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Synthesis of 3,5-Disubstituted Isoxazoles via 1,3-Dipolar 

Cycloaddition Reaction between Alkynes and Nitrile Oxides 

Generated from O-Silylated Hydroxamic Acids  

Laure-Elie Carloni,[a] Stefan Mohnani,[a]  Davide Bonifazi*[b] 

 

Abstract: In this paper, we report the regioselective synthesis of 3,5-

disubstituted isoxazoles by 1,3-dipolar cycloaddition between alkynyl 

dipolarophiles and nitrile oxide dipoles generated in-situ from O-

silylated hydroxamic acids in the presence of trifluoromethanesulfonic 

anhydride and NEt3. Thanks to the mild, metal-free and oxidant-free 

conditions that this strategy offers, the reaction was successfully 

applied to a wide variety of alkynyl dipolarophiles, demonstrating the 

tolerance of this approach to diverse functional groups. In particular, 

we have shown that the method was compatible with biological 

molecules such as peptides and peptide nucleic acids (PNA). This 

protocol constitutes another example of metal-free 1,3-dipolar 

cycloaddition leading to the regioselective formation of isoxazoles. 

Introduction 

Identified in countless biologically active derivatives, such as 

chlorophyll, amino acids, nucleobases and vitamins, five- and six-

membered heterocycles are of greatest importance to life, drug 

discovery and medicinal chemistry.[1] Among them, isoxazoles 

form a major class of five-membered heterocycles with two 

heteroatoms (Figure 1).[2] Isoxazoles are key pharmacophores 

occurring in many natural products, e.g. ibotenic acid 1 and 

muscimol 2;[3] in a variety of bioactive compounds, such as anti-

inflammatories 3 and 4,[4] monoamine oxidase inhibitor 5,[5] 

penicillin antibiotic 6,[6] and herbicidal isoxaflutole 7.[7] Isoxazoles 

have other biological properties as antitubulin, antinociceptive 

and anticancer.[8] They also find applications in material science, 

e.g. molecular switches and polymer syntheses.[9] Furthermore, 

these heterocycles constitute an important organic synthetic tool. 

Indeed, although isoxazoles are hydrolytically stable, they can be 

cleaved under reducing or basic conditions, leading to different 

important latent functionalities, namely 1,3-dicarbonyl compounds 

8, enaminones 9, and -amino carbonyls 10 (Figure 1).[2, 10] As a 

result, many research groups have used isoxazole derivatives as 

masked functions in synthetic strategies towards heterocyclic 

compounds and natural products.[11] Isoxazoles, and their partially 

saturated analogues, can be prepared using diverse synthetic 

strategies.[12] Among them, the 1,3-dipolar cycloaddition reaction 

between nitrile oxides and corresponding alkenyl and alkynyl 

dipolarophiles is probably the most convenient, attractive and 

direct approach, via a preferred in-situ preparation of the 

dipoles.[1b, 2, 12a, 13] Indeed, as Quilico demonstrated in 1970, nitrile 

oxides in the presence of none or poor trapping agents, readily 

dimerize to furoxans.[14] They can also dimerize to 1,2,4-

oxadiazole 4-oxide in the presence of NEt3.[13a, 13b, 15] 

 

 

Figure 1. Examples of natural products (1-2) and bioactive compounds (3-7) 

bearing an isoxazole function. Isoxazoles can also be used as masked 

functional groups for various synthetic strategies e.g. towards 8-10. 

Several methods towards the in-situ generation of nitrile 

oxides have thus been developed, two of which are by far the 

most popular and well-established protocols. The first approach, 

namely the Mukaiyama method (Figure 2, Method a), involves the 

dehydration of nitroalkanes by aryl isocyanates in the presence of 

NEt3.[13c] The use of POCl3, MeSO2Cl and BzCl as dehydrating 

agents are improved variants of the original Mukaiyama 

procedure.[13a, 13b, 13d, 16] The action of DMAP and Boc2O[17] or 

DMTMM[18] on nitroalkanes was also successfully used to give 

nitrile oxide dipoles. The second method relies on the base-

mediated dehydrochlorination of hydroximoyl chlorides to yield 

the desired nitrile oxides (Figure 2, Method b).[13l] This procedure 

is often carried out as a halogenation/dehydrohalogenation 

reaction on the parent aldoximes, especially for unstable 

hydroximoyl chlorides.[13a, 13b] NCS, tert-BuOCl or NaOCl in the 

presence of NEt3, or chloramine-T without additional bases, are 

frequently employed in these procedures.[13e, 13f] On top of these 

approaches, the direct oxidation of aldoximes through the use of 

MnO2
[19] or organic hypervalent iodine reagents[20] is also a 

promising route to the in-situ generation of nitrile oxides (Figure 

2, Method c). Another strategy was described by Carreira and co-

workers in 2000.[21] It involves the treatment of O-silylated 

hydroxamic acids with Tf2O in the presence of NEt3 (Figure 2, 

Method d). In 2019, Dai et al. reported a novel direct Csp3-H bond 

functionalization of 2-methyl ketones and 2-methylquinoline with 
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tert-BuONO, generating nitrile oxide in-situ via a radical 

mechanism (Figure 2, Method e).[22]  

 

 

Figure 2. Overview of the synthetic approaches for preparing nitrile oxides in-

situ: a) dehydration of nitroalkanes; b) dehydrochlorination of hydroximoyl 

chlorides; c) oxidation of aldoximes; d) oxidation of O-silylated hydroxamic 

acids; and e) Csp3-H bond functionalization of 2-methylketones with tert-

BuONO. 

Although the cycloaddition between nitrile oxides and 

alkenyl derivatives is well-developed, the reaction with alkynyl 

dipolarophiles is usually affected by side reactions, often leading 

to byproducts and low yields. This is due to the relatively inert 

character of the triple bond. Following the Cu(I)-catalyzed azide-

alkyne cycloaddition protocol,[23] it was also demonstrated that the 

addition of Cu(I)-[24] or Ru(II)-based[25] catalysts to a mixture of 

alkynes and nitrile oxides, the latter species being generated in-

situ respectively from the parent aldoximes and hydroximoyl 

chloride, led to the formation of 3,5-di or 3,4-di and 3,4,5-

trisubstituted isoxazoles in high yields. Among the metal-free 

protocols, the group of Heaney conjugated aryl moieties with DNA 

on solid phase through a 1,3-dipolar cycloaddition between nitrile 

oxide and alkynyl moieties.[26] In their approach, nitrile oxide was 

generated in-situ by dehydrogenation of aryl aldoxime. In 2011, 

the group of Van Delft described an efficient phenyliodine 

bis(trifluoroacetate) (PIFA)-mediated synthesis of isoxazoles.[20b] 

In a parallel avenue, Kankala et al. reported in 2011 the 

nucleophilic organocarbene-catalyzed 1,3-dipolar cycloaddition 

of nitrile oxides with alkynes.[27] In 2014, the group of Pal reported 

the use of polyethylene glycol to facilitate the 1,3-dipolar 

cycloaddition of benzoylnitromethane and ethyl 2-nitroacetate 

with terminal alkynes leading to isoxazoles under green 

conditions.[28] Recently, the Csp3-H metal-free radical 

functionalization/cycloaddition cascade from ketones, alkynes 

and tert-BuONO proposed by Dai et al. allowed the synthesis of 

3-acyl and 3-quinoline isoxazoles in moderate to good yield.[22]  

While studying metal-free methodologies for the 

bioconjugation of structures of biological interest with functional 

organic dyes,[29] our group became interested in developing an 

alternative bioconjugation approach that would use the 1,3-

dipolar cycloaddition reaction between a nitrile oxide and an 

alkynyl derivative to produce isoxazole linkers. During these 

endeavors, we focused our attention on the Carreira’s protocol,[21] 

that produces isoxazolines via cycloaddition between an alkenyl 

derivative and a nitrile oxide, the latter being produced in-situ from 

O-silylated hydroxamic acids upon treatment with Tf2O and NEt3 

(Figure 2, Method d). In addition to the mild, metal-free and 

oxidant-free conditions that this strategy offers, we conjectured 

that the straightforward preparation of the parent O-silylated 

hydroxamic acids 11R1 could also be easily adapted on a large 

variety of substrates. Indeed, O-silylated hydroxamic acids can be 

readily obtained from the corresponding hydroxamic acids 12R1 

by silylation with tert-butyl(chloro)diphenylsilane in the presence 

of NaH (Scheme 1a). They can also be prepared from the 

corresponding carboxylic acids 13R1 by reaction with O-silylated 

hydroxylamine 14[30] following activation of the carboxylic acid 

moiety with HATU in the presence of DIEA (Scheme 1b). To our 

surprise, this method has not been used to prepare isoxazoles. It 

is with this aim that herein we report the successful adaptation of 

the Carreira’s protocol to the regioselective preparation of 3,5-

disubstituted isoxazoles (Scheme 1c) through the 1,3-dipolar 

cycloaddition reaction between in-situ generated nitrile oxides 

(15R1) and alkynyl dipolarophiles 16R2.  

 

 

Scheme 1. Synthetic protocol proposed in this work: formation of O-silylated 

hydroxamic acids 11R1 a) from hydroxamic acid derivatives 12R1, and b) from 

parent acids 13R1. Yields were 72% and 44% for R1 = Ph, respectively. c) 

Optimized 1,3-dipolar cycloaddition developed in this work for preparing 3,5-

disubstituted isoxazoles 17R1,R2. 

Results and Discussion 

We commenced our studies with the investigation of the basic 

reactivity of alkynes respect to alkenes in the 1,3-dipolar 

cycloaddition reaction with O-silylated hydroxamic acid 11a (R1 = 

Ph). This was achieved using aliphatic compounds 1-octyne 16a 

and 1-octene 18, following Carreira’s procedure (Scheme 2).[21] 

Hence, after dropwise addition of 1 M Tf2O in CH2Cl2 to a solution 

of 11a and NEt3 in CH2Cl2 at -40 °C, the reaction mixture was 

allowed to stir for 1 h at 0 °C, after which an 8-fold excess of 

dipolarophile[31] 16a or 18 was added, and the solution stirred 

overnight at rt. Desired isoxazole 17a and isoxazoline 19 were 

successfully synthesized in 49% and 79% isolated yield, 

respectively. The 30% difference in yield between the two 

reactions confirmed the expected lower reactivity of alkynes.[32]  
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Scheme 2. Evaluation of the reactivity of 1-octyne 16a respect to 1-octene 18 in 

the 1,3-dipolar cycloaddition reaction with nitrile oxide 15a, generated in-situ 

from O-silylated hydroxamic acid 11a. 

Next, we attempted to improve the cycloaddition yield with 

1-octyne 16a.[33] First, all side-products were isolated and 

compared to those obtained in a second trial in which no 

dipolarophile had been added to the reaction mixture. We 

observed that these side-products (Scheme 3, 20/21), of which 

structures 21 were proposed with the support of literature,[13a, 15] 

were identical in the absence and in the presence of 1-octyne. 

This observation suggested that the side-reactions mainly derive 

from nitrile oxide 15a and are independent on the dipolarophile. 

With this information in hand, we attempted the optimization of the 

reaction, with the idea of favoring the intermolecular cycloaddition 

reaction over the other side-reactions. Several conditions were 

explored, mainly focusing on the nitrile oxide generation.[33] 

Parameters such as the excess of the dipolarophile, time, 

temperature, the order of addition of the reagents, as well as the 

concentration of the reaction mixture were studied. Although none 

of these tests gave improved yields, we could conclude that: (i) 

the side-products mainly derived from the reaction of nitrile oxide 

15a with itself or with 20a (Scheme 3); (ii) these side-reactions do 

not take place below 0 °C; and (iii) they are faster than the 1,3-

dipolar cycloaddition with 1-octyne at rt. In light of these 

observations, we decided to monitor the generation of nitrile oxide 

at different temperatures, and noticed that it is formed within three 

minutes at -40 °C. This observation allowed us to improve the 

protocol. Namely, the reaction mixture was allowed to stir only for 

3 min at -40 °C after the addition of Tf2O to a solution of 11a, 

before it was cannulated over 1 h onto neat 1-octyne 16a at rt. 

The solution was then stirred overnight at rt (Scheme 1c). 

Following this procedure, desired isoxazole 17a was formed in 

75% yield, with an overall increase of 26%. To the best of our 

knowledge, this is one of the most efficient synthetic strategies to 

form 5-hexyl-3-phenylisoxazole 17a.[34] Similar yields were 

obtained either using the base-mediated conversion of 

propargylic N-hydroxylamines, through a detosylative 5-endo-dig-

cyclisation,[34a] or exploiting hypervalent iodine to generate in-situ 

the nitrile oxide species.[34b] Having in our hands the optimal 

conditions for our transformation, we extended the protocol to a 

variety of O-silylated hydroxamic acids 11R1 and of alkynyl 

substrates 16R2 (Scheme 4).  

We started by studying the effect of electron withdrawing 

groups (EWG) and electron donating groups (EDG) on the alkynyl 

reagent.[32] Reactions were carried out between O-silylated 

hydroxamic acid 11a and aromatic alkynes: ethynylbenzene 16b 

as a reference, electron-poor 1-ethynyl-4-(trifluoromethyl) 

benzene 16c and electron-rich 4-ethynyl-N,N-dimethylaniline 16d. 

When adding the alkyne in one batch onto benzonitrile oxide 

(according to Scheme 2),[21] both activated dipolarophiles 16c and 

16d gave the corresponding desired isoxazoles in higher yield 

than reference ethynylbenzene 16b (~65% isolated yield respect 

to 54%). 

 

 

Scheme 3. Reaction side-products 20 are formed during the formation of nitrile 

oxide. By-products 21 derive from the dimerization of nitrile oxides. Reported 

structures 21 are proposals which were assigned with the support of 

literature.[13a, 15] 

The cycloaddition reaction yields were increased with 

ethynylbenzene 16b and 1-ethynyl-4-(trifluoromethyl) benzene 

16c by cannulating the nitrile oxide into a solution of the 

dipolarophile (Scheme 1c). Indeed, both dipolarophiles afforded 

desired isoxazoles 17b and 17c in 78% of yield. On the other 

hand, 4-ethynyl-N,N-dimethylaniline 16d seemed to have 

decomposed to some extent under these conditions, thus giving 

an yield of 57%. Although the isolated yield for 3,5-diphenyl 

isoxazole 17b are slightly inferior to the protocols using PIFA 

(90%)[20b] or a mixture of KCl and oxone in H2O (87%),[35] our 

method gave similar results as those obtained with Cu(I)-

catalyzed synthesis of isoxazoles (72%),[24] as well as to other 

metal-based oxidative[19, 20c, 20d, 34b] and dehydrating strategies.[17] 

Using the optimized procedure, we then evaluated the 

compatibility of the reaction conditions with other functional 

groups. The protocol afforded 3-phenyl-5-(trimethylsilyl)isoxazole 

17e in 69% when starting from O-silylated hydroxamic acid 

precursor 11a and ethynyltrimethylsilane 16e. The reaction was 

also successfully applied to ethynylrhodamine 16f (Scheme 5).[36] 

The 1,3-dipolar cycloaddition reaction with nitrile oxide 15a led to 

the formation of desired isoxazole 17f in 66%. Upon formation of 

desired cycloadduct 17f, the ring-opening of the spirolactam 

moiety was observed, as described in Scheme 5.[37] Considering 

its application as molecular sensor, the result obtained with 

rhodamine B 22 was particularly interesting as this strategy offers 

a new route of functionalization of the fluorophore.[38] Indeed, 

modification of the N-terminus of the spiroamide moiety of 16f with 

a conveniently functionalized dipole precursor, could allow its 

conjugation to various receptors for the targets of interests.  

The 1,3-dipolar cycloaddition reaction was tested using 

ethynyltrimethylsilane 16e with polycyclic aromatic dipoles 11b 

and 11c, namely with an anthracenyl and a naphthyl core, 

respectively. The corresponding O-silylated hydroxamic acids 

were synthesized according to Scheme 1b. The desired 

isoxazoles 17g and 17h were respectively generated in 71% and 

67% isolated yields. The 1,3-dipolar cycloaddition reaction was 

also performed between naphthyl precursor 11c and 

ethynylbenzene 16b as well as 4-ethynyl-N,N-dimethylaniline 16d. 
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Corresponding isoxazoles 17i and 17j were formed in 72% and 

61% yield, respectively. 

 

 
Scheme 4. Scope of this work: the optimized protocol for the 1,3-dipolar 

cycloaddition reaction between alkynyl dipolarophiles 16R2 and nitrile oxide 15R1 

generated in-situ from O-silylated hydroxamic acid 11R1 was applied to a variety 

of substrates leading to diverse isoxazoles 17R1,R2. Isolated yields are reported. 

[a] 65% with original Carreira’s protocol. [b] Measured %area of desired 

cycloadduct in the RP-HPLC chromatogram of the crude reaction mixture. [c] 

Calculated from 49% conversion, as determined from the RP-HPLC 

chromatogram of the crude reaction mixture. 

 

Scheme 5. Synthesis of ethynylrhodamine 16f and further 1,3-dipolar 

cycloaddition reaction with nitrile oxide 15a. Upon formation of desired isoxazole 

17f, the ring-opening of the spirolactam form was observed in the presence of 

acid. 

The reaction was also extended to di- and tri-topic 

substrates, starting with the simple di-substitution pattern 

consisting of a 1,4-benzene core. The corresponding O-silylated 

hydroxamic acid 11d was synthesized according to Scheme 1b 

from terephthalic acid in 48% isolated yield, corresponding to 69% 

per functionality. The 1,3-dipolar cycloaddition reaction with 

ethynyltrimethylsilane 16e provided desired 17k in 50% yield, 

corresponding to 71% yield per hydroxamic acid group. Next, we 

focused on a tris-1,3,5-benzene substituted core pattern. O-

silylated hydroxamic acid derivative 11e was synthesized in four 

steps (Scheme 6). First, 4-methoxycarbonylphenylboronic acid 23 

was prepared by esterification of 4-carboxyphenylboronic acid 24 

with MeOH in SOCl2.[39] Reaction with 1,3,5-tribromobenzene 25 

in the presence of a catalytic amount of [Pd(PPh3)4] and Na2CO3 

under microwave conditions,[40] gave desired tricarboxylic acid 

derivative 26 after saponification with aqueous NaOH of resulting 

tris-ester 27.[41] Activation of tris-carboxylic acid 26 with HATU in 

the presence of DIEA, followed by reaction with O-silylated 

hydroxylamine 14, afforded desired nitrile oxide precursor 11e. 

Finally, subsequent cycloaddition reaction with 

ethynyltrimethylsilane 16e provided desired tris-isoxazole 17l in 

39% yield, i.e. 73% yield per functionality. 

 

 

Scheme 6. Synthesis of tris-O-silylated hydroxamic acid precursor 11e and 

subsequent 1,3-dipolar cycloaddition reaction with ethynyltrimethylsilane 16e. 

Lastly, we have studied the cycloaddition reaction between 

O-silylated hydroxamic acid 11a and 1,2-diphenylethyne 16g and 

with 1,4-diethynylbenzene 16h. 3,4,5-triphenylisoxazole 17m was 

obtained in less than 15% yield. This is in line with the limited 

reactivity of internal alkynes with nitrile oxides, as it is well 

established that isoxazoles would exclusively be obtained from 

electron-deficient internal acetylenic dipolarophiles.[2b, 42] On the 

other hand, only one of the two alkynyl moiety of 1,4-

diethynylbenzene 16h was successfully converted to isoxazole, 

leading to derivative 17n in 18% yield. We explained this result by 

considering the constraint imposed by 1,4-diethynylbenzene 16h 

to work with an excess of nitrile oxide, favoring decomposition of 

the latter into by-products over its reaction with alkynyl 

dipolarophile 16h (Scheme 3). 

The 1,3-dipolar cycloaddition reaction was finally used to 

functionalize peptide and peptide nucleic acid (PNA) species. 

Both were synthesized on a solid phase semi-automatic peptide 

synthesizer (Focus XC), using a classical 9-fluorenylmethyl 

carbamate (Fmoc) solid phase procedure (Scheme SI1) on a Rink 
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Amide MBHA resin, with the required amino acids (aa) or PNA 

monomers.[43] A peptide sequence (KFRVGVADVC) displaying 

potential function in antitumor therapies[44] was selected, and 

synthesized (Section 6 in the SI). Functionalization at the N-

terminal position with an acetylenic moiety was subsequently 

achieved to allow the 1,3-dipolar cycloaddition with nitrile oxides 

generated from O-silylated hydroxamic acid 11a (Scheme 7). The 

ethynyl moiety was introduced in the sequence by coupling 5-

hexynoic acid with the relevant peptide precursor 28d under the 

standard solid phase synthesis conditions (Scheme 7a). The 1,3-

dipolar cycloaddition reaction with nitrile oxide 15a was then 

performed on solid phase (Scheme 7b). To this end, a 10-fold 

excess of nitrile oxide, generated in-situ from O-silylated 

hydroxamic acid 11a with Tf2O in the presence of NEt3 at -40 °C, 

was cannulated at the same temperature onto a suspension of 

resin-bound ethynyl-functionalized peptide 16i in DMF, heated at 

50 °C for 16 h. This was followed by cleavage from the resin, 

complete deprotection of the side chains using an acidic cleavage 

mixture TFA/H2O/EDT/TIPS 94:2.5:2.5:1, precipitation with Et2O, 

and analysis of the resulting white solids by reverse phase HPLC 

(RP-HPLC). The RP-HPLC analysis of crude 17o displayed two 

major products, namely isoxazole 17o, and cleaved starting 

material ethynyl-peptide 16i. Incomplete conversion was 

observed likely due to the favored side-reactions of nitrile oxide 

over the reaction with the alkynyl moieties, when the former is in 

excess. Yet, the 1,3-dipolar cycloaddition reaction was shown to 

be compatible with peptidic structures and solid phase synthesis. 

Based on the analytical RP-HPLC chromatogram of the crude 

reaction mixture, 49% conversion of N-terminal ethynyl-peptide 

16i was obtained, of which 41% corresponded to desired 

cycloadded peptide 17o, and 8% to unidentified side-products, 

thereby resulting in 84% yield of peptide-isoxazole conjugate.  

 

Scheme 7. a) Synthesis of resin-bound ethynyl-functionalized peptide 16i; b) 

1,3-dipolar cycloaddition reaction on solid phase between 16i and nitrile oxide 

15a. The yield was calculated based on RP-HPLC chromatogram (%area) of 

the crude reaction mixture and on the measured 49% conversion. PS = 

polystyrene; R1 = amino acid side chain. Sequence: KFRVGVADVC.  

Next, the reaction was attempted on self-complementary 

PNA (sequence: (AATT)3-Lys), which was synthesized from the 

relevant Fmoc/benzyloxycarbonyl (Cbz)-protected PNA 

monomers. Solid phase synthesis, terminal functionalization with 

an acetylenic moiety and reaction with nitrile oxide 15a following 

the same strategies as that described above for ethynyl-peptide 

16i, gave PNA-isoxazole conjugate 17p formed in 43% (yield 

calculated on the %area from the RP-HPLC chromatogram of the 

crude reaction mixture). No trace of ethynyl-functionalized PNA 

16j were detected.[33]  

Conclusions 

In conclusion, we have successfully demonstrated the catalyst- 

and oxidant-free regioselective synthesis of 3,5-disubstituted 

isoxazoles by 1,3-dipolar cycloaddition reactions between alkynyl 

dipolarophiles and nitrile oxides, with the latter reagent being 

produced in-situ under mild conditions. The method is 

experimentally straightforward and convenient as it makes use of 

stable crystalline O-silylated hydroxamic acids dipole precursors 

readily synthesized from the corresponding hydroxamic or 

carboxylic acids. Through the application of the protocol to a 

variety of dipoles and dipolarophiles, we have observed that the 

mildness of this approach provides a tolerance to diverse 

functional groups as different 3,5-disubstituted isoxazoles were 

successfully synthesized in moderate to good yields. In particular, 

we have shown that the method was compatible with biological 

molecules such as peptides and PNA,[45] thus opening the way to 

the biorthogonal applications.[46] An isoxazole derivative of 

rhodamine B was also successfully formed, indicating that the 

strategy could provide a promising new functionalization route 

towards labelling and sensing applications. 

Experimental Section 

General Information: Chemicals were purchased from Sigma Aldrich, 

Acros Organics, Fluorochem, TCI, aapptec, carbosynth, and ABCR, and 

were used as received from the commercial suppliers. Resins for solid 

phase synthesis were purchased from Peptides International and aapptec. 

Solvents were purchased from Sigma Aldrich and Acros Organics. 

Deuterated solvents were purchased from Eurisotop. General solvents 

were distilled in vacuo. Anhydrous CH2Cl2 was distilled from phosphorus 

pentoxide. Anhydrous DMF was purchased from Acros Organics. Low 

temperature baths were prepared using different solvent mixtures 

depending on the desired temperature: -40 °C with CH3CN/liquid N2, -10 

°C with ice/brine, and 0 °C with ice/H2O. Anhydrous conditions were 

achieved by drying Schlenk lines, 2-neck flasks or 3-neck flasks by flaming 

with a heat gun under vacuum and then purging with argon. The inert 

atmosphere was maintained using argon-filled balloons equipped with a 

syringe and needle that was used to penetrate the silicon stoppers used 

to close the flasks’ necks. The addition of liquid reagents was done by 

means of dried plastic syringes or by cannulation, using standard inert 

atmosphere techniques. Microwave reactions were performed on a 

Biotage AB Initiator microwave instrument producing controlled irradiation 

at 2.45 GHz. Solid phase peptide syntheses were performed on a semi-

automatic FOCUS XC peptide synthesizer, coming with a 

computer/control system from aapptec. Reactions were monitored by thin 

layer chromatography (TLC) using pre-coated aluminum sheets with 0.20 

mm Machevery-Nagel Alugram SIL G/UV234 with fluorescent indicator 

UV254 or UV366. Components were visualized by illumination with short-

wavelength UV light. All products were purified by flash column 

chromatography on Grace silica gel 60 (particle size 40-63 µm). Peptide 

and PNA oligomers were analyzed and purified by high performance liquid 

chromatography (HPLC) on a Varian 940-LC liquid chromatograph system 

with a Varian Pursuit C18, 5 µm, 250 × 4.6 mm analytical column and a 

Varian Pursuit C18, 5 µm, 250 × 21.2 mm preparative column. 0.1% TFA 

in H2O and 0.1% TFA in CH3CN were used as eluents in all cases. 

Lyophilisation was performed on a Christ Freeze Dryer ALPHA 2-4 LDplus, 

connected to a Vacuubrand Chemistry-HYBRID-pump, with an ice 

condenser temperature of approx. -85 °C and a vacuum of approx. 2.10-3 

mbar. 1H and 13C NMR spectra were obtained on a 400 MHz NMR (Jeol 

JNM EX-400). Chemical shifts were reported in ppm according to 

tetramethylsilane using the solvent residual signal as an internal reference 
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(CDCl3: H = 7.26 ppm, C = 77.16 ppm; CD2Cl2: H = 5.32 ppm, C = 53.84 

ppm; DMSO-d6: H = 2.50 ppm, C = 39.52 ppm). Coupling constants (J) 

were given in Hz and were averaged. Resonance multiplicity was 

described as s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m 

(multiplet), br (broad signal), dd (doublet of doublets). Carbon spectra were 

acquired with a complete decoupling for the proton. 

General Experimental Procedure for the Preparation of O-(tert-

Butyldiphenylsilyl)hydroxamic acids (11) – Hydroxamic acid route 

(Method A): A solution of benzhydroxamic acid (1 eq) in THF was treated 

at 0 °C with NaH (60% in mineral oil, 2 eq) in two portions at 20 min 

intervals, under an inert atmosphere of argon. After 30 min, when all H2 

gas evolution had stopped, the solution was cooled to 0 °C, and tert-

butylchlorodiphenyl silane (1.1 eq) was added dropwise over 30 min. The 

reaction mixture was then allowed to warm up to rt and was stirred for 

additional 2 h. It was subsequently diluted with H2O and extracted with 

EtOAc. The organic extracts were washed with H2O and dried over 

anhydrous Na2SO4, filtered and concentrated to dryness in vacuo. The 

residue was purified by silica gel column chromatography to afford desired 

product 11. With this procedure, we prepared derivative 11a. 

General Experimental Procedure for the Preparation of O-(tert-

Butyldiphenylsilyl)hydroxamic acids (11) – Carboxylic acid route 

(Method B): To a suspension of benzoic acid (1 eq) in anhydrous DMF 

were added DIEA (2 eq) and HATU (1.1 eq), in this order, under an inert 

atmosphere of argon. The resulting reaction mixture was stirred for 30 min 

at rt, after which O-silylated hydroxylamine 14 (1.5 eq) was added at 0 °C 

and the resulting solution stirred overnight (approx. 16 h) at rt. It was then 

concentrated to dryness in vacuo to yield a solid residue, which was 

dissolved in CH2Cl2 and washed with H2O. The aqueous phase was 

extracted with CH2Cl2 and the combined organic phases washed with H2O 

and brine, dried over anhydrous Na2SO4, filtered and concentrated to 

dryness in vacuo. The residue was purified by silica gel column 

chromatography to afford desired product 11. With this procedure, we 

prepared derivatives 11a-e. 

N-((tert-Butyldiphenylsilyl)oxy)benzamide (11a):  

Synthesis according to Method A: Yield 72% (492 mg) of desired product 

11a as a white solid. Synthesis according to Method B: Yield 44% (2.69 g, 

white solid). Rf = 0.42 (Cyclohexane(Cy)/EtOAc 95:5). m.p. 134-137 °C; 
1H NMR (400 MHz, DMSO-d6, *denotes rotamer peaks):  11.40 & 10.92* 

(s, 1H, NH), 7.76 (m, 4H, CH), 7.53-7.37 (m, 11H, CH), 1.11 (s, 9H, CH); 
13C NMR (100 MHz, DMSO-d6):  166.5, 135.5, 132.7, 132.1, 131.4, 130.1, 

128.4, 127.6, 127.2, 26.8, 19.2. All other spectroscopic and analytical 

properties were identical to those reported in the literature.[21]  

N-((tert-Butyldiphenylsilyl)oxy)anthracenyl-9-carboxamide (11b), 

synthesis according to Method B: Yield 41% (351 mg) of desired 

product 11b as a yellow solid. Rf = 0.62 (CH2Cl2/MeOH 95:5). m.p. 91-

94 °C; 1H NMR (400 MHz, DMSO-d6):  11.67 (s, 1H, NH), 8.60 (s, 1H, 

CH), 8.04 (m, 2H, CH), 7.88 (m, 4H, CH), 7.57 (m, 2H, CH), 7.51-7.44 (m, 

6H, CH), 7.30-7.23 (m, 4H, CH) 1.17 (s, 9H, CH), the proton assignment 

has been done by 2D analysis; 13C NMR (100 MHz, DMSO-d6):  165.7, 

135.9, 131.4, 130.4, 130.3, 129.7, 128.2, 127.8, 127.7, 126.4, 125.5, 

125.1, 26.9, 19.2 (one of the quaternary aromatic carbons overlaps with 

another signal); IR (cm–1):  507.3, 698.7, 709.2, 727.8, 737.9, 807.9, 

888.5, 1060.0, 1116.1, 1427.5, 1471.0, 1498.4, 1648.9, 2856.9, 2929.8, 

2955.5, 3052.6, 3200.4; MS (APCI-HR-MS): Found 476.2043 [M+H]+, 

C31H29NO2Si requires = 476.2046.  

N-((tert-Butyldiphenylsilyl)oxy)-1-naphthamide (11c), synthesis 

according to Method B: Yield 48% (237 mg) of desired product 11c as a 

white solid. Rf = 0.45 (Cy/EtOAc 93:7). m.p. 164-167 °C; 1H NMR (400 

MHz, DMSO-d6):  11.48 (s, 1H, NH), 7.95 (m, 1H, CH), 7.89 (m, 1H, CH), 

7.81 (m, 4H, CH), 7.51-7.42 (m, 9H, CH), 7.36-7.34 (m, 1H, CH), 7.27 (d, 

J = 6.9 Hz, 1H, CH), 1.14 (s, 9H, CH), the proton assignment has been 

done by 2D analysis; 13C NMR (100 MHz, DMSO-d6):  166.5, 135.8, 

132.9, 131.9, 131.7, 130.2, 130.1, 129.9, 128.0, 127.6, 126.6, 126.2, 

125.5, 125.1, 124.7, 26.9, 19.2; IR (cm–1):  503.2, 526.6, 567.3, 593.9, 

615.1, 623.3, 689.0, 701.7, 711.6, 734.2, 754.1, 782.6, 805.3, 822.8, 

899.5, 1054.6, 1116.5, 1427.2, 1512.4, 1651.9; MS (ESI-HRMS): 

Found 426.1882 [M+H]+, C27H28NO2Si requires = 426.1884; 

Found 448.1703 [M+Na]+, C27H27NNaO2Si requires = 448.1703.  

N1,N4-bis((tert-Butyldiphenylsilyl)oxy)terephthalamide (11d), 

synthesis according to Method B: Yield 48% (581 mg; 69% per 

functionality) of desired product 11d as a white solid. Rf = 0.51 (Cy/EtOAc 

90:10). m.p. decomposition at 121-123 °C; 1H NMR (400 MHz, DMSO-d6, 

*denotes rotamer peaks):  11.47 & 11.13* (s, 2H, NH), 7.73-7.72 (m, 8H, 

CH), 7.49-7.38 (m, 16H, CH), 1.09 (s, 18H, CH); 13C NMR (100 MHz, 

DMSO-d6):  135.4, 134.6, 132.3, 130.0, 127.6, 126.8, 26.9, 19.2, 

quaternary carbonyl carbon signal was not observed; IR (cm–1):  507.2, 

615.9, 622.7, 697.1, 710.9, 757.7, 764.8, 822.6, 852.8, 894.8, 1013.1, 

1031.2, 1116.0, 1167.2, 1194.4, 1261.1, 1275.7, 1312.3, 1362.1, 1427.7, 

1471.1, 1486.0, 1516.3, 1651.8, 2859.4, 2955.5, 3190.5; MS (ESI-HRMS): 

Found 673.2905 [M+H]+, C40H45N2O4Si2 requires = 673.2912. 

N4,N4''-bis((tert-Butyldiphenylsilyl)oxy)-5'-(4-(((tert-

butyldiphenylsilyl)oxy)carbamoyl)phenyl)-[1,1':3',1''-terphenyl]-4,4''-

dicarboxamide (11e,) synthesis according to Method B: Yield 26% 

(104 mg; 64% per functionality) of desired product 11e as a white solid. Rf 

= 0.39 (CH2Cl2). m.p. 104-107 °C; 1H NMR (400 MHz, DMSO-d6, *denotes 

rotamer peaks):  11.48 & 11.04* (s, 3H, NH), 7.94 (s, 3H, CH), 7.91 (d, J 

= 8.2 Hz, 6H, CH), 7.81-7.74* (m, 13.5H, CH), 7.64* (d, J = 8.2 Hz, 4.5H, 

CH), 7.49-7.40 (m, 18H, CH), 1.13 (s, 27H, CH); 13C NMR (100 MHz, 

DMSO-d6, *denotes rotamer peaks):  166.0, 142.6, 140.7, 135.6, 135.2, 

134.8*, 134.5*, 133.5*, 132.1, 131.8*, 130.1, 129.7*, 129.2*, 127.7, 127.6, 

127.5*, 127.3*, 127.1, 126.2*, 125.1, 27.2*, 26.8, 26.5*, 19.2; IR (cm–1):  

486.8, 502.4, 612.4, 621.6, 649.4, 697.9, 738.7, 760.0, 797.9, 821.9, 

876.7, 909.9, 952.9, 998.3, 1013.8, 1035.5, 1106.78, 1113.9, 1158.7, 

1187.5, 1233.5, 1291.5, 1314.0, 1362.5, 1392.1, 1409.1, 1427.4, 1441.4, 

1371.6, 1487.7, 1526.8, 1588.4, 1609.8, 1681.5, 1899.7, 2857.0, 2893.2, 

2930.3, 3048.8, 3071.8, 3192.4, 3408.3; MS (ESI-HRMS): 

Found 1198.5030 [M+H]+, C75H76N3O6Si3 requires = 1198.5036; Found 

1199.0054 [2M+2H]2+, C150H152N6O12Si6 requires = 1199.0053.  

O-(tert-Butyldiphenylsilyl)hydroxylamine (14): To a stirred suspension 

of hydroxylamine hydrochloride (500 mg, 7.19 mmol) in anhydrous CH2Cl2 

(20 mL) was added NEt3 (1.60 g, 2.21 mL, 15.83 mmol) under an inert 

atmosphere of argon. The mixture was allowed to stir for 1 h at rt. Neat 

tert-butylchlorodiphenyl silane (2.18 g, 2.06 mL, 7.91 mmol) was added, 

and the reaction mixture allowed to stir overnight (approx. 16 h) at rt. The 

mixture was then concentrated to dryness in vacuo and THF (10 mL) 

added to the crude. Triethylamine hydrochloride was removed as a white 

solid by filtration. The flask and precipitate were washed (3 × 5 mL) with 

THF, and the resulting solution concentrated to dryness in vacuo. Ice-cold 

pentane (15 mL) was added to the residue, the mixture briefly sonicated 

and the compound allowed to crystallise in the fridge for 2 h. The solid was 

collected by filtration and washed with ice-cold pentane, yielding 14 (1.77 

g, 91%) as a white crystalline solid. m.p. 68-70 °C; 1H NMR (400 MHz, 

CD2Cl2):  7.75-7.71 (m, 4H, CH), 7.44-7.39 (m, 6H, CH), 1.08 (s, 9H, CH), 

NH protons were not observed; 13C NMR (100 MHz, CD2Cl2):  135.8, 

134.1, 130.0, 128.0, 27.4, 19.4. All other spectroscopic and analytical 

properties were identical to those reported in the literature.[30] 

3',6'-bis(Diethylamino)-2-(prop-2-yn-1-yl)spiro[isoindoline-1,9'-

xanthen]-3-one (16f): To a solution of rhodamine B 22 (1 g, 2.09 mmol) 

in anhydrous 1,2-dichloroethane (82 mL) was added dropwise POCl3 (2.08 

g, 1.26 mL, 13.58 mmol) with vigorous stirring, under an inert atmosphere 

of argon. The mixture was stirred under reflux at 80 °C for 6 h, after which 

it was cooled to rt and concentrated to dryness in vacuo. The resulting 
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residue was dissolved in THF (30 mL) and treated with NEt3 (1.21 g, 1.66 

mL, 12.0 mmol), followed by propargylamine (121 mg, 0.14 mL, 2.2 mmol). 

The solution was stirred overnight (approx. 16 h) at rt, after which it was 

concentrated to dryness in vacuo and subjected to silica gel column 

chromatography (eluent: CH2Cl2) yielding 68% (685 mg) of desired product 

16f as a pale pink solid. Rf = 0.82 (CH2Cl2). m.p. 191-193 °C; 1H NMR (400 

MHz, CDCl3):  7.93-7.90 (m, 1H, CH), 7.44-7.39 (m, 2H, CH), 7.10-7.08 

(m, 1H, CH), 6.46 (d, J = 8.9 Hz, 2H, CH), 6.39 (d, J = 2.5 Hz, 2H, CH), 

6.26 (dd, J1 = 2.5 Hz, J2 = 8.9 Hz, 2H, CH), 3.94 (d, J = 2.5 Hz, 2H, CH), 

3.33 (q, J = 7.1 Hz, CH), 1.75 (t, J = 2.5 Hz, 1H, CH), 1.15 (t, J = 7.1 Hz, 

12H, CH); 13C NMR (100 MHz, CDCl3):  167.4, 153.8, 153.5, 148.8, 

132.6, 130.4, 129.1, 128.0, 123.8, 122.9, 107.9, 105.1, 97.8, 78.3, 70.1, 

64.8, 44.4, 28.5, 12.6. All other spectroscopic and analytical properties 

were identical to those reported in the literature.[36]  

VGVA Acetylenic Peptide (16i): Acetylenic-peptide 16i was synthesised 

on 200 mg scale, following the strategy described on Scheme SI1, using 

the appropriate amino acids. Following synthesis of the desired sequence, 

5-hexynoic acid (68.9 mg, 68 µL, 0.615 mmol) was used in place of an 

amino acid, and a double coupling was achieved in order to ensure a 

quantitative reaction. An aliquot of the resulting crude was isolated, 

cleaved from the resin and analyzed by RP-HPLC. The cleavage cocktail 

mixture used was TFA/H2O/EDT/TIPS 94:2.5:2.5:1. The cleavage took 

place for 4 h, under an inert atmosphere of argon. Peptide 16i was isolated 

as a white solid, soluble in a mixture of H2O/CH3CN 1:1 + 0.1% TFA. HPLC 

retention time: 29.4 min. MS (ESI-HRMS): Found 1186.6520 [M+H]+, 

593.8314 [M+2H]2+, which resolved to 1185.6456  0.0053 [M], 

C54H87N15O13S requires = 1185.6328. Additional synthetic and analytical 

details are described in the supporting information.  

(AATT)3 Lys Acetylenic PNA (16j): Acetylenic PNA dodecamer 16j was 

synthesised on 250 mg scale, following the strategy described on Scheme 

SI1, using the appropriate amino acid (lysine) and PNA monomers. 

Following synthesis of the desired sequence, 5-hexynoic acid (68.9 mg, 

68 µL, 0.615 mmol) was used in place of a PNA monomer, and a double 

coupling was achieved in order to ensure a quantitative reaction. An aliquot 

of the resulting crude was isolated, cleaved from the resin. The Cbz-

protecting groups were deprotected. Resulting deprotected PNA 16j was 

isolated as a white solid, soluble in H2O. HPLC retention time: 11.4 min. 

MS (MALDI-MS): Found 3487.5 [M+H]+, C144H184N69O38 requires = 

3487.46; Found 3509.5 [M+Na]+, C144H183N69NaO38 requires = 3509.44; 

Found 3525.4 [M+K]+, C144H183N69KO38 requires = 3525.42. Additional 

synthetic and analytical details are described in the supporting information.  

General Experimental Procedure for the Preparation of 3,5-

disubstituted Isoxazoles (17) – Method A:[21] To a solution of O-silylated 

hydroxamic acid 11 (1 eq) in anhydrous CH2Cl2 was added NEt3 (3 eq) 

under an inert atmosphere of argon. This was followed by the dropwise 

addition of a 1M solution of Tf2O in CH2Cl2 (1.1 eq) at -40 °C. Once the 

addition was completed, the reaction mixture was allowed to stir for 1 h at 

0 °C, after which alkyne 16 (8 eq) was added, and the resulting mixture 

stirred overnight (approx. 16 h) at rt. Next, the solution was washed with 

H2O. The organic layer was dried over anhydrous Na2SO4, filtered and 

concentrated to dryness in vacuo.[3] The residue was purified by silica gel 

column chromatography to afford desired isoxazole 17. With this 

procedure, we prepared cycloadducts 17a-d. 

General Experimental Procedure for the Preparation of 3,5-

disubstituted Isoxazoles (17) – Method B: To a solution of O-silylated 

hydroxamic acid 11 (1 eq) in anhydrous CH2Cl2 was added NEt3 (3 eq) 

under an inert atmosphere of argon. This was followed by the dropwise 

addition of a 1M solution of Tf2O in CH2Cl2 (1.1 eq) at -40 °C. Once the 

addition was completed, the reaction mixture was allowed to stir for 3 min 

at -40 °C, after which it was cannulated batchwise (every 15 min over 45 

min) at that temperature, onto neat alkyne 16 kept at rt (8 eq). The resulting 

mixture was stirred overnight (approx. 16 h) at rt. Next, the solution was 

washed with H2O. The organic layer was dried over anhydrous Na2SO4, 

filtered and concentrated to dryness in vacuo. The residue was purified by 

silica gel column chromatography to afford desired isoxazole 17. With this 

procedure, we prepared cycloadducts 17a-n. 

5-Hexyl-3-phenylisoxazole (17a): Synthesis according to Method A: 

Yield 49% (23 mg) of desired product 17a as a viscous light-yellow oil. 

Synthesis according to Method B: Yield 75% (35 mg, viscous light-yellow 

oil). Rf = 0.58 (CH2Cl2). 1H NMR (400 MHz, CD2Cl2):  7.79-7.76 (m, 2H, 

CH), 7.44-7.42 (m, 3H, CH), 6.31 (s, 1H, CH), 2.77 (m, 2H, CH), 1.74-1.68 

(m, 2H, CH), 1.40-1.29 (m, 6H, CH), 0.89 (t, J = 7.1 Hz, 3H, CH), the proton 

assignment has been done by 2D analysis; 13C NMR (100 MHz, CD2Cl2): 

 174.9, 162.6, 130.1, 129.9, 129.2, 127.1, 99.1, 31.9, 29.2, 27.9, 27.2, 

22.9, 14.2; MS (ESI-HRMS): Found 230.1541 [M+H]+, C15H20NO requires 

= 230.1539. All other spectroscopic and analytical properties were 

identical to those reported in the literature.[34a]  

3,5-Diphenylisoxazole (17b): Synthesis according to Method A: Yield 

54% (16 mg) of desired product 17b as a white solid. Synthesis according 

to Method B: Yield 78% (23 mg, white solid). Rf = 0.58 (CH2Cl2). m.p. 137-

139 °C; 1H NMR (400 MHz, CD2Cl2):  7.85-7.83 (m, 4H, CH), 7.50-7.47 

(m, 6H, CH), 6.88 (s, 1H, CH); 13C NMR (100 MHz, CD2Cl2):  170.7, 

163.3, 130.6, 130.4, 129.6, 129.4, 129.3, 127.8, 127.1, 126.1, 97.9. All 

other spectroscopic and analytical properties were identical to those 

reported in the literature.[20c]  

3-Phenyl-5-(4-(trifluoromethyl)phenyl)isoxazole (17c): Synthesis 

according to Method A: Yield 64% (37 mg) of desired product 17c as a 

white crystalline solid. Synthesis according to Method B: Yield 78% (30 

mg, white crystalline solid). Rf = 0.63 (CH2Cl2). m.p. 172-175 °C; 1H NMR 

(400 MHz, CD2Cl2):  7.97 (d, J = 8.7 Hz, 2H, CH), 7.88-7.85 (m, 2H, CH), 

7.76 (d, J = 8.7 Hz, 2H, CH), 7.50-7.48 (m, 3H, CH), 6.99 (s, 1H, CH); 13C 

NMR (100 MHz, CD2Cl2):  169.2, 163.5, 131.1, 130.6, 129.4, 129.2, 

127.2, 126.6, 126.5, 126.4, 126.3, 99.5. All other spectroscopic and 

analytical properties were identical to those reported in the literature.[12c]  

N,N-Dimethyl-4-(3-phenylisoxazol-5-yl)aniline (17d): 

Synthesis according to Method A: Yield 65% (34 mg) of desired product 

17d as a as a pale yellow solid. Synthesis according to Method B: Yield 

57% (20 mg, pale yellow solid). Rf = 0.52 (CH2Cl2). m.p. 155-158 °C; 1H 

NMR (400 MHz, CD2Cl2):  7.86-7.83 (m, 2H, CH), 7.68 (d, J = 8.9 Hz, 2H, 

CH), 7.47-7.45 (m, 3H, CH), 6.75 (d, J = 8.9 Hz, 2H, CH), 6.64 (s, 1H, CH), 

3.01 (s, 6H, CH); 13C NMR (100 MHz, CD2Cl2):  171.6, 163.1, 152.0, 

130.1, 130.0, 129.2, 127.3, 127.1, 115.4, 112.1, 94.9, 40.3; IR (cm–1):  

689.2, 771.9, 814.4, 926.1, 949.1, 1169.9, 1198.7, 1230.9, 1326.0, 1368.4, 

1397.0, 1413.4, 1446.2, 1466.0, 1507.6, 1524.4, 1578.2, 1614.1, 2922.8; 

MS (ESI-HRMS): Found 265.1334 [M+H]+, C17H17N2O requires = 

265.1335.  

3-Phenyl-5-(trimethylsilyl)isoxazole (17e), synthesis according to 

Method B: Yield 69% (20 mg) of desired product 17e as a pale yellow oil. 

Rf = 0.57 (CH2Cl2). 1H NMR (400 MHz, CD2Cl2):  7.82-7.79 (m, 2H, CH), 

7.47-7.40 (m, 3H, CH), 6.78 (s, 1H, CH), 0.37 (s, 9H, CH); 13C NMR (100 

MHz, CD2Cl2):  179.3, 161.1, 130.1, 129.7, 129.3, 127.3, 111.1, -1.83; IR 

(cm–1):  505.8, 631.1, 684.6, 691.2, 760.2, 839.1, 897.5, 949.4, 971.7, 

1026.5, 1056.2, 1077.9, 1097.9, 1252.2, 1385.1, 1424.1, 1458.9, 1505.2, 

1548.8, 2959.9; MS (ESI-HRMS): Found 218.0995 [M+H]+, C12H16NOSi 

requires = 218.0996. 

3',6'-bis(Diethylamino)-2-((3-phenylisoxazol-5-

yl)methyl)spiro[isoindoline-1,9'-xanthen]-3-one (17f), synthesis 

according to Method B: Yield 66% (53 mg) of desired product 17f as a 

pale pink solid. Rf = 0.17 (CH2Cl2/MeOH 9:1). m.p. 215-217 °C; 1H NMR 

(400 MHz, CD2Cl2):  7.92-7.89 (m, 1H, CH), 7.55-7.53 (m, 2H, CH), 7.49-

7.47 (m, 2H, CH), 7.36-7.35 (m, 3H, CH), 7.07-7.06 (m, 1H, CH), 6.31-6.29 

(m, 4H, CH), 6.14 (m, 2H, CH), 5.80 (s, 1H, CH), 4.41 (s, 2H, CH), 3.20 (q, 
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J = 7.1 Hz, 8H, CH), 1.03 (t, J = 7.1 Hz, 12H, CH), the proton assignment 

has been done by 2D analysis; 13C NMR could not be well acquired due to 

the closed-opened equilibrium of rhodamine’s core, which hampered the 
13C NMR recording of a pure isomer;[37] IR (cm–1):  699.6, 760, 787.3, 

818.1, 920.3, 950, 1018.7, 1089.3, 1118.5, 1152.2, 1219.4, 1265.3, 

1305.1, 1329.3, 1357.3, 1376, 1424.5, 1443.2, 1467.6, 1514.8, 1547.9, 

1614.6, 1634, 1698.3, 2928.5, 2970; MS (ESI-HRMS): Found 599.3008 

[M+H]+, C38H39N4O3 requires = 599.3017; Found 300.1552 [M+2H]2+, 

C38H40N4O3 requires = 300.1545; UV-Vis (CH2Cl2, rt): max [nm] ( [M-1 cm-

1]): 240 (2.1107), 275 (9106), 316 (3.7106). 

3-(Anthracen-9-yl)-5-(trimethylsilyl)isoxazole (17g), synthesis 

according to Method B: Yield 71% (30 mg) of desired product 17g as a 

viscous yellow oil. Rf = 0.51 (CH2Cl2). 1H NMR (400 MHz, CDCl3):  8.57 

(s, 1H, CH), 8.05 (m, 2H, CH), 7.80 (m, 2H, CH), 7.51-7.43 (m, 4H, CH), 

6.69 (s, 1H, CH), 0.48 (s, 9H, CH), the proton assignment has been done 

by 2D analysis; 13C NMR (100 MHz, CDCl3):  178.6, 159.1, 131.3, 130.8, 

128.7, 128.6, 126.4, 125.9, 125.5, 123.7, 116.2, -1.5; IR (cm–1):  622.5, 

734.8, 759.4, 844.8, 1073.0, 1252.8, 1307.2, 1381.3, 1617.4, 1637.8, 

2850.3, 2922.9, 2959.2, 3050.2, 3411.5, 3476.2, 3554.9; MS (APCI-HR-

MS): Found 318.1313 [M+H]+, C20H20NOSi requires = 318.1314. 

3-(Naphthalen-1-yl)-5-(trimethylsilyl)isoxazole (17h), synthesis 

according to Method B: Yield 67% (24 mg) of desired product 17h as a 

viscous colorless oil. Rf = 0.49 (CH2Cl2). 1H NMR (400 MHz, CD2Cl2):  

8.37-8.35 (m, 1H, CH), 7.96-7.91 (m, 2H, CH), 7.70-7.67 (m, 1H, CH), 

7.56-7.52 (m, 3H, CH), 6.77 (s, 1H, CH), 0.42 (s, 9H, CH), the proton 

assignment has been done by 2D analysis; 13C NMR (100 MHz, CD2Cl2): 

 178.4, 161.0, 134.2, 131.5, 130.2, 128.8, 128.1, 127.6, 127.3, 126.6, 

126.1, 125.6, 114.5, -1.76; IR (cm–1):  535.0, 561.6, 630.9, 658.8, 703.3, 

759.8, 773.9, 798.9, 840.2, 887.1, 934.6, 971.8, 1026.7, 1076.0, 1130.3, 

1180.4, 1214.7, 1252.3, 1325.2, 1358.4, 1371.1, 1395.4, 1512.9, 1579.5, 

1597.5, 1730.4, 2900.2, 2959.1, 3050.1; MS (ESI-HRMS): 

Found 268.1153 [M+H]+, C16H18NOSi requires = 268.1152. 

3-(Naphthalen-1-yl)-5-phenylisoxazole (17i), synthesis according to 

Method B: Yield 72% (26 mg) of desired product 17i as a white solid. Rf = 

0.53 (CH2Cl2). m.p. 108-110 °C; 1H NMR (400 MHz, CD2Cl2):  8.45-8.42 

(m, 1H, CH), 7.98 (m, 1H, CH), 7.93 (m, 1H, CH), 7.88 (m, 2H, CH), 7.75 

(m, 1H, CH), 7.59-7.46 (m, 6H, CH), 6.88 (s, 1H, CH), the proton 

assignment has been done by 2D analysis; 13C NMR (100 MHz, CD2Cl2): 

 170.1, 163.5, 134.3, 131.4, 130.7, 130.6, 129.5, 128.9, 128.1, 127.8, 

127.4, 127.3, 126.7, 126.2, 126.0, 125.6, 101.5; IR (cm–1):  535.5, 565.7, 

653.8, 668.1, 687.9, 763.1, 773.7, 797.9, 864.6, 915.7, 936.0, 948.1, 

970.7, 1026.4, 1098.1, 1130.6, 1143.5, 1162.7, 1180.6, 1214.2, 1261.7, 

1292.2, 1335.2, 1364.7, 1378.6, 1408.4, 1446.6, 1475.4, 1497.3, 1514.5, 

1571.5, 1590.6, 1612.4, 1730.7, 1818.8, 1951.1, 2850.8, 2921.6, 3051.9, 

3126.1; MS (ESI-HRMS): Found 272.1068 [M+H]+, C19H14NO requires = 

272.1070. 

N,N-Dimethyl-4-(3-(naphthalen-1-yl)isoxazol-5-yl)aniline (17j), 

synthesis according to Method B: Yield 61% (25.5 mg) of desired 

product 17j as a pale yellow solid. Rf = 0.44 (CH2Cl2). m.p. 122-125 °C; 1H 

NMR (400 MHz, CD2Cl2):  8.47-8.45 (m, 1H, CH), 7.97-7.92 (m, 2H, CH), 

7.75-7.71 (m, 3H, CH), 7.58-7.53 (m, 3H, CH), 6.77 (m, 2H, CH), 6.65 (s, 

1H, CH), 3.02 (s, 6H, CH), the proton assignment has been done by 2D 

analysis; 13C NMR (100 MHz, CD2Cl2):  170.9, 163.3; 152.0, 134.2, 131.5, 

130.3, 128.8, 127.9, 127.8, 127.4, 127.2, 126.6, 126.2, 125.6, 115.4, 

112.2, 98.5, 40.3; IR (cm–1):  659.7, 776.3, 785.4, 803.3, 819.5, 935.7, 

949.9, 1063.1, 1123.3, 1169.0, 1195.8, 1226.9, 1263.7, 1362.5, 1408.4, 

1441.8, 1480.7, 1518.3, 1609.6, 2894.5; MS (ESI-HRMS): 

Found 315.1491 [M+H]+, C21H19N2O requires = 315.1492. 

1,4-bis(5-(Trimethylsilyl)isoxazol-3-yl)benzene (17k), synthesis 

according to Method B: Yield 50% (10.6 mg; 71% per function) of desired 

product 17k as a viscous colorless oil. Rf = 0.54 (CH2Cl2). 1H NMR (400 

MHz, CDCl3):  7.90 (s, 4H, CH), 6.82 (s, 2H, CH), 0.37 (s, 18H, CH); 13C 

NMR (100 MHz, CDCl3):  179.6, 160.5, 130.9, 127.8, 111.1, -1.85; IR (cm–

1):  514.2, 529.8, 608.0, 634.6, 691.7, 706.1, 762.8, 798.1, 822.8, 841.5, 

897.5, 947.7, 971.1, 1021.5, 1063.7, 1101.8, 1217.6, 1251.9, 1276.0, 

1352.4, 1373.6, 1410.6, 1447.2, 1523.0, 1559.4, 2854.1, 2924.8, 2960.4, 

3122.6; MS (ESI-HRMS): Found 357.1451 [M+H]+, C18H25N2O2Si2 

requires = 357.1449. 

3,3'-(5'-(4-(5-(Trimethylsilyl)isoxazol-3-yl)phenyl)-[1,1':3',1''-

terphenyl]-4,4''-diyl)bis(5-(trimethylsilyl)isoxazole) (17l), synthesis 

according to Method B: Yield 39% (38 mg; 73% per functionality) of 

desired product 17l as a white solid. Rf = 0.38 (CH2Cl2). m.p. 42-44 °C; 1H 

NMR (400 MHz, CDCl3):  7.95 (d, J = 8.6 Hz, 6H, CH), 7.93 (s, 3H, CH), 

7.85 (d, J = 8.6 Hz, 6H, CH), 6.84 (s, 3H, CH), 0.39 (s, 27H, CH); 13C NMR 

(100 MHz, CDCl3):  179.5, 160.7, 142.4, 142.1, 129.1, 128.2, 127.9, 

125.7, 111.1, -1.79; IR (cm–1):  505.6, 535.0, 575.2, 609.3, 630.5, 672.2, 

702.0, 736.9, 758.5, 804.9, 836.5, 898.8, 949.7, 971.6, 1018.3, 1050.3, 

1098.9, 1209.0, 1251.8, 1303.2, 1377.2, 1403.2, 1417.9, 1449.6, 1516.8, 

1545.7, 1571.5, 1596.0, 1611.4, 1918.0, 2899.7, 2958.7, 3050.3; MS (ESI-

HRMS): Found 724.2832 [M+H]+, C42H46N3O3Si3 requires = 724.2841; 

Found 362.6461 [M+2H]2+, C42H47N3O3Si3 requires = 362.6457.  

3,4,5-Triphenylisoxazole (17m), synthesis according to Method B: 

Desired derivative 17m was isolated by silica gel column chromatography 

(eluent: CH2Cl2), along with traces of an unidentified by-product. Further 

purification was attempted by means of preparative TLC plates (3 ; 

eluent: CH2Cl2). However, 17m could not be isolated pure. 6 mg of that 

mixture was obtained as a white solid, thus affording less than 15% yield 

in 17m. Rf = 0.69 (CH2Cl2). 1H NMR (400 MHz, CD2Cl2):  8.15 (m, CH), 

7.52-7.44 (m, CH); MS (ESI-HRMS): Found 298.1225 [M+H]+, C21H16NO 

requires = 298.1226.  

5-(4-Ethynylphenyl)-3-phenylisoxazole (17n), synthesis according to 

Method B: Yield 18% (7 mg) of product 17n as a white solid. Rf = 0.58 

(CH2Cl2). m.p. 96-98 °C; 1H NMR (400 MHz, CD2Cl2):  7.86-7.84 (m, 2H, 

CH), 7.80 (d, J = 8.6 Hz, 2H, CH), 7.60 (d, J = 8.6 Hz, 2H, CH), 7.49-7.47 

(m, 3H, CH), 6.90 (s, 1H, CH), 3.26 (s, 1H, CH); 13C NMR (100 MHz, 

CD2Cl2):  169.8, 163.4, 133.1, 130.5, 129.3, 129.1, 127.9, 127.1, 126.0, 

124.3, 98.7, 83.2, 79.5; IR (cm–1):  511.4, 543.2, 615.2, 627.1, 663.7, 

692.7, 764.0, 819.0, 845.3, 916.6, 949.9, 1044.9, 1090.1, 1112.1, 1399.2, 

1413.7, 1462.4, 1493.7, 2920.0, 3298.2; MS (ESI-HRMS): 

Found 246.0914 [M+H]+, C17H12NO requires = 246.0913. 

VGVA Peptide-isoxazole conjugate (17o): To a solution of O-silylated 

hydroxamic acid of phenyl 11a (180 mg, 0.48 mmol) in anhydrous CH2Cl2 

(7.2 mL) was added NEt3 (146 mg, 202 µL, 1.44 mmol) under an inert 

atmosphere of argon. This was followed by the dropwise addition of a 1 M 

solution of Tf2O in CH2Cl2 (528 µL, 0.528 mmol) at -40 °C. Once the 

addition was completed, the reaction mixture was allowed to stir for 3 min 

at -40 °C, after which it was added to a suspension of resin-bound ethynyl-

functionalized peptide 16i (100 mg, 0.048 mmol) in DMF (2 mL). The 

resulting mixture was shaken overnight (approx. 16 h) at 50 °C. The 

solution was then filtered and washed with DMF (5 × 5 mL) and CH2Cl2 (7 

× 5 mL). The resulting crude was isolated, cleaved from the resin, analyzed 

and purified by RP-HPLC. The cleavage cocktail mixture used was 

TFA/H2O/EDT/TIPS 94:2.5:2.5:1. The cleavage took place for 4 h, under 

an inert atmosphere of argon. Peptide 17o was isolated as a white solid, 

soluble in a mixture of H2O/CH3CN 1:1 + 0.1% TFA. HPLC retention time: 

26.7 min. MS (MALDI-HRMS): Found 1305.6781 [M+H]+, C61H93N16O14S 

requires = 1305.6778; Found 1327.7 [M+Na]+, C61H92N16NaO14S requires 

= 1327.66; Found 1343.6 [M+K]+, C61H92N16KO14S requires = 1343.63. 

Based on the analytical RP-HPLC chromatogram, it was calculated that 

49% conversion was obtained, of which 41% corresponded to desired 

cycloadded peptide 17o, and 8% to unidentified subproducts. 51% of 

starting acetylenic-peptide 16i were recovered thereby resulting in 84% 
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yield of peptide-isoxazole conjugate. Percentages are given as area%. 

Additional synthetic and analytical details are described in the supporting 

information. 

(AATT)3 Lys PNA-isoxazole conjugate (17p): To a solution of O-silylated 

hydroxamic acid of phenyl 11a (19 mg, 0.040 mmol) in anhydrous CH2Cl2 

(50 µL) was added NEt3 (12.2 mg, 16.6 μL, 0.12 mmol) under an inert 

atmosphere of argon. This was followed by the dropwise addition of a 1 M 

solution of Tf2O in CH2Cl2 (44 µL, 0.044 mmol) at -40 °C. Once the addition 

was completed, the reaction mixture was allowed to stir for 3 min at -40 

°C, after which it was added to a suspension of resin-bound Cbz-protected 

ethynyl-functionalized PNA 16j (10 mg, 0.0041 mmol) in DMF (200 µL). 

The resulting mixture was shaken overnight (approx. 16 h) at 50 °C. The 

solution was then filtered and washed with DMF (5 × 5 mL) and CH2Cl2 (7 

× 5 mL). The resulting crude was isolated, cleaved from the resin and the 

Cbz groups deprotected. Resulting deprotected PNA 17p was analyzed 

and purified. PNA 17p was isolated as a white solid, soluble in a mixture 

of H2O/CH3CN 1:1 + 0.1% TFA. HPLC retention time: 18.1 min. MS 

(MALDI-HRMS): Found 3606.6648 [M+H]+, C151H189N70O39 requires = 

3606.4952; Found 3628.6714 [M+Na]+, C151H188N70NaO39 requires = 

3628.4772; Found 3644.6257 [M+K]+, C151H188N70KO39 requires = 

3644.4511. 17p was formed in 43% (%area of desired cycloadduct in the 

RP-HPLC chromatogram). Additional synthetic and analytical details are 

described in the supporting information. 

5-Hexyl-3-phenyl-4,5-dihydroisoxazole (19): To a solution of O-silylated 

hydroxamic acid of phenyl 11a (75 mg, 0.2 mmol) in anhydrous CH2Cl2 (3 

mL) was added NEt3 (60.7 mg, 83.6 µL, 0.6 mmol) under an inert 

atmosphere of argon. This was followed by the dropwise addition of a 1M 

solution of Tf2O in CH2Cl2 (220 µL, 0.22 mmol) at -40 °C. Once the addition 

was completed, the reaction mixture was allowed to stir for 1 h at 0 °C, 

after which 1-octene 18 (179.6 mg, 252 µL, 1.6 mmol) was added, and the 

resulting mixture stirred overnight (approx. 16 h) at rt. Next, the solution 

was washed with H2O (2 × 1 mL). The organic layer was dried over 

anhydrous Na2SO4, filtered and concentrated to dryness in vacuo. The 

residue was purified by silica gel column chromatography (eluent: CH2Cl2), 

yielding 19 (36.6 mg, 79%) as a white solid. Rf = 0.56 (CH2Cl2). m.p. 49-

52 °C; 1H NMR (400 MHz, CD2Cl2, *denotes rotamer peaks):  7.65-7.62 

(m, 2H, CH), 7.39-7.37 (m, 3H, CH), 4.67-4.65 (m, 1H, CH), 3.40-3.33 & 

2.97-2.90* (m, 2H, CH), 1.78-1.70 & 1.62-1.55* (m, 2H, CH), 1.47-1.24 (m, 

8H, CH), 0.89-0.85 (t, J = 7.0 Hz, 3H, CH), the proton assignment has 

been done by 2D analysis; 13C NMR (100 MHz, CD2Cl2):  156.7, 130.5, 

130.1, 129.0, 126.8, 81.9, 40.2, 35.7, 32.1, 29.5, 25.9, 22.9, 14.2. All other 

spectroscopic and analytical properties were identical to those reported in 

the literature.[20c]  

 (4-(Methoxycarbonyl)phenyl)boronic acid (23): To a solution of 4-

carboxyphenyl boronic acid 24 (1 g, 6.03 mmol) in anhydrous MeOH (17.4 

g, 22 mL, 543 mmol) was slowly added SOCl2 (4.5 g, 2.7 mL, 37.39 mmol) 

under an inert atmosphere of argon. The resulting mixture was stirred for 

2 h 30 at 50 °C, after which it was concentrated to dryness in vacuo. The 

compound was also dried under high vacuum to remove any residual trace 

SOCl2. The residue was dissolved in EtOAc (50 mL) and washed with brine 

(20 mL). The aqueous phase was extracted with EtOAc (2 × 30 mL) and 

the combined organic phases dried over anhydrous MgSO4, filtered and 

concentrated to dryness in vacuo to yield 23 as a white solid (1 g, 92%). 

No further purification was required. m.p. 232-233 °C; 1H NMR (400 MHz, 

CDCl3):  8.29 (d, J = 8.0 Hz, 2H, CH), 8.17 (d, J = 8.0 Hz, 2H, CH), 3.98 

(s, 3H, CH), BOH proton signals were not observed; 13C NMR (100 MHz, 

CDCl3):  167.1, 135.7, 134.0, 133.6, 129.1, 52.5. All other spectroscopic 

and analytical properties were identical to those reported in the literature.[39, 

47]  

5'-(4-Carboxyphenyl)-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid 

(26): Tri-ester 27 (370 mg, 0.77 mmol) was dissolved in a mixture of 

THF/MeOH 1:1 (14 mL), and 7 mL of 4.8 M aq. solution of NaOH (1.344 g, 

33.6 mmol) added at 0 °C. The reaction mixture was stirred overnight 

(approx. 16 h) at rt, after which the solvents were evaporated in vacuo. 

The residue was solubilised in H2O (minimum amount, i.e. 7 mL) and the 

resulting solution acidified to pH ~2 with 1 M aq. solution of HCl. The 

resulting white precipitate was filtered, collected, resuspended in H2O (5 

mL), sonicated and filtered once more. Through this procedure, NaCl salts 

were washed out. The white solid was collected and dried under high 

vacuum (233 mg, 70% yield in 26). m.p. 316-319 °C; 1H NMR (400 MHz, 

DMSO-d6):  8.09 (s, 3H, CH), 8.06 (s, 12H, CH), COOH proton signals 

were not observed; 13C NMR (100 MHz, DMSO-d6):  167.1, 143.8, 140.8, 

130.0, 129.9, 127.4, 125.6. All other spectroscopic and analytical 

properties were identical to those reported in the literature.[41, 48]  

Dimethyl 5'-(4-(methoxycarbonyl)phenyl)-[1,1':3',1''-terphenyl]-4,4''-

dicarboxylate (27): Na2CO3 (1.01 g, 9.53 mmol), 4-

methoxycarbonylphenylboronic acid 23 (1.28 g, 7.15 mmol), 1,3,5-

tribromobenzene 25 (500 mg, 1.59 mmol) and [Pd(PPh3)4] (184 mg, 0.159 

mmol) were weighed into a 10-20 mL microwave flask, under an inert 

atmosphere of argon. A degassed mixture of toluene/EtOH 1:1 (17 mL) 

was then added to the solids (Note: toluene and EtOH are degassed in two 

different two-neck flasks; simple argon bubbling (with two argon balloons 

and two thick needle outlets), for 45 min is enough to degas the solvents 

for this reaction; drops of water are added in EtOH). The resulting mixture 

was stirred for 5 min before being heated at 110 °C for 4 h under 

microwave conditions (the pressure rose up to 8 bars). The solution was 

then diluted with CH2Cl2 (250 mL) and extracted with H2O (3 × 100 mL) 

and brine (1 × 100 mL). The organic phase was dried over anhydrous 

MgSO4, filtered and concentrated to dryness in vacuo. The residue was 

purified by silica gel column chromatography (eluent: Cy to Cy/EtOAc 4:6) 

yielding 48% of desired product 27 (370 mg) as a white solid. Rf = 0.45 

(Cy/EtOAc 4:6). 1H NMR (400 MHz, CDCl3):  8.16 (d, J = 8.2 Hz, 6H, CH), 

7.86 (s, 3H, CH), 7.77 (d, J = 8.5 Hz, 6H, CH), 3.96 (s, 9H, CH).[40, 49] The 

next step, i.e. saponification, was performed on the whole batch, without 

further characterizations of tri-ester derivative 27. 
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