
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/12 5 8 5 9/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Polyanin,  A. D. a n d  Zhu rov, Alexei 2 0 2 0.  S e p a r a tion  of va ri a ble s  in PDEs  u sin g

no nline a r  t r a n sfo r m a tions:  Applica tions  to  r e a c tion–diffusion  typ e  e q u a tions.  Applied

M a t h e m a tics  Le t t e r s  1 0 0  , 1 0 6 0 5 5.  1 0.1 0 1 6/j.a ml.20 1 9.10 6 0 5 5  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 1 6/j.a ml.201 9.1 0 6 0 5 5  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Separation of variables in PDEs using nonlinear

transformations: Applications to reaction-diffusion type

equations

Andrei D. Polyanina,c,b, Alexei I. Zhurova,d,∗

aIshlinsky Institute for Problems in Mechanics, Russian Academy of Sciences,
101 Vernadsky Avenue, bldg 1, 119526 Moscow, Russia

bNational Research Nuclear University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, Russia
cBauman Moscow State Technical University,

5 Second Baumanskaya Street, 105005 Moscow, Russia
dCardiff University, Heath Park, Cardiff CF14 4XY, UK

Abstract

The paper describes a new approach to constructing exact solutions of nonlinear

partial differential equations that employs separation of variables using special

(nonlinear integral) transformations and the splitting principle. To illustrate its

effectiveness, the method is applied to nonlinear reaction-diffusion type equations

that involve variable coefficients and arbitrary functions. New exact functional

separable solutions as well as generalized traveling wave solutions are obtained.

Keywords: functional separation of variables, generalized separation of

variables, exact solutions, nonlinear PDEs, reaction-diffusion equations

1. Brief introduction

By relying on the methods of generalized and functional separation of vari-

ables, the studies [1–12] obtained a large number of exact solutions to equations

arising in the theory of heat and mass transfer, wave theory, optics, and fluid dy-

namics as well as to other nonlinear equations of mathematical physics.

The methods of generalized and functional separation of variables suggest an

a priori setting of the structural form of the unknown variable, u, so that it de-
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pends on a few free functions; the specific expressions of these functions are de-

termined in a subsequent analysis of the arising functional differential equations.

The present study employs a more general approach that allows one to determine,

rather than set a priori, the structural form of the unknown variable in the course

of the solution.

2. General description of the method. Some remarks

For definiteness, we will consider nonlinear equations of mathematical physics

in two independent variables, x and t, and one dependent (unknown) variable,

u = u(x, t):

F (x, t, ux, ut, uxx, uxt, utt, . . . ) = 0. (1)

To find exact solutions of equation (1), we first apply the nonlinear transfor-

mation

ϑ =

∫

h(u) du, (2)

with the functions ϑ = ϑ(x, t) and h = h(u) to be determined in the subsequent

analysis. Once ϑ and h are known, the integral relation (2) defines an exact solu-

tion to the original equation in implicit form.

By differentiating (2) with respect to the independent variables, we get the

partial derivatives

ux =
ϑx

h
, ut =

ϑt

h
, uxx =

ϑxx

h
−

ϑ2
xh

′

u

h3
, uxt =

ϑxt

h
−

ϑxϑth
′

u

h3
, . . . (3)

We assume that after inserting the expressions of (3) into (1) and rearranging, the

resulting equation can be rewritten in a bilinear form with N terms

N
∑

n=1

ΦnΨn = 0, (4)

where

Φn = Φn(x, t, ϑx, ϑt, ϑxx, . . . ), Ψn = Ψn(u, h, h
′

u, h
′′

uu, . . . ). (5)

Solutions to equation (4) with Φn and Ψn defined by (5) will be sought using

the splitting principle stated below.
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Splitting principle. Consider the sets of elements {Φn} and {Ψn} appearing

in (4) that meet two or more linear relations

N
∑

n=1

αinΦn = 0, i = 1, . . . , l;

N
∑

n=1

βjnΨn = 0, j = 1, . . . , s, (6)

with 1 ≤ l ≤ N − 1 and 1 ≤ s ≤ N − 1. The constants αin and βjn in (6)

are chosen so that the bilinear equation (4) is satisfied identically (this can always

be done). Importantly, the linear relations (6) are purely algebraic and they hold

regardless of the specific expressions of the differential forms (5).

Once a set of relations (6) is available, the differential forms (5) are inserted

into them. This leads to systems of differential equations, usually overdetermined,

for the unknown functions ϑ = ϑ(x, t) and h = h(u), which appear in (2).

Remark 1. Apart from the linear relations (6), it is also necessary to treat the degen-

erate cases where some of the differential forms Φn and/or Ψn vanish.

Remark 2. For even N , the easiest way to satisfy equation (4) is to set

Φi − γijΦj = 0, γijΨi +Ψj = 0 (i 6= j),

where γij are arbitrary constants; the subscripts i and j do not repeat and together assume

all values from 1 to N .

For N ≥ 3, equation (4) can also be satisfied identically by using the set of linear

relations

Φn −AnΦN−1 −BnΦN = 0, n = 1, . . . , N − 2;

ΨN−1 +A1Ψ1 + · · · +AN−2ΨN−2 = 0, (7)

ΨN +B1Ψ1 + · · ·+BN−2ΨN−2 = 0,

where Ai and Bi are arbitrary constants. In formulas (7), the Φ and Ψ forms can all be

swapped, Φn ⇄ Ψn; also the simultaneous transpositions Φi ⇄ Φj and Ψi ⇄ Ψj can be

used. This results in other suitable sets of linear relations (6). For more formulas, see [6].

Remark 3. The approach outlined above is a generalization of the method for con-

structing functional separable solutions employed in [10, 11], which is based on preset-

ting the structure of solution in implicit form
∫

h(u) du = ξ(x)ω(t) + η(x). The method

adopted in the present study allows one to find solutions without presetting their structure.

3. Exact solutions to nonlinear reaction-diffusion type equations

We consider the class of nonlinear partial differential equations with variable

coefficients

ut = [a(x)f(u)um
x ]x + b(x)g(u), (8)
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which includes reaction-diffusion type equations (with m = 1) and generalized

porous medium equations with a nonlinear source (m > 0). Numerous exact

solutions to various equations of the form (8) with m = 1 as well as other related

equations can be found in [3–7, 9, 10, 12–22]. Also some solutions with m 6= 1
can be found in [6, 23–25].

In what follows, we will only consider nondegenerate cases of equation (8)

where a(x) 6≡ 0, f(u) 6≡ 0, b(x) 6≡ 0, and g(u) 6≡ 0.

By employing the approach described in Section 2, we will obtain a few new

simple exact solutions to equations of the form (8) where two functional coeffi-

cients, a(x) and f(u), are set arbitrarily and the others are expressed in terms of

them. For brevity, the arguments of the functions appearing in the transformation

(2) and equation (8) will often be omitted.

After making the change of variable (2), we substitute the derivatives (3) into

(8) and rearrange the terms to obtain

−ϑt + (aϑm
x )xfh

1−m + aϑ1+m
x (fh−m)′u + bgh = 0. (9)

For h = 1, equation (9) coincides with the original equation (8) where u = ϑ.

Therefore, no solution has been lost in this stage.

Equation (9) can be represented in the bilinear form (4) with N = 4 if we set

Φ1 = −ϑt, Φ2 = (aϑm
x )x, Φ3 = aϑ1+m

x , Φ4 = b;

Ψ1 = 1, Ψ2 = fh1−m, Ψ3 = (fh−m)′u, Ψ4 = gh.
(10)

Example 1. Equation (4) with N = 4 can be satisfied identically by using the

linear relations

Φ1 = −AΦ4, Φ2 = BΦ4; Ψ3 = 0; Ψ4 = AΨ1 − BΨ2, (11)

where A and B are arbitrary constants. By inserting (10) into (11), we arrive at

the equations

ϑt = Ab, (aϑm
x )x = Bb; (fh−m)′u = 0, gh = A− Bfh1−m. (12)

The general solution to the overdetermined system consisting of the first two

equations in (12) with m 6= 0, 1 is given by

b(x) =
k

A
, ϑ(x, t) = kt+

∫
(

k

A

Bx+ C1

a(x)

)1/m

dx+ C2, (13)
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where a(x) is an arbitrary function, while C1, C2, and k are arbitrary constants.

The solutions to the other two equations of (12) can be written as

g = Af−1/m − B, h = f 1/m, (14)

where f = f(u) is an arbitrary function. By setting A = k in (13) and (14), we

get the equation

ut = [a(x)f(u)um
x ]x +

k

f 1/m(u)
−B, (15)

which admits the exact generalized traveling wave solution in implicit form

∫

f 1/m(u) du = kt +

∫
(

Bx+ C1

a(x)

)1/m

dx+ C2. (16)

Example 2. Equation (4) with N = 4 also holds if we set

Φ1 = −AΦ2, Φ3 = −Φ4; Ψ2 = AΨ1, Ψ3 = Ψ4, (17)

where A is an arbitrary constant. Substituting (10) into (17) yields

ϑt = A(aϑm
x )x, aϑ1+m

x = −b; fh1−m = A, (fh−m)′u = gh. (18)

Solutions to the overdetermined system consisting of the first two equations in

(18) will be sought in the form ϑ = kt+ r(x). This results in

b(x) = −a(x)

(

kx+ C1

Aa(x)

)

m+1

m

, ϑ(x, t) = kt+

∫
(

kx+ C1

Aa(x)

)

1

m

dx+C2, (19)

where a(x) is an arbitrary function, while C1, C2, and k are arbitrary constants.

The solutions to the last two equations of (18) are given by

g =
1

1−m

(

f

A

)

1+m
1−m

f ′

u, h =

(

f

A

)

1

m−1

(m 6= 1). (20)

By setting C1 = 0, A = k = 1, and m 6= 1 in (19) and (20), we arrive at the

equation

ut = [a(x)f(u)um
x ]x +

1

m− 1

(

xm+1

a(x)

)

1

m

f
1+m
1−m (u)f ′

u(u), (21)

which admits the exact solution in implicit form

∫

f
1

m−1 (u) du = t+

∫
(

x

a(x)

)

1

m
dx+ C2. (22)

5



4. Some generalizations and modifications

Some other exact solutions to equation (1) can be obtained if instead of (4)

and (5) we consider equivalent equations reducible to (4) and (5) on the set of

functions satisfying relation (2).

Example 3. Let us return to the class of reaction-diffusion equations (8). After

making the change of variable (2), we consider instead of (9) the more complex

equation

−eλϑe−λHϑt + (aϑm
x )xfh

1−m + aϑ1+m
x (fh−m)′u + bgh = 0, (23)

where H =
∫

h du and λ is an arbitrary constant. Equations (9) and (23) are

equivalent, since ϑ = H by virtue of the transformation (2).

Equation (23) can be represented in the bilinear form (4) with N = 4 where

Φ1 = −eλϑϑt, Φ2 = (aϑm
x )x, Φ3 = aϑ1+m

x , Φ4 = b;

Ψ1 = e−λH , Ψ2 = fh1−m, Ψ3 = (fh−m)′u, Ψ4 = gh.
(24)

Just as previously, equation (4) with N = 4 can be satisfied by using relations

(11). Inserting (24) into (11) gives

eλϑϑt = Ab, (aϑm
x )x = Bb; (fh−m)′u = 0, gh = Ae−λH−Bfh1−m. (25)

These equations coincide with (12) at λ = 0. A solution to system (25) is given

by

b(x) =
C1

A
exp[λr(x)], ϑ(x, t) =

1

λ
ln(C1λt+ C2) + r(x),

g = Af−1/m exp

(

−λ

∫

f 1/mdu

)

−B, h = f 1/m,
(26)

where f = f(u) is an arbitrary function, and the function r = r(x) satisfies the

ordinary differential equation

[a(r′x)
m]′x =

BC1

A
eλr. (27)

Formulas (26) and equation (27) define the functional coefficients of equation

(8) and its solution (2). It is noteworthy that for a(x) = a0x
k, equation (27) admits

the exact solution

r(x) = σ ln x+ µ, σ =
k −m− 1

λ
, µ =

1

λ
ln

Aa0σ
m(k −m)

BC1

.
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Example 4. Now we look at the equation

−(H/ϑ)ϑt + (H/ϑ)m(aϑm
x )xfh

1−m + aϑ1+m
x (fh−m)′u + bgh = 0 (28)

with H =
∫

h(u) du, which is equivalent to (9) by virtue of the transformation

(2). Equation (28) can be rewritten in the bilinear form (4) with N = 4 where

Φ1 = −ϑt/ϑ, Φ2 = ϑ−m(aϑm
x )x, Φ3 = aϑ1+m

x , Φ4 = b;

Ψ1 = H, Ψ2 = fh1−mHm, Ψ3 = (fh−m)′u, Ψ4 = gh.
(29)

Taking into account that equation (4), N = 4, can be satisfied with relations

(11). Substituting the expressions (29) into (11), we arrive at the system of equa-

tions

ϑt/ϑ = Ab, ϑ−m(aϑm
x )x = Bb; (fh−m)′u = 0, gh = AH − Bfh1−mHm.

It admits the following solution:

b(x) = λ, ϑ(x, t) = CeAλtr(x); g = Af−1/mH −BHm, h = f 1/m, (30)

where f = f(u) is an arbitrary function, C and λ are arbitrary constants, H =
∫

h du, and r = r(x) is a function satisfying the ordinary differential equation

[a(r′x)
m]′x = Bλrm. (31)

Using (30), we find that the equation

ut = [a(x)f(u)um
x ]x + Aλf−1/m(u)

∫

f 1/m(u) du− Bλ

(
∫

f 1/m(u) du

)m

admits the exact solution in implicit form
∫

f 1/m(u) du = CeAλtr(x),

where a(x) and f(u) are arbitrary functions and r(x) is a function satisfying the

ordinary differential equation (31).

Remark 4. The presented method of functional separation of variables for nonlinear

partial differential equation on the basis the transformation (2) is also applicable to other

classes of PDEs as well as those in three or more independent variables. In particular,

these include nonlinear wave equations, nonlinear Klein–Gordon type equations, nonlin-

ear telegraph type equations, and others; these also include some higher-order equations.

The solutions and examples given in this paper can be used to test various numerical

methods for nonlinear equations as well as relevant approximate analytical methods.
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Remark 5. The proposed method is a generalization of the direct method of functional

separation of variables [10, 11]. Hence, in certain cases, it may be more effective than the

nonclassical method of symmetry reductions based on an invariant surface condition. For

details, see [26].
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