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Abstract 

Engineering components consisting of plated structures subjected to in plane 

loading can potentially fail due to buckling. This work focuses on presenting 

novel approaches to enhance the buckling and post-buckling behaviour of flat 

plates and stiffened panels made with metal and composite materials under in-

plane loading conditions.  A better understanding of post-buckling behaviour, 

including the phenomenon of mode jumping, will lead to improvements in 

both design criteria and manufacturing processes.  

The first part of this thesis describes an extensive study using the exact finite 

strip computer program VICONOPT and the finite element method to 

investigate the buckling of simply supported composite plates under different 

in plane loads. This approach utilises the lamination parameters to enhance 

the buckling capacity through the anisotropic properties of the laminate. 

Numerical relationships are presented as an optimisation procedure to 

maximise the buckling load under in plane uniaxial compression, shear or a 

combination of both. The procedure is applied to a series of anisotropic 

symmetric and balanced laminates with varying thickness and aspect ratios.   

The second part presents a numerical and experimental study to explore the 

post-buckling phenomenon of mode jumping phenomenon in plates and 

stiffened panels. The VICONOPT post-buckling analysis is extended to predict 

mode jumping, and the resulting numerical investigations are validated by 

finite element analysis. Furthermore, a series of experimental tests have been 

devised to investigate the buckling, post-buckling and mode jumping 

behaviour of curved stiffened panels with different radii of curvature. The 

experimental results are compared with finite element results in order to 

examine the similarities and differences between simulations and real 

behaviour of panels under compressive load.  
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1 Chapter 1: Introduction 

1.1 General overview 

Thin-walled structures are utilised for different purposes in many engineering 

sectors ranging from aerospace applications to the marine industry and wind 

turbines. According to structural engineering, high-performance aerospace 

structures can be inherently categorised as thin-walled because of their 

relatively low thickness in comparison with other dimensions of the structure 

[1].  Research related to aircraft design and manufacturing has focused on 

improving the performance under various usage conditions to reduce their 

impact on our planet in two ways. The first is decreasing harmful emissions 

such as CO2 to reduce environmental pollutants and global warming while the 

second is reducing the consumption of natural resources by decreasing the 

weight of structural components and increasing engine efficiency.   

The UK aerospace sector is not just a world leader in a highly competitive 

global market, it also makes a significant contribution to the nation’s economy. 

And over the past six years productivity growth in the industry has been six 

times more than in the economy as a whole. UK aerospace is the powerhouse 

of United Kingdom manufacturing sector, as it is Europe’s leading aerospace 

manufacturing nation and second only to the United States. In numbers 

language,   the productivity has grown by 39% since 2010 with exports earning 

£27 billion a year and the industry directly employs over 128,000 people. 

Greener, quieter and more economical aircraft worth over $5.5 trillion will be 

required over the next 20 years [2].  

The long-term government commitment to research and technology (R&T) 

funding through the Aerospace Technology Institute (ATI) has been 

instrumental.  Matched by industry to total £3.9 billion between 2013 and 2026, 
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this instils business confidence and crowds in higher private investment. It also 

leads to social returns that far exceed the commercial returns of the companies 

undertaking the research. The ATI analysis shows that sustaining current level 

of support to aerospace industrial strategy could return around £114 billion to 

the UK economy over the next 20 years and create and secure an additional 

95,000 jobs by 2035 [3]. 

The resulting increasing demands on commercial aircraft require their 

components to have the minimal thickness, reducing weight and cost. 

Moreover, improving the structural performance of these components allows 

their usage to be extended to a wider set of flight conditions because they can 

carry more load. The basic parts of an aircraft wing or fuselage consist of thin 

plates and shells in the form of stiffened panels forming these huge structures. 

More recently, composite materials (comprising mainly carbon and glass fibre 

composites) have been increasingly applied in a variety of aerospace industries 

due to their attractive characteristics, providing mass reductions whilst 

maintaining high levels of strength and stiffness. For example the Airbus A380 

uses 30 metric tonnes of composite material amounting to 16% of the total 

airframe weight [4] and the Boeing 787 which utilises up to 50% of carbon fibre 

reinforced plastic and other composites that offers weight saving on average 

of 20% compared to conventional material [5]. 

Consequently, the components of these structures have been major research 

topics with studies examining structural behaviour, materials, damage 

tolerance and optimum design to provide a reliable understanding that leads 

to better designs and manufacturing techniques providing significantly lighter 

and more efficient future aircraft. 
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1.2 Aims and objectives  

The work described in this thesis aims to: 

• Recommend an optimisation process to maximise the buckling load of 

composite flat plates based on anisotropy. 

• Improve the exact strip software VICONOPT by including mode jumping in 

the post-buckling analysis. 

The following objectives are set for this work: 

• To explore the buckling and post-buckling behaviour of flat plates and 

stiffened panels through analysis using the VICONOPT software for both 

isotropic and composite materials under in-plane loading. 

• To develop an optimisation process to improve the buckling capacity of 

composite plates under different in-plane loading conditions. 

• To improve VICONOPT post-buckling analysis by including the mode-

jumping phenomenon in the geometrical nonlinear buckling capability 

provided by the software. 

• To apply the suggested approaches to predict the jumping strain in a range 

of plates and panels to verify these methods. 

• To develop a finite element model to provide reliable validation of the 

suggested mathematical approach for mode jumping point detection. 

• To investigate the effect of buckling mode change on the post-buckling 

behaviour of stiffened panels experimentally in order to examine the real 

response of similar structures. 

• To compare the experimental behaviour of these stiffened panels with the 

results of the numerical analysis using finite element models created for this 

purpose. 
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1.3 Contributions and novelty statements  

This thesis investigates in two parts the buckling and post-buckling behaviour 

of thin-walled structures including mode jumping. The work focuses on 

enhancing the performance of these structures under different in-plane 

loading conditions. The main contributions and novelty in this work are: 

 

i. Buckling analysis (part 1) 

• A study of the initial buckling behaviour of anisotropic composite plates 

using the exact strip software VICONOPT and finite element software 

ABAQUS. 

• A novel optimisation procedure introduced to improve the buckling capacity 

of composite plates using the anisotropy of the laminates. 

 

ii. Post-buckling and mode jumping phenomenon (part 2) 

• Improved post-buckling analysis in the VICONOPT software, including the 

buckling mode jumping effect in the post-buckling region. 

• A new mathematical calculation procedure based on von Karman's effective 

width concepts to provide a fast prediction of mode jumping strain value. 

• A modified mathematical method, which uses strain energy comparison in 

order to evaluate the point where the mode jumping might occur.  

• Finite element models to validate the exact strip post-buckling analysis 

results including the mode jumping effect. 

• An experimental investigation of stiffened panels to evaluate actual post-

buckling and mode jumping behaviour, used to match the simulation results 

using finite element models. 
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1.4 Thesis organisation 

The work which is described in this thesis can be divided into two parts. The 

first (chapters 4 and 5), is an extensive study of the buckling behaviour of 

composite flat plates with anisotropic characteristics which leads to the 

proposal of an optimisation procedure to maximise buckling capacity using 

anisotropic lay-ups. The second (chapters 6 and 7), is an investigation into the 

mode jumping phenomenon which occurs during the post-buckling of plates 

and stiffened panels. The aim of this part is to improve understanding of 

buckling and post-buckling behaviour by including the buckling mode change 

effect.  

This chapter provides a general introduction to the application of thin-walled 

structures, the aims and objectives of the work presented in this thesis and the 

main contributions of that work.  

Chapter 2 includes a brief overview of plate types and the theories that have 

been developed to predict their behaviour, starting with classical plate theory 

(CPT) and moving through to techniques which can incorporate increasing 

levels of complexity such as material and geometrical non-linearity including 

finite strip and finite element methods.  

Chapter 3 reviews previous studies starting with a short description of the 

pioneering researches dealing with the buckling of plates and then moving on 

to more recent studies covering different sources of nonlinearity during the 

post-buckling stage. This is expanded to review the studies that explore mode 

jumping as an observable phenomenon through the post-buckling behaviour.  

A brief review of the exact strip software VICONOPT is presented at the end of 

this chapter. 

Chapter 4 outlines the development of an optimisation process proposed to 

improve the buckling behaviour of composite plates by utilizing their 
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anisotropic properties. The process is based on the use of non-dimensional 

lamination parameters to control the laminate stiffness matrix in order to 

maximise buckling capacity.  

Chapter 5 presents an examination of a range of laminates with different 

aspect ratios, stacking sequences and loading types to verify the proposed 

optimisation procedure described in the previous chapter. The investigation 

uses the exact strip method VICONOPT and finite element ABAQUS software 

for buckling analysis. 

Chapter 6 begins the second part of this work, focusing on a theoretical 

investigation of mode jumping and including mode changes in the post-

buckling analysis of the VICONOPT software. It then validates the approaches 

proposed by using finite element analysis. 

Chapter 7 presents an experimental investigation to explore the buckling and 

post-buckling behaviour with mode jumping of stiffened panels with L-shape 

stiffeners which have different radii of curvature. The results obtained from 

these tests are compared with finite element models generate using the 

ABAQUS software. Matching the simulations with experiments results 

provides a better understanding of the behaviour of stiffened panels under 

similar load and boundary conditions.  

Chapter 8 summarise the main conclusions obtained from the two parts of this 

thesis.  It also discusses potential directions for future work. 

1.5 Published output  

 M. S. Al-Saymaree, D. Kennedy and C. A. Featherston. Effect of shear 

load direction in the critical buckling of composite laminates under 

combined in-plane loading. ACME-UK2016: 24th Conference on 
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Computational Mechanics, Cardiff, UK, 31 Mar-1 Apr 2016, Paper 

88638.  

 M. S. Al-Saymaree, C. A. Featherston and D. Kennedy. Mode jumping in 

the post-buckling analysis of plates using exact strip method. ICCS-20: 

20th International Conference on Composite Structure, Paris, France, 4-

7 September 2017, Paper 282. 

 Al-Azzawi, M. S. Al-Saymaree, L. Kawashita and C. A. Featherston. Quasi-

static damage in fibre metal laminate adhesive joints: experimental 

investigations. ICCS-20: 20th International Conference on Composite 

Structure, Paris, France, 4-7 September 2017, Paper 738. 

 M. S. Al-Saymaree, C.A. Featherston and D. Kennedy. Mode jumping in 

post-buckling of simply supported thin plates using exact strip method. 

WCCM 2018: 13th World Congress on Computational Mechanics, New 

York City, USA, 22-27 July 2018, Minisymposium 1010. 

 M. S. Al-Saymaree, C.A. Featherston and D. Kennedy. Mode jumping in 

post-buckling Analysis of curved stiffened panels. BSSM: 14th 

International Conference on Advances in Experimental Mechanics, 

Belfast, UK 10-12 September 2019 (Accepted). 

 M. S. Al-Saymaree, X. Liu, D. Kennedy and C. A. Featherston. Buckling 

behaviour of optimized flat composite plates under in-plane loading 

using flexure/twisting anisotropy properties. Journal paper (to be 

submitted to Composite Structures in summer 2019). 

 M. S. Al-Saymaree, D. Kennedy and C. A. Featherston. Mode jumping in 

Post-buckling region of plates and stiffened panels (theoretical and 

experimental investigations). Journal paper (to be submitted to Thin-

Walled Structures in summer 2019). 
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2 Chapter 2: Theory and Background 

2.1 Introduction 

This chapter summarises the main theories developed to derive mathematical 

relationships and formulas that describe the behaviour of thin-walled 

structures (plates and shells). Plate structures are shells with zero curvature, 

and therefore plate theories can be derived from shell theories. Plate structures 

are commonly used in different engineering sectors because of their unique 

characteristics including high stiffness, efficiency and strength to weight ratios, 

which enable engineering designs with lower material requirements. 

Traditional plate theory is based on the work of Kirchhoff and Love [6] who 

established the classical linear plate theory (CPT). The main studies, which 

have been carried out in relation to plate behaviour, are summarised in 

Figure 2.1 below.   

 

Figure 2.1:  Plate studies 
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Many aspects of the theory and analysis of plate and shell structures are 

described in the textbooks such as Timoshenko [7], Novozhilof [8], Dym [9], 

Ugural [10], Ventsel and Krauthammer [11], Szilard [12], Sadd [13] and Reddy 

[14]. The majority of plate theories rely on the following relationships: 

1. Displacement fields, usually determined by the kinematic equations for 

the entire structure experiencing deformation. For example plates and 

shells are often assumed to have a constant thickness under loading, 

meaning that the deflections along a normal to the mid-surface of the 

plate are constant. 

2. Strain-displacement relationships, which reflect the proportion of 

deformations relative to characteristic dimensions of the structure. 

These relationships are influenced by the kinematic equations so that 

they can incorporate effects such as transverse shear deformability into 

the analysis. When the displacements of a plate or shell are relatively 

small, the strain can be assumed to be a linear function of displacement. 

However, in the case of large deformations, the strains are non-linear 

functions of displacements. In particular cases, it is possible to assume 

a linear strain-displacement relationship for more general non-linear 

formulations.  

3. Constitutive relationships take into account the physical properties of 

the material that define the stress tensors in term of the strain tensors. 

Thus, elastic, elastic–plastic, viscoelastic, visco-plastic, shape memory, 

piezoelectric and other materials can be characterised by the 

appropriate theory. 

A plate’s structural behaviour depends greatly on its thickness, which has a 

noticeable effect on the governing equations, especially the deformation 

relationships. 
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2.2  Plate classification 

A plate resists transverse loads in terms of bending, exclusively. The flexural 

properties of the plate depend significantly on its thickness in comparison with 

other dimensions. Plates can be divided into three groups according to the 

thickness ratio  ( 
𝑎

ℎ
 ), where a is a typical dimension of plate in a plane and h is 

its thickness. These groups are:  

 Thick plates: represent plates having    
𝑎

ℎ
  ≤ 8 to 10. The analysis of such 

structures includes all the components of stress, strain and displacement 

as for solid bodies using the general equations of three-dimensional 

elasticity. Problems related to this type of plates are more complicated 

and need advanced plate theory to predict their engineering behaviours. 

 Plates with     
𝑎

ℎ
  ≥ 80 to 100. These plates are referred as membranes. 

They are devoid of flexural rigidity. Membranes carry the lateral loads 

by axial tensile forces and a shear force acting on the plate middle 

surface. These forces, called membrane forces, produce projections on 

the vertical axis and thus balance a lateral load applied to the plate 

membrane.  

 The most extensive group represents an intermediate type of plate, 

which is called thin. A thin plate has a ratio  8 to 10 ≤
𝑎

ℎ
  ≤ 80 to 100  . 

These three plate types are described in Figure 2.2. Depending on the value of 

the ratio  
𝑤

ℎ
, the ratio of the maximum deflection w of the plate to its thickness, 

the flexural or membrane forces may be dominant. Therefore, thin plates can 

be divided into two different sub-groups; (a) Stiff plates which can be defined 

as the plates with  
𝑤

ℎ
 ≤ 0.2 . Stiff plates are flexurally rigid thin plates.  
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Figure 2.2: Plate classification depending on the (a/h) ratio 

 

They carry load two-dimensionally, mostly by internal bending and twisting 

moments and by transverse shear. The middle surface deformations and 

membrane forces are negligible. (b) Flexible plates: if the plate deflections are 

beyond a certain level,   
𝑤

ℎ
 ≥ 0.3, then the lateral deflections will be 

accompanied by stretching of the middle surface. Such plates are classified as 

flexible plates. These plates represent a combination of stiff plates and 

membranes and carry external loads by a combined action of internal 

moments, shear forces, and membrane (axial) forces. Such plates, because of 

their favourable weight-to-load ratio, are widely used by the aerospace industry. 

When the magnitude of the maximum deflection is considerably greater than 

the plate thickness, the membrane action predominates. Therefore if   
𝑤

ℎ
 ≥ 5.0, 

the flexural stress can be neglected compared with the membrane stress. 

Consequently, the load carrying mechanism of such plates becomes of the 

membrane type, i.e., the stress is uniformly distributed over the plate thickness. 

The above classification is conditional because the assignment of a plate to one 

or another group depends on the accuracy of the analysis, type of loading, 

boundary conditions, etc. The behaviour of a plate structure is widely 

dependent on the stability of the equilibrium conditions under different types 

of loading. 
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2.3 Classical plate theory (CPT) 

CPT states that the deformation of the mid-plane (MP) of a plate describes its 

whole deformation. The linear mechanics of deformable bodies assume that 

the displacements are proportional to loads. The main kinematic assumption 

of this theory is based on Kirchhoff’s hypothesis: 

 Straight lines normal to the mid-plane remain straight (and normal to 

the mid-plane) after deformation. 

 The deflection of the mid-plane is small compared to the plate 

thickness. 

 The thickness of the plate is constant during deformation. 

 The transverse shear force is small compared to the bending force.  

 The stress normal to mid-plane, σz, is small compared with other 

components and may be neglected, the mid-plane remains unrestrained 

after bending (because the displacements are small). 

 

Figure 2.3: Deflection of a thin plate according to CPT (y-direction view) 
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2.3.1 Displacement field in CPT 

For small deformation   tan θ  ≈  θ , then θ  ≈  ∂w/∂ x, therefore the in-plane 

deformation due to the rigid rotation of the normal is - z ∂w/∂ x. Thus the 

deformation of a generic point on the normal due to stretching and bending is 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0 (𝑥, 𝑦) − 𝑧 (
𝜕𝑤

𝜕𝑥
) (2.1) 

In the same way, the deformation in the y-direction is 

v(x, y, z) = v0 (x, y) − z (
∂w

∂y
) (2.2) 

Moreover, the deformation in the z-direction is: 

w(x, y, z) = w0 (x, y) (2.3) 

where u0, v0, w0 are the mid-surface displacements. According to the Kirchhoff 

hypothesis, the transverse shear strains are zero  𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0 . In addition, the 

normal transverse strain is zero  ℰ𝑧𝑧 =
𝜕𝑤

𝜕𝑧
= 0 . 

2.3.2 Strain and stress field in CPT 

The strain components are functions of the displacement field, which have the 

form: 

{

ℰxx
ℰyy
ℰxy

} =  {

ℰxx
0

ℰyy
0

ℰxy
0

} + z {

Ƙxx
Ƙyy
Ƙxy

} (2.4) 

where equation (2.4) can be written in two parts, the first one represents the in-

plane strain while the other is midplane curvature as shown below:  

{

ℰxx
0

ℰyy
0

ℰxy
0

} =  

{
  
 

  
 

∂u0
∂x
∂v0
∂y

∂u0
∂y

+ 
∂v0
∂x }
  
 

  
 

 (2.5) 
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{

Kxx
Kyy
Kxy

}  =   

{
  
 

  
 −

∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y}
  
 

  
 

 (2.6) 

For isotropic materials, the stress-strain relations will be a function of Young’s 

modulus and Poisson’s ratio. Strains are given in terms of stresses as 

{

ℰxx
ℰyy
ℰxy

} =  
1

E
 [
1 −ν 0
−ν 1 0
0 0 1 + ν

] {

σxx
σyy
σxy

} (2.7) 

while stresses are given in terms of strains as 

{

σxx
σyy
σxy

} =  
E

1 − ν
 [
1 ν 0
ν 1 0
0 0 1 − ν

] {

ℰxx
ℰyy
ℰxy

} (2.8) 

Figure 2.4 shows the stresses in a plate element. The membrane stress 

resultants (load per unit length) which are applied in the plane of plates Nxx, 

Nyy are the resultants of an integration of the normal stresses while the shear 

force per unit length Nxy  resultant of an integration of shear stress. The bending 

moments come from normal stresses and twisting moments produced by edge 

shear force. The mathematical expressions of these three force components 

are: 

{

Nxx
Nyy
Nxy

} =  ∫ [

σxx
σyy
τxy

]

h
2

−
h
2

dz          ,       {

Mxx

Myy

Mxy

} =  ∫ [

σxx
σyy
τxy

]

h
2

−
h
2

z dz (2.9) 

Moreover, the stress resultants for isotropic material with Young’s modulus E 

and Poisson’s ratio ν can be written as: 

{

Nxx
Nyy
Nxy

} = A [
1 ν 0
ν 1 0
0 0 1 − ν

] {

ℰxx
0

ℰyy
0

ℰxy
0

}      where A =  
E h

1 − ν2
 (2.10) 
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Figure 2.4: Stresses in the plate element 

 

{

Mxx

Myy

Mxy

} = D [

1 ν 0
ν 1 0

0 0
1 − ν

2

] {

Ƙxx
Ƙyy
Ƙxy

}      where D =  
E h3

12(1 − ν2)
   (2.11) 

The equilibrium equations in the x-direction and y-direction respectively are: 

∂Mxx

∂x
+
∂Mxy

∂y
= Qx     ,    

∂Myy

∂y
+
∂Mxy

∂x
= Qy (2.12) 

where Qx and Qy are the transverse shear force per unit length. 

Integrating the equilibrium equation in the z-direction over the plate thickness. 

∂Qx
∂x

+
∂Qy

∂y
= −P(x, y) (2.13) 

Combining equations (2.12) and (2.13) into a single equation and eliminating 

Qx and Qy: 

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x ∂y
+
∂2Myy

∂y2
+ P(x, y)   = 0    (2.14) 
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From elasticity theory: 

Mxx = −D (
∂2w

∂x2
+  ν

∂2w

∂y2
) (2.15) 

Myy = −D (
∂2w

∂y2
+ ν

∂2w

∂x2
)    (2.16) 

Finally, equation (2.14) can be expressed in terms of out of plane displacement 

as: 

∇4w ≡ ( 
∂4

∂x4
+ 

∂4

∂x2 ∂y2
+
∂4

∂y4
 )w =  

P

D
 (2.17) 

where D = (E h3)/12(1 − ν2 )   as mentioned previously in equation (2.11). 

2.4 Nonlinear plate theory 

When thin plates are subjected to external loading, they will bend. If a plate 

behaves elastically, the deflections are small i.e. w < h/10 where w is the 

transverse deflection (out of plate plane displacement), and h is the structure 

thickness, it is possible to ignore geometric non-linearity and the plate can be 

analysed using the classical plate theory. That means neglecting the parts of 

the equations which include the out of plane displacement terms.  However, in 

most cases and due to the small thickness of plate structures, the mid-plane 

deflection w is usually higher than this. Thus, non-linear geometrical effects 

should be considered. 

Initially, nonlinearities exist in the equation of motion when the products of 

variables, or their derivatives, exist. Moreover, they can exist when there are 

discontinuities or jumps in the system. This nonlinear behaviour may come 

from different sources. One of these sources is geometric nonlinearity, which 

is important in the case of structures with large deformations. Non-linear 

(large) deformation theory (LDT) considers the effects of both bending and 

stretching of the middle surface of the plate.  
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This requires linear plate theory to be extended by performing the non-linear 

strain term when the out of plane displacement is coupled to in-plane strain.  

Von Karman [15] first derived the mathematical formulas for this theory in 

1910 by connecting axial forces with transverse displacement. However, in the 

case of large deflections, a significant membrane force can be caused due to 

transverse deformations. As a result, an equation that relates to the amplitude 

of the transverse deflection due to the membrane forces is required. The basic 

assumptions of von Karman theory are: 

 The plate is a thin plate. The thickness h is much smaller than the 

typical plate dimension, 𝒉˂˂𝒂  . 

 The magnitude of the transverse deflection is of the same order as the 

thickness of the plate, |w| = O (h). In practice, the present theory is still 

a good engineering approximation for deflections up to ten plate 

thicknesses. 

 Gradients of in-plane displacements are small so that their product or 

square can be neglected. 

 The Love-Kirchhoff hypothesis is satisfied and in-plane displacements 

are linear functions of the z-coordinate. 

The deflections of thin plates are large in comparison with the nominal plate 

thickness. However, they are still small when compared with the other 

dimensions. This deformation is governed by von Karman’s equations: 

1

D
(Nx  

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2
 ) = ∇4w (2.18) 

Et ((
∂2w

∂x∂y
)2 − 

∂2w

∂x2
 
∂2w

∂y2
 ) =  (

∂2Nx
∂y2

− 
∂2Nxy

∂x ∂y
+
∂2Ny

∂x2
) (2.19) 

Moreover, the equilibrium equations are still applicable:  
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∂Nx
∂x

+
∂Nxy

∂y
= 0 (2.20) 

∂Nxy

∂x
+
∂Ny

∂y
= 0 (2.21) 

According to plate and shell theories, this analysis will generate a number of 

differential equations, which can be solved by either applying equilibrium 

between the stress resultants and the applied loads or by energy considerations. 

Thin-walled structures are sensitive to in-plane loading and deform with 

different buckling configurations. During buckling, a disproportionate 

displacement occurs when the load is increased by a specific amount, thus 

buckling behaviour is considered as a nonlinear rather than linear behaviour. 

To address the buckling behaviour of structures, it is necessary to start with 

stability consideration. 

2.5 The concept of stability 

There are many ways a structure or structural element can become unstable 

depending on structural geometry and load characteristics. The spatial 

geometry, the material, along with its distribution and properties, the character 

of the connections (riveted joints, welded, etc.) and the support comprise the 

structural geometry. As external forces are applied quasi-statically, the elastic 

structure deforms, and static equilibrium is maintained. When ‘small’ external 

disturbances are applied, the structure reacts by simply performing oscillations 

about the deformed equilibrium state, and the equilibrium is said to be stable. 

The disturbance can be in the form of deformations or velocities. On the other 

hand, if an elastic structure either tends to or remains in the disturbing position 

or tends to and diverges from the deformed equilibrium state, the equilibrium 

is said to be unstable. 
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2.6 Buckling behaviour of structures 

Buckling of structures is defined by many authors with different definitions. 

Several hypotheses have been presented over the years to predict the elastic 

stability and buckling of beams, columns, plates and shells, and the problem 

of buckling represents a particular class of bifurcation phenomena. One of the 

basic and general meanings of buckling corresponds to a “critical state of 

structural instability at a particular load level at which the structure exhibits a 

large displacement or collapse”.  

Jones [16] describes the buckling phenomenon with a more accurate definition 

of instability, which is: “An equilibrium state or configuration of a structural 

element, structure, or mechanical system is unstable if any 'small' disturbance 

of the system results in a sudden change in deformation mode or displacement 

value after which the system does not return to its original equilibrium state”. 

Figure 2.5 illustrates structural response incorporating of linear and non-linear 

behaviour. Research into buckling and elasticity theory for structures has a 

long history, which  started with a study by Leonard Euler [17] who presented 

an analytical approach for the theory of column flexural buckling subjected to 

axial load. He was followed by followed many pioneer researchers, who 

developed the Euler theory. Buckling may be classified into two categories (1) 

bifurcation buckling and (2) limit load buckling Chen and Lui [18]. In the first 

type of buckling the deformation under compressive load changes from one 

direction to a different direction, for example from axial shortening to lateral 

deflection. The load at which the bifurcation occurs in the load-deformation 

space is called the critical buckling load. The deflection path before the 

bifurcation point is known as the primary path while the path after that point 

is called the secondary path Figure 2.6. The secondary path may be symmetric 

or asymmetric and rise or fall below the critical buckling load depending on 

the structure and the type of loading. 
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Figure 2.5: Structural behaviour  

 

In limit load buckling, the structure reaches a maximum load without any 

bifurcation, i.e., with the only one mode of deflection. As the first buckling 

theory was derived for a column, it is important to provide a comparison 

between column and plate stability. In the case of a perfect column, the lateral 

displacement remains zero as the load increases until the attainment of 

buckling load (Euler load). 

 

Figure 2.6: Bifurcation buckling, symmetric and stable post-buckling curve 
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The lateral deformation increases indefinitely at constant load as shown in 

Figure 2.7a, and the secondary path of the column represents a neutral 

equilibrium. The fundamental path (primary path) for a perfect flat plate is 

similar to that of an ideal column.  At the point of critical buckling, the path 

will bifurcate into the secondary path as shown in Figure 2.7b. The equilibrium 

path in Figure 2.7b shows the ability of the plate to carry loads beyond the 

initial buckling load. Moreover, the plate secondary path is stable unlike that 

for the column. Thus, the initial buckling of the plate cannot be considered a 

collapse load. The theoretical buckling problems of plates and shell structures 

are traditionally solved by one of the following techniques: analytical, 

numerical or  the semi-analytical solutions. The analytical solution is 

sometimes called the exact solution of the problem and solves the governing 

equations using the boundary and initial conditions of the problem. The 

solution in this method satisfies the governing equations of the boundary and 

initial conditions of the problem. 

 

 

Figure 2.7: Load versus out of plane displacement relationship differences 

between column and plate 
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The analytical solutions can be either closed-form or an infinite series,  such as 

Navier, Levy and Ritz methods [19]. While numerical solutions are obtained by 

satisfying the governing equations and the boundary conditions of problems 

approximately, real-life problems are normally defined based on domains 

which are geometrically complicated and have many different parts with 

various boundary conditions. Such structures will generate problematic 

functions, which require complex solutions in order to apply the traditional 

analytical methods mentioned. Numerical solutions using any numerical 

techniques such as the finite difference method and finite element method 

need to solve a system of linear algebraic equations. These solutions require 

long calculations, which are usually performed by computers, employing 

matrix methods. The results from the finite difference method have acceptable 

accuracy for most technical purposes if a relatively fine mesh is used. While 

finite element methods have proved to be extremely powerful and versatile 

tools for static and dynamic analysis of a wide variety of beam, plate, and shell 

problems; they, however, require the use of a computer with considerable 

speed and storage capacity. A semi-numerical, or semi-analytical, solution of a 

problem is one that satisfies the governing equations analytically, in one or two 

directions, and numerically, in the remaining directions. A typical semi-

numerical solution is achieved by the finite strip method. In comparison with 

numerical methods, the main advantage is that the effort and expense of data 

preparation and input are minimised.  

2.7 Finite strip method 

The finite element method (FEM) is a powerful and efficient tool for the 

solution of plate and shell problems for structural analysis and is well known 

and established.  The cost and time of solutions can be very expensive even for 

super-computers, and even today some computational problems require many 
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hours, days, and even weeks to solve. The finite strip method (FSM) is an 

alternative method, which can reduce the computational cost and time 

especially for structures having regular geometry and relatively simple 

boundary conditions. Cheung [20] in 1976 introduced the philosophy of finite 

strip analysis as an alternative approach to finite element analysis for 

particular cases. It is mostly used for structures with two opposite simply 

supported edges and with or without intermediate elastic supports in the case 

of static analysis such as bridges. He summarised the main differences between 

finite element (FE) and classical finite strip methods as below: 

 FE is applicable for any geometry and boundary conditions and material 

variations, which makes it extremely versatile and powerful. FSM is 

more often used for structures with two opposite simply supported ends, 

with or without intermediate elastic supports. 

 FE analyses have large quantities of input data making it easier to make 

mistakes. In addition, they require automatic mesh and load generation 

schemes. On the other hand, FSM models have very small amounts of 

input data because of the small number of mesh lines involved due to a 

reduction in dimensional analysis. 

 Large quantities of output data, as a rule, all nodal displacements and 

element stresses are printed during FE analysis while it is easy for FSM 

to specify only those locations at which the displacements and stresses 

are required.  

On top of this, FSM usually produces a much smaller number of equations and 

matrices with narrow bandwidth. Moreover, the amount of input data is 

relatively small when compared with FEM because of the smaller number of 

mesh lines. Unlike the finite element method, which uses polynomial 

displacement functions in all directions the finite strip method calls for the use 
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of simple polynomials in some directions and continuously differentiable 

series in other directions, with the stipulation that such series should satisfy the 

boundary conditions at the end of the strips. The general form of the 

displacement function is given as a product of polynomials and series: 

𝑤 =  ∑ 𝑓𝑚(𝑥)  𝑌𝑚                                     

𝑟

𝑚=1

 
(2.22) 

In equation (2.22), the series has been truncated at the rth term, fm(x) is a 

polynomial expression with undetermined constants for the mth, while Ym is a 

series, which satisfies the end conditions in the y-direction and also specifies 

the deflected shape in that direction. Early applications of FSM to the stability 

and analysis of prismatic plates, shells and thin-walled structures were to find 

their natural frequencies and buckling loads. These works include Cheung and 

Cheung [21] , Babu and Reddy [22], Turvey and Wittrick [23], Dawe [24] and 

Graves Smith and Sridharan [25]. 

2.8 Chapter Summary 

This chapter includes a general description of plate and shell behaviour and 

response under loading. The classification of plates according to their thickness 

is highlighted briefly in the second section. In addition, the main theories used 

to investigate the plate structures including classical plate theory and 

nonlinear deformation theory are highlighted. The chapter also includes a 

short description related to stability concepts as an introduction to the buckling 

of a structure, which is illustrated in the following section. It then moves to the 

main solution techniques, which are used to solve the partial differential 

equations using analytical, numerical and semi-analytical methods. Finally, an 

introduction to the finite strip method was given since this will be the 

cornerstone of this study.  
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3 Chapter 3: Literature Review 

3.1 Introduction  

This chapter illustrates the theoretical and experimental research and studies, 

which have investigated the buckling, post-buckling behaviour and mode 

jumping phenomenon of thin plates and shells with different analysis 

variables such as material properties (isotropic and composite), loading types, 

boundary conditions etc. In the following, a literature review will be presented, 

which begins with studies focused on plate and shell linear buckling and 

moves on to the most recent studies, which deal with the post-buckling 

behaviour analysis and mode jumping phenomenon. 

3.2 Linear (initial) buckling review 

Over the past century, many studies have been conducted to determine the 

elastic buckling of plates. The stability equation for rectangular plates was 

derived by Navier (1823). Investigations were carried out using the Kirchhoff 

hypothesis [6] on the buckling behaviour of plates with many different shapes, 

material properties, loads and edge boundary conditions. Since then, a large 

number of theoretical and experimental researches have investigated the 

behaviour of plate and shell structures, particularly due to the significant 

demand for plated structures in the aeronautic, marine, automobiles and 

renewable energy industries during the second half of the last century. Studies 

of buckling may be divided into elastic buckling and plastic buckling; the 

former assumes that the plate reaches its critical buckling load below the 

elastic limit of the material while the latter is more relevant to the practical 

problem when the plate might be stressed beyond the elastic limit before initial 

buckling occurs. Therefore, plastic buckling theories are considered for 
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particular practical cases. Traditionally the initial form of buckling problem 

for the plates began with the assumption of simply supported edge condition 

under uniaxial compression load. In 1891, Bryan [26] presented the first 

solution to this problem by using the energy method to calculate the critical 

buckling load.  This was followed by Timoshenko [27] who solved the same 

problem with a different proposal for the plate deflection equation. Levy  [28] 

in 1942 submitted the earliest accurate solution for plate buckling with built-

in (clamped) edge conditions. 

Batdorf and Stein [29] in 1947 calculated the critical buckling load for simply 

supported plates under combined in-plane compression and shear stress; the 

two researchers adopted an infinite series as an out of plane displacement 

function. In the same year, Stein and Neff  [30] published a technical report, 

which evaluated the buckling capacity of a simply supported plate under in-

plane shear load with a general form for the plate deflection satisfying the 

boundary conditions by using  a series of sinusoidal mode shapes in both x and 

y-directions. Experimental studies that investigated the buckling behaviour of 

the thin-walled structure include those by Rhodes  [31], Bradfield [32] [33], 

Stonor [34] and Mofflin [35] [36]. 

Williams and Wittrick [37] presented their paper, describing the general-

purpose of the computer program, VIPASA (Vibration and Instability of Plate 

Assemblies including Shear and Anisotropy) for determining the critical 

buckling stresses or natural frequencies of thin prismatic structures. They 

introduced a method to simplify the stiffness matrix method to ensure that the 

calculation includes all the critical buckling load factors, as well as natural 

frequencies, for vibration problems [38]. They emphasised that the method 

presented was not suitable for use with transfer matrix methods. Therefore, the 

use of such methods where natural frequencies or critical load factors could 

be missed seems most unwise. Anderson and Williams [39] discussed in their 
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study which was published in 1983, how they overcome an important 

limitation on the general applicability of VIPASA in the case of skewing modes 

when a shear load or anisotropy is present. They called the new program 

VICON (VIPASA with constraints). More recently, Kennedy and Williams [40] 

showed the main features of VIPASA and VICON analysis with a full 

explanation of buckling and vibration analysis using that software, including 

convergence techniques which ensure a reduction in the analysis time. Lam et 

al. [41] described the additional features introduced into VICON analysis to 

investigate the buckling of stiffened panels using point connections, e.g. to 

model the riveted connections between skin and stiffeners. More information 

about this software and its features will be explained at the end of this chapter. 

Nemeth [42] investigated the buckling behaviour of infinitely long composite 

plates subjected to combined loading. His parametric study focused on 

symmetric laminates which are affected by anisotropy. He introduced non-

dimensional parameters (𝛼 =
𝑏

𝜆
( 
𝐷11

𝐷22
)0.25 ,    𝛽 =

𝐷12+2𝐷66

√𝐷11𝐷22
 ,   𝛾 =  

𝐷16

(𝐷11
3  𝐷22)

0.25  , 𝛿 =

𝐷26

(𝐷11𝐷22
3 )

0.25 ) to represent the stiffness of the laminates, where λ  is the half-

wavelength of the buckling mode (Dij are defined in Section 4.3, equation 4.14), 

while the plate was under different load conditions including tension, 

compression and shear. He also examined the effect of laminate fibre angle 

variation for different materials. His calculations showed that a 45 degree fibre 

angle produces the highest values of parameter β  while a fibre angle of 30ο  -

40ο  maximises parameter γ  whatever material properties are used. The effects 

of the fibre orientation on other parameters are summarised in Figure 3.1.  

In 1995, Nemeth [43] published a technical report, which deals with long 

symmetric laminates, with the layup (±45) and with simply supported and 

clamped edge conditions. He concentrated on the effect of combined load 

interaction and the importance of anisotropy in relation to its effect on 

buckling behaviour.  
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He also studied the response of long symmetric laminated plates subject to 

shear and varying axial [44] or in-plane bending  [45] load with the same edge 

conditions as in his previous study and his main conclusions were highlighted 

by the effect of these different loads on the buckling behaviour of these 

infinitely long plates.  

A paper by Watson et al. [46] described an efficient method for determining 

the buckling and vibration behaviour of plates and stiffened panels with 

clamped edges by using Lagrangian multipliers to couple sinusoidal modes 

with appropriate half-wavelengths of response, thereby enforcing the end 

conditions at discrete point supports in the exact strip software VICONOPT 

(VICON with OPTimisation).  

Featherston and Ruiz [47] conducted an experimental work to study the 

buckling behaviour of metal flat plates under shear load. Moreover, they 

utilised ABAQUS finite element software to validate their experimental 

results. Another experimental and numerical study by Featherston and Watson 

[48], which deals with buckling of the optimised composite flat plate under 

combined shear and in-plane bending tested optimised laminate samples that  

had a two opposite built-in edges with the other two simply supported, see 

Figure 3.2.  

 The laminates were first optimised by using VICONOPT software and finite 

element analysis and then the optimum layer orientations were used to 

manufacture specimens. The initial buckling loads were then examined for 

laminates with different aspect ratios. They compared their buckling and post-

buckling experimental results with finite element analysis, which showed a 

good agreement in terms of load versus in plane and out of plane 

displacements by using a different numerical analysis method. Also, the 

researchers applied different imperfection amplitudes to examine the effect on 

the post-buckling numerical results.  
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Figure 3.1: The effect of fibre angle on the non-dimensional stiffness 

parameter [42] 

                           

 

Figure 3.2: Test rig and set up used by Featherston and Watson [48] 
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They concluded that the initial buckling of optimised laminates decreases with 

increased aspect ratio and that the plates are sensitive to imperfections such as 

geometrical non-linearity, which had a noticeable effect especially in the post-

buckling stage. Finally, they ensured that the eigenvalue analysis gave an 

accurate prediction for the critical buckling load.  

Loughlan [49] [50] presented a theoretical investigation, which used the finite 

strip method to analyse the effect of bending-twisting coupling on the shear 

buckling behaviour of  symmetric laminated composites of balanced and 

unbalanced lay-up ply configurations.  In addition, he compared the coupled 

and orthotropic solutions.  

In the same context, an approximate analysis including the effect of anisotropy 

based on non-dimensional parameters to predict the buckling behaviour of 

long rectangular plates loaded in compression and shear was performed by 

Weaver [51] [52]. The next chapter in this thesis will investigate the anisotropic 

properties of composite plates to optimise the buckling capacity under 

different in plane loading.  

More recently, Abramovich et al. [53] examined the buckling behaviour of 

stiffened composite panels under combined in plane shear and compression. 

Vescovini and Bisagni [54] studied the buckling behaviour  and optimisation 

techniques for flat and curved composite panels.  

Many researchers and authors have studied the initial buckling of plates by 

adopting various solution techniques such as analytical methods by Liu and 

Pavlović [55], Jana and Bhaskar [56], a semi-analytical analysis method  by 

Byklum and Amdahl [57], Eisenberger and Shufrin [58], Khedmati et al. [59] 

and finally numerical methods by Zhang et al. [60], Grondin and Cheng [61], 

Azhari et al. [62].  
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3.3 Post-buckling review 

As mentioned previously, plates as opposed to columns have the ability to 

carry stresses beyond their initial buckling load. This behaviour is of 

significant interest to designers since it can be utilised to reduce the mass of 

some structures when the weight is a vital necessity, such as in the aerospace 

industry and marine structures, in order to save fuel and decrease emissions. 

The review of works concerning the post-buckling behaviour of thin-walled 

structures aims to obtain a better understanding of the region beyond initial 

buckling.   

In 1910, von Karman [15] presented his significant contribution to this field in 

which he added the geometric non-linearity effect to the kinematic, strain and 

stress expressions derived in classical plate theory. After von Karman, many 

researchers discussed the post-buckling behaviour as a complex non-linear 

equilibrium case. Consequently, these studies suggested different hypotheses 

to explain the non-linear buckling behaviour of plates as well as shells. This 

significant interest was linked to rapid developments in the industry (e.g. 

aerospace and marine manufacture) which use many parts consisting of plates 

and shell components. Earlier investigations which focused on the elastic 

instability of buckled plates with large deformation were produced by Cox [63] 

[64], Friedrichs and Stoker [65] [66], Bodner [67], Levy [68] [69] and Van der Neut 

[70]. Koiter made substantial contributions to this field through his work 

between 1962 and 1967 in the post-buckling behaviour of plate structures [71] 

[72] [73].  

Mayers and Budiansky [74] clarified in their technical report the behaviour of 

simply supported buckled plates and the response when the material passes 

the elastic limit and enters the plastic range. This was followed by Walker [75] 

who studied the a flat square plate in  post-buckling equilibrium states for the 

simply supported edges conditions based on the von Karman equations. The 
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unloaded edges were considered to be either free or able to distort in the plane 

of the plate. The importance of the post-buckling phenomenon in thin-walled 

structure instabilities motivated the following researchers to perform more 

studies considering different aspects such as new materials (e.g. composite 

laminates) to actively entre the field, examining the effects of boundary 

conditions and loads. 

Manuel Stein [76] delved into post-buckling behaviour through his technical 

report in which he studied the behaviour of buckled plates. The main features 

of his approach were: 

 To convert the von Karman nonlinear large-deflection equations to a 

set of linear equations by expanding the deformation terms into a 

power series in the form of arbitrary parameters. 

 Since the plates had simply supported edge conditions and were 

subjected to a longitudinal compressive load, both load and 

displacement functions were satisfied at the plate edges. 

 The effect of change in uniform thermal stresses was investigated in 

his report. Moreover, a comparison with the experimental results from 

stiffened panels was presented. 

  The analytical solution of the large deflection behaviour included two 

approximate solutions depending on the power of an arbitrary 

parameter; the two suggested solutions were compared with 

experimental results. 

 The limitations in the solution suggested that the methods might not 

converge satisfactorily for certain problems and that linear equations 

cannot be used to solve post-buckling problems for plates with initial 

eccentricities.   
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A further subsequent study was carried out by Rhodes and Harvey [77] who 

investigated the case of flat plates loaded in compression with the specific 

boundary edges that the unloaded plate edges were elastically constrained 

against rotation. They explained the importance of these boundaries in the 

buckling and post-buckling of compressed plates. They summarised their 

conclusions as follows: 

 Rotational restraints increase both the buckling load and post-buckling 

stiffness of a plate in compression. 

 The wavelength at which the plate buckles has quite a large effect on 

the plate’s post-buckling stiffness for all degrees of edge rotational 

restraint. 

 The ultimate load carried by a compressed plate is relatively unaffected 

by the buckling wavelength but is quite dependent on the degree of 

rotational restraint at the plate edges. 

Reddy and Chao [78] highlighted in their numerical study the large deflection 

behaviour of composite laminated plates including transverse shear, with 

many parameters such as plate aspect ratio, side to thickness ratio and the 

orientation of layers and anisotropy. Their model accounts for transverse shear 

strain and large rotations. They compared their results with exact closed form 

solutions in the linear case and with perturbation solutions in the non-linear 

case. The results showed good agreement with exact results and a fair 

agreement in case of a perturbation solution. In 1983, a paper by Stein [79] 

presented a study focused on the post-buckling of orthotropic composite plates 

subjected to in plane compression. He showed that only two parameters are 

needed beyond those required for buckling using von Karman’s nonlinear 

equations. By assuming a trigonometric function in one direction, the plate 

equations are converted to ordinary nonlinear differential equations that are 

solved numerically. He also described his analytical results in a report [80] on 
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nonlinear buckling behaviour of flat plates subjected to in-plane compression 

or shear load. The author proposed trigonometric displacement functions to 

perform the post-buckling solution procedure. The same researcher 

investigated theoretically the post-buckling behaviour of long orthotropic 

composite plates under combined in plane shear and compression. He based 

this on von Karman’s nonlinear equations and used Newton’s numerical 

techniques to simplify and solve those partial differential equations[81] [82].  

More recently, Sun and Williams [83] studied the post-buckling analysis of 

prismatic plate assemblies made of isotropic materials by using Koiter’s theory 

to analyse the initial post-buckling of flat plates under uniaxial compression 

load. They assumed that the structure consisted of a series of long flat strips. 

These strips were rigidly connected together at their longitudinal edges. The 

post-buckling equations were solved exactly based on Wittrick and Williams’ 

theory for eigenproblems and Koiter’s general theory of elastic stability. The 

post-buckling coefficients were calculated by exact integration for all 

component plates. Examples of asymmetrically and symmetrically stiffened 

plates were included, which confirmed the idea that the post-buckling 

behaviour depends significantly on the geometry of the stiffeners considered.  

A study by Wang and Dawe [84] highlighted the post-buckling response of 

rectangular composite laminated plates by using the spline finite strip method 

in the context of first-order deformation theory. The study included some 

examples to assess the suggested method. In all cases, the finite strip results 

were compared with those obtained from finite element analysis. The authors 

concluded that for a moderately thick plate geometry, the effect of shear 

deformation through the thickness is substantial. 

Lillico et al. [85] described the post-buckling responses of a stiffened panel by 

using strut, strip and finite element methods. Two models were studied, 

namely single and multi-bay panels. The researchers used the exact strip 
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method software VICONOPT to design the panels and then compared the 

results using a finite element model which included the material non-linearity. 

However, they found that the skin buckling load for the panels used in the 

study was substantially lower than its yield load, which was directly 

proportional to the skin thickness. The paper also showed that a newly 

developed strut model could be used to represent the out-of-plane deflection 

of axially loaded, post-buckled panels. The model showed good agreement 

with finite element results in the case of a single bay panel. 

The buckling and post bucking behaviour of curved CFRP stiffened panels 

with a T stiffeners was investigated by Degenhard et al. [86]. The authors 

focused on the responses of the panels under quasi-static and dynamic loads. 

The paper was divided into experimental and numerical parts. The 

experimental results for the curved stiffened panels were compared with the 

finite element model results and showed acceptable agreement. The work 

included a numerical study of the unstiffened composite cylindrical shell and 

the changes in its longitudinal mode shapes under axial loading.  

Byklum et al. [87] carried out a further semi-analytical investigation of global 

buckling and post-buckling of stiffened panels subjected to different loading 

conditions such as biaxial compression, tension, shear and lateral pressure. 

They derived a computational model by using large deflection plate theory 

and energy principles. The energy formulations were derived analytically 

while the other calculations were performed numerically. A comparison was 

made between the semi-analytical results and the finite element model in 

terms of load-deflection curves to show the efficiency of the proposed method. 

The importance of stiffened panels as a component of fuselage, wings and 

other applications in various industries was highlighted.  Lynch et al. [88] 

presented their finite element model for accurate production of the post-

buckling behaviour of aircraft fuselage panels under combined compression 
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and shear loading. The study considered the different stiffener skin 

connections shown in Figure 3.3. Moreover, it produced a guide to modelling 

similar structures in terms of the elements mesh, idealisation, imperfection 

and solution procedure. The study included an experimental part, which tested 

two fuselage specimens to validate the numerical results. 

 

Figure 3.3: Skin –rivet –stiffener connection proposed by Lynch et al. [88] 

 

Degenhardt and Delsemme [89] examined the post-buckling behaviour of 

curved stiffened panel experimentally and numerically. The two researchers 

tested a CFRP curved stringer stiffened panel under axial compression, then 

simulated a model using the finite element method to validate their results. 

The model they produced was included a skin-stringer delamination damage 

region. The numerical output data using shell elements predicted an axial 

stiffness higher than observed in the experimental results. The researchers 

explain that as a results of some hypothesis made in the model simulation were 

not coherent with the experimental results. Zimmermann et al. [90] 

investigated experimentally and theoretically the buckling and post-buckling 

behaviour of stringer stiffened fibre composite curved panels under axial 
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compression. A nonlinear finite element model was used to compare with the 

experimental results. The post-buckling responses of a flat fuselage stiffened 

panel subjected to in-plane shear loads were considered in a paper by Murphy 

et al. [91]. They used the finite element method to carry out a theoretical 

analysis; subsequently, an experimental test was preformed to validate the 

computational results. Material and geometrical non-linearity were taken into 

account; the numerical model included first and second order elements to 

obtain a better assessment of the buckling and post-buckling behaviour.  

 

Figure 3.4 Schematic of shear rig used by Murphy [91] 

 

Möcker and Reimerdes [92] preformed a post-buckling simulation  of curved 

stiffened panels. They applied a solution procedure based on the discretisation 

of the structure into strip elements. This procedure enabled the determination 

of element stiffness matrices representing analytical solutions of the 

governing differential equations. The two researchers verified their approach 

by comparing it with experimental results. They used composite materials with 

[0, ±45] orientation angles. The main conclusions of their work were a 

significant reduction in the number of degrees of freedom; also, the fact that 

the proposed approach determined the element stiffness matrices that 

represented an analytical solution of the governing differential equations.         
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A semi-analytical model for the post-buckling analysis of stiffened cylindrical 

panels was presented by Buemann et al. [93]. Their panel consisted of a curved 

skin (shell) with longitudinal stringers and circumferential direction frames as 

shown in Figure 3.5. Local buckling modes were considered. The panel was 

modelled using the computer code ‘IBUCK’ developed at the Institute of 

Structural Mechanics at DLR Braunschweig. A comparison with finite element 

analysis to verify the results that was obtained from experiment. 

Elaldi [94] focused on the buckling and post-buckling analysis and failure 

mechanisms of a hat stiffened composite panel under compression loading. 

Experimental test results were compared with a finite element model for 

validation. His panel consisted of three integrated hat stiffeners. Both 

experimental results and the numerical model showed local buckling mode 

failure with five buckles, prior to a jump to a configuration with seven buckles.  

The panel failed at a load of 3.3 times the initial buckling load. 

 

 

Figure 3.5 A typical stiffened structure proposed by Buemann et al. [93] 
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The complexity of the calculations required for instability problems using 

either theoretical or experimental analysis motivated Bakker et al. [95] to 

introduce their elastic post-buckling analysis of plates subjected to 

compressive load using a two-strip model to simplify the analysis steps. They 

based their method on the non-linear differential compatibility and 

equilibrium equations with a potential energy approach. They modelled a plate 

with simply supported edges. Relationships between the force and the 

maximum in and out of plane displacement were described.  

Shufrin et al. [96] suggested a semi-analytical model to predict the nonlinear 

buckling of a rectangular plate in the elastic zone. They proposed a model with 

general boundary conditions and a plate subjected to combined in plane and 

out of plane loading components, their model was able to capture the mode 

change phenomenon for compressed plates, and the results were compared to 

experiments. Rhodes [97] described some of the previous research in post-

buckling of plates and plate structures; comparing the load–shortening 

behaviour of plates with parameters such as initial imperfection, boundary 

conditions and buckling mode shapes. Ghannadpour et al. [98] published a 

paper which investigated the nonlinear buckling analysis of isotropic plates by 

using two finite strip methods; one semi-analytical and another fully analytical 

to predict the post-buckling behaviour of isotropic plates. Their work was based 

on solving von Karman’s equations by a novel technique.  

Bisagni and Vescovini [99] proposed an analytical formulation to study the 

local buckling and post-buckling of composite panels with T-shape stiffeners 

under compression. They used the Donnell-von Karman hypothesis and 

classical lamination theory to model the skin buckling mode. Their approach 

did not consider the overall buckling mode. The same researchers [100] 

suggested a single mode solution to study the post-buckling responses of flat 
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stiffened panels under uniaxial compression. They recommended their 

approach for the following cases: 

 Calculating the buckling load for panels of finite and infinite length. 

 Deflection and stress distributions for different values of the applied end 

shortening. 

 To determine the post-buckling stiffness of perfect and imperfect 

panels. 

Stamatelos et al. [101] investigated the buckling and post-buckling of stiffened 

panels analytically; their main interest was the behaviour of the skin between 

the stiffeners. Thus, the researchers concentrated on local mode buckling. 

They used a two-dimensional Ritz displacement function to examine the local 

buckling of isotropic and laminated symmetric composite panels with 

arbitrary edge boundary conditions. The solution was then extended to the 

local post-buckling of the skin. Brubak and Hellesland [102] used their semi-

analytical method to study the post-buckling behaviour of stiffened panels 

including the effect of imperfections in their model. One edge was free or 

flexibly supported and the other three laterally supported and the structure 

was loaded in in-plane compression. The model was able to capture both local 

and overall modes with out-of-plane and in-plane displacements represented 

by trigonometric functions and linearly varying functions defined over the 

entire plate. The authors proposed their approach as an efficient tool to reduce 

the computational effort in terms of time and cost, comparing with other 

numerical solutions such as the finite element method. However, the solution 

was suitable only for the specific boundaries conditions in their study. Variable 

stiffness shells are defined as curved composite structures in which the fibre-

reinforcement follows a curvilinear path in space. The main difference 

between variable stiffness shells and traditional composite shells is that they 
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occupy a wider design space than traditional composite shells and they have 

the potential to improve a wide variety of weight-critical structures. 

White et al. [103] proposed a method for predicting the initial post-buckling 

behaviour of variable-stiffness cylindrical panels. They based this on the 

differential quadrature method with the implementation of Koiter’s approach 

[73] for variable-stiffness shell structures. The authors compared their results 

with a non-linear finite element model and results from literature to validate 

the proposed method.  

Shanmugam et al. [104] studied the practical response of flat stiffened plates 

under combined in-plane compression and lateral pressure experimentally in 

the laboratory and numerically by using the finite element analysis. Their 

model included elastic and inelastic behaviour.  

The authors summarised some of their conclusion as follows: 

 Both experimental and numerical results show that the lateral load 

carrying capacity of a stiffened plate drops with an increase in axial load 

and vice-versa. 

 The reduction in the axial strength of stiffened panels was not 

significant due to smaller lateral pressure than for non-stiffened plates. 

 The effects of lateral pressure on strength appear to be similar to those 

of initial imperfections with a pattern of small overall deformation of 

the stiffened plate. 

Splichal et al. [105] tested a composite panel of an aircraft wing subjected to 

dynamic loading. The experimental specimens were simulated using the finite 

element method for comparison. In the same context, the buckling and post-

buckling behaviour of curved cylindrical stringer- stiffened laminated 

composite and metal panels under axial compression were investigated both 

numerically and experimentally by Abramovich and Bisagni [106] to evaluate 



Chapter 3

 

42 

the buckling and collapse loads. The wide applications of plates and panels 

with simply supported or free edges motivated Oguaghamba et al. [107] to 

undertake a theoretical investigation to determine the main load 

characteristics of buckling and post-buckling behaviour of rectangular plates 

with clamped edges on all boundaries of a plate subjected to a uniaxial 

compression load.  

Seo et al. [108] examined the ultimate strength of stiffened curved plates under 

compressive load. They used a numerical approach to estimate the 

compressive strength of curved stiffened plates for marine applications, while 

Lyman et al. [109] conducted a study which used mathematical techniques to 

get more accurate, fast solutions for the static and dynamic nonlinear 

behaviour of buckled plates subjected to uniaxial loading by implementing 

continuation methods. The limitation of using this method was that it is 

restricted to simpler geometries and any changes to the boundary conditions 

require a new analytical solution. Their study included an experimental test 

on a flat plate with simply supported unloaded edges while the loaded edges 

were restricted against out of plane displacement but allowed to rotate as 

shown in Figure 3.6. 

 

  

Figure 3.6 Test rigs for a plate under uniaxial compression [109] 
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3.4 Mode jumping phenomenon  

The study of the post-buckling behaviour of plates and stiffened panels allows 

designers to work flexibly between the design limit and ultimate loads, 

potentially leading to significant reductions in the mass of aerospace and 

marine structures. Experiments on thin-walled structures in the post-buckling 

stages showed that there can be a sudden change in the initial buckling mode 

in terms of out of plane deformation patterns. This phenomenon is known as 

mode jumping and in some literature is called the secondary instability. Mode 

jumping may be the most noteworthy feature of the experimental post-

buckling behaviour of thin plates, as the nature of these structures means they 

can exhibit a number of different buckle configurations. Investigations of this 

behaviour have demonstrated that the main factors that have a major effect on 

the phenomenon are the aspect ratio of the plates (length to width ratio), the 

boundary conditions at the plate edges and the load increments in the post-

buckling region. There are other influential factors such as initial 

imperfections and load eccentricity, which may also have an important role in 

mode jumping.  In this section, the studies, which dealt with the post-buckling 

behaviour of plates or panels including mode jumping will be reviewed.  

The mode jumping phenomenon was first observed by Stein [76] during an 

experimental test of an isotropic stiffened panel with knife stiffeners when the 

local initial buckling mode changed suddenly from five buckles (five half 

wavelengths of sinusoidal buckling) to six, then to seven and then to eight 

buckles by the end of the test. He compared his experimental results with 

theoretical calculations. His experimental load-shortening curve showed 

abrupt changes corresponding to a sudden change in the buckling pattern, 

while the theoretical curve, which was based on continuing change to the 

buckling pattern, was smooth. Bauer and Reiss [110] studied the non-linear 

buckling of rectangular plates subjected to compressive thrust. They used a 
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numerical method to explain the mode-jumping phenomenon. They used an 

energy comparison to show the possibility of mode jumping occurring under 

the condition that the two modes should be close and the structure would jump 

to a preferred equilibrium state which has similar stresses.  

In 1970, Supple [111] conducted an investigation related to the post-buckling 

of simply supported rectangular plate behaviour under a compressive load, 

which included changes in the buckling form during the post-buckling 

analysis.  The main assumptions for his study were: 

 There is no out of plane deformation at the boundaries. 

 The loaded edges remain straight. 

 The longitudinal edges stay straight in the plane of the plate. 

 There is no restraint against the lateral expansion of the plate in its 

plane. 

 A term for initial imperfection was included in his calculations. 

His main conclusions were that the post-buckling behaviour, which considered 

the change in the buckling pattern, was dependent on the prevailing boundary 

conditions and the existing of initial geometric imperfections. Cheo and Reiss 

[112] referred to the possibility of mode jumping from one mode to another, 

which depended on the dynamic stability of the primary and secondary state 

of equilibrium and the amplitude of disturbance.  

Nakamura and Uetani [113] presented their theoretical work in which they 

focused on the secondary buckling, and post-secondary buckling of 

rectangular flat plates with simply supported edge conditions under 

compressive loading. They worked particularly with rectangular plates having 

a buckling mode which contained more than one-half wavelength. They 

assumed two cases of longitudinal edges; the former was perfectly rigid while 

the latter was free. Their analytical investigation had three stages: 
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 The point of secondary buckling was searched along the primary 

buckling path by a linearized buckling analysis 

 The secondary buckling point stability was based on the post-buckling 

theory. 

 The equilibrium paths of post-secondary buckling were numerically 

traced at every incremental step analysis of the equilibrium.  

  Their main conclusions were that: 

 The secondary buckling loads for free longitudinal edges were much 

higher than those for rigid edges.  

 The secondary buckling loads become smaller as the aspect ratio 

increased for a plate with a fixed number of longitudinal half-

wavelengths. 

 The obtained secondary mode for both edge conditions corresponded to 

a change in the phase of the longitudinal waveform without a clear 

increase of wave amplitude. However, the types of the waveform 

changes were different between the two longitudinal boundary cases. 

 The authors conducted that secondary buckling points are unstable 

branching points for plates with an initial buckling mode with more 

than two buckles, while they were more stable for plates with an initial 

mode with two buckles. 

 The differences in the primary buckling mode between the two 

longitudinal edge conditions mentioned previously are related to the 

change in the secondary buckling mode shape, i.e. the mode changed 

from three to five half waves for plates with rigid edges while it changed 

from five to seven half waves for the free longitudinal edge condition. 

Schaeffer and Golubitsky [114] studied the mode jumping of 

rectangular plates. They started with Stein’s experimental model [76] 
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and then applied the von-Karman equations to determine the effect on 

the mode jumping occurrence of different boundary conditions (simply 

supported and clamped edges). Matkowsky et al. [115] investigated the 

secondary buckling path for plates with different aspect ratios. Their 

work highlighted that if the primary buckling state loses stability then 

the plate will buckle a second time into the secondary state. The paper 

also described some previous experimental studies which dealt with 

secondary buckling. Their work was based on von Karman theory and 

studied the secondary equilibrium path of rectangular plates. Holder 

and Schaeffer [116] also linked the boundary conditions of the plate 

edges with the mode-jumping phenomenon in terms of the von Karman 

equations. They explored clamped and simply supported edge 

conditions for long plates in compression. The main conclusion of their 

work was that it was possible for mode jumping to occur if the boundary 

conditions were simply supported on the unloaded edges and clamped 

on the loaded ends.  

Shen and Zhang [117] investigated mode shape change in the post-buckling 

analysis of rectangular plates subject to uniaxial compressive loading by 

applying the perturbation method to the von Karman large deflection 

equations. The authors proposed two in plane boundary conditions and 

considered the effect of initial imperfections. They compared their theoretical 

results with previous experimental studies for validation. One of the main 

conclusions was that the change in the buckling pattern would occur earlier in 

the presence of an initial imperfection. Their load-shortening curve showed a 

smooth transition when compared with Stein’s experimental curve which had 

a sudden jump between the post-buckling pattern configurations.  

 In 1992, Maaskant and Roorda [118] published a paper which studied the effect 

of interactions between buckling modes leading to a mode jump in a simply 
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supported plate subjected to compression. They concluded based on the results 

of their investigation: 

 The ideal plate post-buckling behaviour was particularly sensitive to the 

manner in which the loads were applied and the plate aspect ratio. 

 As it is difficult to manufacture an ideal plate, it is more realistic to 

consider the effects of imperfection in such behaviour. 

 They proposed that a combination of many buckling modes should be 

considered in order to have a complete picture of the mode-jumping 

phenomenon.  

Riks et al. [119] [120] proposed a numerical study to explore the mode-jumping 

phenomenon in a thin-walled shell. They suggested a solution procedure 

which consisted of a combination of the classical path, which was used for the 

quasi-static (stable) parts and a transient integration for the simulation that 

belonged to the transient domain. The authors described their approach as a 

robust strategy to solve a similar problem, and they applied it to mode jumping 

of a plate strip and composite cylinder collapse under compression to verify 

their method.  

The finite element method was used by Salerno and Casciaro [121] to develop 

a multi-mode model of thin-walled structure buckling in the elastic zone 

considering the imperfection effect. Their work focused on frames and thin-

walled beams.  Cheng and Shang [122] presented work which related to the 

mode jumping of a rectangular plate with simply supported edges on an elastic 

foundation. They based their study on bifurcation theory to predict the non-

linear stability and the buckling mode change.   

Bushnell et al. [123] published a report that investigated the optimisation of 

stiffened panels which considered the occurrence of mode jumping. They used 

the PANDA2 code in their study to explain the strategy, which was adopted by 
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that code to prevent serious mode jumping before the design load is reached 

for an optimised panel. In addition, the researchers defined two reference 

words to express the mode change, “mode interaction” and “mode jumping”. 

The former was defined as the interaction between buckling modes with a long 

wavelength and one or more modes of short wave, while the latter was the 

interaction between one short wave with another short wavelength to generate 

a local buckling mode.  

A comparative study was published by Everall and Hunt [124] that dealt with 

mode jumping behaviour in the post-buckling analysis of struts and plates 

subjected to compressive loads. They highlighted the effect of edge boundary 

conditions in such unstable behaviour, on the changes in the buckling mode. 

Their main conclusion are summarised as: 

 Simply supported edge conditions protect the plate against early mode 

jumps.  

 Mode jumps occur at an earlier stage when the plate ends are restrained 

against in plane movement. The jump is delayed by restraining the 

same edges against rotation only.  

 Restricting in plane movement from free to straight to clamped edges 

leads to a decrease in plate stability in the post-buckling region.  

 Constraining long edges against bending could lead to a significant 

increase in secondary buckling load for both straight edged and 

clamped edged plates. 

Hunt and Everall [125] carried out a systematic appraisal of the phenomena of 

mode locking and mode jumping in a structural buckling problem of finite 

length. The study also included a review of previous studies dealing with post-

buckling and mode jumping of thin-walled structures.  
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Chien et al. [126] presented a numerical study to find approximate bifurcation 

solution curves for the von Karman equation for both simply supported and 

clamped plate edges. Their results were verified and showed considerable 

agreement when they were compared with the theoretical results in reference 

[114].  An experimental study was carried out to test rectangular plates to 

investigate the post-buckling and mode jumping phenomenon by Chai [127]. 

His work included a numerical model to elucidate the post-buckling response 

of unilaterally constrained plates under monotonically increasing edge thrust, 

in both tests and finite element analysis. He used displacement control and the 

samples had clamp boundary supports.  

The main conclusions were:  

 The interaction of the plate with the adjoining rigid substrate following 

buckling leads to some unique deformation sequences, and this 

behaviour includes both buckling and post-buckling stages. 

 A rapid transition of the buckling waveform to a new equilibrium 

configuration occurs in which the specific details strongly depend on 

the plate aspect ratio and other system parameters.   

 The plate deformation at buckling is quite random. However, it tends 

towards an extreme form of asymmetry with increasing load. 

 The results provide an insight into the fracture behaviour of imperfectly 

bonded materials. Boundary contact suppresses mode I (with one 

buckle) in favour of mode II (with more than one buckle) fracture. 

However, As soon as a mode transition occurs, the opposite can occur, 

which can lead to a catastrophic detachment in brittle intermediate 

layers. Mode jumping configurations are shown Figure 3.7. 
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Figure 3.7 Mode changes of buckled rectangular plates with aspect ratio = 1.2, 

1.7, 2.9 respectively [127] 

 

More recently, Falzon [128] [129] investigated the post-buckling and damage 

behaviour of hat-stiffened panels under uniaxial compression. The study 

consisted of an experimental part and a numerical part, and was based on a 

panel made of a composite material with (0, ±45, 90) orientation angles. The 

experimental test included two types of panel with and without a circular cut 

out in the middle of the panel, see Figure 3.8.   
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The results of a finite element analysis to simulate the panels were compared 

with the results from the experiments. Both panels buckled and failed by local 

buckling. The non-linear finite element analysis was successful in predicting 

buckling and initial post-buckling behaviour. However, the model was less 

successful in capturing the mode jumping observed in the experimental 

results. 

 

  

 

   

 

 Figure 3.8 : Panel details and mode change tested by Falzon [128] 
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Falzon and Hitchings [130] introduced a study which focused on capturing 

mode jumping experimentally and numerically in the post-buckling of 

composite stiffened panels with four blade-stiffeners. They used a modified 

explicit dynamic method to capture local mode switching.  

Chen and Virgin [131] investigated analytically and numerically the mode 

shifting of simply supported buckled plates loaded thermally. They proposed 

an analytical solution by reducing the Von Karman equations to a system of 

non-linear ordinary differential equations. They described mode shifting in the 

vibration mode shapes at particular points in the temperature versus natural 

frequency relations. The results were checked and compared with a static-

dynamic finite element model. 

 The same researchers [132] [133] [134] published papers two years later, which 

dealt with the dynamic response of thin plate post-buckling behaviour that 

included the transition of the buckled pattern. They used an asymptotical and 

non-stationary finite element method. Their work highlighted the secondary 

dynamic instability and local post-buckling behaviour of rectangular plates 

subjected to mechanical and thermal loading. The solution method combined 

Koiter’s nonlinear instability theory with finite element techniques for both 

isotropic and composite plates. 

Falzon and Cerini [135] proposed a procedure to capture mode jumping based 

on finite element solution schemes. They applied an arc-length constraint to 

model the quasi-static responses of composite stiffened panels and explicit 

dynamic routines. The suggested procedure was computationally more 

efficient to capture mode jumps than full dynamic analysis.  

Murphy et al. [136] focused their experimental work on the local post-buckling 

of metallic stiffened panels and on the mode shape changes. They summarised 

their test observations as follows: 
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 For all tests, the skin mode pattern changed, and the number of buckles 

(half waves) increased. 

 The new half-waves developed within the skin; they initiated at either 

the top or bottom of the bay. 

 The additional buckles started small and grew with increasing load. The 

new half waves appear to grow steadily from their initiation. 

 Changes in local skin bay behaviour correspond to changes in global 

specimen behaviour with reductions in post-buckling stiffness. 

A parametric study by Hofmeyer and Jaspart [137], which described a dynamic 

explicit solution procedure used to study the compressed plates with or without 

stiffeners, concluded that for a long plate without stiffeners, the mode jump 

occurred before the plasticity range if the imperfection was small, whereas for 

large imperfections the jump would occur later. Moreover, there was a 

significant difference in the ultimate strength due to different imperfection 

sizes and shapes.  

An experimental and numerical study that used genetic algorithms to 

optimise stiffened composite panels by investigating the post-buckling 

behaviour were published by Falzon et al. [138] [139]. The algorithm used for 

layup optimisation aimed to delay the mode jumping. The numerical results 

showed that the increase in damage resistance of an optimised panel would 

delay the mode jumping compared to the original unoptimised panel. The 

results of clamped edge plates under uniaxial compressive load were 

compared with previous experimental results for validation. The theoretical 

results showed good agreement in terms of out of plane displacements and 

mode jumping in buckling mode configurations as shown in Figure 3.9. 
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Figure 3.9: A comparison between the numerical and experimental out of 

plane displacement pattern after a- buckling, b- mode jump [138] 

 

The second work focused on composite stiffened panels with four I stiffeners, 

the panel investigated experimentally and showed a local buckling mode 

started with five buckles (half wavelength), jumped to six and then finally with 

seven Figure 3.10. A finite element model was used to verify the experimental 

results using ABAQUS.   

 

Figure 3.10: Experimental results that showed the mode jumping in skin                            

buckling mode [139] 
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The researchers used both the overall and local buckling mode assumption to 

compare with experiments. They utilised conventional shell elements and an 

initial imperfection of 0.03 of the skin thickness for the first model, while solid 

and interface elements were used in the second finite element model to 

capture the mechanism of skin-stiffener interaction.  

Hofmeyer and Courage [140] studied the mode-jumping phenomenon 

analytically and numerically in the post-buckling analysis of square and long 

plates. The analytical model was based on several displacement functions and 

using the principle of minimum potential energy. A dynamic implicit finite 

element model was employed to compare with analytical results.  

Wang et al. [141] presented a mathematical expression to describe the mode 

jumping and equilibrium path configuration of thin film secondary wrinkling 

by applying the bifurcation theory.  

 Finally, the next section of this chapter will describe the main features of the 

VICONOPT software, which was mentioned previously in section (3.2), as the 

main motivation of this work is to improve the post-buckling analysis of that 

program by including the mode jumping. 

 The paper which represents a basis for  the main objectives of this thesis, is a 

study by Watson and Kennedy [142]. The authors used VICONOPT software to 

investigate this phenomenon for a stiffened panel that buckled locally. The 

study included a comparison between the equilibrium paths with a different 

number of half wavelengths (buckles) in order to predict the jumping points 

under both strain control and stress control. The results were presented in 

terms of load-axial strain relations and compared with previous experimental 

work. This paper will be discussed in more detail in Chapter 6.      
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3.5 Exact strip analysis and VICONOPT 

The finite strip method (FSM) was described in the previous chapter as an 

alternative technique which is used to solve stability problems efficiently. The 

FSM considered as a particular case of finite element analysis that can provide 

an efficient tool for numerical analysis in terms of computational time and 

cost. The use of this method in vibration, buckling and post-buckling problem 

expanded gradually after Cheung [20]. The simplicity provided by semi-

analytical analysis using FSM motivate the researchers in stability problems to 

adopt it as an alternative method of finite element analysis when FSM was 

applicable for their case studies. For example, Li et al. [143], Bradford and 

Azhari [144], Dawe and Peshkam [145], Ovesy et al. [146]. 

The exact strip method was proposed in 1968 by Wittrick [147] who utilised it 

to determine the elastic stability of plate assemblies. This technique assumes a 

sinusoidal variation of the buckling mode in the longitudinal direction and the 

governing differential equations of strips are transformed to transcendental 

ordinary differential equations according to classical plate theory. Exact strip 

analysis assumes a continuous distribution of stiffness and mass over the entire 

structure and thus avoids the approximations resulting from discretisation in 

the classical finite element analysis method. Consequently, the partial 

differential equations that govern the deformations of the plate’s components 

are solved exactly Kennedy et al. [148]. Consequently, the main differences 

between the exact stiffness method and the other traditional FSM that the strip 

properties are based on the direct solution of the governing differential 

equations of classical plate theory, rather than on the use of energy or work 

principles. Solving the governing differential equations for each strip explicitly 

will lead to a stiffness matrix containing transcendental coefficients. Since the 

eigenproblem  is transcendental the standard linear eigenvalue solver routines 

cannot be used to extract the buckling load [149]. Also root search methods are 
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unreliable because of the highly nonlinear behaviour of the stiffness matrix 

determinant. Thus the Wittrick-Williams (W-W) algorithm was proposed to 

calculate the eigenvalues. 

3.5.1 Wittrick-Williams algorithm 

Wittrick and Williams [149] presented an algorithm to be used for determining 

the natural frequencies of vibration of any linearly elastic structure when 

using the exact method. The algorithm was able to calculate how many natural 

frequencies lie below any target frequency, without determining them directly 

and hence to converge on any natural frequency with the required accuracy. 

The Wittrick-Williams algorithm was first applied to vibration problems and 

later extended to include buckling problems [150]. The way in which this is 

achieved is outlined briefly as follows. The natural frequencies or load factors 

were calculated by solving the transcendental eigenvalue equation: 

𝐾𝐷 = 0 (3.1) 

where K is the overall global stiffness matrix of the structure and it is 

assembled from the member stiffness matrices. The elements of K are 

transcendental functions of the eigenvalue (critical load factor F or frequency 

ω* ).  D is the displacement amplitude vector. Equation 3.1 is solved by Wittrick-

Williams algorithm. The role of the algorithm is in calculating the number of 

eigenvalues J(ω*) lying below a trial value ω* (or F). The value of J can be 

evaluated by the equation below:  

𝐽 (𝜔∗) = 𝐽0(𝜔
∗) + 𝑠{𝐾(𝜔∗)} (3.2) 

where J (ω*) represents the number of natural frequencies of the system which 

are less than the chosen frequency ω* . J0 (ω
*) denotes the number of natural 

frequencies which would still be exceeded by ω*  if the ends of every member 

were clamped, while s{K(ω*)} is the sign count of the transcendental stiffness 

matrix K(ω*), which is the number of the negative elements on the leading 
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diagonal of the upper triangular matrix K∆ when the standard form of Gauss 

elimination without row interchanges is performed on K. J0 can be obtained by 

summation over the whole structure.  

 𝐽0=   ∑𝐽𝑚 
𝑚

 (3.3) 

where Jm can be calculated analytically for every member m.  

3.5.2 VICONOPT software 

VICONOPT is a FORTRAN 77 program which incorporates the exact strip 

method and the Wittrick-Williams algorithm. The software was developed at 

Cardiff University since 1970 with the collaboration of British Aerospace, 

Airbus and NASA.  The story of VICONOPT began in 1974 when Wittrick and 

Williams presented the computer program (Vibration and Instability of Plates 

Assemblies including Shear and Anisotropy) known as VIPASA [37]. VIPASA 

analysis was used initially to calculate the natural frequencies and buckling 

load factor. Analysis using VIPASA assumes that the mode of vibration or 

buckling varies with a sinusoidal shape in the longitudinal direction x. Thus 

the displacement amplitudes and rotations in the x-direction that relate to the 

global axes x, y, z are sinusoidal too. Moreover, the length of the plate is divided 

into a range of half wavelengths, which can be defined by the user, see 

Figure 3.11. 

 VIPASA analysis requires the in plane stiffness matrix A and the out of plane 

bending stiffness matrix D to be uncoupled. i.e., the coupling stiffness matrix 

B must be null. In the case of isotropic or orthotropic plates in the absence of 

shear load, the nodal lines between the buckled regions (the lines of zero out 

of plane displacement) remain straight and perpendicular to the longitudinal 

edges, leading them to satisfy simply supported boundary conditions. The 

length of the plate 𝓁 can be divided into an integer number of half wavelengths 

λ  in the x direction.  
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Figure 3.11:  VIPASA analysis features 

 

Conversely, if the plates have anisotropic properties or are in the presence of 

shear load, the nodal lines will skew and the simply supported end conditions 

will not be satisfied. This is considered the main limitation of VIPASA analysis. 

However, despite this, the analysis using VIPASA, which is based on the exact 

plate theory, avoids approximations and reduces the analysis time when it is 

compared with finite element analysis.   

To tackle this problem VICON [151] analysis was developed. VICON analysis 

removes the main VIPASA limitation, and is able to deal with structures which 

have anisotropic properties or are subjected to a shear load. The essential 

feature of VICON, which can be considered as the main difference when it is 

compared with VIPASA analysis, is the inclusion of Lagrangian Multipliers. 

The function of these multipliers is to couple the responses of different half 

wavelengths λ . The modelling of plates using VICON analysis assumes that 

the plate has infinite length and is assembled with constraints that represent 

either rigid or elastic point supports repeating at an interval of 𝓁 as shown in 

Figure 3.12. 
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The buckling or vibration modes will repeat with n intervals over a length of 

L = M𝓁, where M and n are integers. The different half wavelengths are coupled 

to calculate the buckling and vibration modes accurately. Although VICON 

analysis assumes that, the plate has infinite length, the vibration and buckling 

modes repeat over a length 𝐿 = 2𝓁/𝜉  where 𝜉 =  2𝑛/𝑀  and 0 ≤ ξ ≤ 1. The 

values of half wavelength in VICON analysis are therefore calculated 

according to: 

𝜆𝑚 = 
𝓁

(𝜉 + 2𝑚)
     𝑤ℎ𝑒𝑟𝑒 (𝑚 = 0,±1,±2,±3, ….   ± 𝓆) (3.4) 

The values of ξ  and 𝓺 may be provided by the user to evaluate the buckling 

load.  

 

 

Figure 3.12: Infinite plate assembly in VICON analysis 
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3.5.3 VICONOPT software post-buckling analysis 

The VIPASA analysis in VICONOPT (VICON with OPTimisation) is a Fortran 

77 computer program which covers both prismatic plate assembly analysis and 

optimisation (evaluate the minimum mass). The VICONOPT analysis 

incorporates the features of both VIPASA and VICON which were described 

previously to calculate the critical buckling load factors and natural 

frequencies. In terms of design procedure, VICONOPT has an efficient 

optimisation tool which can specify the minimum mass of structural 

components that will lead to reducing the cost [152]. 

The VIPASA analysis in VICONOPT was extended to include the non-linear 

geometrical buckling analysis by Powell et al. [153].  The post-buckling 

analysis procedure calculates the exact stiffness by utilising the Wittrick-

Williams algorithm. The output data includes the initial critical buckling load 

and strains. The buckling mode shape and the post-buckling applied load are 

founded initially by iteration depending on amplitude of the post-buckling 

mode. The total axial load, axial strain, mode shape and stress resultants at 

each strip are then computed. The post-buckling solution procedure assumes 

the same initial buckling mode through the rest of the analysis. Anderson and 

Kennedy [154] introduced an alternative procedure using Newton iterations to 

achieve more accurate convergence in terms of the post-buckling mode and 

stress distributions. An improved stress distribution method based on Stein’s 

non-linear buckling hypothesis was developed to predict with higher accuracy 

the stress resultants at each post-buckling cycle [155].  

3.6 Chapter summary  

In this chapter, a review of previous investigations focusing on buckling, post-

buckling and the mode jumping phenomenon was presented. It started with a 

short description of the main stability concepts because the buckling of 
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structures is a type of instability problem. Following a brief overview of the 

buckling behaviour and the different responses involved in the column and 

plate buckling, a review of previous initial buckling investigations, which 

represent the base of instability problems of thin-walled structures, was given, 

beginning with the pioneering researchers in the field. These studies illustrate 

the effect of anisotropy on the buckling capacity of composite plates. The first 

objective in the current study will extend these previous studies by utilising 

the anisotropic characteristics of the laminate to optimise the buckling load. 

 A summary of theoretical and experimental post-buckling studies was then 

presented, followed by reviews related to the mode-jumping phenomenon 

which is the main focus of this thesis. The second objective in this thesis will 

extend the post buckling analysis in VICONOPT software to include the mode 

jumping effect, which will lead to improved results compared to finite element 

analysis and experimental results. The chosen techniques have not been used 

in any previous studies. Although, the previous studies include many 

experimental investigations, these deal with specific shapes and dimensions 

that made the panels symmetric. However the third objective in this study 

covers curved panels with L-shape stiffeners which have asymmetric 

characteristics.  

The last section of this chapter specified the main features of the VICONOPT 

program which is important to provide a better understanding of this software.  
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4 Chapter 4: Improving the Buckling Capacity of 

Composite Plates (Background and Method) 

4.1 Introduction 

This chapter presents a parametric study, which investigates the buckling 

behaviour of composite flat plates with different levels of anisotropy under a 

range of in-plane loading conditions. The aim is to determine a link between 

the plates’ anisotropic characteristics, as defined in terms of lamination 

parameters and their buckling capacity, in order to tailor lay-ups to maximise 

performance. Critical buckling loads are calculated using the VICON analysis 

available in the VICONOPT software and finite element analysis using 

ABAQUS/Standard [156] . In recent years, reinforced composite structures have 

been used widely in large-scale, safety-critical structures for infrastructure and 

transport, (aerospace, energy and marine, see Figure 4.1). They provide huge 

weight savings whilst maintaining high stiffness and strength. Thin composite 

plates for example are used extensively in aerospace manufacturing (e.g. 

aircraft wings and fuselage structures) [157] replacing traditional metals with 

lighter weight alternatives with significant mass reductions offered, 

representing a major target in this industry.  

  

Figure 4.1: Composite materials use [157] 
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Thin plates however are sensitive to buckling failure when they are subjected 

to in-plane loading such as compression, shear or a combination of both. Over 

the last fifty years, many analytical, numerical and experimental studies 

related to the buckling of thin plates with varying levels of anisotropy have 

explored the behaviour of flat composite plates under different loading 

combinations. Williams and Kennedy [158] presented a theoretical procedure 

to include the effect of anisotropy in the exact strip method software 

VICONOPT. Nemeth [45] found that the effects of anisotropy are more 

pronounced in shear loaded plates than in those subject to compression. He 

showed this effect in terms of interaction curves. Loughlan [49] [159] utilised 

the finite strip method to examine the effect of bend-twist coupling on the 

buckling load and the mode shapes of buckled plates. His main conclusion was 

that for large aspect ratio plates, bend- twist coupling could cause a complete 

change in mode shape. Featherston and Watson [48] included the effect of 

anisotropy in the theoretical  part of their study demonstrating its substantial 

effect in plates with relatively small thickness. Weaver [51] [52] suggested a 

solution to maximise the buckling load for different load combinations for 

long anisotropic composite plates. Selyugin [160] who studied flexural 

anisotropic plates under combined loading used a special Galerkin-type 

solution and compared it with a high accuracy numerical solution, for cases of 

composite laminates under combined in-plane compression, shear and 

bending.  

The work described in this and the following chapter, unlike many previous 

studies which have sought mainly to incorporate the effect of anisotropy in 

their calculations, will outline an approach (which will use these properties 

through the relevant lamination parameter) to optimise the buckling load. The 

optimisation procedure suggested provides a direct and simple approach based 
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on a single factor to increase the buckling capacity depending on bending-

twisting coupling parameters in the laminate stiffness matrix. 

4.2 Composite materials 

A composite is a structural material that consists of two or more constituents 

that are combined at a macroscopic level but remain separate and distinct and 

not soluble in each other. One part of the composite is called the reinforcing 

phase, and this is embedded in the other which is called the matrix. The 

reinforcing phase material may be in the form of fibres, particles, or flakes. 

The matrix phase materials are generally continuous. Examples of composite 

systems include concrete reinforced with steel and laminates made from epoxy 

reinforced with graphite fibres, see Figure 4.2.  

The basic building blocks of a composite are the lamina, which are flat (or 

curved in the case of a shell) arrangements of unidirectional fibres or woven 

fibres in a matrix. These lamina are combined to form a laminate, a bonded 

stack of lamina with various orientations of principal material direction.  The 

direction of the fibres in each of the lamina determines most of the features 

and behaviours of the composite under loading. Composite materials, like any 

other materials have strengths and weaknesses.  

The advantages of composites include their high strength to weight ratio 

(weight reduction approximately 20-50% as compared with metal), high 

fatigue and creep resistance, high tensile strength at elevated temperature and 

corrosion resistance. On the other hand, there are disadvantages such as high 

material and manufacturing costs and susceptibility to damage including non- 

or barely- visible (BVID) impact damage which is difficult to detect, yet can 

cause significant reductions in in plane stiffness, and hence critical buckling 

loads and post buckling behaviour. 
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(a) 

 

(b) 

 
  

Figure 4.2: Composite materials,                                                                                             

a- composite composition, b- tailored Composite [161] 

4.3 Stress-strain relations for a lamina 

The plate equations presented in Chapter 2 can be extended to describe the 

behaviour, including buckling behaviour of laminated composites. For the 

lamina shown in Figure 4.3, the stress–strain relations in the global x and y 

directions are: 

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

] 
(4.1) 

where 𝛆 and k are the strain and curvature respectively at the middle surface 

of the laminate: 

Q11 = q11C
4 + 2(q12 + 2q66)S

2 C2 + q22S
4   

(4.2) 
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Q12 = (q11 + q22 − 4q66)S
2 C2 + q12(S

4 + C4) 

Q22 = q11S
4 + 2(q12 + 2q66)S

2 C2 + q22C
4 

Q16 = (q11 − q12 − 2q66)SC
3 + (q12 − q22 + 2q66)CS

3  

Q26 = (q11 − q12 − 2q66)CS
3 + (q12 − q22 + 2q66)SC

3  

Q66 = (q11 + q22 − 2q12 − 2q66)C
2S2 + q66(S

4+C4 ) 

S = sinϴ        &       C = cosϴ 

 

Figure 4.3: Fibre orientation with respect to global composite direction 

 

In addition, q terms are defined as: 

𝑞11 = 
𝐸1

1 − ν12 ν21
 

𝑞22 = 
𝐸2

1 − ν12 ν21
 

𝑞12 = 
ν12𝐸2

1 − ν12 ν21
= 

ν21𝐸1
1 − ν12 ν21

 

𝑞66 = 𝐺12 

(4.4) 
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Assuming that the laminate’s thickness is very small compared to its other 

dimensions, the layers of the laminate are perfectly bounded, the lamina and 

the laminate are linear elastic and the stresses and strains through thickness 

are negligible, Equation (2.9) for an isotropic plate can then be modified for a 

laminate: 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} =  ∑ ∫ [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

]

ℎ𝑙

ℎ𝑙−1

𝑑𝑧

 𝑛

𝑙=1

 
(4.5) 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = ∑ ∫ [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

]

ℎ𝑙

ℎ𝑙−1

 𝑧𝑑𝑧

 𝑛

𝑙=1

 
(4.6) 

Where n is the total number of layers and h is the layer thickness. Substituting 

equation (4.1) in equations (4.5) and (4.6): 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} = ∑ ∫ {[

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

]}

ℎ𝑙

ℎ𝑙−1

𝑑𝑧

 𝑛

𝑙=1

   
(4.7) 

{

𝑀𝑥𝑥
𝑀𝑦𝑦
𝑀𝑥𝑦

} = ∑ ∫ {[

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

]}

ℎ𝑙

ℎ𝑙−1

𝑧𝑑𝑧

 𝑛

𝑙=1

 
(4.8) 

Since the mid-surface strain and curvature are not functions of z (because at 

the middle surface z=0), they need not be included in the integration. 

Moreover, the laminate stiffness matrix is constant for a given ply. Hence, 

equations (4.7), (4.8) can be simplified as:  

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} =  ∑{(ℎ𝑙 − ℎ𝑙−1) [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

]

 𝑛

𝑙=1

+
(ℎ𝑙

2 − ℎ𝑙−1
2 )

2
[

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

]} 

(4.9) 
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{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = ∑{
(ℎ𝑙

2 − ℎ𝑙−1
2 )

2
[

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

]

𝑛

𝑙= 1

+
(ℎ𝑙

3 − ℎ𝑙−1
3 )

3
[

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄13 𝑄26 𝑄66

] [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

]} 

(4.10) 

And since the middle surface strains and curvatures are not a part of the 

summations, the laminate stiffness matrix and the 𝒉𝒍 terms can be combined 

to form new matrices, defined as: 

𝐴𝑖𝑗 = ∑[𝑄𝑖𝑗]𝑙

𝑛

𝑙=1

(ℎ𝑙 − ℎ𝑙−1) (4.11) 

𝐵𝑖𝑗 =
1

2
 ∑[𝑄𝑖𝑗]𝑙

𝑛

𝑙=1

(ℎ𝑙
2 − ℎ𝑙−1

2 ) 
(4.12) 

𝐷𝑖𝑗 =
1

3
 ∑[𝑄𝑖𝑗]𝑙

𝑛

𝑙=1

(ℎ𝑙
3 − ℎ𝑙−1

3 ) 
(4.13) 

where A, B and D represent the membrane, coupling and bending stiffness 

matrix respectively. This allows the constitutive equations to be written in 

matrix form as:  

[
 
 
 
 
 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦]
 
 
 
 
 
 

 = 

[
 
 
 
 
 
𝐴11 𝐴12
𝐴12 𝐴22
𝐴16 𝐴26

𝐴16 𝐵11
𝐴26 𝐵12
𝐴66 𝐵16

𝐵12 𝐵16
𝐵22 𝐵26
𝐵26 𝐵66

𝐵11 𝐵12
𝐵12 𝐵22
𝐵16 𝐵26

𝐵16 𝐷11
𝐵26 𝐷12
𝐵66 𝐷16

𝐷12 𝐷16
𝐷22 𝐷26
𝐷26 𝐷66]

 
 
 
 
 

 

[
 
 
 
 
 
 
Ɛ𝑥
0

Ɛ𝑦
0

𝛾𝑥𝑦
0

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦]

 
 
 
 
 
 

 
(4.14) 

In the case of symmetric laminates, the elements of the B matrix will equal to 

zero. For orthotropic plates, D16 and D26 will be equal to zero.  
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4.4 Laminate buckling 

The buckling equation, presented in Chapter Two equation (2.17), can be 

reproduced for composite plates as: 

D11 
𝜕4𝑤

𝜕𝑥4
 +4D16 

𝜕4𝑤

 𝜕𝑥3𝜕𝑦
+2(D12+2D66) 

𝜕4𝑤

 𝜕𝑥2𝜕𝑦2
+4D26 

𝜕4𝑤

 𝜕𝑥𝜕𝑦3
 +D22

𝜕4𝑤

𝜕𝑦4
                         

=Nx 
𝜕2𝑤

𝜕𝑥2
 +2Nxy 

𝜕2𝑤

 𝜕𝑥𝜕𝑦
  + Ny 

𝜕2𝑤

𝜕𝑦2
   

(4.15) 

4.5 Buckling optimisation 

It is clear that from equation (4.15), that the out of plane matrix D which 

changes depending on the stacking sequence of the lamina, has a significant 

effect on the buckling capacity of a laminate. Because of this, most of the 

optimisation studies carried out on the problem of buckling in composite 

plates have focused on the optimisation of the stacking sequence. These studies 

have considered the directions of the fibres in each ply of the composite 

laminates as an essential parameter in improving their buckling resistance 

[162] [163] [164]. Calculations are usually complicated due to the large number 

of design variables, which make these investigations computationally 

expensive. To address this, the stiffness matrix of the laminates can be re-

written in terms of parameters, known as lamination parameters, which 

simplify the optimisation process. The next section will briefly describe these 

lamination parameters and how they are used to represent the laminate’s 

stiffness and hence solve the optimisation problem. 

4.6 Lamination Parameter (LP) 

Lamination parameters [165] [166] provide a compact representation of the 

stacking sequence of a laminate. For a composite in which all the plies are 
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made of the same material, the constitutive matrices for the different lamina 

are identical except for their orientation. For two dimensional elasticity 

problems, twelve lamination parameters can be used to characterise the 

laminate’s in plane, coupling and out of plane global stiffnesses (equations 

4.16, 4.17 and 4.18 respectively).  

The number of these parameters needed will be reduced to nine when using 

[0, 90, ±45], six in the case of symmetric laminates and five in the case of 

balanced symmetric laminates. 

[
 
 
 
 
𝜉1  
𝐴

𝜉2  
𝐴

𝜉3  
𝐴

𝜉4  
𝐴 ]
 
 
 
 

 = 
1

2
  ∫ [

cos 2𝜃(𝑧)
  cos 4𝜃(𝑧)   
sin 2𝜃(𝑧)
sin 4𝜃(𝑧) 

]    𝑑𝑧𝑖
1

−1
 

(4.16) 

[
 
 
 
 
𝜉1  
𝐵

𝜉2  
𝐵

𝜉3  
𝐵

𝜉4  
𝐵 ]
 
 
 
 

   =  ∫ [

cos 2𝜃(𝑧)
  cos 4𝜃(𝑧)   

sin 2𝜃(𝑧)
sin 4𝜃(𝑧) 

]  𝑧𝑖𝑑𝑧𝑖
1

−1
 (4.17) 

[
 
 
 
 
𝜉1  
𝐷

𝜉2  
𝐷

𝜉3  
𝐷

𝜉4  
𝐷 ]
 
 
 
 

 = 
3

2
  ∫ [

cos 2𝜃(𝑧)
  cos 4𝜃(𝑧)   
sin 2𝜃(𝑧)
sin 4𝜃(𝑧) 

]  𝑧𝑖
2 𝑑𝑧𝑖

1

−1
 (4.18) 

where θ (z) is the distribution function of the ply orientations through the 

normalised thickness coordinate (2/ℎ) 𝑧 . 

Lamination parameters are independent of the number of the plies in a 

laminate, and in most applications, are normalised with respect to its total 

thickness. In the case of symmetric laminates, the four coupling parameters 

(4.17) disappear. By using these lamination parameters, stiffness optimisation 

problems can be substantially simplified.  For example in the buckling case 

considered in section 4.4, it is now possible to rewrite the out of plane terms D 

in the form of lamination parameters: 
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D11= 
ℎ3

12
 (U1+𝜉1

𝐷U2+𝜉2
𝐷U3) 

D22=
ℎ3

12
  (U1-𝜉1

𝐷U2+𝜉2
𝐷U3) 

D12=
ℎ3

12
 (U4 - 𝜉2

𝐷U3) 

D66=
ℎ3

12
  (U5-𝜉2

𝐷U3) 

D16=
ℎ3

12
  (
𝜉3
𝐷

2
U2+𝜉4

𝐷 U3) 

D26= 
ℎ3

12
 (
𝜉3
𝐷

2
U2-𝜉4

𝐷 U3) 

(4.19) 

where the material invariants can be defined as: 

𝑈1 = 
1

8
 (3𝑞11 + 3𝑞22 + 2𝑞12 + 4𝑞66) 

𝑈2 = 
1

8
 (𝑞11 + 𝑞22) 

𝑈3 = 
1

8
 (𝑞11 + 𝑞22 − 2𝑞12 − 4𝑞66) 

𝑈4 = 
1

8
 (𝑞11 + 𝑞22 + 6𝑞12 − 4𝑞66) 

𝑈5 = 
1

8
 (𝑞11 + 𝑞22 − 2𝑞12 + 4𝑞66) 

(4.20) 

4.7 Anisotropic properties of the laminate  

The anisotropic properties of composite plates are represented in the 

flexural/twisting coupling terms D16 and D26  which are equal in cases where 

[0,90,±45] orientation angles are used. Many previous studies (some of them 

mentioned in Chapter 3, section 3.2) have considered only symmetric and 

balanced laminates and hence have been able to neglect the effect of 

anisotropy and treat the laminates as orthotropic plates, assuming that the 

values of D16 and D26 are small compared to the other terms and can therefore 

be neglected. Jones however [161] found that the D16 and D26 values depend on 
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the number of plies in the laminate, and that the anisotropy terms are large 

for a plates consisting of small numbers of plies and become smaller in 

comparison to other coefficients as the number of plies is increased. Since, in 

the aerospace industry, the composite plates used can have a relatively small 

number of plies this indicates that D16 and D26 should not be ignored and still 

have an important effect on the behaviour of the laminate. 

4.8 Increasing the buckling load of plates using anisotropy 

4.8.1 Effect of anisotropy and shear in the laminate buckling mode 

When a composite plate is subjected to in-plane loading, buckle. The nodal 

lines (lines of zero out-of-plane displacement) are straight and perpendicular 

to their longitudinal edges if they have orthotropic properties (D16=D26=0) and 

there is no shear load, see Figure 4.4a. 

 

 

Figure 4.4: Buckling mode shape, a) without or b) with skewing 

 

These nodal lines will become skewed however, if the laminate is anisotropic 

(even in the absence of shear load) or when shear load is present, see 
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Figure 4.4b. Theoretical and experimental investigations have shown that 

nodal line skewing decreases buckling loads [167] [51] [168].  

The main objective of the approach presented in this chapter is a numerical 

proposal that aims to maximise the buckling load by altering the anisotropic 

properties of the laminates. These properties are introduced through the use 

of particular lay-ups to induce skewing behaviour, which oppose that due to 

the application of shear load and hence maximise the plate’s buckling capacity 

under specific in plane loading. Therefore, the result of this process is to 

improve the buckling capacity of the composite plates. This in turn will lead 

to a reduction in the mass of the laminates required to carry a specific design 

load. The approach will be based on the use of the lamination parameters, 

which control the flexural-twisting coupling for particular in plane loading 

conditions. The main stages of this approach is expanded below as shown in 

Figure 4.5. 

 

Figure 4.5: The suggested approach for layup optimisation 
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In this way, the anisotropy terms D16 and D26 will be utilised through the 

lamination parameter 𝜉3
𝐷  to maximise the buckling load. Laminates will be 

designed with appropriate values of D16 and D26 which will cause skewing (and 

hence shear strain) in the opposite direction to that induced by the applied 

shear load reducing the effect of the applied shear strain and decreasing the 

nodal line skewing. Consequently, the critical buckling load will increase. 

4.8.2 Application of the lamination parameter 𝝃𝟑
𝑫 for anisotropy level 

control 

The first stage of the process proposed is to determine clear relationships 

between the level of anisotropy as characterised by the lamination parameter 

and the buckling behaviour of plates subject to different loading combinations 

(compression, shear and a combination of the two). This will be achieved 

through a parametric study, which is presented in chapter five. This study will 

use laminates with (±45°) layer orientations, which are balanced and 

symmetric, decreasing the number of the lamination parameters of interest to 

six. Five of the lamination parameters will be either -1 or zero while the 

parameter 𝜉3
𝐷  will be varied, controlling the D16 and D26 terms in the laminate 

stiffness matrix responsible for the anisotropy properties. The value of 𝜉3
𝐷  will 

be changed from 0.0 to a maximum value of 0.75 to determine that which 

results in the highest buckling load. Once the optimal value of 𝜉3
𝐷 for a 

particular set of in plane loading conditions has been determined, a lay-up with 

the required lamination parameter needs to be found. 

4.8.3 Optimum lay-up sequence extraction using branch and bound 

method 

The process for determining a suitable lay-up with the proposed lamination 

parameter 𝜉3
𝐷  is based on the branch and bound code developed by Liu et al 
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which is programmed into Matlab and  incorporates a layer-wise approach to 

maximise efficiency [169].  

The code output is restricted to four choices of ply angle (0°, 90°, and ±45 °) to 

ensure the recommended designs conform to manufacturing limitations. The 

Matlab program can be used to constrain the layers to be symmetric, balanced 

or both. The ply orientations are successively altered, working inwards from 

the outer plies, because they make the greatest contributions to the flexural 

lamination parameters. Initially, only the two outer plies are altered as shown 

in Figure 4.6a, followed by the four outer plies Figure 4.6b, and so on until in 

the final cycle all of them can be altered. This layer-wise approach helps to 

obtain the optimum layup efficiently thereby achieving a reduction in 

computational cost. 

 

 

 

Figure 4.6: Branch and bound with layer-wise optimisation techniques [169],                                 

(a) cycle 1, (b) cycle 2. Each run optimises only the variables shown bold. 
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4.9 Selection of lay-ups for the parametric study  

The same branch and bound process was used to design lay-ups with differing 

values of the lamination parameter 𝜉3
𝐷   for the parametric study discussed in 

4.8.2. As mentioned the aim was to vary this parameter between 0 and 0.75, and 

it was decided that this should be done in steps of 0.1 up until 0.7.A comparison 

between these desired lamination parameters and the lamination parameters 

calculated by the Matlab code for the selected lay-ups is given in Table 4.1 

alongside the corresponding layups for laminates with different numbers of 

plies. The table shows that the difference between the two groups is relatively 

small and decreases as the number of layers is increased. The first column 

shows the proposed lamination parameter  𝜉3
𝐷, which is input into the code 

while the third column gives the values for the proposed lay-ups calculated 

using equation (4.18). The laminates designed in this way were then analysed 

for buckling under different loading conditions using the VICON analysis of 

exact strip method software VICONOPT and the finite element analysis 

program (ABAQUS). 

4.10 Chapter summary  

This chapter has presented a suggested method to optimise the buckling load 

of composite plates using different anisotropic configurations dependent on 

the applied in-plane loading. The main conclusions of this chapter are: 

 The study used ±45 symmetric balanced laminates in order to focus on 

the lamination parameter 𝜉3
𝐷  which controls the bend-twist coupling, 

and is responsible for the anisotropic properties of composite plates.  

 A brief description of the Matlab code, which uses the branch and bound 

technique to extract the laminate layup angles, was presented.  
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 The differences between the proposed 𝜉3
𝐷 parameter and the actual 

values calculated using the equations are acceptable and become 

smaller as the number of layers increased. The first part of the 

optimisation process is presented in form of a flowchart for simplicity. 

 

Table 4.1: The layup of composite plates depending on 𝝃𝟑
𝑫values 

(𝝃𝟑
𝑫)a 

target   
Layup Sequences (Matlab code output ) 

(𝝃𝟑
𝑫)c 

optimised 

 

|𝑹| =(𝝃𝟑
𝑫)a- (𝝃𝟑

𝑫)c 

 

0.0 [45 -45 -45 45 -45 45 45 -45]s 0.000 0.000 

0.1 [45 -45 45 -45 -45 45 -45 45]s 0.0937 0.0063 

0.2 [45 -45 45 -45 45 -45 45 -45]s 0.1875 0.0125 

0.3 [45 45 -45 -45 45 -45 -45 45]s 0.3047 0.0047 

0.4 [45 -45 45 45 45 -45 -45 -45]s 0.3948 0.0052 

0.5 [45 45 45 -45 -45 -45 -45 45]s 0.5156 0.0156 

0.6 [45 45 45 -45 -45 45 -45 -45]s 0.5859 0.0141 

0.7 [45 45 45 -45 45 -45 -45 -45]s 0.6562 0.0438 

0.75 [45 45 45 45 -45 -45 -45 -45]s 0.7500 0.0000 

 

0.0 [45 -45 -45 45 -45 45 45 -45 45 -45 -45 45]s 0.0069 0.0069 

0.1 [45 -45 45 -45 45 -45 45 -45 -45 45 -45 45]s 0.0972 0.0028 

0.2 [45 -45 45 45 -45 45 -45 -45 -45 45 45 -45]s 0.2025 0.0025 

0.3 [45 -45 45 45 -45 45 45 -45 -45 45 -45 -45]s 0.2986 0.0014 

0.4 [45 45 45 -45 45 -45 -45 -45 45 -45 45 -45]s 0.4028 0.0028 

0.5 [45 45 45 45 -45 -45 -45 45 -45 45 -45 -45]s 0.5000 0.0000 

0.6 [45 45 45 45 -45 45 -45 -45 45 -45 -45 -45]s 0.5972 0.0028 

0.7 [45 45 45 45 45 -45 45 -45 -45 -45 -45 -45]s 0.7083 0.0083 

0.75 [45 45 45 45 45 45 -45 -45 -45 -45 -45 -45]s 0.7500 0.0000 

 

0.0 [45 -45 -45 45 -45 45 45 -45 45 -45 -45 45 -45 45 45 -45]s 0.0000 0.0000 

0.1 [45 -45 45 -45 45 -45 45 -45 45 -45 45 -45 45 45 -45 -45]s 0.0996 0.0004 

0.2 [45 45 -45 -45 45 45 45 -45 -45 -45 -45 45 45 -45 45 -45]s 0.1992 0.0008 

0.3 [45 45 45 -45 45 -45 -45 45 -45 -45 45 -45 45 45 -45 -45]s 0.2988 0.0012 

0.4 [45 45 45 45 -45 -45 45 -45 45 -45 -45 45 -45 -45 -45 45]s 0.4014 0.0014 

0.5 [45 45 45 45 45 -45 45 -45 -45 -45 -45 -45 45 -45 -45 45]s 0.5010 0.0010 

0.6 [45 45 45 45 -45 45 45 45 -45 -45 45 -45 -45 -45 -45 -45]s 0.6006 0.0006 

0.7 [45 45 45 45 45 45 -45 45 45 -45 -45 -45 -45 -45 -45 -45]s  0.7002 0.0002 

0.75 [45 45 45 45 45 45 45 45 -45 -45 -45 -45 -45 -45 -45 -45]s  0.7500 0.0000 
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5 Chapter 5: Improving the buckling Capacity of 

Composite Plates (Results and Discussion) 

5.1 Introduction 

This chapter presents the results of the optimisation approach described in 

Chapter 4.  Composite flat plates with different aspect ratios, subject to 

different in-plane loading conditions from pure compression to combined 

loading to pure shear are studied to determine the effect of their lay-up 

sequences and the number of plies used on their critical buckling loads and 

hence derive design rules for optimisation of these panels under different 

conditions. Critical buckling loads are calculated using the VICON analysis 

available in the VICONOPT software and finite element analysis using 

ABAQUS/Standard [156]. 

5.2 Material properties and boundary conditions 

The study used laminates comprising of carbon fibre epoxy plies [170], of 

thickness 0.125 mm with Young’s moduli E1=181 GPa, E2= 10.3 GPa, shear 

modulus G12=7.17 GPa and Poisson’s ratio ν12= 0.28. All laminates were 

symmetric and balanced and consisted of [±45] orientated layers. 

Consequently, the coupling lamination   𝜉[1,2,3,4] 
𝐵 = 0.  

The in and out of plane lamination parameters for these lay-ups are  𝜉1
𝐴 = 𝜉1

𝐷 =

𝜉3
𝐴 = 𝜉4

𝐴 =  𝜉4
𝐷 = 0 and  𝜉2

𝐴 = 𝜉2
𝐷 = −1, while the parameter, which controls the 

twisting-bending properties of the laminates   𝜉3
𝐷 was the target of the 

optimisation and was varied   𝜉3
𝐷 = 0 to 0.75.  The plan dimensions of the plates 

were length a=0.5, width b=0.5 m and length a=0.8, width b=0.5 m for the 

square and rectangular laminates respectively.  
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The plates were simply supported along all four edges. The finite element 

models, which were used to validate the VICON results, consisted of 20 x 20 

and 20 x 32, S4R linear shell elements [156].  

Figure 5.1 shows the mesh sensitivity for a square laminate with different 

number of elements which explain the chosen number of elements that 

provide efficient converged results in this study. Three types of loading were 

applied namely: pure compression, combined in-plane compression and shear 

(with increasing levels of shear and vice versa) and pure shear. The loading 

and boundary conditions for both the exact strip and finite element methods 

are shown in Figure 5.2.   

 

 

 

Figure 5.1: Mesh sensitivity 
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The layup sequences of the laminates analysed were generated by the Matlab 

code described in Chapter 4 to find lamina orientation angles corresponding 

to the desired values of the lamination parameters. As the study used only 

[±45], and the laminates were all symmetric and balanced, the only value that 

could be changed was that of  𝜉3
𝐷 .  The value of this parameter, which controls 

the bend-twist properties, was varied from an initial value of 0.0 to 0.75 in steps 

of 0.1. The highest value of  𝜉3
𝐷 possible is 0.75 and rather than 1.0 because each 

of the laminates is required to be balanced.  

 

 

Figure 5.2: Laminate edge boundary conditions,                                                    

a- VICONOPT, b- ABAQUS  
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5.3 Laminates under in-plane loading 

5.3.1 Uniaxial in-plane compression 

For laminates subjected to a compressive load in the length x-direction, results 

are presented in terms of the relationship between the critical buckling load 

and the lamination parameter  𝜉3
𝐷 . The anisotropy of the composite plates was 

increased gradually from zero to its maximum value by varying   𝜉3
𝐷  and the 

buckling loads were calculated for each laminate using both VICON and finite 

element analysis. Both analyses showed that the maximum buckling capacity 

was obtained when the buckling mode shapes have no skewing (the nodal lines 

are perpendicular to the longitudinal edges of the laminates) which is achieved 

at  𝜉3
𝐷 = 0 . Figure 5.3, shows the buckling load to anisotropy level relationship 

for laminates with a/b=1.0. The critical buckling load (normalised with respect 

to its maximum value when the laminate has no anisotropy) calculated using 

VICON analysis decreases significantly from 1.0 to 0.8748 as the value of  𝜉3
𝐷 is 

increased from 0 to 0.75 for a square laminates with 16 layers. The same 

behaviour is repeated, again with normalised buckling loads reducing when 

the number of layers is increased to 24 and then 32. However, when critical 

loads are calculated instead using ABAQUS greater reductions are seen as the 

bend twist coupling increases. In this case, the buckling load decreases from 

1.0 to 0.7644, 0.7649 and 0.7655 for laminates with 16, 24 and 32 layers 

respectively as  𝜉3
𝐷  is increased from 0.0 to 0.75.   

The relatively higher buckling loads calculated by the VICON analysis are 

assumed to be because of the different assumptions applied in the two 

programs. VICON analysis assumes that the plate has infinite length and the 

buckling mode is repeated over a particular length as explained previously in 

Chapter 3, so there is no requirement for zero bending moment at the end of 

the plate.  VICON and ABAQUS analyses of rectangular laminates show a 
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greater level of agreement compared with square plates. However, the results 

still follow the same overall trend.  

The critical buckling loads drop from 1.0 to 0.7739 (0.7242) for VICON (for 

ABAQUS) analyses respectively when anisotropy is increased to its maximum 

level for rectangular laminates with 16 layers, see Figure 5.4a. The results 

0.7739 (0.7250) for those with 24 layers and 0.7739(0.7259) for laminates with 

32 layers, see Figure 5.4b and 5.4c.  The results appear to show the effect of 

increasing the number of layers is marginal, with similar trends seen in the 

behaviour of laminates of different thickness. Since all the plates considered 

show the same tendencies it can be concluded that when a plate is subjected to 

compressive load conditions, its anisotropic properties should be minimised 

producing less skewing and consequently increasing the buckling load.  

This observation is supported by examining the buckling mode shapes of the 

laminates analysed which are presented as contours of the out-of-plane 

displacements. All the mode shapes are for the laminates with 16 layers, 

laminates with different numbers of layers have the same buckling 

configurations. Figure 5.5 shows the buckling modes predicted by VICON and 

ABAQUS for square laminates, which buckle with one-half wavelength and 

increasing the levels of skew as anisotropy increases. The rectangular plates 

studied buckled with two half waves as seen in Figure 5.6. The VICON mode 

shapes are very close to those predicted by ABAQUS and gradually skewed due 

to the increased level of bend-twist coupling. Although the ABAQUS mode 

shape is seen to display slightly higher skewing as compared with the VICON 

mode when the value of  𝜉3
𝐷 = 0.4 this could be due to the effect of the different 

plate modelling methods used in the two programs (such as the use of a series 

solution in VICON analysis).  The skewing of the buckling mode shapes is 

directly proportional to the value of  𝜉3
𝐷 while it is inversely proportional to the 

buckling load factors. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.3: Buckling load to anisotropy level relationships for laminates with 

a/b =1.0, Number of plies = (a) 16, (b) 24, (c) 32  
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(a) 

 

(b) 

 

(c) 

 

Figure 5.4: Buckling load to anisotropy level relationships for laminates with 

a/b =1.6, Number of plies = (a) 16, (b) 24, (c) 32
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n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟎   VICON n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟒   VICON n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟕𝟓   VICON 

   
n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟎   ABAQUS n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟒   ABAQUS n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟕𝟓   ABAQUS 
 

Figure 5.5: Laminates with a/b = 1.0, normalised buckling modes 
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n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟎   VICON n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟒   VICON n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟕𝟓   VICON 

   

n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟎   ABAQUS n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟒   ABAQUS   n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟕𝟓   ABAQUS 

 

Figure 5.6: Laminates with a/b = 1.6, normalised buckling modes
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5.3.2 Combined in-plane loading (compression load dominates) 

The study of composite plates under combined loading is more complicated 

than under uniaxial load since the behaviour is dependent on whether the 

compression or shear load is dominant. This section will focus on laminates 

subjected to combined in-plane compression and shear load when the 

compression dominates. This compressive load is applied as the main constant 

load (destabilising load) while the shear load (subcritical load) is increased in 

steps Nxy/Nx = 0.1 starting from 0.0 and increasing to 1.0. In each case, the 

laminate stacking sequence is varied depending on the lamination parameter 

 𝜉3
𝐷 . The results are presented in the form of the relationship between the 

critical buckling load and the combined loading ratio 
𝑁𝑥𝑦

𝑁𝑥
   for laminates with 

different levels of anisotropy. Buckling load values are normalised with respect 

to the load calculated at  𝜉3
𝐷 =

𝑁𝑥𝑦

𝑁𝑥
= 0. For all of the lay-ups studied, the 

maximum buckling load occurred when the load ratio  
𝑁𝑥𝑦

𝑁𝑥
= 𝜉3

𝐷 . This trend 

was repeated for laminates with different thickness (different number of plies).  

For example, the results for a square laminate (16 plies) with  𝜉3
𝐷 = 0.1 show 

that, the buckling load factor increases from 0.9986 to 0.9995 as the load ratio 

increases from 0 to 0.1. It then decreases to 0.9979 when the load ratio changes 

to 0.2. This dropping in the buckling load continues as the shear load is 

increased as shown in Figure 5.7. The same behaviour is observed for laminates 

with 𝜉3
𝐷=0.4, for which the buckling load factor is raised from 0.97212 at a load 

ratio of zero to its peak value of  0.99036 at   
𝑁𝑥𝑦

𝑁𝑥
= 0.4. It  then starts to decrease 

as the load ratio increases. Finally for a laminate with  𝜉3
𝐷 = 0.75 the value of 

buckling load increases gradually with increasing load ratio until  
𝑁𝑥𝑦

𝑁𝑥
= 0.7 

and then moves down. The mode shapes for the square laminates examined 

are shown in Figure 5.9.  
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All of the plates buckled with one-half wavelength. The contour plots show 

laminate skewing due to anisotropy when the load ratio is zero and due to a 

combination of shear and anisotropy for other values of  
𝑁𝑥𝑦

𝑁𝑥
 . Moreover 

laminates with  𝜉3
𝐷 = 0.0  show higher skewing (in the presence of shear load) 

than laminates with  𝜉3
𝐷 = 0.4 and 𝜉3

𝐷 = 0.75. The explanation of such 

behaviour is that the skewing is decreased because of the opposing effects of 

the anisotropy and the shear component of the loading.  

The rectangular laminates (16 layers) show similar trends. For laminates 

with   𝜉3
𝐷 = 0.2 , the critical load was increases from 0.98758 to 0.99609 and then 

to 0.99774 as load ratio increases from 0.0 to 0.1 and then 0.2 respectively and 

then decreases after  
𝑁𝑥𝑦

𝑁𝑥
= 0.2. For a laminates with  𝜉3

𝐷 = 0.4    the critical 

buckling load increases (while logically we might expect it to decrease because 

the buckling load factor normally has inverse proportion with the applied 

load) as the load ratio increases until  𝜉3
𝐷 =

𝑁𝑥𝑦

𝑁𝑥
   and then decreases after this 

point. For instance the load factor is 0.94262 when  
𝑁𝑥𝑦

𝑁𝑥
= 0.0 , 0.99037 at 

𝑁𝑥𝑦

𝑁𝑥
=

0.4 and then 0.98536 at  
𝑁𝑥𝑦

𝑁𝑥
= 0.5 with this reduction continuing as the load 

ratio is increased. The results for laminates with   𝜉3
𝐷 = 0.75 show exactly the 

same behaviour with the buckling load increasing as the load ratio increases 

until 
𝑁𝑥𝑦

𝑁𝑥
= 0.7 after which it starts to decrease. Results for rectangular 

laminates with different numbers of plies are shown in Figure 5.8.  Laminates 

with aspect ratio 1.6 buckled with two half waves, see Figure 5.10.                         

Plate skewing can be seen to be higher when the plate has no bend-twist 

coupling. The anisotropy is useful in this case because the bend-twist coupling 

generates a skewing effect, which decreases the external shear load skewing. 

Consequently, the critical buckling load increases. 
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Figure 5.7: Normalised buckling load factor to load ratio relationships for 

laminates with a/b =1.0, Number of plies = (a) 16, (b) 24, (c) 32 
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Figure 5.8: Normalised buckling load factor to load ratio relationships for 

laminates with a/b =1.6, Number of plies = (a) 16, (b) 24, (c) 32 
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𝜉3
𝐷 = 0.0 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.3 

 

𝜉3
𝐷 = 0.4 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.3 

 

 

𝜉3
𝐷 = 0.75 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.3 

 

 
 

 

 

 

 

 

 

𝜉3
𝐷 = 0.0 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.6 

 

𝜉3
𝐷 = 0.4 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.6 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.6 

 

 

 

 

 

 

 

 

 

 

 

𝜉3
𝐷 = 0.0 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.9 

 

𝜉3
𝐷 = 0.4 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.9 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.9 

 

Figure 5.9: Laminate mode shapes under combined loading with compression 

loading dominant , a/b =1.0 
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𝜉3
𝐷 = 0.0 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.3 𝜉3

𝐷 = 0.4 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.3 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.3 

   
𝜉3
𝐷 = 0.0 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.6 𝜉3

𝐷 = 0.4 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.6 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.6 

   

𝜉3
𝐷 = 0.0 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.9 𝜉3

𝐷 = 0.4 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.9 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.9 

Figure 5.10: Laminate mode shapes under combined loading with compression loading dominant, a/b =1.6   
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5.3.3 Combined in-plane loading (Shear load dominates)  

In the case of shear load dominating, a constant shear load is applied as the 

main load (destabilising load) which causes the buckling, whilst increasing 

levels of compressive load (subcritical load) are applied simultaneously. 

Critical buckling loads are calculated using the VICON analysis in the 

VICONOPT software and presented in the form of the relationships between 

compression and shear loads for different levels of anisotropy. All of the results 

show that the buckling load is at its maximum when high levels of anisotropy 

are present and Nx=0. Therefore, all the results are normalised with respect to 

the bucking load when  𝜉3
𝐷 = 0.75 𝑎𝑛𝑑 

𝑁𝑥

𝑁𝑥𝑦
= 0.0 .  

Both square and rectangular laminates show the same trends which are that 

the critical buckling load decreases with increasing load ratio 
𝑁𝑥

𝑁𝑥𝑦
  however the 

effect of the bend twist coupling is still clear and can be noticed is the results. 

For example, composite plates with   𝜉3
𝐷 = 0.0 have the lowest buckling loads 

and buckling capacity increases gradually as the value of  𝜉3
𝐷  increases. The 

maximum load is obtained when the value of  𝜉3
𝐷 = 0.75 .  

This can be explained by the fact that the skewing caused by the anisotropy 

works in opposition to the shear load skewing, increasing the buckling load. 

For a load ratio   
𝑁𝑥

𝑁𝑥𝑦
= 0.2 the buckling load increases from 0.598 to 0.760 when 

the value of  𝜉3
𝐷 changes from 0.0 to 0.75 for square laminates with 16 plies, 

while it increases from 0.572 to 0.853 for rectangular plates under the same 

load ratio as shown in Figure 5.11a and 5.12a . Corresponding results for plates 

with 24 and 32 layers are shown in Figure 5.11b, 5.12b, 5.11c and 5.12c 

respectively clarifying the effect of the bend twist coupling on the buckling 

load. Mode shapes in the form of contour plots are presented in Figure 5.13 

and 5.14.  
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It can be seen from the plots for the square plates that laminates with  𝜉3
𝐷 =

0.4  show less skewing than laminates with  𝜉3
𝐷 = 0.0  under the same load ratio. 

The same trends are repeated when the load ratio is increased to 0.9.  In this 

case laminates with higher  𝜉3
𝐷 = 0.75 show the least buckling mode skewing 

which explains why these plates have higher buckling load.  

The rectangular plate’s mode shapes demonstrate a similar relationship 

between the level of anisotropy and the amount of skewing with the latter 

reducing as the level of anisotropy increases. However, there are some 

important differences, most notably a change in mode shape as the load ratio 

increases. For example, in the case where  𝜉3
𝐷 = 0.0, when the load ratio is 

relatively low, laminates buckle with one-half wavelength. However when the 

load ratio increases above 0.6 the mode changes to two half wavelengths. As 

the level of anisotropy increases, this transition occurs earlier i.e. at lower load 

ratios. For example, for laminates with lamination parameter  𝜉3
𝐷 = 0.4 

and   𝜉3
𝐷 = 0.75  the transition between one and two buckles occurs at a load 

ratio of 0.3. 

In general, both square and rectangular laminates show similar behaviour, 

when subjected to combined loading where shear is dominant. This is different 

from the previous case in which compression is dominant. Consequently, the 

effect of an isotropy is clearer for this case because the transverse skewing 

produced by the bend-twist coupling cancels part of the skewing effect caused 

by the applied shear in the opposite direction.  This explains why the curve for 

 𝜉3
𝐷 = 0.75 is the upper curve while the plate with  𝜉3

𝐷 = 0.0  is the lower as 

shown in Figure 5.11 and 5.12. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.11: Normalised shear against compression relationships for 

laminates with a/b =1.0, Number of plies = (a) 16, (b) 24, (c) 32 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.12: Normalised shear against compression relationships for 

laminates with a/b =1.6, Number of plies = (a) 16, (b) 24, (c) 32 
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𝜉3
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𝑁𝑥 
= 0.3 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
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𝜉3
𝐷 = 0.0 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.6 𝜉3

𝐷 = 0.4 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.6 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.6 

   

𝜉3
𝐷 = 0.0 , 

𝑁𝑥𝑦

𝑁𝑥 
= 0.9 𝜉3

𝐷 = 0.4 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.9 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.9 

Figure 5.13: Laminate mode shapes under combined loading (shear dominant), a/b=1.0 
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𝜉3
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𝑁𝑥𝑦

𝑁𝑥 
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𝑁𝑥𝑦
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= 0.6 𝜉3

𝐷 = 0.75 , 
𝑁𝑥𝑦

𝑁𝑥 
= 0.6 

   
𝜉3
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= 0.9 𝜉3

𝐷 = 0.4 , 
𝑁𝑥𝑦
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𝑁𝑥𝑦

𝑁𝑥 
= 0.9 

Figure 5.14: Laminate mode shapes under combined loading (shear dominant), a/b=1.6 
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5.3.4 Pure shear loading 

This section will examine the buckling response of composite laminates, with 

differing levels of bend-twist coupling (controlled by the lamination 

parameter 𝜉3
𝐷 ) subject to pure in plane shear. Under this type of loading 

anisotropy can have a significant effect on the buckling behaviour, which is 

dependent on the shear load direction. The results obtained for square 

laminates are presented here in two groups depending on this load direction. 

The first group is subject to shear acting in the opposite direction to the 

anisotropic skewing effect. This leads to an increase in the bucking load factor 

from 0.6949 to 1.0 as the value of  𝜉3
𝐷  is increased from 0.0 to 0.75 for composite 

plates consisting of 16 plies as shown in Figure 5.15a and from 0.6948 (0.6965) 

to 1.0 for laminates with 24(32) plies, see Figure 5.15b and 5.15c. This behaviour 

is completely reversed for the second group where the shear and the anisotropy 

act in the same direction leading to severe skewing in the buckling mode 

shape. Consequently the buckling load drop substantially from 1.0 to 0.4471 

(0.4492, 0.4473) for laminates with 16 (24, 32) plies respectively based on 

VICON analysis. Finite element analysis results showed similar trends for both 

groups, although the results from the VICON analysis where slightly higher 

than the ABAQUS results due to the differences in the models mentioned 

previously.  In ABAQUS the value of the buckling load factor was raised from 

0.68798 (0.68741, 0.68705) for laminates with 16(24, 32) plies when the value 

of  𝜉3
𝐷  was increased from 0.0 to 0.75 for the case where the load acts against 

the anisotropy effect. This trend is reversed completely when the shear load is 

applied in the opposite direction, when the load factor decreases significantly. 

Figure 5.15a, 5.15b and 5.15c show the details of the results.  

The buckling loads for the first case (left y-axis) are normalised with respect to 

its maximum value when 𝜉3
𝐷 = 0.75, whereas for the second group the results 
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(right y-axis) are normalised with respect to the critical buckling load for 

laminate when   𝜉3
𝐷 = 0.0. Rectangular composite plates with aspect ratio 1.6 

are shown to have approximately the same behaviour as square plates using 

both VICON and ABAQUS analyses. These results are displayed in terms of 

the relationship between the normalised buckling load and the lamination 

parameter  𝜉3
𝐷 in Figure 5.16a, 5.16b and 5.16c with the shear load again applied 

in the same two directions, firstly in the opposite to the anisotropy effect and 

then the same. For the first load case, the buckling load increases significantly, 

when the bend twist coupling is higher, 31.2% when the value of  𝜉3
𝐷 increases 

from 0.0 to 0.75 using finite element analysis and 32.3% in VICON analysis. 

This is again due to part of the effect of the shear strain being cancelled by the 

effect of the anisotropy, leading to a decrease in plate skewing. Conversely, the 

values of buckling load decreases by more than 50% when the laminate is 

subjected to the shear loading in the reverse direction due to the coupling 

effect of the shear load and the anisotropy, which causes  substantial skewing, 

and hence a high reduction in the buckling load. The results for both square 

and rectangular laminates show the number of layers has only a slight effect 

on the buckling load values because composite plates with different thickness 

all showed the same behaviour under this load conditions.  

Figure 5.17 and 5.18 shows the buckling modes for laminates with aspect ratios 

1.0 and 1.6 respectively. In both cases, the plates buckles with one half-wave 

along the length in contrast to the other load conditions where the rectangular 

plates buckled with two half-wave lengths. Contour plots demonstrate the level 

of skewing with the irregular shape around the edges of the buckles being 

caused by the opposing effects of the shear strain due to the external load and 

the anisotropy. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.15: Load-anisotropy level relationship for laminates with a/b =1.0, Number 

of plies = (a) 16, (b) 24, (c) 32 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.16: Load-anisotropy level relationship for laminates with a/b =1.6, 

Number of plies = (a) 16, (b) 24, (c) 32 
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n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟎   VICON n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟎   ABAQUS 

  

n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟒   VICON n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟒   ABAQUS 

  

n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟕𝟓   VICON n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟕𝟓   ABAQUS 

 

Figure 5.17: Buckling modes for laminates with a/b =1.0 
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n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟎   VICON n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟎   ABAQUS 
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n = 16 ,   𝝃𝟑
𝑫 = 𝟎. 𝟕𝟓   VICON n = 16 ,   𝝃𝟑

𝑫 = 𝟎. 𝟕𝟓   ABAQUS 

 

 

Figure 5.18: Buckling modes for laminates with a/b =1.6 
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5.4 Chapter summary 

Chapter 5 has presented the results of the parametric study outlined in Chapter 

4 and carried out to determine relationships between the level of anisotropy 

(described using the lamination parameter 𝜉3
𝐷) and the buckling load of a 

series of composite plates under different load conditions in order to develop 

a set of design rules for optimising buckling behaviour. Contour plots of the 

buckling mode shapes have been used to demonstrate the effect that this 

anisotropy has on the skewing of the buckling modes. The main conclusions 

of this study can be summarised as: 

 Plates subjected to uniaxial loads showed severe degradation in their 

buckling load factor with increases in  𝜉3
𝐷 . Therefore, the use of 

laminates with 𝜉3
𝐷 = 0.0   is recommended for these load conditions. 

 For the laminates under combined in-plane loading (buckled because 

of the compression load), the best layup sequence is that for which  

 𝜉3
𝐷 =

𝑁𝑥𝑦

𝑁𝑥 
  , where 

𝑁𝑥𝑦

𝑁𝑥 
  is the combined in-plane load ratio. 

 In case of the composite plates under combined in plane loading shear 

and compression (where shear dominates), it is better to design the 

laminates with the maximum value of  𝝃𝟑
𝑫.  

 When laminates are subjected to pure in plane shear load, the design of 

the layup sequence will depend on the direction of the applied load. In 

these cases, it is recommended to use laminates, which have the 

maximum value of  𝝃𝟑
𝑫 which produces an opposite skewing effect to 

the external load deformations.  

 The laminates with different number of layers (16, 24, and 32) showed 

a similar trends under various in plane loading when using both 

VICONOPT and finite element method (ABAQUS).  
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Using these design rules, we can optimise the layup of a range of composite 

plates subject to differing load conditions using the process outlined by the 

flow chart in Figure 5.19. 

 

 

Figure 5.19: Optimisation procedure steps 
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6 Chapter 6: Mode Jumping in Thin-Walled Structures 

(Theoretical Approach) 

6.1 Motivation  

This chapter presents a theoretical investigation of the mode jumping 

phenomena in flat plates and stiffened panels. The study presents two 

suggested approaches to specify the jumping point between equilibrium paths 

utilising different proposals. The target of the investigation is to improve the 

post-buckling analysis in the exact strip analysis software VICONOPT by 

including the mode change in the post-buckling analysis. Consequently, the 

results will be more reliable and accurate in comparison to both experiments 

and other numerical methods. VICONOPT, as outlined previously, is a 

powerful software, which uses the exact stiffness method to calculate the 

natural frequencies and buckling load factors for different structural 

configurations, Figure 6.1.  

 

 

Figure 6.1: Range of prismatic plates assemblies to which VICONOPT applies  
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The exact strip methods VICONOPT provides a computationally efficient post-

buckling analysis with substantial reduction in time and cost compared with 

other analysis methods such as finite element analysis. The post-buckling 

analysis uses the VIPASA [37] analysis option. Thus, the critical buckling mode 

shape retains the same sinusoidal shape in the length direction during the post-

buckling analysis. This limitation will be overcome in this investigation, 

leading to more reliable and accurate results. The results will be compared 

with finite element analysis using the ABAQUS/CAE [156] program in order 

to validate and check the accuracy of the proposed solutions. 

6.2  Mode jumping phenomenon  

Mode jumping can occur as the buckling mode changes through the post-

buckling region. This phenomenon occurs at any time and in some cases, it 

can happen violently and lead to panel failure.  Previously in Chapter 3  

(section 3.4), some factors were mentioned that affect the occurrence of mode 

changes such as boundary conditions, aspect ratio, load rates, initial 

imperfections and materials. When the initial buckling mode jumps to a new 

buckling configuration, the number of buckles (half wavelengths) over the 

plate length usually increases by one.  

The position of this jump during the equilibrium path could occur early or late 

depending on the plate characteristics.  Moreover, it is also affected by the gap 

between the sequential buckling loads. Before introducing the mechanism of 

how this phenomenon may occur, it is essential to start with a brief explanation 

about the reasons for such behaviour. After the plate or panel has initially 

buckled, the structure will move to a new equilibrium stage, which is called 

post-buckling.   

In this case, the structure tries to adapt to the new equilibrium state due to 

large deformations and bending which leads to a decrease in the overall 
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stiffness. However, the initial post-buckling equilibrium path is still relatively 

stable so that plated structures can safely carry loads after initial buckling.   

The post-buckling region can be divided into two main zones in term of the 

equilibrium state. The first is the region of geometrical non-linearity in which 

the source of nonlinear is large deformations, while the second is the region of 

material nonlinearity in which the material properties are modified to include 

the plastic properties. The work in this study will focus on the first post-

buckling zone because the main aim is to improve VICONOPT post-buckling 

analysis by including mode jumping in the non-linear analysis. This software 

currently includes geometrical non-linear post-buckling analysis only. The 

main stages in the post-buckling analysis are shown below in Figure 6.2. 

 

 

Figure 6.2: Pre-buckling and post-buckling behaviour explaining                      

the nonlinear structural behaviour sources. 
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6.3 Mode jumping mechanism  

When buckling first occurs, the structure starts to follow the most stable post-

buckling path from many others depending on many factors such as edge 

boundary conditions, aspect ratio and initial imperfections. However, as the 

structure continues to carry more load, the deformations in the geometry 

gradually become large. Consequently, the initial post-buckling path becomes 

unstable. The structure tends to leave the current path and move to a more 

stable equilibrium path, which will lead to a possible jump from one post-

buckling path to another.  

According to the above explanation, the occurrence of mode jumping can lead 

us to divide the geometrical non-linear post-buckling equilibrium zone into 

two parts.  The former is the initial post-buckling path, which has the initial 

critical buckling mode configuration. The post-buckling path remains 

relatively stable at this stage, see Figure 6.3. 

 

 

Figure 6.3: Load-end shortening curves which clarify the mode jumping 

mechanism in post-buckling analysis considering the virtual                            

post-buckling stages. 
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Thus there is no expected jump in this part of the path. The latter is the 

advanced post-buckling equilibrium path, which becomes unstable due to the 

large deformations in the current mode. Hence, the jump from the initial 

buckling mode to others could occur at any time and these two stages can 

extend or shrink depending on many parameters like the aspect ratio, 

boundary conditions and the initial imperfections. 

6.4 Mode jumping types 

The jump from one buckling mode to another can occur in two different ways 

depending on the analysis or test techniques. The first is called the load jump, 

which may occur under a stress (or load) control test, while the second is the 

strain jump caused when the test is under strain (or displacement) control. To 

explain these two types of jumps in terms of the load-end shortening curve, a 

horizontal jump occurs when the structure jumps from one mode to another 

under the same load values, whereas a vertical jump will occur from one path 

to another at the same level of strain. Both jumping types are shown in 

Figure 6.4.  

Therefore, if the jump occurs from point A to point B, it is a strain 

(displacement) jump. Otherwise, if it occurs from A to D it is a stress (load) 

jump. In some cases, especially when two equilibrium paths are close, the jump 

may occur in more smooth transitions. The current study will assume the 

strain jumping type to specify the jumping point and the value of jumping 

strain. The suggested theoretical techniques will be based on two well-known 

concepts in thin-walled structure theory, namely the effective width concept 

and the energy principle for different post-buckling equilibrium paths. The 

following sections will deal with proposed solutions to predict the jumping 

point (in terms of strains). 
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Figure 6.4: Mode jumping types:                                                                                                                                               

stress (load) jumping: point A to D, strain (displacement) jump: point A to B 

 

6.5 Effective width concept  

It is essential to introduce the effective width concept before starting to explain 

the proposed solution approach which is based on it. In 1932, von Karman [15] 

published a theoretical study of a simply supported rectangular plate, in which 

a relationship for the effective width was developed. The effective width was 

simply defined as the virtual width of the buckled plate loaded edges, which is 

reduced due to the geometrical deformations. The assumption of this principle 

depends on load (stress) redistribution on two strips near the supported edges 

that carry the load applied beyond buckling, see Figure 6.5.  



Chapter 6 

 

114 

 

Figure 6.5: von Karman’s effective width concept (a) non-uniform stress 

distribution after initial buckling, (b) stress redistribution according to 

effective width principle, (c) equivalent plate configuration. 

 

Figure 6.5a shows the plate at the initial post-buckling stage, while the assumed 

loaded edge stress redistributions are represented in Figure 6.5b according to 

von Karman’s effective width principle. The plate geometry consists of three 

strips, the middle strip that is assumed to carry zero load and two edge strips 

that carry an equal amount of load.  Consequently, it is possible to represent 

the new configuration of the plate in the loaded parts (a x be) instead of the 

original dimensions (a x b) as shown in Figure 6.5c. This assumption is 

approximate because the middle strip still carries a load in the early post-

buckling steps; however, that amount of load is relatively small when 

compared to the edge loads. Moreover, this amount will be decreased 

gradually as the deformation of the middle strip increases.  
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The principles of the effective width concept will be utilised in the next section 

to provide the value of jumping strain where the mode change may occur for 

flat isotropic and composite plates. The relationship between the original plate 

width and the effective width was first proposed by von Karman as: 

𝑏e
𝑏
=  √

𝜎cr
𝜎
                                                

(6.1) 

The investigations that explored the effective width of buckled plates are 

followed by many studies to improve and produce an accurate approximation 

for the hypothetical width of plates subjected to uniform stress which will be 

summarised below. 

6.5.1 Marguerre effective width equations 

In 1937, Marguerre [171] studied the post-buckling behaviour of the buckled 

plate by incorporating the principle of minimum potential energy into von 

Karman’s large deflection equations. He proposed the following boundary 

conditions: 

 𝑤(y =  0, y = b) = w(x =  0, x = a) = 0 

 The edge moments to be zero,  
𝜕2𝑤

𝜕𝑦2
(y = 0, y = b) =

∂2w

∂x2
(x = 0, x = a) = 0 

 The edges are constrained to remain straight  

 The longitudinal edges are free to expand as a straight line. 

 The shear stress at the edge to be zero. 

He then introduced approximations to calculate the effective width by the 

following two alternative equations:   

𝑏e
𝑏
=  0.81 √

𝜀cr
𝜀
+ 0.19 

(6.2) 
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𝑏e
𝑏
=  √

𝜀cr
𝜀

3
 

(6.3) 

He recommended equation (6.3) as a better approximation to the exact 

formula under condition 1 ≤  
𝜀cr

𝜀
 ≤ 20. 

6.5.2 Winter effective width equations 

After von Karman, some further studies provided a better accurate estimation 

for the effective width. Winter [172] added some modifications to von Karman 

effective width formula. 

𝑏e
𝑏
= √

𝜎cr
𝜎
(1 − 0.22 √

𝜎cr
𝜎
 ) 

(6.4) 

Also, he proposed in 1970 another formula, which he recommended for 

unstiffened elements. 

𝑏e
𝑏
= 1.19√

𝜎cr
𝜎
(1 − 0.298 √

𝜎cr
𝜎
 ) 

(6.5) 

6.5.3 Stein effective width equation 

Stein is one of the researchers who proposed a solution for elastically buckled 

rectangular plates [76]. He expanded the displacement functions u, v and w in 

power series in terms of arbitrary parameters. He imposed the boundary 

conditions as below: 

 w (0, y) = w (a, y) = w (x, 0) = w (x, b) = 0. 

 The bending moments at all edges were equal to zero. 

 𝜕𝑢/𝜕𝑦  (0, y)  =   𝜕𝑢/𝜕𝑦  (a, y)  =   𝜕𝑣/𝜕𝑥(x, 0) =   𝜕𝑣/𝜕𝑥(x, b) = 0. 

 𝜕𝑣/𝜕𝑥(0, y)  =   𝜕𝑣/𝜕𝑥  (a, y)  =   𝜕𝑢/𝜕𝑦(x, 0) =   𝜕𝑢/𝜕𝑦(x, b) = 0. 

 ∫ 𝜎𝑦 (𝑥, 0) =  ∫ 𝜎𝑦 (𝑥, 𝑏)
𝑎

0

𝑎

0
= 0. 
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The solution suggests the following calculation to evaluate the effective width: 

𝑏e
𝑏
=

𝜎  
𝜎𝑐𝑟

𝜎
𝜎𝑐𝑟

+ 𝐽2  
𝛽2

2 + 𝐽4 𝑤3 𝛽2
 

(6.6) 

𝐽2 =
𝛽2  

𝑃 𝑏
𝐷𝜋2

− ( 𝛽2 + 𝑛2 )2

(𝛽4 + 𝑛4) 
 (6.7) 

         𝛽 =  
𝑚 𝑏 

𝑎
 (6.8) 

𝑤3 = 
3

2
 
𝛽4 𝑤13

(3) + 𝑛4 𝑤31
(3)

𝛽4 + 𝑛4
 (6.9) 

𝑤13
(3)
=  

 𝑛4 

(𝛽2 + 9𝑛2)2 − (𝛽2 + 𝑛2)2
 

(6.10) 

𝑤13
(3)
=  

 𝑛4 

(𝛽2 + 9𝑛2)2 − (𝛽2 + 𝑛2)2
 

(6.11) 

6.5.4 Koiter effective width equation 

Koiter was one of the pioneer researchers who introduced an effective width 

solution for infinitely long, initially flat elastic plate [173]. He utilised the 

principle of total strain energy in his calculations. He assumed the following 

boundary conditions for his model: 

 The longitudinal edges are constrained to remain straight   
𝜕𝑣

𝜕𝑥
(x, 0) =

 
𝜕𝑣

𝜕𝑥
(x, b) = 0. 

 ∫ 𝜎𝑦 (𝑥, 0) =  ∫ 𝜎𝑦 (𝑥, 𝑏)
𝓁

0

𝓁

0
= 0.  where   is the length of longitudinal of 

half wave the buckling mode. 

The effective width according to Koiter’s solution can be calculated from the 

following equation when  1 ≤
ℰ𝑐𝑟

ℰ
 ≤ 100 : 
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𝑏𝑒
𝑏
= 1.2 (

ℰ𝑐𝑟
ℰ
)
0.4

− 0.65 (
ℰ𝑐𝑟
ℰ
)
0.8

+ 0.45 (
ℰ𝑐𝑟
ℰ
)
1.2

 (6.12) 

Some other researchers suggested formulas to predict the value of effective 

width more accurately which will be summarised in the next section.   

6.5.5 Other effective width equations  

Cox [64] assumed that no transverse load or shear acts on the plates and the 

longitudinal plate edges are not forced to remain straight. 

𝑏𝑒
𝑏
= 0.8 (

ℰ𝑐𝑟
ℰ
) + 0.9 

(6.13) 

Bengston [174] imposed a constant axial strain condition at the longitudinal 

edges, and used the total potential energy of the assumed displacement 

functions:  

𝑏𝑒
𝑏
= 0.483 + 0.517 (

ℰ𝑐𝑟
ℰ
)              𝑤ℎ𝑒𝑛      

ℰ𝑐𝑟
ℰ
 ≤ 9 

(6.14) 

𝑏𝑒
𝑏
= [0.483 + 0.517 (

ℰ𝑐𝑟
ℰ
− 9) ] [0.483 + 0.517 (

ℰ𝑐𝑟
ℰ
)] 𝑓𝑜𝑟 

ℰ𝑐𝑟
ℰ
 ˃ 9      

(6.15) 

From the above, it is seen that many equations can be used to calculate the 

value of the effective width for buckled plates as a function of the original 

width of the plate at the pre-buckling stage. 

6.6 Effective width approach (E. W.) 

6.6.1 Solution assumptions 

The main motivation of this approach as mentioned previously is to find the 

value of strain where the mode jump may occur. Although this approach 

includes some approximated calculations and assumptions, it still provides an 

acceptable fast technique and sufficient accuracy to predict the jumping strain 

when examined for different plate aspect ratios.   
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When the plate is subjected to axial compression and with the first sign of 

buckling, the plate will be deformed, and these deformations are considered to 

obey the large deformation theory. Consequently, stress redistribution will 

occur. The plate is divided into a middle strip (M.S.) and two similar edge strips 

(E.S.), if the two longitudinal edges have the same boundary conditions. The 

effective width principle assumes that the edge strips carry the load after 

buckling. This approach outlines that the dimensions of the middle and edge 

strips will be changed as the applied load increases due to deflection increases 

across the plate. Hence, the plate will consist of the unloaded middle strip 

(M.S.), and two edge strips (E.S.) loaded and will behave sequentially as shown 

in Figure 6.6. The edge strips will carry the same load if the original boundary 

conditions of the longitudinal are the same. The dimensions of the middle strip 

are (b-be) x a while those of the edge strips are (be x a).  

The value of be will reduce gradually on progressing through the post-

buckling region. This assumption will be the main basis of the effective width 

approach to predict the mode jumping point. First, the plate is assumed to have 

new configurations, and then new suggested boundary conditions are applied.   

The investigation will focus on the two edge strips Figure 6.7a, because they 

are the parts that carry the loads. The edge strips are assumed to have a 

boundary condition that is partially free where they connect with the middle 

strip, and all other edges are simply supported as shown in Figure 6.7b.  

These boundary conditions for the edge strips are explained in detail in 

Figure 6.7c, in which the free edge is assumed to have zero rotation because it 

is still connected to the middle strip. Therefore, the edge deflection is free but 

there are no rotations about the longitudinal axis. The other three edges of the 

E.S. remain the same as the initial boundary conditions of the plate which were 

simply supported conditions.  
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Figure 6.6: Load redistribution in post-buckling analysis of plated structures                       

according to the effective width principle 

 

 

Figure 6.7: Effective width approach hypothesis, a) load distributions, b) edge 

strip boundary conditions, c) boundary conditions details. 
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6.6.2 Mathematical formulations 

The mathematical expressions of (E. W.) will be derived in this section. The 

first step of the buckling problem is to assume an out of plane displacement 

function, which represents the key that will lead to calculating the buckling 

load of the thin plates.  

The plate in this problem will be a flat plate representing one of the edge strips 

and which has the following boundary conditions. 

 Three simply supported edges with w=0, u≠0, v≠0 

 Partially free edge with w≠0, θ=0. 

The plate is under uniaxial load in the x-direction and the deflection function 

that satisfies these boundary conditions is assumed to be: 

𝑤(𝑥, 𝑦) =  𝑤0  
𝑦

2 𝑏
  (3 𝑏2 − 𝑦2) sin

𝑚𝜋

𝑎
 𝑥 

(6.16) 

For isotropic plates equation 6.16 is substituted into the buckling equation  

( 
𝜕4𝑤

𝜕𝑥4
+ 2 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
 ) =  

𝑃

𝐷
                                        

(6.17) 

where  

𝐷 =  
𝐸 ℎ3

12(1 − 𝓋2)
 

(6.18) 

𝑃 =  𝑁𝑥 
𝜕2𝑤

𝜕𝑥2
                          (6.19) 

Then the minimum energy principle is applied by the following equations to 

calculate the buckling load. 

∆ 𝑇 =  ∆ 𝑈                 
(6.20) 

∆T is the work done by the external forces and is given by: 
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𝑇 = −
1

2
 ∫ ∫ {𝑁𝑥 (

𝜕2𝑤

𝜕𝑥2
)

2

+ 2𝑁𝑥𝑦 (
𝜕𝑤

𝜕𝑥
 
𝜕𝑤

𝜕𝑦
) + 𝑁𝑦 (

𝜕2𝑤

𝜕𝑦2
)

2

}
𝑏

0

𝑎

0

 𝑑𝑥 𝑑𝑦 
(6.21) 

whereas ∆U is the strain energy of bending and is given by the equation 

∆𝑈 =
𝐷

2
 ∫ ∫ {(

𝜕2𝑤

𝜕𝑥2
+ 
𝜕2𝑤

𝜕𝑦2
)

2

− 2(1 − 𝑣) [
𝜕2𝑤

𝜕𝑥2
 
𝜕2𝑤

𝜕𝑦2
− (

𝜕𝑤

𝜕𝑥𝜕𝑦
)]}

𝑏

0

𝑎

0

 𝑑𝑥 𝑑𝑦 
(6.22) 

Substituting equations (6.21) and (6.22) into equation (6.20) with 𝑁𝑦 = 𝑁𝑥𝑦 = 0 

(because there is no transverse or shear load), the critical buckling load is given 

by: 

𝑁𝑥 = 𝐷 [
𝑚2𝜋2

𝑎2
+

105 𝑎2

17𝑚2𝜋2𝑏4
+ 

84

17𝑏2
]                        

(6.23) 

The same procedure has been performed for composite plates, and the final 

equation used to calculate the buckling load for the laminates was: 

𝑁𝑥 =
1

𝑏2
[
𝑚2𝜋2𝑏2

𝑎2
𝐷11 +

105 𝑎2

17𝑚2𝜋2𝑏2
𝐷22 + 

84

17
𝐷12 +

168

17
 𝐷66]                        (6.24) 

where m is the number of half-waves through the length. Equations (6.23) and 

(6.24) are considered in calculations and applied for both isotropic and 

composite plates, and their derivations are presented in Appendix A. 

6.6.3 Validation of equations 

To validate the buckling load calculated in the previous section, examples of 

isotropic plates are considered to check equation (6.23) and laminates for 

equation (6.24). The plate mechanical properties used are E11= 161 GPa, υ  = 0.3 

with density = 2300 kg/m3 for the metal plates while they were E11= 181 GPa, 

E12= 10.3 GPa, G12= G13= G23=7.17 GPa, υ 12 = 0.28 for the laminates.  

The laminates have three different lay-up sequences: [45 -45 -45 45 -45 45 45 -

45]s, [45 -45 0 90 -45 45 90 0]s and [45 -45 -45 45 0 90 90 0]s. The dimensions are 

a = n x 300 mm where n = 1, 1.2, 1.4, 1.6 …, b = 300 mm, t = 1.5 mm for the 

isotropic plates and t = 2 mm for the laminates. The finite element model has 
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similar boundary conditions, to those assumed in the equation derivation. S4R 

shell elements are used with element size 10 mm, and a linear perturbation- 

buckle step is used to find the buckling load for the first five modes. The model 

was under shell edge loading type, which is applied in the x-direction as shown 

in Figure 6.8. 

A comparison between the equation and ABAQUS results was made for 

different number of half waves m and they are presented as a relationship 

between the buckling load and the aspect ratio. The results for isotropic plates 

showed excellent agreement between the buckling load calculated by equation 

(6.23) and finite element analysis, as shown in Figure 6.9.   

 

 

 

 

Figure 6.8: ABAQUS model boundary conditions 
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Figure 6.9: Equation (6.23) vs FE model comparison for isotropic plate 

 

The first composite plate with lay-up sequence [45 -45 -45 45 -45 45 45 -45]s 

showed a good agreement with ABAQUS results. Equation (6.24) results 

showed a slightly higher buckling load when the plate buckled with one-half 

wave. However, the difference is small, and it did not appear for the higher 

values of m as shown in Figure 6.10. 
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Figure 6.10: Equation (6.24) vs FE model comparison for laminate                                             

[45 -45 -45 -45 -45 45 45 -45]s 

 

Another two composite plates with different lay-up sequences were examined 

to verify equation (6.24) presented in the previous section. The composite plate 

with [45 -45 0 90 -45 45 90 0]s lay-up shows a higher buckling load calculated 

by equation (6.24) for all values of m except those when m=1, which appeared 

to have a lower buckling load than finite element analysis beyond aspect ratio 

a/b =2, see Figure 6.11. Corresponding result for the [45 -45 -45 45 0 90 0 90]s 

laminate are shown in Figure 6.12. 
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Figure 6.11: Equation (6.24) vs FE model comparison for laminate                                             

[45 -45 0 90 -45 45 90 0]s 

 

All the buckling loads calculated by equation (6.24) have higher values than 

those from ABAQUS analysis for the laminate with [45 -45 -45 45 0 90 90 0]s 

stacking sequence except those for m=1 between aspect ratios 2.2 and 3.0.  

The differences between the results for the second and third lay-up sequences 

are relatively higher than those for the first composite plate. These differences 

can be interpreted as follows. In equation (6.24) the effect of anisotropy was 

neglected to reduce the terms in the main buckling equations and hence 

simplify the calculations. Moreover, these differences did not appear in the first 

laminate results because of the values of D16 and D26 were equal to zero. 



Chapter 6 

 

127 

 

 

 

Figure 6.12: Equation (6.24) vs FE model comparison for laminate  

[45 -45 -45 45 0 90 0 90]s 

 

6.6.4 Jumping strain determination 

This section will outline the main hypothesis of this approach in order to 

predict the value of strain where a jump can occur. The first assumption is built 

on the fact that the value of effective width decreases as the load increases in 

the post-buckling stage. Consequently, the two edge strips have aspect ratio = 

2a/be which increases because of the decreasing of be at each post-buckling step. 

This assumption will lead to the fact that the plate has a new aspect ratio at 

each load step and thus will reach a point where it tends to buckle with the 

next mode and leave the initial buckling configuration.  
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Hence the jump will occur. The next step in the approach is to find the value 

of the critical aspect ratio, which can be calculated at the point when the second 

critical load (Nx)2 become less than the initial critical buckling load (Nx)1.  A 

Matlab program was written to find the value of the targeted aspect ratio (AR), 

which was found by applying the calculated value of effective width be in the 

following equation: 

𝐴𝑅 = 
2𝑎

𝑏𝑒
                    

(6.25) 

The final step is calculating the strain 𝓔 where the jumping point can occur by 

substituting the value of effective width calculated above in Koiter’s effective 

width equation.  

𝑏𝑒
𝑏
= 1.2 (

ℰ𝑐𝑟
ℰ
)
0.4

− 0.65 (
ℰ𝑐𝑟
ℰ
)
0.8

+ 0.45 (
ℰ𝑐𝑟
ℰ
)
1.2

 (6.12) 

The calculations use the Matlab program to predict the value of jumping 

strain. The reason behind choosing this equation among the many others 

reviewed in section 6.3 was that this equation gives better predictions of the 

jumping point (strain) for plates with different materials and aspect ratios 

when compared with the next proposed approach (energy approach) to detect 

the mode jumping. The steps of the effective width approach calculations to 

find the jumping strain are summarised in the flowchart in Figure 6.13. 

Although the current approach includes many assumptions and some 

approximations, however, it provides a simple and fast way to predict the value 

of strain at which the mode jump will occur. The next section will describe 

another suggested approach to determine the value of jumping strain with two 

different mathematical techniques depending on the energy principle. The 

methods will be compared with numerical results in section 6.8. 
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Figure 6.13: Effective width approach calculation procedure 

 

6.7 Energy approach (E.A.) 

The objective of this approach is to predict the strain value where a jump could 

occur. The proposed method to achieve that mainly considers the energy of 

the equilibrium path for both the initial post-buckling mode and the 

alternative buckling modes to which the structure tends to jump.  
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 As mentioned previously at the beginning of this chapter (section 6.1), the 

motivation of this study is to improve the post-buckling analysis of VICONOPT 

software by including mode jumping. Consequently, the data for the energy 

calculation will be derived from the VICONOPT output.  

The post-buckling analysis in VICONOPT is based on VIPASA analysis. 

Therefore, it is assumed that a jump will occur from one buckling mode to 

another by increasing the number of half wavelengths in the x-direction by 

one. An important inspiration for this approach came from previous work 

published as a conference paper by Watson and Kennedy [142] in 2004. The 

authors suggested an energy summation for the post-buckling equilibrium 

path to localise the possible jumping point in VICONOPT post-buckling 

analysis. Although this approach utilises the same concept, i.e. the strain 

energy, it uses completely different mathematical techniques to calculate the 

energy at different points on the post-buckling equilibrium path. Two 

mathematical procedures are employed to find the point where the mode 

(m+1) has lower energy than the initial buckling mode (m) and hence the jump 

will occur. 

6.7.1 Third order polynomial method (3rd P.M.) 

In this section, a simple mathematical method is proposed to calculate the 

energy of the different equilibrium paths in terms of the area under the post-

buckling load-end shortening curve for initial and the second buckling mode 

curves. The method presented here assumes that the load-end shortening 

curve is a third order polynomial in the post-buckling region. The reason for 

choosing a third order polynomial is that this order gives acceptably accurate 

results which allow for the curvature which is frequently observed while 

avoiding complexity associated with higher order methods. The post-buckling 

curves will have the following form: 
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𝑦 =   𝑎1 𝑥
3 + 𝑎2 𝑥

2 + 𝑎3 𝑥 + 𝑎4                          (6.26) 

Suppose the equation of the initial buckling (mode m) curve is: 

𝑃1 =  𝑎1 ℰ
3 + 𝑎2 ℰ

2 + 𝑎3 ℰ + 𝑎4 
(6.27) 

while that for the second (mode m+1) is: 

P2 =  b1 ℰ
3 + b2 ℰ

2 + b3 ℰ + b4                            (6.28) 

The value of constants an and bn are calculated using Matlab least squares 

interpolation. To find the strain of the crossing point 

P1 =  P2 
(6.29) 

Equation (6.29) is solved to calculate 𝓔 = 𝓔c   which represents the value of strain 

at the crossing point of the two curves. As mentioned previously, the jump will 

occur beyond this point when the energy associated with mode (m+1) equals 

the energy associated with mode (m).Therefore, it is required to solve the 

following equation to predict the value of jumping strain (𝓔j). 

1

2
 ℰ𝑐𝑟1𝑃𝑐𝑟1 + ∫ (𝑎1 ℰ

3 + 𝑎2 ℰ
2 + 𝑎3 ℰ + 𝑎4)𝑑ℰ 

ℰ𝑗
ℰ𝑐𝑟1

=
1

2
 ℰ𝑐𝑟2𝑃𝑐𝑟2 +

∫ (𝑏1 ℰ
3 + 𝑏2 ℰ

2 + 𝑏3 ℰ + 𝑏4)𝑑ℰ 
ℰ𝑗
ℰ𝑐𝑟2

  
(6.30) 

where 𝓔cr1 and 𝓔cr2 are, the initial buckling strain for mode m and m+1 

respectively Equation (6.31) can be rewritten in a more simple form:   

∫ (𝐾ℰ −
ℰ𝑐𝑟2

ℰ𝑐𝑟1
𝑎1 ℰ

3 + 𝑎2 ℰ
2 + 𝑎3 ℰ + 𝑎4 ) 𝑑ℰ + ∫ [(𝑏1−𝑎1) ℰ

3 +
ℰ𝑗
ℰ𝑐𝑟2

 (𝑏2−𝑎2)  ℰ
2 + (𝑏3−𝑎3)  ℰ + (𝑏4−𝑎4)]𝑑ℰ = 0  

(6.31) 

𝐾 =
𝑃𝑐𝑟1
ℰ𝑐𝑟1

=
𝑃𝑐𝑟2
ℰ𝑐𝑟2

                       
(6.32) 

Solving equation (6.32) will lead to determining the value of jumping strain 

𝓔𝒋. Figure 6.14 illustrates the solution for the initial post buckling curve m and 

the secondary curve m+1. The full calculation of this method was performed 

using a Matlab program. 
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Figure 6.14: Area under the two equilibrium paths, which represent the strain 

energy, a- Energy for mode m, b- Energy for mode m+1 

 

6.7.2 Trapezoidal method (T.M.) 

This method is also based on the energy comparison between different post-

buckling mode equilibrium paths. However, this mathematical technique has 

more accurate results because it evaluates the cumulative energy for the two 

post-buckling curves, see Figure 6.15.  

 

Figure 6.15: Trapezoidal method to calculate the area under VICONOPT                           

post-buckling curves 
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Moreover, it compares the energy at each post-buckling cycle. The incremental 

energy at each cycle can be calculated by the trapezoidal rule using the 

following equation: 

(𝐸𝑛𝑟)𝑖 = 
𝑃𝑖−1 + 𝑃𝑖

2
 ( ℰ𝑖 − ℰ𝑖−1) (6.33) 

where (i) is the cycle number. The load and strain values are imported from 

the VICONOPT post-buckling result file for modes m and m+1. The 

cumulative energy for initial buckling mode and the second mode are: 

(𝐸𝑛𝑟)𝑚 = ∑[
𝑃𝑖−1 + 𝑃𝑖

2
 ( ℰ𝑖 − ℰ𝑖−1)]

𝑖=𝑛

𝑖=1

 (6.34) 

(Enr)m+1 = ∑[
Pi−1 + Pi

2
 ( ℰi − ℰi−1)]

i=n

i=1

 
(6.35) 

The jump will occur when  (𝐸𝑛𝑟)𝑚+1 ≤ (𝐸𝑛𝑟)𝑚. The mode jumping strain 

calculations are performed using a FORTRAN 77 program in order to be more 

compatible with VICONOPT, which is written in this language. As the current 

study assumes strain control mode jumping, the energy calculation will 

depend on the strain step at each post-buckling analysis cycle. VICONOPT uses 

equal strain increments at each step. This increment is a function of the initial 

buckling strain as shown in Figure 6.15. Consequently, the strain step at cycle 

i  for the two equilibrium paths respectively will be: 

(ℰi)1 = (i ×  f + 1)ℰcr1    
 

(6.36) 

(ℰi)2 = (i ×  f + 1) ℰcr2 
(6.37) 

The problem here is that an energy comparison at each post-buckling cycle is 

not possible because the strain increments are not equal. To tackle this 

problem, a transfer factor linking the initial buckling strain of both modes is 

needed to ensure the same strain increments are used for both modes.  
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This factor is derived from the linear part of the post-buckling load-shortening 

curves as below: 

Pcr1
ℰcr1

=
Pcr2
ℰcr2

 (6.38) 

Substituting equation (6.39) into equation (6.38) leads to: 

(ℰi)1 = (i ×  f + 1)ℰcr1 =
Pcr1
Pcr2

(i ×  f + 1)  ℰcr2 (6.39) 

After this transformation of the strain values for each mode. It is required to 

reproduce the load values for the new modified strain values 𝓔t . To achieve 

this, a linear interpolation is used to extract the transformed load values.  

According to the following equation: 

𝑃𝑡 = 𝑃𝑖 + [ ( 
ℰ𝑡 − ℰ𝑖
ℰ𝑖+1 − ℰ𝑖

) × (𝑃𝑖+1 − 𝑃𝑖)] (6.40) 

The total cumulative energy of the initial equilibrium path after r such strain 

increments is given by 

(𝐸𝑛𝑟)𝑎𝑐𝑐1 = ∑ (𝐸𝑛𝑟1)𝑖  

𝑟

𝑖=1

               𝑖 = 1, 2, 3, ……𝑟 (6.41) 

whereas the total energy for the secondary equilibrium path is  

(𝐸𝑛𝑟)𝑎𝑐𝑐2 = ∑ (𝐸𝑛𝑟2)𝑖 

𝑟

𝑖=1

              𝑖 =  1,2,3……𝑟 (6.42) 

Consequently, the mode jump will occur if 

(Enr)acc2  ≤ (Enr)acc1      (6.43) 

The FORTRAN code involves all the calculations and comparisons of the 

energy of the post-buckling paths with mode m, m+1 and m+2. However, the 

study will focus on the first jump only. The complete procedure of the mode 

jumping strain by using the trapezoidal role through the FORTRAN code is 

summarised in flowchart presented in Figure 6.16.  
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Figure 6.16: Fortran77 code flowchart for energy calculations 
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6.8 Flat plate results 

The section will outline the analysis results for flat plates to predict the values 

of jumping strain by using the effective width and energy approaches 

discussed previously in this chapter. The results include flat plates with simply 

supported edge conditions. The study considers different aspect ratios and 

material properties (isotropic and composite), as mentioned previously in 

section 6.6.3. These plates will be sub-divided according to the initial buckling 

mode and the expected mode that the structure tends to jump to. 

6.8.1 Example 1: Mode jumps from m = 1 to m = 2  

This section will discuss the results for isotropic and composite simply 

supported plates which initially buckled with one-half wavelength m=1 and 

then jump to the second mode m =2, so that the buckling mode pattern will 

change at some point along the equilibrium path to buckle with two half waves 

instead of one. The results are described as load-shortening relationships of 

VICONOPT analysis which include two equilibrium paths that have two 

different modes. It was mentioned that the VICONOPT post-buckling depends 

on VIPASA analysis, which assumes that the plate buckles with an integer 

number of half wavelengths m in the longitudinal direction. The main 

objective of this chapter is to include mode jumping in VIPASA post-buckling 

analysis. Thus the jump will occur from m=1 to m=2, and the calculations will 

use strain control.   

The results of VICONOPT are compared with finite element results using both 

ABAQUS standard and dynamic explicit analysis for validation. The finite 

element model consisted of two models, the first one using ABAQUS/Standard 

(version 6.14) [156]. Linear eigenvalue analysis was first conducted to evaluate 

the initial buckling modes and then these results were used in a second model 

that utilised the ABAQUS/Dynamic explicit step to estimate the post-buckling 



Chapter 6 

 

137 

behaviour depending on the buckling mode configuration provided from the 

linear model. The finite element dynamic explicit analysis provides a reliable 

source of nonlinearity such as geometric imperfection and material plasticity 

(which is not included here in order to match the exact strip analysis results).   

The finite element mode boundary conditions are shown in Figure 6.17. The 

loaded edges are constrained to move in a straight line utilising multi-point 

constraints (MPC), which make the displacements at all the edge node equal. 

The model uses standard S4R shell elements for the linear buckling model 

while for the dynamic explicit step analysis model it was explicit shell elements 

which have the same element size for both models equal to 0.01m. A mesh 

sensitivity test was done to examine a range of element sizes to ensure the 

accuracy of the chosen element size as shown in Figure 6.18. 

 

 

 

 

Figure 6.17: ABAQUS model boundary and load conditions 
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Figure 6.18: Mesh sensitivity for ABAQUS model 

 

In order to include mode jumping in the analysis, it is essential to provide a 

geometrical imperfection for the first and second modes. Imperfections are 

usually introduced by perturbations in the geometry. These imperfections are 

provided as a linear superposition of buckling eigenmodes from the 

displacements of static analysis. The initial buckling mode imperfection will 

be slightly higher than the second mode imperfection to ensure that the 

buckling will start with the critical buckling mode recalled from the linear 

buckling mode. The maximum values of the geometrical imperfection were 

20% of the plate thickness in case of the isotropic plate and 15% of the laminate 

thickness in case of composites (these imperfection amplitude values were 

chosen according to information extracted from the literature). The plates 

have a width of 300 mm, and different aspect ratios ranging from 1.0 to 1.4. 



Chapter 6 

 

139 

6.8.1.1 Isotropic plates 

The load against axial strain curves are introduced for plates with a/b =1.2 and 

1.4 to clarify the mode-jumping occurrence using two approaches: effective 

width (E.W) and energy calculations including two techniques, i.e. the 

trapezoidal method implemented in FORTRAN code (VICONOPT code) and 

the third order polynomial method (VICONOPT 3rd poly). The two curves 

(which represent the post-buckling analysis for buckling modes m and m+1) 

are compared with the finite element curve, which showed a gradual transition 

between modes.  

The reason that the ABAQUS equilibrium path did not show a sudden jump 

was based on a transitional change in buckling pattern due to the two mode 

configurations provided by geometrical imperfections. The ABAQUS model 

was assembled by using shell element S4R with element size 0.01m for both 

standard and dynamic analysis. The flat plates all had the dimensions b=0.3 m 

with different aspect ratios from 1.0 to 1.4. The results for the isotropic plate 

with aspect ratio 1.2 are shown in Figure 6.19. The initial critical buckling load 

was 6.768 kN using VICONOPT. It was slightly less at 6.541 kN when using 

ABAQUS with an initial imperfection applied. The initial buckling mode has 

one half wavelength along the length. 

The second buckling configuration with two half wavelengths has a buckling 

load equal to 8.411 kN. VICONOPT initial buckling strains were 9.342E-5. The 

effective width method estimates that the mode jump will occur at strain level 

8.136E-4 where the load value will jump from 21.814 to 20.511 kN. The mode 

jump happens slightly later when utilising the energy calculations,  i.e. at 

strain  8.968E-4 (9.012E-4 using the 3rd order polynomial method) and the load 

in this case dropped from  23.307 to 21.669 kN (23.383 to 21.730 kN) as shown 

in Figure 6.19.  
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ABAQUS results showed the plate started to buckle with a single buckle 

initially. However, the buckle was not exactly in the middle due to the two 

imperfections applied in the model, which showed the resultant of the two out 

of plane displacements of the two modes. After that a small buckle starts to 

initiate at strain level 2.231E-4 and grows gradually until the post-buckling 

pattern is fully changed from a single half wavelength to a new mode 

configuration consisting of full two buckles. The details of the buckling mode 

changes are shown in Figure 6.20.   

The plate with aspect ratio 1.4 has interesting results due to very early 

occurrence of a jump. The plate initially buckled with one-half wavelength at 

load 7.317 kN and 1.010E-4 strain while the second buckling load with m=2 

will be at 7.417 kN and 1.024E-4 strain. The energy calculations showed that 

the jump would occur in the early part of the equilibrium path when compared 

with the previous aspect ratio, see Figure 6.21. The energy approach predicts 

the jump at strain 2.606E-4 (2.780E-4 using the 3rd order polynomial method) 

where the load reduces from 11.052 to 10.938 kN (11.450 to 11.337 kN).  

The effective width calculations showed relatively conservative value for 

jumping points at 5.696E-4 strain with a load jump from 17.772 to 16.566 kN. 

This was due to the assumptions used in that approach depending on effective 

width degradation. Therefore, for the expected early jump at this aspect ratio, 

this method estimates the jumping point quite late compared to other 

approaches. The finite element curve followed the same trends as the previous 

aspect ratio. The buckling mode started with one buckle and gradually 

changed partially to two half wavelength at strain 2.689E-4, and the new buckle 

expanded gradually so that at the end of analysis the plate buckled with a full 

wavelength mode as shown in Figure 6.22. 

 



Chapter 6 

 

141 

 

Figure 6.19: Load vs strain for isotropic flat plate, a/b=1.2 

 

Figure 6.20: ABAQUS buckling mode for isotropic plate, a/b =1.2 
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Figure 6.21: Load vs strain for isotropic flat plate, a/b=1.4 

 

Figure 6.22: ABAQUS buckling mode for isotropic plate, a/b =1.4 
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6.8.1.2 Composite plates  

The composite plate had a symmetric stacking sequence consisting of 16 layers 

of overall thickness 2mm with a [45 -45 -45 45 -45 45 45 -45]s ply sequence. The 

width of the laminates was 0.3 m and the length was varied to have different 

aspect ratios from 1.0 to 1.4. The results for the plate with a/b = 1.2 showed a 

similar trend to the isotropic plates but with some different features that will 

be discussed. The VICONOPT results showed that the plate buckled initially 

with one-half wavelength at axial strain 5.719E-4 while the second buckling 

mode had m=2 at strain 6.549E-4.  

The jumping strain using the effective width approach (E.W.) calculations was 

4.981E-3 in which the load jumps from 26.732 to 24.959kN. However the 

energy calculation showed that the jumping from mode m=1 to m=2 occurs 

slightly earlier at strain 4.347E-3 (4.333E-3 using the 3rd order polynomial 

method) in which the load will jump from 24.495 to 23.216 kN (24.446 to 23.178 

kN) as described in Figure 6.23. The ABAQUS results gave a lower initial 

buckling load with m=1 than VICONOPT analysis due to the effect of 

imperfection. The buckling mode starts to change progressively as the load 

increases until jumping to a new buckling mode with m=2 as described in 

Figure 6.24.  

The results for the composite plate with aspect ratio 1.4 will now be explained 

because the jump occurred at an early stage. For instance, the energy 

calculation predicts that the equilibrium path will change at strain 1.419E-

3(1.516E-3) as the load reduces from 12.980 to 12.849 kN (13.433 to 13.261 kN).  

The effective width approach estimates a late jump at 3.337E-3 because of the 

sudden early jump occurrence as the plate has very close post-buckling paths. 

This conservative value can be interpreted by the fact that the effective width 

approach depends on the stress redistributions and effective width concept, 

which assumed to decrease gradually while load increases.         
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This condition was not satisfied because the jump for this aspect ratio occurred 

relatively earlier than other cases due to the close values of the first and second 

critical buckling load. Therefore, the calculations of this approach failed to 

predict a jumping strain match the values conducted by the energy method. 

The finite element model showed good agreement with VICONOPT results. It 

was possible to notice the effect of the small imperfections required in the 

ABAQUS non-linear analysis at the end of the linear buckling stage. However, 

the effect of it was small because the small values of the imperfection (15% of 

the laminate overall thickness). 

The laminates buckled with m=1 and followed a path close to the exact strip 

method equilibrium path with m=1, see Figure 6.25, then gradually started to 

leave the previous path and curved significantly to match the VICONOPT post-

buckling path for mode m=2  at a strain value of  1.389E-3. The transition 

between the modes in ABAQUS analysis is a superposition of two modes 

applied by the two imperfections of sinusoidal buckling modes with one and 

two half waves through the length, as shown in Figure 6.26.  

In addition, the results showed that there was no obvious effect regarding the 

material properties in the mode change occurrence. However, in terms of the 

same material i.e. composites, the lay-up sequence of the laminate affects the 

initial buckling values and thus it definitely has an effect on the post-buckling 

behaviour and hence the mode jumping phenomena.  
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Figure 6.23: Load vs strain for laminate [45 -45 -45 45 -45 45 45 -45]s, a/b=1.2 

Figure 6.24: ABAQUS buckling mode for laminate                                                

[45 -45 -45 45 -45 45 45 -45]s, a/b =1.2 
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Figure 6.25: Load vs strain for laminate [45 -45 -45 45 -45 45 45 -45]s,  a/b=1.4 

Figure 6.26: ABAQUS buckling mode for laminate                                              

[45 -45 -45 45 -45 45 45 -45]s, a/b=1.4 
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A range of isotropic and composite plates were examined for the mode jump 

strain prediction from m=1 to m=2 are presented in Figure 6.27 and 

Figure 6.28. Moreover, the results for a composite plate with different ply 

sequences are summarised in Appendix B.   

 

 

Figure 6.27: Mode jumping strain for isotropic plates (from m=1 to m=2) 

 

     

Figure 6.28: Mode jumping strain for laminates [45 -45 -45 45 -45 45 45 -45]s                                        

(from m=1 to m=2) 
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6.8.2 Example 2: Mode jumps from m = 2 to m = 3  

6.8.2.1 Isotropic plate 

The plate aspect ratio has a significant effect on the mode jumping 

phenomenon. Moreover, it is important to apply the two approaches 

introduced in this study for a wide range of plates to ascertain their 

applicability. Consequently, this section deals with flat plates buckling initially 

with two half wavelength m=2 and jumping to a new buckling mode m=3. The 

results will be discussed for a range of metal and composite flat plates with 

aspect ratios from a/b=1.5 to 2.4.  

The aspect ratios 2.0 and 2.4 will be explained in detail and the rest will be 

presented as a mode jumping strains versus aspect ratios curves for the 

different proposed methods. In general, the plates showed similar trends to 

those discussed in the previous section. However, the effect of aspect ratio on 

the buckling and post-buckling behaviour are significant especially in terms 

of the out of plane mode shape. Therefore, these plates will be discussed here.  

VICONOPT post-buckling analysis was performed for an isotropic plate with 

a/b =2.0 initially buckling with two buckles in the longitudinal direction at 

strain 9.038E-5. The calculations in order to predict the jumping point showed 

that the mode changed at strain level 9.806E-4 (9.885E-4 for the 3rd order 

polynomial method) where the load dropped from 23.815 to 22.708 kN (23.853 

to 22.739 kN) as shown in Figure 6.29. The calculations based on the effective 

width method estimate a lower jumping strain at 8.816E-4 with load decrease 

from 22.125 to 21.293 kN. Generally, the results showed a relatively late jump 

along the post-buckling equilibrium path for this aspect ratio. 

The finite element analysis showed that the plate buckled with mode m=2 and 

then the mode started to gradually change throughout the post-buckling 

region. The out of plane displacement pattern showed a third buckle initiated 
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after strain level 3.361E-4. The third buckle became more observable at strain 

3.578E-4 as shown in Figure 6.30, which expanded step by step with a full 

change to a new mode m=3. The finite element model showed a gradual 

transition between modes, which made the post-buckling curve smooth with 

no sudden drop in load.  

The isotropic plate with a/b=2.4 showed similar behaviour to that one with 

a/b=1.4. However the latter buckled first with mode m=1 and jumped to m=2, 

while the former buckled with mode m=2 and jumped to m=3. The effective 

width method predicts a late jump due to the early jump occurrence because 

the assumptions of this approach that discussed previously.  

The energy method estimates that the mode changes at strain level 3.184E-

4(3.186E-4) using the energy calculation in which the load jumps from 11.938 

to 11.798 kN (11.944 to 11.803 kN) respectively as described in Figure 6.31.        

On the other hand, the finite element analysis showed a jump from m=2 to 3 

started at strain level 1.885E-4, a third buckle grew and the mode changed 

gradually to have three half wavelength as shown in Figure 6.32. 

There was a noticeable feature that can be observed in the ABAQUS analysis 

in terms of the out-of-plane contour which showed the first buckling mode 

shape not positioned equally along the length and it was close to either left or 

right side of the plate. This behaviour was due to including more than one 

mode by considering more than one imperfection. Thus the mode was a 

resultant of two modes imported from the linear buckling model and this 

appeared in all the cases investigated in this chapter.  
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Figure 6.29: Load vs strain for isotropic flat plate, a/b=2.0 

Figure 6.30: ABAQUS buckling mode at different strain                                              

for the isotropic plate, a/b =2.0 
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Figure 6.31: Load vs strain for isotropic flat plate, a/b=2.4 

 

Figure 6.32: ABAQUS buckling mode for the isotropic plate, a/b =2.4 
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6.8.2.2 Composite plates 

Composite plates that buckled initially with m=2 and changed to m=3 will be 

discussed in this section. The analysis shows a similar trend to the metal plates 

with the same aspect ratio but with some differences. For instance, the laminate 

with a/b =2.0 showed a relatively late jump when compared with that of aspect 

ratio 2.4. The effective width calculation estimates the change in the buckling 

mode will occur at a lower somewhat strain that predicted by the energy 

method as shown in Figure 6.33.  

The ABAQUS results showed a gradual mode change started at strain level 

1.425E-4, Figure 6.34.  Conversely for the laminate with a/b=2.4, the effective 

width technique estimates again late jump at strain 3.305E-3 where the load 

moved down from 20.601 to 19.783 kN, compared with the strain values  based 

on energy 1.545E-3 (1.693E-3)  at which the load jumps from 13.225 to 13.134 

kN (13.897 to 13.760 kN) as shown in Figure 6.35. The numerical results which 

were obtained from ABAQUS analysis showed that the mode switching started 

early at strain 8.527E-4 and continued as the load increased until there was a 

full change from mode m=2 to m=3 at strain level 2.167E-3 as presented in 

Figure 6.36.  

The early jump occurrence in both VICONOPT energy calculation and finite 

element analysis was caused by the close values of the post-buckling paths for 

mode m=2 and m=3 which means the mode jumping was more likely to 

happen in comparison to other aspect ratios. For instance, the exact strip 

analysis showed that the buckling loads are closed, i.e. 8.596 kN (strain = 

5.719E-4) for mode m=2 and 8.681kN (5.775E-4) for mode m=3. Thus, the two 

equilibrium post-buckling paths are very close compared with other plate 

cases. Hence, the mode change is more likely to happen in the initial post-

buckling region as described above. 



Chapter 6 

 

153 

 

Figure 6.33: Load vs strain for laminate [45 -45 -45 45 -45 45 45 -45]s, a/b=2.0 

Figure 6.34: ABAQUS buckling mode for laminate                                             

[45 -45 -45 45 -45 45 45 -45]s, a/b=2.0 
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Figure 6.35: Load vs strain for laminate [45 -45 -45 45 -45 45 45 -45]s,  a/b=2.4 

Figure 6.36: ABAQUS buckling mode for laminate                                                     

[45 -45 -45 45 -45 45 45 -45]s, a/b=2.4 
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The other plates (metal and composite), with an aspect ratio between 1.5 and 

2.4 were examined and their results are shown in Figure 6.37 and 6.38. The 

results for laminates with different stacking sequences and the results for 

plates jumping from m=3 to m=4 are highlighted in Appendix B.   

 

 

Figure 6.37: Mode jumping strain for isotropic plates (jump from m=2 to m=3) 

 

 

Figure 6.38: Mode jumping strain for laminates                                                            

[45 -45 -45 45 -45 45 45 -45]s  (jump from m=2 to m=3) 
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6.9 Stiffened panel results 

To move forward in examining mode changes in the post-buckling analysis for 

more complicated cases, this section will outline results for stiffened panels. 

Stiffened panels are very common in aircraft design. The use of stiffeners 

assists by dividing the skin into smaller plats which each carry a proportion of 

the load applied to the panel. Consequently, a numbers of stiffened panels were 

analysed using the exact strip program VICONOPT.  

All the panels initially buckled locally (skin buckling) in order to illustrate the 

mode jumping phenomenon in which the number of half wavelengths 

through the length of the panel in a skin bay between stiffeners will increase 

by one when the jump occurs. The results were then compared with numerical 

analysis extracted from ABAQUS/CAE for validation. The panels had different 

isotropic and composite materials. Figure 6.39 shows a full description of the 

load and boundary conditions for the investigated panels. 

 

Figure 6.39: Proposed stiffened panels showing load and boundary conditions 
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The analysis was performed for two panels with metal and composite material 

respectively, the dimensions and material of those panels are shown in Table 

6.1. The finite element analysis used the techniques used for a flat plate in the 

previous section using ABAQUS/CAE.  

 

Table 6.1: Mechanical properties and dimensions of the examined panels 

Property Value Units 

Metal:   

Young’s modulus, E11 161 GPa 

Poisson’s ratio, υ12 0.3 - 

Mass density, ρ 2300 kg.m-3 

Composite:   

Young’s modulus, fibre direction, E11 181 GPa 

Young’s modulus, transverse direction, E22 10.3 GPa 

Poisson’s ratio, υ12 0.28 - 

In-plane shear modulus, G12 7.17 GPa 

Mass density, ρ 1760 kg.m-3 

Panel width, b 240 mm 

Panel length, a 260 mm 

Skin thickness, tsk 1.5 mm 

Stiffener thickness, tst 2.0 mm 

Stiffener height, hf 30 mm 

Skin lay-up (composite), [45, -45, 0, 90, -45, 45]s 

Stiffener lay-up (composite), [45, -45, -45, 45, -45,45, 45, -45]s 

 

The ABAQUS analysis used two models, as before. The former was the linear 

buckling model created with ABAQUS/Standard using the step procedure type 

“linear perturbation/buckle” in order to provide the initial buckling load 

factors and mode shapes. The latter utilised the ABAQUS/Dynamic explicit 

step to provide the buckling and post-buckling analysis using geometrical 

nonlinearity concepts to evaluate the load-end shortening relationship after 

the initial buckling stage. A geometrical imperfection was applied in the 

model to provide a linear superposition between the linear buckling mode and 
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the dynamic analysis. Two imperfections were written in the second model 

representing the initial and second buckling modes targeted in the mode 

jumping investigation. The maximum values of the geometrical imperfection 

were 22% of the skin thickness, and as in the flat plate cases, the initial buckling 

mode had a slightly higher imperfection than the second mode that the panel 

tends to jump to.  Also, “MPC” multi-point constraints were applied on the 

loaded edges to make the in-plane displacements are equal at all node of those 

edges, so that they moved as a line to match the VICONOPT analysis.  The 

initial buckling mode was the same for both isotropic and composite panels 

namely a local buckling with two half wavelengths while the second critical 

mode had m=3. The first and second critical buckling modes are shown in 

Figure 6.40 in which the panel skin buckles locally in a sinusoidal mode along 

the length of the panel.   

 

 

Figure 6.40: ABAQUS linear buckling mode shape for stiffened panel                                   

(a) mode m=2, (b) mode m=3 
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6.9.1 Isotropic panel 

The post-buckling analysis results for the isotropic stiffened panel using the 

exact strip method show that the initial critical buckling mode was a skin local 

buckling with m=2 at strain value 7.311E-04, while the second critical mode 

was m=3 at 7.593E-04. The energy calculation showed that the jumping strain 

was 7.261E-3 (7.174E-3 using the 3rd order polynomial method). However, the 

effective width method estimates the point of mode change is lower, occurring 

at strain level 5.868E-3, at which the load jumps from 218.40 to 221.54 kN.          

The two equilibrium paths m=2 and m=3 are close and grow side by side. The 

fact that the two approaches provided different strain jumping values was 

completely understandable due to the different assumptions and solution 

procedure used in the two approaches.  The effective width results showed a 

early jumps at strain 5.868E-3 which considered that the skin bay between 

stiffeners is a simply supported plates and this assumptions could explain the 

early jump. The finite element non-linear analysis using the ABAQUS 

dynamic explicit analysis step showed mixed buckling mode curve depending 

on the modes (m=2 and m=3 ) exported from the linear buckling model. The 

ABAQUS post-buckling curve started to buckle with two half wavelengths  and 

then a new buckle initiated and started to grow until there was a change to a 

new mode shape m=3 as shown in Figure 6.41. The mode change in finite 

element analysis is smooth, and there was no sudden jump because of the 

numerical solution techniques used in ABAQUS. Mode shapes, represented by 

out of plane deformations contour plot, at different strain levels through the 

post-buckling paths are illustrated in Figure 6.42. The figure shows that the 

initial buckling occurred at strain value 6.845E-4, which was lower than the 

buckling strain in VICONOPT analysis due to the effect of imperfection that 

make the panel buckle earlier, and the buckling point was mixed in the curves 

providing a smooth transition between buckling and post-buckling regions. 
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Figure 6.41: Load-strain curve for post-buckling analysis of isotropic stiffened 

panel 

Figure 6.42: ABAQUS contour plot of out of plane displacement for                                               

the isotropic stiffened panel 
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6.9.2 Composite panel 

The investigation of post-buckling analysis for a composite stiffened panel 

including mode jumping point detection will be discussed here. The panel has 

the same dimensions and boundary conditions of the isotropic panel studied 

previously. Exact strip analysis showed that the panel skin buckled locally with 

m=2 and the second buckling mode was m=3. The mode changing point was 

investigated as before in term of mode jumping strain. Unlike the metal panel, 

the results for the composite panel showed that the effective width methods 

estimated a relatively late jump at strain 5.872E-3 with load dropping from 

84.325 to 82.836 kN, whereas the energy approach predicted that the jump 

happened at strain values 5.328E-3 (5.302E-3) in which the load jumped from 

78.825 to 77.962kN (79.078 to 77.721 kN).  The jump occurred at a strain level 

approximately nine times the initial buckling strain. This relatively late jump 

can be interpreted by the fact that a stiffened panel has a higher ability to carry 

loads after initial buckling. The results are presented in Figure 6.43. The finite 

element analysis showed almost the same behaviour as the previous panel. The 

ABAQUS analysis showed a gradual mode change and it is possible to describe 

the finite element analysis curve as a multi-mode post buckling equilibrium 

path. The gradual change in the out of plane displacement contour plot is 

presented in Figure 6.44, which shows a smooth mode jump through chosen 

stations along the post-buckling path at different strain levels. The differences 

in mode shape changing between VICONOPT and finite element analysis in 

terms of the switching time was clear due to many reasons such as the different 

methods of analysis, the effect of imperfections and the element size compared 

to strip size in VICONOPT. However, both softwares showed a similar 

behaviour and very close responses in terms of the load-end shortening 

relationships and the mode-jumping occurrence, which is a fact that could not 

be ignored despite the difference in the mode jumping mechanism.  
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Figure 6.43: Load-strain curve for composite stiffened panel 

 

 

Figure 6.44: ABAQUS contour plot of out of plane displacement for                                               

the composite stiffened panel 
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6.10 Chapter summary  

Chapter 6 illustrates a theoretical investigation to explore the mode-jumping 

phenomenon in post-buckling analysis of thin-walled structures. First, the 

motivation of this study was explained which was improving the post-buckling 

analysis of exact strip analysis software VICONOPT. An explanation about 

mode jump occurrence in the post-buckling region in terms of the cause, 

mechanism and type of jump was presented before introducing the proposed 

approaches to predict the jumping point.  

The proposed solutions include two different methods, which are based on two 

well-known principles in the structural analysis of plated members. The 

former was an effective width approach based on von Karman’s effective width 

concept. Consequently, a brief review of this concept was described before 

introducing the proposed solution method. The latter method depends on an 

energy comparison between different equilibrium paths by assuming that the 

jump can only occur from one path to another, which has lower strain energy. 

Two mathematical techniques were used to calculate and compare the energy 

in order to specify the transformation point of mode change. The first one is 

called the third order polynomial method because it was assumed that the post-

buckling path is a 3rd order polynomial curve. Interpolation and integration 

techniques were used to evaluate the area under those curves. The procedure 

was coded in Matlab to find the target jumping strain.  The second technique 

was based on the trapezoidal method to calculate the energy and compare it at 

each post-buckling cycle. This method was written as a code using FORTRAN 

77. The code read the post-buckling stress and strain values from VICONOPT 

result sheets, and then used the energy comparison to find the strain at which 

the mode jump occurs.  The results are compared with finite element analysis 

using ABAQUS/CAE software utilising the dynamic explicit step analysis for 

validation. Then a number of isotropic and composite flat plates and stiffened 
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panels were analysed to prove the ability of the proposed solution approaches 

to specify the jumping point (strain). The main conclusions of this chapter are: 

 The first proposed approach based on effective width concept provides 

a simple and fast mathematical method to evaluate the jumping strain. 

The method showed an acceptable prediction in most of the examined 

plates and panels except some cases with specific aspect ratios. This is 

due to the approximations included in the calculations procedure such 

as the assumption that the middle strip carried zero load, which is in 

fact not completely true. 

 The second proposal which was used to predict the mode jumping point 

(strain) utilised the energy principle to compare the strain energy stored 

in different equilibrium paths in order to capture a point where the 

mode jump might occur. The calculations use a Matlab program to 

provide the jumping strain. The first calculation method assumes that 

the post buckling paths are curves with third polynomial equations. The 

energy was calculated using interpolation and integration techniques to 

compare and predict the jumping point. The second method used the 

trapezoidal integration method to calculate the energy for different post 

buckling equilibrium paths.  This method was written as FORTRAN 

code which uses the VICONOPT post buckling data for different modes 

to estimate the mode jumping strain.  

  When compared with ABAQUS/Dynamic explicit nonlinear finite 

element buckling analysis, the results of post-buckling analyses 

produced by VICONOPT for both flat plates and stiffened panels 

showed better agreement when mode jumping was accounted for.  
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7 Chapter 7: Mode Jump in Post-buckling Analysis of 

Stiffened Panels (Experimental Approach) 

7.1 Introduction 

This chapter focuses on examining by experimental testing the effect of mode 

jumping phenomenon on the post-buckling response of isotopic stiffened 

curved and flat panels. This type of structure is of significant interest to the 

aerospace industry, and it is therefore necessary to understand its behaviour 

under real loading conditions through experiments. The panels tested were 

subject to in-plane compression and monitored using digital image correlation 

(DIC) to visualise three-dimensional field deformations and strain gauges to 

measure the axial displacement in the direction of loading at different 

locations on the panels. The experimental results were compared with finite 

element (FE) analysis results, which used to validate the exact strip method 

discussed in the previous chapter. 

7.2 Specimen material and manufacturing  

7.2.1 Skin material 

The stiffened panel specimens were manufactured from two parts, the skin and 

the stiffeners. The skins were manufactured from aluminium alloy 6082-T6 

sheet [175] of 1.0 mm thickness. They were cut to the required size of the 

available test rig using a BAILEICH Guillotine as shown in Figure 7.1a, and 

then rolled in the rolling machine shown in Figure 7.1b. Rivet holes were then 

drilled at a spacing of 25mm (c/c) using an EDGE3000 as shown in Figure 7.1c, 

to enable attachment of the rivets. Finally, the skins were cleaned to prepare 

them for assembly. 
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Figure 7.1: Specimen manufacturing machines (mechanical workshop) 

 

7.2.2 Stiffeners material 

The stiffeners were made from 6082-T6 aluminium angle (50 mm x 50 mm x 

1.5 mm) which was used to generate L-shape stiffeners with dimensions 50 mm 

x 20 mm x1.5 mm. Each panel had five identical stiffeners, which were attached 

to the skin using Loctite Multi-bond 330 adhesive bond metal and 25 rivets, see 

Figure 7.2. The panels were then left at room temperature for 48 hr for the 

adhesive to cure. 

 

Figure 7.2: Stiffener- skin connections,                                                                              

(a) The skin-stiffener rivet connection, (b) Adhesive 
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7.2.3 Material properties test 

The aluminium sheets and angles, which were used to manufacture the 

stiffened panels, were tested to provide accurate mechanical properties 

particularly with respect to the onset of plasticity to be used in the finite 

element models developed.  Tests were carried out according to British 

Standard 6892 [176]. Three samples from the skin and the stiffeners were 

tested. Specimen dimensions are provided in Figure 7.3.  

Test were carried out using a Zwick/Roell testing machine as shown in 

Figure 7.4a. Specimens before and after the test are shown in Figure 7.4b, and 

7.4 c respective. All the specimens failed due to a fracture which occurred 

approximately at the mid length of the web. The results of the test in terms of 

stress strain curves are illustrated in Figure 7.5.  

 

 

 

Figure 7.3: Tensile strength specimen dimensions according to B.S. 6892 
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Figure 7.4: Material properties tensile test,                                                                                                   

(a) Test set-up, (b) Specimen before test, (c) Specimen after test 

 

 

Figure 7.5: Stress-strain curves for the aluminium used in panel 

manufacturing, (a) Skin sheet, (b) Stiffener angle 

 

Table 7.1: Mechanical properties 

Property Value Units 

Young’s modulus, E11 (material sheet) 70.0 GPa 

Young’s modulus, E11 (experimental), skin 72.2 GPa 

Young’s modulus, E11 (experimental),stiffener 72.6 GPa 

Poisson’s ratio, ν12 0.3 - 

Mass density, ρ (material data sheet) 2700 Kg.m-3 
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7.3 Stiffened panel specimens details 

The stiffened panels investigated had three different geometries. The panels 

were similar except for their radii of curvature. The tested specimens were 

chosen with specific dimensions and boundary conditions for the following 

reasons: 

 Stiffened panels are usually able to carry the additional load after initial 

buckling which provides relatively stable post-buckling behaviour and 

crucially the opportunity to capture the mode jump. 

 Despite their simple geometry, the panels were representative enough 

to enable the post-buckling behaviour of real aircraft components in 

both geometry and proportion.     

 The number of studies which have been carried out to investigate the 

behaviour of stiffened panels with L stiffeners is relatively small. 

 A suitable test rig was already available. 

Based on the these considerations, six stiffened panels were manufactured, two 

with radii of curvature 400 mm, two with 800 mm, and two ∞ (flat). Stiffeners 

were fixed with the 20 mm section flush against the main panel and 50mm 

perpendicular to the skin. These were equally spaced; however due to their 

orientation (see Figure 7.6) this resulted in a panel consisting of three skin bays 

with 80 mm of unsupported skin and a fourth in which only 60 mm was 

unsupported. The surface of the panels was spray painted white, using a white 

primer, with a black speckled pattern applied for use with the DIC system as 

will be explained in section 7.4.2. 
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Figure 7.6: Panel dimensions (all dimensions in mms) 

 

7.4 Test monitoring techniques 

In this study, two systems were used to monitor the responses of the panels 

under load: strain gauges to record axial strains of both skin and stiffeners and 

digital image correlation (DIC) to monitor 3D skin surface deformations. 

7.4.1 Strain gauges system  

Twelve strain gauges were attached in different positions on the skin and 

stiffeners. The gauges were sliver-clad copper KFGS-5-120-C1 produce by 
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KYOWA company [177], see Figure 7.7. Six gauges were located on the two 

skin panels in locations selected to coincide with the peaks of the buckles at 

different points during the post buckling process whilst the others were 

distributed over the three central stiffeners as shown in Figure 7.8. 

 

 

Figure 7.7: Strain gauges type KFGS-5-120-c1-23 

 

 

 

 

Figure 7.8: Strain gauges locations 
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7.4.2 Digital image correlation (DIC) system 

Digital image correlation is an optical measurement technique used to carry 

out full field, non-contact, two or three-dimensional measurement of the 

shape, displacements and strains in a specimen during testing. The system 

determines the targeted surface’s displacement from digital images of a 

random speckle pattern applied to the surface using a process of pattern 

recognition tracking. Images captured from the surface as it deforms are 

compared with a reference image taken from the undeformed surface before 

load application. 

7.4.2.1 La-Vision (DIC) system 

The Strain Master DIC system used in this work is shown in Figure 7.9. This 

system was programed to captures an image every 2.0 seconds (user defined) 

automatically through the system set-up. 

 

 

Figure 7.9: La-Vision DIC system components 
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7.4.2.2 Speckle pattern 

Before testing, each specimen was prepared for DIC by applying a speckle 

pattern. The optimum pattern is a random, rich in contrast, speckle pattern, 

which is typically created using spray paint. To achieve this, the samples were 

first cleaned carefully and then painted in two stages. First, two thin layers of 

white primer were applied to improve the contrast and then the speckle pattern 

was added which was made by black paint in a random arrangement as shown 

in Figure 7.10.  

 

Figure 7.10: Speckle pattern  

 

7.4.2.3 DIC calibration and set-up 

The system setup used is shown in Figure 7.11. A pair of Imager X-lite 8M CCD 

cameras fitted with 24 mm F/2.8 lenses were used. These are progressive scan, 

fully programmable cameras, with a resolution of 3312 x 2488 pixels.  

Calibration was performed using calibration plate number 058-5 shown in 

Figure 7.12 by a fully trained technician, who also supervised the system 

during the test.    
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Figure 7.11: DIC system set-up 

 

Figure 7.12: (a) LaVision X-lite 8M DIC camera, (b) calibration target plate 

7.5 Test set-up 

The test utilised a specially designed test rig shown in Figure 7.13, 

manufactured from stainless steel to apply a uniformly distributed 

compression load. The rig was mounted in a 500 kN Zwick servo-hydraulic 

testing machine. Axial alignment was maintained by four guide rods running 
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on linear bearings in the plate.  The six specimens tested were fixed in the rig 

using full clamps inserted into the top and bottom frame, which prevent any 

rotation in the specimen horizontal ends as shown in Figure 7.14a and 7.14b. 

These edges provided fully clamped boundary conditions along the bottom 

edge, with the top edge having the same condition except for the axial 

movement, Figure 7.14. The test was performed under displacement control 

with a crosshead velocity of 0.15 mm/min. 

 

                              

 

 

Figure 7.13: Test rig used in the stiffened panel experiment 
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(d) 

 

Figure 7.14: (a) Specimen mounted in the test rig, (b) Top clamp with 

specimen inserted, (c) Bottom clamp with specimen inserted,                            

(d) clamp details  
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The complete test set-up including strain gauging and DIC is shown in 

Figure 7.15 and 7.16. 

 

 

Figure 7.15: (a) Strain gauges positions, (b) test set up 

 

  

 

Figure 7.16: DIC set-up 
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7.6 Experimental results and discussion  

7.6.1 Stiffened panels with 400mm radii of curvature 

Figure 7.17 shows the load versus in-plane displacement curves for the two 

panels with radii of curvature 400 mm. The curves show that for the first 

specimen (400-1) significant displacement occurs initially with only a small 

increase in load. This is thought to be due misalignment between the ends of 

the stiffeners and the panel as shown in Figure 7.18 due to some of the 

stiffeners being slightly longer than the skin. Thus, a load eccentricity is 

generated with some of the stiffeners taking the whole of the load initially, 

resulting in relatively large deformations in these stiffeners, until their edges 

become aligned with the skin, after which the loading process continues 

normally across the whole of the specimen’s loaded edge.  

 

 

Figure 7.17: Axial load versus in-plane axial displacement for curved 

stiffened panels with a radius of curvature = 400 mm 
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Figure 7.18: Initial manufacturing imperfection 

 

This imperfection was significantly reduced in the second panel (400-2), which 

showed a significant decrease in this in-plane imperfection effect. The results 

for each panel will be discussed separately, starting with the first panel, for 

which DIC data is only available for the central part of the panel due to the 

position of the DIC cameras, as shown in Figure 7.19. This issue was solved in 

the three panels which were tested later.  

 

 

Figure 7.19: The area of panel 400-1,800-1, flat 1 captured by the DIC cameras 
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The load-shortening curves in Figure 7.17 can be described in relation to five 

key points. For the first panel (400-1) initial buckling occurs at a load of 56.344 

kN with the skin in the first three bays between the stiffeners buckling with 

two half-wavelengths as shown in Figure 7.20a. wich represents point 1 on the 

curve. The fourth bay buckles slightly later at point 2 on the load-end 

shortening curve when the load was 60.091 kN, see Figure 7.20b.  

A dramatic change occurs at point 3 with the panel jumping from its initial 

buckling mode to a new configuration with three buckles per bay and a 

corresponding drop in load from 69.947 to 68.420 kN.  Unfortunately, this 

change is not very clear due to the missing part in the DIC images extracted 

from the test; however, the third buckle can just be seen at the bottom of the 

first and second skin bays in Figure 7.20c. The equilibrium path showed a 

sudden drop at point 4 which is when that the panel jumps to a new 

configuration and the skin buckled with four half wavelengths as shown in 

Figure 7.20d. 

The final stage, starts at point 5 on the load-shortening curve, represents the 

beginning of the collapse stage at a load of 85.379 kN. Figure 7.20e and 7.20f 

show the blue buckles joining together in the lower part of the panel while the 

red ones in the upper part are due to severe bending with the skin and stiffeners 

failing due to high deformations. The specimen’s failure configurations 

presented in Figure 7.21 showed a skin-stiffeners debonding near the loaded 

edge in which the separation occurred in different positions of the five 

stiffeners. The debonding of the longitudinal boundary stiffeners combined 

with a crashing noise and severe deformations in those stiffeners.    
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                            (a)                              (b)                             (c) 

   
                              (d) 

 

                            (e)                               (f) 
Figure 7.20: Panel 400-1 contours of out-of-plane displacement (DIC images) 
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Figure 7.21: Panel 400-1 failure configurations 



1 Chapter 7 

 

183 

As discussed earlier the misalignment between the ends of the skin and 

stiffeners was significantly reduced in the second 400-2 panel although it was 

not eliminated. This panel started to show signs of initial buckling at 51.471 

kN with a single buckle being observed near the top of the second bay at point 

1 as shown in Figure 7.22a. This buckle transformed into two half-wavelength 

buckles at point 2 when the load reaches 68.135 kN, Figure 7.22b.  

This mode becomes clearer as the out of plane deformation increases, with two 

buckles being observed in all four skin bays in Figure 7.22c. Although the load 

- shortening curve showed a potential mode jump at point 3, the DIC results 

showed that this is due to a further buckle appearing only in the third skin bay. 

The full jump from the buckling mode L/2 to mode L/3 occurs at point 4, with 

the DIC images showing that the panels move to a completely new mode at 

this stage and all bays now contain three buckles. The jump from mode L/2 to 

L/3 again does not occur in the four skin bays at the same time as shown in 

Figure 7.22d. This is potentially due to different imperfections in each bay and 

the fact that these imperfections have a significant effect on the mode-jumping 

occurrence.  Moreover, the load eccentricity effect could be a reason for this 

behaviour.  

A second jump occurred and the skin bay started to move to a new buckling 

mode that had four buckles instead of three at point 5, as shown in the DIC 

output data in Figure 7.22e. The stage after point 5 can be considered the start 

of the failure stage with the load dropping significantly from 102.89 to 82.221 

kN by the end of the test as shown in Figure 7.22f.  The failure features of this 

panel are illustrated in Figure 7.23 which showed a realtively late skin-stiffener 

debonding compared with the other panels. 
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                                  (a)                                   (b)                                   (c) 

      
                                  (d)                                 (e)                                   (f) 

Figure 7.22: Panel 400-2 contours of out-of-plane displacement (DIC images) 



1 Chapter 7 

 

185 

 

 

Figure 7.23: Specimen 400-2 failure configurations 
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7.6.1.1 Strain gauge results  

This section will illustrate the strain gauge results and match them with results 

extracted from test machine and the DIC. More focus will be placed on the 

gauges positioned on the skin for two main reasons: 

 The two 400 mm panels exhibited local buckling of the skin with the 

stiffener following the deformations in the skin due to the potential 

rigid skin-stiffener connection.  

 Only the skin was observed by the DIC system, with the stiffeners fixed 

on the other side. Data for comparison with the strain gauges was 

therefore available for the skin side only. Observation of the stiffener 

behaviour would have required a more sophisticated system with more 

cameras than was available. 

The stiffeners strain gauge data for the three middle stiffeners is however 

useful, and will therefore be presented here, since it provides some insight into 

the level of support provided by those stiffeners to the skin. As described 

earlier, two gauges were attached to each stiffener.  Figure 7.24 and 7.25 show 

both the skin and stiffener gauge output data with the points corresponding to 

those highlighted on the end-shortening curves marked for comparison. The 

strain gauge data is presented as the relationship between load and micro-

strain. The gauges are renamed from Figure 7.8 as outlined in Table 7.2, to 

facilitate interpretation. 

The strain gauge readings for panel 400-1 are presented in Figure 7.24. The 

skin gauges show clear changes in behaviour at the same points as observed in 

the load-shortening curves, giving further insight into what is happening at 

these points. 
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Table 7.2: Strain gauges names according to positions 

Gauge number Position (Figure 7.8) Gauge name 

1 skin second bay sk1 

2 skin second bay sk2 

3 skin second bay sk3 

4 skin third bay sk4 

5 skin third bay sk5 

6 skin third bay sk6 

7 Stiffener 2 st1 

8 Stiffener 2 st2 

9 Stiffener 3 st3 

10 Stiffener 3 st4 

11 Stiffener 4 st5 

12 Stiffener 4 st6 

 

The results are divided into two sub-groups depending on their position. The 

first three sets of results, corresponding to the second skin bay, are shown in 

Figure 7.24a. These show that gauges sk1, sk2 and sk3 all exhibit the same 

behaviour, deforming in the same direction although to different degrees until 

point 1 when there is a sudden change. At this point, the reading for sk3 

changes from negative (compression) to positive (tension) due to the 

occurrence of a buckle in the area of the gauge, sk1 and sk2 showed a reaction 

at the same load level although they continue to be in compression albeit at a 

reduced level. 

Other points of change observed previously in the load-shortening curve also 

appeared in the strain gauges results. Figure 7.24b shows the results for the 

third skin bay. The level of compression in gauge sk5 can be seen to start to 

decrease after point 2 and gradually change to tension after point 3 which is 

considered to be the point at which the jump from L/2 to L/3 occurs.  



1 Chapter 7 

 

188 

The same type of behaviour is shown by gauge sk4 however this reading 

remains compressive after point 3. The stiffeners gauges showed in 

Figure 7.24c, 7.24d and 7.24e, display three interesting trends. Firstly, the data 

shows sudden changes occur at the same load levels as those highlighted in 

both the load shortening curves and the skin strain gauges showing these 

responses are linked as might be expected. Potentially there are two reasons 

for this: either the skin buckled locally first and affected the stiffener or the 

stiffeners buckled first reducing the level of support in the skin and hence 

causing it to buckle. The second reason could be more acceptable.  

Secondly, the strain gauges which was fixed near the bottom of the three mid 

stiffeners showed a change in strain from compression to tension, although 

these changes occurred in different points while the top gauges continued to 

record compressive strains even though the level of compression decreased at 

particular salient points. Finally, the results recorded by gauges st4 and st6 

showed early sudden deformation (buckling) at a load level of 23.54 kN before 

the other components. This behaviour is likely to be because of the initial 

manufacturing imperfections discussed earlier and the fact that these two 

stiffeners were longer than the rest of the panel. Consequently, they would 

have carried the load first and then deformed before the other part of the panel. 

The shape of the deformations in the panel could lead to the conclusion that 

the panel has a mixed failure mode; the main one being the local mode due to 

the skin buckling with the other was being a stiffener buckling mode.  

The difficulty in capturing the stiffener’s behaviour using the DIC system was 

a limitation in the test. However, the strain gauges still give reliable 

information on the behaviour at particular points and in particular are able to 

highlight points at which sudden changes occur. 
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(a)    (b)    

          

                       (c)          (d)                             (e) 

Figure 7.24: Strain gauge data for panel 400-1 (a) skin bay 2, (b) skin bay 3, (c) stiffener 2, (d) stiffener 3, (e) stiffener 4  
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The results for panel 400-2 results are presented in Figure 7.25. Considering 

bay 2 first, sk2 and sk3 show a sudden change at point 1, unlike sk1. The loading 

in sk2 reverses after point 1 with the gauge reading a positive strain until the 

failure of the panel. All three gauges show changes at points 2, 3 and 4 on the 

curve in Figure 7.25a, and the strain in all three gauges decreases at point 5 at 

a load level of 104.1 kN. The gauges mounted in the next skin bay (3) highlight 

changes at point 1, the initial local buckling on the skin, and then at points 2 

and 3, where the mode change from two to three half-wavelengths occurs at 

point 3. As with the neighbouring bay, the strain decreases after point 5 before 

the panel collapses, and all the gauges in this bay give a compressive reading 

throughout, see Figure 7.25b.   

The stiffener gauges are displayed in a similar way as for the previous panel.  

Stiffener 2 top and bottom gauges show approximately inverse behaviour; 

however, both gauges indicate compression throughout the test. The gauge st1 

in Figure 7.25c shows early deformation occurs at a load of 33.6 kN which is 

again because this stiffener was slightly longer than the loaded edge of the 

panel which resulted in it carrying all the load and hence deforming before 

the rest of the panel.  

Similarly, gauge st6 on stiffener four shows earlier buckling at a load of 19.547 

kN for the same reason although the initial imperfection for this stiffener was 

higher which could explain its considerably lower buckling load (Figure 7.25e). 

The reading from gauge st5 changes from positive to negative after the mode 

jump at point 3 which is explained by the appearance of a buckle near it which 

would make the gauge move in the reverse direction.  
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(a)    (b)    
 

 
                       (c)          (d)                                (e) 

Figure 7.25: Strain gauge data for panel 400-2 (a) skin bay 2, (b) skin bay 3, (c) stiffener 2, (d) stiffener 3, (e) stiffener 4 
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7.6.2 Stiffened panels with 800mm radii of curvature 

7.6.2.1 Load –shortening behaviour and DIC results  

The load-displacement relationships for the two 800mm radius panels are 

presented in Figure 7.26. In a similar way to panel 400-1, the graph shows the 

effect of initial imperfections generated during the panel’s manufacture on 

800-1 which was manufactured and tested alongside panel 400-1. Again due to 

some stiffeners being longer than others, these were loaded first with the result 

that there was a rapid increase in displacement initially, which became less 

rapid once the load was more evenly distributed, effectively increasing the 

stiffness of the panel.   

 

 

Figure 7.26: Axial load versus in-plane axial displacement for curved 

stiffened panels with a radius of curvature = 800 mm 
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The behaviour of panel 800-1 will again be discussed in relation to six salient 

points which are marked on Figure 7.26.  Following the initial sharp increase 

in deformation due to manufacturing imperfections, the panel behaves 

linearly until point 1 (at a load of 40.434 kN) at which the middle skin bays 

first buckle with a clear L/2 mode as shown in Figure 7.27a. Then, at point 2, 

the right hand side bay follows the mid skin bays at a load of 50.853 kN 

(Figure 7.27b).  

At point 3 there is a jump from mode L/2 to a new buckling configuration with 

three buckles along the length, which only partially appears in the DIC images 

due to the omission of the bottom section (Figure 7.27c, 55.506 kN). At load 

level 60.506 kN the curve shows (at point 4) a significant drop in load to 50.998 

kN which seems to be a jump. However, it can be seen that this happens 

because the left hand skin bay is stiffer than the others due to the two facing 

stiffener flanges in that bay providing additional support, and so the transition 

to 3 buckles is delayed until this point, at which a loud noise also occurs 

(Figure 6.27d). The curve then takes a relatively stable path until point 5 when 

the positive out of plane buckles start to join together in the upper half of the 

panel which can be considered the beginning of the failure stage.  

This failure continues after point 6 when the slope changes due to the negative 

buckles in the lower part of the panel beginning to join together before failure 

at a load 86.033 kN as shown in Figure 7.27e and 7.27f. The panel showed skin-

stiffener separation at some points during failure accompanied by a relatively 

load noise and the area near the loaded edges showed severe damage and bent 

with significant stiffener deformations. The positive out of plane displacement 

increased significantly up to 9 mm in the top part of the panel while the 

negative deformation decreases to -1.5 mm. The failed panel images are 

presented in Figure 7.28, which shows the large deformations in the panel and 

the stiffeners separation.  



1 Chapter 7 

 

194 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7.27: Panel 800-1 contours of out-of-plane displacement (DIC images) 
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Figure 7.28 : Panel 800-1 failure configurations 
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The second panel 800-2 showed similar trends but with some differences. The 

most significant of these was that the effect of in-plane imperfections was 

significantly decreased. At point 1 local buckling occurred, with three half-

wavelengths appearing in the middle skin bays as shown in Figure 7.29a. 

Then, at point 2 the outer skin bays followed, buckling relatively late compared 

with the middle bays, potentially due to smaller imperfections in the bays, the 

higher level of support provided by the stiffener orientation in the left hand 

skin bay reducing the unsupported width or the variations in loading caused 

by uneven stiffener lengths, see Figure 7.29b. 

A significant jump occurred at point 3 as shown in Figure 7.29c with the skin 

bays jumping to four buckles with the exception of the left hand bay, after 

which the panel continued with the same buckling mode configurations until 

point 4. At this point the panel started to show a high rate of overall bending 

with the buckles with negative out of plane displacement (blue) starting to 

move down the panel while the buckles with positive out of plane displacement 

(red) moving to the upper half of the panel near the loaded edge. This point 

can be considered the start of the failure stage, Figure 7.29d. 

As the load increased past this point, the panel showed significant deformation 

until at point 5, when the area near the loaded and opposite edges creased 

before the panel failed completely and the load dropped, see Figure 7.29e and 

7.29f. This drop off in load was accompanied by stiffener-skin separation in a 

number of locations, further reducing the panel’s ability to carry load. The 

failure images of the panel 800-2 are presented in  

Figure 7.30. 
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(a) (b) (c) 

 
  

(d) (e) (f) 
Figure 7.29: Panel 800-2 contours of out-of- plane displacement (DIC images) 
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Figure 7.30: Panel 800-2 failure configurations 
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7.6.2.2 Strain gauge results 

The strain gauge results for panel 800-1 are presented in Figure 7.31, again 

divided into two groups: skin and stiffener gauges. The skin results are 

separated into two groups of three gauges fixed in the same skin bay and are 

presented as relationships between load and micro-strain. Results for bay 2 

show a change for gauge sk1 at a load level slightly before point 1 marked on 

the curve. A sudden reduction in strain is then detected by all three gauges at 

point 2, potentially due to a new buckle appearing suddenly at the last skin bay 

on the right.  

The most interesting feature in Figure 7.31a, however, occurs at point 4, where 

a sudden change from compression to tension in gauge sk1 supports the 

presence of a mode jump at the same load level as seen in the load-shortening 

curve discussed previously. The load drops after point 6 at which there is 

evidence of panel failure close to 90 kN. Similar trends are observed in bay 3  

as shown in Figure 7.31b, with gauges again indicating a considerable reaction 

to the mode jump at point 4. Gauges sk1 and sk5 show a transformation from 

compression(negative) to tension (positive) at loads of  60kN (point 4) and 40 

kN (point 1) respectively. This is caused in each case by buckle initiating at the 

location at which they are mounted. Results for the three central stiffeners are 

illustrated in Figure 7.31c, 7.31d and 7.31e. All stiffeners showed observable 

changes at a load level of 60 kN where a mode jump occurs. The gauge st4, 

which is located in the middle stiffener, also shows early deformations at load 

level 39.52 kN due to the in-plane imperfection as appeared in skin gauge sk1 

at point 1. All the stiffener gauges demonstrate the same behaviour as the load 

drops close to load 88.74 kN (point 6) showing good agreement with the load-

shortening curve, although the reading for gauge st2 stop at load level 80 kN 

as shown in Figure 7.31c. 
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(a)     (b)  

 

(c)  (d) (e) 

Figure 7.31: Strain gauge data for panel 800-1  (a) skin bay 2, (b) skin bay 3, (c)stiffener 2, (d) stiffener 3, (e) stiffener 4  
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Results for the panel 800-2 strain gauges are presented in Figure 7.32. Notably 

for this panel Figure 7.32a and 7.32b show an early reaction at point 1 at load 

level 39.1 kN. This is due to deformation in the stiffeners near the gauges as a 

result of the extra-load applied on those stiffeners due to the manufacturing  

imperfections applied on stiffener 3 (0.5mm) and stiffener 4 (0.4 mm) and 

stiffener 5 (0.5 mm). The skin buckled locally at load 49.21 kN marked as point 

1 on the curve in Figure 7.32a and again at point 2 accompanied by sudden 

jumps in strain gauge data. The gauge responses occurring before point 1 at 

load 38.65 kN were potentially caused due to the stiffener deformations shown 

in Figure 7.32d and 7.32e in gauges sk3, sk4, sk5, sk6 respectively. 

All the skin gauges register a sudden drop at point 3 where a further jump 

occurs at a load of 83.6 kN, after which the curves recover until panel failure 

at a load of 88.5 kN. The stiffener gauge readings are presented in Figure 7.32c, 

7.32d and 7.32e. All gauges except st2 are seen to change suddenly at a load of 

39.1 kN, with st3 and st5 changing from a negative (compression) to a positive 

reading (tension). This is due to the stiffeners buckling relatively early 

compared with the skin for two reasons; firstly as the stiffeners have a higher 

stiffness than the skin bays due to their geometry they will carry more load 

and secondly, due to particular stiffeners taking all the load initially because 

of the imperfections generated through panel manufacturing. In fact, the 

significant effect of either in or out of plane manufacturing imperfections 

cannot be ignored. At the same time, it is difficult to avoid imperfections 

despite great attention to detail during manufacture. Therefore, the effect of 

imperfections must be considered in design because of the level of effect they 

have on the non-linear behaviour of the thin-walled shells particularly in terms 

of post-buckling and the mode jumping phenomenon. 
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(a)    (b)    

 

(c)  (d) (e) 

Figure 7.32: Strain gauge data for panel 800-2 (a) skin bay 2, (b) skin bay 3, (c) stiffener 2, (d) stiffener 3, (e) stiffener 4  
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7.6.3 Flat stiffened panels  

7.6.3.1 Load-shortening behaviour and DIC results 

This section highlights the results for the flat stiffened panels beginning with 

the load shortening relationships illustrated in Figure 7.33. 

 

 

Figure 7.33: Axial load versus in-plane displacement for flat stiffened panels 

 

The curve for Flat panel-1 highlights again the effect which in-plane 

imperfections can have on the buckling behaviour of the plate, in this case in 

the initial stages of the loading regime.  We first notice a sudden drop in the 

load-displacement curve at a load 50.229 kN with the panel buckling locally 

with four buckles in bay 2 and five buckles in bay 3 as illustrated in 

Figure 7.34a, which shows the out of plane displacement contour plots at the 
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start and end of the load drop. A further load drop occurs when the load 

reaches 54.854 kN at which point bay 1 jumps from L/4 to L/5 as shown in 

Figure 7.34b. At the same time, bay 4 shows a noticeable change in the out of 

plane displacement amplitude (particularly for the negative out of plane 

buckle (blue). Finally, as the curve starts to recover and rise again, a substantial 

drop in load from 53.678 to 44.931 kN occurs at point 3. This behaviour is due 

to further  jump in bay 1 with the skin jumps from L/5 to L/6 with a significant 

corresponding change in the out of plane displacement in bay 4, see 

Figure 7.34c.  

The curve then follows a smooth path until it reaches a load level of 70.593 kN 

marked as point 4. Figure 7.34d shows the panel is subject to a considerable 

increase in the deflection amplitude without clear evidence of a new mode 

jump.  The delay in buckling in bay 1 and its ability to sustain six local buckles 

reflect its increased stiffness in comparison to the other bays due to reduced 

unsupported width because of the orientation of the stiffeners. Hence, load can 

redistribute, particularly from bay 4, which has the lowest stiffness due to it 

being adjacent to an unsupported boundary. The effect of the different 

stiffnesses is more clearly seen in the flat panel where the additional stiffness 

the bays possess due their curvature, present in the previous two geometries, 

is not present.  

Point 5 on the curve represents the beginning of the failure stage in which 

high levels of deformation occurred in the stiffeners as well as the skin. This is 

particularly clear in the top right hand side of the panel near the loaded edge 

where out of plane displacements reach 4 mm as shown in Figure 7.34e, and 

14 mm in Figure 7.34f. The failure features and images for panel Flat-1 

including the skin-panel debonding near the loaded edge, are presented in 

Figure 7.35.                      
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Figure 7.34: Flat panel-1 contours of out-of- plane displacement (DIC images) 



1 Chapter 7 

 

207 

 

 

Figure 7.35: Panel Flat-1 failure configurations 
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Flat-2 panel behaves totally differently compared with the first flat panel 

especially in the early stages of post buckling region. This could be due to 

different manufacturing imperfections in the skin and stiffeners, slight 

differences in the boundary conditions at the loading edges due to variations 

in the level of packing used and finally the load eccentricity, which could have 

differed between one specimen and another. For this reason, ideally the 

number of specimens tested would have been increased in order to understand 

the level of scatter and its causes, however due to time and resource restrictions 

this was not possible. For this panel, local buckling occurs at point 1 with an 

L/3 mode for the first skin bays (from left to right) while the fourth one 

buckled with a mode close to L/5 as shown in Figure 7.36a. The independent 

behaviour of the neighboured skin bays can be explained due to the different 

initial imperfection for each bay and the differing levels of stiffness due to the 

orientation of the stiffeners and the free axial edges which provide less support 

than a neighbouring bay. The panel (unlike other specimens) makes a smooth 

transition between loads of 52.532 and 73.730 kN with the buckling 

configuration changing and the panel buckling with mode L/4 (Figure 7.36b). 

After point 2 at load 73.730 kN the fourth bay retains the L/5 mode.  

There is then a very small drop in load at point 3, corresponding to bay 3 

jumping to five buckles (Figure 7.36c). At a load level of 86.60 kN, high levels 

of deformation were observed in the panel with a consequent large reduction 

in load carrying capability due to the stiffeners buckling (Figure 7.36d). This 

deformation was particularly severe near the loaded edge. Point 5 can be 

considered the final stage before the panel fails (Figure 7.36e), at which the 

panel showed severe bending and the out of plane displacement increased 

rapidly and the load dropped off further. This behaviour was in part at least 

due to separations between the skin and the stiffener flanges in some locations 

and was accompanied by high levels of noise (Figure 7.36f).  
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(a) (b) (c) 

   

(d) (e) (f) 
Figure 7.36: Flat panel-2 contours of out-of- plane displacement (DIC images) 
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The failure images for panel Flat-2 are shown in Figure 7.37 below which 

illustrate the damage in the specimen after test. 

 

 

Figure 7.37: Panel Flat-2 failure configurations  
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7.6.3.2 Strain gauge results  

Strain gauge results for panel Flat-1 are presented in Figure 7.38. The skin 

results in Figure 7.38a and 7.38b show an early reaction at point 1 in bays 2 and 

3 at a load level close to 30 kN with the sk1 reading for example transformed 

from negative (compression) to positive (tension).  

This corresponds to a small buckle appearing near the loaded edge where this 

gauge is located which can be defined as the start of initial local buckling as 

shown Figure 7.38a. The effect of this buckle is not however significant enough 

to be observable in the load-shortening curve because of the relatively small 

out of plane amplitudes recorded. Other significant points on the output of the 

gauge correspond to points 2, 3 and 4, validating changes in the load-

shortening relationships illustrated previously. 

Gauge sk5 which is in middle of bay 3 starts to give a positive reading after 

point 3. This behaviour could be explained as a result of the out of plane 

displacement amplitude generally increasing after point 3 in which the DIC 

results showed that bay 3 has a jump from 4 to 5 buckles as shown in 

Figure 7.36c. 

Unfortunately gauge sk6 stopped working at this point and no further results 

were therefore able to be captured to determine what was happening towards 

the bottom of this bay. The stiffener gauges displayed changes in behaviour at 

the same points mentioned above reinforcing the strong interaction between 

the two, as expected. Noise is apparent in the data from gauges st3 and st5, 

however they continued to provide readings and showed reactions similar to 

other stiffener gauges. The full details of the strain readings from the stiffener 

gauges are described in Figure 7.38c, 7.38d and 7.38e, respectively. 
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(a)     (b)  

 
(c) (d) (e) 

Figure 7.38: Strain gauge data for panel flat-1 (a) skin bay 2, (b) skin bay 3, (c) stiffener 2, (d) stiffener 3, (e) stiffener 4 
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The Flat-2 panel strain gauge results are shown in Figure 7.39. In bay 2, gauges 

sk2 and sk3 showed similar trends up to point 2. After this however, sk2 

continued to indicate increased levels of compression whilst sk3 maintained 

only a very small compressive strain. The cause of this is the opposing 

directions of the buckles in the locations of these gauges as presented 

previously in the DIC output (Figure 7.39a). These results were in contrast to 

those for the neighbouring bay sk4 and sk6 in which the buckles are reversed. 

All six gauges located on the skin reacted at the same points of change marked 

on the load-shortening curve, demonstrating a good level of agreement 

between the machine and the strain gauge results. However all the gauges 

(with the exception of sk1 and sk6) stopped providing readings shortly after 

point 4 at a load of 83.6 kN due to substantial deformations occurring in the 

panel.  

The stiffener results showed some interesting features through their load-

strain relationship curves although unfortunately stiffener gauge st4 stopped 

working at a load of 60 kN due to an electrical problem. Gauges st1 and st6 

responded early in the loading cycle due to the stiffeners on which they were 

mounted being slightly longer than the rest of the panel and hence carrying 

all of the load during this period causing them to deform until they became 

level with the panel loaded edges. Consequently, these stiffeners were expected 

to show early signs of buckling due to these in-plane manufacturing 

imperfections. This is consistent with the effect of the in-plane imperfections 

during the initial stages of the load-shortening curves for this panel as 

discussed in section 7.6.3.1.  Gauge st1 stopped working above a load of 83.5 kN 

due to the high deformation in the effective area of this gauge. 

Figure 7.39c, 7.39d and 7.39e below describe the results of the stiffener gauges. 
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(a)    (b)    

 
(c) (d) (e) 

Figure 7.39: Strain gauge data for panel flat-2 (a) skin bay 2, (b) skin bay 3, (c) stiffener 2, (d) stiffener 3, (e) stiffener 4 
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7.7 Finite element models 

This section will describe the numerical analysis of the tested specimens and 

provide a comparison between the finite element (FE) models developed and 

the experimental results. This work utilises the commercial software ABAQUS 

incorporating both implicit ABAQUS/Standard and explicit ABAQUS/Explicit 

analyses. 

7.7.1 Models geometry 

Models were created for each of the three geometries tested. Since the ends of 

each panel were built-in during the test, only the unsupported length was 

modelled, giving a length of 400 mm (shown for the flat panel in Figure 7.40). 

The models assumed the interface between the skin and stiffener flat was 

perfect. 

 

 

Figure 7.40: Flat panel geometry and dimensions 
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7.7.2 Finite element meshes  

Models were generated using 2600 shell elements (for both Standard and 

Explicit analysis). The elements used were linear S4R elements from the 

ABAQUS/CAE element library. According to the ABAQUS user guide [156] 

using a reduced integration element (denoted by ‘R’) often significantly 

reduces running time compared with using the standard element (in this case 

S4), whilst being computationally more efficient. Following a convergence 

check elements based on a 10 mm mesh were used for all specimens. A simple 

example based on  a 300 x 420 mm flat plate loaded dynamically was used to 

test different element sizes. The results showed that using 10 mm elements 

provided an acceptable level of accuracy when compared with finer meshes (5 

mm and 1 mm) as shown in Figure 7.41, while the computational time was 

much lower. 

 

 

Figure 7.41: Model mesh sensitivity 
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7.7.3 Material properties  

The mechanical properties used in the ABAQUS model (Table7.1) were taken 

from the material tests detailed in Section 7.2.2 and the material data sheet 

provided by the supplier. The test data was necessary to provide the plasticity 

properties for the analysis (Table 7.3).   

Table 7.3: Plastic stress-strain data for aluminium material 

Plastic strain % Stress  

0. 000 200 

0. 310 230 

0. 330 240 

0. 350 250 

0. 370 260 

0. 420 270 

0. 449 280 

0. 579 290 

0. 890 300 

1.361 305 

1.942 310 

2.573 315 

3.301 320 

4.220 325 

5.520 330 

 

7.7.4 Geometric imperfections  

7.7.4.1 Out of plane imperfections 

Out-of-plane geometric imperfections were introduced to ensure the models 

used represented ‘as-built’ structures. In line with common practice, since their 

exact form was not known, they were modelled in the form of mode shapes 

obtained from an eigenmode analysis in ABAQUS/Standard with their 

amplitude scaled to give a representative level of imperfection.  
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To facilitate mode jumping, imperfections in the form of at least two 

eigenmodes were used. The imperfection values was measured using the DIC 

system results. 

7.7.4.2 In-plane imperfections (Load eccentricity) 

Further imperfections were generated during panel manufacturing due to 

some stiffeners being slightly longer than the skin, meaning that the these 

stiffeners were loaded before the rest of the panel. This produced a type of load 

eccentricity as shown in Figure 7.42a. The effect of these imperfections was to 

load the panels in two stages, with, the longer stiffeners (or in some cases parts 

of the skin) being loaded first and deforming (causing shortening) until they 

were level with the remainder of the panel (Figure 7.42b), at which point the 

load would be distributed across the whole edge as shown in Figure 7.42c. This 

effect was incorporated (as will be explained in the Section 7.7.7 later) in the 

explicit dynamic non-linear analysis of the models in order to accurately 

represent the behaviour of the real panels. 

 

Figure 7.42: Effect of in-plane imperfections that generates a load eccentricity 
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7.7.5 Boundary conditions 

The model’s boundary conditions simulated the edges conditions in the rig test 

which included free longitudinal edges and a fully clamped (built-in) bottom 

edge and a top edge which was similar to the bottom except that in-plane axial 

displacements were enabled to allow the panel to be compressed.  The stiffener 

web edges were also free to move. These boundary conditions are shown in 

Figure 7.43. 

 

Figure 7.43: Model boundary conditions 

 

7.7.6 Eigenvalue model  

Linear eigenvalue analyses were conducted for each geometry to provide 

estimates of the buckling loads and to obtain the eigenmode shapes needed for 

modelling geometric imperfections. ABAQUS/Standard (version 6.14) was 

used for this.  
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An eigenvalue buckling problem finds the loads for which the model stiffness 

matrix becomes singular. The output eigenmodes are normalised so that the 

maximum displacement component is one unit. Scaled versions of these mode 

shapes, with amplitudes representative of the imperfections measured in the 

test specimens (using the DIC system) were used in the dynamic analyses since 

they provide a conservative approach when the exact form of the geometrical 

imperfections is unknown [156]. 

7.7.7 Explicit dynamic model  

The simulated panel models, incorporating both material and geometric 

nonlinearities described in Sections 7.7.3 and 7.7.4 were analysed using the 

explicit dynamic solver step in ABAQUS/Explicit (version 6.14) [156]. As well 

as being ideal for analysing high-speed dynamic events, this solver has many 

advantages for the analysis of slower (quasi-static) processes, which are 

beneficial here. The use of a large number of small time increments in 

ABAQUS/Explicit is advantageous because each increment is relatively quick 

to compute (compared to the direct integration dynamic analysis procedure 

available in ABAQUS/Standard) as it does not require convergence iterations. 

The procedure uses diagonal (‘lumped’) element mass matrices whose inverses 

are simple to compute, significantly increasing computational efficiency. In 

addition, the vector multiplication of the inverse mass matrix by the inertial 

force requires only 𝑛 operations, where 𝑛 is the number of degrees of freedom 

in the model. Finally, the explicit procedure requires no global matrix 

operations and no tangent stiffness matrix calculation [156].  

Models incorporating out of plane geometric imperfections based on the initial 

eigenvalue analysis underwent a two stage explicit dynamic analysis. In the 

first stage the effect of the initial in-plane geometrical imperfections generated 

during the panel manufacturing was simulated by applying displacements to 
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the panel components that were found to be longer when measured. In the 

second stage displacements were applied to the whole of the loaded edge to 

represent the loading after the longer sections had deformed to the same 

length as the rest of the panel. Both steps utilised a tabular load ramp to control 

the load applied on the panel (under displacement control). 

7.8 Results and discussions  

This section analyses the results from the finite element analyses for the three 

stiffened panel geometries and compares with those obtained experimentally 

in order to validate the models. FE results will be compared with the 

experimental results for the second panel in each geometry group because of 

the availability of complete details of the DIC system images for those panels, 

unlike the first panels for which DIC data is not available at the top and bottom 

of the images, Figure 7.44 shows the main specimen components. 

 

 

Figure 7.44: Stiffened panel components 
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7.8.1 Panel with R = 400 mm 

Figure 7.45 compares the experimental results for the curved panel 400-2 

described previously in section 7.6.1 with the finite element analysis results in 

terms of a load-shortening curve. Salient points are marked for discussion. As 

the experimental results have been discussed previously, the following 

discussion will be focused on the FE results and their comparison with the test 

data. The first part of the curve for the numerical results represents the first 

step which simulates the in-plane imperfections, which are applied to the third, 

fourth and fifth stiffeners of the panel. Initial buckling in the skin begins at 

point 1, with two buckles per bay as shown in Figure 7.46a, at a load level of 

51.47 kN. The experimental out of plane displacement data shows relatively 

close correlation with the FE model, with some differences in the maximum 

negative deflection amplitude, which is higher in the experiments.  

 

 

 

Figure 7.45: Panel 400-2 experiments vs FE model results comparison 
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This could be explained by the fact that the imperfection mode and amplitude 

applied in the model is estimated and may be conservative. At point 2 

(Figure 7.45) a step is seen in both ABAQUS and experimental load-

displacement curves as out of plane deformations increases.  This increase in 

deformation can be seen clearly in both DIC and FE contour plots 

(Figure 7.46b) which show good agreement and continues to point 3 in 

Figure 7.46c  with maximum out of plane displacement values (both negative 

and positive) continuing to increase. There is a full jump from L/2 to L/3 which 

can be seen in the out of plane displacement contours in Figure 7.46d at point 

4. However there are some differences in how this occurs which can be seen by 

inspection of the full set of FE and DIC results. The main difference is that the 

jump in the ABAQUS mode shape occurs in all skin bays at the same time 

because the L/3 shaped imperfection is introduced into the whole structure 

from the beginning. This is not the case for the specimens tested which will 

have different imperfections in each bay and in which therefore some bays will 

jump before others. The tested panel therefore jumps more gradually and this 

is reflected in the load versus end shortening plot where point 4 occurs later 

in the experimental plot than the FE one. In terms of the amplitudes of out of 

plane deformations there is close correlation between the two sets of results 

when the displacement is positive while it is slightly higher in the model when 

it is negative.  A further jump is observed in the skin with the buckle pattern 

changing from L/3 to L/4 at point 5. The jump occurs in approximately the 

same sequence as the first jump with the experimental curves showing a 

partial jump in some skin bays initially while all bays jump at the same time 

in the FE model as illustrated in Figure 7.46e. The two modes are in better 

agreements later at point 6, Figure 7.46f, with the out of panel displacement 

amplitudes maintaining similar trends although the FE has a higher 

amplitude in the case of negative values. 
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Point (1) DIC image Point (2) DIC image Point (3) DIC image 

   

Point (1) FE contour z-displacement Point (2) FE contour z-displacement Point (3) FE contour z-displacement 
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Point (4) DIC image Point (5) DIC image Point (6) DIC image 

   

Point (4) FE contour z-displacement Point (5) FE contour z-displacement Point (6) FE contour z-displacement 

(d) (e) (f) 

Figure 7.46: Experiments vs FE out of plane displacement contours for panel 400-2 
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7.8.2 Panel with R = 800 mm  

The numerical results of the FE model are again compared with experimental 

result for the second tested stiffened panel 800-2 as shown in Figure 7.47. The 

linear region at the beginning of the ABAQUS curve represents the first step 

of the analysis in which displacement was applied to specific stiffeners which 

were slightly longer than the rest of the panel. Five points on this load-

shortening curves are of particular interest. Point 1 (49.5 kN) is the point at 

which the initial buckling configuration becomes apparent, with local 

buckling in the skin with half-wavelength L/3, Figure 7.48a. The mode shape 

for the FE model is similar to the experimental mode and appears at the same 

load level. 

 

 

 

Figure 7.47: Panel 800-2 experiments vs FE model results comparison 
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Differences can be observed however, specifically in the maximum deflection 

amplitudes. The model agrees well with experimental results in terms of 

maximum negative out of plane displacement amplitudes, however, 

maximum values of positive displacement are seen to be greater in the 

experimental results. Mode shapes become more similar moving towards point 

2 as shown in Figure 7.48b, although the maximum positive deflection seen in 

the test is double that predicted by the FE model. A mode jump from L/3 to 

L/4 is seen at point 3 in the experiment with a step in the load-displacement 

curve. In the FE model a small kink at a similar load potentially indicates the 

initiation of a jump which appears in the out of plane contour map in 

Figure 7.48c. The maximum positive experimental deflection increases rapidly 

at this point compared with the model data unlike the negative out of plane 

displacement for which the model has a slightly higher amplitude. A further 

jump occurs at point 4 as illustrated in Figure 7.48d, which can be observed 

clearly in both the DIC images and the contour maps from the model. 

Following this, the maximum positive out of plane displacement in the 

experiment increases significantly, particularly near the loaded edge, to more 

than 5 mm. This is not duplicated in the ABAQUS results which show a stable 

rise. This is potentially due to failure of the skin to stiffener bond reducing the 

stiffness of the panel in this area in the experiment. At point 5 and the stages 

after it (Figure 7.48e and 7.48f) deflection in the specimen continues to 

increase substantially, reaching more than 12 mm. The model predicts smaller 

values of deflection up to 3.6 mm at point 5, increasing to 10 mm by the end 

of the analysis. 
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Point (1) DIC image Point (2) DIC image Point (3) DIC image 

    

Point (1) FE contour z-displacement Point (2) FE contour z-displacement Point (3) FE contour z-displacement 

(a) (b) (c) 
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Point (4) DIC image Point (5) DIC image Point (6) DIC image 

   

Point (4) FE contour z-displacement Point (5) FE contour z-displacement Point (6) FE contour z-displacement 

(d) (e) (f) 

Figure 7.48: Experiments vs FE out of plane displacement contours for panel 800-2 
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7.8.3 Flat panel 

The results for the second flat panel will be discussed in this section. 

Figure 7.49 presents a comparison of the load versus displacement 

relationships between the experimental results and the numerical ones 

generated by the ABAQUS model. The curves are marked with six points, 

corresponding to changes in load versus displacement behaviour and mode 

shape. Initial buckling with half-wavelength L/3 occurs at point 1 

corresponding to a load level 51.482 kN. Figure 7.50a shows slight differences 

in mode shape between the FE contours and the DIC images although the 

maximum out of plane displacements are in agreement. Point 2 which occurs 

at a load level 72.4 kN on both curves indicates the point at which the FE mode 

shape starts to change as new buckles start to initiate near the horizontal edges 

indicating a mode jump, see Figure 7.50b. 

 

 

Figure 7.49: Flat panel experiments vs FE model results comparison 
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This change however occurs smoothly without a sudden change in the curve. 

The experimental mode shows slightly higher maximum deflections 

compared with the numerical result, and the mode is closer to L/4, differing 

from the FE mode which had L/3 for boundary bays and L/5 for middle bays. 

At point 3, the ABAQUS mode shape changes from L/3 to L/5 without  passing 

through L/4 mode in all the skin bays (Figure 7.50c), while the experimental 

results show a change from L/4 to L/5 in the third skin bay. The experiments 

again demonstrate that each skin bay behaves differently in contrast to the FE 

results.  Comparison of the maximum deflection amplitudes show they are 

higher in the test than the values predicted by ABAQUS which can be 

explained due to the effect of out of plane imperfections which will be different 

in the model from the experiment. The experimental curve shows a significant 

drop in the load at point 4 due to high levels of deformation in the panels with 

a number of buckles joining together causing the panel to begin to collapse 

(Figure 7.50d).  The FE model shows slightly lower maximum deflection 

amplitudes than experiment. At points 5 and 6 the experimental panel 

continues to show high levels of deformation with substantial out of plane 

displacements near the loaded edge (Figure 7.50e and 7.50f).  

This is very different from the ABAQUS results, possibly explaining the 

differences between the FE and experimental curves in Figure 7.49. The model 

results show a conservative trend and this is potentially explained due to two 

reasons. The main reason is because the skin comes away from the stiffeners 

in the experiment and this is not possible in the FE model due to fact that the 

bond is assumed to be perfect. In fact it is not perfect and it would be necessary 

to model the adhesive layer and allow it to fail using cohesive zone models in 

order to replicate the behaviour seen in the experiments. Moreover the out of 

plane displacement contour (buckling mode) was not exactly the same in the 

experiment.   
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Point (1) DIC image Point (2) DIC image Point (3) DIC image 

   

Point (1) FE contour z-displacement Point (2) FE contour z-displacement Point (3) FE contour z-displacement 

(a) (b) (c) 
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Point (4) DIC image Point (5) DIC image Point (6) DIC image 

   

Point (4) FE contour z-displacement Point (5) FE contour z-displacement Point (6) FE contour z-displacement 

(d) (e) (f) 

Figure 7.50: Experiments vs FE out of plane displacement contours for flat panel
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7.9 Chapter summary 

This chapter focuses on the experimental work of six stiffened panels that have 

variable radii of curvature.  The chapter started with a short description of the 

manufacture of the specimens including material properties obtained through 

testing to allow plasticity to be incorporated into the FE model and the 

machines used in this process. This was followed by details of the geometry 

and dimensions of the specimens.  Monitoring techniques namely; Digital 

Image Correlation and strain gauging, were utilised to provide comprehensive 

data on the panel’s responses and the deformation of constituent components 

(skin and stiffeners). The test set-up was then discussed followed by 

presentation of the experimental results. Finally the results of a series of 

numerical analyses performed using the finite element software ABAQUS to 

simulate the behaviour of the specimens tested to compare and validate the 

experimental results were presented. There are many facts that can be 

concluded from the experiments carried out in this chapter which are 

summarised as follows. 

 Thin walled structures are generally sensitive to manufacturing 

imperfections (in or out of plane imperfection) which can produce 

completely different behaviour compared to the theoretical behaviour 

expected for a perfect structure.  

 Despite the fact that advanced manufacturing in modern aerospace 

industry minimises the manufacturing imperfections, it is still difficult 

to manufacture a structural components with zero imperfections. Thus 

it is important for research purposes to explore its effect. 

 Working with real structures under loading had many differences 

compared with theoretical approaches dealing with the same type of 
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components. Thus, improving the experimental conditions is essential 

for providing a close representation of the real behaviour of similar 

structural parts under loads. 

 The connection parts between different structural components are still 

controversial topics in the research area which aims to optimise their 

performance (i.e. the skin-stiffener bond in this study). 

 Comparing the experimental results with FE (ABAQUS) results 

showed the main differences between the practical and theoretical 

results. These differences clarify the difficulties in simulating exactly 

the test circumstances. 

 The models used to compare the experimental results showed good 

agreement for curved panels with R=400mm, slightly less for 

R=800mm, while the flat panel result was relatively conservative. 

 It is essential to improve the numerical and analytical models to 

simulate the real structural behaviour under different types of loading 

due to the expensive cost of high quality experimental research. 

Hence, this can lead to better understanding of its behaviour with a 

lower budget. 
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8  Chapter 8: Conclusions and future work 

8.1 Conclusions  

The research in this thesis has investigated buckling and post-buckling, 

including mode jumping, of thin-walled structures, namely plates and 

stiffened panels. The work focused on the use of numerical and experimental 

approaches to: 

 Improve the buckling capacity of flat composite plates through a simple 

proposal to optimise stacking sequences, using anisotropy to increase 

the critical buckling load under different in-plane loading conditions 

such as compression, shear or a combination of both.   

 Enhance the post-buckling analysis function in the exact strip software 

VICONOPT which provides a reduced order technique for optimising 

structures for buckling and post-buckling performance, by including 

buckling mode change (mode jumping). This contribution addresses a 

previously significant limitation of the software and has been validated 

using finite element analysis.  

 Investigate experimentally the mode jumping phenomenon for a range 

of unsymmetrical panels with L-shape stiffeners and different radii of 

curvature to explore the actual behaviour under practical loading 

conditions of these components which form an important part of both 

wing and fuselage structures in the aerospace industry. By comparing 

the results obtained with numerical results generated using finite 

element analysis this has enabled the models used to validate the 

proposed mathematical approaches for predicting mode jumping to be 

verified. 
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More detailed conclusions relating to each of these contributions are presented 

below: 

8.1.1 Improving the buckling capacity of composite plates 

In Chapters 4 and 5, an optimisation approach utilising the anisotropic 

characteristics of composite plates to raise their buckling load was proposed. 

The main conclusions from this work can be summarised as: 

 Under uniaxial in plane loading analysis showed that the buckling load 

factor dropped significantly as the value of lamination parameter  𝜉3
𝐷 

(which controls the anisotropic properties of the laminate) ranged 

between 0.0 and 0.75 (which is the maximum for a balanced laminate). 

This inverse relationship between the level of anisotropy and the 

buckling load factor under in plane compression indicates that 

designing laminates with   𝜉3
𝐷=0.0 for similar load cases will maximise 

their buckling load. 

 For laminates under combined in-plane compression and shear loading, 

when the compression dominates, analysis showed that highest 

buckling loads were obtained when   𝜉3
𝐷 =

𝑁𝑥𝑦

𝑁𝑥 
. This applied to plates 

with a variety of different aspect ratios. 

 For laminates subject to combined in plane loading with shear loading 

dominant, results showed that higher buckling loads were obtained 

when   𝜉3
𝐷 = 0.75. Consequently, for better buckling performance, it is 

recommended that laminates under these loading conditions should be 

designed with maximum anisotropy. 

 When laminates are under pure in-plane shear the buckling load factor 

showed a significant increase when the skewing effect generated by the 

anisotropic properties had the reverse direction to the skewing 
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produced by the applied load. Conversely, a severe degradation in the 

buckling load capacity was seen when the anisotropy and shear act in 

the same directions.  In this case therefore, laminates should be 

designed to maximise their level of anisotropy (to   𝜉3
𝐷 = 0.75 in this 

study or    𝜉3
𝐷 = − 0.75  if shear is in the opposite direction) and to 

generate skewing acting against that generated by the shear load. 

 The number of layers and the aspect ratios had only a minor effect on 

the general overall trends of the examined laminates. 

 Results from both semi-analytical analyses using VICONOPT and 

numerical analyses using ABAQUS finite element software for a wide 

range of composite plates with different ply orientations under various 

in-plane loading conditions exhibited the same trends. 

 Whilst manufacturing constraints are not considered in the current 

study, the results are expected to be similar when they are taken into 

account. Further work is currently being completed to incorporate 

these. 

8.1.2 Enhancing post-buckling analysis through the introduction of 

mode jumping. 

The work presented in Chapter 6 enhanced the post-buckling analysis in 

VICONOPT by including the effects of mode change in the geometrical 

nonlinear buckling zone. This was achieved using a number of different 

methods which enabled the values of strain at which a mode jump could occur 

to be predicted. The main conclusions from this investigation are: 

 The effective width approach proposed provides a fast and simple 

mathematical method to calculate the strain at which a jump would 

occur. Despite providing accurate predictions in many cases, this 
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technique was overly conservative in others. This is due to the 

approximations such as the assumption that the middle strip (M.S.) 

carried zero load, which is in fact not completely true.  

 A second approach utilising a strain energy comparison for different 

post-buckling equilibrium paths was more successful across the full 

range of geometries tested. A calculation method using different 

numerical approximations was proposed to calculate and compare the 

strain energy, namely: the third order polynomial method and the 

trapezoidal method. Despite the two mathematical methods depending 

on different calculation techniques, they produced very similar results 

and accurate predictions of the jumping strain values.  

 The jumping mechanism was similar for both flat plates and stiffened 

panels: the skin buckled locally, and the occurrence of mode jumping 

depended significantly on the aspect ratio of the plate (panel) and the 

differences between the sequential post-buckling paths. The results also 

showed a small effect due to the material (isotropic or composite). In 

particular, mode jumping in composites was affected by stacking 

sequences since this affects both buckling and post-buckling behaviour. 

 VICONOPT post-buckling analysis incorporating the techniques 

described above showed an acceptable level of agreement with finite 

element results using ABAQUS in terms of load-end shortening in the 

initial post-buckling stage. This agreement reduced however as results 

started to diverge in the advanced post-buckling zone due to the effect 

of mode jumps. 

 The results of post-buckling analyses produced by VICONOPT for both 

flat plates and stiffened panels showed better agreement with 
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numerical analysis results after the effect of mode change had been 

considered. 

 Finite element analyses predicted a smooth transformation between 

different mode shapes, whereas the exact strip method showed a sudden 

transition between the modes. This can be explained by the fact that the 

VICONOPT post-buckling results use a VIPASA analysis that assumes 

plates have a sinusoidal buckling mode with an integer number of half 

wavelengths. Thus, the jump occurs directly from mode m to mode m+1 

without the transition stages seen in the ABAQUS results. This is 

particularly influenced by the imperfections introduced in the 

ABAQUS model, which facilitate jumping to the next mode shape. 

8.1.3 Investigating mode jumping in stiffened panels experimentally  

The experimental work carried out and discussed in Chapter 7 focused on 

investigating the post-buckling and mode jumping phenomenon for stiffened 

panels with differing geometries. The conclusions of this study are: 

 Initial imperfections due to manufacturing defects had a substantial 

effect on the initial buckling loads and mode shapes. The effect of load 

eccentricity on the post-buckling behaviour and mode change 

phenomenon was particularly significant. 

 The panels with the highest curvature of those tested (400 mm radius 

of curvature) showed similar trends with differences explained by their 

different imperfections positions and amplitudes. Both panels buckled 

locally with the unsupported plate sections jumping through a series of 

modes prior to the global failure of the panel. Numerical results 

predicted by ABAQUS finite element models showed good agreement 

with experimental results in terms of buckling mode shapes. However, 

the models predicted slightly higher mode jumping and collapse loads. 
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This behaviour could be explained due to the different out of plane 

positions and amplitudes of the imperfections in the model, which were 

based on eigenmode shapes scaled to represent measured defects rather 

than measured and modelled directly. 

 Both panels with 800 mm radius of curvature showed lower initial 

buckling load values compared with the 400 mm panels as was expected 

since the level of curvature affects the initial stiffness of the panel. The 

two specimens showed similar experimental trends, appearing to buckle 

locally in the skin before failing globally due to severe deformation in 

the stiffener and skin-stiffener debonding. Underestimation of the effect 

of the imperfections led to the panels having lower buckling and failure 

loads in the experiment, than was predicted analytically. More 

significantly debonding of the stiffeners in the regions between the 

rivets, which was seen through visual inspection to be a major 

contributor to the final failure mode, was not included in the model, 

resulting in a non-conservative estimate of the stiffness of the panel 

during the latter stages of its loading and consequently higher buckling 

and failure loads. 

 The final group tested, which consisted of two flat panels, varied 

significantly in their load versus end shortening behaviour. This was 

caused mainly by the effect of the load eccentricity due to initial in-

plane manufacturing imperfections, which were considerably greater in 

one panel than the other. This resulted in stiffeners which were longer 

than the skin and hence carried all of the load initially and were 

therefore noticeably deformed before the panel itself was loaded. This 

reduced the level of support the stiffeners were able to provide to the 

panel. Both specimens had lower buckling loads than the panels 

discussed previously, again due to reductions in stiffness resulting from 
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the lack of curvature (as well as the increased level of imperfection).As 

well as non-uniformly distributed loads, the resulting stiffeners 

deformations caused early skin-stiffener disconnections, causing 

greater divergence between experimental and analytical results. 

Another possibility is that because the flat plate has lower stiffness than 

the curved one, the effect of the supports is more important. Therefore 

for the same level of deformation in the stiffeners its effect may be 

greater in the flat panel than it would be in the curved one. 

 In all six specimens tested, it was observed that the skin bays often 

behaved independently, with individual bays exhibiting different mode 

shapes and jumping before or after neighbouring bays. This behaviour 

can be attributed to the panel’s asymmetric geometry, load eccentricity 

and the differences between the imperfections found in each bay.  This 

was not the case for the finite element model whose imperfections were 

based on the eigenmode, so would be similar (but not identical) for all 

bays. Consequently, mode jumping occurred in each bay at the same 

time due to the consistent imperfections introduced into each bay as 

discussed in Chapter 7. 

8.2 Future work 

 In terms of maximising the buckling capacity of composite plates under 

different load conditions, the optimisation guidelines proposed in the 

current work could be improved by using a modified branch and bound 

technique, incorporating manufacturing design constraints. Results 

could also be improved by using more orientation angles such as 0 and 

90 to give greater design flexibility or investigates unbalanced and 

asymmetric laminates. In addition, it would be worth applying the 
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procedure developed to plates with different (in-plane or out of plane) 

boundary conditions, expanding its applicability.  Finally it would be 

helpful to investigate the laminates studied experimentally to allow 

comparison to the theoretical results. 

 The enhanced post-buckling technique proposed could be implemented 

in an improved VICONOPT post-buckling analysis currently under 

development which uses VICON analysis rather than the VIPASA 

analysis used in this work. This would provide greater more flexibility 

in evaluating mode jumps which are currently limited to jumps from 

mode m to m+1 due to VICON’s ability to handle more complicated 

mode shapes. Consequently, it would be possible to investigate mode 

jumping under other loading conditions such as combined in-plane 

loading (compression and shear) and pure shear. 

 The experimental work done in this study could be expanded in many 

ways, for example using a different shape of stiffeners or using 

composite stiffened panels. The use of symmetrical panels would lead 

to more uniform mode shapes. In terms of manufacturing and other 

imperfections, it would be of interest to examine the levels of 

uncertainty introduced by a variety of factors. A fuller understanding 

of buckling and post-buckling behaviour could be gained by using 

additional cameras in the DIC system thus allowing the stiffeners as 

well as the panels themselves to be monitored. This could also be 

achieved by increasing the number of strain gauges or using triaxial 

gauges to record strain. Experimental investigations could also be 

repeated for different types of loading such as shear or impact loading. 

It would also be useful to test damaged panels to explore the effect of 

the damage initiation and propagation on the mode jumping 

phenomenon. 
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 Finally, the finite element model used to simulate the experimental 

tests could be developed by using cohesive elements to allow skin 

stiffener separation to be modelled. Incorporating more precise 

representations of the initial out of plane imperfections in terms of 

amplitudes and locations would also lead to models which more 

accurately reproduce experimental behaviour.
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Appendix  

Appendix A: Derivation of the plate bending 

and buckling governing equations.  

Starting with the out of plane displacement function assumptions: 

𝑤(𝑥, 𝑦) =
𝑤0
2𝑏3

(3𝑏3𝑦 − 𝑦3) 𝑠𝑖𝑛
𝑚𝜋

𝑎
𝑥 

 
(A1) 

𝜕2𝑤

𝜕𝑥2
= −

𝑚2𝜋2

2𝑎2𝑏3
𝑤0(3𝑏

3𝑦 − 𝑦3) sin
𝑚𝜋

𝑎
𝑥 

 
(A2) 

𝜕2𝑤

𝜕𝑦2
= −

3𝑦

2𝑏3
𝑤0 sin

𝑚𝜋

𝑎
𝑥 

 

(A3) 

𝜕2𝑤

𝜕𝑥𝜕𝑦
=
𝑚𝜋

2𝑎𝑏3
(3𝑏3𝑦 − 𝑦3) cos

𝑚𝜋

𝑎
𝑥 

 

(A4) 

we shall use the following useful integrations:  

∫ 𝑠𝑖𝑛2
𝑎

0

𝑚𝜋

𝑎
𝑥 𝑑𝑥 = ∫

1

2
(1 − 𝑐𝑜𝑠

𝑎

0

2𝑚𝜋

𝑎
𝑥) 𝑑𝑥 =  

𝑎

2
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∫ 𝑐𝑜𝑠2
𝑎

0

𝑚𝜋

𝑎
𝑥 𝑑𝑥 = ∫

1

2
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𝑎

0

2𝑚𝜋

𝑎
𝑥) 𝑑𝑥 =  

𝑎

2
 

 

(A6) 

From the elastic plate theory the bending and twisting moments are  

𝑀𝑥 = −𝐷(
𝜕2𝑤

𝜕𝑥2
+ ν

𝜕4𝑤

𝜕𝑦2
) 

 

(A7) 

𝑀𝑥 = −𝐷(
𝜕2𝑤

𝜕𝑦2
+ ν

𝜕4𝑤

𝜕𝑥2
) 

 

(A8) 

𝑀𝑥𝑦 = −𝐷(1 + ν) 
𝜕2𝑤

𝜕𝑥𝜕𝑦
 

 

(A9) 

where D = (E h3)/12(1 − ν2 )    

The equilibrium equation due to bending:  
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𝜕2𝑀𝑥

𝜕𝑥2
− 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑤

𝜕𝑦2
+ 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+ 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
= 0 

 

(A10) 

Substituting equations (A7), (A8) and (A9) into equation (A10), the differential 

equation of plate buckling can be obtained as: 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑥2
+
𝜕4𝑤

𝜕𝑥4
= 
1

𝐷
 (𝑁𝑥

𝜕2𝑤

𝜕𝑥2
2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+ 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
) 

 

(A11) 

To solve equation (A11) and calculate the buckling loads for a flat plate with 

SSSF edge conditions, apply the minimum principle of energy as follows. First 

the total strain energy of bending for the plate is:  

𝑈𝑏 = ∫ ∫ [(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

2

− 2(1 − ν)((
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤
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− (
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𝜕𝑥𝜕𝑦
)

2

)]
𝑏

0

𝑎

0

𝑑𝑦𝑑𝑥 

 

(A12) 

The total work done equals the loss of the potential energy: 

𝑉 =
1

2
∫ ∫ [𝑁𝑥 (

𝜕𝑤

𝜕𝑥
)
2

+ 2𝑁𝑥𝑦 (
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
) + 𝑁𝑦 (
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𝜕𝑦
)
2

]
𝑏

0

𝑎

0

𝑑𝑦𝑑𝑥 

 

(A13) 

The potential energy is minimised by solving the equation  

𝜕(𝑈𝑏 + 𝑉)

𝜕𝑤0
= 0 

 
(A14) 

Substituting equations (A1), (A2), (A3) and (A4) into equation (A12) and 

performing the integrations will produce: 

𝑈𝑏 =
𝐷

2
[
68

35
 
𝑚4𝜋4𝑏

8𝑎3
+
6

5

𝑚2𝜋2

𝑎𝑏
 +
3

2
 
𝑎

𝑏3
]𝑤0

2 

 

(A15) 

while the work done due to external uniaxial compression load is:  

𝑉 = −
𝑁𝑥
2
[
68

35
 
𝑚2𝜋2𝑏

8𝑎
]𝑤0

2 

 

(A16) 

Substituting equations (A15) and (A16) into equation (A14) and differentiating with 

respect to w0:  

𝐷

2
[
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35
 
𝑚4𝜋4𝑏

8𝑎3
+
6

5

𝑚2𝜋2
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3

2
 
𝑎

𝑏3
]𝑤0 −

𝑁𝑥
2
[
68

35
 
𝑚2𝜋2𝑏

8𝑎
]𝑤0 = 0 

 

(A17) 
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where w0 is the out of plane displacement amplitude and cannot be equal to zero. So 

the buckling load for isotropic plate under uniaxial compression is: 

𝑁𝑥 = 𝐷 [ 
𝑚2𝜋2

𝑎2
+

84

17𝑏2
 +
105

17
 

𝑎2

𝑚2𝜋2𝑏4
] 

 

(A18) 

Equation (A17) can be rewritten in terms of aspect ratio AR  

𝑁𝑥 =
𝐷

𝑏2
[ 
𝑚2𝜋2

(𝐴𝑅)2
+
105

17

(𝐴𝑅)2

𝑚2𝜋2
 +  

84

17
] 

 

(A19) 

For laminates equations (A11) has the form 

𝐷11
𝜕4𝑤

𝜕𝑥4
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑥2
+ 𝐷22

𝜕4𝑤

𝜕𝑥4
= 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
 

 
(A20) 

and by applying the same procedure of minimum potential energy, the buckling load 

for the laminate under compressive load is: 

𝑁𝑥 =
1

𝑏2
[ 
𝑚2𝜋2𝑏2

𝑎2
𝐷11 +

84

17
 𝐷12 +

168

17
 𝐷66 +

105

17
 

𝑎2

𝑚2𝜋2𝑏2
] 

 

(A21) 

In terms of aspect ratio equation (A21) can be written as 

𝑁𝑥 =
1

𝑏2
[ 
𝑚2𝜋2

(𝐴𝑅)2
𝐷11 +

84

17
 𝐷12 +

168

17
 𝐷66 +

105

17
 
(𝐴𝑅)2

𝑚2𝜋2
] 

 

(A21) 
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Appendix B: Comparison between different 

mathematical approaches of mode jumping 

strain detections with different layup: 

 

Mode jumping strain vs aspect ratio for laminate [45 -45 0 90 -45 45 90 0]s 

aspect ratio: 

 

 

 

 

 

Figure B1: Mode jumps from m=1 to m=2 
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Figure B2: Mode jumps from m=2 to m=3 

 

 

Figure B3: Mode jumps from m=3 to m=4 



 

264 

Appendix C 

Example 3: plate jumps from m=3 to m=4 

 Results for isotropic and composite plate with layup sequence [45 -45 -45 45 -

45 45 45 -45]s: 

The mode jumping phenomenon for a plate that initially buckled with three 

half wavelengths will be discussed here for isotropic composites with aspect 

ratio between 2.4 and 3.0 by utilising both solutions approaches suggested to 

predict the jumping strain. An explanation for metal as well as composite 

plates with aspect ratio 3.0 will be described as an example of mode 

transformation from mode m=3 to m=4.  

The isotropic plate with a/b =3.0 initially buckled with m=3 at load level 6.548 

kN (strain 9.038E-5) while the buckling load for mode m=4 was equal to 7.105 

kN (strain 9.817E-5). The jumping strain was 7.370E-4 using effective width 

approaches which was marginally lower than the jumping strain using the 

methods based on energy comparisons 7.748E-4 (7.723E-4) where the load is 

dropping from 20.3332 to 19.739 kN (20.290 to 19.701 kN) as presented in 

Figure C1.  

The finite element analysis showed that the plates initially buckled with mode 

m=3 and at strain 1.081E-4. A tiny buckle started to form to make the buckling 

pattern move gradually and then a fourth buckle expanded to switch the 

buckling mode to four half wavelengths instead of three (Figure C2).  

The laminates with aspect ratio 3.0 show almost the same behaviour as metal 

plates with some different features that will be discussed here. For instance, 

the jumping points estimated by effective width were, unlike the isotropic plate 

case with the same dimensions, higher than those predicted by methods based 

on the energy evaluations as shown in Figure C3. The ABAQUS model post-

buckling results showed that the laminates have three buckles at strain value 
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5.599E-4. After that, a fourth half wavelength started to grow at strain 1.1434E-

4 and continue to expand as the load increased to form a new mode 

configuration consisting of four sinusoidal buckles instead of three 

(Figure C4). The finite element analysis showed that the mechanism of mode 

switching is almost the same for all plates with different materials and 

dimensions, i.e. the mode jumping occurred gradually. Moreover, for all cases 

examined, the VICONOPT results showed a better agreement with ABAQUS 

post buckling analysis after including the mode jumping in the post-buckling 

region. 

 

 

 

 

Figure C1: Load vs strain for isotropic flat plate, a/b=3.0 
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Figure C2: ABAQUS buckling mode for isotropic plate, a/b =3.0 

 

Figure C3: Load vs strain for laminate [45 -45 -45 45 -45 45 45 -45]s, a/b=3.0 
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Figure C4: ABAQUS buckling mode for laminate [45 -45 -45 45 -45 45 45 -45]s, 

a/b =3.0 

 

A comparison between the effective width and energy approaches to detect the 

mode jumping strain for plates or laminates initially buckling with mode m=3 

and the jumping to m=4 is shown in Figures C5 and C6. The main noticeable 

feature of those results was that the effective width approach generally showed 

lower values of jumping strain for the isotropic plate and this trend was 

completely inverted for the composite plates.  
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Figure C5: Mode jumping strain for a range of isotropic plates (jump from 

m=3 to m=4) 

 

 

Figure C6: Mode jumping strain for a range of laminates                                                                    

[45 -45 -45 45 -45 45 45 -45]s  (jump from m=3 to m=4) 


