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Abstract  

Heart failure is a common and debilitating disease.  In recent years, 

improved diagnosis and treatment have resulted in more people than ever living 

with the condition.  Accurate quantification of cardiac function is essential in the 

diagnosis and monitoring of heart failure.  A good diagnostic test must reflect 

cardiac contractile state and is insensitive to physiological changes in load. 

This thesis investigated the effects of changing load on existing and novel 

indices of cardiac function obtained using echocardiography.  Firstly, breathless 

patients on maintenance haemodialysis underwent echocardiography immediately 

before and after a session of dialysis (large preload change).  Secondly, healthy 

blood donors underwent echocardiography immediately before and after a session 

of venesection (moderate preload change).  

Indices of cardiac function showed differential preload sensitivity during the 

above experiments.  Conventional indices (EF, MAPSE) were relatively preload 

resistant.  Longitudinal and radial tissue Doppler velocities and left ventricular 

apical rotation were more load-sensitive and tracked moderate preload change.  

Mid left ventricular circumferential strain was resistant to moderate preload 

change but was sensitive to a large preload change.  Mid left ventricular radial 

strain, basal rotation and longitudinal strain and strain rate were unaffected by 

these changes in preload.  

The key result from this thesis is that many echocardiographic indices of 

cardiac function are sensitive to changes in preload.  Therefore, clinical 

interpretation of these results must take into account the loading status at the time 

of study. 
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6MWT 6-minute walk test 
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Chapter 1 

1 

1 Introduction 

1.1 The burden of heart failure with preserved ejection 

fraction (HFpEF)  

Heart failure is a complex clinical syndrome, resulting from the inability of the 

heart to meet the demands of major organs, despite normal or high filling pressure. 

It is common, affecting up to 1 in 20 adults in developed countries (1). An 

expanding ageing population, improved diagnosis, treatment and survival for those 

with heart diseases (2) have resulted in rising incidence (3) and prevalence, 

especially amongst older people(1). This poses a significant burden on health care 

budget (4,5), accounting for 2% of in-patient bed days and 5% of all emergency 

admissions to NHS hospitals (6).  

In the 1980’s, 36% of patients presenting with acute congestive heart failure 

were found to have preserved ejection fraction (HFpEF) on subsequent 

investigations (7).  In the following decade, the prevalence of HFpEF in an out-

patient population was found to be 22% (8). Contemporary registries have reported 

that as many as half of those with heart failure have HFpEF (2,9–16). 

Five-year survival amongst people with HFpEF is significantly worse compared 

to the age- and gender-matched general population (11). In-hospital mortality 

following acute de-compensation has been reported at 4.2% in two studies (12,17). 

From index hospitalisation, population-based registry studies (2,12,15,16,18–21) 

reported an average annual mortality of 10-25%, although clinical trial participants 

fared better with an annual mortality of 5-14% (22–26). 
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The available treatment is different for those with reduced ejection fraction and for 

those with preserved ejection fraction.  Hence, correct clinical diagnosis and 

characterisation using available investigations are essential in the management of 

these patients. 

 

1.2 Current diagnostic criteria for HFpEF and limitations 

The majority of patients meeting the criteria for the clinical diagnosis of 

HFpEF were found to have elevated left ventricular end-diastolic pressure (LVEDP) 

and impaired left ventricular (LV) relaxation, at the time of cardiac catheterisation 

(13,27,28). Echocardiography, which is easily accessible and non-invasive, has been 

widely accepted to be an invaluable diagnostic test for this condition.  

The literature shows many studies identifying abnormalities in patients with 

HFpEF using echocardiography.  Tissue Doppler Imaging (both pulsed wave tissue 

Doppler; and processed velocities from colour tissue Doppler), 2-dimensional 

speckle tracking (2DSTE) strain, blood flow Doppler velocities and diastolic filling 

pattern, non-invasively quantified left ventricle elastance (Ees) are amongst the 

many methods reported.  Compared to asymptomatic subjects, patients with HFpEF 

have lower longitudinal TDI systolic (s’) (29–34) and early diastolic (e’) (29,31–34) 

velocities, lower MAPSE (mitral annular planar systolic excursion) (35). They also 

have reduced global longitudinal strain (30,36,37), reduced radial strain (33,36), 

reduced circumferential strain (33,36) and reduced left ventricular torsion (37,38) 

when compared to asymptomatic subjects. Left ventricular relaxation index (Tau) 
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(31) is prolonged, left ventricular filling index E/e’ (31,34) is high and left ventricular 

elastance Ees (31,33,36) is low compared to healthy volunteers.  

Whilst the European Society of Cardiology (38) adopts a stepwise clinical 

approach for the diagnosis of HFpEF,  the American Society of Echocardiography 

(39) focuses on the assessment of LV diastolic function and estimation of LV filling 

pressure by echocardiography.  Both societies agree on the primary findings of 

abnormal cardiac structure and evidence of elevated LV filling pressures, in the 

diagnosis of HFpEF.  The similarities and differences are summarised in Table 1-1.  
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Table 1-1 Comparison of current international guidelines on the diagnosis of 

HFpEF 

 European (38) American (39) 

EF > 50% > 50% 

LAVI > 34 ml/m2 > 34 ml/m2 

LVMI ♂  > 115 g/m2 

♀ > 95 g/m2 

Not included 

E/e’ Mean >13 Mean > 14 cm/s 

e’  Septal e’< 7 cm/s 

Lateral e’ < 10 cm/s 

Peak TR velocity  TR velocity > 2.8 m/s 
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To meet the European criteria for a clinical diagnosis of HFpEF, a patient must 

have symptoms and signs of HF, EF ≥ 50%, elevated level of natriuretic peptides and 

either cardiac structural abnormality (LA dilatation, LVH) and/or functional 

alteration (abnormal E/e’, e’, global longitudinal strain, tricuspid regurgitation).  

When there is uncertainty, a diastolic stress test is recommended to demonstrate 

changes in E/e’, TR velocity, SV and CO and global longitudinal strain.  Alternatively, 

invasive assessment of LV filling pressures can be performed at rest and with 

exercise to detect changes in LVEDP, PCWP, SV and CO.  

At least 2 of the 4 criteria have to be present (LA enlargement, elevated E/e’, 

low e’, elevated TR velocity) to meet the American Society of Echocardiography’s 

requirement for diagnosis of diastolic dysfunction.  In addition, the society also 

recommends using Valsalva manoeuvre during echocardiography to evaluate 

changes in E/A which helps unmask diastolic dysfunction.   

Whilst the positive predictive value of a single parameter (E/e’) is poor 

(40,41), the combined use of a panel of indices (TR velocity, E/A, E/e’, e’), increases 

the diagnostic accuracy for elevated LVEDP (42). Some investigators studied their 

subjects at rest (29–31,36), others have studied their subjects at rest and during 

stress using upright ergometer(43), supine ergometer (33,35,37,44) and 

dobutamine infusion (32,34).  Therefore, although these studies identified 

abnormalities, it is difficult to ascertain how much of the observed effects and 

differences might be related to changes in loading conditions.  Before we can use 

these parameters as a diagnostic tool, we must first understand how each of these 

indices respond to a preload change.  In the following sections, I shall first discuss 
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how contractile indices respond to changes in preload that were observed using PV 

loops (section 1.3), and then I shall review studies in which the effects of altering 

load were investigated using echocardiography (section 1.4). 

 

1.3 Frank-Starling mechanism & Pressure-volume (PV) 

relationship of the left ventricle   

The Frank-Starling mechanism (45,46) is central to our understanding of 

cardiac mechanics. An increase in preload and a larger LVEDV lead to an increase in 

cardiac contractile force.  This is mediated by heightened sarcomere responsiveness 

at a given calcium concentration (47).  In other words, a longer end-diastolic length 

of the myocyte within the physiological range causes increased systolic shortening.  

Figure 1, adapted from elsewhere (48) shows this graphically. It is worth noting that 

there is an initial linear relationship between LVEDP and SV/CO, until a plateau is 

reached whereby SV/CO remain static and subsequently fall despite further increase 

in LVEDV.  Failure of actin/myosin filaments to form cross bridges at long myocyte 

lengths above the physiological range, and also the development of ventricular 

interaction and pericardial constraint (49) at larger LVEDV, are probable causes of 

the descending limb of the Frank Starling curve.  At any given preload (LVEDV), 

inotropic stimulation increases SV/CO but this is reduced in a failing heart.  This is in 

part due to reduced sarcoplasmic endoplasmic reticulum calcium ATPase expression, 

resulting in a depressed contractile state at a given calcium concentration (50). 

Bearing these principles in mind, one would expect an ideal marker of cardiac 

function to distinguish intrinsic contractile properties in health from that of a 
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diseased state.  It should also track and reflect contractile state following positive 

and negative inotropic stimulation.  A predictable response to load change is also 

essential to aid meaningful clinical interpretation.  Many parameters derived from 

invasive conductance catheter studies and echocardiography are used as markers of 

cardiac contractile function.  It is therefore reasonable to expect these parameters 

to respond to changes in preload and to reflect the Frank-Starling mechanism.  Some 

parameters (Ees, IVA) are considered preload-independent markers of contractile 

properties, whilst most other parameters (SV, CO, EF, TDI s’, 2DSTE strain, LV 

torsion) are sensitive to changes in preload.  In the following sections, I shall discuss 

how these indices respond to changes in preload that were observed using PV loops 

(section 1.3.1), and then I shall review studies in which the effects of altering load 

were investigated using echocardiography (section 1.4). 
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Figure 1 Schematic representation of Frank-Starling curve, adapted from 

Anesth Pain Res (48). 
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Data from pressure-volume (PV) loops obtained using conductance 

catheters during invasive studies were long considered the working standard in the 

investigation and diagnosis of heart disease.  To describe the pressure-volume (PV) 

relation (51) of the heart briefly, at end-diastole mitral valve closure is followed by 

isovolumetric pressure rise. Maximal positive pressure change (max positive dp/dt) 

occurs before or at aortic valve opening, and left ventricular ejection follows.  At 

end-systole, aortic valve closure precedes isovolumetric pressure decline until 

mitral valve opens and left ventricular diastolic filling occurs.  Maximum negative 

pressure decline (max negative dp/dt) occurs after aortic valve closure and 

isovolumetric relaxation of the left ventricle follows.  The time course of this 

isovolumetric pressure decline is exponential (52–54) and the pressure decay can 

be characterised by a time constant (55) Tau. The end-systolic pressure-volume 

intercept point is Emax.  The slope of serial readings of Emax, produced by altering 

afterload and inotropic status in consecutive experiments, is the end-systolic 

pressure volume relationship (ESPVR) or end-systolic elastance (Ees).  Stroke volume 

(SV) is the difference of end-diastolic volume (LVEDV) and end-systolic volume 

(LVESV).  Ejection fraction (EF) is the percentage of SV/LVEDV.  LVEDP and LVEDV 

are widely accepted as markers of left ventricular filling (preload).  EF, maximal 

positive dp/dt and Ees are markers of LV contractile function.  Maximal negative 

dp/dt and Tau are markers of diastolic function of the LV.   

Figure 2 shows a schematic representation of the left ventricular PV loop, 

adapted from Comprehensive Physiology (56).  Point A denotes end-diastole, mitral 

valve closure, and the onset of isovolumetric contraction (ICT).  Point B denotes the 
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point whereby LV pressure exceeds that is necessary for aortic valve opening and 

the onset of ejection.  Point C denotes end-systole and aortic valve closure.  This 

point, the end‐systolic pressure‐volume point, is used to develop the end‐systolic 

pressure volume relation (ESPVR).  Point C is also the onset of isovolumetric 

relaxation (IVRT).  Point D denotes the end of the isovolumetric relaxation phase, 

opening of the mitral valve, and the onset of diastolic filling.  This phase of diastole 

can be used to develop the diastolic pressure‐volume relation.  Both the end‐

systolic and end‐diastolic pressure‐volume relationships are determined by plotting 

values with acute changes in LV loading conditions to develop a family of LV 

pressure‐volume loops and are shown here for illustrative purpose only.   

In the following section, I will discuss the pressure-volume/time relationship 

of the heart and its response to changing load within a physiological range.   
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Figure 2 Schematic representation of a left ventricle pressure-volume loop. 

Adapted from Spinale FG. Compr Physiol. 2015 Sep 20;5(4):1911-46. doi: 

10.1002/cphy.c140054. 

https://www.ncbi.nlm.nih.gov/pubmed/26426471
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1.3.1 Effect of load on PV loop measurements 

1.3.1.1 Animal models 

In an isolated canine heart model, Weiss et al (55) demonstrated the effect 

of changing heart rate, preload and inotropy on left ventricular pressure in 

isovolumetric hearts. Following maximal negative dp/dt, the pressure-time-course 

relationship of the left ventricle proved to be exponential, and it is characterised by 

the index Tau.  A shortened Tau from the control state would indicate an increase 

in active left ventricular relaxation.  Maximum negative dp/dt was sensitive to 

change in preload, heart rate, inotropy and ischaemia.  Unlike maximal negative 

dp/dt, Tau index did not change with alteration in preload and heart rate, but was 

sensitive to the altered inotropy and ischaemia.  This study concluded that Tau 

index reflects the intrinsic active relaxation property of the heart.  Its insensitivity to 

physiological changes (preload and heart rate) makes it a more robust index 

compared to maximal negative dp/dt in the assessment of early diastolic cardiac 

function.  

Using a similar canine model, Kass et al (57) studied the effects of changing 

load and altered inotropy on systolic contractile indices. They used right atrial 

pacing to maintain a constant heart rate and to eliminate the Treppe effect (force-

frequency relationship) on these measurements.  They studied the effects of 

altering preload and afterload by manipulating a balloon in the vena cava and 

descending aorta.  The authors reported preload dependency of left ventricular 

end-diastolic volume (LVEDV) and pressure (LVEDP), stroke volume (SV), ejection 

fraction (EF) and maximal positive dp/dt.  Afterload change had an inverse 

relationship with stroke volume (SV), ejection fraction (EF) and maximal positive 
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dp/dt.  Altered inotropy changed ejection fraction (EF), maximal positive dp/dt and 

LV end-systolic elastance (Ees).  Ees tracks inotropy change but was insensitive to 

changes in preload and afterload in the range studied in this experiment.  

In summary, the above animal experiments (55,57) demonstrated preload 

dependence of LVEDP, LVEDV and SV. Systolic indices (maximal positive dp/dt, EF) 

and diastolic indices (maximal negative dp/dt) are both preload and afterload 

sensitive.  Two indices (Ees and Tau) are load insensitive and reflect changes in 

contractile state.  Human studies have since replicated these findings from animal 

studies.  I will discuss these studies in the next section.  

 

1.3.1.2 Human models 

Quinones et al (58) studied the effect of changing load in 14 patients 

undergoing cardiac catheterisation. The majority of these patients (12/14) had 

normal LV systolic function and all had normal coronary arteries.  Right atrial pacing 

kept heart rate constant during the study.  They used fluid (dextran or normal 

saline) infusion to increase preload (LVEDP) to >10-15mmHg, an increase of 7-

10mmHg from baseline value.  Afterload was increased (a rise in LV systolic 

pressure of 15-60mmHg) by infusion of angiotensin.  Maximal positive dp/dt was 

sensitive to changes in preload and afterload (an inverse relationship).  

Penicka et al (13) performed cardiac catheterisation and echocardiography in 30 

subjects with stable symptoms of dyspnoea who had normal left ventricular 

ejection fraction >50%. To study the effect of different loading conditions and 

contractile states, the subjects were studied at rest, during handgrip exercise (an 
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increase of afterload), leg lift (an increase of preload), nitroprusside infusion (a 

decrease of preload and afterload) and dobutamine infusion (an increase in 

contractile state) consecutively.  Following manipulation of preload and afterload it 

was clear that left ventricular volumes (LVEDV) and pressures (LVEDP), cardiac 

output (CO), ejection fraction (EF), heart rate and end systolic blood pressure were 

responsive to a change in load with different sensitivity.  However, only following 

dobutamine infusion was an increase seen in the end systolic left ventricular 

elastance (Ees) and maximal positive pressure change of the left ventricle (max 

positive dp/dt).  Their results are summarised in Table 1-2.   



Chapter 1 

15 

Table 1-2 Effect of load and inotropy on PV loop derived measurements (13) 

 ↑ preload 
by leg lift 

↑ afterload 
by hand grip 

↓ preload and 
afterload by 

nitroprusside 
infusion 

↑ contractile 
state by 

dobutamine 
infusion 

Change in 
LVEDP 

↔ ↑ 7 mmHg ↓ 8 mmHg ↓ 5 mmHg 

Change in 
LVESV 

↔ ↑ 8 ml ↓ 11 ml ↓ 17 ml 

Change in 
LVEDV 

↔ ↔ ↓ 19 ml ↓ 23 ml 

Change in HR ↔ ↔ ↔ ↑ 16 bpm 

Change in CO ↔ ↔ ↔ ↑ 1.2 l/min 

Change in EF ↔ ↔ ↑ 6 % ↑ 8 % 

Change in 
ESBP 

↔ ↑ 29 mmHg ↓ 30 mmHg ↓ 18 mmHg 

Change in Ees  ↔ ↔ ↔ ↑ 1.2 mmHg/ml 

Change in 
maximal 
+dp/dt  

↔ ↔ ↔ > two fold ↑ 

Change in Tau  ↔ ↔ ↔ ↔ 
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In summary, PV loop studies in humans showed identical results to those in 

animals.  Contractile indices, Ees (systole) and Tau (diastole), are load insensitive.  

Other PV loop derived measurements (LVEDP, LVEDV, SV, EF, and maximal 

positive/negative dp/dt) reflect LV filling pressure, systolic and diastolic function 

but are preload and afterload sensitive even within a physiological range.  The 

effects of load manipulation, changing heart rate and altered inotropy on pressure-

volume loop derived measurements in animals and humans are summarised in 

Table 1-3. 

Therefore, clinical interpretation of these (derived from PV loops) 

measurements must take into account the state of loading, before drawing a 

meaningful conclusion.  Because they are invasive measurements, however, that 

are time-consuming to acquire and that need considerable expertise for 

interpretation, they are not relevant for routine use in elderly patients with 

suspected HFpEF.  Echocardiography, a non-invasive and easily accessible 

investigation, is widely accepted as a diagnostic tool.  In the following section, I will 

discuss validation studies using echocardiography compared with cardiac 

catheterisation.   
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Table 1-3 Effect of heart rate, load, and inotropy on PV loop derived measurements. 

Study Intervention LV VOLUME LV PRESSURE SYSTOLIC INDICES DIASTOLIC INDICES Ees 

EDV SV LVEDP EF +dp/dt -dp/dt Tau 

(55) Preload ↑ ↑ ↑ ↑ Not studied ↑ ↔ Not studied 

Heart rate↑ Not studied Not studied ↑  ↓ Not studied 

Inotropy↑ Not studied Not studied ↑  ↓ Not studied 

(57) Preload ↑ ↑ ↑ ↑ ↔ ↑ Not studied 

Afterload ↑ ↔ ↓ ↔ ↓ ↓ Not studied 

Inotropy↑ ↔ ↑ ↔ ↑ ↑ 
Not studied 

↑ 

(58) Preload ↑ Not studied ↑ Not 
studied 

 

↑ Not studied 

Afterload ↑ Not studied ↔  ↓ Not studied 

(13) Preload↑ ↔ ↔ ↔ ↔ ↔ Not 
studied 

 

↔ ↔ 

Afterload↑ ↔ ↓ ↔ ↔ ↔ ↔ ↔ 

Nitroprusside ↓ ↔ ↓ ↔ ↔ ↔ ↔ 

Dobutamine ↓ ↑ ↓ ↑ ↑ ↔ ↑ 
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1.4 Validation of echocardiography against PV loop 

measurements 

As mentioned before, echocardiography is non-invasive.  Direct visualisation 

of the cardiac structures is possible with high temporal and spatial resolution.  

Doppler flow study, tissue Doppler imaging and speckle tracking add further useful 

information regarding the structure and function of the heart.  In this section, I will 

review validation studies using invasive catheters and echocardiography.  For ease 

of narration, I will discuss first systolic indices and then diastolic indices.  

 

1.4.1 Echocardiography in the assessment of left ventricular systolic 

function 

As discussed in previous sections (section 1.2.2), invasively derived left 

ventricular end systolic elastance (Ees) from PV loop studies is a good marker of 

underlying contractile state.  It tracks changes across a range of contractile states 

predictably and is preload and afterload insensitive, at a constant heart rate.  

Hence, the search for a similarly robust index using non-invasive modality such as 

echocardiography is at the heart of many studies.  

 

1.4.1.1 Non-invasive estimation of Ees  

In this section, I shall first discuss briefly the gold standard of invasive 

estimation of Ees, followed by the single beat method of invasive Ees estimation, and 

finally the non-invasive estimation of Ees.  Suga et al (59) used a supported excised 



Chapter 1 

19 

denervated canine heart model to study the instantaneous pressure-volume 

relationship (ESPVR) of an ejecting left ventricle. They used an infusion of 

epinephrine to alter inotropy and atrial pacing to alter heart rate.  They produced 

consecutive pressure-volume curves under different loading conditions.  The group 

found that the end-systolic left ventricular pressure-volume intercept (Emax) is load 

independent and tracks contractile state change.  Later, Suga and Sugawa (60) 

reported on another experiment using an excised, supported canine heart model.  

They studied the instantaneous pressure-volume relationship of the left ventricle 

during isovolumic and auxobaric (constant volume with varying load) contraction.  

Repeated experiments with inotropes and various loads produced consecutive 

pressure-volume curves of the left ventricle.  The authors again found that Emax is 

load independent and tracks contractile state of the left ventricle. 

Emax, end-systolic pressure-volume intercept of the left ventricle thus 

provides a useful assessment of the contractile state independent of loading 

condition.  Linear regression of Emax from consecutive PV loops produces a line of 

ESPVR and its slope is Ees.  Ees is a load independent contractile index of the left 

ventricle.  However, the main limitation of quantifying Emax  and Ees by the methods 

(59,60) described above is the cumbersome need to acquire multiple cardiac cycles 

at varying loading conditions.  

Sunagawa et al (61) in 1980 were the first to have developed a line fitting 

mechanism for estimating the pressure-volume intercept at end diastole in a canine 

model using a single beat.  Igarashi et al (62) took this further and used another 

canine open chest model to develop a method for estimation of Emax and Ees by 

assuming the linearity of ESPVR line within a physiological range of loads.  Takeuchi 
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et al (63) tested this single-beat estimation method of Ees in human subjects against 

the conventional method of performing serial PV loops.  They found the single beat 

PV loop study estimated Ees has good correlation and agreement to the actual 

measured Ees by conventional iterative PV loop method.  The studies (59–63) 

described so far only included human and animal subjects with normal hearts.  For 

this method of single beat estimation of Ees to be of clinical relevance, it needs to be 

applicable to subjects with normal and impaired cardiac function. 

Senzaki et al (64) developed a different single beat method of estimation of 

Ees in human subjects, by deriving the normalised time-varying elastance(EN(tN)) 

curves. The left ventricle is an elastic structure that stiffens and relaxes during the 

cardiac cycle in a predictable time course.  This changing pressure-time relationship 

in a cardiac cycle is the time-varying elastance.  The authors found that EN(tN), 

normalised time-varying elastance,  in humans was consistent across a wide 

spectrum of cardiac disease, contractility, loading and heart rate.  They then used 

this normalised time-varying elastance to estimate Emax and Ees in a single PV loop.  

The values estimated by this method were well correlated and agreed with the 

values produced by serial PV loop measurements.   

Another canine model study (65) reported by Shishido et al used the time-

varying elastance to estimate Ees in a single beat PV loop and found similar results 

to that of the Senzaki group.  Estimated Ees was well correlated and agreed with the 

values produced by serial PV loops.  It is also afterload insensitive, and tracks 

change in cardiac contractile state.  These studies (64,65) laid the path for non-

invasive estimation of Ees with the knowledge of a constant EN(tN).  



Chapter 1 

21 

Kim et al (66) modified the single beat method estimation of Ees developed 

by Shishido et al (65) using echocardiography. They assumed an EDP value of 

10mmHg.  A combination of arm cuff blood pressure readings, biplane method EF 

and stroke volume, Doppler flow derived pre ejection period (PEP) and ejection 

time (ET) produced an estimated Ees reading.  They validated this method in juvenile 

sheep against the gold standard method of producing Ees with iterative PV loops.  

They found that non-invasively estimated Ees has good correlation (Pearson’s 

R=0.79) and agreement (mean difference of 0.1 ± 0.6 mmHg/ml) with invasively 

derived Ees.   

Tanoue et al (67–70) first derived a much simpler single beat estimation of 

Ees in canines and later validated this non-invasively in children undergoing cardiac 

surgery. Only arm cuff systolic blood pressure and biplane ESV from 

echocardiography are required for this calculation.  Estimated Ees correlated well 

(Pearson’s R=0.966) with gold standard Ees with a small mean difference between 

the measurements. 

Chen et al (71) derived a non-invasive method for Ees estimation, assuming 

the constant normalised left ventricular elastance EN(tN) described before (64,65). 

They made an empirical estimation of normalized population-average elastance at 

the onset of ejection fitted by a 7-degree polynomial to the ratio of pre ejection 

time (PEP) to total systolic ejection time (ET) measured by spectral Doppler.  This, in 

combination with arm cuff blood pressure, left ventricular volumes and EF derived 

from echocardiography yielded the non-invasive single beat estimated Ees.  The 

estimated Ees showed good correlation and agreement with the gold standard Ees 

measured from PV loop studies.  In addition, non-invasive single beat estimated Ees 
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has the same resistance to load change and tracks contractile state reliably as 

invasive Ees.  Redfield et al (72) studied the Ees using this method (71) in a 

community dwelling group of asymptomatic people of older than 45 years, with no 

established cardiovascular disease.  They found a range of Ees 1.74 mmHg/ml to 

2.46 mmHg/ml in this group.  Sasso et al (73) showed the single beat estimation 

(71) of Ees is feasible in dialysis patients. These values remained unchanged 

following dialysis.   

Although several studies (66,67,71) have validated the non-invasive Ees 

estimation against the single beat methods (61–65), the methodology in using 2D 

echocardiography cannot be truly ‘single beat’.  Biplane left ventricular volumes 

quantification using 2D echocardiography requires image acquisition in separate 

beats.  Herberg et al (74) used 3D echo and validated the single beat method 

against conventional iterative method for Ees. They found good agreement and 

correlation with the two methods.  Scali et al (75) used 3D echo and quantified Ees 

in normotensive, hypertensive and heart failure subjects using a single beat method 

as previously described (67).  They found normotensive and hypertensive subjects 

have higher Ees compared to subjects with heart failure.  Gayat el al (76) estimated 

Ees using 3D echo and compared the previous methods (65,66,71) of non-invasive 

quantification. They found significant difference in Ees in the two groups (healthy 

volunteers and subjects with dilated cardiomyopathy).  One method (66) was 

superior in providing clear cut-off values for separating the clinical subgroups.  
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1.4.1.2 Other systolic indices using echocardiography 

Greenberg et al (77) validated peak systolic tissue Doppler velocity (s’) and 

strain rate (SR) against PV loop in a closed-chest anaesthetised canine model. Low 

then high dose infusion of dobutamine and esmolol consecutively produced 

modulation of contractile states.  At each contractile state, inflation of a balloon in 

the inferior vena cava was used to obtain the ESPVR and measure Ees.  Using tissue 

Doppler imaging at the septal annulus, they measured peak tissue Doppler velocity 

in systole (s’) and peak systolic strain rate (SR).  Their study found that expectedly, 

end systolic elastance Ees tracked the changes in inotropy at every stage of the 

experiment.  Septal annular s’ and peak systolic SR correlated well with Ees with 

Pearson’s R=0.75 and R=0.94 respectively.  Measurements of s’ and SR were in 

good agreement with measurements of Ees, as tested by the Bland-Altman method.  

Similarly, Gorcsan at al (78) found good correlation of radial s’ (r=0.85) with Ees 

measurements in a PV loop validation study in open-chest dogs using dobutamine 

and esmolol infusion to alter contractile state. 

Understandably, the invasive nature of PV loops limits its use in subsequent 

validation studies with echocardiography.  In addition, Ees is a global contractile 

index and does not provide specific information on regional cardiac function.  

Hence, TDI derived strain (S) and strain rate (SR) have been validated using 

alternative techniques such as sonomicrometry (79,80) in animals and MRI tagging 

(80,81) in humans. 

Urheim et al (79) used an intact anaesthetised canine model whereby sub-

endocardial ultrasonic crystals were implanted and connected to a 
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sonomicrometer. Instantaneous change in dimension and length during the cardiac 

cycle was used to calculate strain (S), strain rate (SR) and LV volumes.  Strain (S), by 

definition, is the percentage change per unit length and tt can be expressed in 

absolute terms or as a percentage.  Strain rate is the rate of this change expressed 

in 1/s. Conductance catheters generated LV pressure-volume loops for the study.  

Standard apical images were acquired using echocardiography.  Tissue Doppler 

imaging (TDI) generated a time-velocity graph, from which a measurement of peak 

systolic tissue Doppler velocities (s’) was possible.  Time-integration of the TDI 

graph produced a strain (S)-time graph and peak longitudinal strain (Ssystole) can 

be measured.  The integration of the strain graph against time produced the strain 

rate (SR) graph.  They then compared the values of S and SR measured by 

sonomicrometry to those derived from tissue Doppler imaging.  Pericardial 

dissection of the heart and brief balloon occlusion of the left anterior descending 

artery (LAD) allowed assessment of the effect of ischaemia on these indices.  At 

baseline, S and SR values measured by sonomicrometry were no different from that 

derived using TDI echocardiography, provided the images were in the same axis 

orientation.  These measurements showed a good (r=0.92) correlation.  During 

transient LAD occlusion, the left ventricular apex became dyskinetic.  Apical s’ 

changed from a positive to negative value.  S and SR graphs showed systolic 

expansion rather than compression.  Basal (circumflex territory) S and SR remained 

unchanged.  Basal s’ decreased significantly possibly reflecting the loss of function 

in the apical segments.  The authors concluded that non-invasive TDI derived S and 

SR measurements are comparable to those measured invasively using 
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sonomicrometer.  In addition, these regional indices of LV contractile function are 

sensitive to track change in regional perfusion and inotropy. 

Edvardsen et al (81) validated the use of TDI derived radial and longitudinal 

strain (S) measurements against 3-dimensional MRI tagging. They studied healthy 

subjects, patients with ischaemic regional wall motion abnormality, and patients 

undergoing dobutamine stress echocardiography for investigation of chest pain.  

Across a range of values in all groups, there was a strong correlation for radial 

(r=0.92) and longitudinal (r=0.84) strain derived using the two methods.  

Measurements obtained using these two modalities as tested (Bland Altman 

method) were in good agreement. 

A major limitation of using TDI and the derived s’, S and SR measurements, 

is its dependency on the axis orientation at time of image acquisition.  Two 

dimensional speckle tracking (2DSTE) provides a solution independent of the axis 

orientation during image acquisition.  Amundsen et al (80) validated 2DSTE 

longitudinal strain against sonomicrometry in animals and found good correlation 

(r=0.9) and agreement between the two modalities. In humans, they validated 

2DSTE longitudinal strain against MRI tagging and found similar correlation (r=0.87) 

and good agreement.  Langeland et al (82) validated 2DSTE longitudinal and radial 

strain against sonomicrometry in an open-chest sheep model. They used an 

infusion of esmolol or dobutamine to induce altered cardiac inotropy. 2DSTE strain 

had good correlation and agreement (by Bland Altman method) with 

sonomicrometry strain. Strain derived from both methods (sonomicrometry and 

2DSTE) reliably tracked the altered contractile states produced in their experiments. 
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The helical structure (83) of the left ventricle has fibres gradually changing 

orientation from the sub-endocardium to the mid-wall and the epicardium (84,85). 

The opposite orientations of the sub-endocardial and epicardial fibres result in the 

clockwise rotation in the base, anti-clockwise rotation in the apex, and shortening 

of the left ventricle major axis in systole.  This systolic wringing motion causes left 

ventricular ejection, followed by rapid untwisting of the fibres in diastole, allowing 

subsequent filling.  Non-invasive assessment of left ventricular torsion (86) using 

2DSTE correlates well and agrees with sonomicrometry in dogs (r=0.94) and MRI 

tagging in humans (r=0.85).  

In summary, TDI derived systolic indices like septal annular longitudinal s’, 

peak systolic longitudinal SR and radial s’ showed good correlation and agreement 

with the Ees when validated against PV loop studies.  Later, validation studies of 

sonomicrometry in animals and MRI tagging in humans showed good correlation 

and agreement for tissue Doppler longitudinal s’ and SR in detecting regional 

differences in cardiac function.  However, its accuracy is dependent on the axis 

orientation of the image at time of acquisition.  2DSTE and its angle independent 

derived longitudinal strain, strain rate and left ventricular torsion measurements 

correlated well with measurements from sonomicrometry in animals and MRI 

tagging in humans.  In the following section, I will turn our focus to the diastolic 

parameters and validation studies in the diagnosis of HFpEF. 
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1.4.2 Echocardiography in the assessment of left ventricular diastolic 

function 

Zile et al (27,28), studied stable patients with a previous clinical diagnosis of 

congestive heart failure using cardiac catheterisation and concomitant 

echocardiography. These subjects had normal left ventricular dimensions, ejection 

fraction (>50%) and left ventricular hypertrophy.  At the time of cardiac 

catheterisation, almost all (92%) had elevated LVEDP (>16mmHg) and a majority 

(79%) had prolonged Tau (>48ms).  However, fewer had abnormal 

echocardiographic indices consistent with diastolic dysfunction (isovolumetric 

relaxation time IVRT 38%, early diastolic filling velocity E 40%, late diastolic filling 

velocity A 50%, ratio E/A 40% and early diastolic filling deceleration time DT 64%).  

Since all the subjects were fasted for twelve hours prior to catheterisation, the 

‘diagnostic insensitivity’ of the echocardiographic filling indices was perhaps down 

to the ‘load sensitivity’ of these indices. 

Kasner et al (87) studied 43 subjects with symptoms of HFpEF by PV loop 

analysis followed by echocardiography 3-5 hours later. They recorded transmitral 

Doppler blood flow velocities and tissue Doppler (TDI) velocities at the lateral 

annulus.  All the patients had elevated LVEDP (>12mmHg) and prolonged Tau 

(>48ms).  Fewer patients had abnormal conventional Doppler indices consistent 

with diastolic dysfunction: 50% E/A, 44% IVRT and 49% DT.  Moderate correlation of 

Tau was found with E/A (r=-0.36) and IVRT(r=0.31) respectively.  DT correlated 

moderately with LVEDP (r=0.30).  A filling ratio of early diastolic blood flow velocity 

to early diastolic tissue velocity, E/e’, correlated with LVEDP (r=0.71), Tau (r=0.34) 

and was abnormal in 86% of the patients.  The authors therefore proposed that the 
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combined tissue Doppler and transmitral blood flow Doppler velocities (filling ratio 

E/e’) increase detection (ROC 84% sensitivity) of elevated left ventricular end 

diastolic pressure and impaired active LV relaxation.  

Kasner et al (88) later studied similar patients with concomitant PV loop and 

echocardiography. Conventional and tissue Doppler imaging, 2 dimensional speckle 

tracking (2DSTE) were used.  They noted the strain rate at isovolumetric relaxation 

time (SRIVR), early diastole (SRE) and late diastole (SRL).  Similar to previous studies, 

they found elevated LVEDP (>16mmHg) and prolonged Tau (>48ms) were apparent 

in these patients.  The diagnostic sensitivity of the conventional and tissue Doppler 

velocities was identical to the previous studies(27,28,87). Using 2DSTE and strain 

rate (SRIVR, SRE and SRL) did not improve the detection beyond that of combined 

tissue and conventional Doppler indices.  

Much later, in a European multi-centre study (42), patients with normal and 

reduced EF were studied simultaneously using conductance catheter and 

echocardiography. Patients with elevated LVEDP had a LVEDP of ≥15mmHg.Several 

echocardiographic indices were used in combination to estimate LV filling pressure.  

In asymptomatic patients with normal EF, LV filling pressure was considered 

elevated if >2 parameters (septal e’<7cm/s or lateral e’<10cm/s, averaged E/e’>14, 

LAVI >34ml/m2, tricuspid regurgitation velocity jet >2.8m/s) are present. In patients 

with symptom of heart failure regardless of EF, LV filling pressure was estimated to 

be elevated if E/A ≥2.  For those with intermediate values (E/A <0.8 and E>0.5m/s 

or E/A >0.8 but <2), LV filling pressure was considered elevated if >2 parameters 

were present (averaged E/e’>14, LAVI>34ml/m2, TR velocity >2.8m/s).  The study 

found that these criteria correctly identify patients with elevated LVEDP 79% of the 



Chapter 1 

29 

time.  Amongst patients with LVEF>50%, each of the echocardiographic parameters 

showed modest correlation with LVEDP, E (r=0.27), E/A (r=0.23), DT (r=0.32), e’ 

(r=0.17) and lateral E/e’ (r=0.20). 

Thus far, studies(27,28,87,88) suggest that patients with HFpEF are 

characterised by elevated LVEDP and abnormal diastolic relaxation (prolonged Tau), 

despite normal EF. Doppler blood flow velocities and derived measurements (E/A, 

IVRT, DT) showed moderate correlation with Tau and LVEDP but lacked diagnostic 

sensitivity (40-50%).  Filling index (lateral E/e’) has improved diagnostic sensitivity 

(86%) and correlates with PV loop measurements of LVEDP and Tau. 2DSTE and 

strain rate did not improve the diagnostic sensitivity beyond what was previously 

shown using filling index of E/e’.  Using a combination of echocardiographic indices 

(e’, E/e’, LAVI, TR velocity, E/A and E) improves the correct diagnosis of elevated 

LVEDP to 79% (42). 

None of the validation studies (discussed in section 1.2.3) examined the 

effect of preload on the studied indices.  Since echocardiography indices correlated 

and were in good agreement with those indices obtained from PV loop studies, it 

would be logical to assume similar preload dependency, as demonstrated 

separately with the PV loop indices.  To perform well as a diagnostic tool, an index 

would have to reflect and track contractile state, across a range of physiological 

conditions, in a constant or a predictable manner so that useful clinical conclusion 

may be drawn.  In the next section, I will discuss how changes in preload affect 

these echocardiographic indices in animal and human studies. 
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1.5 Effect of load on echocardiographic assessment of cardiac 

function 

Many animal and human models demonstrated the effect of changing load 

on echocardiographic assessment of cardiac function.  In this section, I will first 

discuss the findings in animal models, followed by the findings in human models. 

1.5.1 Animal models 

Using invasive pressure volume loop and simultaneous tissue Doppler 

echocardiography, Vogel et al (89) studied the effects of reducing preload (inferior 

vena cava occlusion), increasing afterload (intra-aortic balloon inflation)and altering 

inotropy (by infusion of esmolol and dobutamine) at a constant heart rate (right 

atrial pacing at 130bpm) in pigs. They also studied the force frequency relationship 

by pacing the right atrium at a heart rate range of 120-180bpm at constant preload 

and afterload.  The authors used Tissue Doppler imaging at the lateral annulus of 

the left ventricle and produced a velocity time graph.  Two indices: peak systolic 

tissue Doppler velocity (s’) and isovolumetric acceleration (IVA) were measured 

from the graph.  IVA occurs before or at the onset of mitral valve closure and 

precedes s’.  The rate of change of tissue velocity during this isovolumetric time is 

IVA and it is expressed in cm/s2.  Left ventricular pressure, volume and the maximal 

rate of pressure change (maximal positive dp/dt) before or at onset of systole were 

determined from the pressure-volume loop.  Left ventricular ESPVR or left 

ventricular end-systolic elastance (Ees in mmHg/ml) were derived from serial 

pressure volume intercept at the left corner of the PV loops.  A small (↓ LVEDV by 

5ml or 10%) preload reduction reduced LVEDP, maximal positive dp/dt and systolic 
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peak myocardial tissue velocity (s’).  There was no change in Ees and IVA.  A modest 

(↑ 30mmHg or 30%) afterload rise increased LVEDP, and maximal positive dp/dt but 

reduced s’.  There was no change in IVA.  The authors did not report the effect this 

had on Ees in their experiment.  IVA, s’, max positive dp/dt and Ees reliably tracked 

and reflected the pharmacologically imposed and altered inotropy.  Increasing 

heart rate had the expected effect on IVA, s’, and maximal positive dp/dt, all of 

which showed an increase.  Ees did not change.  

Urheim at al (79) studied effect of preload change in a canine model 

validated against implanted sonomicrometer. Saline infusion was used to increase 

preload (LVEDP) by 60% (around 10mmHg).  They took measurements of TDI 

derived longitudinal s’, S, SR at baseline and after preload increase.  They produced 

Ees using the iterative method at baseline and after preload manipulation by balloon 

venal caval occlusion.  They found preload increase did not affect the contractile 

index Ees but there was an increase in s’, S and SR.  

In another porcine intact heart model, A’roch et al (90) studied the effect of 

changing preload at different contractile states. Balloon vena caval occlusion 

produced a physiological range (within 10% of the baseline LVEDV) of preload 

changes.  They altered cardiac contractility either by using an infusion of adrenaline 

(enhanced contractile state) or an infusion of beta-blocker (depressed contractile 

state).  Radial and longitudinal peak systolic velocities (s’) and strain rate (SR) were 

assessed using tissue Doppler imaging.  The basal inferior wall in the parasternal 

long axis view provided s’ and SR for radial function assessment.  The basal septal 

wall in the apical 4-chamber view yielded s’ and SR for longitudinal function 
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assessment.  The authors found that at a constant preload and heart rate, radial 

and longitudinal s’ tracks changes in inotropy but SR did not.  Preload reduction at 

baseline contractile state did not change radial and longitudinal s’, radial SR but 

there is a decrease in longitudinal SR.  Similarly, preload reduction in an increased 

contractile state, did not change radial and longitudinal s’ and SR. However, preload 

reduction in a depressed contractile state, caused a reduction in longitudinal s’ and 

SR, and reduced radial SR but radial s’ remained unchanged.  The study concluded 

that radial s’ is preload insensitive within a normal physiological range (10% of 

baseline LVEDP).  Longitudinal s’ and SR are sensitive even to a small preload 

reduction.  

Another study used an isolated canine heart model, MRI tagging and 

echocardiography (91). The authors demonstrated that left ventricular torsion was 

sensitive to change in inotropy (dobutamine infusion), as well as to a small change 

in preload (increase of 3 mmHg LVEDP) and afterload (5 mmHg increase in peak 

systolic pressure).  Preload increase led to an increase in left ventricular torsion 

whilst afterload increase led to a reduction in left ventricular torsion.  

In summary, animal models have shown some echocardiographic indices of 

cardiac contractile function (torsion, TDI derived longitudinal s’, S and SR) are 

preload sensitive to a differential degree, detecting even a small reduction/rise in 

preload.  TDI derived IVA, radial s’ and SR are resistant to preload changes within a 

normal physiological range. 

In the following section, I will discuss findings in humans using different 

clinical models.  Unlike animal studies, which were designed for a specific purpose, 
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human studies have often been opportunistic, used existing clinical situations, for 

example recruiting blood donors, dialysis patients, and symptomatic patients 

undergoing clinical investigations to evaluate the effect of changing preload on 

cardiac indices. 

 

1.5.2 Human: Healthy volunteer models 

Various clinical models exist in humans to investigate the effect of changing 

load on echocardiographic indices.  In this section, studies involving healthy 

volunteers are discussed first, followed by studies in symptomatic patients and 

finally by studies in dialysis subjects. 

Nineteen subjects with no cardiac history undergoing elective surgery 

indicated for non-cardiac reasons (49) were studied after preload expansion, given 

as hypervolaemic haemodilution to reduce blood loss in Jehovah’s witnesses.  After 

induction of anaesthesia, the investigators recorded transgastric images (end-

diastolic area and end systolic area) of the left ventricle mid-cavity short axis.  A 

radial arterial line and pulmonary wedge catheter provided invasive measurements 

of cardiac output (CO), stroke volume (SV), pulmonary capillary wedge pressure 

(PCWP) and blood pressure.  Fluid infusion of 3 litres over 45 minutes, done in three 

stages of 1 litre over 10 minutes consecutively produced rapid and significant 

volume expansion.  After the first litre, there was a decrease in heart rate and an 

increase in blood pressure.  These did not change with subsequent fluid volume 

expansion.  PCWP increased linearly with volume expansion.  End-diastolic area of 
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the LV, SV and CO increased initially but remained unchanged thereafter suggesting 

pericardial constraint.  

Another study (92) used rapid infusion of isotonic saline (rate of 30ml/kg 

over 15 minutes), administering between 1.5 to 3 litres to healthy subjects. This did 

not produce a change in heart rate or blood pressure (constant afterload and heart 

rate).  Stroke volume (SV) was calculated by velocity time integral method and 

cardiac output was calculated from SV and heart rate.  EF was calculated from the 

modified area and length method in the apical 4-chamber view.  The increase in 

preload produced an increase in left atrial volume (LAV), left ventricular end-

diastolic volume (LVEDV), cardiac output (CO), stroke volume (SV), septal and 

lateral mitral annular early diastolic velocities (e’), and the ratio of E/e’ at septal and 

lateral annuli.  However, there was no change in ejection fraction (EF), 

isovolumetric acceleration (IVA) in septal and lateral annuli, tissue Doppler derived 

septal and lateral annular strain rate (SR).  Peak longitudinal strain (S) in the basal 

septum increased significantly but did not change in the other segments (mid 

septum, basal and mid lateral segments).  

Healthy subjects undergoing saline infusion at resuscitative rate (3Ls over 3 

hours followed by 1L over 2 hours) have demonstrated expected results of load 

dependency using conventional echocardiographic parameters (93). There is an 

increase in LVEDV, a reduction of LVESV and subsequently an increase in SV and EF.  

These observed results were independent of heart rate or blood pressure changes 

at the end of the first 3 hours.  
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Healthy blood donors undergoing venesection (94) showed that a modest 

preload reduction (500ml over 10 minutes) did not change heart rate and systolic 

blood pressure.  The investigators performed echocardiography using Doppler 

blood flow and tissue Doppler velocities whilst the subjects maintained the same 

position immediately before and after venesection.  There was a significant 

reduction in early (E) and late (A) diastolic left ventricular filling and TDI derived 

longitudinal strain (S) in the basal septum.  In contrast, TDI velocities in basal 

septum (s’, e’ and a’) and SR did not change.  Other studies showed a small 

reduction of circulating volume in healthy population may produce transient 

change in heart rate and blood pressure,  but is well tolerated(95–97). The effect of 

blood donation on non-invasively derived cardiac output, heart rate and its effect 

on neuro-hormonal cascade has been previously studied (96–99). 

Following the combined results of the above studies(92,94,100) in healthy 

subjects, we are able to conclude that heart rate and blood pressure remain 

unchanged within a wide physiological range of preload (500ml reduction to 5L 

increase). Echocardiographic parameters are preload sensitive to various degrees.  

Diastolic Doppler flow (E, A) and basal septum longitudinal strain (S) are sensitive to 

even a small (500ml) reduction in preload. Some echocardiographic indices (s’, e’, 

EF) become load sensitive at larger preload change (1.5 L- 3 L) when an increase in 

LVEDV and E/e’ are also apparent.  Some indices (IVA, longitudinal TDI derived SR) 

are load insensitive even at significant preload change (3 L).  I will discussed studies 

in breathless patients undergoing catheterisation in the following section. 
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1.5.3 Human: Breathless patient models 

Another conductance catheter validated study (101) used 2DSTE in patients 

with normal ejection fraction (>50%) and normal regional wall motion. They 

performed echocardiography before and after intervention.  Nitroprusside infusion 

caused a significant change in LVEDP, LV peak systolic pressure, Tau, Ees and LV 

torsion.  Filling ratios (E/e’, E/A), tissue Doppler velocity (e’) and LV internal 

dimension in diastole (LVIDd) did not change.  The authors concluded that 2DSTE 

derived left ventricular torsion is preload and afterload sensitive.  However, as 

LVIDd, E/e’ and E/A remained unchanged despite drop in LVEDP, we are just as likely 

to conclude that torsion is sensitive to afterload manipulation at constant preload.  

Burns at al (102) examined the effects of sublingual GTN and rapid infusion 

of 750ml normal saline in elderly subjects undergoing investigations for chest pain. 

These subjects had a history of hypertension and relatively preserved ejection 

fraction (LVEF>45%).  Concomitant invasive pressure-volume data and 

echocardiography were performed. Conductance catheter derived measurements 

including maximal positive dp/dt, Tau and LVEDP were used to estimate the 

systolic, diastolic contractile properties and left ventricular filling pressure.  

Afterload was estimated by calculating wall stress which is derived from left 

ventricular internal dimension, posterior wall thickness and left ventricular end 

systolic pressure. In addition to previously discussed echocardiographic parameters 

(EDV, ESV, EF, E, A, E/A, e’, E/e’), left ventricular torsion was assessed using speckle 

tracking imaging (2DSTE).  Rotation and rotation velocity graphs were obtained 

using speckle tracking at the left ventricular apex and base.  To normalise for data 
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acquired at different cardiac cycles, all measurements were interpolated and 

expressed at percentage of cardiac cycle.  The difference of rotation and rotational 

velocities from the apex to base is the torsion and torsion velocities of the left 

ventricle.  Peak torsion, systolic torsion velocity, diastolic untwisting velocity were 

calculated from the graphs. Subjects were studied in a fasting state, followed by 

sublingual GTN administration. Following GTN administration, a steady state was 

reached for 15 minutes before data was acquired to serve as baseline for the fluid 

infusion.  

GTN reduced LVEDP by 7mmHg and fluid infusion increased LVEDP by 

7mmHg. Heart rate did not change after fluid infusion but increased after GTN.  

Maximal positive dp/dt, increased following GTN although Tau was unchanged.  

Fluid infusion caused a decrease in maximal positive dp/dt but an increase in Tau.  

Both modes of manipulation had the expected effect on echocardiographic indices.  

GTN produced a reduction in end diastolic and systolic volumes, a reduction of 

diastolic filling and ratio (E, A, E/A, e’), a reduction in wall stress, an increase in peak 

torsion and systolic twisting velocity but no change in diastolic untwisting velocity.  

Fluid infusion produced the opposite effect in left ventricular volumes and Doppler 

flow and tissue Doppler velocities.  No change in peak torsion and systolic twisting 

velocity were seen, but there was a reduction in diastolic untwisting velocity. 

Although EF increased following GTN administration, it did not change after fluid 

infusion. 

Burns at al concluded that their experiment reproduced similar and 

expected findings in the pressure-volume and echocardiography (volume, Doppler 
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and tissue Doppler studies) data.  They claimed that left ventricular torsion, systolic 

twisting velocity, and diastolic untwisting velocity are sensitive to change in load.  

Although the design of this experiment reflects real life clinical practice, it is difficult 

to isolate the independent effect of preload and afterload on these indices.  

Published separately, Burns et al (103) also reported on the change in 2-

dimenisonal circumferential and longitudinal S and SR. Parasternal short axis LV 

view and apical 4-chamber LV view were post-processed using 2DSTE. 

Circumferential and longitudinal systolic S, SR were averaged over the 6 segments 

in the respective views.  Following sublingual GTN, heart rate increased, LVEDP 

decreased, and peak systolic pressure decreased significantly.  Systolic S and SR 

both increased circumferentially and longitudinally.  Following fluid infusion, heart 

rate was unchanged, LVEDP and peak systolic pressure increased significantly.  

Circumferential and longitudinal S did not change but SR decreased significantly.  

These results suggest that provided heart rate is constant, increasing preload 

produces no change in 2-dimensional circumferential and longitudinal systolic 

strain.  Strain rate, however was sensitive to this small preload increase. 

 

1.5.4 Human: Haemodialysis patients model 

Haemodialysis patients undergo regular change in load at times of dialysis.  

They render themselves suitable subjects for investigation of the effect of load on 

echocardiographic parameters.  Bornstein et al (104) studied 10 dialysis patients 

with normal ejection fraction and no symptom of heart failure. Echocardiography 

and carotid pulse tracing were done simultaneously immediately before and after a 
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session of haemodialysis.  Left ventricular internal dimensions at end diastole 

(LVIDd) and systole (LVIDs) were measured from echocardiography.  Fractional 

shortening (FS) was calculated as (LVIDd-LVIDs)/LVIDs.  Ejection fraction (EF) and 

stroke volume (SV) were calculated using Teichholz method. Left ventricular 

ejection time (LVET) and pre ejection time (PEP) were calculated from the carotid 

pulse tracing.  Following 4-5 hours of dialysis at a flow rate of 250-300ml/min, there 

was significant weight loss, reduction in LVIDd, SV and LVET.  No change was seen in 

heart rate, systolic blood pressure, EF and FS.  No change in PEP was seen.  The 

study concluded that at constant heart rate and afterload, left ventricular volume 

and dimension, and ejection time are preload sensitive.  Indices of systolic function 

(EF, FS) were not preload sensitive at this given load change.  

Hung et al (105) studied 128 patients with no cardiac symptoms 1 hour 

before and after a session of haemodialysis using 2 dimensional echocardiography, 

Doppler flow and tissue Doppler imaging. Despite identical flow rate as the above 

study, there was a significant drop in systolic blood pressure and increase in heart 

rate after dialysis.  There was a predictable reduction in LVIDd, LVIDs, LVEDV, 

LVESV, SV, E, A, E/A, E/e’, e’.  They found a significant drop in septal (8%) and lateral 

(11%) e’, early diastolic filling velocity E (26%), septal E/e’ (11%) and lateral E/e’ 

(15%) following dialysis.  However there was no change in contractile indices (FS, 

EF) and late diastolic annular tissue velocity a’.  The effect of preload could not be 

separated from that of afterload and heart rate in this study.  However it seems FS, 

EF and basal annular a’ are load/heart rate insensitive.  
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Assa et al (106) studied subjects with normal range of brain natriuretic 

peptide before, during (60 minutes and 180 minutes into dialysis) and 30 min 

following a session of haemodialysis. Heart rate increased and systolic blood 

pressure fell significantly during and remained so following dialysis. Diastolic mitral 

inflow Doppler velocities (E, A,), filling ratio (E/A, E/e’) followed the same trend and 

reached significance. Doppler flow timing (DT and IVRT) were significantly 

prolonged. Similar to the study by Hung et al, this study reported the combined 

effect of preload/afterload reduction and increased heart rate. 

Drighill et al (107) studied asymptomatic uraemic patients using 

echocardiography before and after haemodialysis. There was no change in systolic 

blood pressure but heart rate rose significantly.  Diastolic mitral inflow velocities (E 

and A) and timing (DT), filling ratio (E/A, E/e’) behaved same as the above study.  

Their study showed a significant change in TDI systolic (17% and 13% in lateral and 

septal s’) and diastolic (4% and 23% in lateral and septal e’) velocities following 

dialysis.  The small change of lateral e’ is insignificant; this coupled with the large 

(31%) change of early diastolic blood pooled filling velocity E, resulted in the 

significant change in filling pressure, estimated using E/e’ in the lateral mitral 

annulus.  Septal E/e’ however remained unchanged.  Global contractile index (EF) 

remained unchanged but regional systolic velocity (s’) was significantly lower.  We 

may conclude that these changes are independent of afterload but it is impossible 

to separate the effect of preload from that of increased heart rate.  

Park et al (108) studied patients following a session of dialysis. They had 

significantly lower systolic blood pressure but unchanged heart rate following 
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dialysis.  LV dimension, volume, stroke volume, mitral inflow Doppler flow rate (E, 

A) and timing (IVRT, DT), filling pressure (E/A, E/e’), septal and lateral annular s’, 

septal annular e’ all decreased, perhaps unsurprisingly.  Ejection fraction (EF), 

lateral annular e’, septal and lateral annular a’ were unchanged.  

Vignon et al (109) studied the effect of differential load change following 

dialysis on cardiac function. They studied stable subjects undergoing routine 

scheduled haemodialysis (3L volume loss) and compared their response to those of 

critically ill patients maintained on vasopressor infusion.  The critically ill patients 

underwent ultrafiltration and lost 1.9l in volume although their blood pressure and 

heart rate did not change.  The stable subjects dropped their blood pressure after 

dialysis but had unchanged heart rate.  A 1.9l load change did not have an impact 

on E and mitral annular e’ but a 3l load change significantly reduced E (24%), septal 

e’ (17%) and E/e’.  Lateral e’ remained unchanged however.  Their results were 

similar to other studies that I have already summarised.  Although the results in the 

two groups cannot be compared directly, these results suggest that lateral annular 

e’ is resistant to reduction in preload (up to 3L).  In addition, septal annular e’ only 

becomes preload sensitive beyond 2L load change. 

Gerede et al (110) studied the effect of changing preload in dialysis patients. 

There was a small but significant change in systolic blood pressure (drop of 

7mmHg), heart rate (rise of 2 bpm) and an average weight loss of 2.8kg over 4 

hours.  They used conventional Doppler (E, A, DT, IVRT, MPI) and tissue Doppler 

imaging (lateral annular s’, e’,a’, modified MPI).  Modified MPI was calculated by 

measuring the time intervals from a TDI pulsed wave trace in the lateral annulus.  
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Duration of s’ was used in place of LVET, and isovolumetric time was calculated by 

subtracting duration of s’ from the cycle length.  They found consistent results in 

the preload dependency of LV dimension and conventional Doppler indices. LVEDD, 

LVESD, E, A decreased significantly, whilst IVRT, DT and MPI increased significantly.  

Using TDI, lateral s’ increased significantly but e’, a’ and modified MPI remained 

unchanged.  There was a small increase in isovolumetric time but no change in 

LVET. They concluded that TDI indices (e’, a’) and modified MPI are resistant to 

change in preload compared to conventional echocardiographic indices.  However, 

it is possible that if there was a bigger change in heart rate, modified MPI too will 

show load sensitivity. 

Hayashi et al (111) studied 13 patients before and after one session of 

haemodialysis. They used conventional Doppler indices and colour tissue velocity 

imaging (TVI).  There was an average weight loss of 2.3kg over 3-4.5hours.  The 

authors did not report heart rate and blood pressure before and following dialysis.  

Tissue velocities in eight segments (apical basal to mid septal, lateral, inferior and 

anterior walls) were averaged and reported as global systolic and diastolic 

functional indices.  Systolic indices included were tissue velocity at time of 

isovolumetric contraction (IVCv), peak systolic velocity (s’), and systolic strain rate 

(SR).  Diastolic indices were early and late diastolic tissue velocities (e’ and a’).  

Lateral mitral annular e’ was used to calculate E/e’.  Following dialysis, there was 

significant reduction in E, LVEDD, a’, e’, E/e’ whilst IVCv, s’ and SR increased 

significantly.  The authors concluded that tissue velocities are just as preload 
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sensitive as conventional Doppler indices.  However, as heart rate and blood 

pressure were not reported, it is difficult to generalise the results of this study.  

Sztajzel et al (112) studied the effect of dialysis on the LV filling pattern. 

Early diastolic blood flow velocity E dropped by 34% following dialysis.  Chakko et al 

(113) studied the effect of differential load on cardiac function on the same 

patients undergoing dialysis. There was no change in the LV dimension and early 

diastolic filling E following dialysis without fluid removal (average weight loss of 

0.5kg).  LV dimension (6%) and E (16%) were significantly lower following dialysis 

with fluid removal (average weight loss 3.4kg).  Fijalowski et al (114) studied dialysis 

patients and found septal e’ remained unchanged, but septal E/e’ dropped by 13% 

as E dropped by 15%.  

Amongst patients undergoing a single session of dialysis (115), with baseline 

normal EF (EF>50%), there was a reduction in filling ratio E/e’. A differential 

response was apparent in the systolic (s’) and diastolic (e’) TDI velocities amongst 

patient with diabetes and coronary artery disease.   

Galetta et al (116) studied the effect of dialysis on cardiac function.  

Following dialysis, there were no significant change in global EF, E, E/A. However, a 

significant reduction in lateral and septal s’ (25% and 22%), a significant reduction in 

lateral and septal e’ (31% and 24%) followed.  It is possible that a small change in E 

was not detected due to the high measurement variability. 

 



Chapter 1 

44 

1.6 Summary of effect of load on echocardiography indices in 

humans 

Thus far, studies in non-uraemic subjects have demonstrated that left 

ventricular contractile state is dependent on heart rate (force frequency 

relationship) at a given preload.  Assessment of cardiac function is complicated by 

the load sensitivity of routinely used indices.  Compared to echocardiographic 

indices (s’, IVA, MPI, SR), invasively derived contractile indices (Tau, Ees), are 

relatively load insensitive across a physiological range, but they are ultimately load 

dependent.  Provided loading and heart rate are taken into consideration, 

echocardiographic assessment provides good approximation to the underlying 

contractile state.  At a constant heart rate and afterload, echocardiography 

measurements for volumes (LVEDV, LVESV, LAV), dimensions (LVIDd, LVIDs), 

Doppler blood flow rate (E, A) and filling ratio (E/e’, E/A) are preload dependent.  

Some indices (TDI longitudinal s’, TDI e’, EF) are preload insensitive provided the 

change is small (500ml).  Other indices (MPI, SR and IVA) may be more useful if the 

change in preload is significant (1.5 to 3 L). 

Amongst asymptomatic stable haemodialysis patients, given constant 

afterload and heart rate, LV dimension is preload sensitive but regional and global 

contractile indices (FS and EF) are not. There is a differential load sensitivity using 

echocardiographic parameters (E, A, E/A, DT, IVRT, E/e’, s’, e’) at various 

combination of preload, afterload and heart rate change. Some tissue Doppler 

velocities (lateral annular e’, septal and lateral annular a’) appear relatively load 

insensitive compared to others (septal e’, septal and lateral s’).  Some global 
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contractile indices (EF and FS) are load insensitive across a range of preload, 

afterload, and heart rate.  They may track changes in contractile state relatively 

independent of load.  Although indices like SR, IVA proved to be load insensitive in 

non-uraemic subjects, we know little of how these indices may change following 

dialysis. 

 

1.7 Conflicting results of load dependency of 

echocardiographic indices in clinical models 

Echocardiography provides good assessment of cardiac contractile function 

when validated against pressure-volume loop, sonomicrometry, and MRI tagging in 

a range of clinical models.  However, its use for deriving clinical conclusion must 

take into account the loading conditions at the time of the study.  The extensive 

literature shared many similar findings but also some inconsistencies.  These are 

summarised in the following paragraphs. 

The shared findings of animal and human studies are: 

1. Left ventricular end diastolic volume and pressure (LVEDV, LVEDP), Doppler 

flow diastolic cardiac filling and its derived timings (E, A, E/A, DT, IVRT) are 

preload dependent.  Measurements of these indices are sensitive to even a 

small change of preload, at a constant heart rate and afterload.  

2. Tissue Doppler systolic velocities (s’), in particular longitudinal basal septal 

annular s’ are sensitive to even a small change in preload, from as little as 

10% or 500ml reduction in preload. 
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3. Tissue Doppler derived longitudinal strain (S) in basal septum is sensitive to 

a small change in preload, from as little as 500ml preload reduction and up 

to 60% increase in preload. 

4. Tissue Doppler derived longitudinal strain rate (SR) in basal septum is 

resistant to a modest change in preload (from 500ml to up to 3l) but 

becomes load sensitive beyond this range. 

5. Tissue Doppler derived septal e’ is resistant to a small preload change 

(500ml reduction) but becomes load dependent at greater preload change 

(>1.5l). 

6. Tissue Doppler derived lateral e’ is resistant to a modest preload change 

(1.5-3l). 

7. 2DSTE derived left ventricular torsion is preload sensitive and increases with 

a small preload reduction (up to 750ml). 

8. Global systolic function index EF is resistant to preload change of up to 3l 

but becomes load sensitive beyond 5l of change in preload. 

Despite the shared findings, there are some contradicting results: 

1. Tissue Doppler derived basal septal s’ may be resistant to a small change in 

preload (10% change or 500ml), as shown in two studies(90,94). 

2. Tissue Doppler derived basal septal longitudinal SR may be sensitive to a 

small (10% reduction) change in preload (90). 

3. Tissue Doppler derived lateral annular e’ may be load sensitive at modest 

preload change of 1.5-3 L, as reported by two studies(92,111). 
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4. Pressure-volume loop studies have previously demonstrated load 

dependency of EF.  This is not the case in many dialysis 

studies(101,104,105,107) where preload change of up to 3l was present. 

There are findings that require further investigation and confirmation: 

1. Tissue Doppler derived radial SR is less load sensitive compared to 

longitudinal SR, a reported finding by A’Roch et al (90). 

2. Vogel and Dalsgaard et al (89,92) reported no change in IVA at a preload 

change of up to 3 L in two separate studies. However, IVA has an 

unacceptably high measurement variability as demonstrated in another 

study (117): intra-observer variability of 12-30% and inter-observer 

variability of 21-28%. This can limit the routine clinical application of IVA.  

Therefore, further confirmation of the load insensitive property of IVA, if 

proved to have acceptable repeatability in subsequent studies, can render it 

a useful clinical tool. 

3. Ees is load insensitive in PV loop studies.  Despite the availability of several 

methods (65–67,71) of single beat echocardiography estimation of Ees, the 

effect of load dependency on this index can be tested in further studies. 
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1.8 Research Aim 

To evaluate the effect of preload change on a comprehensive range of 

echocardiographic indices using two readily available clinical models.  Dialysis 

patients with symptoms of HFpEF serve as a model to study the effect of slow but 

large preload change (reduction of 3L circulating blood volume over 2 to 4 hours).  

Asymptomatic blood donors undergoing venesection serve as a model to study the 

effect of rapid small preload change (reduction of 500ml circulating blood volume 

over 10 minutes) in health.  

I planned to answer the following questions posed by the existing literature: 

1. Given a small (500ml) preload change, is TDI derived basal septal and lateral 

s’ load sensitive? 

2. Is TDI derived lateral e’ load-resistant at a small (500ml) and large (3l) 

preload change? 

3. Is TDI derived IVA preload insensitive, at a small (500ml) and large (3l) 

preload change? 

4. Is TDI radial s’ load insensitive at a small (500ml) and large (3l) preload 

change? 

5. Is 2DSTE longitudinal S, radial S, and circumferential S load-resistant at a 

small and large preload change? 

6. Is LV torsion resistant to small and large load change? 

7. Is EF load-resistant at a small (500ml) and large (3l) preload change? 

8. Is non-invasive quantification of Ees by single beat method feasible in clinical 

use? 
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9. Is non-invasive Ees load insensitive, given a small and large preload change? 

  

1.9 Hypotheses 

To summarise what I have discussed so far, the Frank Starling mechanism 

underpins our understanding of cardiac mechanics.  At a given contractile state, 

cardiac function (SV) increases linearly with preload (LVEDV) increase, until the 

exhaustion of actin/myosin cross bridges and pericardial constraint occur.  A 

good echocardiographic index should inform on the contractile property, and 

respond to a change in load predictably across a physiological range.  

The existing literature suggests that two indices (IVA and Ees) are markers of 

contractile state and that they are unaffected by a change in preload and 

afterload. Although regional markers like TDI s’, e’, EF, LV rotation and torsion, 

2DSTE radial/circumferential/longitudinal strain reflect contractile state, they 

behave heterogeneously in response to a change in preload.  This makes clinical 

interpretation of these results challenging.  Therefore, I aimed to investigate the 

following hypotheses: 

1. It is feasible to adopt the use of non-invasive quantification of Ees 

clinically. 

2. Non-invasively estimated Ees does not change following preload 

reduction. 

3. IVA does not change following preload reduction. 
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4. Regional (TDI s’, e’, 2DSTE longitudinal strain, circumferential 

strain, radial strain and apical rotation, LV torsion) and global (EF, 

CO) cardiac function markers may change (increase or decrease) 

following preload reduction to an extent that is dependent on 

the magnitude of preload change. 
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2 Methods 

2.1 Ethics Approval 

Cardiff University was the sponsor (reference SPON 1150-12) of this study.  

The Research Ethics Committee (REC) for Wales first received this application in 

August 2012.  The committee met in September 2012 and granted permission for 

this study in October 2012 (reference 12/WA/0288), following receipt of further 

clarification.  Minor amendments were submitted to the committee notifying 

changes to the patient information leaflets in December 2012 and February 2013, 

with favourable outcome.  The host organisation was Cardiff and Vale University 

Hospital Health Board for the dialysis patients.  A separate site-specific application 

(reference 2013/VCC/0045) was made to the Welsh Blood Service for hosting the 

study in the blood donor group in April 2013.  Permission was granted in September 

2013.  The study completed recruitment in May 2014. 

2.2 Determination of study sample size 

I used a statistical software G*Power (March 28, 2001) for sample size and 

power calculation.  Previous published data (31,33,36,105,118–120) were used to 

calculate the sample size required to detect a 30% difference with 80% power.  The 

published mean ± SD, sample size required for each of the parameters are shown in 

the table below (Table 2-1). 

A sample size of 30 in the dialysis group was calculated to have a power of >80% 

in detecting a 30% change in each measured parameter after a change in preload.  
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The magnitude of preload change in studies (105,118) used for this calculation was 

3.1 ± 0.9 L or up to 5% change of body weight.   

For detecting a difference between the dialysis and blood donor groups, a 

sample size of 30 in the dialysis group and a sample size of 15 in the blood donor 

group were calculated to have achieved a power of >80% in detecting a 30% 

difference in each of the listed parameters. 
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Table 2-1 Sample size and power calculation 

  

Studies Measure Published 
mean ± SD 

Sample size 
required to 

detect a 30% 
difference 
following 

dialysis with 
80% power 

Sample size 
required to detect 
a 30% difference 
between dialysis 
and blood donor 

groups at baseline 

Hung et al 
(105) 

 

LVEDV (ml) 115 ± 29 8 13 

LVMI (g/m2) 140 ± 44 11 18 

LAA (cm2) 39 ± 6 5 6 

LVIDd (mm) 49 ± 6 4 4 

SV (ml) 78 ± 17 7 9 

E (cm/s) 91 ± 19 7 9 

A (cm/s) 105 ± 21 6 9 

E/A  0.9 ± 0.2 8 12 

DT (ms) 191 ± 49 9 13 

IVRT (ms) 88 ± 24 9 14 

e’ (cm/s) 8 ± 2 9 15 

a’(cm/s) 10 ± 2 5 7 

E/e' 13 ± 4 10 17 

LVEF (%) 73 ± 7 4 4 

Choi et al 
(118) 

LAVI (ml/m2) 44 ± 14 12 20 

Ssystole 18 ± 3 5 6 

s’ (cm/s) 7 ± 1 3 8 

Wang et al 
(120) 

 

Scirc 17 ± 3 5 6 

Srad 41 ± 16 16 30 

Chen et al 
(119) 

 

Ees  
(mmHg/ml) 

2.8 ± 1.0 14 24 

Yip et al (36) LV Torsion (0) 16 ± 7 19 34 

Tan et al 
(33) 

Apical Rot (0) 10 ± 4 15 27 
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2.3 Subjects recruitment 

2.3.1 Inclusion criteria 

2.3.1.1 Dialysis group 

All stable patients on established regular haemodialysis at the University 

Hospital of Wales Health Board were eligible to take part in the study.  To 

participate, each subject must be aged 18-85 years, be able to give informed 

consent, be able to adhere to study protocol and be on established haemodialysis.  

In addition, each subject must have symptoms of heart failure and have an EF>50%. 

2.3.1.2 Blood donor group 

Healthy blood donors from student and staff groups at Cardiff University and 

Cardiff Metropolitan University were invited to take part.  To participate, each 

subject must be aged 18-85 years, be able to give informed consent, be able to 

adhere to study protocol.  In addition, subjects with pre-existing renal disease and 

symptoms of heart failure were not eligible to take part. 

2.3.2 Exclusion criteria: 

Subjects aged <18 years or >85 years were ineligible to take part.  Subjects 

who were unable or unwilling to give informed consent and who were unable to 

adhere to study protocol were excluded from taking part in this study.  For the 

dialysis group, the presence of an alternative explanation for their symptoms would 

also exclude their participation in this study.  The following diagram (Figure 3) 

outlines the recruitment process for the two groups of study subjects. 
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Figure 3 Subject identification and recruitment 

  

Dialysis patients

with symptoms of HFpEF

1. Subject identification takes 
place in renal outpatient 
department.

2. Verbal Consent is obtained 
for referral to study screening 
and recuritment.

3. A copy of information 
leaflet is provided.

4. Formal consent is taken by 
the investigator.

Recruitment into study

Healthy blood donors

1. A copy of the information 
leaflet is left at the blood 
donation centre.

2. Blood donors are referred to 
the information leaflet by staff 
on site.

3. Interested blood donors 
contact investigator for further 
information.

4. Screening and formal consent 
takes place.

Recruitment into study
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2.4 Subject testing 

Anonymisation of each subject occurred at the time of enrolment.  The 

dialysis subjects took part on a mid-week dialysis day.  Healthy subjects took part 

on their day of blood donation.  Each subject maintained the same position (supine 

on a bed) throughout the experiment and had echocardiography performed 

immediately before and after dialysis or blood donation.  One operator acquired all 

images using a portable echocardiography machine (Vivid I, GE Healthcare) for 

offline analysis later.  Immediately before and after dialysis or blood donation, arm 

cuff blood pressure and heart rate were measured. 

In addition, all subjects filled in a quality of life questionnaire (Minnesota 

Living with Heart Failure Questionnaire).  Subjects who were able were also invited 

to perform a 6-minute walk test and a cardiopulmonary exercise test as per existing 

standards (121,122). 

 

2.5 Assessing repeatability of study measurements 

To determine the required number of repeated measurements for 

repeatability assessment, I first chose an exemplar parameter from each of the 

measurement groups, as shown in the following table (Table 2-2).  I measured each 

parameter using the same image and same loop, at least 2 weeks apart from the 

first measurement.  As per previously described by Bland Altman (123), the 

standard deviation (Sω) of the mean difference of the two repeated measurements 
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are determined.  Sω is then plotted graphically against the magnitude of the mean 

difference, to confirm no significant correlation (rank correlation coefficient, 

Kendall’s tau, p>0.05).  When there was a significant correlation of Sω with 

magnitude of mean, I used Log transformation of scale.   

Subsequently, standard error (SE) for the two repeated measurements was 

calculated using the formula:  

𝑆𝐸 =
Sω

√2n ∗ (m − 1)
 

where   

    n=number of subjects 

m=number of repeated measurements per subject 

Of the 45 recruited subjects, I used a random number generator available 

online (https://www.random.org) to select 30 subjects, for repeat measurements.  

Hence, having repeated the measurements twice in thirty subjects, this would yield 

a power of 87% to estimate within 13% of the SE of each measurement. 
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Table 2-2 Exemplar indices used for repeatability assessment 

Measurement group Measurement Measurement used for 

repeatability assessment 

Dimension ( cm ) LVIDd, LVIDs, LVOT 

diameter, LV VTI, MAPSE, 

IVSd, PWd, LV length 

LVIDd 

Volume LV EDV, LV ESV, LAV LV ESV 

Blood flow velocities E, A. E 

Tissue Doppler velocities Longitudinal and radial s’, 

e’, a’ 

Longitudinal s’ 

2-dimension strain Ssystole, Srad, Scirc, apical 

Rot, basal Rot 

Apical Rot 
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Once these five pairs of repeat measurements were available, I firstly 

explored the paired measurements graphically using a simple scatterplot.  I then 

performed a bivariate linear correlation analysis using a statistical software SPSS ( 

IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, 

NY: IBM Corp.).  Measurement 1 is considered to be significantly correlated to 

measurement 2 when the p value is <0.05.  I report this using Pearson’s R and the 

corresponding p value. 

Secondly, I plotted a Bland-Altman graph of bias, by showing the difference 

from mean (y-axis) against the calculated mean of repeated measurements (x-axis).  

I report the bias from mean with a constructed 95% confidence interval.  The 

figures (Figures 4-8, page 61-65) show the graphic representation of these analyses 

for LVIDd, s’, E, apical ROT and LV ESV.  

Thirdly and finally, I used the root mean square (RMS) method to estimate 

the coefficient of variation (CV), for each measured parameter.  I report the intra-

observer variability (repeatability) for each measured parameter as CV with a 

constructed 95% confidence interval.  The results for my study measurements’ 

repeatability are shown in Table 2-3. 
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Table 2-3 Intra-observer variability for measurements obtained from 

echocardiography 

Measurements  Pearson’s 
linear 

correlation 
between 

paired 
measurements 

Mean  
values 

Bland-Altman 
analysis: Bias 

(95% CI) 

Coefficient of 
variation 
(95% CI) 

LVIDd (cm) R=0.96 

P<0.001 

4.2 0.03 

(‐0.04 to 0.11) 

3.8% 

(2.3‐4.9%) 

LV ESV (ml) R=0.87 

P<0.001 

34.2 1.67 

(‐1.20 to 4.53) 

18% 

(13‐22%) 

E (cm/s) R=0.99 

P<0.001 

77.4 1.27 

(‐0.05 to 2.58) 

3.6% 

(1.4‐4.9%) 

s’ (cm/s) R=0.94 

P<0.001 

8.4 0.18 

(‐0.01 to 0.38) 

6.8% 

(4.7‐8.5%) 

Apex Rot (0) R=0.99 

P<0.001 

9.5 0.32 

(‐0.03 to 0.68) 

7.1% 

(0‐10%) 
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Figure 4 Linear correlation (top panel) and BA (bottom panel) graphs for LVID 
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Figure 5 Linear correlation (top panel) and BA (bottom panel) graphs for s' 
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Figure 6 Linear correlation (top panel) and BA (bottom panel) graphs for E 
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Figure 7 Linear correlation (top panel) and BA (bottom panel) graphs for ROT 
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Figure 8 Linear correlation (top panel) and BA (bottom panel) graphs for LV 

ESV 
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2.6 Echocardiography 

Each subject lay supine on a bed and maintained the same position whilst 

echocardiography images were acquired as per current standards (124). Images 

were acquired immediately before and after dialysis or blood donation.  These 

images were stored digitally and analysed offline later.  At least three consecutive 

cardiac cycles were stored for subjects in sinus rhythm.  At least five consecutive 

cardiac cycles were stored for subjects in atrial fibrillation.  Each subject was asked 

to hold his or her breath at passive end expiration during image acquisition.  I used 

a 5 mm sample volume size (factory preset for Vivid I, GE Healthcare) for pulsed 

wave Doppler sampling.  I optimised the frame rate to be >25/s for colour flow 

mapping, >150/s for tissue velocity imaging and 40-60/s for 2DSTE. 

Two-dimensional echocardiography images were stored in the following 

sequences for the respective measurements: 

1. Parasternal long-axis window grey scale image of mid left ventricle and 

ascending aorta (LVIDd, LVIDs, LVOT diameter) 

2. Parasternal long-axis window colour tissue Doppler encoded image of the 

left ventricle (radial s’, e’, a’ in septum and infero-lateral walls) 

3. Parasternal short-axis window grey scale images at base, mid and apex 

levels of left ventricle (2 dimensional radial and circumferential strain in mid 

LV, apical rotation and basal rotation and LV torsion) 

4. Apical window grey scale 4-chamber image including both atria (LAA and 

LAV) 
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5. Apical window grey scale 2-chamber image including left atrium (LAV) 

6. Apical window grey scale 4-chamber image of left ventricle (LVEF, LV 

volumes, LV length, 2-dimensional longitudinal strain) 

7. M-mode of the lateral annulus of LV in apical 4-chamber view (MAPSE) 

8. Apical 2-chamber image of left ventricle (LVEF, LV volumes, LV length) 

9. Apical window 4-chamber pulsed wave Doppler velocities at the mitral 

leaflet tips (E, A, DT) 

10. Apical window 4-chamber pulsed wave Doppler velocities at the mitral 

annulus (timing of MV opening and closure) 

11. Apical window 5-chamber pulsed wave Doppler velocities at the LVOT 

(timing of AV opening and closure) 

12. Apical window 4-chamber view, real time pulsed-wave Doppler tissue 

velocities at the lateral mitral annulus, medial mitral annulus (systolic and 

diastolic tissue velocities of left ventricular lateral, septal annuli) 

Measurements routinely used in clinical practice such as chamber quantification 

and blood flow Doppler velocities were measured and quantified as recommended 

by current standards (124). Figure 9 shows examples of these measurements.  In 

the following sections (2.6.1 to 2.6.5), I shall elaborate and illustrate the 

measurements of indices that are not yet adopted into routine clinical use. 
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Figure 9 Echocardiographic measurements for LVIDd, LVIDs (parasternal long axis 

view), MAPSE (lateral annulus, 4-chamber view), LV EDV, LD ESV (Apical 4-chamber view), 

transmitral Doppler E and A velocities, LVOT PW Doppler velocity trace LV PEP and ET. 

LV EDV and ESV 

LVIDd and LVIDs 

MAPSE 

PEP ET 

E 

A  

 

DT  
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2.6.1 Tissue Doppler velocities 

I recorded at the time of the study, pulsed-wave tissue Doppler velocities in 

the septal and lateral annuli.  Later, I analysed processed colour tissue Doppler 

velocities in the basal septal and basal lateral walls from a digitally stored four-

chamber LV image.  Sector width during image acquisition was adjusted to maintain 

a frame rate >150/s.  In addition, I aligned images to the angle of the Doppler 

interrogation to minimise sampling error.  Figure 10 illustrates a typical time 

velocity graph generated.  Figure 11 shows the measurements for calculation of 

IVA, reproduced from Margulescu A, JASE 2010:23:423-31.  Isovolumetric 

acceleration, IVA (cm/s2) is calculated from the peak amplitude of velocity (cm/s) 

divided by the time (s) to the peak velocity, during left ventricular isovolumetric 

contraction (also known as the pre-ejection period).  
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s’ 

e a’ 

s’ 

e

a’ 

Pulsed-wave tissue Doppler velocities 

Processed colour tissue Doppler 

velocities 

Figure 10 Pulsed-wave (top) and processed colour (bottom) tissue Doppler 

velocities and its derived measurements.  s’ denotes peak systolic tissue velocity, e’ 

denotes early diastolic tissue velocity, a’ denotes late diastolic tissue velocity. 
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Figure 11 IVA measurement, reproduced from Margulescu A, JASE, 

2010:23:423-31. 
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2.6.2 Global longitudinal strain of the left ventricle 

I used 2DSTE as previously described (125) to derive global longitudinal 

strain of the left ventricle. An image of the left ventricle was stored in the 4-

chamber view for speckle-tracking analysis.  Strain (S) is the percentage change in 

left ventricular length from diastole to systole.  As the left ventricle shortens in 

systole, peak longitudinal strain has a negative value and its change during a cardiac 

cycle is displayed in a strain-time graph (Figure 12 top panel). Each of the six 

segments (basal septum, mid septum, apical septum, basal lateral, mid lateral and 

apical lateral), denoted by a different colour, is analysed and the average (denoted 

by the white dotted line) is taken as the peak global longitudinal strain (Ssystole). 

The rate of change of left ventricular strain (S) during a cardiac cycle is strain 

rate (SR).  This is displayed in a SR-time graph (Figure 12 bottom panel).  The white 

dotted line denotes the global SR plotted against time in a cardiac cycle.  The 

following denote peak SR corresponding to the respective time in the cardiac cycle: 

systole SRsystole, isovolumetric relaxation time SRIVRT and early diastole SRE. 
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Ssystole 

SRsyst

ole 

SRIVR

T 

SRE 
SRA 

Figure 12 2DSTE trace from apical 4-chamber view of LV: longitudinal strain (top panel) 

and strain rate (bottom panel) graphs. 
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2.6.3 Mid left ventricular radial and circumferential strain 

I used 2DSTE, similarly to the method described in section 2.6.2 to derive 

radial and circumferential strain at the mid LV.  I acquired an image at the left 

ventricle mid cavity at the time of the study for speckle-tracking analysis.  A typical 

radial and circumferential strain graph at the mid LV is shown in Figure 13.  Each of 

the six segments at left ventricle mid cavity (anterior, antero-lateral, infero-lateral, 

inferior, infero-septum, and antero-septum) is denoted by a different colour in the 

graph.  The average of these segments represents global radial (Srad) and 

circumferential (Scirc.) strain  
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Srad 

Scirc 

Figure 13 Radial (top) and circumferential (bottom) 2DSTE strain graphs at mid LV 

(parasternal short-axis view). 
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2.6.4 Apical and basal rotation, and left ventricular torsion 

I used 2DSTE as previously (33) described to derive left ventricular apical 

rotation and basal rotation graphs. I acquired an image of the left ventricular apex 

and an image of left ventricular base for later analysis with speckle tracking.  Figure 

14 illustrates a typical rotation-time graph and rotation rate-time graph obtained 

from the apex (top and bottom panels) and base (middle panel) of the left ventricle.  

The left ventricular apex rotates in the opposite direction from the base and the left 

ventricle shortens from the apex towards the base in systole.  During diastole, the 

left ventricle actively untwists in the opposite direction to allow rapid diastolic 

filling.  The difference in peak apical rotation and basal rotation is left ventricle 

twist.  Left ventricle torsion (degrees/length) is LV twist corrected by LV length.  The 

rate of rotational change at the apex provides a strain rate-time graph as illustrated 

in the bottom panel of figure 14.  Time to peak apical rotation, total untwisting time 

(UTT), time to peak untwisting rate (Time to peak UTR) were noted and expressed 

as a percentage of the cardiac cycle to allow comparison between subjects. 
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Figure 14 Apex (top panel) and base (middle panel) of LV rotation graphs and apical 

rotation rate graph (bottom panel). 
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graph 
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2.6.5 Non-invasive estimation of pressure-volume relationship slope 

(Ees) of the left ventricle 

Several methods (65–67,71) as discussed in section 1.2.3.1, Chapter 1, have 

been used to estimate the Ees non-invasively. These methods have various degrees 

of complexity in their estimation of Ees.  Chowdhury et al (126) validated these 

methods in a paediatric population against PV loop study and found the method 

described by Tanoue et al (67) produced non-invasively estimated Ees most 

consistent with the invasively measured Ees.  For the purpose of this study, I have 

used three methods (66,67,71) previously described  for non-invasive estimation of 

Ees in my participants.  The formulas used are listed below here. 

 

1. 𝐸𝑒𝑠 =
(𝐷𝐵𝑃−(0.9∗𝑆𝐵𝑃)+∝∗(DBP−EDP)∗

𝐸𝑇

𝑃𝐸𝑃
)

𝑆𝑉
 

 

𝛼 = 1.171 ∗ 𝐸𝐹 + 0.022     

       (66) 

 

Where 

DBP is arm cuff diastolic blood pressure 

SBP is arm cuff systolic blood pressure 

EF is left ventricular ejection fraction by biplane method 

EDP is end diastolic LV pressure, assumed as 10mmHg in this cohort 
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ET is left ventricular ejection time, measured from the spectral Doppler 

trace of LVOT 

PEP is left ventricular pre-ejection time, measured from the spectral Doppler 

trace of LVOT 

SV is left ventricle stroke volume, by biplane method 

 

2. 𝐸𝑒𝑠 =
DBP−(ENDest∗SBP∗0.9)

𝑆𝑉∗𝐸𝑁𝐷𝑒𝑠𝑡
 

 

𝐸𝑁𝐷𝑒𝑠𝑡 = 0.0275 − (0.165 ∗ 𝐸𝐹) + 0.3656

∗ (
𝐷𝐵𝑃

𝑆𝐵𝑃 ∗ 0.9
) + (0.515 ∗ 𝐸𝑁𝐷𝑎𝑣𝑔) 

          

       (71) 

 

Where 

DBP is arm cuff diastolic blood pressure 

SBP is arm cuff systolic blood pressure 

SV is left ventricular stroke volume, by biplane method 

EF is left ventricular ejection fraction by biplane method 

ENDest is group-averaged normalised elastance 

ENDavg is empirical estimation of group-averaged normalised elastance at 

onset of ejection, fitted by a 7-degree polynomial equation. 
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3. 𝐸𝑒𝑠 = 0.9 ∗
𝑆𝐵𝑃

𝐸𝑆𝑉
       

       (67) 

Where  

SBP is arm cuff systolic blood pressure 

ESV is left ventricular end systolic volume by biplane method 

 

 

2.6.6 Non-invasive estimation of LV filling pressure (LAP) using 

echocardiography  

Several research groups have described different methods for non-invasive 

estimation of LV filling pressure with echocardiography.  In this section, I shall 

explore these methods briefly. 

Temporelli et al (127) recruited stable subjects with ischaemic or non-

ischaemic heart failure (age 62 ± 9 years, LVEF 22 ± 5%) in atrial fibrillation whilst 

they underwent cardiac catheterisation for clinically indicated investigation. They 

performed simultaneous invasive cardiac catheter and trans-thoracic 

echocardiogram.  Transmitral Doppler blood flow velocities (E) and its timings (IVRT, 

DT), and left atrial dimension were recorded and used in a stepwise multivariate 

linear regression analysis.  They found DT was an independent predictor of 

invasively measured LAP.  The range of DT and invasively measured pulmonary 
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capillary wedge pressure (PCWP) in this study were 60-180ms and 5-35mmHg 

respectively.  DT was found to have an inverse linear relationship (Pearson’s R=0.95, 

p<0.001) with invasive LAP measurements.  A DT<120ms has a 100% sensitivity and 

96% specificity in detecting LAP>20mmHg.  Estimated LAP was calculated based on 

the formula below, DT was measured in milliseconds.  

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝐴𝑃 = 51 − 0.26 ∗ 𝐷𝑇   (127) 

 

Sohn et al (128) studied only subjects in atrial fibrillation with or without 

depressed ejection fraction (LVEF 53 ± 11%, age 63 ± 11 years). These subjects had 

elective cardiac catheterisation for investigations of atypical chest pain, dyspnoea, 

angina, dilated cardiomyopathy, and arrhythmias.  The reported E/e’ and PCWP 

were 5-25 and 10-25mmHg respectively.  They found good linear correlation of E/e’ 

with invasively measured LAP, Pearson’s R=0.79, p<0.001.  A ratio of E/e’ of ≥11 has 

a 75% sensitivity and 93% specificity for detecting a LAP≥15mmHg in their subjects.  

They estimated LAP by the formula given below. 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝐴𝑃 = 6.489 + 0.821 ∗ (
𝐸

𝑒′)   (128) 

 

Garcia et al (129) included 45 subjects admitted to an intensive care unit, 

mostly for a cardiac indication (acute ischaemia, aortic stenosis, congestive heart 



Chapter 2 

82 

failure) but they also included patients admitted following peripheral vascular 

surgery, trauma and sepsis.  These subjects (mean age 64 ± 14 years) were in sinus 

rhythm and included both patients with impaired and patients with normal global 

left ventricular systolic function (LVEF 40 ± 15 %).  They underwent invasive 

haemodynamic monitoring including the insertion of a pulmonary artery catheter 

for the measurement of pulmonary capillary wedge pressure (PWCP).  Trans-

thoracic echocardiogram was performed within 5 minutes of obtaining the PWCP.  

Transmitral Doppler blood flow velocities (E, A, E/A) and their timings (DT, IVRT), 

LVEF, mitral valve diastolic propagation velocity (Vp) and age were parameters used 

in a stepwise multilinear regression analysis to estimate the invasively measured 

LAP.  They found that the ratio (E/Vp) was an independent predictor of the 

invasively measured LAP.  Estimated LAP correlated well (Pearson’s R=0.80, 

p<0.001) with the invasively measured LAP.  In addition, a majority (87%) of the 

subjects had estimated LAP within 5mmHg of the invasively measured LAP.  Only 

one subject had a difference of >10mmHg in these two measurements.  The range 

of E/Vp in this study was 1-3.5 and the range of LAP/PCWP was 5-30mmHg.  The 

authors proposed that LAP can be estimated non-invasively using the formula given 

below. 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝐴𝑃 = 5.27 ∗ (
𝐸

𝑉𝑝
) + 4.66   (129) 
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Nagueh et al (130) recruited stable subjects in sinus rhythm, with or without 

depressed ejection fraction. They underwent routine cardiac catheterisation for 

investigation of breathlessness and consented to have concomitant 

echocardiography.  Lateral mitral annular tissue Doppler early diastolic velocity 

(lateral e’) was used in combination with mitral Doppler velocity (E) in the 

estimation of LAP as shown in the formula below.  The range of reported E/e’ and 

PCWP in their study were 3-35 and 7-35mmHg respectively.  They found the non-

invasively estimated LAP correlated well with that invasively measured LAP 

(Pearson’s R=0.87, p<0.01).  The mean difference from the two measurements were 

0.1 ± 3.8mmHg. 

 

𝐿𝐴𝑃 = 1.9 + 1.24 ∗ (
𝐸

𝑒′)   (130) 

 

Whilst Sohn et al (128)and Temporelli et al (127) only included stable 

subjects in atrial fibrillation, Garcia et al (129) only included unstable subjects 

requiring intensive care admission in their non-invasive methods of LAP estimation. 

In addition, the method proposed by Temporelli et al (127) would produce a 

negative value for estimated LAP, when DT > 196ms (range of DT in their study was 

60-180ms). I therefore did not use this method for estimation of LAP in my subjects.  

The results of estimated LAP derived by using the other methods discussed (128–

130) were well correlated in my study subjects, as shown in Figure 11.  LAP 

estimated using the methods described by Sohn et al and Nagueh et al are almost 
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identical (mean difference of the two estimates of 4mmHg, p<0.001).  As my 

subjects were stable and did not have atrial fibrillation, I therefore used the method 

described by Nagueh et al(130) to estimate filling pressure (LAP) in my study. 

 

2.7 Blood pressure and heart rate 

Blood pressure was recorded immediately (within 5 minutes) before and after 

dialysis/venesection using a standard automated arm cuff blood pressure 

equipment (Procare 420, Dinamap (131)). Heart rate was monitored using surface 

electrodes placed in the three standard limb lead positions.  Heart rate before and 

after preload reduction from the last and first echo images respectively, was 

recorded as displayed on the echo equipment (Vivid I, GE Healthcare, Horten, 

Norway).  The subjects maintained the semi-supine position before, during, and 

after the experiments whilst these measurements were taken. 
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Figure 15 Linear correlation graphs of LAP estimated using Sohn, Garcia and 

Nagueh methods, as described in text. 
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2.8 Data analysis 

I analysed all the images offline using a dedicated software (EchoPAC, GE 

Healthcare).  Each measurement was an average of at least three cardiac cycles 

(five cardiac cycles for those in atrial fibrillation).  I used a statistical software SPSS ( 

IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, 

NY: IBM Corp.) to perform analysis of my data.  Data were first explored and tested 

for normal distribution before statistical analysis were performed. For data with a 

skewed distribution, I performed log transformation to approximate normal 

distribution before conducting statistical testing. I reported continuous data as 

mean ± SD (for normally distributed data) or median and interquartile range (for 

skewed distribution).  Categorical data were reported as percentages. 

I used paired t-test (for normally distributed measurements) or Wilcoxon’s 

sign rank test (for measurements with a skewed distribution) for comparison of 

measurements within the same subject before and after the experiment (preload 

reduction). Statistical significance was set at p<0.05. A 95% confidence interval of 

the mean difference following the experiment was constructed for each 

measurement.  

I used independent t-test (for normally distributed measurements) or rank-

sum test (for measurements with skewed distribution) for comparison of 

mean/median between the dialysis subjects and blood donors. Statistical 

significance was set at p<0.05. A 95% confidence interval of the mean difference 

following the experiment was listed for each measurement.  
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ANCOVA analysis was used to perform covariate adjusted analysis to compare 

the group difference in parameters.  Statistical significance was set at p<0.05. A 

95% confidence interval of the mean difference following the experiment was listed 

for each measurement.   

To minimise the impact of multiple testing, I will make all inferences based 

primarily on the size of difference found, with a constructed 95% confidence 

interval, either as an absolute measure and/or as a percentage of change, as a 

relative measure. 
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3 Baseline characteristics of the subjects 

3.1 Dialysis subjects  

Thirty stable patients on established haemodialysis consented to take part in 

the study.  Causes of end-stage renal failure for the group were hypertension (63%), 

diabetes (20%) and obstructive uropathy (27%).  Significant comorbidities of 

participants were diabetes mellitus (30%), hypertension (93%), stable ischaemic 

heart disease (13%), and paroxysmal or persistent atrial fibrillation (10%).  The 

median length on established dialysis of the group was 25.5 months and the 

median duration of the dialysis session was 4 hours. 

All participants on cardiovascular medications took their medication in the 

previous evening before the study session as per their usual practice.  Table 3-1 

shows the prevalence of use and median dosage of each group of cardiovascular 

medications amongst the study subjects.  
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Table 3-1 Medication use of dialysis subjects 

 

Class of medication Exemplar medication Prevalence of use & 

median dose 

Beta blocker  bisoprolol 23% (2.5 mg) 

Diuretics  furosemide 23% (160 mg) 

ACE/ARBs  ramipril 16% (10 mg) 

Alpha receptor antagonist doxazosin 10% (16 mg) 

Calcium antagonist  diltiazem 1% (120mg) 
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Before the study dialysis session, the mean inter-dialytic weight gain for the 

group was 1.7 ± 1.3kg.  Following dialysis, the mean weight loss of the group was 

1.6 ± 1.3kg.  The mean weight before and dialysis was 83 ± 22kg and 81 ± 22kg 

respectively, paired t-test p<0.01. 

 

3.2 Blood Donors 

Fifteen experienced blood donors, with no past medical history of note and 

on no regular medication consented to take part in the study.  Each donor gave 

480ml of blood via venesection over ten minutes. 

The following table (Table 3-2) shows the baseline characteristics of the two 

groups. 
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Table 3-2 Baseline characteristics for both groups (continued on next page) 

 

Category of 
measurements 

 Dialysis 
patients 

N = 30 

Blood 
donors 

N = 15 

p value 

General Age (years) 59 ± 18 45 ± 15 0.015 

 Gender 68% men 80% women Not 
applicable 

 
SBP(mmHg) 138 ± 24 127 ± 17 0.138 

 DBP(mmHg) 72 ± 13 77 ± 12 0.180 

 BMI(kg/m2) 29 ± 7 26 ± 4 0.176 

Dimension LVMI(g/m2) 119 ± 44 70 ± 44 0.000 

 LAVI(ml/m2) 43 ± 19 22 ± 6 0.000 

 LVEDVI(ml/m2) 49 ± 10 48 ± 10 0.419 

Diastolic 
function 

E(cm/s) 81.7 ± 29.2 69.0 ± 11.6 0.058 

 A(cm/s) 77.3 ± 24.6 52.1 ± 11.6 0.001 

 E/A 1.1 ± 0.4 1.4 ± 0.4 0.008 

 DT(ms) 228 ± 58 218 ± 42 0.541 

 IVRT(ms) 99 ± 21 96 ± 13 0.586 

 E/e’ 13 ± 7 6.8 ± 1.4 0.001 
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 lateral e’(cm/s) 8.8 ± 2.7 11.1 ± 2.4 0.010 

Systolic 
function 

Septal s’(cm/s) 7.2 ± 1.7 8.8 ± 1.6 0.017 

 Lateral s’(cm/s) 7.6 ± 1.9 8.7 ± 2.2 0.199 

 Ssystole 14.3 ± 3.4 15.1 ± 1.2 0.739 

 Apical Rot(0) 7.7 ± 4.2 6.5 ± 2.2 0.356 

 LVEF(%) 58 ± 7 64 ± 5 0.008 
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3.3 NT-proBNP results of dialysis subjects 

 

As the dialysis group comprised of subjects with symptoms of heart failure 

and preserved ejection fraction, they underwent blood test at the time of dialysis 

for quantification of serum NT-proBNP.  All the subjects had age-adjusted values of 

NT-proBNP above the diagnostic cut-off value (132) for diagnosis of heart failure.  

The median value of NT-proBNP in this group was 1635 ng/L, inter-quartile range 

3623 ng/L.   

3.4 Exercise tolerance and symptom burden of the dialysis 

subjects 

To assess their exercise capacity, all subjects were invited to attend on a 

separate occasion for exercise testing, within 2 weeks from the time of the 

echocardiographic study.  Dialysis patients attended on a mid-week non-dialysis day 

for the exercise capacity assessment.  Not all the dialysis subjects were able to 

perform either of the exercise tests.  Twelve of the thirty (12/30) dialysis 

participants and twelve of the fifteen (12/15) blood donors agreed to undergo 

exercise testing.   

Cardiopulmonary (CPEX) exercise testing was performed using a semi-supine 

ergometer and 6-minute walk test (6MWT) was performed according to the current 

standards (121,122).   

A portable cardiopulmonary stress testing system (Oxycon mobile, Vyaire 

Medical) analysed breath-to-breath inhaled oxygen (VO2, ml/min), exhaled carbon 



Chapter 3 

94 

dioxide (VCO2, ml/min), and ventilatory effort (VE, minute ventilation, ml) via a 

facemask.  During incremental exercise testing, there is a continuous rise in both 

VO2 and VCO2 reflecting physiological demand of exercise.  As the subject reaches 

his or her aerobic or ventilatory threshold (AT, ml/min), there is an inflection of the 

VE/VO2 slope whilst the VE/VCO2 slope remains constant.  Maximal oxygen uptake 

(VO2 max) is the highest measured VO2  when a plateau is reached.  The inflection 

point helps determine the aerobic threshold (AT).  Respiratory exchange ratio (RER) 

is the ratio of VCO2/VO2, with a value of >1 generally regarded as a mark of 

adequate effort during testing.  I compared the actual AT to reference normal 

values proposed by Shvartz and Reibold (133) to estimate each subject’s exercise 

capacity. A ratio (AT/reference VO2 max) of 60-80 is considered athletic, 50-60 is 

considered sedentary, 40-50 is considered deconditioned and <40 is considered 

diseased.  

There are published reference data (134) for 6MWT distance. A 40-year-old 

can manage 600 metres.  This capacity decreases by 50 metres per decade.  I 

compared each subject’s results to their age predicted norm to assess their exercise 

endurance. 

To assess their symptom burden and limitation, I used a validated 

questionnaire (MLHFQ, The University of Minnesota).  The total score of the 

questionnaire is 125, 0 indicating no symptoms and 125 indicating maximal 

limitation. 

Table 3-3 summarises the baseline characteristics of the twelve dialysis 

subjects able to perform exercise testing, compared to the twelve blood donors.  
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No complication or adverse event occurred during cardiopulmonary exercise 

testing and 6MWT.  The tests were terminated at the subjects’ request due to leg 

fatigue.  All subjects in both groups exercised to and past their respective anaerobic 

threshold (AT).  They demonstrated good effort during the test as evident by the 

measured peak RER ≥1.1. The dialysis group had moderately reduced maximal 

oxygen uptake (54% of reference values) whilst the blood donors had normal 

capacity (93% of reference values).  Table 3-4 shows the results of exercise testing 

in dialysis patients and blood donors.  
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Table 3-3 Baseline characteristics of study subjects undergoing exercise 

capacity assessment 

 
 

Dialysis patients 
N=12  

Blood donors 
N=12  

p values  

Baseline characteristics 

Age (years)   54 ± 19  46 ± 12  >0.05  

Gender  17 % female  75 % female <0.01  

BMI (kg/m2)  31 ± 8  26 ± 3  >0.05 

median NYHA class  II  I  <0.001 

Blood pressure 
(mmHg) 

131 ± 25 / 68 ± 16 127 ± 17 / 77 ± 12 >0.05 

Echocardiography parameters  

EF (%) 60 ± 5 64 ± 5  0.012 

LVEDVI (ml/m2)  44 ± 11 46 ± 9  0.515 

LVMI (g/m2)  114 ± 45  69 ± 20 <0.001 

LAVI (ml/m2)  38 ± 17  20 ± 6  <0.001 

E/A  1.0 ± 0.3  1.4 ± 0.4  <0.01 

Average E/e’   12 ± 7  7 ± 1  <0.01 
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Table 3-4 Results of CPEX testing in dialysis patients and blood donors 

 
 

Dialysis patients 
N=12  

Blood donors 
N=12  

p values 

Exercise duration(min) 

Time to AT (min)  

7.8 ± 1.9 

4.6 ± 1.5  

9.2 ± 1.6 

6.5 ± 1.2  

0.05 

<0.01  

HR at rest (bpm) 

HR at peak (bpm) 

Rise in HR (bpm)  

84 ± 13 

116 ± 26 

32 ± 23  

76 ± 18 

158 ± 23 

82 ± 16  

>0.05 

<0.01 

<0.01  

Max work load (watt) 92 ± 43  174 ± 40  <0.01  

Resting systolic BP (mmHg)  

Peak systolic BP (mmHg)  

Rise in systolic BP (mmHg)  

123 ± 22 

160 ± 31 

37 ± 18 

116 ± 16 

151 ± 19 

35 ± 18 

>0.05 

>0.05 

>0.05  

Peak VO2 (ml/min) 

Peak VO2 (ml/kg/min) 

% predicted VO2 (%) 

VO2_AT (ml/min) 

% predicted VO2_AT (%) 

1254 ± 358 

15 ± 5 

54 ± 20 

869 ± 267 

37 ± 14  

1689 ± 478 

24 ± 8 

93 ± 24 

1241 ± 380 

69 ± 23  

0.02 

<0.01 

<0.01 

0.01 

<0.01  

RER peak 

RER AT  

1.2 ± 0.1 

1.1 ± 0.1  

1.2 ± 0.1 

1.0 ± 0.1  

>0.05 

>0.05  

Perception of exertion at 
peak, Borg scale (/20)  

14 ± 5  6 ± 8  <0.05 

Perception of SOB at peak, 
VAS scale (/100)  

58 ± 30  11 ± 10  <0.01  
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The 6MWT distance walked was 344 ± 76 metres in the dialysis group and 549 

± 84 metres in the blood donors (independent t-test, p<0.01).  Compared to their 

age-predicted capacity, the dialysis group achieved 64 ± 13% and the blood donors 

achieved 106 ± 26% respectively, independent t-test p<0.01.  The mean quality of 

life (MLHFQ, The University of Minnesota) score for the participants was 58 ± 21, 

out of a maximum of 125.  None of the blood donors reported any symptom. 

 

3.5 Comparison of the two groups 

The main findings at baseline are: 

1. Compared to the blood donors, the dialysis patients were older, they had 

more comorbidities and had a higher usage of cardiovascular medication. 

2. Both the groups had comparable blood pressure at baseline. 

3. Dialysis patients had higher LAP (E/e’), left ventricular mass (LVMI), larger 

left atrial volume (LAVI), and diastolic dysfunction (E/A, lateral e’) compared 

to the blood donors despite both groups having comparable indexed left 

ventricular dimension (LVEDVI). 

4. Some indices of systolic function (EF and pulsed-wave septal s’) were 

significantly lower in the dialysis patients, whilst some indices of systolic 

function were comparable in both groups (Apical rotation and Ssystole). 

5. At peak exercise, although both groups exhibited good effort related to 

exercise, the dialysis patients achieved a lower workload and were 

breathless, compared to the blood donors.  Dialysis patients showed a lower 
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rise in heart rate, lower age and gender predicted peak oxygen 

consumption.  

6. Compared to the blood donors, the dialysis subjects achieved lower age-

predicted capacity in their 6MWT distance.   

These results confirmed that the blood donors are healthy and the dialysis 

group behave like HFpEF subjects.  Together they provide 2 well-characterised 

groups in which the effects of altering preload can be assessed (in a healthy model 

and in a diseased group of patients)  
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4 Effect of preload reduction on cardiac function 

following haemodialysis 

4.1 Aims of this chapter 

In this chapter, I aimed to investigate the effect of a large preload change on 

echocardiographic indices of cardiac function.  I studied this in a group of subjects 

with symptoms of HFpEF, evidence of left ventricular hypertrophy and limited 

exercise tolerance.  I tested the hypothesis that most echocardiographic indices are 

preload sensitive. 

As discussed in chapter one, previous animal and human studies (13,57,79) 

concurred that Ees, a measure of left ventricle contractile state derived from 

repeated PV loop studies, is load insensitive and tracks contractile status change. 

Development of a single beat non-invasive estimation (65–67,71) of Ees has 

subsequently allowed estimation of Ees using echocardiography.  IVA, another 

marker of LV contractile state (89,92) was previously shown to be preload 

independent. 

In this chapter, I shall evaluate the feasibility of Ees and IVA quantification in 

my subjects using the previously discussed methods (66,67,71,117) previously 

described.  I will find out if values of estimated Ees using the three methods are in 

good agreement with each other.  I also test the hypothesis that non-invasively 

quantified Ees and IVA are insensitive to changes in preload. 
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4.2 Subjects testing 

Thirty subjects consented to take part in the study at the Cardiff and Vale 

University Hospitals.  Each subject lay semi supine in the left lateral position and 

underwent echocardiography immediately before dialysis.  During dialysis, all 

subjects maintained the semi supine position.  Immediately after dialysis, each 

subject resumed the semi supine left lateral position whilst I performed 

echocardiography. 

All images were stored digitally for offline analysis on a separate occasion.  I 

assigned each subject a study identification number for anonymization.  I 

performed all the data analysis. 

 

 

4.3 Preload reduction and its effect on cardiac dimension and 

volume 

All data pre and post dialysis were explored graphically using Kolmogorov-

Smirnov test of normality.  All data were normally distributed. 

Dialysis achieved a mean weight loss of 1.6 ± 1.3 kg (one sample t-test p<0.01) in 

my subjects.  Previous studies in dialysis patients (105,106,118) have shown that a 

reduction in weight closely approximated the reduction in LV preload/ultra-

filtration volume during dialysis, as demonstrated in the reduction in LV and LA 

dimensions. Therefore, from this point onwards, I shall refer to this ‘mean weight 

loss of 1.6 ± 1.3 kg’ as ‘mean preload reduction of 1.6 ± 1.3 L’.  Blood pressure and 
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heart rate (median HR 73bpm and HR 75bpm, Wilcoxon sign rank test p > 0.05) did 

not change following dialysis. 

There was a reduction in LV internal dimension (by 13%), LA volume and area 

(LAV 21%, LAA 13% reduction) but no change in LV wall thickness and LV mass.  A 

geometry/shape change of the left ventricle, driven by a reduction in radial 

dimension but unchanged length, resulted in an increase of the sphericity index by 

17%.  Table 4-1 shows the detailed results. 
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Table 4-1 Cardiac dimension and volume following dialysis. 

 

 

Number Pre dialysis Post dialysis Change 
95% CI 

P value 

LVIDd 
(cm)  

26 4.4 ± 0.7  3.7 ± 0.8  ↓0.6 ± 0.6 

14% 

(0.4-0.9)  

<0.001  

LVIDs (cm)  26 3.1 ± 0.7  2.6 ± 0.7  ↓0.4 ± 0.5 

13% 

(0.2-0.7) 

<0.001  

Sphericity 
Index  

20 1.8 ± 0.3  2.2 ± 0.5  ↑0.4 ± 0.4 

(-0.6 to -0.2)  

0.01 

LVEDV(ml)  23 83 ± 23  79 ± 27  4.4 ± 16.7 

(-2.8-11.6) 

0.22  

LVESV(ml) 23 35 ± 11  30 ± 11  ↓4 2 ± 7.4 

12% 

(1.0-7.4)  

0.01  

SV (ml)  23 48 ± 15  48 ± 18  0.2 ± 13.5 

(-5.7-6.0) 

0.95  

LAA (cm2)  25 23 ± 7  21 ± 8  ↓2.7 ± 4.1 

12% 

(1-4)  

<0.01  

LAV (ml)  25 78 ± 33  63 ± 28  ↓15.5 ± 13.5 

20% 

(9.9-21.1)  

<0.001  
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4.4 Preload reduction and its effect on diastolic filling and 

estimated LAP 

The following table (Table 4-2) shows the effect on diastolic blood flow 

velocities and timing following dialysis.  There was a drop in early diastolic filling (E), 

late diastolic filling (A), deceleration time (DT) and early to late diastolic filling ratio 

(E/A).  This reflects ‘normalisation’ of the diastolic filling profile or ‘down grading’ of 

the severity of diastolic dysfunction (grade II to grade I) observed and described 

elsewhere (135) following load change. 

In addition, using method (130) described earlier in Chapter 2, I calculated the 

estimated left atrial pressure before and following dialysis.  There was a significant 

drop in filling pressure following dialysis.  Nonetheless, estimated LAP remains 

elevated at a mean of 13 ± 6 following dialysis.  Table 4-3 shows the results. 
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Table 4-2 Diastolic filling (blood flow velocities) and timing following dialysis. 

 

 Number Pre 
dialysis 

Post dialysis Change 

95% CI 

P value 

E(m/s) 25 0.82 ± 
0.29  

0.69 ± 0.21 ↓0.13 (15%) 

(0.04-0.22)  

0.005  

A(m/s) 21 0.79 ± 
0.25  

0.73 ± 0.22  ↓0.06 (8%) 

(0.02-0.11)  

0.010 

DT (ms) 25 229 ± 60  264 ± 67  ↑36 (16%) 

(9-62)  

0.011  

E/A 24 1.11 ± 
0.39  

0.97 ± 0.29  ↓0.15 (14%) 

(0.04-0.26))  

0.014  

IVRT (ms) 28 99 ± 22 103 ± 25  ↑4 (4%) 

(-5-13) 

0.348  
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Table 4-3 Estimated LAP following dialysis 

 

  

 

Number Pre 
dialysis  

Post 
dialysis  

Change  

95% CI  

P value  

LAP, 
mmHg 

(130) 

 

20 16 ± 9  13 ± 6  ↓ 2.4 ± 5.6 

↓ 15% 

(-0.3-5)  

0.03  

E/e’ 21 13 ± 7 10 ± 4 ↓ 2 ± 5 

↓ 15% 

(0.3 – 4.4) 

0.01 
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4.5 Preload reduction and its effect on indices of global and 

regional cardiac function 

4.5.1 Global & regional cardiac function using conventional echo indices 

Table 4-4 shows the results following dialysis.  There were no significant 

changes in left ventricular (LV VTI) stroke distance, mitral (MAPSE), biplane left 

ventricular ejection fraction (EF), and cardiac output (CO) by stroke distance (VTI) or 

stroke volume (SV) methods.  
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Table 4-4 Conventional echo indices for global and regional cardiac function 

following dialysis. 

 
 

Number Pre dialysis 
mean/median 

Post dialysis 
Mean/median 

P value  

Fraction 
shortening (%)  

26 28 ± 9  30 ± 6  0.40 

LV VTI(cm)  27 21 ± 5  23 ± 9  0.36  

MAPSE(cm)  22 1.4 ± 0.3  1.3 ± 0.3  0.58  

Biplane EF (%)  23 57  63  0.06 

CO by SV 
method (l/min)  

23 3.5 ± 1.0  3.5 ± 1.1  0.88 

CO by VTI 
method (l/min)  

27 5.8 ± 1.8  5.5 ± 1.7  0.38 

HR (bpm) 30 73 ± 14 76 ± 15 0.15 

SBP (mmHg) 30 137 ± 24 131 ± 25 0.11 

DBP (mmHg) 30 72 ± 13 76 ± 15 0.11 

 

  



Chapter 4 

109 

 

 

In addition, cardiac output derived by the two methods (biplane method 

and VTI method) are seemingly different.  I calculated cardiac output both by 

multiplying the heart rate by the VTI of flow in the LV outflow tract (VTI method) 

and by multiplying it by SV measured as the difference between LV end-diastolic 

and systolic volumes (biplane method).  Heart rate, taken at the same time as blood 

pressure reading immediately after dialysis, was unchanged (median HR 73bpm and 

HR 75bpm, Wilcoxon sign rank test p>0.05) following dialysis.  Using the two 

methods, cardiac output before and after dialysis correlated moderately well 

despite there being no significant difference following dialysis.  Cardiac output (VTI 

method): 5.8 ± 1.8 and 5.5 ± 1.7, Pearson’s R =0.54, p=0.004.  Cardiac output 

(biplane method): 3.5 ± 1.0 and 3.5 ± 1.1, Pearson’s R=0.50, p=0.017.  To explore 

this further, I used Pearson’s linear correlation and Bland Altman graph to assess 

the difference of cardiac output as derived by the two methods.  There is a 

significant linear correlation between measurements derived from the two 

methods, Pearson’s R=0.65, p=0.00 although the mean measurements using VTI 

and biplane methods were significantly different (independent t-test p<0.01).  More 

over there appeared to be a systematic error in the measurements as the 

difference of the two measurements differed increasingly as the mean increased in 

a linear manner.  Figure 16 shows this graphically. 
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Figure 16 Comparison of CO derived by biplane and VTI methods. Top panel, 

linear correlation graph. Bottom panel, BA plot of difference and average 

measurement. 
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4.5.2 Global and regional cardiac function using novel indices 

4.5.2.1  Longitudinal cardiac function indices 

I used tissue Doppler velocities to assess regional longitudinal cardiac 

function.  I used 2 dimensional speckled tracking to assess global longitudinal 

cardiac function. 

 

4.5.2.1.1 Longitudinal tissue Doppler velocities 

I recorded at the time of the study, real-time pulsed tissue Doppler 

velocities of the septal and lateral annuli.  Later, I analysed processed colour tissue 

Doppler velocities in the basal septal and basal lateral walls from a digitally stored 

image obtained from the time of the study. Sector width during image acquisition 

was adjusted to maintain a frame rate >60 Hz. In addition, I aligned images to the 

angle of the Doppler interrogation to minimise sampling error.  Table 4-5 

summaries the effects of dialysis on longitudinal tissue Doppler velocities.  As 

shown, following dialysis, there is an increase in systolic longitudinal mitral annular 

tissue velocities.  However no change is noted in early and late diastolic longitudinal 

mitral annular tissue velocities. 
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Table 4-5 TDI velocities following dialysis  

 Number Pre dialysis Post dialysis P value 

Pulsed-wave TDI velocities (cm/s) 

Septal s’   25 7.2 ± 1.7  8.5 ± 3.6 0.07 

Lateral s’  23 7.6 ± 1.9  8.5 ± 2.3  0.04 

Septal e’  22 6.7 ± 2.3  6.0 ± 1.7  0.19  

Lateral e’  20 8.9 ± 2.8  8.7 ± 2.5  0.68  

Septal a’  21 7.8 ± 2.7  8.3 ± 2.0  0.15  

Lateral a’  19 8.6 ± 2.8  8.3 ± 2.7  0.49  

Septal e’/a’ 21 0.9 ± 0.3 0.8 ± 0.3 0.09 

Lateral e’/a’ 19 1.1 ± 0.3 1.1 ± 0.4 0.58 

Colour processed TDI velocities (cm/s) 

Septal s’  26 5.3 ± 1.9  5.7 ± 1.6 0.08 

Lateral s’  24 5.3 ± 1.4  5.9 ± 1.9  0.06 

Septal e’  23 4.8 ± 2.1  4.4 ± 2.1  0.27 

Lateral e’  20 5.8 ± 2.1  5.5 ± 2.1  0.49  

Septal a’  20 5.1 ± 1.8  5.2 ± 1.98  0.43 

Lateral a’  20 5.3 ± 1.4  5.9 ± 1.9  0.08 

Septal e’/a’ 22 1.0 ± 0.7 0.9 ± 0.6 0.21 

Lateral e’/a’ 19 1.3 ± 0.7 1.7 ± 1.9 0.43 
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4.5.2.1.2 Two-dimensional longitudinal strain and strain rate 

An image of the left ventricle was stored in the 4-chamber view for speckle 

tracking analysis as illustrated in Chapter 2, section 2.6.2. 

Table 4-6 shows the results following dialysis.  Following dialysis, there was 

no change in global longitudinal systolic strain (Ssystole) and systolic strain rate (SR 

systole).   

  



Chapter 4 

114 

 

 

 

Table 4-6 longitudinal strain following dialysis 

 

Number Pre dialysis 

mean 

Post dialysis 

mean 

P value 

Ssystole 

(%) 

24 -14.3 ± 3.4  -14.0 ± 3.7 >0.05 

SR systole  

(/second)  

24 0.79 ± 0.24  0.83 ± 0.26  >0.05 
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4.5.2.2 Radial tissue Doppler velocities 

I recorded at the time of the study a tissue Doppler-encoded clip of the 

parasternal long-axis image of the left ventricle.  These loops were only stored in a 

subset (6) of subjects during the latter part of the study recruitment.  This was a 

protocol change in order to study the differential effect of preload reduction on 

radial and longitudinal TDI velocities.  Later, I analysed radial velocities in the basal 

septum and basal infero-lateral walls using colour processed TDI data.  Sector width 

during image acquisition was adjusted to maintain a frame rate >60 fpm. In 

addition, I aligned images to the angle of the Doppler interrogation to minimise 

sampling error. As illustrated in Chapter 2, section 2.6.1, s’ (peak systolic tissue 

velocity), e’ (early diastolic tissue velocity) and a’ (late diastolic tissue velocity) were 

measured. 

The results are shown in Table 4-7. Only 6 of the 30 participants had 

available images for this analysis and therefore the results are to be interpreted 

with caution. Given the limited sample, no change was seen in peak radial systolic 

(s’) and early diastolic (e’) tissue velocities in both the basal septum and basal 

infero-lateral walls. Nonetheless, there is a small increase in radial late diastolic 

velocities (a’). 
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Table 4-7 Radial tissue Doppler velocities pre and post dialysis 

Colour processed TDI 

velocities (cm/s)  

Number Pre dialysis  Post 
dialysis  

P value  

LV basal  

infero-
lateral  

wall 

s’  6 3.9 ± 1.2  4.2 ± 0.6  >0.05  

e’ 6 4.0 ± 1.7  5.1 ± 0.9  0.09  

a’ 4 3.1 ± 1.1  4.0 ± 0.7  0.03  

LV basal 
septal 

wall  

s’  2 2.3 ± 0.4  2.3 ± 0.2  >0.05  

e’ 2 2.9 ± 0.0  2.2 ± 0.1  0.05  

a’ 1 1  1.2 
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4.5.2.3 Radial strain & circumferential strain at mid left ventricle 

Table 4-8 shows the results following dialysis.  There was no change in radial 

strain following dialysis.  The large standard deviation of radial strain in these 

subjects was comparable to reported data from a previous study (36).  

Circumferential strain increased following preload reduction.  
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Table 4-8 Radial and circumferential strain following dialysis 

  

 

number Pre dialysis  Post  

dialysis  

P value  

Srad 

(%)  

18 34.2 ± 16.3  33.4 ± 14.9  0.70  

Scirc  

(%)  

18 17.9 ± 3.9  18.6 ± 3.8  0.03  
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4.5.2.4 Left ventricular apex rotation & torsion 

I acquired an image of left ventricular apex and an image of left ventricular 

base for later analysis with speckle tracking.  An illustrated diagram can be found in 

Chapter 2, section 2.6.4.  The results are shown in the following table (Table 4-9).  

Although there was no change in basal rotation and LV length, there was an 

increase in apex rotation leading to an increase in LV untwisting and torsion.  

Nonetheless, there was no change in the peak UTR and time to peak rotation 

following dialysis. 
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Table 4-9 LV rotation, torsion and timing 

 
number Pre  

dialysis  
mean 

Post  
dialysis  
mean/median 

P value  

Apex 
Rotation 
(0)  

26 6.9  8.5  0.01 
 

Basal 
Rotation 
(0)  

17 6.0 ± 2.5  6.4 ± 2.6  0.63 

LV length 
(cm)  

25 6.61 ± 0.82  6.52 ± 0.84  0.46  

Torsion  
(0/cm) 

15 2.3 ± 1.1  2.8 ± 1.1  0.03  

Time to Peak 
Apex 
Rotation 
(% cycle 
length)  

26 40 ± 10  41 ± 8  0.45 

Peak UTR 
 (/second)  

26 73 ± 30  76 ± 27 0.69 
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4.6 Preload reduction and its effect on Ees 

4.6.1 Non-invasive single beat estimation of Ees  

Several non-invasive methods (66,67,71) previously validated well against PV 

loop studies for single beat estimation of Ees.  I quantified the Ees in my study 

subjects using the three methods described in page 66-68 (section 2.6.5), Chapter 

2. 

The results of estimated Ees using the three methods and the comparison 

between the healthy blood donors and the dialysis patients are as shown in the 

table below (Table 4-10).  Ees estimated by using the Kim’s and Chen’s methods 

were significantly different between the two groups of subjects.  Ees estimated by 

Tanoue’s method did not distinguish the two groups, unsurprisingly due to the 

simplicity of the method.   

Although the estimated values of Ees by the three methods were widely 

different, measurements of pre and post load change combined together, showed 

significant linear correlation between each of the three methods.  Figure 17 shows 

this graphically.  
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Table 4-10 Non-invasive single beat estimated Ees by different methods 

 

  

 
Blood donors  
N=15 

Dialysis patients  
N=30 

P value  

Ees 

mmHg/ml 

Chen (71) 2.8 ± 0.9 1.7 ± 0.7  0.00  

Kim (66) 4.3 ± 2.2 1.6 ± 1.2 0.00 

Tanoue 

(67) 

4.0 ± 1.3 3.9 ± 1.2 0.70 
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4.6.2 Non-invasive single beat estimation of Ees following preload 

reduction 

There was no change in the non-invasively estimated LV end-systolic 

elastance Ees following dialysis.  Figure 18 illustrates the pre and post load change 

measurements and correlation for each of the three methods.  Table 4-11 shows 

the results of Ees, and its component measurements pre and post load change.  ET, 

left ventricular ejection time was affected by preload reduction, which is expected 

and consistent with what was previously reported (104). 
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Figure 17 Linear correlation of estimated Ees by different methods 
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Table 4-11 Non-invasive Ees and its component measurements following dialysis 

 

Dialysis patients 

 pre post P value 

Ees Chen (71) 

mmHg/ml 

1.6 ± 0.5 1.6 ± 1.0  0.703  

Ees Kim (66) 

mmHg/ml 

1.7 ± 1.3 1.8 ± 1.3 0.613 

Ees Tanoue (67) 

mmHg/ml 

3.9 ± 1.2 4.3 ± 1.5 0.085 

DBP 

mmHg 

72 ± 13 68 ± 16 0.116 

SBP 

mmHg 

138 ± 24 131 ± 25 0.117 

ET 

Milliseconds 

292 ± 7 268 ± 51 0.001 

PEP 

Milliseconds 

79 ± 21 74 ± 18 0.365 

SV 

ml 

48 ± 15 48 ± 18 0.951 

EF 

% 

58 ± 7 61 ± 6 0.060 

ENDavg 
0.3 ± 0.1 0.3 ± 0.1 0.496 

ESV 

ml 

35 ± 11 31 ± 11 0.012 
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4.6.3 Feasibility of non-invasive quantification of Ees measurements 

Non-invasive quantification of Ees was feasible in my study subjects using the 

previously described methods (66,67,71). I found that non-invasive Ees was 

unaffected by a large (1.6 L) preload reduction.  Similar to earlier findings (126), 

although the calculated Ees obtained using these methods differed, there was good 

correlation between any given two methods in my subjects.  See Table 4-10, page 

122 and Figure 17, page 124 for details. 

Previous studies have reportedly that Ees is around 2 mmHg/ml in normal 

hearts (136), 4 mmgHg/ml in hypertrophied hearts (137) and <1 mmHg/ml in failing 

dilated hearts (138).  Ees measurements derived invasively differ from those derived 

non-invasively, by a mean of 0.1-1.3 mmHg/ml depending on the methods used 

(66,71).  Chowdhury et al (126) studied children undergoing cardiac surgery and 

compared the different methods (66,67,71,139) of non-invasively estimated Ees 

with that derived from the gold standard of PV loop. When they used 2-dimensional 

echocardiography, the measurements differed by between 4.2 to 7 mmHg/ml (4.2 

mmHg/ml (67), 5.7 mmHg/ml (66), 7 mmHg/ml (71)).  3-dimensional 

echocardiographic quantification reduced this difference to as little as 1.6 

mmHg/ml (range 1.6-7.9 mmHg/ml) when they used the Tanoue method (67).  They 

reported ICC (intra-class correlation) as a measure of their intra- and inter-observer 

variability.  They reported good ICC for intra-observer (ICC 0.85-0.98) and inter-

observer (ICC 0.82-0.92) measurements.:  The authors (126)concluded that the 
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Tanoue (67) method was the simplest to use and produced Ees closest to the gold 

standard measurements. 

With regards to my data, although applying the method of Kim et al produced 

significantly different values of Ees in the two study groups, the mean Ees of 4.3 ± 1.2 

mmHg/ml in the blood donors would suggest the presence of left ventricular 

hypertrophy (137), which is inconsistent with their normal LVMI calculated using 

the established method (140).  The Tanoue method was the quickest in producing a 

calculated Ees value, but the results in my study did not tell the two groups apart 

despite the marked difference in their cardiac structure and function (LVMI, LAVI, 

E/e’, estimated LAP).  The Chen method, in my study, produced Ees values 

consistent with previous published ranges (136–138) and it was able to distinguish 

the two groups of subjects.  However, this method requires the estimation of a 

population-averaged elastance at onset of ejection, using a 7-degree polynomial 

function.  This is cumbersome and not easily incorporated into routine clinical use. 

 

 

4.7 Preload reduction and its effect on IVA 

4.7.1 IVA following preload reduction 

The following table (Table 4-12) shows the results of IVA following dialysis.  

As discussed in section 2.6.1 (page 69) and as illustrated by Figure 11 (page 71), IVA 

is the peak Isovolumetric acceleration (cm/s2).  This is calculated from the peak 

amplitude of colour processed TDI velocity (cm/s) divided by the time (s) to the 

peak velocity, during left ventricular isovolumetric contraction.   
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Table 4-12 IVA following preload reduction in dialysis and blood donor groups 

IVA 

( cm/s2 ) 

Number Baseline Post preload 

reduction  

p value 

Dialysis subjects  

Septal 

 

23 72 ± 35  70 ± 30  0.75  

Lateral 22 51 ± 23  74 ± 55  0.06  
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4.7.2 Feasibility of IVA measurements  

Out of the 45 subjects in both groups, 43 yielded a colour processed TDI 

graph suitable for IVA determination at baseline and 42 following load reduction.  

The measurements were not significantly different following load change: 64 ± 55 

cm/s2 and 69 ± 38 cm/s2, paired t-test p=0.55. 

The following figure (Figure 19) shows the linear correlation of the paired 

measurements.  As IVA is calculated by dividing the peak isovolumic velocity by the 

time from zero crossing to peak isovolumic velocity, the repeatability of IVA 

measurement is therefore dependent on the repeatability of the TDI velocity.  

Figure 5 (page 62, chapter 2) and Table 2-3 (page 62, chapter 2) show significant 

linear correlation (Pearson’s R=0.94, p<0.001) and coefficient of variation of 6.8% of 

repeated TDI measurements in my study.  However, I did not perform a 

repeatability study of IVA measurements.  The method is time consuming and a 

small error in the measurement of isovolumetric velocity and time to peak 

isovolumetric velocity is unavoidable due to the small magnitude of the 

measurements. 
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Figure 18 IVA before and after preload reduction, significant but moderate 

linear correlation. 
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4.8 Summary of effect of preload reduction following 

haemodialysis 

Following a mean 1.6 ± 1.3 L preload reduction, the main findings were: 

1. A significant reduction in cardiac dimensions (LVIDd, LVIDs, LAA) but 

unchanged wall thickness and mass (LVM, IVSd and PWd). 

2. A shape change of left ventricle was apparent, driven by a reduction in 

LVIDd but unchanged LV length. 

3.  A significant reduction in diastolic blood flow filling velocities (E,A).  

4. Estimated LAP decreased significantly although the values remained 

elevated. 

5. Conventional indices of global and regional cardiac function (MAPSE, FS, EF, 

LV VTI) remained unchanged. 

6. Novel indices of cardiac function showed differential load sensitivity.  

Longitudinal systolic tissue Doppler velocities (TDI), 2DSTE apex rotation and 

mid cavity circumferential strain (Scirc) were significantly different following 

dialysis. There was no change in radial tissue Doppler velocities (TDI), 2DSTE 

radial strain, basal rotation and longitudinal strain (Ssystole) and SRsystole.  

7. Non-invasive single beat estimation of Ees was feasible using all three 

methods (66,67,71).   

8. Ees, estimated by the non-invasive methods, did not change. 

9. Tanoue’s method is the simplest, requiring only knowledge of ESV and 

systolic blood pressure.  However using this method in my subjects did not 

characterise them as two distinct clinical groups.  Chen’s method is the most 
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complicated, requiring estimation of the normalised left ventricle elastance 

at onset of ejection, by a 7-degree polynomial equation.  Kim’s method is 

easier to use in comparison but assumes a constant EDP of 10 mmHg in the 

calculation. 

10. Estimated Ees from the three methods were widely different but results of 

Ees using each method do correlate with each other well.  Therefore, values 

of Ees derived from these three methods must not be used interchangeably. 

11. IVA quantification is feasible in all my subjects but it is time consuming.   

12. TDI derived IVA, as a marker of LV contractile state, is load insensitive within 

the range of preload reduction studied in my subjects. 

 

Returning to the hypotheses at the beginning of this chapter, I conclude the 

following: 

1. Conventional indices (EF, MAPSE, CO) of echocardiography are load resistant 

given a preload reduction of 1.6 litres.   

2. Novel echocardiographic indices show differential load sensitivity to this 

amount of load change.  Apical rotation, TDI longitudinal s’ and mid LV Scir 

are preload sensitive whilst mid LV Srad and longitudinal Ssystole are preload 

resistant. 

3. IVA and non-invasively estimated Ees are preload insensitive.
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5 Effect of preload reduction on cardiac function 

following venesection 

5.1 Aims of this chapter 

In this chapter, I aim to investigate the effect of a modest preload reduction 

(500ml) on echocardiographic indices of cardiac function.  I studied this in a group 

of healthy blood donors.  I tested the hypothesis that most echocardiographic 

indices are preload sensitive.  I also tested the hypothesis that non-invasively 

quantified Ees and IVA are insensitive to moderate preload reduction. 

5.2 Subjects testing 

15 subjects consented to take part in the study at the Welsh Blood Service.  

Each subject laid semi supine on a bed in the left lateral position and underwent 

echocardiography immediately before venesection. For the duration of blood 

donation, approximately ten minutes, each subject remained seated on the bed. 

Immediately after blood donation, each subject resumed the semi supine left 

lateral position whilst I performed echocardiography. 

All images were stored digitally for offline analysis on a separate occasion.  

Each subject had a unique study identification number for anonymization purpose.  

I performed all the data analysis some time later. 
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5.3 General haemodynamic measurements  

Blood pressure and heart rate were measured immediately before and after 

venesection.  Compared to baseline, there was no change in arm cuff blood 

pressure, heart rate derived from arm cuff monitoring and heart rate at time of 

echocardiography.  The following table (Table 5-1) shows the results.   

5.4 Preload reduction and its effect on cardiac dimension and 

volume 

As shown in the following table (Table 5-2), venesection significantly reduced 

left ventricular end diastolic (LVIDd) and end systolic (LVIDs) internal dimensions, 

left ventricular end diastolic volume (LVEDV), stroke volume (SV), and left atrial 

area (LAA) and volume (LAV).  There was no change in left ventricular length.  

Sphericity index, calculated by dividing LV length with LVIDd, increased as the 

ventricle became less spherical following venesection. 

5.5 Preload reduction and its effect on diastolic filling 

Despite the relatively modest volume of blood loss (approximately 500ml), 

diastolic blood flow velocities were significantly reduced in early (E) and late (A) 

diastole. In addition, deceleration time (DT) and isovolumetric relaxation time 

(IVRT) were significantly longer and increased by 24% and 15% respectively.  Table 

5-3 shows the results.  Estimated LAP was normal at baseline and remained so 

following venesection as shown in Table 5-4. 
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Table 5-1 Blood pressure and heart rate following venesection 

 Pre venesection Post venesection Paired t-test p 
value 

Systolic blood 
pressure 
(mmHg) 

127 ± 17 125 ± 19 0.53 

Diastolic blood 
pressure 
(mmHg) 

77 ± 19 76 ± 16 0.84 

Mean blood 
pressure 
(mmHg) 

94 ± 13 92 ± 17 0.49 

Pulse pressure 
(mmHg) 

50 ± 10 48 ± 10 0.73 

Heart rate (arm cuff) 
(bpm) 

64 ± 13 65 ± 11 0.85 
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Table 5-2 Cardiac dimension following venesection 

 
Number Pre 

venesection 
Post 
venesection 
 

Δ mean 
difference 
and  
95% CI  

P 
value  

LVIDd (cm)  15 4.2 ± 0.6  3.7 ± 0.7  ↓0.6 ± 0.1 

14% 

(0.3-0.8)  

0.001  

LVIDs (cm)  15 2.9 ± 0.5  2.5 ± 0.5  ↓0.5 ± 0.2 

17% 

(0.0‐0.9) 

0.038  

LV length (cm) 15 8.01 ± 0.51 7.92 ± 0.59 ‐ 0.12 

Sphericity 
Index_4c  

15 1.9 ± 0.2  2.3 ± 0.4  ↑0.3 ± 0.1 

(‐0.5 to 1.5)  

0.001  

LVEDV(ml)  15 86 ± 20  80 ± 20  
↓6 ± 3 

7% 

(0.1 to 12) 

 

 

0.047 

LVESV(ml) 15 31 ± 11  28 ± 9  ↓2.8 

(-1.8-7.4) 

>0.05  

SV by biplane 
method (ml)  

15 55 ± 11  51 ± 15  ↓3.4 

(-2.8-9.6) 

>0.05  

LAA (cm2) 14 15 ± 3 13 ± 4  

 

↓1.9 

(-0.1-4.0) 

0.064  

LAV (ml)  14 40 ± 12  34 ± 14  ↓ 6 ± 2 

15% 

(0.6‐11)  

0.031  
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Table 5-3 Blood pooled velocities following venesection 

 
Number Pre  

 
Post  
 

Mean Δ and  
95% CI  

P value  

E(m/s) 15 0.69 ± 
0.12  

0.55 ± 
0.12 

↓0.14 ± 0.11 
13% 
(0.07 – 0.20)  

0.000  

A(m/s) 15 0.52 ± 
0.12 

0.46 ± 
0.10  

↓0.06 ± 0.09 
3% 
(0.01- 0.12)  

0.027  

DT 
(ms) 

15 218 ± 42  270 ± 72  ↑52 ± 78 
24% 
(9 – 96)  

0.021  

E/A 15 1.40 ± 
0.39  

1.27 ± 
0.41  

0.12 ± 0.28 
9% 
(0.03-0.27) 

0.122  

IVRT 
(ms) 

15 96 ± 13  110 ± 28  ↑15 ± 23 
16% 
(2-28)  

0.030 
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Table 5-4 Estimated LAP following venesection 

 
Number Pre 

venesection 
Post 
venesection  

Mean Δ and  
95% CI  

P value  

Estimated 
LAP (130) 
mmHg 

15 9.8 ± 1.6  8.7 ± 2.5  ↓1.1 
(‐0.1‐2.3) 

0.076  

E/e’ 15 6.8 ± 1.4 6.3 ± 2.5 ↓ 0.5 ± 2.3 
(0.8 – 1.8) 

0.423 
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5.6 Preload reduction and its effect on global and regional 

cardiac function 

5.6.1 Global & regional cardiac function using conventional echo indices 

The following table (Table 5-5) shows results using conventional 

echocardiography indices for regional and global cardiac function.  Although there 

was a reduction in left ventricular (LV VTI) stroke distance, there was no change in 

overall global cardiac function following venesection. Fraction shortening (FS), 

biplane ejection fraction (EF), cardiac output (CO) and index (CI) remained 

unchanged. 

5.6.2 Global and regional cardiac function using novel echo indices 

5.6.2.1 Longitudinal cardiac function indices 

5.6.2.1.1 Longitudinal tissue Doppler velocities 

There was no change in the instantaneous tissue Doppler velocities. 

However, a change was apparent in the processed colour tissue Doppler velocities. 

Basal septal and average basal (septal and lateral) systolic velocities increased by 

16%and 9% respectively. Basal lateral and average early diastolic velocities 

decreased by 13% and 10% respectively after venesection.  Table 5-6 shows the 

results. 
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Table 5-5 regional and global cardiac indices following venesection. 

 
Number Pre  Post  % change 

from 

baseline, 

95% CI 

P value  

 

Fractional 

shortening 

(%)  

15 30 ± 8  27 ± 7  3.33 

(‐1.6‐8.3) 

0.17 

LV VTI(cm)  15 19 ± 3  18 ± 3  ↓1.9 

(0.14‐3.61) 

0.03  

MAPSE(cm)  15 1.5 ± 0.4  1.4 ± 0.3  0.10 

(‐0.05‐0.25) 

0.18  

Biplane EF (%)  15 64 ± 5 64 ± 7 ‐0.20 

(‐4.5‐4.1) 

0.92 

CO 

biplane(l/min)  

15 3.4 ± 0.7  3.1 ± 0.7  0.27 

(‐0.2‐0.7) 

0.22  

CO by VTI 

(l/min) 

15 3.8 ± 0.8 3.4 ± 0.9 0.5 

(0.02‐0.94) 

0.04 

 

  



Chapter 6. 

141 

 

Table 5-6 TDI velocities following venesection 

 
Number Pre dialysis Post dialysis P value 

Pulsed-wave TDI velocities (cm/s) 

Septal s’   14 8.8 ± 1.6  8.9 ± 1.6 0.869 

Lateral s’  15 8.7 ± 2.2  9.3 ± 1.4  0.251 

Septal e’  14 9.4 ± 2.9  8.0 ± 2.8  0.057 

Lateral e’  15 11.1 ± 2.4  10.9 ± 2.7  0.666 

Septal a’  15 8.4 ± 2.3  8.1 ± 2.4  0.598 

Lateral a’  15 7.3 ± 2.9  7.5 ± 2.3  0.677 

Septal e’/a’ 14 1.3 ± 0.6 1.2 ± 0.8 0.46 

Lateral e’/a’ 15 1.6 ± 0.8 1.8 ± 1.1 0.47 

Colour processed TDI velocities (cm/s) 

Septal s’  15 5.1 ± 0.7  5.9 ± .9 0.018 

Lateral s’  14 5.9 ± 1.3  6.1 ± 1.1  0.638 

Septal e’  15 6.4 ± 1.9  5.9 ± 2.5  0.215  

Lateral e’  14 7.9 ± 2.0  6.9 ± 1.7  0.063  

Septal a’  15 4.6 ± 1.7 4.7 ± 1.8 0.902 

Lateral a’  14 4.2 ± 1.8 4.2 ± 1.8 0.906 

Septal e’/a’ 15 1.8 ± 1.3 2.3 ± 1.4 0.82 

Lateral e’/a’ 14 2.3 ± 1.4 2.1 ± 1.3 0.19 
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5.6.2.1.2 Two-dimensional longitudinal strain and strain rate 

There was no change in peak longitudinal systolic strain (Ssystole), or in the 

peak strain rate at systole (SRsystole).  Table 5-7 shows these results. 

5.6.2.2 Radial tissue Doppler velocities  

When examining the radial plane tissue Doppler velocities in basal infero-

lateral wall and basal infero-septum using colour processed TDI, I noted an increase 

in late diastolic velocities in the basal infero-lateral wall by 33% and average 

velocities by 22%.  Only the infero-septum showed an insignificant decrease in early 

diastolic tissue velocity by 18% whilst the systolic velocities remained unchanged in 

both segments.  Table 5-8 below shows the results. 

5.6.2.3 Radial strain & circumferential strain at mid left ventricle 

Not all the subjects had adequate images for 2DSTE analysis at the mid left 

ventricle.  No significant difference was demonstrated in the 2-dimensional radial 

strain, and circumferential strain following venesection.  Table 5-9 shows the 

results. 
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Table 5-7 Longitudinal strain and strain rate following venesection 

 
Number Pre venesection 

mean 
Post 
venesection 
mean 

P value 

Ssystole 
(%) 

14 15.1 ± 1.2  15.1 ± 2.7 0.947 

SR
systole  

(/second)  

14 0.8 ± 0.1  0.9 ± 0.2  0.553 
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Table 5-8 Radial TDI velocities following venesection 

 
number Pre venesection  Post venesection  P value  

Basal 
infero-
lateral 
wall 
(cm/s) 

s’  15 3.3 ± 1.1  3.4 ± 0.7  0.717  

e’ 15 4.1 ± 1.1  3.7 ± 1.2  0.364  

a’ 15 1.8 ± 1.2  2.4 ± 1.3  0.018  

Basal 
infero-
septum 
(cm/s)  

s’  10 2.8 ± 0.6  3.1 ± 0.8  0.279  

e’ 9 3.3 ± 0.9  2.7 ± 1.5  0.089 

a’ 9 2.01.0  2.21.1  0.285  
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Table 5-9 Radial and circumferential strain following venesection 

 
Number Pre venesection  Post  

venesection  
P value  

Srad 
(%)  

9 43 ± 16  36 ± 11  0.383  

Scirc (%)  10 21 ± 3  21 ± 4  0.839  
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5.6.2.4 Left ventricular apex rotation, basal rotation & LV torsion 

As shown in table below (Table 5-10), there was a 40% and 32% increase in 

apex rotation and untwisting following venesection but no change was noted in 

basal rotation, LV torsion and length. Apex time to peak to peak rotation, time to 

peak untwisting, early untwist, untwisting time and time to peak untwisting rate 

(UTR) were unchanged.  There was a 32% increase in peak untwisting rate following 

venesection. 
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 Table 5-10 LV rotation and torsion following venesection 

 

  

 
Number Pre- 

venesection 

Post- 

venesection 

P value 

Apex Rotation 

(0)  

12 6.5 ± 2.2 9.1 ± 4.3 0.044 

Basal Rotation 

(0)  

13 5.6 ± 2.8 5.5 ± 2.6 0.897 

LV length 

(cm)  

11 8.0 ± 0.5 8.0 ± 0.5 0.123 

Torsion  

(0/cm) 

11 1.9 ± 0.6 2.4 ± 0.9 0.140 

Time to Peak Apex 

Rotation 

(% cycle length)  

12 28  ± 12 32 ± 9 0.153 

Peak UTR 

 (/second)  

12 59 ± 21 78 ± 28 0.033 
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5.7 Preload reduction and its effect on Ees 

There was no change in the non-invasively estimated LV end-systolic 

elastance Ees following venesection.  Figure 20 illustrates the pre and post load 

change measurements and correlation for each of the three methods (66,67,71).  

Table 5-11 shows the results of Ees, and its component measurements pre and post 

load change in the venesection group.  ET, left ventricular ejection time was 

affected by preload reduction, which is expected and consistent with what was 

previously reported (104). 
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Table 5-11 Ees and its component measurements following venesection. 

 

 

  

 
Blood donors 

 pre post P value 

Ees Chen (71) 

mmHg/ml 

2.8 ± 0.9  2.9 ± 1.1  0.802 

Ees Kim (66) 

mmHg/ml 

4.3 ± 2.2 3.9 ± 2.0 0.410 

Ees Tanoue (67) 

mmHg/ml 

4.0 ± 1.3 4.3 ± 1.4 0.309 

DBP 

mmHg 

77 ± 12 76 ± 17 0.848 

SBP 

mmHg 

127 ± 17 125 ± 19 0.539 

ET 

Milliseconds 

293 ± 22 278 ± 23 0.013 

PEP 

Milliseconds 

59 ± 16 67 ± 20 0.105 

SV 

ml 

55 ± 11 51 ± 15 0.258 

EF 

% 

64 ± 5 64 ± 7 0.923 

ENDavg 0.2 ± 0.1 0.3 ± 0.1 0.039 

ESV 

ml 

31 ± 11 28 ± 9 0.209 
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Figure 19 Ees pre- and post-venesection, linear correlation graphs. Top panel 

Kim method, middle panel Tanoue method, and bottom panel Chen method.  
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5.8 Preload reduction and its effect on IVA 

The following table (Table 5-12) shows the results of IVA following 

venesection.  As discussed in section 2.6.1 (page 69) and as illustrated by Figure 11 

(page 71), IVA is the peak Isovolumetric acceleration (cm/s2).  This is calculated 

from the peak amplitude of colour processed TDI velocity (cm/s) divided by the 

time (s) to the peak velocity, during left ventricular isovolumetric contraction. 
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Table 5-12 IVA following preload reduction in dialysis and blood donor groups 

 

IVA 

( cm/s2 ) 

Number Baseline Post preload 

reduction  

p value 

Blood donors 

Septal 15 60 ± 61 59 ± 41 0.956 

Lateral 12 85 ± 111 71 ± 43 0.619 
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5.9 Summary of effect of preload reduction following 

venesection 

The main findings following venesection in healthy blood donors are: 

1) Peripheral haemodynamic indexes (systolic blood pressure, diastolic blood 

pressure, mean blood pressure, pulse pressure, heart rate) were unaffected by 

a modest volume of blood loss. 

2) Despite the modest volume loss, there was reduction in cardiac chamber 

dimensions and volumes: 12% reduction in LVIDd, 14% reduction in LVIDs, 7% 

reduction in LVEDV, 13% reduction in SV, and 15% reduction in LAV. 

3) A shape change of left ventricle resulted from unchanged LV length and reduced 

radial dimension: sphericity index increased by 16-21%.  The left ventricle 

became less spherical following venesection. 

4) Diastolic filling was affected by even a small volume loss: 29% reduction in E 

velocity, 20% reduction in A velocity, 24% increase in DT time, and 15% increase 

in IVRT time. 

5) Conventional indices of cardiac function (FS, MAPSE, EF, CO, CI) were unaffected 

by this small volume change. 

6) There was a differential preload sensitivity in regional tissue Doppler velocities.  

Systolic longitudinal tissue Doppler velocity (TDI) s’ increased by 9-16% but 

radial tissue Doppler velocity (TDI) s’ remained unchanged. Both longitudinal 

and radial e’ decreased by 10-13% and 18% respectively.  Radial a’ increased by 

22% whilst longitudinal a’ was unchanged.  Radial s’ and longitudinal a’ appear 

to be least load sensitive. 
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7) There was a differential preload sensitivity in 2-dimensional strain.  Radial and 

circumferential strain, basal rotation and LV torsion did not change whilst there 

was a 40% increase in apex rotation.  Apex rotation appears to be most load 

sensitive. 

8) Ees and IVA did not change following venesection. 

 
Returning to the hypotheses at the beginning of this chapter, I conclude the 

following: 

1. Conventional indices (EF, MAPSE, CO) of echocardiography are not affected by a 

small change in preload. 

2. Apical rotation and TDI longitudinal s’ are sensitive to a small change in preload. 

3. Scir, Srad and Ssystole are resistant to a small preload reduction. 

4. Ees and IVA are preload resistant given a small preload reduction. 
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6 Effects of preload reduction on cardiac function 

6.1 Aim of this chapter 

Chapter 4 and Chapter 5 showed the results on cardiac function following a 

large (mean of 1.6 L) and moderate (500 ml) preload reduction in the two subject 

groups.  As discussed in Chapter 3, there are significant difference in the baseline 

characteristics of the two groups in this study.   

The aim of this chapter was to investigate if there was a different response to 

preload reduction, in the dialysis group compared to the blood donors, after 

adjusting for the confounding factors.  The difference in response following preload 

reduction, if found, may be helpful in better characterisation of the dialysis group.  

6.2 Baseline differences in the study groups 

The dialysis subjects were older compared to the blood donors (mean age 59 

± 18 years and 45 ± 15 years, p=0.02).  In addition, the magnitude of preload 

reduction was 1.6 ± 1.3 L in the dialysis group, compared to 0.5 ± 0.0 L in the blood 

donors, p<0.001.  To detect a true difference in their response to preload reduction, 

I used ANCOVA (analysis of covariance) analysis to adjust for the confounding 

covariates of age and magnitude of preload change.  The following sections show 

the results of this analysis. 
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6.3 Change in cardiac dimension and volume following preload 

reduction 

As a combined group, following preload reduction, there is a significant 

reduction in left ventricular dimensions (LVIDd, LDIDs) and left atrial volume (LAV) 

whilst the LV length remained unchanged.  The left ventricle became less spherical 

in both groups.   

Before and after adjusting for the covariates of age and volume loss, there is 

no significant difference between the groups.  Table 6-1 shows the unadjusted 

difference (independent t-test) and adjusted difference (ANCOVA analysis) for both 

the groups. 
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Table 6-1 Group comparison following preload reduction, adjusted using ANCOVA analysis  

    Dialysis  Venesection p value for baseline 
comparison  

p value for mean Δ 
comparison 
following preload 
reduction  

Pre  Δ post  Pre Δ post  

LVIDd (cm) 
unadjusted  4.4 ± 0.7 0.6 ± 0.1  4.2 ± 0.6   0.6 ± 0.2  0.49 0.70 

  
adjusted  4.4 ± 0.1  0.6 ± 0.1 4.2 ± 0.2  0.6 ± 0.2 0.61 0.91 

LVIDs (cm)  
unadjusted  3.1 ± 0.7 0.4 ± 0.1   2.9 ± 0.4 0.5 ± 0.2   0.48 0.94 

  
adjusted  3.0 ± 0.1   0.4 ± 0.1 3.0 ± 0.2  0.6 ± 0.2 0.86 0.46 

IVSd (cm)  
unadjusted  1.2 ± 0.3 0.1 ± 0.5   0.9 ± 0.1 0.1 ± 0.2  0.00 0.98 

  
adjusted  1.2 ± 0.1  0.1 ± 0.1 1.0 ± 0.1  0.0 ± 0.2 0.01 0.67 
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Table 6-1 Group comparison following preload reduction, adjusted using ANCOVA analysis  

    Dialysis  Venesection p value for baseline 
comparison  

p value for mean Δ 
comparison 
following preload 
reduction  

Pre  Δ post  Pre Δ post  

PWd (cm)  
unadjusted  1.2 ± 0.2 0.1 ± 0.2   1.0 ± 0.1 0.1 ± 0.1  0.00 0.56 

  
adjusted  1.2 ± 0.0  0.1 ± 0.1 1.0 ± 0.1  0.1 ± 0.1 0.00 0.73 

LV length (cm)  

unadjusted  7.8 ± 0.9  0.4 ± 0.1  8.0 ± 0.5 0.0 ± 0.1  0.36 0.78 

  
adjusted  8.3 ± 0.9  0.1 ± 0.1 8.0 ± 0.5  0.1 ± 0.2 0.14 0.48 

Sphericity index 

unadjusted  1.7 ± 0.2  0.3 ± 0.1  1.9 ± 0.2 0.3 ± 0.1 0.59 0.98 

  
adjusted  1.9 ± 0.1  0.3 ± 0.1 1.9 ± 0.1  0.4 ± 0.1 0.82 0.87 
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Table 6-1 Group comparison following preload reduction, adjusted using ANCOVA analysis  

    Dialysis  Venesection p value for baseline 
comparison  

p value for mean Δ 
comparison 
following preload 
reduction  

Pre  Δ post  Pre Δ post  

LAV (ml) 
  

unadjusted  78 ± 33 15.5 ± 2.7  40 ± 12  6.0 ± 2.5  0.00 0.02 

adjusted  77 ± 6  15.1 ± 2.6 40 ± 7  6.6 ± 3.7 0.00 0.08 

LVEDV (ml) 

unadjusted  83 ± 23  4 ± 3  86 ± 20  6 ± 3  0.74  0.71  

adjusted  83 ± 5  11 ± 4  86 ± 6  2 ± 3  0.77  0.09  

LVESV (ml) 

unadjusted  35 ± 11  4 ± 2  31 ± 11  3 ± 2  0.33 0.58 

adjusted  35 ± 2  4 ± 2  31 ± 3  3 ± 2  0.36 0.78 

SV (ml) 
unadjusted  48 ± 15  0.2 ± 3  55 ± 11  3 ± 3  0.18  0.44  
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Table 6-1 Group comparison following preload reduction, adjusted using ANCOVA analysis  

    Dialysis  Venesection p value for baseline 
comparison  

p value for mean Δ 
comparison 
following preload 
reduction  

Pre  Δ post  Pre Δ post  

adjusted  48 ± 3  6 ± 4  55 ± 4  2 ± 3  0.22  0.09  

CO_sv (l) 

unadjusted  3.5 ± 1.0  0.0 ± 0.2  3.4 ± 0.7  0.3 ± 0.2  0.66  0.46  

adjusted  3.6 ± 0.2  0.5 ± 0.3  3.3 ± 0.2  0.2 ± 0.1  0.41  0.11  

CO_vti (l) 

unadjusted  5.8 ± 1.3  0.7 ± 0.6  3.8 ± 0.9  0.5 ± 0.2  0.00  0.07  

adjusted  5.6 ± 0.3  0.4 ± 0.7  3.8 ± 0.4  0.7 ± 0.5  0.00  0.27  

LVOTd (cm) 

unadjusted  2.2 ± 0.3  0.0 ± 0.0  2.0 ± 0.2  0.0 ± 0.1  0.01  0.65  

adjusted  2.1 ± 0.1  0.0 ± 0.1  2.0 ± 0.1  0.0 ± 0.1  0.05  0.52  
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Table 6-1 Group comparison following preload reduction, adjusted using ANCOVA analysis  

    Dialysis  Venesection p value for baseline 
comparison  

p value for mean Δ 
comparison 
following preload 
reduction  

Pre  Δ post  Pre Δ post  

Heart rate (bpm) 

unadjusted  74 ± 15  2 ± 2  63 ± 10  0.1 ± 1.5  0.02  0.36  

adjusted  73 ± 2  0.1 ± 2  61 ± 3  2 ± 2  0.00  0.42  

LV VTI (cm) 

unadjusted  21.5 ± 5.1  1.9 ± 2.1  19.4 ± 3.1  1.9 ± 0.8  0.15  0.19  

adjusted  21.2 ± 0.9  1 ± 3  19.5 ± 1.3  2 ± 3  0.29  0.44  
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6.4 Change in diastolic filling following preload reduction 

At baseline, the dialysis group had high filling pressure (E/e’, estimated LAP) 

and diastolic dysfunction (A, E/A) compared to the blood donor group.  Following 

preload reduction, both groups demonstrated a reduction in diastolic blood pooled 

velocities E and A.  E/A ratio and estimated LAP fell significantly after a large load 

change (1.6 L) but they were unaffected by venesection (volume loss of 500ml). 

When adjusted for covariates of age and volume loss, there is no significant 

difference in the change of diastolic blood pooled velocities and filling pressure 

between the groups.  Table 6-2 shows the results. 
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Table 6-2 Blood pooled diastolic velocities and filling pressure following preload reduction, group comparison. 

 

Baseline  Δ from baseline following preload reduction  

dialysis venesection  P value  dialysis venesection P value 

E (m/s) 
unadjusted  0.8 ± 0.3 0.7 ± 0.1  0.06  0.13 ± 0.22  0.14 ± 0.11 0.96  

adjusted  0.8 ± 0.1 0.7 ± 0.1  0.06  0.12 ± 0.04  0.18 ± 0.05 0.44  

A(m/s) 

unadjusted  0.8 ± 0.2  0.5 ± 0.1  0.00  0.06 ± 0.09  0.06 ± 0.09  0.93  

adjusted  0.8 ± 0.0  0.6 ± 0.1  0.01  0.07 ± 0.03  0.07 ± 0.03  0.97  

DT(ms) 

unadjusted  228 ± 58  218 ± 42  0.54  36 ± 65  52 ± 78  0.47  

adjusted  223 ± 10  227 ± 14  0.82  26 ± 16  70 ± 21  0.14  

E/A 

unadjusted  1.1 ± 0.4  1.4 ± 0.4  0.01  0.15 ± 0.28  0.12 ± 0.28  0.75  

adjusted  1.2 ± 0.1  1.3 ± 0.1  0.38  0.14 ± 0.06  0.15 ± 0.08  0.88  
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Table 6-2 Blood pooled diastolic velocities and filling pressure following preload reduction, group comparison. 

 

Baseline  Δ from baseline following preload reduction  

dialysis venesection  P value  dialysis venesection P value 

IVRT(ms) 

unadjusted  99 ± 21  96 ± 13  0.59  4.1 ± 22.6  14.7 ± 23.4  0.15  

adjusted  97 ± 4  98 ± 5  0.88  0.6 ± 4.5  21.2 ± 6.4  0.02  

E/e’ 

unadjusted  13 ± 7  6.8 ± 1.4  0.00  2.03 ± 5.2  0.49 ± 2.31  0.29  

adjusted  7.9 ± 0.4  6.5 ± 0.5  0.03  1.6 ± 1.0  1.1 ± 1.3  0.76  

Estimated LAP 
(130) 

unadjusted  2.04 ± 0.09  1.98 ± 0.02  0.01  0.02 ± 0.06  0.01 ± 0.02  0.40  

adjusted  2.03 ± 0.01  1.98 ± 0.01  0.04  0.02 ± 0.01  0.02 ± 0.01  0.91  
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6.5 Change in cardiac function following preload reduction 

6.5.1 Conventional indices of cardiac function 

At baseline, there was no difference in the conventional indices of global 

and regional cardiac function between the groups.  Following preload reduction, 

neither group exhibited a change in these indices.  Table 6-3 shows the results. 

 

6.5.2 Novel indices of cardiac function 

6.5.2.1 Longitudinal TDI velocities 

After adjusting for age as confounder, both groups had comparable 

longitudinal systolic and diastolic TDI velocities but the dialysis group has 

significantly higher filling pressure (E/e’).  Table 6-4 (pulsed-wave TDI) & Table 6-5 

(colour processed TDI) show the results of longitudinal mitral annular velocities 

following preload reduction.  Following preload reduction, pulsed-waved septal s’ 

and colour processed lateral s’ increased significantly in the dialysis group.  On the 

contrary, pulsed-wave septal s’ and colour processed lateral s’ decreased 

significantly in the blood donors.  Colour processed septal e’ fell significantly in the 

blood donors but remained unchanged in the dialysis group. 
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Table 6-3 Group comparison for conventional indices of global and regional cardiac function following preload reduction 

 
baseline  Δ from baseline following preload reduction  

dialysis venesection  p value  dialysis  venesection P value  

Fractional 
shortening 
(%)  

Unadjusted  28 ± 9  30 ± 8  0.53 1.7 ± 0.4  3.3 ± 9.0 0.12 

Adjusted  29 ± 2  29 ± 2  0.93  1.4 ± 2.2  3.2 ± 2.9  0.26  

LV VTI(cm)  Unadjusted  21 ± 5  19 ± 3  0.15  1.9 ± 10.8  1.9 ± 3.1  0.19 

Adjusted  21 ± 1  20 ± 1  0.30  1.8 ± 1.9  1.0 ± 2.6  0.44  

MAPSE(cm)  Unadjusted  1.4 ± 0.4  1.5 ± 0.4  0.58 0.0 ± 0.3  0.1 ± 0.3  0.58  

Adjusted  1.4 ± 0.1  1.5 ± 0.1  0.62 0.0 ± 0.1  0.1 ± 0.1  0.37  
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 Table 6-4 Mitral annular pulsed-wave TDI velocities following preload reduction, group comparison 

Pulsed-wave TDI velocities 
(cm/s) 

Baseline Change from baseline 

dialysis  venesection  P value  dialysis  venesection  P value  

Septal s’  
 

Unadjusted  7.2 ± 1.7  8.8 ± 1.6  0.02  1.3 ± 3.3  0.1 ± 1.6 0.21 

adjusted  7.5 ± 0.3  8.7 ± 0.5  0.06  ↑1.7 ± 0.6  ↓0.7 ± 0.8 0.03 

Lateral s’  Unadjusted  7.6 ± 1.9  8.7 ± 2.2  0.19  1.3 ± 3.2  0.1 ± 1.6  0.21 

adjusted  7.7 ± 0.4  8.9 ± 0.6  0.10  1.0 ± 0.4  0.3 ± 0.5  0.30 

Septal e’  Unadjusted  6.7 ± 2.3  9.4 ± 2.9  0.01  0.7 ± 2.4  1.4 ± 2.6  0.37  

adjusted  7.3 ± 0.4  8.7 ± 0.5  0.04  0.8 ± 0.6  1.2 ± 0.7  0.65  

Lateral e’  Unadjusted  8.9 ± 2.8  11.1 ± 2.4  0.01  0.7 ± 2.4  1.4 ± 2.6  0.37  

adjusted  9.1 ± 0.5  10.7 ± 0.7  0.05  0.1 ± 0.5  -0.7 ± 0.7  0.34  

Average E/e’  Unadjusted  13 ± 7  6.8 ± 1.4  0.00  2.0 ± 5.2  0.5 ± 2.3  0.29  

adjusted  7.9 ± 0.4  6.5 ± 0.5  0.03  1.6 ± 1.0  1.1 ± 1.3  0.76  

Septal a’  Unadjusted  7.8 ± 2.7  8.4 ± 2.3  0.55  0.5 ± 1.5  0.3 ± 2.0  0.19  

adjusted  7.7 ± 0.5  8.7 ± 0.7  0.27  0.7 ± 0.4  -0.6 ± 0.5  0.10  

Lateral a’  Unadjusted  8.6 ± 2.8  7.3 ± 2.9  0.20  0.5 ± 1.5  0.3 ± 2.0  0.19  

adjusted  8.5 ± 0.7  7.6 ± 0.8  0.42  -0.2 ± 0.5  0.0 ± 0.6  0.78  
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Table 6-5 Group comparison for colour processed mitral annular TDI velocities following preload reduction 

Colour processed 
TDI velocities 
(cm/s) 

baseline Δ from baseline  

 
dialysis  venesection  P value  dialysis venesection  P value  

Septal s’  
 

Unadjusted  5.3 ± 1.9  5.9 ± .9 0.61  0.4 ± 1.1  0.8 ± 1.1  0.34  

adjusted  5.4 ± 0.3  5.0 ± 0.4 0.50  0.5 ± 0.2  0.6 ± 0.3  0.81  

Lateral s’  Unadjusted  5.3 ± 1.4  6.1 ± 1.1  0.23  0.6 ± 1.6  0.2 ± 1.2  0.35  

adjusted  5.1 ± 0.3  6.0 ± 0.4  0.06  ↑0.9 ± 0.3  ↓0.3 ± 0.4  0.01  

Septal e’  Unadjusted  4.8 ± 2.1  5.9 ± 2.5  0.03  0.4 ± 1.8  0.5 ± 1.5  0.87  

adjusted  5.3 ± 0.3  5.8 ± 0.4  0.34  0.0 ± 0.3  ↓1.2 ± 0.4  0.05  

Lateral e’  Unadjusted  5.8 ± 2.1  6.9 ± 1.7  0.01  0.3 ± 2.0  0.9 ± 1.7  0.37  

adjusted  6.2 ± 0.4  7.5 ± 0.5  0.06  -0.1 ± 0.5  -1.2 ± 0.6  0.19  
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6.5.2.2 Basal radial colour processed TDI velocities  

Table 6-6 shows the results following preload reduction in both groups.  

Only a subset (6/30) of patients in the dialysis group has stored loops of radial 

colour processed TDI for analysis.  There was an increase in infero-lateral e’ 

following dialysis but a decrease in e’ in the same segment was noted in the blood 

donors. 

 

6.5.2.3 Global longitudinal strain and strain rate 

There was no difference in the baseline longitudinal global strain (Ssystole) 

and strain rate (SRsystole) between the groups.  Following preload reduction, Ssystole 

and SRsystole were both unchanged showing preload resistance to moderate-large 

load change.  Table 6-7  shows the results following preload change in two groups. 
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Table 6-6 Group comparison for radial colour processed TDI following preload reduction 

Unit, cm/s  Baseline  Δ from baseline  

dialysis venesection  P value  dialysis  venesection  P value  

LV 

Infero-
lateral  

wall 

s’  Unadjusted  3.9 ± 1.2  3.3 ± 1.1  0.28 0.3 ± 0.9  0.1 ± 1.1  0.69  

adjusted  4.4 ± 0.5  3.1 ± 0.3  0.04 0.5 ± 0.8  -0.4 ± 0.4  0.40  

e’  Unadjusted  4.0 ± 1.7  4.1 ± 1.1  0.95  ↑1.1 ± 1.3  ↓0.4 ± 1.5  0.05  

adjusted  4.4 ± 0.6  3.9 ± 0.4  0.60  -0.5 ± 1.1  0.2 ± 0.5  0.64  

a’  Unadjusted  3.1 ± 1.1  1.8 ± 1.2  0.07  0.9 ± 0.4  0.6 ± 0.8  0.46  

adjusted  3.3 ± 0.7  1.8 ± 0.3  0.05  1.4 ± 0.9  0.4 ± 0.3  0.36  

LV septum  s’  Unadjusted  2.4 ± 0.3  3.1 ± 1.1  0.21  0.0 ± 0.2  0.3 ± 0.7  0.66  

adjusted  2.9 ± 0.4  3.0 ± 0.2  0.81  0.0 ± 0.8  0.3 ± 0.3  0.80  

e’  Unadjusted  2.9 ± 0.5  3.6 ± 1.1  0.24 0.8 ± 0.1  0.6 ± 0.9  0.70  

adjusted  3.0 ± 0.6  3.6 ± 0.3  0.35 0.0 ± 0.7  0.8 ± 0.3  0.36  

a’  Unadjusted  1.4 ± 0.5  2.0 ± 0.9  0.33  0.2  0.3 ± 0.7  0.93  

adjusted  1.3 ± 0.5  2.0 ± 0.3  0.30  n/a  n/a  n/a  

adjusted  4.4 ± 0.6  3.9 ± 0.4  0.60  -0.6 ± 0.8  0.1 ± 0.6  0.57  



Chapter 6. 

171 

 

 

Table 6-7 Group comparison for longitudinal strain and strain rate following preload reduction 

 
baseline  Δ from baseline  

dialysis venesection  P value dialysis venesection P value 

Ssystole 
(%)  

unadjusted  -14.3 ± 3.4  -15.1 ± 1.2  0.73  -0.2 ± 0.5  0.1 ± 0.8 0.75  

adjusted  -14.4 ± 0.6  -14.7 ± 0.8  0.77  0.0 ± 0.6  0.3 ± 0.8 0.81  

SR systole 

(/second)  
unadjusted  0.79 ± 0.24  0.8 ± 0.1  0.64  0.0 ± 0.0  0.0 ± 0.0  0.69  

adjusted  0.8 ± 0.0  0.8 ± 0.1  0.89  0.1 ± 0.0  0.0 ± 0.0  0.10  
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6.5.2.4 Left ventricular rotation and torsion 

There was no difference in LV rotation and torsion between the groups at 

baseline.  Following preload reduction, apical rotation showed load sensitivity both 

with 500ml and at 1.6 L load change.  LV torsion was however only sensitive to a 

larger preload reduction.  Table 6-8 shows the results of apical rotation, basal 

rotation and LV torsion following preload change.  Compared to the blood donor 

group, the dialysis group had delayed apical rotation and untwisting as shown in 

Table 6-9.  These indices were load insensitive following preload change.  The main 

difference between the groups was a significantly larger increase in apical peak 

untwisting rate (UTR) seen in the blood donors. 
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Table 6-8 Group comparison for LV rotation and torsion following preload 

reduction 

 
 

Baseline  ∆ from baseline  

dialysis  venesection  P value  dialysis  venesection  P value  

Apex 
Rotation 

(0)  

7.7 ± 4.2  6.5 ± 2.2  0.35  1.7 ± 0.8  2.6 ± 1.2  0.53  

7.6 ± 0.7  7.1 ± 1.0  0.70  1.1 ± 0.9  3.7 ± 1.4  0.15  

Basal 
Rotation 

(0)  

6.0 ± 2.5  5.6 ± 2.8  0.82  0.3 ± 0.7  0.1 ± 0.8  0.67  

5.8 ± 0.6  5.7 ± 0.7  0.95  0.2 ± 0.8  0.1 ± 0.9  0.99  

Torsion  2.3 ± 1.1  1.9 ± 0.6  0.37  0.6 ± 0.2  0.5 ± 0.3  0.78  

2.2 ± 0.2  2.0 ± 0.2  0.57  0.3 ± 0.2  0.8 ± 0.3  0.27  
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Table 6-9 Group comparison for apical rotation and untwisting timing following preload change 

 
Baseline comparison  ∆ from baseline following preload reduction  

dialysis  venesection  P  

value  

dialysis  venesection P value  

Time to Peak Apex 
Rotation 

(% cycle length)  

unadjusted  40 ± 10  28 ± 12  0.00  1.5 ± 2.0  4.7 ± 3.1  0.38  

adjusted  40 ± 2  28 ± 3  0.00  0.2 ± 2  5.1 ± 3.1  0.22  

Early Untwist  

(% completed)  

unadjusted  35 ± 12  25 ± 7  0.08  1.8 ± 3.3  1.1 ± 3.4  0.90 

adjusted  35 ± 5  28 ± 3  0.06  2.2 ± 3.5  0.1 ± 5.4  0.74 

Untwisting Time  

(% cycle length)  

unadjusted  45 ± 11  38 ± 9  0.04  0.9 ± 2.4  5.4 ± 4.0  0.32  

adjusted  45 ± 2  39 ± 3  0.08  0.1 ± 2.8  7.8 ± 4.3  0.17  

Time to Peak UTR 

(% Untwisting 
Time)  

unadjusted  33 ± 19  45 ± 23  0.01  1.4 ± 4.9  2.2 ± 7.9  0.69  

adjusted  31 ± 4  47 ± 6  0.03  1.7 ± 4.8  2.7 ± 7.4  0.92  

Peak UTR 
(/seconds)  

unadjusted  73 ± 30  60 ± 21  0.15  2.8 ± 7.1  19.0 ± 7.8  0.18 

adjusted  72 ± 5  62 ± 8  0.26  4 ± 7  30 ± 11  0.02 
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6.5.2.5 Mid left ventricular radial strain & circumferential strain 

 

There was no difference in the response of both groups, following preload 

reduction.  At baseline, the dialysis group had impaired circumferential strain but 

similar radial strain compared to the blood donors.  Table 6-10 shows the results of 

group comparison following preload reduction. Circumferential strain was preload 

resistant when the load change was small (500ml) but was ultimately load sensitive 

given a large load change (1.6 L).  Radial strain was unaffected across this range of 

preload reduction. 
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Table 6-10 Group comparison for radial and circumferential strain following preload reduction 

 

Baseline  Δ from baseline  

dialysis  venesection  P value  dialysis  venesection  P value  

Srad 

(%)  

unadjusted  34.2 ± 16.3  33.4 ± 14.9  0.69  0.8 ± 2.2  6.4 ± 6.9  0.22 

adjusted  34 ± 4  42 ± 5  0.19  1.9 ± 3.6  4.3 ± 5.4  0.72  

Scirc (%)  unadjusted  17.9 ± 3.9  18.6 ± 3.8  0.03  0.7 ± 0.3  0.3 ± 1.4  0.80  

adjusted  18.0 ± 0.1  21.0 ± 1.0  0.02  0.6 ± 0.7  0.5 ± 1.0  0.96  
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6.6 Differences in response to preload reduction in both 

groups 

At baseline, the dialysis subjects were different from the blood donors.  

Although both groups had similar left ventricular dimensions (LVEDVI 44 ± 11 

cm/m2 and 46 ± 9 cm/m2, p=0.51), the dialysis group had left ventricular 

hypertrophy (LVMI 114 ± 45 g/m2and 69 ± 2 g/m2, p<0.001).  They also had 

abnormal diastolic filling (E/A 1.0 ± 0.3 and 1.4 ± 0.4, p<0.001), high filling pressure 

(E/e’ 12 ± 7 and 7 ± 1, p<0.01) and dilated left atrium (LAVI 38 ± 17 ml/m2 and 20 ± 

6 ml.m2, p<0.001).  In addition, the dialysis group had preserved EF (60 ± 5 %) but 

they had lower TDI longitudinal velocities compared to the blood donors, although 

this difference became insignificant when adjusted for age as a confounder.  

Pulsed-wave TDI septal s’ 7.2 ± 1.7 cm/s and 8.8 ± 1.6 cm/s, p=0.02.  Pulsed-wave 

TDI septal e’ 6.7 ± 2.3 cm/s and 9.42.9 cm/s, p<0.01.  Pulsed-wave TDI lateral e’ 8.9 

± 2.8 cm/s and 11.1 ± 2.4 cm/s, p=0.01.  Processed colour TDI septal e’ 4.8 ± 2.1 and 

5.9 ± 2.5 cm/s, p-0.03.  Processed colour TDI lateral e’ 5.8 ± 2.1 cm/s and 6.9 ± 1.7 

cm/s, p=0.02.  Mid LV circumferential strain were lower in the dialysis group (17.9 ± 

3.9, 18.6 ± 3.8, p=0.03) although mid LV radial strain, Ssystole, apical rotation and LV 

torsion were similar in both groups. 

Preload reduction had a differential effect on the various cardiac indices.  Some 

indices are load sensitive after a moderate load change (500ml): E, A, E/e’, 

processed colour TDI septal longitudinal s’, processed colour TDI infero-lateral 

radial a’ and apex rotation.  Some indices were resistant to a moderate (500ml) 

load change but became load sensitive at a larger load change (1.6 L): E/A, 
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estimated LAP, pulsed-wave TDI lateral annular s’, mid LV circumferential strain. 

Some indices are load insensitive: EF, MAPSE, pulsed-wave TDI septal longitudinal 

s’, pulsed-wave TDI septal and lateral longitudinal e’, global longitudinal 2-

dimensional strain (Ssystole) and systolic strain rate (SRsystole), and mid LV radial strain. 

The main differences between the two groups in the response following 

preload reduction were: 

1. Pulsed-wave septal s’ increased in the dialysis group but decreased in 

the blood donors. 

2. Colour processed lateral s’ increased in the dialysis group but decreased 

in the blood donors. 

3. Pulsed-wave septal e’ was unchanged in the dialysis group but 

decreased in the blood donors. 

4. Colour processed radial e’ in the infero-lateral wall, increased in the 

dialysis group but decreased in the blood donors. 

5. The blood donors showed a much larger increase in apical peak 

untwisting rate (UTR) compared to the dialysis group. 

 



Chapter 7. 

179 

7 Results discussion and conclusion 

7.1 Effect of changing preload on cardiac function 

I have studied the effects of preload reduction in two groups of well-

characterised subjects.  Healthy blood donors underwent a moderate (480ml), and 

breathless dialysis patients underwent a large (1.6 ± 1.3 L) preload reduction.  I 

aimed to draw a conclusion on the effect of differential preload reduction on many 

indices of cardiac function.  In this section, I shall summarise (section 7.1.1) and 

compare (section 7.1.2) my findings to those reported by previous studies.  I will 

discuss the limitations (section 7.2) of this current study and outline (section 7.3) 

findings that require confirmation and possible options for future studies.  

7.1.1 Summary of results from my studies 

To reiterate, amongst a group of asymptomatic healthy blood donors, a 

moderate (approximately 480ml) but rapid (over 10 minutes) reduction of preload 

resulted in a significant drop in cardiac chamber dimensions and volumes (LVIDd by 

14%, LVIDs by 17%, LVEDV by 7%, LAV by 15%) and significant reduction in diastolic 

filling velocities (E by 13% and A by 3%).  Though Diastolic filling ratio (E/A), E/e’ and 

estimated LAP (130) remained unchanged, 2DSTE apical peak UTR increased by 32% 

suggesting its preload sensitivity.  Subsequently stroke volume (biplane method), 

cardiac output, blood pressure, and heart rate remained unchanged.  Although 

there was no apparent difference in 2DSTE peak systolic strain (longitudinal, radial, 

circumferential) and LVEF, a significant increase was noted in left ventricular apex 



Chapter 7. 

180 

rotation (LV rotation increased by 40%), and colour processed TDI velocities 

(longitudinal septal s’ increased by 8%, radial infero-lateral a’ increased by 30%). 

In contrast to the healthy blood donors who experienced relatively rapid 

change of preload, the dialysis group underwent a moderate rate of preload change 

(mean of 1.6 L) over a median duration of 4 hours.  Preload reduction resulted in a 

significant decrease of diastolic filling velocities (E by 15%, A by 8%, and E/A by 

14%), cardiac chamber dimensions (LVIDd by 14%, LVIDs by 13%) and volumes (LAA 

by 12%, LAV by 20%, LVEDV by 12%) to a similar extent that was seen in the blood 

donors.  Diastolic filling profile (E/A and DT) was altered, from a pseudo-normalised 

(grade II diastolic dysfunction) pattern to a mildly impaired pattern (grade I diastolic 

dysfunction).  This was evident in the observation of an unchanged IVRT, but 

reduced DT (16%) and E/A (14%) ratio.  E/e’ and estimated LAP (130) dropped by 

15% but LV SV, CO, and BP were unchanged.  An increase was apparent in some 

regional indices of systolic function suggesting their preload sensitivity: longitudinal 

tissue velocities (lateral s’ increased by 11%), circumferential strain (Scirc increased 

by 4%), and apical rotation (apical Rot increased by 37%).  Some regional indices 

(2DSTE longitudinal strain & strain rate, radial strain, basal rotation) were load 

insensitive despite this large preload reduction.  This heterogeneity in regional 

response may be due to the shape change of the left ventricle following preload 

reduction.  LV length remained unchanged whilst LV internal dimension reduced.  

Studies (141,142) have reported a gradient in LV layer-specific strain: there is a 

gradual decrease of longitudinal strain and circumferential strain values from 

endocardium to sub epicardium in health that is preserved with aging. As LV length 

was unaffected following preload reduction, Longitudinal strain remained constant 
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whilst circumferential strain increased in response to a reduction in wall stress 

(unchanged LVMI) and internal dimension.  

Despite correcting the baseline difference in heart rate and amount of 

preload reduction using a statistical method (ANCOVA), notable differences in their 

response to preload reduction were apparent in the two groups.  Firstly, preload 

reduction did not change longitudinal a’ in both groups; but LAV decreased 

significantly more in the dialysis subjects compared to the blood donors.  This may 

suggest LA reservoir and conduit function track preload reduction (preload 

dependent) but pump function (a’) is unaffected.  Secondly, both septal and lateral 

longitudinal s’ increased in dialysis subjects but decreased in the blood donors.  This 

difference, at first glance seemed contrary to the finding of Ees, which was 

significantly higher in the blood donors compared to the dialysis group.  This might 

be explained by the Frank-Starling curve.  The blood donors were euvolaemic and 

therefore their cardiac mechanics were operating at the linear part of the Frank 

Starling relationship.  Hence a reduction in LVEDV expectedly produced a reduction 

in s’.  In contrast, the dialysis group operated  at the descending part of the Frank 

Starling curve, where further increase in LVEDV would cause a fall in contractile 

function.  Reduced LVEDV following dialysis therefore moved the cardiac mechanics 

onto the plateau of the Frank-Starling curve,  hence an increase in s’ by comparison.  

Third and finally, preload reduction (at constant heart rate and blood pressure) 

increased apical peak UTR in the blood donors but remained unchanged in the 

dialysis subjects.  This may indicate the donors’ ability to increase diastolic 

untwisting and subsequent filling to maintain cardiac output through a largely 
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compliant LV.  This response is diminished in the ‘stiff hearts’ of the HFpEF dialysis 

subjects. 

From earlier discussion in Chapter one (section 1.2.2, page 5), we know that 

ESPVR/Ees, a marker of cardiac contractile state is unaffected within a physiological 

range of load change (13,31–33,73).  As expected, both IVA and non-invasively 

estimated Ees (66,67,71) were unchanged in both subject groups following preload 

reduction.  These markers are correlates of inotropic status which is unaffected by 

load (13,57,79,89,92).  Therefore, any observed changes in regional and global 

echocardiographic indices greater than the variability of measurements reflect their 

preload sensitivity, at a constant contractile state. 

 

7.1.2 Comparison with previous studies 

A small change in an index with high measurement variability (35,36,143) 

such as MAPSE (18% inter- and 17% intra-observer variability) and 2DSTE radial 

strain (15% and 16% intra- and inter-observer variability) may not be apparent in 

this relative small sample. Similarly, an index with excellent measurement 

reproducibility may show a small change but it is of uncertain clinical relevance. 

The coefficients of variation in my study for blood pool and TDI velocities 

were 4% and 7% respectively (Table 5, Chapter 2), comparable to reported intra-

observer measurement variability by other studies (29,30,109,116).  There was a 

significant drop in early diastolic filling velocity E, following dialysis and 

venesection.  Estimated left ventricular filling pressure (130) dropped by 15% 

following dialysis and remained unchanged following venesection.  These findings 
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were similar to earlier studies (105,107,112–114), though they did not report on 

intra- and inter-observer variability in their studies.   

In the dialysis subjects, diastolic filling profile was altered following preload 

reduction.  This changed from a pseudo-normalised (grade II diastolic dysfunction) 

pattern of E/A and DT towards mildly impaired relaxation pattern (grade I diastolic 

dysfunction).  This was evident in the observation of an unchanged IVRT, but 

reduced DT (16%) and E/A (14%) ratio.  The reverse is true, in a group of patients 

with abnormal diastolic function (144), defined as DT >240ms and E/A<1, following 

rapid infusion of 500-700ml normal saline.  Preload expansion resulted in 

worsening of filling pattern from grade I to grade II diastolic dysfunction.  

Therefore, interpretation of transmitral filling pattern in clinical practice requires 

consideration of the loading status. 

Septal s’, e’, a’ and lateral e’, a’ remained preload resistant following dialysis 

and venesection.  Lateral s’ was preload resistant to a small change (480ml 

venesection) but it became preload sensitive and increased by 11% following 

dialysis.  There could be several explanations for this discrepant observation of 

preload sensitivity in s’, e’ and a’.  Firstly, the relative (1-18% for s’, 2-15% for e’, 2-

6% for a’,) and absolute (< 1cm/s for s’, e’ and a’) change in these measurements, 

following venesection and dialysis were small.  The relatively small sample size (30 

in dialysis group and 15 in blood donor group) in my study made it prone to a type II 

error in accepting the null hypothesis.  Secondly, the differential preload sensitivity 

of septal and lateral s’ following dialysis could be explained by a higher burden of 

fibrosis in the septum compared to the lateral wall, as found in a previous study 
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(145).  This study used cardiac MRI and late gadolinium enhancement (LGE) for 

detection of cardiac fibrosis in patients with hypertrophic cardiomyopathy.  They 

found significantly more LGE in the septum compared to lateral wall in their 

subjects.  Therefore, the lateral wall may be more responsive to a preload reduction 

compared to the septal wall, as marked by the increased in lateral s’ but unchanged 

septal s’. 

Vignon et al (109) studied the effect of differential load change following 

dialysis on cardiac function in two groups of subjects.  The first group had acute 

renal failure and required urgent dialysis.  These patients were intubated and 

received vasopressor (adrenaline or noradrenaline).  The rate of filtration was 

adjusted and boluses of fluid were given to maintain adequate blood pressure 

during filtration.  The second group of their subjects were stable patients on 

established maintenance dialysis.  Echocardiography was performed before and at 

least one hour after dialysis.  The critically ill patients underwent transoesophageal 

echocardiography (TOE) and had 1.9 L preload reduction whilst the stable patients 

underwent transthoracic echocardiography (TTE) and had 3 L preload reduction.  

They reported excellent intra- and inter- observer variability: 2% and 1% for E, 2% 

and 5% for e’ respectively.  Following a 1.9L preload reduction; there was no change 

in E, septal and lateral e’ and the filling ratio E/e.  A 3 L preload reduction 

significantly reduced E (24%), septal e’ (17%) and E/e’ but lateral e’ remained 

unchanged.  Their results, at first glance, seemed to be contradictory to my results.  

Firstly, E dropped significantly in my study following a moderate 480ml preload 

reduction, which was only apparent in their study with a much larger preload 

reduction of 3 L.  Secondly, I showed an E/e’ fall with 1.6 ± 1.3 L preload reduction.  
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This was not significant in their study after 1.9 L preload reduction.  The differences 

in our two studies must be in part, attributable to the confounding effects of intra-

dialytic inotropes and fluid administration (which they used) on cardiac function.  In 

addition, I completed echocardiography within 30 minutes of preload reduction, 

whilst they completed their studies more than one hour afterwards.  Therefore, 

they could have missed an opportunity to detect a small change in these indices 

immediately after preload reduction.  Lastly, I used TTE and they used TOE 

echocardiography, in their critically ill patient group.  Image alignment during TOE is 

notoriously difficult and this would have an impact on the absolute values obtained 

for Doppler and TDI velocities, which are of course angle-dependent. 

Galetta et al (116) studied the effect of dialysis on cardiac function in a group 

of asymptomatic patients on established dialysis.  The mean age of their patients 

were 51 ± 13 years and the mean preload reduction was 3 L.  They performed 

repeat echocardiography within 30 minutes of the completion of dialysis.  Their 

reported intra- and inter-observer variability (6% and 11% respectively) was much 

higher and perhaps more in keeping in daily clinical practice.  Following dialysis, 

there were no significant changes in global EF, E (dropped by 0.1%), A (dropped by 

2%) although LVIDd dropped by 10%.  However, they reported a significant 

reduction in lateral and septal s’ (25% and 22%), and lateral and septal e’ (31% and 

24%).  Both our studies reported a similar reduction in preload as shown in similar 

reduction in LV dimension (drop of 10% and 14%) respectively.  However, whilst I 

reported significant drop of 15% and 8% in E and A velocities, consistent with other 

observations (111–114) , it seemed peculiar that they did not detect a difference.  

This may be due to the relatively high variability of their measurements.  In 
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addition, there was a significant rise in heart rate (increased by 8%, or 6 bpm) and a 

significant drop in systolic blood pressure (fell by 10% or 14 mmHg) in their study.  

Heart rate and blood pressure were unchanged in my study.  Therefore, the 

interpretation of their reported significant drop in TDI s’ and e’ velocities, must take 

into account the effects of heart rate and afterload. 

Patients with a previous history of myocardial infarction had significantly 

(37%) lower 2DSTE global longitudinal strain compared to healthy subjects (146). 

This large effect size is unlikely to be attributable to measurement variability 

although the authors did not report on this.  Reported (30,36,120,147) 

measurement variability ranges are 2-11% for intra-observer and 3-13% for inter-

observer respectively.  The intra-observer variability of strain measurement in my 

study was 7% (Table 5, Chapter 2).  My study did not show a difference in global 

longitudinal Ssystole following dialysis and venesection.  This is in contrast to the 

results shown by Choi et al (118) in dialysis patients.  They showed a small (5%) but 

significant decrease in longitudinal strain, Ssystole following dialysis.  However, the 

reported intra-observer (ICC 0.96) and inter-observer (ICC 0.86) variability of their 

measurements suggest that this change could be a false positive (type I error).  In 

addition, their subjects had an average Ssystole of -18%, in keeping with reported 

values amongst asymptomatic hypertensive subjects (148). My dialysis subjects, on 

the contrary, had values of Ssystole ( -14%) consistent with Ssystole values reported in 

characterised patients with HFpEF (149).  In addition, the difference in their results 

is confounded by a compensatory sympathetic response, evident in their subjects 

following dialysis.  A significant increase in heart rate and decrease in blood 

pressure were present in their study but was absent in my study.   
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Reported (36,120) intra-observer variability and inter-observer variability are 

3-6% and 5-10% for circumferential strain. In my studies, circumferential strain 

remained unchanged following venesection but showed a small (4%) significant 

increase following dialysis.  This change is within the measurement variability (7% 

page 52) and therefore may not represent differential preload sensitivity of the 

index.  In addition, reported (36,120) intra-observer variability and inter-observer 

variability for radial strain are relatively high: 6-15% and 8-16% respectively.  There 

was no change in radial strain following preload reduction in my studies.  It is 

possible that a small change went undetected, due to the small sample size in my 

study (page 45 Table 3, power calculation yielded >80% power of detecting of >30% 

change).  Further studies with better measurement reproducibility are therefore 

required to conclude the effect of preload reduction on Scirc and Srad. 

Reported (36,143,150) intra-observer variability and inter-observer variability 

for apical rotation and LV torsion are 8-9% and 1-10% respectively.  Apical rotation 

increased by 37% and 40% following dialysis and venesection, well above the 

reported measurement variability.  This magnitude of change is likely a real 

difference and implies this index’s preload sensitivity within a physiological range. 

In summary, the present studies showed that: 

1. A modest preload reduction (480 ml) in healthy subjects did not change 

estimated LAP (130), but reduced diastolic blood flow velocities (3-13%) and 

cardiac internal dimension (12-14%).  

2. A large preload reduction (1.6 L) in dialysis patients with symptoms of HFpEF 

reduced estimated LAP (130), diastolic blood flow velocities (15 %) and 
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cardiac internal dimension (13-21%).  Although there was significant 

reduction in estimated LAP using E/e’, the performance of E/e’ as a 

diagnostic test for detection of elevated filling pressure is poor (40). 

3. Pulsed-wave TDI indices: septal and lateral e’ and a’, septal s’ are resistant 

to modest and large preload reduction.  Lateral s’ is preload resistant at 

moderate preload reduction but becomes preload sensitive at large preload 

reduction (12% change). 

4. Radial TDI a’ velocities are more sensitive to preload reduction compared to 

longitudinal TDI a’ velocities.  Coloured processed radial a’ increased by 29-

30% whilst longitudinal a’ remained unchanged. 

5. 2DSTE indices of longitudinal strain & radial strain are load resistant at 

moderate and large preload reduction.  Circumferential strain is load 

insensitive at moderate preload reduction but is sensitive (4% change) to 

large preload reduction.  Due to its high measurement variability, further 

studies with improved measurement reproducibility are needed to conclude 

the effect of preload reduction on these markers (Scirc and Srad). 

6. 2DSTE apical rotation is preload sensitive (37-40 % increase) with moderate 

and large preload reduction. 

7. Non-invasive estimation of Ees is feasible in clinical practice and this 

measurement is preload resistant. 

8. IVA is preload resistant at moderate and large preload reduction. 

In addition, cardiac response following preload reduction are different in the 

dialysis group and blood donors.  Longitudinal TDI s’ increased from baseline in 
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the dialysis group but decreased in the blood donors, suggesting the two groups 

were operating at two different parts of the Frank-Starling curve.  The blood 

donors have a compliant LV and increased their peak apical UTR after preload 

reduction.  Both groups have unchanged radial TDI a’ but a reduced LAV 

following preload reduction.  This suggests atrial pump function is resistant to 

preload change whilst reservoir and conduit function are sensitive to preload 

change.  

 

7.2 Limitations of the study 

7.2.1 Sample size, effect size and measurements reproducibility 

Bearing in mind the sample size and power calculation (page 43-45 Chapter 2), 

the current studies has >80% power in detecting a >30% difference in 

measurements following preload reduction.  Although all blood donors had 

adequate images for analysis of all indices, not all dialysis subjects had images of 

sufficient quality for analysis.  A small to medium size difference in an index with 

high measurement variability may not become apparent in this small sample.  

Similarly, an index with good measurement reproducibility may show a small 

change but is of uncertain clinical relevance.   

7.2.2 Cardiovascular medications 

Another limitation in the dialysis study is the existing usage of cardiovascular 

medication.  To reiterate the findings (Table 6, page 76, Chapter 3), 23% of dialysis 

subjects were on a beta-blocker, 23% were on a diuretic, 16% were on an 
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angiotensin receptor blocker, and 1% were on a calcium channel blocker.  

Therefore, the interpretation of these results must take into account the effect of 

these medications on indices of cardiac function following preload reduction. As my 

sample size is small, it cannot support subgroup analysis to delineate the impact 

these medications may have on indices of cardiac function.  Hence, in the following 

paragraphs I will discuss briefly results of other studies. 

Tohmo et al (151) studied the effect of intravenous enalaprilat on cardiac 

function, with preload manipulation, in patients presenting with acute heart failure 

following myocardial infarction.  Pulmonary artery wedge pressure and arterial 

blood pressure fell significantly, but cardiac index and stroke volume index did not 

change.   

Nemoto et al (152) used a experimental canine model and mitral regurgitation 

to investigate the effects of an angiotensin-converting enzyme inhibitor and beta-

blocker on cardiac function.  Significant mitral regurgitation was defined as a 

regurgitant fraction of > 50%.  After 3 months of continuous exposure to mitral 

regurgitation, LV end-diastolic pressure rose significantly indicating increasing 

preload.  The animals then received Lisinopril for 3 months followed by a 

combination of Lisinopril and atenolol for another 3 months.  They found that 

either Lisinopril alone or the combination therapy did not significantly reduce 

LVEDP.  However, Ees improved significantly following Lisinopril therapy and 

returned to almost normal values following combination therapy with a beta-

blocker. 
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 Another study used a porcine model (153) and found the use of a carvedilol-

enriched cold oxygenated-blood during cardiac bypass and cardioplegia did not 

result in a change in ESPVR, 2DSTE radial, longitudinal and circumferential strain 

following preload reduction.  However, indices such as Tau, maximum -dp/dt, 

maximum +dp/dt were significantly reduced following preload reduction.   

To summarise, intravenous infusion of an angiotensin-enzyme inhibitor lowered 

LV filling pressure significantly following preload reduction but this did not change 

indices of cardiac function (151).  Medium term use of an angiotensin-enzyme 

inhibitor led to preload reduction and improved Ees (152).  Beta-blocker did not 

alter the preload sensitivity of many indices (ESPVR, 2DSTE Ssystole, Scirc and Srad) of 

cardiac function.  This knowledge aids relevant clinical interpretation of 

echocardiographic indices, and may be applicable in scenarios such as chronic 

mitral regurgitation and aortic regurgitation. 

7.2.3 Gender difference in response to preload reduction 

I did not recruit an equal ratio of female and male participants in my study 

(68% men in the dialysis group, 80% women in the blood donor groups).  Although 

it was not my objective to evaluate the gender difference in cardiac response 

following preload reduction, I shall discuss briefly the gender difference, firstly in 

cardiac structure, followed by their cardiac response following preload reduction in 

this section.   

Women have lower cardiac mass (154,155), smaller cardiac dimension 

(154,155) and higher baseline heart rate (154,156) compared to men, though there 

is no difference in indexed cardiac output (157) . In addition, young women (<45 



Chapter 7. 

192 

years) have lower sympathetic activity (MSNA) and central arterial stiffness (carotid 

artery intima thickness to internal lumen ratio) (158).   

Following progressive lower body negative pressure, females have a greater 

HR increase (157,159), SV reduction (157), apical rotation and UTR augmentation 

(154) compared to males; despite a similar increase in systemic vascular resistance 

and serum norepinephrine level (157). Following head up tilt, young females 

exhibits a larger HR increase despite similar SV reduction and increase in BP, total 

peripheral resistance and MSNA in comparison with males (160).  These 

observations suggest females have a more pronounced cardiac mechanics response 

following preload alteration, mediated through the baroreceptor (heart rate) reflex. 

7.2.4 Influence of the autonomic system 

Previous studies (157,159,160) showed preload and SV reduction resulted in 

an increase in HR and sympathetic activity (MSNA and  norepinephrine). Whilst one 

study showed (154) augmented apical rotation and UTR, with increased HR 

following preload reduction; their findings were not reproduced following blood 

extraction when heart rate was unchanged (161).  These studies confirmed the 

autonomic nervous system plays a role in cardiac response following load 

reduction.  The current study is limited in this regard, as I did not examine the level 

of MSNA/epinephrine following preload reduction.   
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7.2.5 Mode of dialysis, dialysate composition, haematocrit and their 

effects on cardiac function  

I studied only stable patients on established dialysis (median duration 26 

months).  A previous study showed that the correction of uraemia without loss of 

volume improves LV contractile state, whilst ultrafiltration (volume loss) has the 

effect expected according to the Frank-Starling relationship (162).  In addition, a 

high dialysate concentration of calcium, potassium and bicarbonate is associated 

with worsened global longitudinal strain and cardiac index following dialysis 

(163,164).  Blood donation (165,166) produces an average 9% haematocrit 

reduction and SV reduction but does not alter heart rate and maximal oxygen 

uptake during exercise.  

The current study cannot separate the effect of correcting uraemia from 

that of pure preload reduction in the dialysis group.  Similarly, I cannot separate the 

effect of haematocrit reduction from that of preload reduction in the blood donors.  

The current study therefore cannot exclude this confounding effect when 

comparing cardiac response in the two groups following preload reduction.   

In summary, the small sample size, use of cardiovascular medications in some 

participants, unequal gender ratio in recruitment, limit the applicability of my 

results to a wider population.  I cannot separate the effects of preload reduction 

from that of haematocrit reduction, uraemia correction, and electrolytes 

redistribution on cardiac function.  In addition, I cannot isolate the effect of the 

autonomic nervous system on cardiac response following preload reduction, as I did 

not study this specifically.  
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7.3 Study results and implication in clinical practice 

The results from my study are relevant to clinical practice.  Firstly, the findings 

support that the proposed European criteria (38) for identification of diastolic 

dysfunction are robust and unaffected by a physiological reduction of preload (1.6 L 

during dialysis).  The European Society of Cardiology proposed a finding of LAVI >34 

ml/m2 or LVMI >115 g/m2 for men and LVMI >95 g/m2 for women, E/e’ >13, 

averaged septal and lateral e’ < 9 cm/s (167–172) for detection of diastolic 

dysfunction amongst patients with symptoms of heart failure and preserved EF.  

Applying the above echocardiographic criteria, all of my study subjects in the 

dialysis group have LVMI (mean LVMI 120 ± 46 g/m2 for men and 118 ± 44 g/m2 for 

women) and LAVI (mean LAVI 43 ± 19 ml/m2) above this threshold and the results 

were unaffected by preload reduction.  The mean E/e’ was 12 ± 7 and dropped 

significantly to 10 ± 4 following dialysis.  Mean e’ did not change following dialysis 

and remained < 9 cm/s.   

Secondly, my results confirmed previous findings (94,101–103,107,110,116) 

that some indices of systolic function are sensitive to changes in preload.  Apical 

rotation derived from 2DSTE is sensitive to a moderate preload reduction of 500 ml.  

2DSTE derived circumferential strain (mid LV Scirc) and pulsed-wave TDI lateral s’ are 

unaffected following a 500ml preload reduction.  Pulsed-wave TDI septal and lateral 

e’, septal s’ and 2DSTE derived longitudinal strain (Ssystole) and radial strain (mid LV 

Srad) are preload insensitive following a 1.6 L preload reduction.  This knowledge is 

applicable to clinical practice.  Many indices of cardiac function such as TDI 
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velocities (173) either in isolation or in combination (174) with 2DSTE (E/SRE), and 

Ssystole (175) are independent predictors of median term mortality and adverse 

outcome in a general population.  Additional prognostic information is also offered 

by knowledge of Ssystole in diseased population including patients with hypertrophic 

cardiomyopathy (176,177), aortic stenosis (178–180), mitral regurgitation 

(179,181), chronic kidney disease (182,183) and diabetes mellitus (184).  Therefore, 

the knowledge of either their preload insensitivity or dependency is crucial in the 

long-term disease surveillance and therapeutic response monitoring. 

Finally, I showed that non-invasive estimation of Ees and colour processed TDI 

derived IVA are resistant to a reduction of LV diastolic volume caused by a 

reduction of 1.6 L in circulating volume.  However, IVA has large measurement 

variability (117) and it did not distinguish the two clinical groups in this study. 

Nonetheless, the results may have been useful in differentiating the two groups if 

the sample size was larger.  Estimated Ees using the Chen method (71), compared to 

other methods (66,67) produced the most clinically consistent results. However, the 

many calculations involved make this method prone to error, which limit its wider 

clinical application.  Nonetheless, non-invasive Ees estimation, and its insensitivity to 

preload change, have a role in patient selection for complex high-risk cardiac 

surgery, and it can aid fluid resuscitation in patients undergoing laparotomy (185–

188). 
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7.4 Options for further work 

Non-invasively estimated Ees and colour-processed and TDI-derived IVA, are 

preload insensitive across a physiological range in my study.  Routine clinical use is 

currently limited due to the complexity (Ees) and poorly reproducible (IVA) methods 

(71,117). Recently, the longitudinal TDI velocity profile throughout the cardiac cycle 

was successfully used in an unsupervised multiple kernel learning method (189) to 

better characterise patients with HFpEF compared to healthy controls. Machine 

learning (ML) (190,191) accurately classified subject groups comparable to current 

clinical diagnostic criteria (38); either by using TDI velocity graph(191) or 2DSTE 

longitudinal strain graph (190).  IVA is derived from a TDI velocity graph, whilst non-

invasive estimation of Ees requires polynomial estimation of normalised elastance 

from the LVOT Doppler velocity trace.  Hence, it would seem feasible that ML can 

eradicate observer’s error for these indices and may overcome current limitation 

for its clinical use. This may be the subject of future studies.    

Whilst my study showed E/e’ dropped following preload reduction, other 

studies have shown  E/e’ increased during exercise (33,192–194) in patients with 

HFpEF(33,169–171). These results are expectedly consistent.  Recently, two 

Japanese studies (195,196) showed that following lower body positive pressure 

(preload increase) , a disproportionate rise in E/e’ when corrected to SV increment, 

is associated with higher rate of adverse cardiac events amongst symptomatic 

patients awaiting aortic stenosis surgery and in patients with HFrEF. If this finding is 

confirmed on subsequent studies, the change of E/e’ following preload increase, 

may have a place in clinical prioritisation of patients awaiting surgical intervention. 
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Following preload reduction, my study showed a significant reduction in LAVI 

whilst longitudinal TDI a’ remained constant.  Although LA dilatation is associated 

with increased LV mass (197,198), diastolic dysfunction (197), extra cellular 

volume/fibrosis (ECV) (198) and increased all-cause mortality (199); LAVI is preload 

dependent that can impact on the diagnostic sensitivity of the current proposed 

criteria for HFpEF (38). A low TDI a’ amongst HFpEF patients was associated with 

reduced cardiac event-free survival (200). Therefore, it would be reasonable to 

propose that a’ (not LAVI) is used in the diagnostic algorithm for HFpEF; provided 

this finding can be confirmed in further studies.  
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