

Implantation of undifferentiated and predifferentiated human neural stem cells in the R6/2 transgenic 

mouse model of Huntington’s disease. BMC Neurosci. 13, 97. 

 

Erdő, F., Denes, L., de Lange, E., 2017. Age-associated physiological and pathological changes at the 

blood-brain barrier: A review. J. Cereb. Blood Flow Metab. 37, 4–24. 

 

Espey, M.G., Chernyshev, O.N., Reinhard, J.F., Namboodiri, M.A., Colton, C.A., (1997). Activated 

human microglia produce the excitotoxin quinolinic acid. Neuroreport 8, 431–4. 

 

Evans, A.E., (2013). Characterisation of Foxp1 in striatal development and the adult brain. PhD thesis, 

Cardiff University, Cardiff. 

 

Evans, S.J., Douglas, I., Rawlins, M.D., Wexler, N.S., Tabrizi, S.J., Smeeth, L., (2013). Prevalence of adult 

Huntington’s disease in the UK based on diagnoses recorded in general practice records. J. Neurol. 

Neurosurg. Psychiatry 84, 1156–1160. 

 

Featherstone, R.E., McDonald, R.J., (2004). Dorsal striatum and stimulus-response learning: Lesions of 

the dorsolateral, but not dorsomedial, striatum impair acquisition of a simple discrimination task. 

Behav. Brain Res. 150, 15–23. 

 

Fentress, J.C., Stanfield, B.B., Cowan, W.M., (1981). Observations on the development of the striatum 

in mice and rats. Anat. Embryol. (Berl). 163, 275–298. 

 

Finsen, B.R., Sørensen, T., Castellano, B., Pedersen, E.B., Zimmer, J., (1991). Leukocyte infiltration and 

glial reactions in xenografts of mouse brain tissue undergoing rejection in the adult rat brain. A light 

and electron microscopical immunocytochemical study. J. Neuroimmunol. 32, 159–183. 

 

Foroud, T., Gray, J., Ivashina, J., Conneally, M., (1999). Differences in duration of Huntington’s disease 

based on age at onset. J Neurol Neurosurg Psychiatry 66, 52–56. 

 



  Bibliography 

240 
 

Foster, A., (1983). On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids 

and structurally related compounds. Neuropharmacology 22, 1331–1342. 

 

Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., Panourgia, M.P., Invidia, L., Celani, 

L., Scurti, M., Cevenini, E., Castellani, G.C., Salvioli, S., (2007). Inflammaging and anti-inflammaging: A 

systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 

92–105. 

 

Freeman, T.B., Cicchetti, F., Hauser, R.A., Deacon, T.W., Li, X.-J., Hersch, S.M., Nauert, G.M., Sanberg, 

P.R., Kordower, J.H., Saporta, S., Isacson, O., (2000). Transplanted fetal striatum in Huntington’s 

disease: Phenotypic development and lack of pathology. Proc. Natl. Acad. Sci. 97, 13877–13882. 

 

Frei, K., Lins, H., Schwerdel, C., Fontana, A., (1994). Antigen Presentation in the Central Nervous 

System - The Inhibitory Effect of 11-10 on MHC Class II Expression and Production of Cytokines 

Depends on the Inducing Signals and the Type of Cell Analyzed. J. Immunol. 152(6), 2720-2728. 

 

Frick, K.M., Stillner, E.T., Berger-Sweeney, J., Williams, L., (2000). Mice are not little rats: species 

differences in a one-day water maze task 11, 959–4965. 

 

Fricker-Gates, R., White, A., Gates, M., Dunnett, S.B., (2004). Striatal neurons in striatal grafts are 

derived from both post-mitotic cells and dividing progenitors. Eur. J. Neurosci. 19, 513–520. 

 

Fricker, R.A., Carpenter, M.K., Winkler, C., Greco, C., Gates, M.A., Björklund, A., (1999). Site-specific 

migration and neuronal differentiation of human neural progenitor cells after transplantation in the 

adult rat brain. J. Neurosci. 

 

Fricker, R.. A., Torres, E.. M., Dunnett, S.. B., (1997). The effects of donor stage on the survival and 

function of embryonic striatal grafts in the adult rat brain. I. Morphological characteristics. 

Neuroscience 79, 695–710. 

 

Fricker, R., Barker, R., Fawcett, J., Dunnett, S., (1996). A comparative study of preparation techniques 

for improving the viability of striatal grafts using vital stains, in vitro cultures, and in vivo grafts. Cell 

Transplant. 5, 599–611. 

 

Fricker, R.A., Annett, L.E., Torres, E.M., Dunnett, S.B., (1996). The Placement of a Striatal Ibotenic Acid 

Lesion Affects Skilled Forelimb Use and the Direction of Drug-Induced Rotation. Brain Res. Bull. 41, 

409–416. 

 

 



  Bibliography 

241 
 

Gage, F.H., Dunnett, S.B., Brundin, P., Isacson, O., Björklund, A., (1997). Intracerebral grafting of 

embryonic neural cells into the adult host brain: an overview of the cell suspension method and its 

application. Dev. Neurosci. 6, 137–51. 

 

Gambotto, A., Dworacki, G., Cicinnati, V., Kenniston, T., Steitz, J., Tü Ting, T., Robbins, P., Deleo, A., 

(2000). Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification 

of an H2-K d -restricted CTL epitope. Gene Ther. 7, 2036–2040. 

 

Gauthier, L.R., Charrin, B.C., Borrell-Pagès, M., Dompierre, J.P., Rangone, H., Cordelières, F.P., De Mey, 

J., MacDonald, M.E.M.E., Leßmann, V., Humbert, S., Saudou, F., (2004). Huntingtin Controls 

Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along 

Microtubules. Cell 118, 127–138. 

 

Gerfen, C.R., Baimbridge, K.G., Miller, J.J., (1985). The neostriatal mosaic: compartmental distribution 

of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc. Natl. 

Acad. Sci. U. S. A. 82, 8780–8784. 

 

Gharaibeh, A., Culver, R., Crane, A., Wyse, R., Antcliff, A., Shall, G., Moore, S., Srinageshwar, B., Kolli, 

N., Story, D., Lossia, O., Frollo, L., Eickholt, A., Dunbar, G., Rossignol, J., (2016). Intrastriatal 

Transplantation of Mouse Adenovirus-Generated Induced Pluripotent Stem Cells Reduced Behavioral 

Deficits in the YAC128 Mouse Model of Huntington’s Disease. Cell Transplant. 25, 757–758. 

 

Ghosh, C., Marchi, N., Hossain, M., Rasmussen, P., Alexopoulos, A. V, Gonzalez-Martinez, J., Yang, H., 

Janigro, D., (2012). A pro-convulsive carbamazepine metabolite: Quinolinic acid in drug resistant 

epileptic human brain. Neurobiol. Dis. 46, 692–700. 

 

Gil, J.M., Rego, A.C., (2008). The R6 lines of transgenic mice: A model for screening new therapies for 

Huntington’s disease. Brain Res. Rev. 59, 410–431. 

 

Giulian, D., (1993). Reactive glia as rivals in regulating neuronal survival. Glia 7, 102–10. 

 

Godbout, J.P., Chen, J., Abraham, J., Richwine, A.F., Berg, B.M., Kelley, K.W., Johnson, R.W., (2005). 

Exaggerated neuroinflammation and sickness behavior in aged mice after activation of the peripheral 

innate immune system. FASEB J. 19, 1329–31. 

 

Graveland, G.A., Williams, R.S., DiFiglia, M., (1985). Evidence for degenerative and regenerative 

changes in neostriatal spiny neurons in Huntington’s disease. Science 227, 770–3. 

 

 



  Bibliography 

242 
 

Graybiel, A.M., Liu, F.C., Dunnett, S.B., (1989). Intrastriatal grafts derived from fetal striatal primordia. 

I. Phenotypy and modular organization. J. Neurosci. 9, 3250–71. 

 

Guillemin, G.J., Croitoru-Lamoury, J., Dormont, D., Armati, P.J., Brew, B.J., (2003). Quinolinic acid 

upregulates chemokine production and chemokine receptor expression in astrocytes. Glia 41, 371–

381. 

 

Guillemin, G.J., Kerr, S.J., Smythe, G.A., Smith, D.G., Kapoor, V., Armati, P.J., Croitoru, J., Brew, B.J., 

(2001). Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J. 

Neurochem. 78, 842–853. 

 

Guldin, W.O., Markowitsch, H.J., (1981). No detectable remote lesions following massive intrastriatal 

injections of ibotenic acid. Brain Res. 225, 446–451. 

 

Hansson, O., Petersen, A., Leist, M., Nicotera, P., Castilho, R.F., Brundin, P., (1999). Transgenic mice 

expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal 

excitotoxicity. Proc. Natl. Acad. Sci. U. S. A. 96, 8727–8732. 

 

Hargus, G., Cui, Y.F., Schmid, J.S., Xu, J.C., Glatzel, M., Schachner, M., Bernreuther, C., (2008). Tenascin-

R promotes neuronal differentiation of embryonic stem cells and recruitment of host-derived neural 

precursor cells after excitotoxic lesion of the mouse striatum. Stem Cells 26, 1973–1984. 

 

Hargus, G., Cui, Y.F., Schmid, J.S., Xu, J.C., Glatzel, M., Schachner, M., Bernreuther, C., (2008). Tenascin-

R promotes neuronal differentiation of embryonic stem cells and recruitment of host-derived neural 

precursor cells after excitotoxic lesion of the mouse striatum. Stem Cells 26, 1973–1984. 

 

Harrington, D.L., Smith, M.M., Zhang, Y., Carlozzi, N.E., Paulsen, J.S., (2012). Cognitive domains that 

predict time to diagnosis in prodromal Huntington disease. J. Neurol. Neurosurg. Psychiatry 83, 612–

9. 

 

Hauber, W., Schmidt, W.J., (1994). Differential effects of lesions of the dorsomedial and dorsolateral 

caudate-putamen on reaction time performance in rats. Behav. Brain Res. 60, 211–215. 

 

Hauser, R.A., Furtado, S., Cimino, C.R., Delgado, H., Eichler, S., Schwartz, S., Scott, D., Nauert, G.M., 

Soety, E., Sossi, V., Holt, D.A., Sanberg, P.R., Stoessl, A.J., Freeman, T.B., (2002). Bilateral human fetal 

striatal transplantation in Huntington’s disease. Neurology 58, 687–95. 

 

 



  Bibliography 

243 
 

HDCRG, (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on 

Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72, 

971–83. 

 

Heng, M.Y., Detloff, P.J., Albin, R.L., (2008). Rodent genetic models of Huntington disease. Neurobiol. 

Dis. 32, 1–9. 

 

Herath, S., Le Heron, A., Colloca, S., Patterson, S., Tatoud, R., Weber, J., Dickson, G., (2016). Strain-

dependent and distinctive T-cell responses to HIV antigens following immunisation of mice with 

differing chimpanzee adenovirus vaccine vectors. Vaccine 34, 4378–85. 

 

Heuer, A., Vinh, N.-N., Dunnett, S.B., (2013). Behavioural recovery on simple and complex tasks by 

means of cell replacement therapy in unilateral 6-hydroxydopamine-lesioned mice. Eur. J. Neurosci. 

37, 1691–1704. 

 

Heyes, M.P., Achim, C.L., Wiley, C.A., Major, E.O., Saito, K., Markey, S.P., (1996). Human microglia 

convert l-tryptophan into the neurotoxin quinolinic acid. Biochem. J. 320 ( Pt 2), 595–7. 

 

Heyes, M.P., Saito, K., Chen, C.Y., Proescholdt, M.G., Nowak, T.S., Li, J., Beagles, K.E., Proescholdt, 

M.A., Zito, M.A., Kawai, K., Markey, S.P., (2002). Species Heterogeneity Between Gerbils and Rats: 

Quinolinate Production by Microglia and Astrocytes and Accumulations in Response to Ischemic Brain 

Injury and Systemic Immune Activation. J. Neurochem. 69, 1519–1529. 

 

Hickey, W.F., Hsu, B.L., Kimura, H., (1991). T-lymphocyte entry into the central nervous system. J. 

Neurosci. Res. 28, 254–260. 

 

Holmes, A., Kinney, J.W., Wrenn, C.C., Li, Q., Yang, R.J., Ma, L., Vishwanath, J., Saavedra, M.C., 

Innerfield, C.E., Jacoby, A.S., Shine, J., Iismaa, T.P., Crawley, J.N., (2003). Galanin GAL-R1 Receptor Null 

Mutant Mice Display Increased Anxiety-Like Behavior Specific to the Elevated Plus-Maze. 

Neuropsychopharmacology 28, 1031–1044. 

 

Hu, J., Ferreira, A., Van Eldik, L.J., (2002). S100β Induces Neuronal Cell Death Through Nitric Oxide 

Release from Astrocytes. J. Neurochem. 69, 2294–2301. 

 

Huang, Y., Henry, C.J., Dantzer, R., Johnson, R.W., Godbout, J.P., (2008). Exaggerated sickness behavior 

and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular 

lipopolysaccharide. Neurobiol. Aging 29, 1744–53. 

 



  Bibliography 

244 
 

Huntington Study Group, (2015). Safety, tolerability, and efficacy of PBT2 in Huntington’s disease: a 

phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 14, 39–47. 

 

Huntington Study Group, (1996). Unified Huntington’s disease rating scale: Reliability and consistency. 

Mov. Disord. 11, 136–142. 

 

Isacson, O., Dawbarn, D., Brundin, P., Gage, F.H., Emson, P.C., Björklund, A., (1987). Neural grafting in 

a rat model of huntington’s disease: Striosomal-like organization of striatal grafts as revealed by 

acetylcholinesterase histochemistry, immunocytochemistry and receptor autoradiography. 

Neuroscience 22, 481–497. 

 

Isacson, O., Dunnettt, S.B., Bj6rklund, A., (1986). Graft-induced behavioral recovery in an animal 

model of Huntington disease (neuronal transplantation). Neurobiology 83, 2728–2732. 

 

Ivkovic, S., Ehrlich, M.E., (1999). Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic 

neurons requires neurotrophins in vivo and in vitro. J. Neurosci. 19, 5409–19. 

 

Janeczko, K., (1989). Spatiotemporal patterns of the astroglial proliferation in rat brain injured at the 

postmitotic stage of postnatal development: a combined immunocytochemical and autoradiographic 

study. Brain Res. 485, 236–43. 

 

Joel, D., Weiner, I., (2000). The connections of the dopaminergic system with the striatum in rats and 

primates: an analysis with respect to the functional and compartmental organization of the striatum. 

Neuroscience 96, 451–474. 

 

Johann, V., Schiefer, J., Sass, C., Mey, J., Brook, G., Krüttgen, A., Schlangen, C., Bernreuther, C., 

Schachner, M., Dihné, M., Kosinski, C., (2007). Time of transplantation and cell preparation determine 

neural stem cell survival in a mouse model of Huntington’s disease. Exp. Brain Res. 177, 458–470. 

 

Kaba, S.A., Price, A., Zhou, Z., Sundaram, V., Schnake, P., Goldman, I.F., Lal, A.A., Udhayakumar, V., 

Todd, C.W., (2008). Immune responses of mice with different genetic backgrounds to improved 

multiepitope, multitarget malaria vaccine candidate antigen FALVAC-1A. Clin. Vaccine Immunol. 15, 

1674–83. 

 

Kalivas, P.W., Nemeroff, C.B., Prange, A.J., (1984). Neurotensin microinjection into the nucleus 

accumbens antagonizes dopamine-induced increase in locomotion and rearing. Neuroscience 11, 

919–930. 

 



  Bibliography 

245 
 

Kalonia, H., Kumar, A., (2011). Suppressing inflammatory cascade by cyclo-oxygenase inhibitors 

attenuates quinolinic acid induced Huntington’s disease-like alterations in rats. Life Sci. 88, 784–91. 

 

Karperien, A., Ahammer, H., Jelinek, H.F., (2013). Quantitating the subtleties of microglial morphology 

with fractal analysis. Front. Cell. Neurosci. 7, 1–18. 

 

Kelly, C.M., (2005). Neural Stem Cells for Cell Replacement Therapy in Huntington’s Disease. PhD 

thesis, Cardiff University, Cardiff. 

 

Kelly, C.M., Precious, S. V, Penketh, R., Amso, N., Dunnett, S.B., Rosser, A.E., (2007). Striatal graft 

projections are influenced by donor cell type and not the immunogenic background. Brain 130, 1317–

1329. 

 

Kelly, C.M., Precious, S. V, Scherf, C., Penketh, R., Amso, N.N., Battersby, A., Allen, N.D., Dunnett, S.B., 

Rosser, A.E., (2009). Neonatal desensitization allows long-term survival of neural xenotransplants 

without immunosuppression. Nat. Methods 6, 271–3. 

 

Kim, J., Min, K.-J., Seol, W., Jou, I., Joe, E., (2010). Astrocytes in injury states rapidly produce anti-

inflammatory factors and attenuate microglial inflammatory responses. J. Neurochem. 115, 1161–

1171. 

 

Klein, A., Lane, E.L., Dunnett, S.B., (2013). Brain Repair in a Unilateral Rat Model of Huntington’s 

Disease: New Insights Into Impairment and Restoration of Forelimb Movement Patterns. Cell 

Transplant. 22, 1735–1751. 

 

Kopyov, O. V, Jacques, S., Lieberman, A., Duma, C.M., Eagle, K.S., (1998). Safety of intrastriatal 

neurotransplantation for Huntington’s disease patients. Exp. Neurol. 149, 97–108. 

 

Kraft, A.D., Harry, G.J., (2011). Features of microglia and neuroinflammation relevant to 

environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health 8, 2980–3018. 

 

Kromer, L.F., Björklund, A., Stenevi, U., (1983). Intracephalic embryonic neural implants in the adult 

rat brain. I. Growth and mature organization of brainstem, cerebellar, and hippocampal implants. J. 

Comp. Neurol. 218, 433–59. 

 

Kromer, L.F., Björklund, A., Stenevi, U., (1983). Intracephalic embryonic neural implants in the adult 

rat brain. I. Growth and mature organization of brainstem, cerebellar, and hippocampal implants. J. 

Comp. Neurol. 218, 433–59. 



  Bibliography 

246 
 

Kumar, P., Kalonia, H., Kumar, A., (2010). Huntington’s disease: pathogenesis to animal models. 

Pharmacol. Rep. 62, 1–14. 

 

Kwan, W., Träger, U., Davalos, D., Chou, A., Bouchard, J., Andre, R., Miller, A., Weiss, A., Giorgini, F., 

Cheah, C., Möller, T., Stella, N., Akassoglou, K., Tabrizi, S.J., Muchowski, P.J., (2012). Mutant huntingtin 

impairs immune cell migration in Huntington disease. J. Clin. Invest. 122, 4737–47. 

 

Lanciego, J.L., Luquin, N., Obeso, J.A., (2012). Functional Neuroanatomy of the Basal Ganglia. Cold 

Spring Harb. Perspect. Med. 2, 10.1101. 

 

Langbehn, D., Brinkman, R., Falush, D., Paulsen, J., Hayden, M., (2004). A new model for prediction of 

the age of onset and penetrance for Huntington’s disease based on CAG length. Clin. Genet. 65, 267–

277. 

 

Lawrence, J.M., Morris, R.J., Wilson, D.J., Raisman, G., (1990). Mechanisms of allograft rejection in the 

rat brain. Neuroscience 37, 431–462. 

 

Lee, J.-M.H., Ramos, E.M., Lee, J.-M.H., Gillis, T., Mysore, J.S., Hayden, M.R., Warby, S.C., Morrison, P., 

Nance, M., Ross, C.A., Margolis, R.L., Squitieri, F., Orobello, S., Di Donato, S., Gomez-Tortosa, E., Ayuso, 

C., Suchowersky, O., Trent, R.J.A., McCusker, E., Novelletto, A., Frontali, M., Jones, R., Ashizawa, T., 

Frank, S., Saint-Hilaire, M.H., Hersch, S.M., Rosas, H.D., Lucente, D., Harrison, M.B., Zanko, A., 

Abramson, R.K., Marder, K., Sequeiros, J., Paulsen, J.S., Landwehrmeyer, G.B., Myers, R.H., 

MacDonald, M.E., Gusella, J.F., (2012). CAG repeat expansion in Huntington disease determines age 

at onset in a fully dominant fashion. Neurology 78, 690–695. 

 

Lelos, M.J., Harrison, D.J., Rosser, A.E., Dunnett, S.B., (2013). The lateral neostriatum is necessary for 

compensatory ingestive behaviour after intravascular dehydration in female rats. Appetite 71, 287–

94. 

 

Lelos, M.J., Roberton, V.H., Vinh, N.-N., Harrison, C., Eriksen, P., Torres, E.M., Clinch, S.P., Rosser, A.E., 

Dunnett, S.B., (2016). Direct Comparison of Rat- and Human-Derived Ganglionic Eminence Tissue 

Grafts on Motor Function. Cell Transplant. 25, 665–675. 

 

Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Bohlen, C.J., Schirmer, L., Bennett, M.L., 

Münch, A.E., Chung, W.-S., Peterson, T.C., Wilton, D.K., Frouin, A., Napier, B.A., Panicker, N., Kumar, 

M., Buckwalter, M.S., Rowitch, D.H., Dawson, V.L., Dawson, T.M., Stevens, B., Barres, B.A., (2017). 

Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487. 

 



  Bibliography 

247 
 

Lin, Y.-T., Chern, Y., Shen, C.-K.J., Wen, H.-L., Chang, Y.-C., Li, H., Cheng, T.-H., Hsieh-Li, H.M., (2011). 

Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic 

support in Huntington’s disease mouse models. PLoS One 6, e22924. 

 

Lopez-Paniagua, D., Seger, C.A., (2011). Interactions within and between corticostriatal loops during 

component processes of category learning. J. Cogn. Neurosci. 23, 3068–83. 

 

Loveless, S.E., Hoban, D., Sykes, G., Frame, S.R., Everds, N.E., (2008). Evaluation of the Immune System 

in Rats and Mice Administered Linear Ammonium Perfluorooctanoate. Toxicol. Sci. 105, 86–96. 

 

Luchetti, S., Beck, K.D., Galvan, M.D., Silva, R., Cummings, B.J., Anderson, A.J., (2010). Comparison of 

immunopathology and locomotor recovery in C57BL/6, BUB/BnJ, and NOD-SCID mice after contusion 

spinal cord injury. J. Neurotrauma 27, 411–21. 

 

Ma, L., Hu, B., Liu, Y., Vermilyea, S.C., Liu, H., Gao, L., Sun, Y., Zhang, X., Zhang, S.-C., (2012). Human 

Embryonic Stem Cell-Derived GABA Neurons Correct Locomotion Deficits in Quinolinic Acid-Lesioned 

Mice. Cell Stem Cell 10, 455–464. 

 

Ma, L., Morton, A.J., Nicholson, L.F.B., (2003). Microglia density decreases with age in a mouse model 

of Huntington’s disease. Glia 43, 274–80. 

 

Magavi, S.S.P., Lois, C., (2008). Transplanted neurons form both normal and ectopic projections in the 

adult brain. Dev. Neurobiol. 68, 1527–1537. 

 

Manfré, G., Doyère, V., Bossi, S., Riess, O., Nguyen, H.P., Massioui, N. El, (2015). Impulsivity trait in the 

early symptomatic BACHD transgenic rat model of Huntington Disease. Behav. Brain Res. 299, 6–10. 

 

Marcora, E., Kennedy, M.B., (2010). The Huntington’s disease mutation impairs Huntingtin’s role in 

the transport of NF-κB from the synapse to the nucleus. Hum. Mol. Genet. 19, 4373–84. 

 

Martin, D.D.O., Ladha, S., Ehrnhoefer, D.E., Hayden, M.R., (2014). Autophagy in Huntington disease 

and huntingtin in autophagy. Trends Neurosci. 38, 26–35. 
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Appendices 

Appendix 1 

Solution recipes  

Antifreeze solution (4°C)  

Di-sodium hydrogen orthophosphate anhydrous 5.45g 
Sodium dihydrogen phosphate 1.57g 
dH2O 400ml 
Ethylene glycol 300ml 
Glycerol 300ml 
 

 

Cresyl violet solution  

Cresyl violet acetate 7g 
Sodium acetate (anhydrous) 5g 
dH2O 600ml 
ph 3.5 w/ glacial acetic acid 
dH2O make up to 1L 
Stir o/n and filter 
 

 

DAB (3,3’-Diaminobenzidine) stock solution (-20°C) DAB working solution 

DAB 1g 
TNS 100ml 
Freeze in 2ml aliquots 
 

2ml DAB stock solution 
40ml fresh TNS 
12µl hydrogen peroxide 
 

PBS (Phosphate-buffer) 0.1M solution (4°C) PBST (0.3% Triton X-100 in PBS) 

Di-sodium hydrogen phosphate (dihydrate) 18g 
Sodium chloride 9g 
dH2O 1L 
pH 7.3 w/ orthophosphoric acid 
 

PBS 100ml 
Triton X-100 100µl 
 

PFA (Paraformaldehyde) 4% (4°C)  

PFA 40g 
PBS 1L 
Heat <65°C for 3hrs to dissolve 
Cool o/n 
pH 7.3 w/ NaOH / orthophosphoric acid 
 

 

Pre-wash see PBS 
 

 

Sucrose solution 25% (4°C)  

Sucrose 250g 
PBS (make up to 1L) 
pH 7.3 w/ orthophosphoric acid 
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TBS (Tris Buffered saline) 4X stock solution (4°C) TBS 1X working solution 

Triza base 96g 
Sodium chloride 76g 
dH2O 2L 
pH 7.4 w/ HCl 
 

TBS stock solution 500ml 
dH2O 1.5L 
pH 7.4 w/ HCl 

TNS (Tris non-saline) (4°C)  
Trizma base 6g 
dH2O 1L 
pH 7.4 w/ HCl 
 

 

TXTBS (0.2% Triton X-100 in TBS) (4°C)  
TBS 250ml 
Triton X-100 500µl 
pH 7.4 w/ HCl 
 

 

QA (quinolinic acid) 0.12M stock solution (-20°C) QA 0.09M working solution (RT) 
QA 125g 
PBS 750µl 
10M sodium hydroxide 800µl 
Sonicate 15mins 
PBS 3200µl 
10M sodium hydroxide 50µl 
PBS 2200µl 
 

QA stock solution 50µl 
PBS 16.7µl 

Quench  
Methanol 10ml 
Hydrogen peroxide 30% 10ml 
dH2O 80ml 
 

 

 

  



 

 
 

Appendix 2 

Antibodies 
 

Primary antibody Type Supplier Product Code Concentration Blocking serum 
Secondary antibody 

(all at 1:200) 

β-tubulin 
(neurons) 

Mouse Sigma, UK T8578 1:500 Goat Alexa594 

CTIP2 
(early MSNs) 

Rat Abcam, UK ab18465 1:500 Goat Alexa594 

DARPP-32 
(mature MSNs) 

Mouse Cornell University, USA - 1:10000 Horse Horse anti-mouse 

FoxP1 
(early MSNs) 

Mouse Abcam, UK ab32010 1:500 Goat Alexa488 

GFAP 
(astrocytes) 

Rabbit Abcam, UK ab7260 1:500 Goat Alexa488 

GFP  
(Chrm4-EGFP-CD1 cells) 

Rabbit Invitrogen, UK A-11122 1:1000 Goat Goat anti-rabbit 

Hoechst 
(Nuclei) 

- Fisher Scientific, UK 62249 1:10000 - - 

Iba1  
(microglia & macrophages) 

Rabbit Wako, Germany 019-19741 1:8000 Goat Goat anti-rabbit 

NeuN 
(neuronal nuclei) 

Mouse Abcam, UK ab104224 1:1000 Goat Goat anti-mouse 

Parvalbumin 
(subset of interneurons) 

Mouse Sigma, UK P3088 1:4000 Horse Horse anti-mouse 

2
6

1
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Appendix 3 
 

Operant test programs 
 

Bilateral lateralised choice reaction time task 

 

  

Appendix 3 Figure 1 Schematic to represent the bilateral lateralised choice reaction time task. H3 = hole 3, 
H5 = hole 5, H7 = hole 7, Mag Light = magazine light, S1 = stimulus 1, S2 = stimulus 2, TO = time out, ITI = inter-
trial interval, S1 Hold = the duration for which a mouse must hold their nose in S1 hole before S2 will begin, S2 
STIM = the duration for which S2 will be illuminated and S2 LH = limited hold or how long the mouse has to 
respond to S2 once it has been illuminated. NB S1 Hold duration is selected pseudo-randomly from a pool of 
four values to make it unpredictable and encourage attention, see Appendix 3 Table 1. 
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Unilateral lateralised choice reaction time task 

 

 

Appendix 3 Figure 2 Schematic to represent the unilateral lateralised choice reaction time task. H3 = hole 3 
(far), H4 = hole 4 (near), H5 = hole 5, Mag Light = magazine light, S1 = stimulus 1, S2 = stimulus 2, TO = time 
out, ITI = inter-trial interval, S1 Hold = the duration for which a mouse must hold their nose in S1 hole before 
S2 will begin, S2 STIM = the duration for which S2 will be illuminated and S2 LH = limited hold or how long the 
mouse has to respond to S2 once it has been illuminated. NB S1 Hold duration is selected pseudo-randomly 
from a pool of four values to make it unpredictable and encourage attention, as listed in Appendix Table 1. 
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Delayed alternation 

 

Appendix 3 Figure 3 Schematic to represent the delayed alternation task. L = left hole, R = right hole, Mag Light 
= magazine light, TO = time out and ITI = inter-trial interval. NB Delay time ‘x’ is selected pseudo-randomly from 
the values listed in Appendix Table 2. 
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Five-choice serial reaction time task 

Appendix 3 Figure 4 Schematic to represent the five-choice reaction time task. H1 = hole 1, H3 = hole 3, 
H5 = hole 5, H7 = hole 7, H9 = hole 9, Mag Light = magazine light, TO = time out and ITI = inter-trial interval. NB 
S1 location is selected pseudo-randomly to ensure all locations are represented equally but unpredictably. 



 

 

Training stage S1 HOLD length 
X (ms) 

S2 STIM length 
Y (ms) 

S2 Limited Hold 
Z (s) 

  Training 
stage 

Delay length 
X (s) 

STIM length 
(s) 

 1 2 3 4     1 2 3 4 5 6  

1 5 5 5 5 10000 10   1 0 0 0 0 0 0 10 

2 5 5 5 5 5000 10   2 0 0 0.5 1 1.5 2 10 

3 5 5 5 5 2000 10   3 0 1 2 3 4 5 10 

4 5 5 5 5 1000 10   4 0 2 3 4 5 6 10 

5 25 25 25 25 1000 10   5 0 2 4 6 8 10 10 

6 50 50 50 50 1000 5   Testing 0 2 4 6 8 10 10 

7 25 25 50 50 500 5           

8 75 75 75 75 500 5           

9 100 100 100 100 500 5           

10 125 125 125 125 300 5           

11 150 150 150 150 300 5           

12 200 200 200 200 300 5           

Pre-lesion testing 100 150 175 200 300 5           

Post-lesion testing 25 50 75 100 300 5           

 

  

Appendix 3 Table 2 List of program parameters used for training and testing 
in the delayed alternation task. Delay length = duration assigned to the delay 
period between a correct response in a trial and the subsequent stimulus 
presentation, STIM length = the duration for which the stimuli are presented 
before a time out penalty is activated. 

Appendix 3 Table 1 List of program parameters used for training and testing in the bilateral lateralised 
choice reaction time task. S1 Hold = the duration for which a mouse must hold their nose in first stimulus 
(S1) hole before the second stimulus (S2) will begin, S2 STIM = the duration for which S2 will be 
illuminated and S2 limited hold = how long the mouse has to respond to S2 once it has been illuminated. 
NB S1 Hold duration is selected pseudo-randomly from a pool of four values to make it unpredictable and 
encourage attention. Because responses are expected to be reduced following lesioning, the post-lesion 
testing has an S1 hold value set with shorter durations than the pre-lesion testing.  

2
6

7 
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Original Article

The Effect of Tissue Preparation and
Donor Age on Striatal Graft Morphology
in the Mouse

David J. Harrison1, Victoria H. Roberton1, Ngoc-Nga Vinh1,
Simon P. Brooks1, Stephen B. Dunnett1, and Anne E. Rosser1

Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disease in which striatal medium spiny neurons (MSNs) are lost.
Neuronal replacement therapies aim to replace MSNs through striatal transplantation of donor MSN progenitors, which
successfully improve HD-like deficits in rat HD models and have provided functional improvement in patients. Transplants in
mouse models of HD are more variable and have lower cell survival than equivalent rat grafts, yet mice constitute the majority
of transgenic HD models. Improving the quality and consistency of mouse transplants would open up access to this wider
range of rodent models and facilitate research to increase understanding of graft mechanisms, which is essential to progress
transplantation as a therapy for HD. Here we determined how donor age, cell preparation, and donor/host strain choice
influenced the quality of primary embryonic grafts in quinolinic acid lesion mouse models of HD. Both a within-strain (W-S)
and a between-strain (B-S) donor/host paradigm were used to compare transplants of donor tissues derived from mice at
embryonic day E12 and E14 prepared either as dissociated suspensions or as minimally manipulated tissue pieces (TP). Good
graft survival was observed, although graft volume and cellular composition were highly variable. The effect of cell preparation
on grafts differed significantly depending on donor age, with E14 cell suspensions yielding larger grafts compared to TP.
Conversely, TP were more effective when derived from E12 donor tissue. A W-S model produced larger grafts with greater
MSN content, and while high levels of activated microglia were observed across all groups, a greater number was found in B-S
transplants. In summary, we show that the effect of tissue preparation on graft morphology is contingent on the age of
donor tissue used. The presence of microglial activation in all groups highlights the host immune response as an important
consideration in mouse transplantation.

Keywords
cell transplantation, Huntington’s disease, primary embryonic tissue, striatal grafts, mouse models, medium spiny neurons

Introduction

Huntington’s disease (HD) is an inherited neurodegenerative

disease caused by an expanded polyglutamate cytosine-ade-

nine-guanine (CAG) repeat in the Huntingtin gene on chro-

mosome 41. The resultant mutant Huntingtin protein leads to

progressive neuronal dysfunction and loss, with medium

spiny neurons (MSNs) primarily affected in the early stages

of the disease2. HD is a debilitating disease causing a broad

range of physical and mental deficits, and currently there is

no disease-modifying treatment.

The relatively targeted nature of the primary neuronal

loss in HD makes it an ideal candidate for cell replacement

therapy. Primary neuronal progenitors derived from the

whole ganglionic eminence (WGE; from which the striatum

develops) and transplanted directly into the quinolinic acid

(QA)-lesioned striatum develop into MSNs, integrate into

the parenchyma, and form functional connections with host

neural circuitry in rats3,4. A number of clinical trials confirm

that transplantation of fetal WGE in HD is safe, and there is

preliminary evidence that it can improve some disease
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symptoms in people with HD.5–8 However, more work is

required. First, tests must be conducted to determine whether

fetal transplantation can reliably improve function in peo-

ple with HD, and second it should be determined whether

the efficacy and consistency of this approach can be

improved, before its development as a potential treatment.

Moreover, optimizing the protocols for achieving success-

ful embryonic WGE grafts will solve many issues that are

also relevant to pluripotent stem cell–derived grafts,

which are currently being developed as a more sustain-

able source of donor cells.

Protocols have been optimized and are well established

for rat-to-rat striatal transplants, with extensive preclinical

literature showing consistent large and functional grafts from

embryonic day (E)14 to E16 WGEs9,10. Rat protocols have

been refined over many years, with donor age and tissue

preparation identified as critical factors affecting graft sur-

vival, morphology, and function of rat-to-rat striatal trans-

plants11–13; however, these factors have not been

systematically investigated in mice. It is evident throughout

the literature,14–18 and from experience within this lab, that

the direct translation of these protocols to mice results in

considerable graft variability. Graft survival is lower and

surviving grafts are smaller and contain less striatal-like tis-

sue compared to rat striatal grafts. This suggests that either

there are unrecognized differences between rat and mouse

host models and the way in which they interact with trans-

planted tissue or species differences in the way the trans-

planted tissue develops following transplantation, or both.

Typically, immunosuppressive treatment is not required

when transplanting rat cells into the rat brain, even using

outbred stocks, with good graft integration and functional

recovery19,20. It has therefore been assumed that transplants

in mice would also not require immunosuppression in the

supposed “immune-privileged” brain. However, as the

immunological response to transplanted tissue is likely to

be critical for graft survival, we have considered the host

response to transplantation (including the disparity in immu-

nological background between donor and host and the pre-

paration of transplanted cells) as a potential factor in survival

of neural mouse grafts.

Establishing a reliable protocol in the mouse is essential to

use the array of well-characterized genetic HD mouse models

for cell transplantation, as well as a wide range of transgenics

that could be used to contribute to a better understanding of

graft survival integration and functional mechanisms. The

present study examined whether modifications to current stan-

dard transplant protocols could produce more reliable and

effective striatal grafts in mouse models of HD, both within

and between strains. The effects of donor tissue age and cell

preparation were assessed by characterizing the cell content of

striatal grafts of mouse primary embryonic tissue and analyz-

ing the activated microglial response. The QA lesion model of

HD was used, as it is the most widely used and well-validated

model to date for preclinical studies and provides a reliable

starting point for later translation to genetic models of HD.

Materials and Methods

This experiment was subject to project, personal, and facil-

ities licenses and local ethical review in accordance with the

United Kingdom Animals (Scientific Procedures) Act 1986

as amended.

Subjects

Young adult male C57BL6/J (N ¼ 32) and CD1 (N ¼ 32)

mice (20 to 30 g, Harlan, Bicester, UK) were housed in pairs

under standard conditions in a 12:12-light/dark cycle. Tem-

perature and humidity were maintained at 21 + 2 �C and

60% + 1%, respectively. Food and water were available ad

libitum.

QA Lesion Surgery

Mice received unilateral QA (P6320-4; Sigma-Aldrich,

Gillingham, UK) lesions to the right striatum, with 2 mice

of each strain retained as intact controls. Fresh 0.09 M

QA solution was prepared each day in 0.1 M phosphate

buffer (10010-056; Thermo Fisher, Loughborough, UK).

All animals were anesthetized in an induction chamber

using 4% isoflurane gas in oxygen, the head shaved, and

a subcutaneous (sc) injection of meloxicam 2.5 mg/kg

(Metacam, Boehringer Ingelheim, Germany) given as pain

relief prior to surgery. Mice were transferred to a stereotaxic

frame and maintained on 1.5% to 2% isoflurane in a mix-

ture of oxygen and nitrous oxide (2:1). The skull was

exposed and a small hole drilled at the following stereotaxic

coordinates: anterior-posterior (AP) þ0.8 mm and medial-

lateral (ML) �2.0 mm from bregma. A 30-gauge stainless

steel cannula attached to a 10 mL microvolume syringe

(2035; SGE Analytical Sciences, Thermo Fisher) driven

by a mechanical pump was used to inject 0.75 mL of 0.09

M QA at dorso-ventral (DV) �3.0 mm below dura. The QA

was infused over 6 min and the cannula left in position for

an additional 3 min to prevent back flow of solution. The

cannula was removed and the incision closed using 5-0

Vicryl dissolvable sutures (W9915; Ethicon, Livingston,

UK). 0.5ml of 0.9% glucose saline (FKE1323; Baxter, New-

bury, UK) was administered sc during surgery to reduce

dehydration and a 7.5 mg/kg intramuscular injection of dia-

zepam (Hameln Pharmaceuticals Ltd, Gloucester, UK) was

given post-anesthesia prevent seizures. Mice were placed

into a warm recovery chamber for 2 to 3 h until completely

awake and returned to their home cages for 10 d. The

general health of mice was monitored daily and mice were

fed a wet mash of standard food in their cages for at least 3-

d post surgery. In the week following lesion surgery, 7

C57BL6/J mice became unwell, necessitating hand-feeding

of wet mash via a syringe daily until weight was regained.

In addition, 4 pairs of C57BL6/J mice were separated due to

fighting. Animals that did not fully recover from illness or

fighting were removed from the study (n ¼ 8).
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Donor Tissue

Two transplant paradigms were used incorporating common

strain combinations studied within the lab: a within-strain

(W-S) model with CD1 tissue transplanted into CD1 hosts

and a between-strain (B-S) model with Chrm4-EGFP-CD1

tissue transplanted into C57BL/6J hosts. The CD1 mouse is

used as a standard transplantation model for assessing graft

survival and composition, chosen primarily for their large

litter sizes. The C57BL/6J/Chrm4-EGFP-CD1 model is used

to investigate the functional efficacy of transplants, as

C57BL/6J mice are particularly adept at performing beha-

vioral tasks and are the background strain for many of the

genetically modified HD mouse models. The bacterial arti-

ficial chromosome (BAC) Chrm4-EGFP-CD1 mice express

green fluorescent protein (GFP) attached to M4 receptors in

a subset of MSNs19, allowing easy identification of donor-

derived MSNs.

Time-mated CD1 and Chrm4-EGFP-CD1 mice from an

in-house colony (originally purchased from Harlan, and

MMRRC, Farmington, CT, USA, respectively) were sacri-

ficed by cervical dislocation at E12 or E14, and the embryos

dissected into Dulbecco’s modified Eagle’s medium: nutri-

ent mixture F-12 (DMEM/F12; 12634-028; Thermo Fisher).

Using a dissecting microscope in a laminar flow hood, the

brains were removed and, following a longitudinal cut in the

medial cortex, the whole (medial and lateral) striatal primor-

dium was identified on the floor of the lateral ventricle and

removed via a horizontal cut as described21. Four transplant

preparations were made for each donor strain: (1) E12 cell

suspension (CS), (2) E12 tissue pieces (TP), (3) E14 CS, and

(4) E14 TP. Transplantation surgery was spread across mul-

tiple days with fresh suspensions made each morning for

each group.

Transplantation Surgery

Approximately 10-d postlesion mice were randomly

assigned to experimental groups with 20 C57BL6/J and 27

CD1 mice receiving primary tissue transplants (n ¼ 4 to 7

per group, see Table 1). In addition, a group of mice from

each strain were retained as lesion-only controls (C57BL6/J,

n ¼ 2; CD1, n ¼ 3). Surgery was conducted using the same

anesthetic regime described for lesions; however, no diaze-

pam was administered post-transplantation. Cell prepara-

tions were injected at the lesion coordinates via the same

burr hole, �3.2 and �2.8 mm below dura.

Single-cell Preparations

CS preparations consisted of pooled E12 WGEs (Chrm4-

EGFP-CD1, n ¼ 26; CD1 n ¼ 24) or E14 WGEs (Chrm4-

EGFP-CD1, n ¼ 22; CD1, n ¼ 26) for each strain. Tissue

was incubated at 37 �C for 10 min in 0.1% bovine trypsin

(25300-054; Thermo Fisher) þ 0.05% deoxyribonuclease

(DNase) (D4527; Sigma-Aldrich) in DMEM/F12 solution,

before adding 0.01% bovine trypsin inhibitor (T6522-

250MG; Sigma-Aldrich) for an additional 5 min, and

washing with direct addition of DMEM/F12 followed by

centrifugation for 3 min at 1,000 rpm. Cells were resus-

pended in DMEM/F12 and triturated using a Gilson pipette

with a 200 mL tip to mechanically dissociate into a single CS.

Cell number and viability were determined with trypan blue

(T8154 20ML; 0.4% trypan blue solution, Sigma-Aldrich,

UK) exclusion using a hemocytometer, confirming all sus-

pensions had >90% viability. Cells were concentrated at

250,000 cells/mL for transplantation in DMEM/F12. 1 mL

of suspension was injected at each depth using a 10 mL

microvolume syringe (2035; SGE Analytical Sciences,

Thermo Fisher), depositing approximately 500,000 cells in

total into the lesioned striatum over 2 min (1 mL/min), with

the syringe left in situ for an additional 3 min to allow

diffusion and reduce backflow. All suspensions were kept

in the dark at room temperature.

Tissue Piece Preparations

For TP preparations, no cell counts could be conducted

directly from nondissociated tissue, therefore WGE units

equating to approximately 500,000 cells (the number of cells

Table 1. Summary of Survival Rates and Untransformed Data for Surviving Grafts.

Host Strains Groups
Number of

Surviving Grafts
Graft Volume
(�106 mm3)

Number of NeuNþ

Cells (�103)
P-zone Volume

(�106 mm3)
Number of DARPP-32þ

Cells (�103)

Percentage of
DARPP-32þ

Patches (%)

C57BL6/J E12 CS 4 of 5 (80%) 110.3 + 52.4 11.1 + 5.1 61.2 + 42.4 1.4 + 0.7 51.0
C57BL6/J E12 TP 5 of 5 (100%) 301.6 + 88.5 28.4 + 8.0 180.6 + 67.7 2.5 + 0.8 55.5
C57BL6/J E14 CS 4 of 4 (100%) 188.9 + 32.7 12.9 + 4.1 127.6 + 5.7 2.4 + 0.4 74.4
C57BL6/J E14 TP 2 of 6 (33%) 97.0 + 16.3 6.8 + 0.5 44.7 + 3.7 0.8 + 0.5 48.1
CD1 E12 CS 5 of 6 (83%) 226.0 + 52.9 11.1 + 2.4 91.1 + 31.1 2.1 + 0.5 34.0
CD1 E12 TP 6 of 7 (86%) 335.6 + 46.5 16.4 + 2.8 237.5 + 66.4 4.2 + 0.7 68.4
CD1 E14 CS 6 of 7 (86%) 194.0 + 21.6 9.6 + 1.4 84.3 + 16.9 2.3 + 0.4 44.3
CD1 E14 TP 3 of 7 (43%) 146.9 + 36.8 6.6 + 1.6 119.0 + 25.6 2.5 + 0.3 89.9

Note: Untransformed data presented +standard error of the mean. High graft survival rates were seen in most groups with the exception of those derived
from E14 TP. Large differences in graft volume and cell numbers were observed within group. CS ¼ single-cell preparation; TP ¼ tissue piece.
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transplanted in the CS groups) were transplanted. Cell counts

calculated from the CS dissections showed this to equal

approximately a pair of WGEs for E12 tissue and a single

WGE for E14 (see Table 2). Separate preparations were

made for each individual surgery, with WGEs treated with

bovine trypsin, DNase, and trypsin inhibitor as described

above. However, after gentle washing, tissue was transferred

directly into *4 mL DMEM/F12 for transplantation, with no

trituration, therefore minimizing mechanical manipulation

to maintain integrity of the TPs. TP preparations were

injected as above, at a rate of 1 mL/min over 4 min (2 min

at each depth). Mice were monitored daily until full

recovery.

Perfusion and Immunohistochemistry

At 12 wk after transplantation surgery, mice were perfused and

the brains were processed for histological analysis of the grafts.

Animals received a terminal intraperitoneal injection of

sodium pentobarbital (Euthatal, Merial Animal Research,

Woking, UK) and were transcardially perfused using phos-

phate buffered saline (PBS, pH 7.3) followed by 150 mL of

4% paraformaldehyde solution (PFA, pH 7.3; 10131580;

Fisher Scientific, Loughborough, Lutterworth, UK) over

4 min. Brains were removed, postfixed in 4% PFA for 4 h,

and transferred to 25% sucrose solution in PBS for at least

48 h. Brains were cut at 40 mm on a freezing microtome, and

sections stored in antifreeze—5.45 g disodium-hydrogen-

orthophosphate (28029.26; VWR, UK), 1.57 g sodium-

dihydrogen-orthophosphate (28013.264; VWR), 300 mL

ethylene glycol (102466-2.5L; Sigma-Aldrich), and 300 mL

glycerol (G7893-2L; Sigma-Aldrich) in 400 mL dH2O—at

�20 �C until immunohistochemical analysis. The 1:12 series

were incubated at room temperature as free-floating sections

with primary antibodies for neuronal nuclei (NeuN) (MAB377;

1:2,000; Millipore, Watford, UK), ionized calcium-binding

adapter molecule 1 (Iba1) (019 19741; 1:8,000; Wako, Chuo-

ku, Japan), parvalbumin (P3088; 1:4,000; Sigma-Aldrich) or

anti-GFP (AB11122; 1:1,000; Invitrogen, Loughborough,

UK), and streptavidin–biotin reaction (PK-6100; Dako,

Glostrup, Denmark), then stained using 3,30-diaminobenzidine

(DAB, D5637-1G; Sigma-Aldrich). Parvalbumin series were

double-stained with dopamine- and cAMP-regulated phospho-

protein antibody (DARPP-32) (1:30,000; the kind gift of Pro-

fessor H. C. Hemmings, Cornell University22) and Vector SG

kit (SK-4700; Dako). Sections were mounted onto gelatinized

slides and left to air-dry overnight before being dehydrated and

cover-slipped with distyrene plasticizer and xylene (DPX)

mounting medium (12658646; Fisher Scientific).

In Vitro Primary Cultures

Time-mated CD1 dams were sacrificed at E12 or E14 (n¼ 3

per group), and WGEs were dissected as described previ-

ously21. Tissue from each litter was pooled to prepare 3

separate suspensions for each embryonic age, as described

above. Cells were resuspended in neuronal differentiation

media—DMEM/F12 þ 1% FCS (10270-106; Thermo

Fisher, Waltham, MA, USA) þ 2� B27 (17504-044;

Thermo Fisher, Waltham, MA, USA) and plated on poly-

L-lysine treated coverslips at 100,000 cells per well. CS of 30

mL was left for approximately 1 h before flooding with 500

mL of differentiation media and incubated at 37 �C in humi-

dified 5% CO2 and 95% atmospheric air. A complete media

change was performed after 3 d in culture using the same

media described above. After 24 h and 7 d in vitro, 12 wells

of each suspension were fixed with 4% PFA and stored at 4
�C until immunocytochemical staining.

Immunocytochemistry

Cells were quenched in 100% ethanol for 2 min, washed 3

times in PBS, and then blocked with PBS þ 0.3% Triton X-

100 (PBST; X100-500ML; Sigma-Aldrich) þ 1% BSA

(A3059; Sigma-Aldrich) þ 1% serum at RT for 1 h. Cells

were then incubated at 4 �C overnight with the following

pairs of primary antibodies in PBS þ PBST þ 1% BSA þ
1% horse serum (16050-122; Thermo Fisher, USA): neuro-

nal marker bIII-tubulin (T2200; 1:500; Sigma-Aldrich) and

astrocyte marker glial fibrillary acidic protein antibody

Table 2. Summary of Transplanted Cell Numbers and Associated Proportion of WGE Used in Each Group.

Donor Strains Embryonic Age Preparation Cells per WGE Proportion WGE Transplanted Number Cells Transplanted

Chrm4-EGFP-CD1 E12 CS 180,769 2.77 500,000
Chrm4-EGFP-CD1 E12 TP 180,769 2.00 361,538
Chrm4-EGFP-CD1 E14 CS 577,273 0.87 500,000
Chrm4-EGFP-CD1 E14 TP 577,273 1.00 577,273
CD1 E12 CS 357,143 1.40 500,000
CD1 E12 TP 357,143 2.00 714,286
CD1 E14 CS 1,041,667 0.48 500,000
CD1 E14 TP 1,041,667 1.00 1,041,667

Note: The number of cells per WGE was estimated based of the mean cell counts of the CS preparations. The number of WGEs used in the TP preparations
was adjusted based on the mean number of cells in the WGE for each particular donor strain and age with the aim of transplanting a similar number of cells in
each group. Since it was only possible to use whole WGE units in the nondissociated TP preparations, the number of cells transplanted could not be exactly
matched but was kept as close to 500,000 as possible. Subsequently, the proportion of WGE transplanted was used to transform the data to account for the
differences in proliferative potential of the cells transplanted. CS ¼ single-cell preparation; TP ¼ tissue piece; WGE ¼ whole ganglionic eminence.
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(GFAP AB32010; 1:500; Abcam, Cambridge, UK) or early

MSN marker forkhead box P1 (FoxP1 AB16645; 1:500;

Abcam) and COUP-TF-interacting protein 2 (CTIP2)

AB18465; 1:500; Abcam, UK). Cells were washed with

PBST before incubating for 2 h in the dark at RT with the

following fluorescent secondary antibodies in PBS (1:200):

Alexa594 (A11037; Thermo Fisher, UK) for bIII-tubulin and

CTIP2 and Alexa488 (A11034; Thermo Fisher, UK) for

GFAP and FoxP1. After washing with PBS, a Hoechst

(23000-1000; 1:10,000; Fisher Scientific) counterstain was

applied for 5 min. Cells were washed again in PBS and

coverslips mounted onto microscope slides with aqueous

mountant (PBS: glycerol; G7893-2L; Sigma-Aldrich, 1:1)

and stored in the dark at 4 �C. Five regions per coverslip

were counted, and the mean count from each suspension

recorded.

Analysis of Grafts and Statistics

The location of grafts in the C57BL6/J hosts was identified

through immunohistochemical labeling of the transplanted

Chrm4-EGFP-CD1 tissue using an anti-GFP antibody

(A11122; Invitrogen, Loughborough, UK), and corre-

sponded to clearly identifiable regions of NeuNþ staining

within the lesioned striatum (Fig. 1A). CD1 hosts were trans-

planted with CD1 tissue, and therefore could not be identi-

fied through GFP staining, consequently NeuNþ staining

was used to identify the graft location in these animals. The

presence of fully differentiated adult neurons (NeuNþ cells)

within the grafted area was used to determine graft survival

in all groups (Fig. 1B), with grafts with no positive NeuN

staining excluded from graft analyses. These animals were

however retained in the analysis of microglial immune

response. It is important to note that while successful grafts

are defined here as those containing NeuNþ cells, survival of

other cell types, such as immature neurons and glial cells,

cannot be excluded. Volumes were calculated by measuring

cross-sectional areas of NeuNþ (total graft volume) and

DARPP-32þ graft regions (P-zones) across 1:12 series and

using the formula: volume ¼ (SA �M)/f, where A ¼ area of

graft (mm3), M ¼ section thickness (mm), and f ¼ section

frequency (Fig. 1B and C).

For larger grafts, total cell numbers were calculated by

unbiased stereology. For smaller grafts, stereological analy-

sis would generate a large sampling error, therefore these

were counted manually using Image J v1.45 software

(National Institutes of Health (NIH), Bethesda, MD, USA)

following imaging of grafted sections. Mean cell diameter

was obtained for NeuNþ, DARPP-32þ, and parvalbuminþ

cells by measuring the minimum and maximum diameters of

10 cells per graft using Image J.

Iba1-labeled series were used to grade the host microglial

response in the grafted area using an established semi

quantitative rating scale23. Each section was graded 0 to 4

according to the following categories: (0) no specific acti-

vated microglia in the graft area, (1) low number of activated

microglia distributed as scattered single cells or clustered in

a few small patches in or around the graft, (2) several acti-

vated microglia distributed as single cells or clustered in

multiple prominent patches, (3) dense immunostaining of

the graft area and a large number of activated microglia in

and around the graft, and (4) very dense immunostaining

of the whole graft area and a very large number of activated

microglia in and around the graft. Activated microglia

were easily identified by their morphological appearance24

(Fig. 1D). The highest grade given to any section for each

animal was the grade assigned to that animal.

As TP were not dissociated, transplants were prepared by

WGE units rather than by cell number as in the CS prepara-

tions. Embryos used for CS and TP were collected from the

same litters, so although cell number could not be determined,

an estimate of the number of cells per WGE at each age was

calculated using total counts from the CS and dividing by the

total number of WGEs dissociated (see Table 2). Since E12

WGE contained approximately half the number of cells of E14

WGE, a pair of E12 WGEs were transplanted for each E14

WGE to maintain a consistent total cell number, as close to

500,000 as possible. However, transplanting different pro-

portions of WGE raises the issue that the E12 TP grafts of 2

WGEs may have twice the proliferative potential of the sin-

gle WGE E14 TP. As it is not possible to control for both cell

number and quantity of WGE transplanted, graft outcome

measures were subsequently transformed to account for the

proportion of WGE transplanted as described below:

Cell counts and volume data were corrected for the pro-

portion of WGE transplanted using the following transfor-

mations: Tn¼ n/proportion of WGE transplanted and Tvol¼
vol/proportion of WGE transplanted, where proportion of

WGE transplanted ¼ number of cells transplanted/mean

number of cells in WGE, Tn ¼ corrected cell count, n ¼
actual cell count, Tvol ¼ corrected volume, and vol ¼ actual

volume.

Transformed data from successful grafts in all groups

were analyzed together using 3-way analyses of variance

(ANOVAs) in Genstat for Windows v16.1 software. If a

significant main effect of strain was found, then B-S and

W-S groups were subsequently analyzed in separate 2-way

ANOVAs. Consequently, NeuNþ graft volume, DARPP 32þ

graft volume, DARPP-32þ cell count, proportion of

DARPP-32þ cells, parvalbuminþ cell counts, proportion of

parvalbuminþ cells, and activated microglia scores were

analyzed in separate ANOVAs for the B-S and W-S groups.

For immune response data, transplanted mice with no detect-

able surviving grafts, as well as lesion only controls, were

also included in the analyses.

Results

Mouse donor cells from E14 and E12 WGE were prepared

either as standard dissociated single-CS or as nontriturated

partially digested TPs. These cell preparations were trans-

planted into the striatum of 2 commonly used laboratory

234 Cell Transplantation 27(2)



Fig. 1. Photomicrographs of typical large and smaller grafts (first and second row, respectively), lesion only and control (third and final row,
respectively). (A) GFPþ staining identifying Chrm4-EGFP-CD1-grafted tissue (indicated by *) within the host parenchyma. Paler areas of
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mouse donor/host strain paradigms; a B-S and a W-S model.

Grafts were analyzed using immunohistochemistry 12 wk

later and graft size, neuronal content, DARPP-32þ MSN,

and parvalbuminþ interneuron number compared, as well

as the microglial reaction to the graft by the host. CS of each

donor age was also analyzed after 24 h and 7 d in vitro to

assess whether the age at which tissue is harvested affects the

development of cells independently from the host

environment.

Graft Survival

The presence of DAB-labeled GFPþ Chrm4-EGFP-CD1 donor

cells corresponded with areas of NeuNþ and DARPP-32þ

staining in the C57BL6/J hosts, confirming the donor origin

of the cells (Fig. 1A and B). Transplanted cells could be clearly

identified within the lesioned host striatum by staining for

NeuNþ mature neurons in all hosts, including those trans-

planted with non-GFP donor cells (Fig. 1B). The proportion

of surviving grafts for each group and raw untransformed data

for surviving grafts are shown in Table 1. There was no effect

of donor/host on NeuNþ graft survival (t6 ¼ 0.208, ns), and a

high proportion of NeuNþ grafts was identified in all groups

(80% to 100%) except for E14 TP, of which only 5 of 13 (43%)

transplanted mice had NeuNþ cells in the grafted region after

12 wk. Graft volumes varied both within and between groups,

ranging from just 12 � 106 mm3 up to 588 � 106 mm3.

Graft Volume and Cellular Composition

Figure 2A shows the volumes of NeuNþ tissue in the surviv-

ing grafts for each group and a comparison of mean graft

volume of B-S (Chrm4-EGFP-CD1 tissue into C57BL6/J

hosts; B-S) and within strain (CD1 tissue into CD1 hosts;

W-S) groups. Grafts from the W-S group were significantly

larger than those observed in the B-S group (F1, 27¼ 19.08, P

< 0.001). Preparations of E14 CS yielded significantly larger

grafts than E14 TP in the B-S model, while the younger E12

tissue produced larger grafts when prepared as TP than as CS

(age � preparation: F1, 11 ¼ 14.52, P < 0.01). In the W-S

model, E14 CS also yielded significantly larger grafts than

E14 TP; however, there was no significant difference between

grafts derived from different preparations of E12 tissue (age�
preparation: F1, 16 ¼ 17.14, P < 0.001).

Distinct regions of DARPP 32þ staining were observed

within all surviving grafts (Fig. 1C). The volume of DARPP-

32þ patches (P-zones) within each graft is shown in Fig. 2B.

W-S transplants yielded significantly larger total P-zone

volumes than B-S (strain: F1, 27 ¼ 6.50, P < 0.05). B-S

transplants contained larger P-zone volumes when trans-

planted as CS than TP at E14, while the reverse was true for

E12 tissue (age � preparation: F1, 11 ¼ 18.27, P < 0.001). A

similar trend was observed in the W-S groups; however, a

statistically significant interaction was not found. As Fig. 2C

shows, there were no differences in the proportion of DARPP-

32þ P-zone volume (out of total NeuNþ graft volume) in B-S

and W-S groups. B-S transplants showed a trend toward higher

proportion of P-zones in E14 CS compared to E14 TP,

although this was not statistically significant. No difference

in the B-S E12 preparations was observed. W-S E12 groups

again showed a tendency for higher proportions of P-zone

tissue from E12 transplants as TP rather than CS. However,

at E14, TP produced the larger DARPP-32þ proportion com-

pared to CS—the only measure in which E14 TP outperformed

E14 CS (strain � preparation: F1, 27 ¼ 10.73, P < 0.01).

There was no difference between B-S and W-S trans-

plants in the total number of mature NeuNþ neurons within

the grafts (Fig. 2D). Cell counts reflected the data patterns

observed in graft volume, with E14 CS yielding more cells

than E14 TP, and E12 TP yielding more cells than E12 CS

(age � preparation: F1, 27 ¼ 23.43, P < 0.001). The W-S

grafts contained more DARPP-32þ cells than B-S (strain: F1,

27 ¼ 21.43, P < 0.001; Fig. 2E). Grafts of E14 tissue con-

tained more DARPP-32þ cells than those of E12 origin in

both W-S and B-S groups (age: F1, 16 ¼ 13.6, P < 0.01 and

F1, 11 ¼ 6.71, P < 0.05, respectively). E14 tissue yielded

higher DARPP-32þ content when transplanted as CS than

TP, while there was trend for E12 to produce more as TP in

both W-S and B-S groups (age � preparation: F1, 16 ¼ 8.94,

P < 0.01 and F1, 11 ¼ 17.25, P < 0.01, respectively).

The W-S models yielded the greatest proportion of

DARPPP-32þ cells within the grafts compared to the B-S

group (strain: F1, 27 ¼ 4.46, P < 0.05; Fig. 2F). Grafts

derived from E14 tissue contained a higher proportion of

DARPP-32þ cells than those from E12 in the W-S model

(age: F1, 16¼ 9.88, P < 0.01). In addition, TP preparations in

the W-S model yielded a greater proportion than the CS

(preparation: F1, 16 ¼ 12.97, P < 0.01).

Significantly more parvalbuminþ cells were found in W-

S transplants compared to B-S (strain: F1, 27 ¼ 20.67, P <

0.001; Fig. 3A). In addition, E14 generated more

parvalbuminþ cells than E12 tissue in both W-S and B-S

groups (age: F1, 16 ¼ 19.39, P < 0.001 and F1, 11 ¼ 14.14,

P < 0.01, respectively), and CS yielded more than TP pre-

parations (preparation: F1, 16 ¼ 4.49, P < 0.05 and F1, 11 ¼
8.05, P < 0.05, respectively) although this effect was mostly

due to very high numbers in the E14 CS groups compared to

all other combinations. E14 CS grafts contained significantly

Fig. 1. (Continued) non-medium spiny neurons cell types are seen within the graft (indicated by arrow). Scale bar represents 500 mm. (B)
NeuNþ staining of mature neurons. Areas of grafted cells can be clearly identified within the lesioned striatum (*). Scale bar represents 500
mm. (C) DARPP-32þ staining (blue) shows distinct P-zones within the grafts (*). Parvalbuminþ interneurons (brown stain; white arrow) are
present throughout the grafts. Black arrows highlight the nonspecific orange-colored staining of spherical dead cells. Scale bar represents
100 mm. (D) Iba1þ staining of microglia. Resting-state ramified cells (white arrow) can be seen on the peripheral cortex areas. Clusters of
darker, amoeboid activated cells (black arrow) can be seen within the grafts (*) and the surrounding striatum. Scale bar represents 500 mm.
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Fig. 2. (A) NeuNþ graft volumes. Within-strain (W-S) transplants were larger than the between-strain (B-S) transplants (***P <
0.001). E14 tissue yielded a larger volume than E12 tissue when transplanted as single-cell preparation (CS) in both strain models
(***P < 0.001). E14 tissue produced larger grafts when transplanted as CS than tissue piece (TP) style preparation in B-S (*P < 0.05)
and W-S (**P < 0.01) models. E12 tissue yielded a larger volume when transplanted as TP than CS in the B-S model only (*P < 0.05).
(B) DARPP-32þ graft volumes. W-S transplants contained a larger volume of DARPP-32þ tissue than the B-S (*P < 0.05). The B-S CS
transplants yielded a larger DARPP-32þ volume using E14 tissue than E12 (***P < 0.001), and E14 tissue yielded a larger volume when
transplanted as CS than TP (***P < 0.001). (C) Proportion of DARPP-32þ graft tissue (proportion ¼ [DARPP-32þ volume/NeuNþ

volume] � 100). There was no difference in the proportion of DARPP-32þ tissue in the different models; however, CS transplants
yielded a higher proportion of DARPP-32þ tissue in the B-S groups than in the W-S groups (P < 0.05). TP yielded a higher proportion
of DARPP-32þ tissue than CS in the W-S groups (**P < 0.01). (D) NeuNþ graft cell counts. No effect of model on neuronal cell
counts was detected. E14 tissue yielded a greater number of neurons than E12 (@P < 0.05). CS transplants contained more NeuNþ

cells than the TP in the W-S transplants (P < 0.05); however, TP grafts comprised of more NeuNþ cells than CS at age E12 (P < 0.05).
(E) DARPP-32þ cell counts. More DARPP-32þ cells were present in the W-S grafts than the B-S (***P < 0.001). E14 tissue produced
a greater number of DARPP-32þ cells compared to E12 in the B-S (@P < 0.05) and W-S model (@@P < 0.01). CS transplants yielded
more DARPP-32þ cells using E14 tissue than E12 in both the BS (**P < 0.01) and W-S (**P < 0.01) models. E14 tissue yielded a higher
DARPP-32þ cell count when transplanted as CS than TP in the B-S (*P < 0.05) and W-S (*P < 0.05). (F) DARPP-32þ cell counts as a
proportion of total NeuNþ cells. W-S grafts yielded a greater proportion of DARPP-32þ cells within the graft than the B-S (*P <
0.05). In the W-S groups, E14 tissue produced a greater proportion of DARPP-32þ cells compared to E12 (@@P < 0.01) and TP
preparations produced a greater proportion than CS (*P < 0.01).
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more parvalbuminþ cells than E14 TP in both W-S and B-S

groups (age � preparation: F1, 16 ¼ 18.40, P < 0.001 and

F1, 11 ¼ 10.13, P < 0.01, respectively), and there was a trend

for E12 TP to yield more than E12 CS, but this did not reach

significance.

The proportion of parvalbuminþ cells (as a percentage of

NeuNþ cells) was greatest in the W-S model (strain: F1, 27¼
12.97, P < 0.001; Fig. 3B). CS preparations yielded a higher

proportion compared to TP in the B-S groups (Preparation:

F1, 11 ¼ 7.13, P < 0.05), and E14 tissue yielded a higher

proportion than the E12 in the W-S groups (age: F1, 16 ¼
5.76, P < 0.05).

There was no difference in the diameter of the DARPP-

32þ cells between the B-S and W-S groups; however, those

derived from E14 tissue in the B-S groups were significantly

larger compared to those from E12 tissue (age: F1, 13 ¼
12.98, P < 0.01).

Microglial Response

Iba1 labeling revealed dense areas of microglial activation,

not only within the grafted area but also extending beyond

the transplant boundaries to the host striatum in all mice

except for intact control animals (Fig. 1D). Numerous dead

cells and cellular debris were observed within most grafts

and needle tracts, visible in sections stained with DAB as

spherical clusters of paler staining (arrows in Fig. 1C).

Figure 3D shows the graded microglial response for each

group. Activation of microglia was significantly higher in B-S

than in W-S groups (F1, 39¼ 99.09, P < 0.001). Grafts derived

from E14 tissue in the W-S model induced a greater micro-

glial activation than those of E12 tissue (F1, 23 ¼ 5.54, P <

0.05); however, this effect was not seen in the B-S groups. No

difference was detected between TP and CS preparations.

Differentiation In Vitro

To investigate the development and maturation of cells from

E12 and E14 donor embryos independent of the host envi-

ronment, CS from CD1 embryos was prepared as described

for transplantation and cultured for 24 h and 7 d in vitro. As

TP preparations were not dissociated, it was not possible to

culture these comparably. Cell counts from primary cultures

are shown in Fig. 4. There was no difference in the

Fig. 3. (A) Parvalbuminþ cell counts. A greater number of parvalbuminþ interneurons were present in the within-strain (W-S) model than
the between-strain (B-S) model (***P < 0.001). E14 tissue yielded a greater number of parvalbuminþ interneurons than E12 in both the B-S
(@@P < 0.01) and W-S (@@@P < 0.001) models. E14 tissue yielded a higher parvalbuminþ cell count when transplanted as single-cell
preparation (CS) than tissue piece style preparation (TP) in the B-S (*P < 0.05) and W-S (**P < 0.01) models. All data presented in Fig. 1 are
adjusted for proportion of whole ganglionic eminence transplanted. (B) Parvalbuminþ cell counts as a proportion of total NeuNþ cells. W-S
grafts yielded a greater proportion of parvalbuminþ cells within the graft than the B-S (***P < 0.001). E14 tissue produced a greater number
of parvalbuminþ cells compared to E12 in the W-S (*P < 0.05). CS preparations produced a greater number of parvalbuminþ cells compared
to TP in the B-S (*P < 0.05). (C) DARPP-32þ cell diameter. There was no difference in DARPP-32þ cell diameter between the B-S and W-S
groups. Cells derived from E14 tissue were larger than those taken from E12 tissue in the B-S groups (*P < 0.05). (D) Grading score for
activated microglia (0 to 4) in the grafted striatum in the B-S groups, W-S groups, and the mean grading score for activated microglia in all
grafted groups. Higher levels of activated microglia were found in B-S transplants than W-S (***P < 0.001). W-S transplants of E14 tissue
produced an increased microglial response than E12 (@P < 0.05). No effect of age on microglial response was found in the B-S groups.
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proportion of b-tubulinþ cells across any age or time point;

however, there was a trend toward a greater number of

b-tubulinþ cells at 7-d post plate-down compared to 24 h,

as well as for E14 compared to E12. Very few GFAPþ cells

were found in any group; however, there were signifi-

cantly more after 7 d in both E12 and E14 donor age

groups (F1, 8 ¼ 16.99, P < 0.01). There was a significant

increase in the proportion of CTIP2þ cells at 7 days in

vitro (DIV) compared to 24 h (F1, 8 ¼ 44.52, P < 0.001)

but there was no effect of embryonic age. FoxP1þ MSN

precursor cells also accounted for a higher proportion of

the population at 7 DIV compared to 24 h (F1, 8 ¼ 78.21,

P < 0.001) with no effect of embryonic age.

Discussion

The effect of donor age, cell preparation (single CS or dis-

sociated TP), and variability in donor/host strain on primary

embryonic striatal graft development and the host microglial

response was investigated. Preparation as a CS is the method

most routinely used, with trituration following enzymatic

digestion to form a quasi-single CS. The TP style preparation

used in this study, although not an identical treatment to

other chopped tissue piece preparations,25–27 provides a less

severe treatment than standard CS protocol28,29. Cells under-

went the same enzymatic digestion to aid in the transplanta-

tion process, but did not undergo manual trituration, thus

leaving the tissue relatively intact, thus theoretically reduc-

ing cell stress. To provide information on how model selec-

tion could affect the host response to transplants and

subsequent graft survival/development, 2 different donor/

host strain combinations were used: a B-S model transplant-

ing Chrm4-EGFP-CD1 tissue into C57BL6/J hosts and a

W-S model with CD1 tissue transplanted into CD1 mice.

A high percentage of graft survival was found across all

groups, except for E14 TP in both strains, which was the

least effective transplant protocol in terms of graft survival

(see Table 1). These data show that transplanted cells can

survive under a variety of protocol conditions, yet survival

rates were still not as high as usually seen in rat studies, and

considerable variation in graft volume and content was seen

within experimental groups. Graft cells were analyzed for

the expression of the mature neuron marker NeuN, MSN

marker DARPP-32, and the interneuron marker parvalbu-

min. Some NeuNþ cells did not appear to express either

DARPP-32 or parvalbumin and could be MSN cells not yet

producing DARPP-32, nonstriatal neural cells, or nonparval-

bumin interneurons.

Donor Age

In general, E14 tissue produced grafts containing a higher

number of mature neurons, DARPP32þ MSN cells, and

parvalbuminþ interneurons compared to preparations trans-

planted using E12 tissue after considering the number of

progenitor cells transplanted. Neural graft volume was larger

for E14 preparations than E12 in the W-S groups, and this

trend was also seen in the B-S groups, although not reaching

significance—possibly due to small group sizes.

CS preparations produced more NeuNþ cells, larger graft

volumes, and more DARPP32þ and interneuron content when

harvested at E14 than at E12. Additionally, B-S transplants of

E14 CS produced a higher proportion of P-zone tissue than

E12 CS. In contrast, there was no effect of age on TP in any of

the above measures, although a consistent trend was apparent

showing the opposite effect, with TP yielding better grafts at

E12 than at E14. Striatal transplants of E14 preparations in

rats have been shown to produce larger grafts and DARPP-

32þ P-zones within the graft compared to older tissue as well

as the greatest functional recovery.10,30,31 Given that the

developmental stage at E14 in rats is equivalent to age

E12.5 in mice, by comparing the Carnegie stages of develop-

ment32, it would be expected that E12 TP in mice should

reflect the results seen in E14 TP rat studies. It is possible

that the digestion process and trituration of the mouse CS have

more of a detrimental effect on the cells at this younger age

than at E14 and are less tolerant to the treatment than rat cells.

This could lead to a reduced capability of mouse E12 CS cells

Fig. 4. Cell counts from plate downs of 100,000 cells from E12 and E14 single-cell suspensions after 24 h and 7 DIV. No differences were
observed in the number of neurons across groups (bTubþ staining). Compared to 1 DIV, the cultures at 7 DIV contained a significantly
higher percentage of astrocytes (**GFAPþ, P < 0.01) and medium spiny neurons precursors (***CTIP2þ, P < 0.001; ***FOXP1þ, P < 0.001).
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to survive and develop posttransplantation. In addition, it is

possible that the Carnegie stages are not perfectly translated

from rat to mouse and E12 could be more representative of a

younger stage than the estimated E14 rat stage. This could

have important implications for fetal age selection in primary

human tissue transplants.

No effect of donor age was found in the in vitro measures

investigated, including numbers of mature neurons (b-tubu-

lin), early MSNs (FoxP1, CTIP2), and astrocytes (GFAP).

E12 and E14 cells were equally viable at the time of trans-

plantation/cell plating. However, in vitro conditions are not

reflective of the in vivo environment, and differences seen in

vivo may suggest that it is the interaction of cells with the

host environment affecting the apparent differences in devel-

opment. It has been shown that neuronal cells under stress

are more likely to be destroyed by the host33, therefore if

younger cells are more susceptible to stress, they may be

more susceptible to the host immune response. The high

levels of activated microglia seen within the grafted regions,

and even in the lesion only controls, confirm that the

immune response could play a critical role in the long-

term survival of cells14.

Parvalbuminþ interneurons were more abundant in grafts

derived from E14 CS than those from any other, an indica-

tion that these grafts may contain a greater proportion of this

interneuron population than the other groups, thereby pre-

senting a cell population more characteristic of the normal

striatum34. To obtain the neural diversity in grafts closest to

that seen in the adult striatum, it is necessary to transplant

both the lateral ganglionic eminence (LGE) and the medial

ganglionic eminence (MGE)13,35. In mice, the LGE, the

source of striatal progenitors36, is visible by E12, while the

MGE, where interneurons are born, is visible as early as

E1135,37, indicating that E12 might be the earliest time point

for obtaining all the necessary cell types in mice. It is known

that interneuron populations contribute to normal striatal

function and development35, and these may be playing a

supportive role in the development of the MSNs within the

graft38. The MGE is much larger at E14 than at E12, and as

this is the origin of interneuron progenitors39,40, would most

likely contribute a greater proportion of interneurons to the

transplanted population. In turn, this may have resulted in

the improved development of E14 grafts13,35.

It is interesting to note that the mean cell body diameter of

DARPP32þ grafted cells from Chrm4-EGFP-CD1 tissue

was significantly larger in the E14 age groups than in the

E12, although this was not seen in the CD1 grafts. Given that

at the time of perfusion all grafted cells were 12 wk old,

under normal physiological conditions, it would be expected

that they would have reached the same level of maturity and

hence size. This may be an indication that the E14 cells are

less inhibited by the local environment after transplantation

into the host than the E12 cells, although contrasting evi-

dence suggests that older cells, once past their proliferative

stage, may be able to compensate less well12. Alternatively,

E12 tissue could be undergoing proliferation for a longer

time posttransplantation, thus giving rise to cells until much

later. These, at the time of sacrifice, could be less mature

than those born closer to the time of transplantation. Changes

in cell size may also be because of shrinkage or swelling due

to physiological processes. For example, increases in cell

size have been linked to necrosis41, while cells in the early

process of apoptosis are reduced in size42. In this case, it is

possible that more E14-derived cells could be necrotic or

that more E12-dervived cells are undergoing apoptosis; how-

ever, this could not be determined within the current study.

No difference in the cell size of parvalbuminþ interneurons

was seen (data not presented).

Cell Preparation

There are potential benefits of delivering the transplant as

tissue pieces rather than triturated CSs. Limiting the manip-

ulation of the tissue can reduce disruption and death of neu-

ronal populations within the preparation, and the retention of

the extracellular matrix may protect cells during transplanta-

tion and in the initial postgraft period. However, it has been

suggested that the transplantation of whole tissue pieces may

induce a stronger immune response due to the presence of

the intact donor vasculature and antigen presenting cells

(APCs)26,43. Although the use of nonimmunogenic bioengi-

neered scaffolds could avoid this issue44,45, protocols gener-

ally require dissociation of cells prior to seeding into a

scaffold, therefore still posing a risk to neuronal populations.

Preparing tissue as partly digested tissue pieces without tri-

turation28,29 may prevent disruption to MSN precursors prior

to transplantation and thus improve graft survival.

The results show a significant difference in the effect of

preparation type on graft morphology depending on the age

of the tissue used. E14 tissue prepared as CS produced grafts

that are phenotypically superior to those transplanted as TP

in almost all parameters including graft survival. Dissociated

cell preparations are thought to provoke less of a host

immune response when transplanted because the immuno-

genic donor vasculature is at least partially destroyed prior to

implantation43,46. In addition, trypsinized single-cell pre-

parations provide an advantage over solid pieces of tissue

by potentially allowing transplanted cells access to the host

capillary network more easily. The necessity of establishing

contact in order to nourish the grafted tissue was demon-

strated early on in studies implanting in vessel-rich and

vessel-poor microenvironments47. Rat-to-rat grafts from

CS transplants produce a greater proportion of striatal-like

tissue, with more DARPP-32 expressing cell populations

than those from TP, as well as providing greater innervation

of the host parenchyma29. Cells transplanted as TP within a

surrounding matrix may be restricted in terms of migration

and integration into the host brain. The present study sug-

gests that the benefits of transplanting dissociated CSs may

outweigh those of a supportive matrix provided by TP trans-

plants and that the trituration process is not too harsh to

affect survival of the transplant at E14.

240 Cell Transplantation 27(2)



Conversely, E12 tissue produced larger grafts with

greater striatal-like content when prepared as TP over CS.

Previous studies in rats have shown that, for transplants of

TP, older donor tissue is tolerated less and that younger

tissue has a better chance of survival11,12,47 corresponding

to what we find in mouse TP transplants. It is unclear why

the dissociation processes involved in CS preparation would

reverse this trend, although, as discussed above, it seems

that mouse WGE tissue is better able to withstand dissocia-

tion when processed at E14 than at E12 as evidenced

through E14 CS transplants yielding improved long-term

graft survival and larger grafts. Studies have suggested that

different subpopulations of rat neurons are more sensitive

to trypsinization than others12. Mouse cells may also be

more sensitive, particularly at different developmental

stages, warranting a systematic study of the effect of tryp-

sinization on mouse precursors.

E12 TP survived transplantation with an improved capac-

ity to produce successful grafts, although it is unclear why

the same results are not reflected with E14 TP. Potentially,

the less mature cells within the E12 TP are more prolifera-

tive and migratory at this early stage of development, there-

fore not restricted by the surrounding matrix. The

particularly low survival rate in E14 TP preparations may

indicate that TP at this age are not as amenable to integra-

tion as those at E12, potentially due to an increased poten-

tial of their vasculature and APCs to induce an immune

response in the host43. In addition, following expulsion

from the graft cannula, cells within the E14 TP might be

more densely packed within the host striatum than single

cells which could impede diffusion and timely integration

with the capillary18,46.

Strain Effects

The models selected for the purposes of this study were the 2

most commonly used paradigms within the lab, with the aim

of determining how the choice of these particular models

could affect the graft outcome.

We showed that the use of the different W-S and B-S

models did not affect the number of surviving grafts. How-

ever, the transplants in the W-S model yielded the largest

grafts in terms of neuronal volume compared to the B-S

paradigm and had a higher number and proportion

of DARPP32þ cells. The CD1 grafts also contained more

interneuron cells. A previous study using the same

Chrm4-EGFP-CD1 donor tissue observed much larger grafts

and survival19, although notably this CD1-derived tissue was

transplanted into CD1 hosts rather than the C57BL/6.

The results suggest that the choice of strain and matching

of donor and host animals for transplantation studies could

be critical in achieving robust results. Iba1 staining revealed

a significant amount of microglial activation within the

grafted areas of all mice except the intact controls, including

those in the lesion only group and those with no detectable

surviving grafts. A significantly higher grading of activated

microglia was found in the B-S than in the W-S groups.

Allotransplants elicit a greater immune response than iso-

genic tissue, and while neither of the models investigated

here are inbred strains, it is clear that the response is

increased when immunological disparity is greater43. This,

in turn, can be linked to reduced transplant survival. Since

the CD1 hosts received tissue derived from the same strain, it

is likely that this was tolerated more than the tissue in the

mismatched B-S groups. In addition, some studies have

shown that the GFP marker associated with the Chrm4-

EGFP-CD1 donor tissue could in itself be immunogenic48,

although it is unclear if this is the case in striatal transplants

in the C57BL/6 model49. It is also plausible that the C57BL/

6 strain is inherently more prone to an exaggerated inflam-

matory response compared to the CD1 mice. It has been

demonstrated that C57BL/6 mice have a strong bias to M1

inflammatory reaction, whereas other strains, such as Balb/c,

tend toward a more supportive M2 response50. The separa-

tion of the effects of immunogenicity of the different donor

tissues used and the reactivity of the hosts is beyond the

scope of this study; however, it does warrant further

investigation.

E14 tissue transplanted into the W-S models induced a

greater microglial reaction than the E12 tissue. It is possible

that tissue pieces transplanted from later embryonic ages

contain more vasculature and hence could invoke a greater

immune response, although this is yet to be tested. The fact

that this pattern was not detected in the B-S model could be a

result of a ceiling effect since the microglial response was

consistently high in all B-S groups.

The higher levels of activated microglia in the C57BL6/J

hosts could explain the lower surviving cell number and

graft volume51,52. It was noted that the area of activation

exceeded the area of transplantation, suggesting secondary

activation or recruitment of microglia to the site of trans-

plantation. Interestingly, the glial response appeared reduced

in individuals with rejected grafts, presumably because

the transplanted cells had already been subjugated and

the immune response had entered a post reactive phase. The

ongoing proliferation of activated glial cells in and around

the grafts is suggestive of ongoing reactivity with the surviv-

ing implanted cells. This could be an indication that the

grafts surviving to 12 wk may be hampered long-term by

the immune response of the hosts. Therefore, the study of

immunosuppressive regimes in mouse to mouse transplanta-

tion could be a key to resolving the less than optimum qual-

ity of the grafts seen, as immunosuppression is generally

only considered to be required for xenotransplant models.

Conclusions

The results highlight a capacity of mouse transplants to sur-

vive under a variety of conditions and a need for protocols to

be optimized to improve consistency and reliability. Donor

age and tissue preparation technique are important factors

that affect the morphology of primary fetal grafts. The data
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from this study suggest that more successful grafts are

derived from single-cell preparations of E14 tissue or from

less dissociated tissue pieces at E12.

We found large variation in grafts across all the experi-

mental groups, which implies the influence of other factors

that may be more fundamental than the methodological mod-

ifications investigated in this study. Any impact of changes

in cell preparation or donor age may be reduced by other

more influential factors in the mouse to mouse model, high-

lighted by the differences between the strains investigated

here. High levels of activated microglia in the grafted zones,

particularly in the B-S transplants, and the presence of dead

cells in all groups suggest that further investigation into

immune response of mouse hosts to specific tissues is

warranted.

Authors’ Note

The DARPP-32 antibody used in this study was kindly provided as

a gift by Professor H. C. Hemmings, Cornell University, USA.

Technical support was provided by Jane Heath, Anna Burt, Tom

Steward, and Harry Potter.

Ethical Approval

Ethical Approval is not applicable.

Statement of Human and Animal Rights

This experiment was subject to project, personal, and facilities

licenses and local ethical review in accordance with the United

Kingdom Animals (Scientific Procedures) Act 1986 as amended.

Statement of Informed Consent

There are no human subjects in this article and informed consent is

not applicable.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work was funded by the Medical Research Council and the Well-

come Trust (VHR supported by a Wellcome Trust PhD student-

ship), with additional support from the CHDI Foundation and

Repair-HD and Neurostemcell Repair projects of the EU FP7

programme.

References

1. Huntington’s Disease Collaborative Research Group

(HDCRG). A novel gene containing a trinucleotide repeat that

is expanded and unstable on Huntington’s disease chromo-

somes. The Huntington’s Disease Collaborative Research

Group. Cell. 1993;72(6):971–983.

2. Graveland GA, Williams RS, DiFiglia M. Evidence for degen-

erative and regenerative changes in neostriatal spiny neurons in

Huntington’s disease. Science. 1985;227(4688):770–773.

3. Dunnett SB, Nathwani F, Björklund A. The integration and

function of striatal grafts. Prog Brain Res. 2000 Chapter 16;

127:345–380.

4. Wictorin K. Anatomy and connectivity of intrastriatal striatal

transplants. Prog Neurobiol. 1992;38(6):611–639.

5. Hauser RA, Furtado S, Cimino CR, Delgado H, Eichler S,

Schwartz S, Scott D, Nauert GM, Soety E, Sossi V, et al.

Bilateral human fetal striatal transplantation in Huntington’s

disease. Neurology. 2002;58(5):687–695.

6. Rosser AE.Unilateral transplantation of human primary fetal

tissue in four patients with Huntington’s disease: NEST-UK

safety report ISRCTN no 36485475. J Neurol Neurosurg Psy-

chiatry. 2002;73(6):678–685.
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Time of transplantation and cell preparation determine neural

stem cell survival in a mouse model of Huntington’s disease.

Exp Brain Res. 2007;177(4):458–470.

242 Cell Transplantation 27(2)



17. Kelly CM, Precious SV, Penketh R, Amso N, Dunnett SB,

Rosser AE. Striatal graft projections are influenced by donor

cell type and not the immunogenic background. Brain. 2007;

130(5):1317–1329.

18. Cisbani G, Saint Pierre M, Cicchetti F. Single-cell suspension

methodology favors survival and vascularization of fetal stria-

tal grafts in the YAC128 mouse model of Huntington’s disease.

Cell Transplant. 2014;23(10):1267–1278.
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