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SUMMARY 

Extracellular vesicles (EVs) are microscopic membrane-bound vesicles, habitually 

released by different cell types into the local tissue and circulation to serve as 

intercellular signal communicators. They play an active role in the normal physiology 

as well as pathogenesis of diseases. In vitro studies from animal models and human 

adipose tissue explants have established the release of EVs from adipocytes, also 

known as adipocyte-derived EVs (ADEVs). These have been identified in vitro studies 

as possible endocrine mediators in the metabolic function of adipose tissue. Biological 

fluids, particularly, plasma is one of the channels for movement of EVs. Therefore, 

this thesis aimed to provide evidence for the presence of ADEVs in circulating plasma.  

With the field being relatively young and expanding, there is a lack of standardisation 

in EV isolation and analytical techniques.  Ultracentrifugation (UC) and size-exclusion 

chromatography (SEC) proved efficient in isolating an optimal population of EVs from 

plasma, whereas nanoparticle tracking analysis, time resolved fluorescence and 

western blotting were used to phenotype EV populations.  

EV-rich sample was isolated from platelet-free plasma obtained from healthy 

individuals. Two techniques of magnetic bead capture and solid-phase immunoassay 

was used to selectively and sequentially deplete major circulating EV populations 

derived from platelets, leukocytes, endothelial and erythrocytes. Post-depleted 

samples retained an EV population positive for adipocyte markers and contained a 

range of adipokines. 

Accumulating evidence has implicated ADEVs in obesity-associated cardiovascular 

diseases, through onset of endothelial dysfunction mediated by inflammation. 

Leukocyte-adhesion assays performed on HUVECs pre-treated with ADEVs, showed 

enhanced endothelial activation by ADEVs obtained from obese as compared to 

healthy subjects. This implies adipocytes release EVs into the circulation and could 

have a significant role in the development of endothelial dysfunction and 

atherosclerosis. This thesis suggests the role of plasma-borne ADEVs warrants further 

investigation as novel biomarkers and for potential therapeutic opportunities in 

treating cardiovascular diseases. 
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1.1 Extracellular vesicles 

Cells from different organisms, including all eukaryotes (from amoebae, 

Caenorhabditis elegans, and parasites to mammals) but also prokaryotic cells have 

been demonstrated to release vesicles into the extracellular environment. In 

multicellular organisms, such vesicles have been isolated from diverse bodily fluids, 

including blood, urine, saliva, breast milk, amniotic fluid, ascites, cerebrospinal fluid, 

bile and semen. Extracellular vesicles (EVs) are membrane bound and contain 

cytosolic matter (proteins, lipids and nucleic acids) from the secreting cells enclosed 

in a lipid bilayer. Their sizes range from 40-1000nm and their biogenesis is regulated 

and conserved throughout evolution (Raposo and Stoorvogel 2013a; Colombo et al. 

2014). Intercellular communication is an essential hallmark of multicellular organisms 

for routine metabolic function, which is mediated through direct cell-cell contact or 

transfer of secreted molecules. In the recent years, another mechanism has been 

understood for intercellular communication that involves intercellular transfer of EVs. 

Although the release of apoptotic bodies during apoptosis has been long known 

(Hristov et al. 2004), the fact that perfectly healthy cells also shed vesicles from their 

plasma membrane has only relatively recently become appreciated.  EVs were first 

reported in 1946 as ‘pro-coagulant platelet-derived particles’, particulate materials 

released from platelets and found in serum (Chargaff and West 1946). This was later 

identified as microvesicles from platelets and called ‘platelets dust’ (Wolf 1967). The 

interest in the biology of EVs grew gradually over the years and within the last decade 

there was a rapid expansion in EV research groups and publication (Yiran et al. 2015). 

1.1.1 Nomenclature and Classification of EVs 

As the shedding of vesicles from different tissues began gaining biological 

significance, they were addressed under various terms among the researchers based on 

their tissue origin (prostasomes, oncosomes, cardiosomes, ectosomes), their proposed 

functions (calcifying matrix vesicles, argosomes, tolerosomes), or simply their 

presence outside the cells (prefix exo or ecto: ectosomes, exosomes, exovesicles, 

exosome-like vesicles) (Holme et al. 1994; Cocucci et al. 2009; Colombo et al. 2014). 

Figure 1.1 lists the terms used in the nomenclature of EVs by researchers to date. 
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Exosomes are initially intraluminal vesicles of endocytic origin that are formed by 

inward budding of the limiting membrane to form multivesicular endosomes (MVEs) 

that are subsequently released by cells upon fusion with the plasma membrane. Their 

size distribution is relatively homogeneous ranging from 30-120nm (Raposo and 

Stoorvogel 2013b; Willms et al. 2018). Exosomes are commonly enriched in 

endosome-associated proteins such as Rab GTPases, soluble NSF attachment protein 

receptor (SNAREs), Annexins, and flotillin, due to their endocytic origin. Some of 

these proteins (e.g. Alix and TSG101) are normally used as exosome markers. A 

family of transmembrane proteins called tetraspanins (e.g. CD63, CD81, CD9)  cluster 

into microdomains at the plasma membrane; these proteins are abundant in exosomes 

and considered to be markers as well (Raposo and Stoorvogel 2013b; van der Pol et 

al. 2016). On the other hand, microvesicles (MV) and apoptotic bodies are vesicles 

generated by particles blebbing off the plasma membrane that do not necessarily 

follow the endocytic pathway of biogenesis and their size may vary between 50nm to 

1,000nm. Common protein markers used to define these vesicles are selectins, 

integrins and the CD40 ligand (EL Andaloussi et al. 2013). Confusion on the origin 

and nomenclature of EVs exists because vesicles with the size of exosomes that bud 

at the plasma membrane have also been called exosomes (Booth et al. 2006).  

As this plethora of terms is based on different criteria, in vitro studies, and outdated 

isolation and detection techniques, a generic term ‘extracellular vesicles’ was 

introduced to resolve the confusion and improve the exchange of information between 

researchers and societies. In 2014, the International Society on Extracellular Vesicles 

(ISEV) released a position statement to address the discrepancies by recognising 

tetraspanins to identify EV subpopulations. Table 1.1 essentially describes three types 

of membrane bound EVs: exosomes, microvesicles, and apoptotic bodies, as classified 

by their pathway of origin, size and biogenesis (Figure 1.2). Although the statement 

advocates the use of ‘EVs’ as an umbrella term to include all secreted vesicles, by 

research societies, as of 2018, it requests researchers to report further specifics and 

fulfil criteria as outlined by ISEV, while documenting their work on EVs (Théry et al. 

2018). 

A single cell type can release both exosomes and MVs. For example, this phenomenon 

has been observed for platelets  (Heijnen et al. 1999), endothelial cells (Deregibus et 

al. 2007), and breast cancer cells (Muralidharan-Chari et al. 2009). Hence, a major on-
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going challenge is to establish methods that will discriminate exosomes from MVs. 

Only when we are equipped with the knowledge of molecular machineries required 

for EV formation and cargo sequestration will their origins be optimally determined. 

Such knowledge will also open new avenues to resolve their respective functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Extracellular vesicles 

Exosomes, microparticles, microvesicles, 

membrane blebs, shedding vesicles, 

budding vesicles, blebbing particles, 

platelet dust, exovesicles, dexosomes, 

ectosomes, matrix vesicles, membrane 

particles, membrane vesicles, exosome-like 

vesicles, oncosomes, prominosomes, 

prostasomes, texosomes, tolerosomes, 

nanovesicles, cardiosomes, synaptic 

vesicles, apoptotic bodies 

Figure 1.1 Nomenclatures of EVs. Different terms used to address EVs or particles 

released by cells, used by medical and scientific societies. 
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Endocytosis 

ILV 

 

MVBs 

Exocytosis 

1.Exosomes  

          (50- 120nm) 

2. Microvesicles 

(100- 1000nm) 

3. Apoptotic bodies  

(800- 5000nm) 

Apoptosis (Programmed cell death) 

Figure 1.2 Types of EVs released from a cell. 1. Exosomes are 50-120nm vesicles, formed 

as the intraluminal vesicles, budding into MVBs. They are released by fusion of MVEs with 

the plasma membrane. 2. MVs are formed by direct blebbing from the plasma membrane 

and size range from 100-1000nm. 3. Apoptotic bodies are vesicles of size 800-5000nm, 

secreted during apoptosis or programmed cell death. ILV = intraluminal vesicles, MVB = 

multivesicular bodies, MV = microvesicles.  
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Exosomes Microvesicles Apoptotic Bodies 

Origin Endocytic pathway Plasma membrane Plasma membrane 

Size 40 -120 nm 50 - 1000 nm 500 - 2000 nm 

Function Intercellular 

communication 

Intercellular 

communication 

Facilitate 

phagocytosis 

Markers Alix, TSG101, 

tetraspanins (CD9, 

CD81, CD63,), flotillin 

Integrins, selectins, 

CD40 

Annexin V, 

phosphatidylserine 

Content Cytoplasmic and 

membrane proteins and 

nucleic acids (mRNA, 

miRNA and other non-

coding RNAs), MHC 

molecules 

Cytoplasmic and 

membrane proteins, 

and nucleic acids 

(mRNA, miRNA and 

other non-coding 

RNAs) 

Nuclear fractions, 

cell organelles 

Table 1.1: Classification of EVs based on key characteristics. Ambiguity remains in 

the literature, with overlap in characteristics between EV subsets. Essentially, these are 

membrane-bound vesicles of cellular origin that carry protein-lipid cargo. CD = cluster of 

differentiation, TSG = tumour susceptibility gene  
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1.1.2 Molecular composition 

EVs carry a cargo of soluble and membrane-bound proteins, lipids, metabolites and 

nucleic acids comprising of DNA and RNA (mRNA, miRNAs, and other small 

regulatory RNAs). This bioactive cargo is contained within a protective lipid bilayer. 

They are enriched in proteins such as integrins, MHC molecules and cytoskeletal 

proteins that are regularly used as EV markers (EL Andaloussi et al. 2013). The 

specific molecular load of EVs is likely to reflect the cell of origin or reveal the 

metabolic condition for its release. Figure 1.3 summarises the overall composition of 

a typical EV. 

Proteins: Protein remains the key content and has been extensively studied as 

identification markers of exosomes or shed membrane vesicles and relate to the mode 

of biogenesis. Exosomes are enriched in major histocompatibility complex class II 

(MHC class II) and tetraspanins including CD63, CD81, CD37, CD53, CD9 and 

CD82, since  their production involves the endolysosomal compartment (Heijnen et 

al. 1999; Tauro et al. 2012). Exosomes carry ESCRT proteins which is integral for the 

formation of MVBs and these include Alix, TSG101, and chaperones, such as Hcs70 

and Hsp90, irrespective of cell type (Morita et al. 2007). Exosomes are augmented 

with glycoproteins and transmembrane proteins, when compared to their parent cells 

(Sinha et al. 2014; Zaborowski et al. 2015). Owing to their origin from plasma 

membrane, MVs are enhanced in a different repertoire of proteins as compared with 

those included in exosomes namely, integrins, glycoprotein Ib (GPIb), and P-selectin 

(Heijnen et al. 1999). Proteins with post-translational modifications such as 

glycoproteins or phosphoproteins, are realised more in MVs as opposed to exosomes 

(Larsen et al. 2012).  

Some of these proteins especially MHC II, tetraspanins, ESCRT proteins, Alix, 

TSG101, and heat-shock chaperones, can be used as a general marker to identify EVs 

when isolating from biological fluids, as they are present in EVs sourced from all cell 

types. For example, a study by Bobrie et al., (2012) found that inhibiting Rab27a led 

to decreased exosomal markers (CD63, Alix and TSG101) but not as much for CD9. 

Large vesicles that were produced exhibited CD9, suggesting that CD9 is probably 

more ubiquitous among other tetraspanins in EVs (Bobrie et al. 2012). On the contrary, 

EVs are devoid of those proteins associated with cell organelles, namely mitochondria 
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(e.g., aconitase), the Golgi apparatus (e.g., GM130), the endoplasmic reticulum (e.g., 

calreticulin), and some cytoplasmic proteins (e.g., α-tubulin). Hence, their absence 

could be considered as a negative control for EV origin (Belting et al. 2013; Sinha et 

al. 2014). 

Lipids: Studies have implicated an enriched presence of sphingomyelin, gangliosides 

and cholesterol in EVs with reduced proportion of phosphatidylcholine and 

diacylglycerol (Laulagnier et al. 2004; Llorente et al. 2013). Unlike cell membranes, 

EVs contain increased phosphatidylserine in the outer layer, that aid in their 

internalisation by recipient cells (Fitzner et al. 2011). Placental EVs have been found 

to contain an elevated level of sphingomyelin and cholesterol compared to that 

normally observed in cells (Baig et al. 2013). Interestingly, the lipid composition of 

reticulocyte-derived exosomes shows no particular enrichment in phosphatidylinositol 

or sphingomyelin, and lipid composition is similar to the producing cells (Carayon et 

al. 2011). As reticulocyte maturation into red blood cells causes enrichment in 

ceramide, it indicates a modification of the intracellular mechanisms of exosome 

biogenesis (Carayon et al. 2011). Lipid sorting into EVs is a carefully crafted process 

with membrane tightly packed within lipid rafts and lipids (e.g. cholesterol, ceramide) 

themselves playing a role in regulating EV release (Del Conde et al. 2005; Salzer et 

al. 2008; Yáñez-Mó et al. 2015). Increased lipid content lends EV a structural rigidity 

and stability under conditions of physiochemical changes. Lipid-enriched EVs can also 

cause functional effects in the recipient cell; for instance, contributing to apoptosis of 

cells which was positively used in treating tumour cells (Beloribi et al. 2012). Overall, 

studies strongly suggest that EVs differ in lipid composition according to their source 

cells and thus, marks a mechanism to allow sorting of these specific lipid species into 

the vesicles to cause changes in recipient cells.  

RNA: RNA-enclosed in EVs were first noticed in murine mast cell derived EVs. 

Studies have reported EVs containing mRNA, miRNA, rRNA and fragments of t-RNA 

with an average size of <700 nucleotides. EVs were reported to contain an enriched 

source of 3′UTR mRNA fragments that contain multiple binding sites for regulatory 

miRNA, suggesting the cellular RNA might compete with EV RNAs, in order to 

regulate stability and translation (Batagov and Kurochkin 2013). The release of RNA 

molecules might cause intrinsic effects in the gene regulation of parental cells. Some 

EVs have been found to contain miRNA-induced silencing complex (miRISC), 
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required for processing precursor microRNAs (pre-miRNAs) into mature miRNAs, 

generating cell-independent microRNA biogenesis (Melo et al. 2014). Heterogeneous 

nuclear ribonucleoproteins (hnRNP) A2B1 are a family of proteins involved in RNA 

trafficking and regulating functions. hnRNPA2B1 controls the loading of miRNA into 

EVs suggesting RNA loading is not passive. An active sorting mechanism ensures a 

specific repertoire of miRNA is exported into EVs to cater for particular functional 

effects (Zhang et al. 2010; Villarroya-Beltri et al. 2013; Villarroya-Beltri et al. 2014). 

Similarly, mRNA is also selectively enriched in EVs where a consensus sequence 

within the 3′UTR acts as a zip-code sequence that targets distinct mRNAs into EVs 

(Bolukbasi et al. 2012). 

Human mesenchymal stem cell-derived EVs contained mRNAs, which are involved 

in cell differentiation, transcription, cell proliferation and immune regulation (Collino 

et al. 2009). Treatment of mice with mRNA-containing EVs enhanced cell survival 

and repair of tissues (Bruno et al. 2012). mRNA content in EVs is significantly altered 

by the metabolic state of the cell under normal and stressed conditions where some 

functional effects were hampered with modulated mRNA (Eldh et al. 2010). Cross talk 

between large and small adipocytes in fatty acid esterification and lipid droplet 

biogenesis has been demonstrated to be mediated by transfer specific mRNAs (Müller 

et al. 2011a). Selective release of miRNA load in EVs has been linked to inducing 

metastatic properties during tumour progression or lymphocyte activation, by 

vaccination (de Candia et al. 2013). miRNAs- containing EVs released from immune 

cells (Mittelbrunn et al. 2011), adipocytes (Müller et al. 2011a) and blood cells (Hunter 

et al. 2008) have physiological roles that are mediated by the carrying miRNAs. EV-

mediated transfer of miRNA has immunological significance. For example during 

immune synapses formation, there occurs an antigen-driven unidirectional transfer of 

some miRNAs from T-cell to antigen-presenting cells mediated by EVs (Mittelbrunn 

et al. 2011). Human breast milk EVs contain immune-related miRNAs, which are 

transferred from the mother’s milk to the infant for the immune development (Zhou et 

al. 2011).  

Therefore, the ability of EVs to harbour RNA material and induce functional effects is 

remarkable. However, it has been challenging to distinguish between coding and non-

coding RNAs and measure the extent of their contribution to these effects. 

Nevertheless, such RNA-loaded EVs can be used as biomarkers and for targeted 
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therapy (Huang et al. 2013). Thus, the composition of an EV greatly influences its 

functional drive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Molecular composition of extracellular vesicles EVs. Schematic representation 

of the EV content (proteins, lipids, and nucleic acids) and membrane orientation of EVs. 

Abbreviations: ARF = ADP ribosylation factor, ESCRT = endosomal sorting complex 

required for transport, LAMP = lysosome-associated membrane protein, MHC = major 

histocompatibility complex, MFGE8 = milk fat globule–epidermal growth factor-factor VIII, 

RAB, Ras-related proteins in brain, TfR = transferrin receptor (Adapted from Colombo, 

Raposo and Théry, 2014). 
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1.1.3 Biogenesis of Extracellular vesicles  

The endocytic pathway involves highly dynamic membrane compartments for the 

internalisation of extracellular ligands or cellular components, their recycling to the 

plasma membrane, and/or their degradation (Gould and Lippincott-Schwartz 2009; 

Klumperman and Raposo 2014). The genesis of an exosome begins with the creation 

of intraluminal vesicles formed when proteins, lipids, and cytosol are sequestered by 

the inward budding of endosomal membrane. During the maturation of early 

endosomes into late endosomes they accumulate intraluminal vesicles (ILVs) in their 

lumen (Stoorvogel et al. 1991). By virtue of their morphological features, they are 

generally referred to as multivesicular endosomes or multivesicular bodies (MVBs). 

In most cells, the content of MVBs is subjected to degradation after fusion with 

lysosomes, acidic compartments that contain lysosomal hydrolases. Organelles with 

hallmarks of MVBs, that bear the tetraspanin CD63, lysosomal-associated membrane 

proteins LAMP1 and LAMP2, and other molecules of late endosomes (eg: MHC class 

II in antigen-presenting cells), can fuse with the plasma membrane, releasing their 

content into the extracellular milieu (Raposo et al. 1996; Jaiswal et al. 2002). However, 

in reticulocytes, MVBs that fuse with the plasma membrane bear markers of early 

endosomes, such as RAB4 or RAB5, rather than late endosome markers (Vidal & Stahl 

1993). These observations suggest that different subpopulations of MVBs coexist 

simultaneously in cells, with some being destined for the degradation pathway, 

whereas others are exocytosed.  

Cells host morphologically different subpopulations of MVBs, identified based on size 

and appearance of the ILVs that are present in their lumen. In EBV-transformed B cell 

lines, cholesterol-positive and -negative MVBs coexist, where cholesterol-containing 

MVBs undergo an exocytic manner of fusion with the cell surface, in agreement with 

the finding that exosomes are enriched in cholesterol (Mobius et al. 2003). In HeLa 

cells, two distinct populations of MVBs have been observed after stimulation with 

EGF (White et al. 2006). The EGF-receptor reaches CD63- positive endosomes, 

whereas another subset of MVBs contains LBPA (lyso bisphosphatidic acid) and 

CD63 but no EGF-receptor. Those MVBs containing LBPA are likely destined for 

degradation, as exosomes are not enriched in LBPA (Wubbolts et al. 2003). Epithelial 

cells host morphologically different MVBs at the apical and basolateral sides of the 

cells. The cellular machinery responsible for MVB manufacture and subsequent fate 
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decisions is not well understood; the cell type differences that exist create a major 

challenge in the field. 

 

1.1.3.1 Mechanisms of intraluminal vesicle formation in MVBs 

The endosomal sorting complex required for transport (ESCRT) drives the mechanism 

for the formation of MVBs and ILVs. The pathway involves approximately thirty 

proteins that assemble into four complexes (ESCRT-0, -I, -II and -III) with associated 

proteins (VPS4, VTA1, ALIX also called PDCD6IP) conserved from yeast to 

mammals (Hanson and Cashikar 2012). The secretion of EVs is a process that appears 

to be conserved throughout evolution (Raposo and Stoorvogel 2013a). The ESCRT-0 

complex functions to recognise and sequester ubiquitinated transmembrane proteins 

in the endosomal membrane, whereas the ESCRT-I and -II complexes facilitate 

membrane deformation into buds with sorted cargo; subsequently vesicle scission is 

driven by ESCRT-III components (Hanson and Cashikar 2012).  

HRS (hepatocyte growth factor–regulated tyrosine kinase substrate, official gene 

symbol HGS) and STAM (signal transducing adaptor molecule) are the key 

components of ESCRT-0 complex that recognises the monoubiquitinated cargo 

proteins and associates with two non-ESCRT proteins namely Eps15 and clathrin. 

HRS recruits TSG101 of the ESCRT-I complex, and ESCRT-I then engages ESCRT-

III via ESCRT-II or ALIX. Finally, the interaction of the ESCRT machinery with the 

AAA-ATPase VPS4 effects dissociation and recycling. The mechanisms of inclusion 

of soluble cytosolic proteins into ILVs are poorly understood, but a role for HSC70 

has been proposed (Sahu et al. 2011): the chaperone binds to soluble cytosolic proteins 

containing a KFERQ sequence and to PS on the MVB outer membrane and thus enters 

ILVs formed in a TSG101- and VPS4-dependent manner.  

TSG101 and ALIX are the principle ESCRT proteins in exosome biogenesis and are 

present in exosomes originating from different cell types (Thery et al. 2001). The role 

of ALIX in exosome biogenesis was demonstrated in reticulocytes, where its binding 

to the cytoplasmic domain of Transferrin receptor (TfR) was proposed to compete with 

binding to HSC70 and promote TfR sorting onto ILVs (Géminard et al. 2004). A study 

by Baietti et al. (2012) showed that tumour cell exosomes contain syndecan, syntenin 

and ALIX (Baietti et al. 2012). Overexpression of syntenin induced an increase in the 
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ALIX-dependent release of exosomes (as evidenced by an increase in exosomal 

markers CD63 and HSP70), whereas exosome release was impaired by the 

downregulation of syndecan, syntenin or ALIX. ESCRT-II, ESCRT-III and VPS4 

functions play a role in the biogenesis of syndecan-, syntenin-, and ALIX-containing 

exosomes. These data support a role of ALIX in exosome biogenesis and exosomal 

sorting of syndecans via an interaction with syntenin. In dendritic cells, the decreased 

exosome secretion was observed only after incubation with an antigen and not in a 

steady-state situation, thus suggesting an alternate mechanism of exosome secretion 

under different cellular physiological states (Tamai et al. 2010). The ESCRT-0 protein 

HRS is also linked to exosome secretion as established by reduced exosome release in 

HRS-deficient DCs (Tamai et al. 2010) or HGS-depleted HEK293 cells (Gross et al. 

2012) and tumour cells (Hoshino et al. 2013). Interestingly, the relationship between 

ESCRT-dependent formation of exosomes and their cargo load has not yet been clearly 

determined. The incorporation of MHC class II molecules into the ILVs are linked to 

the display of an ubiquitination sequence (Van Niel et al. 2006), but a mutant MHC 

class II β-chain deficient in the ubiquitination site is still recovered in exosomes by 

means of detergent-resistant membranes containing CD9 (Buschow et al. 2009). 

Decreased amounts of CD63 and MHC class II were observed on EVs recovered from 

TSG101- or STAM1- knockdown HeLa cells (Colombo et al. 2013), indicating that 

TSG101 and STAM1 participate in transmembrane cargo inclusion in EVs. Another 

proposed mechanism involves the chaperone HSC70, whose binding to the cytosolic 

tail of the TfR has been shown to allow targeting of this transmembrane protein to 

exosomes (Géminard et al. 2004). 

1.1.3.2 ESCRT-independent manner of MVB formation 

There is evidence to suggest that MVBs and ILVs can form in the absence of ESCRT 

function. The concomitant inactivation of four proteins of the four different ESCRT 

complexes does not abrogate MVB formation (Stuffers et al. 2009). For example, in 

melanocytic cells, the sorting of premelanosomal protein PMEL to the ILVs of MVBs 

is promoted by the tetraspanin CD63 which accumulates in ILVs even in the absence 

of ESCRT function (Stuffers et al. 2009; van Niel et al. 2011). The pathway  occurs in 

the absence of ubiquitination, ESCRT-0, ESCRT-II (Theos et al. 2006) and ESCRT-

III components (Colombo et al. 2014). Consistently, CD63 was recently shown to be 

instrumental in the formation of small (<40nm) ILVs, independently of HRS, in MVBs 
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of HeLa cells (Edgar et al. 2014). Two independent studies have shown two lipid 

metabolism enzymes generating lipids in the limiting membrane of MVBs, which 

instigate inward budding and thus formation of ILVs in an ESCRT-independent 

manner: neutral sphingomyelinase (nSMase) causing hydrolysis of sphingomyelin into 

ceramide (Trajkovic et al. 2008), and phospholipase D2 responsible for hydrolysis of 

phosphatidylcholine into phosphatidic acid (Ghossoub et al. 2014). Therefore, there 

exist both ESCRT-dependent and -independent mechanisms of MVBs and ILVs 

biogenesis relevant to the cargo that is sorted within a given cell (Carayon et al. 2011). 

A small integral membrane protein of lysosomes and late endosomes, called SIMPLE, 

has been associated with exosome secretion. Fibroblasts expressing its mutant form 

(found in Charcot-Marie-Tooth disease patients), CMT1C, secreted less CD63- and 

ALIX-containing exosomes  (Zhu et al. 2013). SIMPLE contains a binding domain for 

two proteins namely TSG101 and Nedd4 type-3 ubiquitin ligase but regulation of 

exosomes secretion remains to be understood. A transmembrane protein has been 

shown to promote exosome secretion by binding to Nedd4, Nedd-family interacting 

protein 1, hence an interaction between SIMPLE and Nedd4 could potentially be 

relevant to exosome biogenesis (Putz et al. 2012). 

1.1.3.3 Biogenesis and Release of Plasma Membrane-Derived Vesicles  

Components of the ESCRT machinery, including TSG-101 and VPS4, are involved in 

the formation of EVs budding from the plasma membrane; however, the ESCRT-0 

proteins HRS and STAM are not involved in the case of membrane fission during 

cytokinesis or plasma membrane repair (Henne et al. 2011, Jimenez et al. 2014). 

Hence, a requirement for ESCRT-0 proteins strongly suggests an MVB formation and 

exosomal nature of EVs. Oligomerisation of cell surface receptors can promote PM-

derived EVs from T lymphocytes (Fang et al. 2007) by antibody-mediated 

crosslinking. In a study involving Jurkat cells, the release of EVs from plasma 

membrane was induced by the interaction between domains of PM that are enriched 

for exosomal and endosomal proteins (e.g.: TSG-101) with a PXAP sequence present 

in the gag protein of retroviruses (Booth et al. 2006), directing an outward blebbing of 

EVs instead of MVB lineage. 

In platelets, elevated levels of intracellular Ca2+ ions activate the protease calpain that 

remodels the cytoskeleton. Cleavage of cytoskeletal proteins and modulation of the 
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activities of flippase, floppase, and scramblase, cause the loss of membrane asymmetry 

and leads to budding of EVs from the PM (Hugel et al. 2005). An overexpression of 

the small GTPase ARF6 depolymerises the actin cytoskeleton which results in release 

of large PM-derived oncosomes from tumour cells (Muralidharan-Chari et al. 2009). 

During the degranulation of mast cells an increase in EV release is accompanied by 

overexpression of phospholipase D2 (Laulagnier et al. 2004a). Sphingomyelinases 

particularly acid sphingomyelinase originating from lysosomes contributes to the 

release of large vesicles from the PM of astrocytes upon receptor triggering (Bianco et 

al. 2009), whilst neutral sphingomyelinase is involved in ILV formation and exosome 

secretion by oligodendrocytes (Trajkovic et al. 2008). Thus, like ESCRT, the same 

machinery can play a role in two compartments either at the PM or intravesicular 

bodies. RAB protein RAB22 is found to play a role in MV shedding especially under 

physiological conditions of hypoxia (Wang et al. 2014). 
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1.1.4 Techniques for the isolation and characterisation of EVs 

In order to gain an in-depth understanding of EVs and their potential application in 

therapy, it is essential that the techniques employed in the isolation of exosomes 

exhibit high efficiency, in terms of yield and quality, and are competent in isolating 

from various sample matrices. With the advancement in science and technology, 

techniques have been specifically tailored for the isolation of EVs to obtain optimal 

quantity and purity. Characteristics of EVs such as their density, shape, size and 

surface proteins may be exploited to surmise an isolation technique. Each technique 

has its own set of advantages and limitations. In the following sections, popular and 

established techniques are discussed. 

1.1.4.1 Ultracentrifugation-based isolation techniques 

EV isolation by ultracentrifugation (UC) is considered the gold standard technique and 

is one of the most commonly used and reported approaches for EV isolation. The 

technique is easy to operate, requires minimal technical expertise, is affordable, 

requires minimal sample preparation and is only moderately time consuming.  For 

these reasons, UC-based techniques have become popular, accounting for nearly 60% 

of all EV isolation techniques employed by users in exosome research (Zarovni et al. 

2015; Konoshenko et al. 2018). Differential ultracentrifugation and density gradient 

ultracentrifugation are the types of preparative UC used in the isolation of EV.  

Differential ultracentrifugation consists of a series of centrifugation steps of varying 

centrifugal force and duration to isolate EVs based on their differences in density and 

size among the components in a sample. The technique is popular for isolation from 

biological fluids (human plasma/urine). The centrifugal force used typically ranges 

from 300 x g to 100,000 × g and is performed in a series of steps to successively 

remove large bioparticles (cell debris/dead cells/proteins). In some cases, the sample 

is supplemented with protease inhibitors to prevent the degradation of exosomal 

proteins (Rechavi et al. 2009). At the end of the UC process, EV particles are 

sedimented to a pellet, which is resuspended in suitable buffer before storing the 

sample (Li et al. 2017b). A typical workflow of differential ultracentrifugation is 

presented in Figure 1.4.   
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In density gradient ultracentrifugation, separation of EVs involves a density gradient 

medium (e.g. sucrose cushion) constructed in a centrifuge tube with incremented 

density from top to bottom. The sample is layered onto the top of the density gradient 

medium and subjected to an extended round of ultracentrifugation, where sample 

solutes (including EVs) move through the density gradient and form discrete solute 

zones. The fraction containing the separated EVs is recovered from the density region 

between 1.10 and 1.21 g/ml. This allows for efficient separation of EVs with high 

purity from other non-specific proteins and nucleoproteins (Van Deun et al. 2014; 

Miranda et al. 2014). Unlike differential UC, a downside of density gradient UC is that 

its capacity is largely limited by the narrow load zone.  

 

 

 

  

 

 

 

 

 

  
Figure 1.4 EV isolation by ultracentrifugation. Plasma sample are subjected to 

two low speed spins to remove dead cells, debris and large proteins. Differential 

UC at 100000 g leaves an EV pellet while density gradient UC has a fraction 

containing EV that is selectively harvested.   
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1.1.4.2 Size-based isolation techniques 

The technique of ultrafiltration uses the size and molecular weight characteristic of 

EVs for isolation with membrane filters with size exclusion limits. It is simple to 

operate with no requirement for sample pre-treatment, however, the use of force in 

some instances can deform large vesicles potentially skewing downstream analysis 

(Batrakova and Kim 2015; Zeringer et al. 2015). It involves a series of filtration steps 

where floating cells and large cell debris are removed first with selective filters. 

Following this, free proteins are filtered out and subsequently, with filters of pore size 

0.22 and 0.1 μm are used to filter out EV particles with occasional application of 

transmembrane pressure, illustrated in Figure 1.5. This approach of isolation has been 

used effectively to isolate urinary EVs (Tataruch-Weinert et al. 2016) as well as for 

the isolation of therapeutic exosomes for clinical trials (Escudier et al. 2005). 

Nanomembrane concentrators along with centrifugation has been effective in 

enriching exosomes from biological fluids, with working volume as low as 500µl 

(Cheruvanky et al. 2007).  

 

 

 

 

 

 

 

 

 

Figure 1.5 Schematic illustration of sequential filtration. Firstly, cells and cell 

debris are trapped leaving behind the EV in solute. Following, the use of different 

pore size filters, free protein is filtered out and the sample is concentrated. (Adapted 

from Li et al. 2017) 
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Yet another size-based separation technique that’s been gaining popularity is size 

exclusion chromatography (SEC). Typically, this involves Sepharose CL-2B (or 

similar matrix) columns through which the sample is run. Particles with large 

hydrodynamic radii (that includes EVs/exosomes) are eluted first and those with 

smaller radii as well as the majority of free protein  elute in later fractions after passing 

through the Sepharose pores (Feng et al. 2014; Li et al. 2017b). SEC has also been 

standardised in protocols to enrich EVs from plasma or serum samples (Böing et al. 

2014; Hong et al. 2014b; Welton et al. 2015); researchers have also employed SEC to 

collect EVs from conditioned culture media (Lai et al. 2010). Studies have reported 

that SEC may be more efficient than UC and density gradients to remove contaminant 

proteins and lipoproteins from plasma and urine samples (Lozano-Ramos et al. 2015; 

Gámez-Valero et al. 2016). The technique benefits from high EV yield, purity and 

scalability while preserving vesicle integrity and biological activity. Commercially 

available pre-made columns (Sigma, USA Cell Guidance systems, UK; IZON Science, 

UK) offer a quicker and convenient method for vesicle enrichment. 

1.1.4.3 Immunoaffinity capture-based techniques 

The presence of unique surface proteins on EVs offers opportunity to develop highly 

specific techniques for the isolation of EVs. The principle is based on the 

immunoaffinitive interaction between the EV marker protein and target antibody. This 

technique demands the identification of unique and stable EV proteins expressed in 

high concentration. The concept led to the development of an immuno-plate and 

immuno-beads for the capture of EVs from biological samples by means of 

immunoaffinity (Zarovni et al. 2015). It provided a quantitative analysis of the 

captured EVs as well as offering the advantages of high EV and RNA yield with intact 

biological activity. Another success story refers to isolating exosomes from plasma of 

acute myeloid leukaemia (AML) patients by coating antibody directed against CD34 

(biomarker of AML blasts) on magnetic beads (Hong et al. 2014a). Commercially 

available ExoTEST™ (HANSABIOMED, Tallinn, Estonia) are ELISA plates coated 

with CD9 antibody, enabling specific capture of exosomes from biofluids and culture 

supernatants. The immunoassay technique was coupled with mass spectrometry where 

CD9+ EVs were captured from clinical samples and subject to proteome-wide mass 
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spectrometric profiling, using CD91 as a biomarker for lung cancer (Ueda et al. 2014). 

Large volumes of EV source samples are a limitation of this technique; however, a 

pre-concentration step can be considered to reduce sample volume. 

Over the past decade, EV isolation techniques have seen significant progress. 

Approaches may be combined in order to achieve an efficient, rapid and high yield, 

while preserving the integrity of EVs during harvest from biofluids. 
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1.1.5 Characterisation of EVs 

With the growing interest in EVs as signalling mediators and biomarkers of disease in 

pathological conditions, methods are constantly being developed, or the current ones 

adapted, towards reliable and comprehensive measurement and characterisation of EV 

properties.   

1.1.5.1 Microscopy 

EV sizes range from 50nm-1000nm, typically small for the diffraction limit of visible 

light and cannot be resolved by standard optical microscopy. Hence, electron 

microscopy techniques, namely scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM), have been used to visualise EVs for 

structural and morphological investigation. Samples containing EVs are required to be 

conductive for SEM and biological samples are typically coated with a thin film of 

conductive material (e.g. gold) prior to imaging. While there are reports on the use of 

SEM and variants thereof for the characterization of EVs, TEM is most commonly 

used (Sharma et al. 2010; Sokolova et al. 2011). TEM does not require the sample to 

be conductive; however, standard TEM is performed in a vacuum which means that 

biological samples need to be fixated and dehydrated prior to imaging. TEM can 

perform immuno-electron microscopy which allows the detection of a specific 

biomolecule of interest present on the outer surface of a vesicle using gold-conjugated 

antibodies. This labelling method opens the possibility for searching subpopulations 

of vesicles exhibiting a pre-defined biomolecular identity and consequently 

categorising specific size and morphology. To investigate the nature of EV populations 

from body fluids, TEM-based approaches in combination with immunostaining have 

been widely used (Klang et al. 2013; Lässer 2013). In an attempt for biomarker 

discovery, immunoelectron microscopy was used to characterise aquaporin 2-

containing small EVs in urine, to confirm their endosomal origin and to characterise 

the size of this subpopulation (Pisitkun et al. 2004). In the context of 

neurodegenerative diseases such as Alzheimer's disease, immunoelectron microscopy 

was used to demonstrate that a fraction of beta-amyloid peptides is released in 

association with small EVs, leading to new hypothesis on the spreading mechanism of 

the disease (Rajendran et al. 2006). Microscopy studies on blood plasma samples, for 

example, illustrated the existing heterogeneities in lamellarity, size and morphology 
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of the EVs, exhibiting either spherical or tubular morphologies (Yuana et al. 2013; 

Rupert et al. 2016). The bilayer of EVs observed with cryo-TEM reflects 

characteristics of cellular membranes it originates from, and their bilayer thickness is 

likely to be in the order of about 5 to 8 nm (Agarwal et al. 2015). 

1.1.5.2 Dynamic light scattering 

Dynamic light scattering (DLS) is a widely used optical technique to determine the 

size distribution of nanometre-scale objects in solution (Berne and Pecora 2003; 

Rupert et al. 2016). Its working principle involves measuring the fluctuations 

(Brownian motion) in the intensity of light scattered by nanoparticles in solution upon 

illumination with a laser beam. Since the Brownian velocity of the particles is 

proportional to their hydrodynamic radius (also temperature and viscosity), the DLS 

technique utilises a mathematical model and applies the Stokes-Einstein equation to 

extract the particle's size distribution down to a couple of nanometres, a size detection 

limit well-suited for the detection of exosomes and other small EVs. 

DLS has been utilised in a number of studies for the characterisation of EVs extracted 

from cell culture (Atay et al. 2011; Palmieri et al. 2014) or from fresh plasma samples 

(Lawrie et al. 2009). To improve the performance of DLS whilst dealing with complex 

samples, conventional DLS may be coupled with either size exclusion chromatography 

(Varga et al. 2014) or field flow fractionation (a method where nanoparticles are 

separated according to their size in a laminar velocity gradient) (Agarwal et al. 2015). 

While DLS provides an accurate size determination of monodispersed samples, the 

scattering data becomes ambiguous in the case of polydispersed samples. Furthermore, 

the presence of a few strongly scattering particles can affect the results, whereby small 

objects are hidden in the ensemble-averaged data. Mathematical modelling may also 

be a source of uncertainties as particles are assumed to be dense spherical objects, in 

contrast to the shell-like geometry of vesicles. Considering these glitches, Palmieri et 

al.,(2014) proposed a hollow shell geometry form factor to increase the accuracy of 

vesicle size determination using DLS (Palmieri et al. 2014). 
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1.1.5.3 Nanoparticle tracking analysis 

Nanoparticle tracking analysis (NTA) is a widespread and popular alternative method 

to DLS for determining the size distribution and particle concentration of vesicles, 

exosomes and other small EVs in particular. Using a conventional microscope, NTA 

allows for the direct visualisation of individual particles illuminated by a laser beam. 

The hydrodynamic radius of a single particle is determined after tracking its Brownian 

motion and quantifies the number of particles in solution, after estimating the sample 

volume (Dragovic et al. 2011). 

NTA is better suited for polydisperse samples than DLS, since the particles are 

individually visualised under NTA without using an ensemble-averaged signal. The 

relatively weak scattering properties of nano-sized vesicles challenges NTA in the 

context of the analysis of small EVs such that the detection sensitivity is limited to 

diameters larger than approximately 50 to 70 nm (van der Pol et al. 2014; Shang and 

Gao 2014). NTA, being a label-free technique, may not allow vesicles present in 

complex biological suspensions to be distinguished easily from other types of particles 

and in particular from protein aggregates (Van Der Pol et al. 2010). Nevertheless, NTA 

remains a quick and convenient sizing technique in the context of the characterisation 

of EVs. The technique has been used to assess vesicle sample quality and stability, to 

characterise EVs associated with Parkinson's disease (Tomlinson et al. 2015) or those 

found in blood samples of cancer patients (Gercel-Taylor et al. 2012). With 

technological advancement, including the use of antibody-mediated fluorescent labels 

that specifically bind to the antigen of interest on the EV surface, NTA enables the 

detection of EV subpopulations (Dragovic et al. 2011). This feature enables users to 

detect, analyse, and count only the selective nanoparticles to which the fluorescently 

labelled antibodies are bound, with background non-specific particulates being 

excluded through the use of appropriate optical filters. 
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1.1.5.4 Antibody-Based Assays 

Immunoassays are paramount for profiling the protein composition of EVs. The 

availability of specific antibodies that bind their target with high affinity is the key step 

for development of robust antibody-based assays, providing greater sensitivity and a 

larger dynamic range of the assays. The ability to perform multiplexed phenotyping of 

EVs is another advantage of this technique. Multiplexed protein profiling of EVs 

discriminates multiple protein biomarkers in a single setting generating data of 

diagnostic and prognostic value. However, multiplexed assays may be distorted 

because of false positive signals generated by non-specific binding of antibodies 

(cross-reactivity) (Juncker et al. 2014). Western blot and enzyme-linked 

immunosorbent assay (ELISA) remain the two predominant and established EV 

characterisation techniques. Western blotting provides an indication about the 

presence of protein of interest based on its molecular weight by gel electrophoresis 

and subsequent labelling of the target antigen (Harshman et al. 2016). The ELISA 

method is a standard technique for quantitation of antigens in solution. It involves 

immune-mediated EV capture and quantified detection through a secondary labelling 

procedure (Zarovni et al. 2015). This technique forms the basis of different 

immunoassay variants, namely fluorescent immunosorbent assay (FLISA), time-

resolved fluorescent immunoassay (TRFIA) and immunomagnetic beads in a 

microchip ELISA (IMEAP), where the capture surface has been mobilised onto 

immunomagnetic beads (Coumans et al. 2017). 

Flow cytometry (FC): Flow cytometry is a commonly used technique for the 

phenotyping of EVs. In FC, the EV sample is hydrodynamically focussed to enable 

single particle illumination by several lasers and the measure of scattered light is 

detected to obtain EV size distribution and enumeration. Although the technique is 

established and robust for cellular analysis, the use in EV investigation is challenging. 

Their nanometric size and low refractive index subjects them to low detection 

sensitivity (Chandler et al. 2011; Jenster et al. 2019). The size detection limit of many 

conventional FC is curbed at size <300nm, but exosomes typically are a population of 

EVs falling below 300nm. Another limitation is the low signal-to-noise ratios 

generated by EVs in the relevant detection area. A low antigen density can cause 

reduced detectable fluorescence signals (Baumgarth and Roederer 2000). Therefore, it 
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is essential to minimise background from non-vesicular contaminants, as well as 

performing strict gating. 

Phenotyping of these vesicles is achieved by fluorochrome-conjugated antibodies that 

target antigens on the EVs (Van Der Pol et al. 2010). FC methods have been modulated 

for their use in clinical setting when analysing EVs (Dragovic et al. 2013; Inglis et al. 

2015). EVs can nevertheless be phenotyped after preabsorption onto antibody-coated 

beads to elevate them to the detection range (Nielsen et al. 2014). FC can analyse 6 - 

11 markers simultaneously in a routine multiplex biomarker analysis, with high 

throughput where each sample is stained and analysed individually. Plasma has been 

a regular sample on FC for EV phenotyping (Orozco and Lewis 2010; Dragovic et al. 

2013; Inglis et al. 2015), in addition to cell culture supernatant (Johansson et al. 2008; 

Hoen et al. 2012; van der Vlist et al. 2012), urine (Jayachandran et al. 2015) and 

cerebrospinal fluid (Verderio et al. 2012). With the development of the next generation 

of flow cytometers facilitating submicron analysis, the size limit of detection has been 

lowered to 150 - 190 nm (Welsh et al. 2017a). The need for specialised sensitive and 

nano-FC will enable identification of novel EV markers, ultimately applicable in a 

clinical setting. 

EV Array: The EV Array, conceptually based on protein microarray, is capable of 

detecting and phenotyping EVs from impurified starting material with remarkable 

sensitivity and high throughput (Jørgensen et al. 2013; Jørgensen et al. 2015). Protein 

microarrays are recognised as powerful tools to search for antigens or antibodies in a 

multiplexed platform (Melton 2004; Jørgensen et al. 2013) . The principle advantage 

of such a microarray is that large numbers of proteins can be tracked in parallel; it is a 

rapid and highly sensitive method requiring only small quantities of samples and 

reagents. 

The EV Array consists of standard epoxysilane coated microarray slides where spots 

of capturing antibodies are printed using microarray printing technology. Following 

the addition of EV-containing samples, the captured EVs are detected using a cocktail 

of biotinylated antibodies against the tetraspanins CD9, CD63 and CD81 that are 

specific antigens present on EVs. Fluorescently-labelled streptavidin is subsequently 

used to determine the amount of EVs captured on each individual microarray spot. The 

fluorescence signals are detected by a microarray scanner or high resolution gel 
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scanner with a microarray adaptor (Figure 1.6) (Jørgensen et al. 2013; Martins-

Marques et al. 2016). 

A research group under Dr Jørgensen has published and developed extensive work 

with EV microarrays. The EV microarray platform can detect up to 60 protein markers 

simultaneously enabling molecular profiling of EV surface proteins. Currently, the 

method is optimised to be a high throughput analysis with 20 samples analysed 

simultaneously on each microarray slide. Plasma is the most common sample type 

used for the EV Array, but EVs from CCS, urine, ascites, and cerebrospinal fluid have 

also been employed for phenotyping of EVs (Pugholm et al. 2015; Bæk and Jørgensen 

2017). With only 10 μl of plasma, fresh or frozen samples can be analysed directly 

without pre-analytical purification steps. For each microarray spot (~1 nl), only 

2.5  ×  10e4 exosomes were required for a detectable signal (Jørgensen et al. 2013). 

The technology of the EV Array opens the possibilities to alter the detection antibodies 

in order to investigate other populations or subpopulations of EVs, for example, tissue-

factor-bearing vesicles. 

 

 

 

 

 

 

 

  

Figure 1.6 Schematic view of the EV Array. A basis for the procedure is epoxy-silane coated 

slides printed with 21 identical antibody microarray prints (for 20 samples and one control). 

Each antibody is printed in triplicate. EV-containing samples are applied and the EVs are 

captured onto the slides depending on the presence of surface antigens. Detection is performed 

by biotin-labelled detection antibodies against the exosomal markers CD9, CD63, and CD81 

followed by fluorescently labelled streptavidin and fluorescence read through a high-resolution 

scanner (Imported from Pugholm et al. 2015) 
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Detection of analytes with high sensitivity and specificity is key for applications 

analysing proteins in biological samples, for example disease diagnosis. Generally, 

immunoassays use antibodies labelled with radioisotopes, luminophores, or enzymes 

to generate signal in response to the concentration of analyte present. However, the 

sensitivity and dynamic range of all immunoassays can be affected by the issue of the 

background signal observed under very low amounts or absence of the analyte. 

Samples can contain a multitude of proteins and detecting one intended protein can be 

challenging especially if their copy number is low. A potential approach of minimising 

background signals in immunoassays involves the use of lanthanide chelate labels. 

Luminescent lanthanide complexes have remarkably long-lived luminescence in 

comparison with conventional fluorophores, enabling the short-lived background 

interferences to be removed via time-gated acquisition and delivering greater assay 

sensitivity and a broader dynamic range. The lanthanide ion europium (Eu3++ ) is most 

commonly used in bioanalytical applications (Enomoto et al. 2002; Soukka et al. 2003; 

Zuchner et al. 2009; Webber et al. 2014a). 

Luminescence from conventional fluorescent dyes and sample interferences occurs on 

a nanosecond scale whereas lanthanide ions luminesce in the microsecond to 

millisecond range. Lanthanide luminescence can be selectively detected by time-

gating the signal, even in the presence of other luminescent substances. It can be 

achieved by marking the acquisition cycle after the more rapid background 

fluorescence has decayed (Figure 1.7). Lanthanide-based time-resolved luminescence 

immunoassays have been commonly used in solid phase microtitre plates. The most 

successful and commercially available lanthanide-based immunoassay is the 

dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA). The 

DELFIA assay works with four of the luminescent lanthanides (Dy, Eu, Sm, Tb), but 

due to the differences in the emissive levels of the different ions, it requires different 

ligands and a single specific enhancement solution (Hemmilä et al. 1984; Hagan and 

Zuchner 2011).  
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Figure 1.7 Principle of Lanthanide luminescence measurements. Lanthanide 

ions have long-lived luminescence as compared to conventional fluorescent dyes 

and can be time gated for an effective measure to avoid background noise. 

Illustration adapted from Hagan and Zuchner (2011) 
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1.1.6 Functional Role of EVs 

1.1.6.1 EVs in body fluids 

Body fluids contain a mixture of vesicles originating from different sources such as 

the cells in circulation and cells lining the cavities of extruded body fluids. The 

biological contents encapsulated in the EVs are protected by the lipid membrane from 

degrading enzymes secreted by body fluids, thus protecting them as a source of 

physiological and pathological information which can be sent over a distance. 

Blood: The first report of the existence of EVs in blood was described as platelet 

“dust”. Later the release of EVs with transferrin receptor during the maturation of 

reticulocytes was yet another significant find (Wolf 1967; Pan and Johnstone 1983).  

Plasma-derived EVs are a mixture of vesicles from the cells lining the blood vessels 

and sourced from different cells found in blood. The largest individual population of 

EVs in plasma is positive for platelet specific markers (such as, CD41a, CD61 and 

GPIb) and are considered to be ~25-70% of the total blood EVs as examined by flow 

cytometry (Caby et al. 2005; Arraud et al. 2014). However, it has also been suggested 

that the platelet-marker-positive EVs in plasma from healthy subjects are mostly 

derived from megakaryocytes. The different activating mechanisms by which EVs 

may be generated suggests a versatile way for the platelet to participate in various 

physiological maintenance functions from haemostasis to immunity and development 

(Aatonen, Gronholm and Siljander, 2012). Besides platelet derived EVs, the peripheral 

blood also harbours EVs derived from blood cell population, that is leukocytes, 

endothelial cells and red blood cells that mediate several metabolic functions (Menck 

et al. 2017). 

The protein and RNA content of plasma-derived EVs, as well as the number of EVs 

present, has been shown to be altered by several pathological states, suggesting that 

blood can also harbour an EV population derived, for example, from tumours 

(Colombo et al. 2014; Miyazaki et al. 2018). In addition, altered physiological status 

(such as pregnancy or pathological condition) is reflected in the number and molecular 

composition of circulating EVs (Agouni et al. 2008; Nardi et al. 2016; Pomatto et al. 

2018). The physiological function of plasma-derived EVs, in association with vascular 

biology, coagulation and the immunological response, is discussed in later chapters.  
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Urine: About 3% of the total urinary protein content has been estimated to be derived 

from EVs (De Palma, Sallustio and Schena, 2016). Urinary EVs are collectively 

released by the cells lining the renal epithelium, extending from the glomerular 

podocytes through the proximal tubule, the thick ascending limb of Henle, the distal 

convoluted tubule and the collecting duct (Dear et al. 2013; Prunotto et al. 2013). 

CD24, expressed both by tubule cells and podocytes, has been identified as a suitable 

urinary EV marker. Most of the RNA within urinary EVs is rRNA, while only 5% of 

the total RNA is aligned to protein coding genes and splice sites. A role for urinary 

EVs in intrarenal signalling has been suggested, representing a mechanism for cell-to-

cell signalling along the nephron, through secretion and reuptake of their content such 

as proteins, mRNAs and miRNAs that can affect the function of the recipient cell 

(Knepper and Pisitkun 2007). The vasopressin-regulated water channel aquaporin-2 

(AQP2), an apical Na+ transporter protein, is predominantly excreted via urinary EVs 

from renal collecting duct cells. Thus, EVs apparently trigger AQP2 trafficking 

towards the apical plasma membrane where they fuse, thereby increasing water 

permeability across the nephron. Urinary EVs are described as enriched in innate 

immune proteins, such as antimicrobial proteins and peptides and bacterial and viral 

receptors. This suggests a new role for urinary EVs as innate immune effectors that 

contribute to host defence within the urinary tract (Hiemstra et al. 2014). On the other 

hand, urinary EVs has proven to be an excellent source of biomarkers for disease 

progression and non-invasive liquid biopsy for the detection of prostate and bladder 

cancer (Woo et al. 2019). 
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1.1.6.2 EVs in vascular biology 

EVs enhance coagulation and participate in haemostasis. EVs generated by cancer 

cells have procoagulant capacity amplified in several pathological processes (Cocucci 

et al. 2009). The physiological significance of EVs in coagulation is supported by 

clinical disorders in which microvesiculation is impaired resulting in bleeding 

tendency. Scott syndrome is a severe bleeding disorder with reduced procoagulant 

effect of platelets, whereby an impaired phospholipid scramblase activity leads to 

reduced phosphatidylserine (PS) exposure, decreased release of procoagulant vesicles 

and low prothrombinase activity (Weiss et al. 1979; Toti et al. 1996). The 

physiologically relevant procoagulant role of EVs is illustrated by a study of sedentary 

men in which increased formation of procoagulant platelet-derived EVs during 

hypoxic exercise training enhanced in vitro thrombin generation (Chen et al. 2013). 

Furthermore, the addition of exogenous platelet EVs to a flow model of circulation 

induced thrombosis (Suades et al. 2012). The procoagulant activity of EVs seems to 

be predominantly exerted by the larger-sized EV populations from different cellular 

sources rather than exosomes (Heijnen et al. 1999). 

In addition to platelets, various leukocyte populations, red cells, ECs and even 

megakaryocytes may participate in forming procoagulant EVs (Owens and MacKman 

2011). Smooth muscle cells may also act as a source of procoagulant EVs. Activated 

monocytes shed TF+ EVs and neutrophils may also contribute; the presence or absence 

of TF in EVs can be regarded as the major determinant of the procoagulant potential 

of an EV-population (Egorina et al. 2008; Owens and MacKman 2011). EV-mediated 

transfer of TF in the circulation may also be relevant. Monocyte-derived TF+ EVs 

were reported to bind activated P-selectin-expressing platelets via PSGL-1 and to fuse 

with them, leading to enhanced TF-FVIIa activity (Del Conde et al. 2005). Increased 

circulating levels of TF+ EVs with procoagulant activity have been associated with 

pathological states. In diseases such as cancer or acute coronary heart syndrome, the 

thromboembolic risk mediated by EVs may be enhanced (Matsumoto et al. 2004; 

Geddings and Mackman 2013). The exact role of EVs in the balance between 

coagulation and anticoagulation remains unclear, as the predominantly procoagulant 

role of EVs has been challenged by observations that EVs may also harbour 

anticoagulant and fibrinolytic properties. ECs, as well as monocytes, express tissue 
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factor pathway inhibitor (TFPI) and TFPI+ EVs have been detected in normal 

pregnancies, but their presence was found to be increased in gestational vascular 

complications (Colombo et al. 2014). 

The delivery of pro-angiogenic factors at sites of angiogenic sprouts are believed to be 

mediated by leukocyte- and platelet-derived EVs (Rhee et al. 2004). EVs derived from 

mononuclear blood cells are reportedly involved in horizontal mRNA transfer and 

induce pro-angiogenic effects in vitro and in vivo. Human endothelial cell (EC) 

network formation was improved by supernatants derived from T cells and monocytes 

co-cultured under pro-angiogenic conditions (Rohde et al. 2007). EC stress influenced 

the EVs in terms of protein and RNA content, and these EVs interact with 

macrophages in vascular niches to promote vascular growth. Hypoxia-cued EVs from 

multiple myeloma cells were identified to accelerate angiogenesis by targeting the 

FIH-1/HIF-1 signalling pathway via miR-135b (Umezu et al. 2014). EV-mediated 

protection against endothelial apoptosis depended on annexin-I/PS receptor function 

in target ECs, and the transfer of miRNA-126 promoted endothelial repair. EV-

mediated cross-talk between ECs depends on miR-214 and was shown to activate an 

angiogenic programme in target cells, while EC senescence was suppressed (Balkom 

et al. 2013; Colombo et al. 2014). Increased understanding of the role of EVs in 

vascularisation has opened the potential use of EVs in therapeutics, with emerging 

concepts focused on the development of EVs for pro- or anti-angiogenic therapies used 

for organ regeneration or cancer treatments, respectively. 

Recent studies have associated EVs with cardiovascular related effects. EVs derived 

from stressed smooth muscle cells can cause endothelial dysfunction modulated by 

dysregulated EV release with altered profile (Jia et al. 2017). Endothelial cells generate 

EVs with altered protein cargo that contribute to the pathogenesis of atherosclerotic 

disease (Goetzl et al. 2017). EVs sourced from adipose tissue carry miRNA that can 

regulate systemic glucose tolerance at local and distal tissues (Thomou et al. 2017). 

Studies in mice have shown a role of EVs in improving muscle damage and vascular 

remodelling, that relies on the presence of certain enzymes within EVs (Cavallari et 

al. 2017). 
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1.1.6.3 Role of EVs in the Immune system 

EVs act as paracrine messengers building on the innate immune system and have been 

mainly described as pro-inflammatory mediators inducing or propagating 

inflammatory signals during infections and metabolic disorders. EVs released from 

macrophages and dendritic cells predominantly exert pro-inflammatory effects. EVs 

released from monocytes/macrophages are known to cause inflammation-induced 

programmed cell death in vascular smooth muscle cells via transfer of functional 

pyroptotic caspase-1 (Sarkar et al. 2009). It was shown that macrophage-derived EVs 

could induce differentiation of naive monocyte recipient cells to macrophages (Ismail 

et al. 2013), which is accounted by the high levels of the miRNA molecule miR-223, 

which is an important regulator of myeloid cell proliferation and differentiation. 

Microbial infection of macrophages was also shown to modify their EV content and 

promote the release of EVs that stimulate pro-inflammatory responses in resting 

macrophages (Bhatnagar and Schorey, 2007; O’Neill and Quah, 2008). The 

macrophages infected with Toxoplasma or Mycobacterium tuberculosis release 

characteristic EVs that induce immune cell recruitment and secretion of pro-

inflammatory cytokine RANTES and TNF-α (Bhatnagar et al. 2007; Anand et al. 

2010). Intranasal injection of mice with infected-macrophage EVs led to increased 

secretion of pro-inflammatory cytokine mediators (TNF-α and IL-12) along with an 

influx of neutrophils and macrophages into the lungs of mice (Bhatnagar and Schorey 

2007). EVs released from stimulated macrophages are capable of triggering F-κB 

signalling pathway, to amplify inflammation (McDonald et al. 2014; Zhang et al. 

2017). 

Besides promoting inflammation, polymorphonuclear neutrophils (PMN) a cell type 

involved in innate immunity, generate large EVs, termed ectosomes, at the plasma 

membrane that have immunosuppressive effects. PMN-derived EVs induced the 

secretion of the anti-inflammatory cytokine TGFβ from monocytes or DCs and 

decreased the release of the inflammatory cytokines IL-8, IL-6 and TNFα. They also 

promoted the phagocytosis of apoptotic PMN and the release of pro-resolving 

mediators from macrophages (Dalli and Serhan 2012). In vitro studies have shown that 

antigen presenting cells (dendritic cells/macrophages)-released EVs activate CD8+ 

and CD4+ T cells by delivering MHC-I, MHC-II and T cell co-stimulatory molecules 
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(Utsugi-Kobukai et al. 2003). In addition, B-cell line released EVs can also cause 

direct stimulation of CD4+ T cell lines (Raposo et al. 1996). Immune cell-derived EVs 

can mediate the transfer of antigen-MHC complexes between immune cells by the 

process called cross-dressing. The dendritic cell-secreted EVs are captured and 

internalised by APC, containing antigen-MHC complexes. Subsequently, the APC 

presents the internalised antigen-MHC complex to activate T-cells instead of EVs  

(Montecalvo et al. 2008). During autoimmune diseases, patients are detected with 

increased levels of EVs that are associated with complement activation, bearing 

complement components. An anti-inflammatory therapy in such instances, suppressed 

inflammation but didn’t affect the number of EVs (associated with complement 

activation) secreted, suggesting that inflammation may not be the underlying driver of 

EV release (Yin et al. 2008; van Eijk et al. 2010). 

Immune cell-derived EVs can also induce immunosuppressive effects. Thymic-

derived EVs play a role in regulatory T-cell selection and the induction of central 

tolerance (Skogberg et al. 2013). Peripheral immune tolerance effects were effected 

by immune cell-derived EVs following a genetic modification or IL-10-treatment in 

DCs (Cai et al. 2012). Furthermore, activated T-cell-secreted EVs diminished the 

immune response by blocking cytotoxicity of natural killer cells, inhibiting T-cell 

stimulation and inducing T-cell apoptosis (Wen et al. 2017). T-cell derived EVs were 

found to mediate anti-tumour activity, a potential target for therapeutic design (Zhang 

et al. 2011). Therefore, EVs from immune cells can modulate as well as aggravate the 

immune response. 
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1.1.6.4 Role of EVs in cancer 

Secretion of EVs by tumour cells is understood to play a major role in intercellular 

signalling to neighbouring tumour cells and to distant tissues via blood or other 

biological fluid. Tumour derived EVs (TDEs) impact tumour stroma, including 

fibroblasts, endothelial cells, and immune cells. 

Tumour stroma has fibroblasts as a major constituent cell type. TDEs are able to induce 

a phenotype change, transforming normal fibroblast into cancer-associated fibroblasts 

(CAFs) (Paggetti et al. 2015; Song et al. 2017). TDEs from prostate cancer were found 

to contain TGFβ that facilitate fibroblast transformation (Webber et al. 2015). The 

extent of CAF activation correlates with the aggressiveness of the tumour cells. EVs 

from an aggressive cell line were marked with elevated CAF marker expression, 

proliferation rate, and enzyme release compared to EVs from a less aggressive cell line 

(Giusti et al. 2018). Upon activation CAF also release EVs that elicit metabolic 

changes in tumour tissue to promote tumourigenesis (Donnarumma et al. 1959; 

Richards et al. 2017). An intriguing role of TDEs is in inducing resistance to 

chemotherapy (Au Yeung et al. 2016). For instance, a study demonstrated that 

carcinoma cells pre-conditioned with pancreatic fibroblast media gained resistance to 

gemcitabine (Richards et al. 2017). Another key role for TDEs lies in the movement 

of pro-angiogenic molecules from tumour to endothelial cells, thus inducing 

angiogenesis (King et al. 2012; Umezu et al. 2014). TDEs released from hypoxic 

tumour cells had a profound effect in promoting angiogenesis, whilst a hypoxic 

environment elevates the production of TDEs with altered EV cargo. TDEs also affect 

immune cells to promote tumour associated inflammation. TDEs can activate the 

NFκβ pathway in macrophages to release pro-inflammatory cytokines IL-6, TNFα, 

GCSF, and CCL2 (Chow et al. 2014; Minciacchi et al. 2017). 
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1.2 Adipose Tissue 

Obesity is a serious and growing epidemic over the past decade. Worldwide, the 

prevalence of obesity has tripled since 1975 with nearly 650 million adults currently 

described as obese (WHO). In England, about two-thirds of adults are classified as 

obese and it costs the national health service an estimated £27 billion (Public Health 

England 2017). Obesity represents a major global concern as it is a significant risk 

factor for the development of numerous chronic conditions including cardiovascular 

diseases, diabetes, cancer, musculoskeletal disorders and other associated syndromes. 

Cardiovascular diseases (CVDs) are the leading cause of death globally (approx. 31%) 

with an estimated 17 million people dying of CVD in 2015 (World Health 

Organization 2015). The alarming increase in obesity and associated cost of treatment 

has led to calls for intense research to understand the underlying pathophysiology and 

development of therapeutics. Over the past two decades, there has been a surge in 

research into adipocyte biology and adipogenesis, functional pathways, metabolic and 

homeostatic regulation, and how adiposity can lead to disease conditions. Adipose 

tissue, once thought of as just an energy depot storing fat, is now recognised as an 

endocrine organ with adipocytes capable of secreting hormones, cytokines, 

adipokines, extracellular vesicles and growth factors that not only affect the 

neighbouring cells but also impact target tissues involved in energy metabolism and 

influencing physiologic and pathologic processes (Rosen and Spiegelman 2006; Gao 

et al. 2017). Adipocytes are developed from pre-existing pre-adipocytes which are 

fibroblast-like cells that upon appropriate conditions (adipogenic stimuli) undergo 

adipogenesis to form mature adipocytes. In addition to mature adipocytes, adipose 

tissue also comprises stromal-vascular cells such as fibroblasts, smooth muscle cells, 

pericytes, endothelial cells, and adipogenic progenitor cells or preadipocytes 

(Miettinen et al. 2008).  

Adipose tissue/adipose depots (AT) are present throughout the body; that which is 

found in loose association with the skin is classified as subcutaneous adipose tissue 

(SAT) whilst depots within the body cavity, surrounding the heart and other organs 

are referred to as visceral adipose tissue (VAT). Intra-abdominal visceral fat drains 

into the portal circulation; excess VAT in particular has been linked to morbidities 

associated with obesity such as type-2 diabetes and CVD (Giorgino et al. 2005; Rosen 

and Spiegelman 2006). Hence, those individuals with preferential accumulation of 
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adiposity around the visceral/ abdominal region carry more risk of disorders and 

certain cancers when compared to those individuals where adiposity is distributed to 

the subcutaneous regions. Adipocytes and precursor cells from different depots have 

different replicative potential, different developmental attributes and different 

responses to hormonal signals, although the mechanistic basis for these distinctions is 

under investigation (Kershaw and Flier 2004). Compared to SAT, VAT is more 

vascular, innervated and contains a larger number of inflammatory and immune cells. 

Adipocyte characteristics in the two depots also vary, whereby VAT adipocytes are 

metabolically active, sensitive to lipolysis and more insulin-resistant than SAT 

adipocytes. Furthermore, while SAT is more active in uptake of circulating free fatty 

acids and triglycerides, VAT has a greater capacity to generate free fatty acids and 

uptake glucose, and is more sensitive to adrenergic stimulation (Ibrahim 2010; 

Stephens 2012). 

 

1.2.1 Types of adipose tissue 

Two predominant types of adipose tissue with distinct characteristics have been 

defined: white adipocyte (WAT) and brown adipocyte tissue (BAT). White 

adipocytes, constituting WAT, are characterised by a single large lipid droplet 

occupying about 90% of the cell volume, squeezing the nucleus to the periphery and 

cytoplasm forming a thin rim. The organelles are not well developed, with 

mitochondria being small, elongated with short, randomly organised cristae. These 

cells are also referred to as unilocular adipocytes. In contrast, brown adipocytes 

making up BAT, are comparatively smaller in size, their cytoplasm contains several 

lipid droplets, a round nucleus and numerous, large, generally spherical mitochondria 

with laminar cristae, and hence referred to as multilocular adipocytes (Smorlesi et al. 

2012; Giordano et al. 2014). BAT is evolved to regulate thermal homoeostasis at the 

expense of glucose and lipids. Exposure to low temperatures/cold induces the 

development of brown adipocytes within the tissue to meet the increasing thermal 

demand. This metabolic function is mediated by the presence of a unique protein called 

uncoupling protein-1 (UCP-1) (Cannon and Nedergaard 2004; Sidossis and Kajimura 

2015). In humans, BAT is seen surrounding the heart and great vessels (Giordano et 

al. 2014). Table 1.2 gives an overview of the types of adipose tissue. 
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WAT demonstrates plasticity and can undergo “browning” whereby some white 

adipocytes can turn into brown-like adipocyte within the tissue and referred to as beige 

adipocytes (also called brite adipocytes). They are sparsely found within WAT and 

found to occur in response to cold exposure, chronic endurance exercise or β3-

adrenergic stimulation. They are characteristically similar to brown adipocytes in 

expressing UCP-1, contain multiple lipid droplets and large numbers of mitochondria. 

This phenomenon is thermogenically competent where energy is consumed within the 

depot while limiting the substrate for WAT, thus expanding the energy- dissipating 

ability of the organism (Harms and Seale 2013; Sepa-Kishi and Ceddia 2018). 

These tissue types do not show anatomical boundaries but are found as a continuum in 

all depots. The relative amount of WAT and BAT varies across the adipose organ 

depending on several factors including age, diet, environment and physiology. The 

functional role of white adipocytes lies in storing energy in the form of a lipid droplet. 

They release fatty acids into the circulation which serves as an energy substrate for 

other organs when glucose availability is limited. The breakdown of triacylglycerols 

generates fatty acids which contain more energy per unit mass than carbohydrates. 

They also secrete endocrine hormones which regulate metabolic functions. On the 

other hand, brown adipocytes burn lipids to generate heat; the multilocularity 

maximises the cytoplasmic-lipid interface making a large amount of fatty acids readily 

available for mitochondrial coupling and consequently thermogenesis.  Under light 

microscopy the adipose organ shows ‘brownish’ areas corresponding to brown adipose 

tissue, which is predominantly a parenchymal cell type, richly innervated and 

vascularised. ‘White’ areas, of predominant white adipocytes, show fewer nerves and 

a lower number of blood vessels (Vitali et al. 2012; Giordano et al. 2014). Depot colour 

is determined by the relative amount of the two cell types and the degree of 

vascularisation (Schulz and Tseng 2013).  

Adipocytes with intermediate morphology between white and brown have been 

identified, designated as paucilocular adipocytes found in all adipose depots (Giordano 

et al. 2014). They exhibit the phenomenon of transdifferentiation whereby they show 

great affinity to turn into brown adipocytes upon environmental or pharmacological 

stimulus. There has been evidence to support the fact that fully differentiated 

adipocytes can undergo genome reprogramming to change morphology and serve a 

physiological role (Cousin et al. 1996; Himms-Hagen et al. 2000; Smorlesi et al. 2012; 
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Giordano et al. 2014; Pellegrinelli et al. 2016). White-to-brown transdifferentiation, 

also referred to as ‘browning’ is essential to meet increased heat production 

requirements during chronic cold exposure. β3-adrenoceptors (AR) are specifically 

expressed by brown adipocytes and under circumstances of cold exposure, they are 

activated by noradrenaline to drive brown adipocyte thermogenic function mediated 

by sympathetic nervous fibres (Giordano et al. 1998; Foster and Bartness 2006). The 

tissue remodelling constitutes recruitment of precursor cells, especially in 

interscapular and inguinal subcutaneous depots, as well as  direct conversion of a 

subpopulation of unilocular/paucilocular adipocytes (Barbatelli et al. 2010; Rosenwald 

et al. 2013; Wang et al. 2013). The two processes, which most likely coexist, are driven 

by the same physiological stimulus through β-AR activation. In a study involving 

mice, those that lacked beta-3 adrenergic receptor (β3-AR) did not undergo browning 

on exposure to cold, but endure precursor development, probably driven by beta-1 

adrenergic receptor (β1-AR) (Barbatelli et al. 2010). Preadipocyte development was 

observed after administration of β1-AR agonists, simultaneously, administration of 

β3-AR agonists led to a lack of development. Thus, in vivo findings suggest that β3-

AR could be responsible for white-to-brown transdifferentiation and β1-AR for 

precursor proliferation and differentiation. The remarkable plasticity of adipose tissue 

is of pathophysiological interest, because it could be harnessed to tackle obesity and 

metabolic syndrome (Bartelt et al. 2011; Nedergaard et al. 2011). It is interesting to 

note that human white adipocyte precursors can be induced in vitro to express UCP1 

through administration of drugs (Elabd et al. 2009; Beranger et al. 2013). A study by 

Yang et al. (2003), suggested that insulin resistance is associated with a reduced brown 

adipose phenotype and that a basal brown adipose phenotype may be essential for 

maintaining normal insulin sensitivity (Yang et al. 2003). The plasticity of the adipose 

organ could potentially be explored for future treatment, or prevention, of obesity and 

type-2 diabetes. White-to-brown transdifferentiation involves a reduction in adipocyte 

size and an increase in their mitochondrial content. Thus, ‘mild’ white-to-brown 

transdifferentiation could render white adipocytes less prone to death and turn the 

adipose organ parenchyma into a ‘healthier’ tissue. The Table 1.2 summarises the 

three types of adipose tissue. 
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Adipocytes Appearance Function Location Developmental origin 

White 

Unilocular fat 

droplet, low 

mitochondrial 

density 

Storage of 

lipids, 

endocrine 

functions, 

tissue 

regeneration, 

cardiovascular 

function, 

inflammation 

Subcutaneous, 

intra-

abdominal 

Potentially within 

tissue depot 

Brown 

Multilocular 

fat droplets, 

high 

mitochondrial 

content 

Thermogenesis, 

endocrine 

functions 

Supraclavicular 

area, axillary, 

paravertebral 

region 

Myf5
+
/Pax7

+
 precursor 

Beige 

Multilocular 

fat droplets, 

very high 

mitochondrial 

content 

Thermogenesis, 

regulation of 

nutrient 

homeostasis 

Spread among 

brown and 

white 

adipocytes, 

supraclavicular 

area, axillary, 

paravertebral 

region 

Smooth-muscle-like 

origin 

 

 

 

  

Table 1.2 Overview of the types of adipocytes found in human adipose tissue 

Myf5 = myogenic gene, Pax7 = Paired box gene 7 
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1.2.2 Function of Adipocytes 

The classical function of adipocytes is storage and release of energy, serving as an 

energy bank.  When excess energy is generated, free fatty acids (FFAs) enter 

adipocytes following the hydrolysis of triglycerides from triglyceride-rich lipoproteins 

and chylomicrons. FFAs are then re-esterified into triglycerides through the sequential 

actions of multiple enzymes, including glycerol-3-phosphate acyltransferase (GPAT), 

1-acylglycerol-3-phosphate acyltransferase (AGPAT), phosphatidic acid phosphatase 

(PAP), and diacylglycerol acyltransferase (DGAT) (Gupta 2014). Lipids can also be 

synthesised from carbohydrates through de novo lipogenesis by the adipocytes. When 

energy levels are low, adipocytes activate the enzymatic machinery comprising 

adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and 

monoglyceride lipase (MGL) required to hydrolyse triglycerides and release FFAs 

back into the circulation (Ameer et al. 2014). Lipid trafficking in adipocytes constitutes 

an element of its function that has been extensively studied for the past decade 

(Thompson et al. 2010; Pilch et al. 2011).  

Adipocytes have endocrine properties. Perilipins, a family of proteins associated with 

the lipid droplet, play an important role in regulating lipolysis and lipid metabolism in 

adipocytes. Perilipins are found in both white and brown adipose tissue (Blanchette-

Mackie et al. 1995; Tansey et al. 2004).The discovery that adipose tissue in obesity 

produced tumour necrosis factor (TNF-α), a pro-inflammatory cytokine involved in 

insulin resistance, provided the first link between adipose-secretory products and 

insulin resistance in obesity (Hotamisligil 1999).  The discovery of the hormone leptin 

was a pivotal point in the field of energy metabolism. Leptin is produced and secreted 

by adipocytes, predominantly WAT, and functions centrally to regulate eating 

behaviour (Allison and Myers 2014; Sáinz et al. 2015). Food intake and energy 

expenditure are regulated endocrinologically by leptin, thus modulating adiposity. 

Leptin receptors are expressed highly in the mediobasal hypothalamus, and leptin-

dependent effects commence from the central nervous system (CNS) (Rosen and 

Spiegelman 2006; Sáinz et al. 2015). The control centre in the CNS orchestrates 

responses in glucose homeostasis and energy control (Morton and Schwartz 2011). 

This adipostat has been found to increase insulin sensitivity in the liver and muscles. 

Leptin also acts on peripheral tissues to control nutrient homeostasis and inflammation 

(Kang et al. 2016c). 
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Two other ‘adipokines’ namely adiponectin and adipsin, are primarily produced by 

adipocytes. Adiponectin exerts pleiotropic effects on glucose and lipid metabolism, 

thus providing cardioprotection through direct actions on the heart as well as on several 

types of vascular cells (Nedvídková et al. 2005; Lin et al. 2013; Gupta 2014). 

Adiponectin has been considered a potential therapeutic agent after a  study conducted 

in mice demonstrated decreased hyperglycaemia, reversed insulin resistance, and 

sustained weight loss without affecting food intake (Xu et al. 2003a). Other profound 

beneficial effects include alleviating insulin resistance and adipose tissue 

inflammation. Adipsin acts at the adipose–pancreas interorgan axis to regulate the 

insulin secretory capacity of β-cells (Lo et al. 2014). Mice lacking this adipokine had 

reduced glucose-stimulated insulin secretion and thus glucose intolerance. In a similar 

vein, T2DM patients with β cell failure have been found to be deficient in adipsin. 

Visfatin, another key adipokine, has insulin-mimetic effects: it stimulates glucose 

uptake and promotes insulin sensitivity, as well as exerting proadipogenic and 

lipogenic effects (Sidossis and Kajimura 2015). 

Adipocytes also play a role in glucose homeostasis and exert a significant effect on 

global glycaemic control. Alterations in adiposity, in cases of obesity or lipodystrophy, 

have profound effects on glucose homeostasis. Leptin exerts a notable effect by 

reversing hyperglycaemia and increasing insulin sensitivity (Sadaf Farooqi et al. 

2002). In muscles, leptin aids in reducing hepatic intracellular triacylglycerol levels. 

A functional ‘adipo-insular axis’ has been proposed with insulin promoting leptin 

secretion and leptin inhibiting insulin release (Kieffer and Habener 2000). The 

hormone adiponectin has been found to stimulate AMP kinase activity in the liver and 

skeletal muscle, with profound effects on fatty acid oxidation and insulin sensitivity, 

as observed in obese/diabetic mice. The loss-of-function models of adiponectin have 

reported reduced insulin sensitivity on high-fat diets (Kubota et al. 2002; Maeda et al. 

2002). The adipokine visfatin has a salutary effect on glucose uptake mediated by 

direct binding and activation of the insulin receptor, not directly involved in insulin 

resistance. Serum levels of visfatin do not correlate with type-2 diabetes or insulin 

resistant states (Rosen and Spiegelman 2006; Stephens and Vidal Puig 2006).  

Brown adipocytes are another means by which adipocytes can modulate whole-body 

energy balance. Brown adipocytes have been deemed as thermogenic cells that 

perform uncoupled respiration and which function to dissipate chemical energy in the 
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form of heat with their abundant presence of mitochondria. The mitochondria in BAT 

contain uncoupling protein 1 (UCP1) that supports the thermogenic function by 

performing uncoupled respiration. UCP-1 aids in the dissipation of proton gradient 

across the mitochondrial membrane without concomitant ATP synthesis, resulting in 

the dissipation of chemical energy into heat. In rodents, brown adipose tissue makes a 

substantial contribution to whole-body energy metabolism (Harms and Seale 2013). 

Mice lacking brown adipose tissue exhibit reduced energy expenditure and are prone 

to diet-induced obesity. Interestingly, mice lacking UCP-1 are cold-sensitive but not 

obese. In addition, beige adipocytes also have a thermogenic function in addition to 

their role in glucose homeostasis and energy balance. 
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1.2.3 Process of Adipocyte differentiation 

When the growth arrested pre-adipocytes embark on cell cycle to complete rounds of 

clonal expansion, it marks the beginning of adipogenesis. The tumour suppressor 

retinoblastoma protein (Rb) is key in the initiation of adipogenesis and further plays a 

pivotal role in adipocyte differentiation. In a study undertaken by Hensen et al., the 

mouse lung embryonic fibroblasts (MEFs) failed to undergo adipocyte differentiation 

after a targeted disruption in Rb gene coding (Chen et al. 1996; Hansen et al. 1999). 

The phosphorylation of Rb drives cell-cycle progression, where Rb is 

hypophosphorylated in growth-arrested preadipocytes and hyperphosphorylated in 

proliferating cells. Rb in the hypophosphorylated state complexes with transcription 

factor E2F and coincides with an inhibition of E2F-dependent transcriptional activity 

(Hiebert et al. 1992). Upon addition of adipogenic hormones, Rb rapidly undergoes 

hyperphosphorylation by cyclin-dependent kinases (CDKs) leading to dissociation of 

Rb and E2F. The unoccupied E2F progresses the cell-cycle through to S-phase. Prior 

to the terminal differentiation state, Rb is restored to a hypophosphorylated state by 

binding with E2F and thus, impeding cells from the cell cycle expansion (Camp et al. 

2002). Cell-cycle-associated proteins including CDKs and their inhibitors, p18, p21 

and p27, essentially mediates the advancement of cell cycle followed by its entry into 

the terminal stage of differentiation (Morrison and Farmer 1999; Reichert and Eick 

1999).  

The process of adipogenesis is regulated by a set of transcription factors that steers a 

series of gene expressions. The key catalyst for the activation of terminal adipocyte 

differentiation is determined by two transcription factor families, namely the 

CCAAT/enhancer-binding proteins C/EBPα, -β and -δ, and peroxisome proliferator-

activated receptor γ (PPARγ) (Darlington et al. 1998; Rosen and Spiegelman 2000). 

With the onset of adipogenic signals, the differentiation process begins by the rapid 

induction of C/EBPβ and -δ expression and these proteins subsequently bind to the 

promoter region of the gene encoding p21 stimulating CDK inhibitor p21 expression. 

The CDK-mediated Rb phosphorylation is inhibited with increased expression of p21 

(Elberg et al. 2000). The significance of C/EBPβ and -δ during adipogenesis was 

demonstrated by genetic studies in mice. Adipogenesis was augmented as a result of 

an overexpression of either C/EBPβ or -δ in preadipocytes, whereas MEFs lacking 

either C/EBPβ or -δ reported reduced levels of adipogenesis compared with the wild 
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type (Yeh et al. 1995; Tanaka et al. 1997). Reduced white adipose tissue mass and 

limited lipid staining in interscapular brown adipose tissue were characteristic of 

MEFs derived from mice with impaired C/EBPβ and -δ expression. Furthermore, with 

C/EBPβ and δ-double-knockout mice, harvested MEFs completely failed to 

differentiate. These studies thus indicate that adipocyte differentiation and maturation 

is achieved through the synergistic roles of C/EBPβ and -δ.  

C/EBPα is a pre-requisite in adipogenic induction; hence, this protein is expressed 

slightly before most adipogenic genes are initiated (Lekstrom-Himes and 

Xanthopoulos 1998). PPARγ2, a ligand-dependent nuclear receptor transcription 

factor is another important regulator of adipogenesis whose secretion is induced by 

C/EBPβ and -δ expression (Elberg et al. 2000). C/EBP-β and C/EBP-δ are involved at 

an earlier stage than PPARγ in adipogenesis  , and the promoter region of the PPARγ 

gene has binding sites for C/EBP (Lin and Lane 1992; Camp et al. 2002). The 

induction of C/EBPβ and -δ follows an increase in PPARγ and C/EBPα expression. 

The transcription factor PPARγ, expressed substantially in adipose tissue, exists in two 

isoforms, PPARγ1 and PPARγ2, derived from the same gene by alternative promoter 

usage and RNA splicing. While PPARγ2 is exclusively expressed in adipocytes, 

detectable levels of PPARγ1 are reported in other tissues, including liver, muscle and 

macrophage (Camp et al. 2002).  A study by Ren et al. underlined the significance of 

PPARγ2 over PPARγ1 in 3T3-L1 adipogenesis, where artificial zinc finger repressor 

proteins selectively decreased the expression of that isoform by specifically binding to 

the PPARγ2 promoter region (Ren et al. 2002). The extent of lipid accumulation is 

associated with the level of PPARγ2 expression. Cells failed to undergo adipogenesis 

with a depletion in PPARγ2 expression whereas adipogenesis was restored when 

PPARγ-deficient cells were treated with exogenous PPARγ2 and no significant effect 

as observed with overexpression of PPARγ1. Thus, the two isoforms interact 

differentially with the coactivators and corepressors to mediate PPARγ transcriptional 

activity. PPARγ1 being expressed in preadipocytes, could act as a priming factor to 

produce PPARγ2 along with C/EBP-β and C/EBP-δ. The cell-cycle is also regulated 

by PPARγ1, feasibly by modulating E2F or its dimerisation partners (the DP proteins). 

During the later stages of adipogenesis, it’s been proposed that endogenous production 

of PPARγ ligands are mediated by PPARγ1 (Altiok et al. 1997; Morrison and Farmer 

1999; Camp et al. 2002). 
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As differentiation progresses, a role for C/EBPα comes to play post PPARγ2 

expression and studies have established co-regulating expression between the two. A 

targeted gene-knockout strategy in mice help understand the degree of PPARγ and 

C/EBPα in adipose development. Homozygous knockout of either gene resulted in 

embryonic lethality and poor development of normal AT in mice (Barak et al. 1999; 

Kubota et al. 1999). Under heterozygous gene knockout, mice with diminished PPARγ 

expression, also expressed a reduced level of C/EBPα and no functional PPAR 

response element was identified in the enhancer region of C/EBPα (Barak et al. 1999). 

Similarly, in another study, mice with disrupted C/EBPα expression had a low level of 

PPAR γ  (Wu et al. 1999). In C/EBPα-null MEF cells, where adipogenesis is blocked, 

an overexpression of PPARγ2 was able to restore the process. The PPARγ gene 

transcription is activated by the binding of C/EBPα to the promoter region of PPARγ2. 

The PPARγ2 promoter region carries a binding site for C/EBPα and C/EBPδ, but not 

C/EBPβ (Elberg et al. 2000). The intricate roles of PPARγ and C/EBPα were revealed 

when non-adipogenic cells converted from fibroblasts into adipocytes by the 

overexpression of either transcription factor, as seen in NIH3T3 cells (Freytag et al. 

1994; Tontonoz et al. 1994b). Likewise, in PPARγ-null MEFs, adipogenesis could not 

be restored even after forced C/EBPα expression (Rosen et al. 2002). Thus, it leads us 

to believe that PPARγ2 is the fundamental player in adipogenesis while C/EBPα takes 

an accessory role for PPARγ2 and regulates PPARγ2 expression. C/EBPα is actively 

involved in the regulation of genes involved in the metabolic actions of insulin, such 

as glucose transporter 4 (Glut4). Evidently, the synergistic act of the transcription 

factors PPARγ and C/EBPα are key in adipogenesis to generate fully differentiated, 

insulin-responsive adipocytes (Wu et al. 1999; Camp et al. 2002). 

Activated PPAR-γ induces exit from the cell cycle and triggers the expression of 

adipocyte-specific genes, resulting in increased delivery of energy to the cells. 

Adipocyte determination- and differentiation-dependent factor-1/sterol regulatory 

element-binding protein-1 (ADD-1/SREBP-1) is involved in adipogenesis as well as 

lipogenesis through gene expression as demonstrated in vivo (Kim and Spiegelman 

1996). Steroid receptor coactivator-3 (SRC-3) impacts white adipocyte formation, 

where it acts synergistically with the transcription factor C/EBP to regulate the gene 

expression of PPARγ2 (Louet et al. 2006).  
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An enzyme prominently found in adipose tissue is lipoprotein lipase (LPL), which 

catalyses the hydrolysis of triglyceride (TG) molecules. Lipid accumulation in mature 

adipocytes is controlled by LPL; thus, the presence of LPL mRNA is considered as a 

marker of terminal adipocyte differentiation (Miettinen et al. 2008). A transmembrane 

protein, preadipocyte factor-1 (pref-1), is an indicator of a preadipocyte phenotype as 

it’s involved in maintaining the cell (preadipocyte) character. During adipocyte 

differentiation, the expression level of pref-1 dwindles and in vivo studies have 

demonstrated its inhibitory effect on adipogenesis (Wang et al. 2006; Connolly et al. 

2015). 

On approaching the terminal phase of differentiation, adipocytes in vitro sensitise to 

insulin and increase de novo lipogenesis. Additionally, the proteins and mRNA coding 

for enzymes including adenosine triphosphate (ATP) citrate lyase, malic enzyme, 

glycerol-3-phosphate dehydrogenase and fatty acid synthase, that are involved in TG 

metabolism are escalated (Gregoire et al. 1998; Miettinen et al. 2008). Furthermore, 

adipocytes nearing maturation, synthesise an adipocyte-specific fatty acid binding 

protein (ap2/FABP4) known as a transitional marker regulating adipocyte 

differentiation. FABP4 is principally located in adipose tissue controlling intracellular 

metabolism and transport of fatty acids. A study by Garin-Shkolnik et al., (2014) 

demonstrates that FABP4 can downregulate PPARγ whilst terminating the adipocyte 

differentiation process, thus regulating adipogenesis (Garin-Shkolnik et al. 2014). 

FABP4 attenuates PPAR-γ to interfere with the insulin responsiveness. In visceral fat 

depot, the inhibition of PPARγ by FABP4, indicts FABP4 in the progression of 

obesity-related morbidities, such as insulin resistance, diabetes, and atherosclerosis 

(Moseti et al. 2016). Adipocytes also secrete other adipokines namely adipsin, 

angiotensinogen II and leptin, indicators of the terminal stage of differentiation (Jones 

et al. 1997). A late marker of adipogenesis significantly induced is acyl-coenzyme A 

(CoA)-binding protein (ACBP) that modulates the availability of acyl-CoA esters for 

metabolic and regulatory purposes during adipocyte differentiation (Hansen et al. 

1991). 

The transcription factors C/EBPα and PPARγ establish the mature adipocyte 

phenotype by inducing adipocyte-specific genes. Adipocytes at the terminal 

differentiation stage are established with mechanisms that are important for insulin 
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action, lipid synthesis and transport, as well as secretion of adipocyte specific protein 

factors (Farmer 2006). Sustained expression of C/EBPα maintains terminal 

differentiation by activating various adipocyte genes. To ensure continued expression 

of C/EBPα throughout the differentiation process, C/EBPα contains a C/EBP binding 

site to allow for auto-activation of its own expression, located within its proximal 

promoter (Moseti et al. 2016). To conclude, adipocyte differentiation is a very complex 

process that involves the coordinated expression of a host of growth factors, hormones 

and transcription factors. Comprehending the complexities of adipogenesis process is 

of prime importance when understanding metabolic disorders and related diseases. 
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1.2.4 Models to study adipocytes and adipogenesis 

Adipocyte differentiation and cellular metabolic functions are complex processes, 

which can be studied owing to the development of diverse in vitro cell models and 

molecular biology techniques that allow for a better understanding of adipogenesis and 

adipocyte dysfunction associated with obesity. This section discusses the different 

animal and human cell culture models available for studying the in vitro adipogenic 

differentiation process related to obesity and its co-morbidities. 

1.2.4.1 Animal models 

Preadipocytes and mature adipocytes have been explored and studied from different 

animal sources over the past years. Although rodents have been the traditional 

source, feline and porcine cells have also been used to a lesser extent. Although 

studies in animal models of obesity and related metabolic diseases offer significant 

insights, their applicability to humans is limited by differences in their metabolism 

and physiology. Figure 1.8 gives an overview of mouse models available in the 

field. 

Primary preadipocytes are fibroblast-shaped cells that, under appropriate 

conditions, can differentiate into mature adipocytes. Adipogenesis consists of two 

main phases: commitment and terminal differentiation. Committed preadipocytes 

express markers that include the PPARγ and C/EBP family of regulators prior to 

differentiation induced by adipogenic stimuli. Once preadipocytes have committed 

to the adipocyte lineage, a transcriptional cascade induces the expression of 

metabolic genes and adipokines associated with the adipocyte phenotype, such as 

fatty acid-binding protein 4 (FABP4, also known as AP2), glucose transporter 4 

(GLUT4, also known as SLC2A4), leptin and adiponectin (Cristancho and Lazar 

2011).  
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Murine preadipocytes have been extensively used to study various aspects of 

adipocyte biology and adipogenesis. Primary cultures have advantages that they can 

be obtained from various locations or depots and from animals of different ages to 

examine depot- or age-dependent adipogenic or secretory mechanisms, whereas 

preadipocyte cell lines are incapable of addressing these aspects (Hausman et al. 

2014). However, these models have several limitations such as inadequate 

propagation in culture; troublesome DNA transfection; huge triacylglycerol stores 

that interfere with biochemical and microscopy analyses; extent of variation owing 

to genetics and source conditions; and the tedious isolation procedure (Ruiz-Ojeda 

et al. 2016a). 

  

Figure 1.8: Overview of the mouse models used in the study of adipogenesis. 

The media requirements and the maturation time are indicated over/below the 

arrows. The fully differentiated cells display increased concentration of FABP4, 

adiponectin and leptin. (Adapted from (Ruiz-Ojeda et al. 2016)) 
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3T3-L1 Mouse Cell Line 

In the study of adipogenesis and obesity-related pathologies, the most popular and 

well-established cell line is the preadipocyte 3T3-L1 cell line derived from murine 

Swiss 3T3 cells (Green and Meuth 1974). The 3T3-L1 cells are sourced from 17-

19-day-old Swiss 3T3 mouse embryos, that display a fibroblast-like morphology 

and under appropriate treated conditions, procure an adipocyte-like phenotype 

(Green and Kehinde 1976; Aoki et al. 2007). 

Development of 3T3-L1 fibroblast cells into an adipocyte phenotype requires 

treatment with adipogenic agents, such as insulin, dexamethasone (DEX), and 3-

isobutyl-1-methylxanthine (IBMX), which under defined concentrations and along 

with foetal bovine serum (FBS) elevates the intracellular cAMP levels. 3T3-L1 cells 

differentiate within 10 to 12 days and are able to maintain their phenotype as far as 

passage 10 using additional adipogenic agents such as rosiglitazone (2 µM)  (Caprio 

et al. 2007; Zebisch et al. 2012). Moreover, Vishwanath et al. published a novel 

method that uses a combination of DEX and troglitazone to achieve differentiation 

in a shorter order of time compared to the conventional protocol of IBMX and DEX. 

The accumulation of lipid droplet increased by 112% and glucose uptake by 137% 

compared to cells differentiated using the traditional method (Vishwanath et al. 

2013). The straightforward procedure of cell culture, the homogeneous cell 

population, ability to maintain identity through several passages and cost 

effectiveness are some of the key advantages in the use of this cell line (Poulos et 

al. 2010). 

Research using 3T3-L1 cells have helped in a better understanding of the underlying 

molecular mechanisms of adipogenesis as well as in evaluating the effects and 

potential application of compounds on adipogenesis for obesity treatment (Kang et 

al. 2016b; Lai et al. 2016). Compounds such as quercetin and resveratrol have been 

examined in the 3T3-L1 cell line as adipogenesis inhibitory factors (Chang et al. 

2015; Eseberri et al. 2015). Moreover, the effect of melatonin (Kato et al. 2015), 

reactive oxygen species (ROS), or antioxidants on adipogenic differentiation have 

been studied through these cell lines (Calzadilla et al. 2013). Adipogenic 

differentiation can be inhibited by some androgens, such as testosterone by 

activation of the androgen receptor/β-catenin/T-cell factor 4 interaction as examined 
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in 3T3-L1 adipocytes (Singh et al. 2003).  The role of different functional genes has 

been investigated through genetic procedures conducted in 3T3-L1 cells. Gene 

silencing techniques such as siRNA and shRNA, and transfection procedures (virus 

transfection and plasmid electroporation) have been applied to investigate the 

function of enzymes, adipokine synthesis and inflammatory pathways. 

Investigating the proliferation and differentiation of 3T3-L1 cells revealed the 

biological role of miRNA-195a in various cellular processes (Ruiz-Ojeda et al. 

2016a). Convincingly, this cell line has been constructive when used in co-cultures 

and 3D cell cultures, as well as high-throughput screening of compounds (Turner et 

al. 2015).  

However, the adipogenic 3T3-L1 cell line model has its limitations. The cells 

require at least two weeks for adipogenic differentiation and prone to losing their 

ability to differentiate under extensive passage. The process of transfection has been 

challenging and in certain circumstances fails to restate all the characteristics of 

primary cell culture models as this cell line originated from a single clone (Wolins 

et al. 2006; Ruiz-Ojeda et al. 2016a). 

 

3T3-F442A Mouse Cell Line 

3T3-F442A is another significant cell line derived from murine Swiss 3T3 cells that 

display an enhanced commitment in the adipocyte lineage than 3T3-L1. These 

clones of cells are characterised by increased size and differentiation at a higher 

frequency; capable of accumulating more lipids than the 3T3-L1 cells. Initiating the 

adipogenic differentiation does not necessarily require exposure to glucocorticoids 

(Green and Kehinde 1976). This cell line has been used in adipogenesis research to 

study compounds that affect differentiation. The role of alkaline phosphatase in lipid 

metabolism, adipokine secretion and gene expression has been explored through 

siRNA gene silencing technique (Hernández-Mosqueira et al. 2015). Desarzens et 

al. (2014), employed the 3T3-F442A cell line to investigate the effects of drugs on 

adipocyte differentiation (Desarzens et al. 2014). Others have used this model to 

report the effects of different receptors and transcription factors during adipogenic 

differentiation (Scroyen et al. 2015). Despite some limitations, these Swiss murine 
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obtained cell lines have been well- established cell models in the study of 

adipogenesis in vitro since 1974 and on-going. 

 

OP9 Mouse Cell Line 

The OP9 mouse stromal cell line is a bone marrow-derived adipocyte cell culture 

model established from the calvaria of new-born mice. The cell line is genetically 

deficient in functional macrophage colony-stimulating factor and provides a 

tractable alternative for adipogenesis studies. OP9 cells accumulate large 

triacylglycerol lipid droplets within seventy-two hours of significantly expressed 

adipogenic stimuli bestowing a suitable cell model (Wolins et al. 2006; Lane et al. 

2014). OP9 cells significantly express adipocyte specific proteins namely PPAR-γ, 

CEBPα, CEBPβ, perilipin 1 (PLIN1), and PLIN4 proteins and adipogenic 

differentiation is particularly driven by PPAR-γ. These cells are capable of retaining 

their identify through a number of passages and potent in protein expression 

following transient transfection in fully differentiated adipocytes (Wolins et al. 

2006). 

With these advantages in mind, OP9 cells have been used in research to examine 

the effect of compounds in adipogenesis, for example whereby the mechanism of 

quercetin as an anti-adipogenic agent was established as well its ability to effect 

lipolysis in these cells (Seo et al. 2015). The inhibitory effects of Pericarpium 

zanthoxyli extract on the adipogenic differentiation of OP9 cells has been reported 

(Kim et al. 2014a). Adipogenesis have been found to be repressed in OP9 cell lines 

by ascorbic acid, an adenylate cyclase inhibitor (Rahman et al. 2014). Furthermore, 

the role of oxidative stress on the process has been studied using this cell model 

(Xiao et al. 2011; Saitoh et al. 2012). OP9 cells offer a potential model for drug 

screening and gene knockout experiments. OP9-K was developed from a clonal 

population of OP9 with an enhanced rate of differentiation and reproducibility, in 

addition to an increased transfection rate of 80%, rendering it a high-end adipocyte 

model for research into the differentiating transcriptome (Lane et al. 2014).  

On the other hand, OP9 cells need optimisation for adipocyte differentiation and 

requires maintaining in high cell density, which otherwise alters the morphology of 
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the cells and impairs differentiation. Overall, OP9 offers a promising model for 

study of adipogenesis. 

 

Primary Mouse Embryonic Fibroblasts (MEFs) 

Sourced from totipotent cells of early mouse mammalian embryos, primary mouse 

embryonic fibroblasts (MEFs) are capable of differentiating and maturing into 

adipocytes, with limited addition of external pro-adipogenic transcription factors 

(Rosen and MacDougald 2006). Ease of establishment and maintenance, rapid 

proliferation, ability to endure several passages and large numbers of cells produced 

from a single embryo are the advantages provided by MEFs, making it an attractive 

cell culture model. Owing to cellular heterogeneity of the embryonic tissue, there is 

variable efficiency in differentiation (10 - 70 %) and tissue homogeneity (Garfield 

2010). In vitro studies on MEFs have implicated several genes or transcription 

factors implicated in obesity-related adipogenesis mechanisms and associated 

signalling pathways. A study was conducted that signified the role of fat mass and 

obesity-associated (FTO) protein and its gene in adipogenic differentiation. 

Overexpression of FTO in mice is associated with increased affinity for adipogenic 

differentiation, while MEFs derived from FTO knockout mice showed repressed 

adipogenesis. Thus, fat pads isolated from FTO mice fed on a high-fat diet showed 

an increased number of adipocytes (Merkestein et al. 2015). 

Unfolded protein response (UPR), a protein associated with oxidative stress, has 

been implicated in adipogenesis and UPR expression confirmed in adipose tissue 

(Han et al. 2013). Kim et al. (2014) conducted a study with MEFs to establish 

Makorin Ring Finger Protein 1 (MKRN1), a negative regulator of PPAR-γ2 in 

obesity, as a potential therapeutic target in PPAR-γ related diseases (Kim et al. 

2014b). A novel paracrine role for Fst in regulation of lipid metabolism and 

modulation of brown adipocytes has been shown by Braga et al. (2014), using MEFs 

harvested from Fst-KO mice (Braga et al. 2014). 

Therefore, MEF cells appear to be a good in vitro model to study adipogenesis. 

However, the key limitation lies in different physiological characteristics in terms 

of species/origin (mouse embryos) as compared to human adipocytes.   
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1.2.4.2 Human Cell Models 

Animal cell models have been the conventional choice for in vitro adipogenesis 

studies; however, human cells have been gaining popularity and actively explored 

in the current research setting. The conducted experiments and results thus obtained 

from human cells are of greater significance and reliability than animal models 

because they closely mimic the human tissue (in vivo conditions) and display 

improved applicability towards human diseases such as obesity and its derived 

metabolic dysfunctions. The stromal vascular fraction (SVF) serves as a source for 

the development of human cell models, a collection of cells including preadipocytes, 

stem cells, endothelial cells, as well as immunological cells such as macrophages, 

neutrophils, and lymphocytes (Esteve Ràfols 2014). Figure 1.9 provides a summary 

of human models used to study adipocyte tissue and adipogenesis.  

 

 

 

 

Figure 1.9 Overview of Human models to study the adipogenesis process. 

(Adapted from (Ruiz-Ojeda et al. 2016)) 
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Adipose-Derived Stem Cells (ASCs) 

Adipose-derived stem cells (ASCs) is one of the major constituent cell types within 

the SVF of the adipose tissue. These perivascular cells are multipotent and can 

differentiate into numerous cell types (adipocytes, chondrocytes, osteocytes, and 

myocytes) given appropriate cell culture conditions (Cawthorn et al. 2012; Huang et 

al. 2012). They are characteristically distinguished from adherent bone marrow adult 

stem cells, known as MSCs or multipotent mesenchymal stromal cells (MMSCs) and 

their culture habits and routine are well-documented (Bunnell et al. 2008; Lee and 

Fried 2014). Besides their nature of multipotency ASCs possess a high expansion rate, 

ability to withstand a good number of passages and subject to cryopreservation for 

considerable period of time are their key benefit (Lee and Fried 2014). Since they 

reflect donor- and depot-specific characteristics, one can explore the variation in 

adipose tissue proliferation or differentiation. With the critical addition of cAMP-

elevating agents such as IBMX, ASCs differentiate into adipocytes exhibiting true 

adipocyte phenotypic markers. Hormones such as insulin and β-adrenergic agonists, 

also cause physiological changes in the cells phenotype (Jia et al. 2012; Ruiz-Ojeda et 

al. 2016a). 

Research exploring ASCs in human adipocyte differentiation in recent years has 

focused on the mechanisms, protein molecules and transcription factors involved 

(Higuchi et al. 2013; Narvaez et al. 2013). The effect of external factors and different 

compounds has been studied using this cell model (Kang et al. 2016a). Rouiz Odeja 

and colleagues have investigated the role of different genes involved in human 

adipogenic differentiation and adipose tissue inflammation (Ruiz-Ojeda et al. 2016b). 

One of the interesting features of ASCs is their ability to convert from white to brown 

adipocytes, which has led to further exploration of certain molecules such as p53 in 

differentiation (Pisani et al. 2011; Molchadsky et al. 2013). 

 

Primary Preadipocytes 

A novel model that contributes to the study of adipogenesis is primary preadipocytes, 

which are easily harvested from the SVF of adipose tissue and differentiated into 

mature adipocytes under appropriate culture conditions. ASCs and preadipocytes have 
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similar surface markers but the latter express a higher proportion of PPAR-γ. 

Multilineage-differentiation capacity is limited in this cell types because the 

preadipocytes in the SVF are already committed to an adipocyte lineage (Cawthorn et 

al. 2012).  

Human primary preadipocytes provide an ideal model to study adiposity and obesity-

related complications as they closely manifest the adipose tissue characteristics, 

especially when isolated from subcutaneous and visceral sources. The isolated cells 

exhibit depot-specific properties and thus, aids in evaluating differences between 

individuals (obesity, weight-loss, age, etc.) (Lessard et al. 2014; Michaud et al. 2014). 

With their ability to differentiate efficiently under serum-free conditions, it allows their 

study with compounds that are otherwise sensitive to serum components (Armani et 

al. 2010). One of the major disadvantages is their very limited passaging capacity and 

low yield in the cell number compared to other cell models.(Ruiz-Ojeda et al. 2016a). 

The proliferative capacity of human SVF derived preadipocytes was successfully 

expanded when telomerase activity was induced through the co-expression of the h-

TERT and E7 oncoprotein from the human papillomavirus type 16 (HPV-E7) 

(Darimont and Macé 2003; Church et al. 2015). With increasing passage numbers, 

preadipocytes required the addition of PPAR-γ agonists to counter the declining 

adipogenic potential to accumulate lipids. 

Different methods of lentiviral gene transfection, adenoviral delivery, and plasmid 

transfection have been able to induce gene expression in primary human 

preadipocytes, whereas siRNA delivery has facilitated gene silencing (Divoux et al. 

2014; Lee et al. 2014b). A crucial process of precursor cell commitment and 

differentiation is altered during hypertrophic obesity. Human preadipocytes have 

proven useful in comprehending the mechanisms involved in adipogenic capacity 

(Fenech et al. 2015; Gustafson et al. 2015a). The role of miRNAs on adipogenic 

differentiation and proliferation have also been investigated by virtue of these 

preadipocytes. Thus, human preadipocytes have contributed to our understanding of 

the function and formation of adipose tissue as well as potential therapeutic targets 

against obesity-related diseases (Ruiz-Ojeda et al. 2016a). 

In addition to these aforementioned models, there are other recognised models used in 

the study of adipogenesis and associated metabolism. These include models to study 
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brown adipose, namely murine primary brown preadipocytes and brown/beige 

differentiated adipocytes (ASANO et al. 2014; Nam et al. 2015). There also exist cell 

lines representative of selected diseases such as Simpson-Golabi-Behemil syndrome 

cells and LiSa-2 cells (Wabitsch et al. 2000; Wabitsch et al. 2001). Researchers have 

also co-cultured adipocytes with cell types (i.e., endothelial cells, macrophages, 

muscle cells.) to create 3D cell cultures. These have the potential to gain insight into 

the metabolic connections between adipose and other tissues (Ruiz-Ojeda et al. 2016a). 

Although recently the focus has shifted to human primary cell lines/explants, the 3T3-

L1 cell line remains the most popular and best-established model to study 

adipogenesis. 
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1.2.5 Adipocyte-derived Extracellular vesicles (ADEVs) 

Adipose tissue releases EVs which act as endocrine mediators and signalling 

molecules for the routine function of adipose tissue as well as during pathological 

conditions (such as metabolic syndrome). Exploring ADEVs is a very new field and 

hence still under development, but numerous studies have already implicated ADEVs 

as the link between obesity and metabolic dysfunction (Ferrante et al. 2015; Hubal et 

al. 2017; Wadey et al. 2019) 

1.2.5.1 Composition 

Adipocyte-derived EVs were first isolated and characterised from the mouse 3T3-L1 

cell line by Aoki et al. in 2007. They were called adiposomes and validated by an 

exosomal marker protein, Milk fat globule-epidermal growth factor 8 (MFG-E8) (Aoki 

et al. 2007). EVs secreted by cultured adipocytes comprised heterogeneous sized 

particles ranging from small exosome-like to large membrane vesicles as revealed by 

electron microscopy. Several integral, cytosolic, and nuclear proteins such as caveolin-

1, c-Src kinase, and heat shock protein 70 were also found to be microvesicle 

components along with substantial amounts of adiponectin.  

The physiological state of the adipocyte is an important regulatory factor in the 

production of ADEVs. The production of ADEVs from 3T3-L1 cells was increased in 

response to elevated levels of insulin and TNF-α. This study also confirmed increased 

secretion of MFG-E8 under oxidative stress conditions (Aoki et al. 2007). In addition 

to MFG-E8, adiponectin was identified as a potential marker for the adiposome. 

Connolly et al., in our own group, more recently characterised 3T3-L1 derived EVs 

pre- and post-adipogenesis, observing that EV production per cell was greater at a pre-

adipocyte stage. This might relate to a role in promoting adipocyte differentiation as 

intercellular communicators (Connolly et al. 2015). Their sizes ranged from 50-

1000nm as measured by nanoparticle tracking analysis, and size increased by three 

times as compared to their pre-adipocyte stage. However, when comparing the 

differentiation process from pre-adipocytes to mature adipocytes (i.e. from day 0 

through to day 15), there were changes noted in several fatty acids and in protein 

content at different stages. FABP4 and PREF-1 EV expression decreased with 

differentiation, while adiponectin increased and PPAR-γ showed no significant 

change. These observations agreed well with the corresponding protein content in the 
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cell during the stages of differentiation (Connolly et al. 2015). 3T3-L1 adipocyte 

exocytosis has been shown to be stimulated by cAMP via a PKA-independent pathway 

and this was regulated via both calcium-dependent and -independent processes (Komai 

et al. 2014). The long chain omega-3 fatty acid docosahexaenoic acid has an escalating 

effect in exosome release from 3T3-L1 cells (Declercq et al. 2015). Potential hypoxia 

in adipose tissue resulting from adipocyte hypertrophy, has a profound effect on 3T3-

L1 differentiated adipocyte exosome production (Sano et al. 2014). 3T3-L1 adipocytes 

exposed to hypoxia had a different exosome proteomic profile compared to control 

adipocyte exosomes. In particular, exosomes produced under hypoxic conditions were 

enriched in enzymes involved in de novo lipogenesis and these exosomes were able to 

promote lipid accumulation in recipient 3T3-L1 cells. Preliminary evidence for the 

presence of ADEVs in the circulation has emerged from the observation that perilipin-

A-positive EVs were upregulated in obese mice as well as in human patients with 

metabolic syndrome (Eguchi et al. 2016).  

A study by Durcion et al. 2017, distinguished two subsets of adipocyte-derived EVs 

from 3T3-L1 cultured cells, namely large extracellular vesicles (lEVs) and small 

extracellular vesicles (sEVs) (Durcin et al. 2017). These two EV subpopulations had 

significant differences in their size, morphology and electron density as observed from 

nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). 

Although lEVs were secreted at lower concentration compared to sEVs, a greater 

diversity of proteins was identified in the lEV fractions, especially cytosolic proteins. 

This could be a consequence of specific sorting of exosomes from MVBs, which is 

known to be controlled by Rab GTPases and other ESCRT proteins (Ostrowski et al. 

2010; Colombo et al. 2013). Upon proteomic analysis, the lEVs were enriched in 

membrane, organelle and cell part components in comparison with sEVs, in agreement 

with membrane-derived shedding of microvesicles, whereas the sEV fraction was 

specifically enriched in extracellular matrix and macromolecular complex 

components. The sEV fraction was also specifically enriched in proteins related to cell 

adhesion as well as in macrophage activation. The EV sub-populations were also 

distinguished based on their cholesterol content and externalised PS. The high sterol 

content was a characteristic of the sEVs, whereas the lEVs carried a greater amount of 

externalised phosphatidylserine than the sEV fraction (Durcin et al. 2017).  
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Adipose tissue explants from visceral and sub-cutaneous regions have been compared 

with respect to EV production. Kranendonk et al. characterised EVs isolated from ex 

vivo subcutaneous and visceral adipose tissue explant cultures by differential 

ultracentrifugation and from human adipocytes differentiated in vitro from Simpson 

Golabi Behmel Syndrome (SGBS) pre-adipocytes (Mariette E G Kranendonk et al. 

2014).  EVs generated from differentiated human adipocytes contained presumed 

adipose-specific markers FABP-4 and adiponectin as well as several inflammatory 

adipokines, including MIF, TNFα, MCSF, and RBP-4 as distinguished from other 

stromal cells, when isolating from whole adipose tissue. The adipokine profile differed 

between subcutaneous adipose tissue EVs and visceral adipose tissue EVs, with 

concentrations of IL-6, MIF, and MCP-1 significantly higher in visceral adipose tissue 

EVs compared to those from subcutaneous adipose tissue (Kranendonk et al. 2014a) 

 

1.2.5.2 Functional effects 

The study conducted by Kranenedock et al., (2014) established a paracrine signalling 

crosstalk between adipocytes and macrophages. Explant adipose tissue from 

subcutaneous and visceral depots as well as SGBS-derived adipocytes secreted EVs 

with immunomodulatory effects, promoting the differentiation of primary monocytes 

into macrophages of pro-inflammatory (M1) and anti-inflammatory (M2) phenotype. 

Adiponectin-positive EVs were much more effective than adiponectin-negative EVs 

in effecting monocyte transformation into macrophages, as were EVs derived from 

visceral rather than subcutaneous tissue explants (Mariette E G Kranendonk et al. 

2014). The differentiation of monocytes into pro-inflammatory macrophages 

contributes to AT inflammation (Xu et al. 2003b). Human adipocytes, both in vitro 

and ex vivo, secrete EVs with immunomodulatory properties, which can cause the 

development of local insulin resistance (IR), a key element in the mechanistic link 

between obesity and adverse metabolic complications (Dandona et al. 2004). 

Monocytes, in contrast to other immune cells, actively consumed AT-EVs, as observed 

when injected into mice; these then differentiated into macrophages secreting TNFα 

and IL-6  (Deng et al. 2009). Wild-type mice developed IR when injected with 

exosome-like vesicles containing high RBP-4 content produced by ob/ob mice; 

however, this response was less marked in TLR4 knockout mice.  Taken together, 
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these data provide evidence that EVs produced by adipocytes may communicate with 

immune cells and influence whole body IR. Stimulated macrophages impair insulin 

signalling in adipose tissue, hence one can postulate that adipose tissue inflammation 

can secrete ADEVs to mediate/aggravate the development of IR (Olefsky and Glass 

2010). A further study demonstrated that differentiated 3T3-L1 adipocytes, when 

stressed by exposure to palmitic acid produced microparticles which could act as 

chemo-attractants for monocytes and primary macrophages (Eguchi et al. 2016). When 

hepatocyte cells were incubated with subcutaneous and visceral ADEVs, there was a 

negative association between Akt signalling and glucose-6-phosphatase gene 

expression (Kranendonk et al. 2014a). Exosomes isolated from visceral AT were found 

to integrate into HepG2 cells and hepatic stellate cell lines, induce metabolic disruption 

in TGFβ signalling pathways and dysfunctional extracellular matrix regulation in 

HepG2 cells, as indicated by genetic profiling (Koeck et al. 2014). The researchers 

hypothesised that these changes may induce liver fibrosis and may link obesity to non-

alcoholic fatty liver disease. Our study group under Dr Wadey, demonstrated that 

inflamed and hypoxic adipocytes released characteristic EVs that promote endothelial 

dysfunction by enhancing the leukocyte attachment on the endothelial surface (Wadey 

et al. 2019). This was also supported by a study that observed an exchange of EV 

particles between endothelial cells and adipocytes within the adipose tissue that 

regulated the metabolic state of the tissue (Crewe et al. 2018). EV release from 

adipocytes is also governed by the systemic nutrient state. 

The tumour microenvironment can harbour adipocytes and promote tumour 

progression (Dirat et al. 2010). Obesity is a risk factor for melanoma and its malignant 

progression, where a correlation between adipose tissue exosome shedding and donor 

BMI was demonstrated after isolation from subcutaneous adipose depot (Lazar et al. 

2016). When used at equal concentrations, exosomes from overweight and obese 

donors increased melanoma migration more than exosomes from lean individuals. This 

effect was thought to be mediated via fatty acid oxidation as the effect was reversed 

by inhibition by etomoxir. Interestingly, mass spectrometry analysis of 3T3-F442A 

derived exosomes showed an abundance of proteins involved in lipid metabolism, 

particularly those involved in fatty acid oxidation (Gao et al. 2017). 

ADEVs mediate local cell–cell communication within adipose tissue as observed by a 

series of studies conducted by Muller and his team (Müller 2011). Secretion of CD73-
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bearing EVs from adipocytes was induced using lipogenic stimuli (e.g. palmitate, the 

antidiabetic sulfonylurea drug glimepiride, phosphoinositolglycans (PIG), and H2O2). 

Upon incubation of these CD73-bearing EVs with adipocytes, the recipient cells 

imbibed CD73 which was translocated into cytoplasmic lipid droplets and 

consequently up-regulated esterification (Müller et al. 2011b). Interestingly, the large 

adipocytes showed greater efficacy in releasing CD73 into the microvesicles and lower 

affinity in translocating the CD73 into lipid droplets as compared to the small 

adipocytes. These EVs held transcripts and miRNAs involved in upregulation of 

lipogenesis (e.g., diacylglycerol acyltransferase-2) and lipid droplet assembly (e.g., 

caveolin-1 and perilipin-A) and, when applied to adipocytes in culture, had a greater 

effect on small than on large adipocytes. This secretion and translocation of CD73 

predominantly from large to small adipocytes could be a model of cell- to- cell 

interaction mediated by EVs. The regulation (and dysregulation) of adipocyte size and 

lipid droplet assembly is a likely key determinant of adipose and metabolic health 

(Virtue and Vidal-Puig 2008). Further exploration of this exchange between 

adipocytes may help contribute to our understanding of how hyperplasia and 

hypertrophy is regulated within calorically challenged adipose tissue (Müller 2011). 
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1.3 Obesity and Cardiovascular disease  

1.3.1 Vascular Endothelium 

The vascular endothelium is an organ lining the entire circulatory system. It acts as a 

selectively permeable barrier between extravascular and intravascular compartments. 

It carries out important functions in providing a non-thrombogenic lining, regulating 

vascular tone, molecular exchange between blood and tissue compartments, immune 

signal regulation, inflammation and haemostasis. The endothelium releases a 

repertoire of coagulation inhibitors as well as prothrombotic molecules according to 

different condition in the body and includes tissue factor pathway inhibitor (TFPI), 

thrombomodulin, heparin-like proteoglycans, and endothelial cell protein C receptor. 

Anticoagulant substances including prostaglandin I2 (PGI2), nitric oxide, and 

ectonucleotidase CD39/NTPDase1 are also produced by the intact endothelium. As 

thrombomodulin binds to thrombin, it activates protein C and along with protein S 

inactivates clotting factors Va and VIIIa. Heparin cofactor II (HCII) and antithrombin 

found in the circulation bind to heparin proteoglycan on the normal vascular 

endothelial glycocalyx that inhibit thrombin. Platelet adhesion is controlled at the 

endothelial surface by secretion of a disintegrin and metalloprotease with a 

thrombospondin type 1 motif member 13 that cleaves large von Willebrand factor 

multimers that also play a role in blood haemostasis. Thus, an intact healthy vascular 

endothelium is a powerful regulator of the dynamic haemostatic system (Nguyen and 

Coull 2017). 

The endothelium releases various vasoactive factors that are vasodilatory or 

vasoconstrictive in function. Vasodilators include nitric oxide (NO), prostacyclin 

(PGI2) and endothelium derived hyperpolarizing factor (EDHF) whereas thromboxane 

(TXA2) and endothelin-1 (ET-1) are vasoconstrictors. Basal vasodilator tone of the 

blood vessels is maintained by NO. Endothelial NOS (eNOS) produces nitric oxide in 

the vasculature from the amino acid L- arginine. The production of NO is regulated by 

the levels of intracellular Ca2+ in the endoplasmic reticulum as well as the influx of 

Ca2+ into the cell from extracellular stores (Fleming and Busse 1999; Moncada and 

Higgs 2006). NO production is increased due to shear stress as well as when blood-

borne agonists attach to endothelial cell receptors and increase intracellular Ca2+ that 
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results from increased blood flow in the vessel (Tran et al. 2000). NO can diffuse 

across the endothelial cell into the adjacent smooth muscle to stimulate production of 

cyclic guanosine-3’, 5-monophosphate (cGMP) that eases muscle tension (Jones et al. 

1999). Besides vasodilatation, NO is also involved in preventing platelet activation 

and leukocyte adhesion to the vessel wall (Kubes et al. 2006). 

The vascular function is also regulated by synergistic actions of two prostanoids, 

prostacyclin (PGI2) and thromboxane (TXA2). Cyclooxygenase (COX) enzymes are 

the primary enzymes involved in their production. While COX-1 is continuously 

expressed on endothelial cells, COX-2 is activated when the endothelium is exposed 

to damage and inflammatory cytokines (Flavahan 2007). COX-2 along with 

prostacyclin synthase catalyses the conversion of arachidonic acid to PGI2. PGI2 binds 

to the prostacyclin receptors (IP) found on platelets and smooth muscle cells. In 

platelets, the receptor binding inhibits platelet aggregation meanwhile binding to the 

smooth muscle cell IP receptor directs the synthesis of cAMP which allows relaxation 

of the smooth muscle (Corsini et al. 1987; Sandoo et al. 2015) . In contrast, COX-1 

synthesises TXA2 from arachidonic acid by thromboxane synthase. TXA2 causes 

platelet aggregation and vasoconstriction in smooth muscle cells with increasing 

intracellular Ca2+ levels in the smooth muscle (Thomas et al. 1998). Thus, the 

homeostasis in the healthy vessel is maintained by the balance in the activity of PGI2 

and TXA2. 

Endothelial cells also release a vasoconstrictor, endothelin-1 (ET-1). Receptors for 

ET-1 have been identified both on smooth muscle cells (ETA and ET-B2) and 

endothelial cells (ET-B1) (Alonso and Radomski 2003). Inflammatory mediators such 

as interleukins and TNF-α cause an increased production and release of ET-1 and 

decreased by NO and PGI2. On smooth muscle, ET-1 opens Ca2+ channels and allows 

extracellular Ca2+ into the cell, causing vasoconstriction. Activation of ET-B1 

receptors on the endothelium induces the release of NO and PGI2, causes 

vasodilatation (Cardillo et al. 2000). In totality, the endothelium forms an important 

part of the vasculature and promotes an atheroprotective environment by the balanced 

production of endothelial cell-derived vasoactive factors.  
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1.3.2 Endothelial Dysfunction 

Dysfunction in the health of the vascular endothelium contributes to the pathogenesis 

of a broad spectrum of vascular disease that includes CVD, atherosclerosis, stroke, 

diabetes, insulin resistance, chronic kidney failure, thrombosis, tumour growth and 

viral diseases. A host of risk factors and lifestyle choices subjects an individual to 

endothelial dysfunction (ED). Family history of CVD (genetics), obesity, ageing, 

smoking, mental stress, hypertriglyceridemia, elevated LDL and reduced HDL 

cholesterol, patients with insulin resistance, hypertension, etc. are some of the broad 

classes of risks (Hadi et al. 2005; Huang et al. 2012) . The progression of the ED hinges 

on the intensity and extent of proven risk factors and total risk of the individual subject. 

An imbalance in the NO production or metabolism leads to a dysfunctional 

endothelium. Under these conditions, cytokines are activated that increase the 

permeability of the vessel lining to lipoproteins, immune cells and inflammatory 

mediators as well as increase in platelet activation and leukocyte adhesion. This leads 

to a structural damage of the endothelium and smooth muscle proliferation that 

develops into atherosclerotic plaque. 

Hyperglycaemia induces intracellular changes in the redox state depleting the cellular 

NADPH pool and increasing non-enzymatic glycation of proteins and 

macromolecules. Diabetes has been associated with overexpression of growth factors 

advancing neovascularisation, the proliferation of endothelial cells and vascular 

smooth muscle (Calles-Escandon and Cipolla 2001). The diabetic state is characterised 

by an increased oxidative stress and high levels of oxidised lipoproteins (low-density 

lipoprotein) and fatty acids. Consequently, escalating prothrombotic tendency and 

platelet aggregation. The pro-inflammatory cytokine TNF-α plays a critical role and 

provides a link between diabetes, insulin resistance and endothelial dysfunction (Hadi 

et al. 2005). In vitro studies have demonstrated that endothelial cells in a diabetic 

environment exhibit a diminished capacity of NOS to generate NO (Hattori et al. 1991; 

Avogaro et al. 1999; Salvolini et al. 1999). Individuals with insulin resistance resulting 

from obesity exhibit  impaired vasodilation with high levels of ET-1 in plasma 

(Steinberg et al. 1994; Ferri et al. 1997). 

Cholesterol is one of the well-established risk factors for premature coronary artery 

disease (Kjelsberg 1982). High levels of cholesterol (hypercholesterolaemia)  confers 
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impaired endothelium-dependent vasodilation (Steinberg et al. 1997). Studies have 

concluded that cholesterol levels even in the normal range can induce endothelial 

dysfunction and impaired vasodilation. The lipotoxicity is mediated through oxidative 

stress and proinflammatory responses, and effects are magnified in patients with 

obesity, metabolic syndrome, and diabetes (Steinberg et al. 1996; Berg and Scherer 

2005). Interventions that reduced lipid load in plasma ameliorate endothelial 

dysfunction and significantly modify metabolic and CV risk  

The pathogenic effect of obesity in ED and vascular disease are the culmination of 

several metabolic syndromes (insulin resistance, dyslipidaemia, hyperoxidative stress, 

and hypertension) on the biology of endothelium-derived NO. A state of increased 

oxidative stress is expressed by non-adipocyte tissue (muscles, liver and pancreatic β-

cells) by means of elevated cytosolic triglyceride (Bakker et al. 2000). It is 

accompanied by high concentrations of cytosolic long-chain acyl-CoA esters that 

stimulate production of mitochondrial oxygen free radicals. Likewise, enhanced 

production of oxygen free radicals in endothelial cells, or vascular smooth muscle 

cells, leads to the increased sub-endothelial oxidation of LDL and atherosclerosis, a 

factor in endothelial breakdown. Chronic inflammatory state of the adipose tissue 

during obesity, dysregulation in the endocrine and paracrine actions of adipokines, NO 

bioavailability, insulin resistance and oxidised LDL, disrupt vascular homeostasis and 

contribute to endothelial dysfunction (Iantorno et al. 2014; Engin 2017). 
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1.3.3 Endothelial Dysfunction and Atherogenesis 

Atherosclerosis is a disease condition of the vascular intima characterised by the 

formation of intimal plaques as a result of hyperlipidaemia and lipid oxidation. The 

term, atherosclerosis is of Greek origin and can be broken into two parts; atherosis 

referring to accumulation of fat accompanied by several macrophages and sclerosis 

indicating a fibrosis layer comprising smooth muscle cells [SMC], leukocyte, and 

connective tissue. The pathogenesis of atherosclerosis begins with the appearance of 

fatty deposits called atheromatous plaques in the intimal layer of the arteries. The 

plaque grows with the continuous deposition of cholesterol crystals coupled with the 

proliferation of fibrous tissues and the surrounding smooth muscle cells, pushing the 

plaque towards the lumen of arteries and consequently restricts the blood flow. 

Subsequently, hardening of the arteries or sclerosis ensues with connective tissue 

production by fibroblasts and deposition of calcium in the lesion. Finally, the irregular 

surface within the arteries results in clot formation and thrombosis, which leads to the 

sudden obstruction of blood flow (Rafieian-Kopaei et al. 2014, Falk, 2006). 

Endothelium is considered to be the stimulus for the migration of leukocytes, 

classifying atherosclerosis as an inflammatory disease. Immune and inflammatory 

systems act in tandem for a sequential development of the atherosclerotic lesion. 

Leukocyte migration is resolved as a combined consequence of the inflammatory 

response as well as accumulation and modification of the lipoproteins. 

A study conducted by Ganz and colleagues, using coronary angiography demonstrated 

the clinical relevance of NO in atherosclerotic cardiovascular disease (Ludmer et al. 

1986). The arteries of individuals with advanced stenosis showed dose-dependent 

vasoconstriction in response to acetylcholine while individuals with normal coronary 

arteries recorded dose-dependent vasodilation to acetylcholine. Hypercholesterolemia 

has been established to impair endothelium-dependent vasodilation as documented in 

animal models of atherosclerosis (Freiman et al. 1986; D’Uscio et al. 2001). 

Hampering the production or bioavailability of endothelial NO precedes the formation 

of clinically significant atherosclerotic lesions. 

The key stages in the progression of atherogenesis include (i) initiation of 

atherosclerotic plaque by low density lipoprotein-cholesterol (LDL-C) trapping, 

activation of endothelial cells, role of immune cells and leukocyte attachment, 
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formation of foam cells, (ii) progression of the plaque by smooth muscle cell migration 

and extracellular matrix deposition and finally the (iii) plaque rupture. 

Fatty streak formation marks the beginning of the atherosclerotic process, 

characterised by the focal increase in the lipoproteins at the lesion of the intimal layer 

of the arteries.  Lipoproteins particularly, cholesterol-rich low-density lipoprotein 

(LDL), are the central particles involved in atherogenesis. When the equilibrium 

between the plasma LDL and intracellular LDL concentration is disturbed, LDL 

particles become trapped in the intima encouraged by the extracellular proteoglycans. 

It begins to accumulate in the vascular intima either by adhering to the proteoglycan 

component of the extracellular matrix or by permeating into the endothelium.  This 

delays the process of exiting from the intima leading to their accelerated accumulation 

(Rafieian-Kopaei et al. 2014) and leads to spontaneous oxidation and cell oxidation of 

the trapped particles (Tavafi 2013).  

This stage of early atherosclerosis also sees the infiltration of monocytes and T- 

lymphocytes into the vascular intima. The oxidised LDL also acts as an antigen for T-

cells causing its activation to secrete cytokines. These cytokines activate the 

macrophages that leads to further activation of the endothelial and smooth muscle 

cells. The oxidised lipids (oxidised LDL) and cytokines cause monocyte-to-

macrophage differentiation to form damaging foam cells.              

Oxidised LDL stimulates the vascular endothelial cells to synthesise a chemoattractant 

cytokine, monocyte chemokine protein (MCP-1). MCP-1 initiates monocyte 

recruitment to the arterial wall and is believed to amplify the recruitment and formation 

of macrophages (Molestina et al. 2000; Romano et al. 2000). Leukocyte recruitment 

to the site of lesion is also augmented by the expression of the adhesion molecules 

VCAM-1 (Vascular cell adhesion molecule-1), ICAM-1 (Intercellular Adhesion 

Molecule-1) and P-selectin on the surface of the arterial endothelial cells (Langer and 

Chavakis 2009). Cytokines IL-1 and TNF-α also induce the expression of the adhesion 

molecules (VCAM and ICAM) on the endothelial surface. In patients with peripheral 

ischaemic arterial disease, the plasma harbours the soluble form of VCAM-1, ICAM-

1 and E-selectin and serves as mediators of angiogenesis (Hwang et al. 1997; Blann et 

al. 1999). These adhesion molecules allow cell to cell adherence in addition to binding 

other extracellular matrix molecules. Elevated endothelial ICAM-1 expression 
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promotes fibrinogen deposition and monocyte attachment, followed by subendothelial 

migration, a crucial event in the pathogenesis of atherosclerotic lesions (Engin 2017). 

Yet another inducer of MCP-1 and ICAM-1 are platelets. The transcription of genes 

involved in the elaboration of MCP-1 and ICAM-1 is regulated by the transcription 

factor, NF-κB and its activation is affected by cytokine IL-1. This promotes the 

development of atherogenesis by venture of monocyte chemotaxis, adhesion and 

transmigration into the intima of the arterial wall (Gawaz et al. 2000). Certain 

chemokines are released during this stage that have a pivotal role in leukocyte 

activation and migration, as well as causing endothelial and smooth muscle cells to 

migrate. The macrophages produce a considerable amount of MCP-1 and causes 

monocytes to move toward the vascular walls and infiltrates them into the lesion, thus 

inflating the endothelial dysfunction (Aiello et al. 1999). Studies have also supported 

that oxidised LDL can up-regulate the expression of adhesion molecules (Erl et al. 

1998).  

In an effort to clear the LDLs, monocyte turned macrophages phagocytose the 

accumulated oxidised LDL by their scavenger receptors and convert to foam cells. 

During differentiation of monocytes to macrophages, the expression of these receptors 

increases. Accumulation of these yellow foam cells on the arterial walls form the lipid 

streaks. Some foam cells in the developing intimal lesion undergo apoptosis and this 

lipid rich necrosing hub becomes the centre of more developed atherosclerotic plaque 

(Suzuki et al. 1997; Singh et al. 2002). In patients with familial hypercholesterolaemia, 

an abundance of arterial lesions and multiple xanthomata containing foam cell-rich 

lesions were observed and this was attributed to the lack of the LDL receptors (Holven 

et al. 2003). The leaking monocytes release cytotoxic factors such as TNF-α, growth 

factors, pre-coagulation substances (including tissue factors), and free radicals, which 

further injure endothelium and propagate more LDL oxidation, leading to more 

metabolic dysfunction  

At the site of a lesion, adjacent endothelial cells and smooth muscle cells secrete 

inflammatory cytokines IL-1, and TNF-α which severely damages the vascular tissue. 

The balance between inflammatory and reparative processes relate to the stability of 

an atherosclerotic lesion or plaque. The dynamics of this balance relies on the vascular 

smooth muscle cells that undergo migration, proliferation and phenotypic modulation 

under the effect of cytokines, metalloproteinases, growth factors and matrix proteins. 
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Eventually, the smooth muscle cells migrate towards the luminal side of the vessel 

wall and synthesised matrix deposition forms a fibrous cap. The cap is composed of 

collagen-rich fibre tissues, SMC, macrophages and T lymphocytes and forms the 

mature atherosclerosis plaque that bulge into the lumen and reduces the blood stream 

in the vessels (Steinbrecher et al. 1984; Singh et al. 2002; Libby 2012).  

A thick fibrous cap lends stability to the plaque by reducing the tensile stress and 

obstructing contact between the lipid-rich necrotic core and the blood. The lipid core 

in the plaque is thrombogenic in nature. On the contrary, a thin cap is predisposed to 

rupture while experiencing a tensile stress. Macrophages and T lymphocytes found at 

the borders of developed plaque contribute to the lysis of extracellular matrix and 

prevent the collagen synthesis in the SMC. This can weaken and break the fibrous cap 

(Libby and Aikawa 1998). With the passage of time, the reparative character of smooth 

muscle cells is lost and onsets early apoptosis, thereby increasing the chances of plaque 

rupture. Rupture of the fibrous the cap releases collagen and lipids to the blood stream 

which contributes to accumulation and adhesion of platelets and blood clot formation.  

These clog the circulation and have detrimental effects to the health of the individual. 

Atherosclerosis is a complex disease involving the cardiovascular system, the 

inflammatory and immune systems, LDL handling mechanisms and thrombotic 

mechanisms. Deep understanding about the pathogenesis of atherosclerosis will help 

outline the causes and contribute to the improvement of therapeutic and management 

options. Biological integrity of the endothelium is crucial to maintain vascular 

homeostasis and prevent atherosclerosis. 
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1.3.4 Obesity and Atherosclerosis 

Obesity is a well-established risk factor for development of cardiovascular disease. A 

multitude of factors have been proposed to link obesity with vascular diseases, 

especially atherosclerosis. The adipose tissue being an endocrine organ releases a host 

of adipokines that modulate the atherogenic environment of the arterial wall. As 

studies indicate, as the adipose tissue mass increases, the serum levels of adipokines 

are either elevated or dysregulated during obesity.  

Adiponectin promotes oxidation of fatty acids, regulates insulin sensitivity and lowers 

plasma glucose levels. Hypoadiponectinaemia has been marked as an independent risk 

factor for type 2 diabetes and cardiovascular syndromes (Choi et al. 2004; Ouchi et al. 

2006). The anti-inflammatory and antiatherogenic property of adiponectin was 

demonstrated when it suppressed the transcription of NF-κβ to induce TNF-α as well 

as arresting the TNF-α induced expression of adhesion molecules on endothelial cells 

(Ouchi et al. 2000). The cardio-protective role was also reported when serum 

adiponectin levels had a significant negative correlation with vascular inflammation 

(Choi et al. 2011). It is to be noted that adiponectin levels in plasma are inversely 

associated with obesity and its effects are markedly decreased during atherosclerosis 

(Kawano and Arora 2009). 

The adipokine resistin showed a possible link between obesity and insulin resistance 

in rodents; however, in humans, inflammatory cells primarily express resistin and have 

been implicated in obesity-related subclinical inflammation and atherosclerosis 

(Steppan et al. 2001; Filková et al. 2009). Resistin induced the expression of adhesion 

molecules, such as VCAM-1 and ICAM-1 in vascular endothelial cells, meanwhile 

adiponectin controlled the effect of resistin in vascular endothelial cells (Kawanami et 

al. 2004). Lee et al., (2009) observed that resistin mediated the dysregulation of 

scavenger receptors in macrophages that encouraged lipid accumulation and foam cell 

formation (Lee et al. 2009). A study by Choi et al., (2011) showed a positive 

correlation between vascular inflammation and serum resistin levels, thus providing a 

linkage of obesity, inflammation, and atherosclerosis (Choi et al. 2011).  

Adipocyte fatty acid binding proteins (FABPs) are synthesised in the cytoplasm and 

secreted into serum to control the distribution of fatty acids in various inflammatory 

responses and metabolic pathways (Xu et al. 2006). In prospective studies, the 
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development of metabolic syndrome and type 2 diabetes has been associated with 

circulating FABPs independent of adiposity (Xu et al. 2007).  Studies through animal 

models have reported FABPs as a major mediator of vulnerable plaque formation 

whereas apoE-/- mice (null for FABP) have higher survival rates due to increased 

stability of atherosclerotic plaques (Boord et al. 2004). Macrophages of  FABP-/-  

character significantly decreased intracellular LDL accumulation and production of 

inflammatory cytokines, such as TNF-α, MCP-1, and IL-6 was suppressed, compared 

with wild-type controls (Makowski et al. 2001). Circulating serum levels of FABPs 

were elevated as the number of stenotic coronary arteries increased, thus closely 

related to the progression of atherosclerosis (Rhee et al. 2009). Moreover, FABP4 was 

found in substantial amount within the atherosclerotic lesions, risking cardiovascular 

events (Peeters et al. 2011). Thus, this fat protein crosslinks adiposity and endothelial 

dysfunction through inflammation. 

Omentin is an adipokine with roles in improving insulin sensitivity. Omentin hosts a 

positive role in energy homeostasis while being negatively correlated with metabolic 

risk factors, including obesity and hyperglycaemia (Yang et al. 2006). In endothelial 

cells, omentin significantly attenuated C-reactive protein and TNF-α-induced NFκB 

and abated arterial calcification in OPG-/- mice, indicating that omentin-1 might play 

a beneficial anti-inflammatory role in protecting the arterial wall (Tan et al. 2010; 

Yamawaki et al. 2011). Omentin-1 isolated from visceral adipose tissue has been found 

to contribute independently to endothelial dysfunction (Moreno-Navarrete et al. 2011). 

Chemerin is expressed by adipocytes and their circulating levels are significantly 

higher in obese subjects. Loss of chemerin expression worsened adipogenesis in 3T3-

L1 cells, and diminished the expression of genes involved in glucose and lipid 

metabolism (Goralski et al. 2007). In a clinical study conducted by Sell et al., patients 

having undergone bariatric surgery had their serum chemerin levels significantly 

reduced after surgery, suggesting that chemerin might mediate the metabolic 

alterations during obesity (Sell et al. 2009; Sell et al. 2010). They also reported that 

chemerin activated the NFκB pathway and impaired glucose uptake in primary human 

skeletal muscle cells. Separate studies have proposed that chemerin might affect early 

atherosclerotic plaque development by stimulating macrophage adhesion to 

endothelial cells and up-regulation of chemerin receptor 1 in human endothelial cells 

by pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6)(Hart and Greaves 2010; 
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Kaur et al. 2010). With reference to its role in the atherosclerotic process, circulating 

chemerin level was found to be associated with atherosclerotic plaque burden and 

arterial stiffness (Kim et al. 2011). In totality, research studies have provided a novel 

link between obesity and arteriosclerosis through AT-released adipokines. 

Impaired autophagy is another contributing factor to atherosclerosis that progresses 

from obesity. Identifying autophagosomes in the atherosclerotic plaque, initiated the 

idea that macrophage autophagy might be beneficial in limiting atherosclerosis 

(Martinet and De Meyer 2009). A study conducted by Razani et al., (2012) used Atg5-

macrophage knockout mice to test if autophagy contributed to progression of 

atherosclerosis (Razani et al. 2012). Deficiency of macrophage autophagy induced a 

state of inflammation and increased plaques. In addition, there was a surge in 

cholesterol crystals in Atg5-mϕKO plaques and inflammasome activation, suggesting 

dysfunctional autophagy is characteristic of atherosclerosis. Atg7 is an essential 

autophagy gene.  Furthermore, when mice with global haploinsufficiency of Atg7 

(Atg7+/- mice) were crossed with ob/ob mice, metabolic syndromes were absent 

however, exacerbated insulin resistance with increased lipid content and inflammatory 

changes were observed. These results suggest that systemic autophagy 

haploinsufficiency impairs the adaptive response to metabolic stress, and that aids in 

the progression of a pro-atherogenic state (Lim et al. 2014). 

With obesity, the AT undergoes alterations in its systemic metabolism. A state of local 

inflammation arises by the secretion of proinflammatory factors (TNF-α, IL-6) by the 

accumulating macrophages; higher in obese individuals as compared to lean (Fried et 

al. 1998; Weisberg et al. 2003). Influx of macrophages and subsequent local 

inflammation are believed to result in endothelial dysfunction that follows obesity, 

including systemic inflammation and atherosclerosis. Visceral fat is credited with 

more cytokines than subcutaneous AT. Transplantation of visceral AT from 

genetically obese mice into Apoe-deficient mice accelerates atherosclerosis in the 

recipient animals, suggesting that inflamed adipose tissue triggers vascular effects, 

presumably through inflammatory cells such as macrophages resident within the 

visceral AT (Rodriguez et al. 2007; Öhman et al. 2008). 

In vitro and clinical studies have confirmed endothelial dysfunction in obesity (Karaca 

et al. 2014). Decreased expression of eNOS leads to limited production and availability 
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of NO. Obese patients have elevated levels of dimethylarginine (ADMA) which serves 

as a stoichiometric inhibitor of eNOS, thus reducing the bioavailability of NO 

(Krzyzanowska et al. 2004; Sansbury et al. 2012) . Alterations in endothelium derived 

prostacyclin and thromboxane has also been reported in obesity, and is conceived to 

promote the development of vascular disease, hypertension and thrombosis (Traupe et 

al. 2002). Endothelial expressed vasoconstrictor ET-1 is found in raised levels in obese 

individuals. ET-1-mediated vasoconstriction therefore promotes hypertension, 

atherosclerosis, and thrombosis, in addition to augmented leukocyte and platelet 

activation; prothrombotic and proatherogenic conditions, commonly observed in obese 

patients (Van Guilder et al. 2011; Cecala, 1995). Clinical studies have advocated that 

obese patients see a progressive decline in vascular functions characterised by 

impaired endothelium-dependent relaxation and marked endothelial dysfunction on 

macrovascular and microvascular beds as a result of oxidative stress along with 

reduced NO reach (Steinberg et al. 1996; Perticone et al. 2001; Grassi et al. 2010).  

Therefore, to sum up, obesity pre-disposes an individual to a risk of developing CVD. 

However, it is impractical to indicate a single mechanistic contribution but should be 

defined by the culmination of several metabolic alterations including changes in 

adipokine profile in AT, impaired autophagy, systemic inflammation, and endothelial 

dysfunction. The central mechanism is inflammation and signalling via the NLRP3 

inflammasome, that ties all the factors together. 

 



 76 | P a g e  

 

1.3.4 Role of EVs in atherosclerosis 

Obesity and CVDs have been associated with increased levels of EVs in the circulation 

(Eguchi et al. 2016). A clinical study involving morbidly obese subjects, has reported 

significant elevation in EVs derived from platelets, endothelium and erythrocytes. 

Moreover, these EVs have been found to contain increased levels of FABP4, TNF-α 

and interferon-γ, suggesting a likely role for EVs in the development of CVDs 

(Witczak et al. 2017). Cell activation and risk of thrombotic complications have also 

been observed with the circulating EVs in obese populations (Goichot et al. 2006). The 

secreted EVs comes in direct contact with vessel wall and give rise to inflammation 

and activation of endothelial cells, which further cause a steep increase in the release 

of EVs from cells. 

EVs are a risk factor for the development of obesity–associated CVDs while mediating 

endothelial dysfunction. EVs collected form adipose tissue explants can alter the TGF-

β signalling pathways, disrupting the inflammatory regulation (Ferrante et al. 2015). 

AT-derived EVs could potentially impair insulin signalling as concluded from an in 

vitro study (Kranendonk et al. 2014b) as well as induce a pro-inflammatory state 

characterised by higher TNF-α and IL-6, glucose intolerance, and insulin resistance 

(Deng et al. 2009). Uptake of AT-derived EVs by mononuclear cells induces activation 

towards a M1-phenotype macrophage (Eguchi et al. 2015). The increase in lipid 

accumulation within AT results in generation of M1 macrophages. Activated 

macrophages can further elicit infiltration of leukocytes into the tissue and evokes 

inflammation and insulin resistance, as seen in lean mice (Deng et al., 2009; Eguchi et 

al., 2015). Collectively, these phenomena accounts for obesity-related vascular 

dysfunction. In addition, a study has demonstrated platelet -EVs were able to alter gene 

expression in HUVECs through their miRNA cargo. 

EVs also play a role in microcalcification, a process involved in the pathogenesis of 

atherosclerosis whereby, the protein sortilin, a key regulator of smooth muscle cell 

calcification, was packaged and delivered by EVs (Goettsch et al. 2016). Moreover, 

macrophage-derived EVs exhibited high calcification and aggregation potential, 

providing an alternative mechanism for microcalcification in atherosclerotic plaques 

(New et al. 2013). Leukocyte-derived EVs have also been implicated in the 

pathogenesis of atherosclerosis (Chironi et al. 2006). In an extensive study by Amabile 
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et al. (2014), several cardiometabolic risk factors including higher triglyceride levels 

and hypertension, were correlated with endothelial-derived EVs in the circulation 

(Amabile et al. 2014).  Individuals subject to cardiovascular risk had EVs sourced from 

smooth muscle cells and hematopoietic cells that were  clear predictors of CVD 

(Chiva-Blanch et al. 2016). 
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1.4  Thesis aims and objectives 

1.4.1 Hypothesis 

Adipocytes release EVs that bear proteins that relate to their cell of origin as well as 

reflect the physiological state of cell. In obese conditions, where the AT is hypoxic 

and inflamed, the released EVs have altered protein profile compared to those EVs 

secreted from healthy AT, which could render them pathological mediators of 

endothelial dysfunction and contribute to risk events related to cardio-vascular disease. 

In essence, ADEVs could be potential biomarkers of AT health. 

1.4.2 Overall aim 

To establish if adipocyte-derived EVs exists in human circulation and mediate in the 

pathogenesis of obesity-associated diseases. 

1.4.3 Specific objectives 

▪ To gain insight into EV processing techniques and develop an approach to 

optimally isolate an EV population from human plasma. 

▪ To identify a population within plasma-derived EVs selective for adipocyte 

character. 

▪ To examine pathologically relevant effects of circulating ADEVs obtained 

from healthy and obese subjects, using leukocyte attachment to endothelium 

as a model for atherosclerosis. 
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2. Methods 
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2.1 3T3-L1 cell culture 

2.1.1 Cell Culture and cell counting 

The murine fibroblast cell line 3T3-L1 was grown from pre-adipocyte to a mature 

adipocyte stage through induced differentiation within a span of 14 days. The cells 

were cultured in appropriate media namely control media (CM), differentiation media 

(DM) and maintenance media (MM), containing inducers of adipogenesis, specific to 

their stage of differentiation and detailed in Table 2.1. 

Media Component 
CM 

(per 100ml of 

media) 

DM 
(per 100ml of 

media) 

MM 
(per 100ml of 

media) 
DMEM (high glucose 

4.5 g/L) 45 ml 45 ml 45 ml 

Ham’s F12 nutrient mix 45 ml 45 ml 45 ml 

FCS 10 ml 10 ml 10 ml 

Penicillin/Streptomycin 1 ml 1 ml 1 ml 

Insulin - 100 µl (10 μg/ml) 100 µl (10 μg/ml) 

Indomethacin - 100 µl (50 μM ) - 

Dexamethasone - 10 µl (1 μM) - 

 

 

 

 

As the pre-adipocyte (fibroblasts) cell culture attained confluency, the control media 

were replaced by differentiation media to induce differentiation and marked Day 0. 

On Day 2 through to Day 14, the maintenance media was used for the maturation of 

the adipocytes with a media change every 3 days (Figure 2.2). The cells used in this 

study were passaged less than 15 times. Images (5X) were obtained on Day 0 and Day 

14 by inverted microscopy (Leica DM IL LED), Figure 2.1. 

Table 2.1: Media used in the culture of 3T3-L1. Compositions of media used 

throughout 3T3-L1 experiments. CM = control medium; DM = differentiation 

medium; DMEM = Dulbecco’s Modified Eagle Medium; FCS = foetal calf serum; 

MM = maintenance medium 
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Confluent pre-adipocytes were trypsinised using 1X 0.05% Trypsin-EDTA (Life 

technologies) and spun at 1000 x g for 5 minutes to obtain a pellet which was re-

suspended in 1ml of media. The cells were carefully divided for counting on a 

haemocytometer (Neubauer, 0.0025mm2, 0.100 mm depth) and further passage.  

 

 

 

 

 

 

 

 

 

 

  

(A) 

(B) 

Figure 2.1 Microscopic images of 3T3-L1 on Day 0 and Day 14. (A) 

Confluent 3T3-L1 pre-adipocytes on Day 0, (B) following differentiation to 

mature adipocytes at the end of Day 14. 

Day 0 Pre-adipocytes 

Day 14 Mature adipocytes 
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DAY -2 

Preadipocytes 

cultured in CM 

reach confluence 

  
DAY 0  

DM added to 

confluent pre-

adipocytes 

DAY 2  

DM replaced by 

MM for the 

differentiated  

adipocytes 

 DAY 5 

Fresh supply of MM 

for the growing 

adipocytes  

(MM replaced) 

  
DAY 8 

MM replaced 

  

DAY 11 

MM replaced 

  

DAY 14 

MM replaced, 

adipocytes 

matured 

DAY 15 

Time-point to conduct 

experiment (e.g. EV 

harvest) 

  

Figure 2.2 Representative Timeline for growth of 3T3-L1. Confluent pre-adipocytes 

have their media changed from CM to DM on Day 0 to facilitate differentiation and 

maintained in MM for 14 days until they grow into fully matured adipocytes (Day 14). 

On Day 15, cells or their growth media are subjected to experimental procedures. CM = 

control medium, DM = differentiation medium, MM = maintenance medium 
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2.1.2 Oil Red O-staining 

The Oil red O working solution was freshly made from 0.5% oil red O stock solution 

(w/v in isopropanol) on diluting with dH2O in a ratio of 3:2 (v/v). The solution was 

left at room temperature for 15 minutes and then filtered through Whatman filter paper 

to remove precipitates. 3T3-L1 cells cultured in 12-well plates were washed in sterile 

PBS prior to staining. They were then fixed in cold 4% formaldehyde (v/v in PBS) for 

15 minutes at room temperature and washed with sterile PBS. Next, the cells were 

stained with the Oil Red O working solution for 15 minutes at room temperature. The 

excess stain was removed with 60% isopropanol (v/v in PBS) and washed twice with 

PBS before cells were imaged (Nikon Diaphot microscope, Nikon) at 10X 

magnification using ViewFinder™ software (version 3.0.1., Better Light Inc., USA). 

A volume of 100% isopropanol was used to extract the intracellular stain after the cells 

were washed twice with PBS and the optical density calculated at 490 nm (Multiskan 

EX, MTX Lab Systems, Inc., USA). 
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2.2 Extracellular Vesicle Isolation 

2.2.1 Isolation of Extracellular vesicles from 3T3-L1 (Cell-derived EVs) 

EV isolation was conducted as per ISEV criteria and as developed by senior 

researchers in our group (Lötvall et al. 2014; Connolly et al. 2015). Ideally, EVs were 

harvested on Day 15 as the adipocytes matured and the cells were incubated in serum-

free media a day prior to isolating the EVs by differential ultracentrifugation. The 

conditioned media was first centrifuged at 1000 x g for 5 mins to remove floating/dead 

cells in suspension. Following this, the supernatant was centrifuged again at 15000 x 

g for 15 minutes at 4°C to remove the cell debris and larger vesicles. Finally, the 

supernatant was subjected to ultracentrifugation at 100,000 x g for 1 hr at 4°C to pellet 

the EVs. Sterile 1X PBS was used to re-suspend the pellet in 100ul volume per 25 ml 

of media spun (Figure 2.3 (A)). The EV samples were stored at 4°C and used within 

a week of isolation. This cell-derived EV preparation was referred as ‘crude prep’.  

 

2.2.2 Isolation of EVs from human blood plasma (Plasma-derived EVs) 

Following informed consent from healthy volunteers, blood was collected by 

venepuncture into sodium citrate vacutainers (BD Vacutainer® Citrate Tubes with 

3.2% buffered sodium citrate solution) to process for plasma-derived EVs. Whole 

blood was immediately centrifuged at 2500 x g for 15 minutes at 21°C to collect the 

platelet-poor plasma (PPP). The PPP was spun again to obtain platelet-free plasma and 

then ultracentrifuged at 100,000 x g for 1 hr at 4°C to pellet the EVs, which were 

subsequently resuspended in 1X PBS for further experiments (Figure 2.3 (B)). EV 

samples were stored at 4°C and ideally used within 48 hrs. The ethics for the study 

was approved from Cardiff Metropolitan university with Project Reference no:7774.
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(A) 

(B) 
Blood collected in 

vacutainers and 

spun at  

2500 g for 15 

mins  

Re-spun at  

2500 g for 15 

mins 

PFP ultracentrifuged 

at  

100,000 g for 60 mins 

PPP PFP 
Pellet resuspended 

in PBS 

Culture media is 

harvested and 

centrifuged at 

1000 g for 5 

mins 

Supernatant 

collected and 

centrifuged at  

15,000 g for 15 

mins 

Supernatant 

collected and 

ultracentrifuged at 

100,000 g for 60 

mins 

EV pellet 

resuspended in PBS 

Figure 2.3 Isolation of EV Schematic diagram of EV isolation from 3T3-L1 cells (A) and human plasma (B). 

PPP = platelet-poor plasma, PFP = platelet-free plasma 
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2.3 Nanoparticle Tracking Analysis 

2.3.1 Working principle 

Nanoparticle Tracking Analysis (NTA) involves assessing the Brownian motion of 

nanoparticles in liquid suspension on a particle-by-particle basis and correlates this 

movement to an equivalent hydrodynamic diameter. Subsequently, particle size 

distribution and concentration can be derived by the application of the Stokes-Einstein 

equation.  The NTA software registers the movement of a single particle in two 

dimensions (x,y). It tracks the movement of a nanoparticle over a time interval t (~30 

ms) and quantifies the displacement as diffusion coefficient D determined by 

𝐷 =
(𝑥, 𝑦)2

4𝑡
 

The particle diameter d can be calculated by the Stokes-Einstein equation as a function 

of diffusion coefficient D at a temperature T and viscosity of the liquid η with 

Boltzmann’s constant kb as: 

𝐷 =
4𝑘𝐵𝑇

3𝜋𝜂𝑑
 

A 488nm laser beam illuminates the chamber loaded with the sample containing 

particles and the light scatter is recorded with a scientific digital camera, arranged at 

90° angle to the irradiation plane. In-built software captures the movement of a particle 

frame by frame which can be observed through a microscope and computer screen 

(Figure 2.4). 

2.3.2 Experimental method 

The NanoSight LM10 (Malvern Panalytical) was used for all the NTA analyses. 

Polystyrene beads of 100nm were examined on the Nanosight prior to sample analysis 

to validate the size and concentration determined by the system. A dilution of the EV 

sample was prepared with sterile water to achieve a concentration in the range of 1 x 

108 and 1 x 109 particles/ml and injected into the sample chamber by means of a 

syringe pump. The working sample was run to measure for 60 secs with 5 replicates 

per sample to account for technical repeats. Measurements were conducted at room 

temperature and the sample chamber thoroughly washed with sterile water prior to, 
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and after a sample run. The mean of the population (nm) corresponded to the EV size 

whereas the concentration of the EV stock was determined by multiplying the given 

concentration of the working sample with the dilution factor. The analytical settings 

on the NTA pre- and post- experimental run are detailed in Table 2.2.  

A detailed NTA calibration experiment was conducted once at the initial operation of 

the device using the standard sized beads of 100nm, 200nm and 400nm, provided by 

the company, Nanosight (discussed in Chapter 3). Subsequently, calibration beads of 

100nm size was run every time through the NTA device on the days of its application, 

to verify the reproducibility of the technique. 

 

 

 

 

 

 

 

 

  

Figure 2.4. Principle of Nanoparticle Tracking Analysis.  NanoSight laser 

illumination module where EVs in a suspension are illuminated by a laser refracted into 

the fluid via a glass prism, causing the EVs to scatter light. This light scattering is then 

visualised by a microscope with a video camera attached, allowing the tracking of 

illuminated EVs to determine the particle size. Image cited from ©Malvern Instruments 

Ltd. 
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 Setting Value 

Pre-analytical Camera shutter 450 

 Camera level 12-15 

 Camera gain 200-300 

 Syringe pump speed 20 

Post-analytical Temperature 22-25° C 

 Screen gain 10-12 

 Detection threshold 5-6 

Table 2.2: Pre- and post-analytical settings used for NTA experiments. Details 

of all pre- and post-analytical settings used when analysing EV samples using 

NTA. 
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2.4 Time resolved Fluorescence (TRF) 

2.4.1 Assay design 

A modification of traditional immunoassay (ELISA) in the use of lanthanide chelates 

rather than typical fluorophores led to the development of dissociation-enhanced 

lanthanide fluorescence immunoassay or DELFIA, which is a time resolved 

fluorescence (TRF) technology. More recently, this was developed by Professor Aled 

Clayton to evaluate the protein content in EVs. The presence of a biomolecule is 

detected using lanthanide chelate labelled reagents with wash steps to remove the 

unbound reagent. TRF immunoassays use the ‘europium’ fluorophore that exhibits a 

high signal-to-noise ratio because of its large Stokes’ shift (difference between 

excitation and emission wavelengths) and the narrow emission peaks. The long 

fluorescence decay time and high signal sensitivity ensures strong detection of 

proteins even the less abundant ones. The EVs are adhered to high-affinity binding 96-

well ELISA plates and probed for antigen of interest by specific antibody. The primary 

antibody is then detected using biotin-labelled secondary antibody and a streptavidin-

europium conjugate. Figure 2.5 illustrates the conceptual binding of EVs with 

antibodies. 
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Biotin-labelled secondary 
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Figure 2.5: Concept of TRF assay to detect EVs. The primary antibodies that bind 

to the EV antigens are detected by biotin labelled secondary antibody. The high 

affinity between streptavidin and biotin, facilitates detection of secondary antibody 

and with Eu conjugate, the signal is enhanced and lasts longer. 
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2.4.2 Experimental method 

The collected EVs (cell- and plasma- derived) of defined concentration 5x10e10 

EV/well were plated on a “sticky” ELISA plate (Grenier Bio-one Germany) and 

incubated overnight at 4°C. On the following day, unbound particles were washed, 

and non-specific sites were blocked by BSA (1% wt/vol) for 2 hrs. The EVs were 

permeabilised using RIPA (radioimmunoprecipitation assay) buffer (Santa Cruz, CA), 

prior to the addition of antibodies, for 1 hr at room temperature. Primary antibodies at 

a concentration of 3µg/ml for plasma EVs and 1µg/ml for 3T3 (cellular) EVs were 

incubated overnight with the EVs. The antigen markers were detected by addition of 

secondary antibody (anti-rabbit IgG biotin-labelled) and streptavidin-europium 

conjugate (Perkin Elmer) for 1 hour each at room temperature. DELFIA® wash buffer 

(Perkin-Elmer) was used to remove any unbound biomolecules between each step with 

three washes. The time resolved fluorescence (TRF) was read by spectrometer 

(FLUOstar OPTIMA plate reader, BMG Labtech, UK). Each well received 400 

flashes, with the measurement beginning at 400μs after the last flash and recorded for 

400μs. Gain adjustment was achieved using a set of europium standards, allowing for 

comparison between multiple plate reads. Data were analysed using MARS software 

(BMG Labtech, UK) and presented as arbitrary fluorescence units (a.u). A negative 

control (EVs with no primary antibody) was included to adjust for background 

fluorescence. The list of antibodies used in TRF assays are recorded in Table 2.3. The 

secondary antibody used in the detection of EV-bound primary was donkey anti-rabbit 

IgG-HRP (GE Healthcare, # NA934V). 
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(A)  Monoclonal Antibodies with reactivity against mouse antigens raised in 

rabbit used particularly to detect 3T3-L1 derived EV proteins. 

Antibody Manufacturer 

CD9 Cell signalling (#13403) 

FABP4 Cell signalling (#3544S) 

Adiponectin Cell signalling (#2789S) 

PPAR-gamma Cell signalling (#2443S) 

 

(B) Monoclonal Antibodies with reactivity against human antigens raised in 

rabbit used particularly to detect plasma-derived EV proteins. 

Antibody Manufacturer 

CD9 Cell signalling (#13403) 

FABP4 Abcam (ab92501) 

Adiponectin Abcam (ab75989) 

PPAR-gamma Abcam (ab191407) 

CD41 Abcam (ab134131) 

CD11b Abcam (ab52478) 

CD144 Abcam (ab33168) 

CD235 Abcam (ab129024) 

 

 

 

 

 

 

Table 2.3 List of primary antibodies used in TRF assays 
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2.5 Bicinchoninic acid protein assay  

2.5.1 Principle 

The bicinchoninic acid (BCA) protein assay detects and measures the amount of 

protein by a colorimetric reaction. The assay combines the biuret reaction, the 

reduction of Cu+2 to Cu+1 by protein in an alkaline medium with the selective 

colorimetric detection of the cuprous cation (Cu+1) by a reagent containing BCA. The 

chelation of two molecules of BCA with one cuprous ion results in a purple-coloured 

water-soluble complex that exhibits a strong absorbance at 562nm. It’s a highly 

sensitive technique that is nearly linear with increasing protein concentrations with a 

detection range of 20-2000 µg/ml. The assay was performed prior to Western blotting 

and immunophenotyping to measure the protein concentration in EV and cell lysates. 
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2.5.2 Experimental procedure 

The BCA assay was performed using Pierce™ BCA protein assay kit (Thermo 

Scientific, UK) according to the manufacturer’s instruction. Firstly, a set of albumin 

standards were prepared with protein concentration ranging from 0 - 2000µg/ml to 

generate a standard linear curve while the samples were diluted in PBS to a volume of 

25µl. The standards and the samples were then supplemented with the 200µl BCA 

working reagent and incubated for 30 minutes on a plate shaker at 37°C. Absorbance 

was subsequently read at 562nm and protein concentrations (μg/ml) determined from 

Figure 2.6: BCA assay standard curve. A typical 6-point standard curve generated 

from a BCA assay. BSA concentration standards range from 0-2000 μg/mL. 



 93 | P a g e  

 

the standard curve. A typical absorbance standard curve plotted against protein 

concentrations is demonstrated in Figure 2.6. 

 

2.6 NanoDrop Spectrophotometer 

The NanoDrop® ND-1000 Spectrophotometer (Thermo Fischer Scientific, UK) was 

used to measure the protein concentration that uses a patented sample retention 

technology. It involves two fibre optic cables that are brought in contact by means of 

liquid source. A sample volume of 1µl is loaded onto the base measurement pedestal 

containing a fibre optic cable. The arm containing the second fibre optic cable holds 

the sample in place by means of its surface tension. A xenon flash lamp illuminates 

the sample and the extent of absorption at 280nm is recorded. Protein concentration is 

determined according to the Beer‐Lambert law: A = ɛ × l × c, where A is absorbance, 

ε is the molar absorption coefficient, l is the cell path length and c is the molar 

concentration. The working principle of NanoDrop is schematically represented in 

Figure 2.7. The device requires no cuvettes or any sample containment, and readings 

are obtained in matters of minutes.  

 

 

 

 

 

  

 

 

 

 
 

Xenon Lamp  
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NanoDrop® ND-1000  

0.22mm path  

Figure 2.7 NanoDrop spectrophotometer. The protein sample is sandwiched 

between the two pedestals containing fibre optic cables. Protein concentration of 

the sample is measured the detector following the absorbance of UV at 280nm. 
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2.7 Western blotting  

Western blotting or Immunoblotting is a protein analysis technique which involves gel 

electrophoresis for the separation of proteins in a sample based on molecular weight, 

followed by nitrocellulose membrane transfer. The trapped proteins on the membrane 

are probed for specific antigens and detected using chemiluminescent methods. 

2.7.1 Sample preparation 

The protein concentrations of EV samples were measured by NanoDrop 1000 

Spectrophotometer (ThermoFisher Scientific, UK). A defined amount of protein (10 -

15 µg) was made up to 30µl volume by NuPAGE® Sample Reducing Agent 10X and 

NuPAGE® LDS Sample Buffer 4X in eppendorf tubes. The tubes were left on a heat 

block at 90°C for 5 mins to unwind/denature proteins, centrifuged at 12,000 x g for 5 

mins at 4°C and left on ice until further loading onto the gel. 

For cell lysate preparation, flask culture media was removed and cells washed with ice 

cold 1X PBS 3 times before the addition of chilled lysis buffer at a volume of 10µl per 

cm2. The cells were then gently removed with a cell scraper, collected and centrifuged 

at 12,000 x g for 20 minutes at 4°C to sediment cell debris. The supernatant was taken 

for analysis on ice or stored at -20°C until further loading onto the gel. 

2.7.2 Protein Separation by SDS-PAGE 

Protein samples ranging from 10-15ug were loaded onto precast polyacrylamide 

NuPAGE Bis-Tris protein gels (ThermoFisher Scientific) along with a pre-stained 

protein ladder (3.5–260 kDa, ThermoFisher Scientific, UK) for molecular weight 

reference. Protein separation was achieved after sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) in 1X NuPAGE™ MOPS SDS 

Running Buffer (ThermoFisher Scientific, UK), run at 180 volts for 1 hour or until the 

stained protein bands reached the end of the gel. 

2.7.3 Electroblotting 

The gel was subjected to wet electroblotting to transfer the separated trapped proteins 

onto a PVDF membrane of 0.45 µm (Amerhsam Hybond P, GE Healthcare, UK). The 

membrane was activated by briefly soaking in methanol and washing with sterile water 

before laying it on the gel. The gel-membrane system was sandwiched between 
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blotting paper and secured with foam pads before encasing into a cassette (Figure 

2.8). This was immersed in a tank of 1X NuPAGE™ Transfer Buffer (ThermoFisher 

Scientific, UK) and electro transfer occurred with the current passing in the direction 

from gel to the membrane for 1 hr at 80 volts. 

 

 

 

 

 

2.7.4 Antibody Incubation 

Following protein transfer onto the membrane, the membrane was washed with Tris-

buffered Saline with Tween 20 (TBS-T) thrice for 5 minutes. Prior to antibody 

incubation, the membranes were blocked with milk 5% w/v in blocking buffer for an 

hour at room temperature on an orbital shaker. Membranes were then incubated 

overnight with rabbit anti-mouse or anti-human monoclonal primary antibodies. On 

the following day, the membranes were washed with TBS-T before being left in 

horseradish peroxidase-labelled donkey anti-rabbit secondary antibody (GE 

healthcare) or goat anti-mouse IgG-HRP (Santa Cruz Biotechnology; sc-2302) diluted 

1:2500 in blocking buffer for 1 hour at room temperature. Finally, the membranes 

were thoroughly washed (x 6 times for 5 mins each) before developing. The antibodies 

used in Western blot experiments are given in Table 2.4. 

2.7.5 Detection 

Amersham ECL Western Blotting Detection Reagent (GE Healthcare) at 0.125 ml/cm2 

membrane was loaded onto the membrane in order to detect the protein bands. The 

Figure 2.8 Electroblotting stack. The arrangement of components during 

electroblotting to facilitate the transfer of proteins from the gel to the membrane. 
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membrane was then exposed to photographic film (Amersham™ Hyperfilm ECL, GE 

Healthcare) in a dark room for different time periods depending on the antibody/ 

detecting protein. Following exposure, the film was developed, fixed, washed and left 

to air dry.  

 

Antibody Manufacturer Reactivity Host species Molecular 

weight 

CD9 Cell signalling 

(#13403) 

Mouse & 

Human 

Rabbit 22 kDa 

CD81 BioRad 

(MCA1847) 

Human Mouse 22-26 kDa 

CD63 Santa Cruz 

Biotechnology  

(sc-15363) 

Human Rabbit 25 kDa 

Alix Santa Cruz 

Biotechnology  

(sc166952) 

Human Mouse 110 kDa 

FABP4 Cell signalling 

(#3544S) 

Mouse & 

Human 

Rabbit 15 kDa 

Adiponectin Abcam 

(ab75989) 

Human Rabbit 27 kDa 

PPAR-gamma Cell signalling 

(#2443S) 

Mouse & 

Human 

Rabbit 53/57 kDa 

Perilipin Cell signalling 

(#9349) 

Human Rabbit 56 kDa 

 

 

 

  

Table 2.4 List of primary antibodies used in western blotting 

experiments 
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2.8 Size-Exclusion chromatography 

An alternative approach to the traditional isolation of EVs by ultracentrifugation was 

adopted using Exospin™ midi-columns (Cell Guidance systems).  

2.8.1 Column preparation 

The columns were supplied pre-equilibrated with sterile water containing 20% 

ethanol. Prior to their use, the preservative buffer was drained, and the columns were 

rinsed with 2 x 10ml PBS and re-equilibrated. 

2.8.2 EV isolation  

1ml of platelet-free-plasma (obtained as described in 2.2.2) was loaded onto the 

column in increments of 500µl and two column fractions (eluate) were drained. Thirty 

subsequent repeats of 500µl PBS were added on the column and each fraction 

collected in an Eppendorf tube. A validation experiment was undertaken on each 

fraction to confirm the presence of EVs which concluded that fractions 5 through to 

10 contained the highest concentration of EVs (demonstrated in chapter 4). Hence, 

fractions 5-10 were pooled and spun at 100,000 x g for 1 hour at 4°C to concentrate 

the EV sample. 

In the case of 3T3-L1 cells, a starting EV sample was prepared as described in 2.2.1 

with the pellet obtained re-suspended to a final volume of 1ml in PBS, and 

subsequently loaded onto the column. Fractions were analysed to find the highest EV 

concentration from fractions 4 through 10, which was pooled, spun and resuspended 

to concentrate the EV sample. 
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2.9 Adipokine array 

A commercially available Proteome Profiler Human Adipokine Array Kit (R&D 

Systems, Bio-Techne, UK) was used to analyse 58 adipocyte-related proteins in 

selected EV samples. 

2.9.1 Assay principle 

An adipokine array is designed with control- and capture- antibodies against selected 

human adipokines and fixed in duplicates on nitrocellulose membranes. Biological test 

samples are diluted, blended with a cocktail of biotinylated detection antibodies and 

incubated overnight with the adipokine array. The detection antibody complexes with 

the target antigen and is immobilised by its cognate capture antibody on the 

membrane. Any unbound material is washed with suitable buffer. Chemiluminescent 

detection reagents are added that generates signal with interaction between trapped 

complexes and streptavidin-horseradish peroxidase and is developed as described in 

the Western blot section. Signal (chemiluminescence) generated at each spot is 

proportional to the amount of protein bound. 

2.9.2 Experimental procedure 

The assay was performed as per manufacturer’s instruction. The EV samples were 

mixed and adjusted to a volume of 1.5ml with given buffers, to which 30 µl of human 

adipokine detection antibody cocktail was added and incubated for 1 hour at room 

temperature. Meanwhile, the membrane was blocked for an hour at room temperature 

with specific blocking buffer. Then, sample-antibody mixture was incubated with the 

membrane overnight at 2-8°C on a plate rocker. On the following day, the membrane 

was washed three times for 10 minutes. 2ml of Streptavidin-HRP was loaded on the 

membrane and left on a plate rocker for 30 minutes at room temperature, after which 

it was washed to remove unbound protein. Detection reagents were added and detected 

using Amersham ECL Hyperfilm to capture the chemiluminescence following 15- and 

30-minute exposures. The blots were scanned and pixel density at each spot was 

analysed using HLImage++ (Western Vision Software, USA) software (Figure 2.9). 
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Figure 2.9: Representative blot of the adipokine array post development 

on film. 
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2.10 Immunoassay 

2.10.1 Magnetic bead capture using Dynabeads 

The Dynabeads® M-280 Sheep anti-Rabbit IgG are uniform, superparamagnetic, 

polystyrene beads of 2.8µm in size. They bind all rabbit IgG via the sheep anti-rabbit 

IgG covalently bound to the bead surface. They are kept at a concentration of 6 - 7 × 

108 beads/mL (~10 mg/mL) in phosphate buffered saline (PBS) pH 7.4 with 0.1% 

bovine serum albumin (BSA) and 0.02% sodium azide. 

Washing the beads: A selected volume of 50µl was taken in a flask with 1ml of wash 

buffer (1X PBS) and gently vortexed for >30 sec for a uniform resuspension. The vial 

was placed on the magnetic stand (DynaMag™-2, Life Technologies, UK) for 1 

minute until the beads were captured on the side of the vial in contact with the magnet. 

The supernatant was subsequently discarded, and the beads resuspended again in PBS 

to repeat the wash twice. Finally, the beads were resuspended in 50µl of PBS. 

Experimental procedure: During the magnetic bead capture experiment, first, a sample 

of plasma EVs was incubated with 3 µg/ml primary antibody for two hours. Then, 

50µl of pre-washed magnetic beads were introduced to the EV/antibody mix and 

incubated for another 30 minutes at room temperature. The mixture was then placed 

on the magnet to separate the bound EV-antibody-anti-rabbit IgG complex and the 

supernatant collected for further study analysis and compared with the pre-capture 

sample for the loss/reduction of certain EV-associated protein markers. Figure 2.10 

demonstrates the principle of magnetic bead capture to exclude specific population of 

EVs while others remain. 
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2.10.2 Solid-phase capture of EVs 

Rabbit monoclonal antibodies were diluted in PBS at a final concentration of 3 µg/ml 

and coated in triplicates at the bottom of high binding ELISA plates (Greiner Bio-One 

Ltd, UK) by laying them overnight at 4°C. EV samples at a concentration of 1 x 1011 

particles/ml from plasma were incubated in the well coated with specific antibodies 

for 2 hours. This enabled the capture of EVs with the desired antigen within the well 

and depleted supernatant was removed for analysis.  
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Figure 2.10: Principle of magnetic bead capture. EVs are incubated with desired 

capture antibody and identified using secondary antibody leaving unbound EVs in the 

solution. The addition of magnetic beads arrest EV-bound secondary antibodies and the 

free EVs are collected for downstream analysis. The magnetic beads are trapped by a 

bigger magnet. 

+ 
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2.11 Human Umbilical Vein Endothelial Cell isolation 

Human umbilical cords were provided from the Maternity ward at University hospital 

of Wales, with ethical approval from the North West-Lancaster Research Ethics 

Committee (REC reference 14/NW/1459), applied under Dr Rebecca Wadey (Cardiff 

Metropolitan University). The umbilical cord was cut from the placenta and examined 

for blood clots and damage from clamping during delivery. These sections were 

eliminated, and fresh cuts were made on both ends with a scalpel. The tools, glassware 

and trays used in the cell extraction process were washed in detergent and sterilised. 

The cord was washed with 0.9% saline solution to remove blood stains. The vein was 

distinguished from the other two thick walled arteries in the cord and saline solution 

was flushed through the vein until the effluent ran clear, to rinse out any remaining 

blood. One end of the cord was clamped and approximately 10ml of collagenase 

(1mg/ml) was slowly injected into the vein using a syringe; once the vein was taut, it 

was clamped at the injecting end (Figure 2.11). The cord with collagenase was 

incubated for 15 minutes with occasional massaging to aid digestion of cells. At the 

end of the incubation time, one end of the cord was unclamped, and the collagenase 

solution collected into a Falcon tube and topped with equal volume of HUVEC media 

to neutralise the collagenase. The cells were centrifuged at 300 x g for 10 minutes to 

form a pellet that was resuspended in HUVEC media in the desired volume. The cells 

were cultured in gelatine-coated 6- and 96- well plates and left for two hours before 

replacing the media to reduce erythrocyte contamination. Growth media was replaced 

every 2-3 days and cells grew to confluence in 5-6 days. The composition of the 

HUVEC media is detailed in Table 2.5. 
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Reagent Supplier, code Storage Final (volume/conc) 

M199 medium Invitrogen, 3150-022 +4°C 500 ml 

Gentamycin Sigma, G1272 +4°C 35 μg/ml 

Amphotericin B Sigma, A2942 -20°C 2.5 μg/ml 

FCS Pan Biotech, P40-37500 -20°C 50 ml 

hEGF Invitrogen, 10533084 -20°C 1 ng/ml 

Hydrocortisone Sigma, H0888 -20°C 1 μg/ml 

 

 

 

 

 

 

 

 

  

Table 2.5 HUVEC media constituents. Details of reagents and volumes/concentration 

required to prepare 500 ml of HUVEC culture medium. hEGF = human Epidermal 

growth factor, FCS = Fetal calf serum. 

Figure 2.11: Isolation of HUVECs from human umbilical cord. The above shows a 

taut cord where the umbilical vein was filled with approximately 10ml of collagenase 

solution (1mg/ml) and incubated for 15 minutes to allow for endothelial cell digestion. 
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2.12 Leukocyte adhesion assay 

2.12.1 Isolation of leukocytes 

The leukocyte isolation protocol was primarily derived from the method of Pettit and 

Hallett (Pettit and Hallett 1998). Fresh human blood (approximately 10mls) was 

collected by venepuncture from healthy individuals into a universal container (UC) 

containing 100µl of Heparin (5000 I.U/ml). Dextran (2.5ml, 6 % (w/v), Sigma) 

dissolved in 1× balanced salt solution (BSS; 0.13 M NaCl, 2.6 mM KCl, 8.0 mM 

Na2HPO4, 1.83 mM KH2PO4, pH 7.4) was added and then mixed by gentle inversion. 

The complete solution was then transferred carefully into a new universal container 

and was left undisturbed for 45 minutes at room temperature in order for the buffy 

coat to develop. As the blood separated into an upper plasma layer and a lower 

erythrocyte layer, the middle buffy coat layer of approximately 1.5ml was carefully 

extracted using a pipette into a fresh universal container. Cells, namely leukocytes and 

erythrocytes, were pelleted by centrifugation at 300 g for 2 minutes and resuspended 

in sterile H2O (1ml) for 10 seconds to burst the membranes of any contaminating 

erythrocytes. It was supplemented with 20ml of BSS and the leukocytes were 

recollected as a pellet by centrifugation at 300 x g for 5 minutes. The pellet was re-

suspended in 1.5 ml Krebs-BSA buffer (0.1 % (w/v) bovine serum albumin (BSA) in 

1× Krebs (1.2 M NaCl, 0.48 M KCl, 0.12 M KH2PO4, 0.12 M MgSO4, 0.13 M CaCL2, 

2.5 M HEPES, pH 7.4)). Leukocytes were collected fresh on the day of the experiment 

and not subjected to storage. 

2.12.2 Leukocyte adhesion assay 

A monolayer of HUVECs was grown to confluence in a 96-well plate as outlined in 

2.9. Media was removed and wells were incubated with EVs from different 

sources/conditions (n=3) diluted with 100µl of serum-free media (specified in chapter 

5) for 6 hours. In parallel, as a positive control, TNF-α was diluted in SFM with 

concentration ranging from (0-25 ng/ml) to a final volume of 100 µl and incubated on 

HUVECs. As a negative control, wells consisted of serum-free media only, with no 

EVs present. Meanwhile, the freshly isolated leukocyte preparation in 1.5ml of 

KREBS-BSA (as detailed in 2.10.1) was incubated with 1.5µl of CellTraceTM calcein 

red-orange (1:1000 dilution; C34851, Invitrogen) in darkness at 4ºC. After 10 minutes, 
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leukocytes were pelleted by centrifugation to remove excess dye, re-suspended in 1.5 

ml Krebs-BSA buffer and left to settle on ice for 30 minutes. The volume of the 

leukocyte suspension was topped to 15ml with pre-warmed (37°C) Krebs-BSA buffer. 

After the 6-hour EV incubation, the HUVECs were washed three times with KREBS 

and 150µl of fluorescently-labelled leukocyte suspension added to all working wells 

for 30 minutes. Non-adherent cells were subsequently removed with 3x rounds of 

KREBS washes before leaving the cells in buffer. Leukocyte adherence to the 

HUVECs was observed using an inverted fluorescence microscope. Five images were 

captured per well spanning the area covered by HUVECs. Images obtained were 

evaluated using ImageJ (version 1.49v; National Institutes of Health, USA) software 

where images were converted to “8 bit” and “binary”, and contrast set to nearly 

maximum, in order to distinguish between leukocytes and underlying HUVECs. The 

total image area covered by leukocytes was calculated and expressed as percentage of 

the total field of view.  

 

2.13 Statistical analysis 

GraphPad Prism 5 (version 5.01, GraphPad software Inc., USA) was used to analyse 

the data gathered in this thesis. Details of specific statistical analyses are given in the 

Methods section of each Results chapter.  

 

2.14 Sample size 

The experiments conducted throughout this study used at least 3 or greater number of 

biological samples, to assess biological variation, unless otherwise stated. The term 

‘n’ used throughout the text in Chapter 3, Chapter 4 and Chapter 5 denotes biological 

replicates (distinct samples). Each sample was seeded in triplicates (technical 

replicates) while conducting an experiment to counter technical errors. 
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3.  Results I: Isolation and phenotyping of 

adipocyte and plasma EVs 
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3. Perspective 

At the outset of my studies I embarked on a series of experiments to acquire a 

comprehensive understanding of the techniques available to me and the current 

standards set out in the EV field. The International Society for Extracellular Vesicles 

(ISEV) had recognised the need for standardising methods and protocols, and 

especially the need to establish key characteristics of EV so as to allow true 

comparison of data and results between laboratories. Despite this, wide scale adoption 

had not occurred and it was important to get hands on experience in the techniques 

and methods available to me, not least because the main aim of my thesis, the 

characterisation of adipocyte-derived EV, would need to adopt robust methods that 

would stand the test of time. The work described in this chapter therefore represents 

early investigation into the various methods available to me, those developed and 

preferred at the laboratories of my supervisors and an evaluation of their potential for 

characterising EV from adipocytes. 

Dr Aled Clayton and Dr Jason Webber had developed a TRF-based immunoassay to 

investigate EVs derived from body fluids of cancer patients (Webber et al. 2014; 

Welton et al. 2015; J L Welton et al. 2016) and my senior colleagues had calibrated a 

series of primary antibodies that allowed for detection of specific antigen based  on a 

fixed number of EV- that were attached to an ELISA plate. This underlies much of the 

work presented in this chapter and thesis. EVs derived from 3T3-L1 adipocytes were 

investigated pre- and post- adipogenesis in the PhD studies conducted by Dr Katherine 

Connolly (Connolly et al. 2015) in which initial detection of certain adipocyte specific 

markers (including FABP4) had been accomplished. However, at the outset of this 

chapter, no standard EV isolation protocol or identifiable EV/exosome markers were 

defined per se. The isolation procedure adopted in this chapter was largely based on 

the work published by my fellow researchers (Willis et al. 2014; Connolly et al. 2015). 

As for plasma-derived EVs, the sample can now be considered a relatively crude 

preparation (lacking steps of current standard EV preparation) which at the time was 

widely accepted. 

Constituent proteins are widely used to identify and characterise EV populations. Our 

group has characterised 3T3-L1 derived EV during the differentiation process and 

found that surface protein, protein and lipid content, EV number and size distribution 

vary. After careful review of the limited literature on adipocyte derived EV, selected 
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adipocyte specific proteins were chosen as potential markers for our studies (Aoki et 

al. 2007; Aoki et al. 2010). Of particular relevance to my project, 3T3-L1 EV exhibit 

FABP4 which seems to be in part accessible from outside EV and a large component 

within EV. Further evidence of adipocyte lineage is provided by the existence of 

adiponectin and PPARy2 and set the scene for piloting the TRFIA by employing a 

combination of markers. 
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3.1 Introduction 

In contrast to the rest of the EV field, the study of adipocyte-derived EVs (ADEVs) 

has gained limited momentum over the past decade. From largely in vitro studies, 

ADEVs have been implicated in various metabolic functions and obesity-related 

pathophysiology, attributed to their role in carrying signalling molecules or as 

communicators between cells (refer to Introduction, section 1.5). EVs carry a unique 

set of protein markers reflective of their phenotype and/or their cell of origin. In this 

chapter, a murine-derived cell line 3T3-L1 has been utilised as a model to generate 

standard EVs of adipocyte phenotype. These cells provide a useful model because 

they may be maintained in a pre-adipocyte stage or they may be induced to undergo 

differentiation to develop into mature adipocytes. 

According to a study based on an extensive survey, ultracentrifugation (UC) of 

conditioned cell media remains by far the most widely used classical isolation method 

for EVs (Gardiner et al. 2016). Other well-used methods include density gradient 

centrifugation (DC), filtration and size-exclusion chromatography. The chosen 

isolation technique has substantial effect on the EV harvest, i.e., final sample volume, 

EV concentration and purity; estimating the purity of samples remains difficult, with 

inconsistent approaches across diverse studies (Andreu et al. 2016; Gardiner et al. 

2016). EVs isolated by UC are often co-pelleted with non-vesicular macromolecules 

(Webber and Clayton 2013), which give a false representation of EV populations, 

particularly during subsequent downstream analyses including -omics-based analyses, 

RNA extraction and measurement, and functional assays. Meanwhile, EV isolation 

from biological fluids such as plasma, serum, urine or cancer-related effusions is more 

complex and requires a combination of isolation techniques (Szatanek et al. 2015). 

Ensuring purity in samples remains a challenge, and it should be understood that 

different types of EVs require unique isolation approaches depending on the nature 

and aim of the study. 

Size exclusion chromatography (SEC) was first explored for EV isolation from 

biological fluids as a single-step protocol, by Boing et al., (2014) using sepharose CL-

2B (Böing et al. 2014). With human platelet-free plasma as the starting material, SEC 

was able to efficiently isolate EVs and separate them from free lipoproteins and 

proteins. The minimal risk of protein complex formation and vesicle aggregation are 
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its advantages over UC and DC, besides the high EV recovery rate. Following on, 

several studies have confirmed the use of size exclusion columns for EV isolation to 

obtain a ‘cleaner’ working sample (Webber et al. 2014a; Welton et al. 2015; Welton 

et al. 2016; Mol et al. 2017; Welton et al. 2017). Application of SEC improves 

downstream analyses on the dimensional, structural and functional properties of 

extracellular vesicles. 

Immunoassay is a commonly used diagnostic technique based on antigen-antibody 

interaction and researchers have successfully applied the technique to detect markers 

on plasma EVs; showed it to be reproducible and highly applicable in clinical 

evaluation (Logozzi et al., 2009; Wang et al., 2010; Higginbotham et al., 2011). 

Immunoassays are highly specific, have enhanced sensitivity, are cost-effective and 

are rapidly measured. By further combining an immunoassay with TRF detection 

methods (TRF-IA) the sensitivity is enhanced further due to the amplification and 

stability of the generated fluorescent signal. In vitro and in vivo samples have been 

tested by our group while addressing EVs (Webber et al. 2014a; Connolly et al. 2015; 

Welton et al. 2017). An immunoassay similar in principle to the TRF-IA has been 

developed by a research group in the Netherlands to capture EVs based on EV-specific 

markers and further detect other relevant protein epitopes on the EV using a second 

set of antibodies (Oliveira-Rodríguez et al. 2016). The authors used a lateral-flow 

immunoassay design to quantify EVs wherein anti-CD9 and anti-CD81 were used 

collectively as capture antibodies, and anti-CD63 labelled with gold nanoparticles was 

used as the detection antibody. This has a detection limit of approximately 8.54×10e5 

exosomes/µL of test sample (cell culture supernatants, human plasma and urine). 

Currently, there is not one single/standard method that allows phenotyping, sizing, 

and enumeration of the whole range of EVs. To truly understand the biology of EVs, 

it calls for a combination of methods for an effective EV profiling. 
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3.1.1 Objectives: 

The overall aim of this chapter was to gain insight into the various techniques available 

for EV analysis in order to appreciate the pros and cons of these methods, and how 

these may be adopted in the study of circulating adipocyte-derived EVs. 

In order to address this, I had the following specific aims: 

1. To isolate EVs from a standard adipocyte cell line and from human plasma, and to 

characterise these EVs in terms of size, concentration and protein content (using 

adipocyte and EV markers). 

2. To validate NTA, TRF-IA and western blotting to identify EV and adipocyte 

markers on 3T3-L1 derived and plasma-derived EVs. 

3. To validate TRF-IA as a possible tool for assessing EV lineage in plasma-derived 

EVs and to assess the relative EV populations in a plasma EV sample (based on 

platelet, endothelial, macrophage and erythrocyte markers as the main component 

populations). 

4. To explore the utility of a commercially available size-exclusion chromatography 

column as a means to purify and enrich plasma EVs compared to plasma EVs isolated 

using UC.  

 

  



 112 | P a g e  

 

3.2 Methods 

3.2.1 Cell Culture and EV isolation 

3T3-L1 cells were cultured as outlined in Chapter 2.1.1 and serum-free media was 

supplemented to the cells 24 hrs prior to EV isolation conducted as detailed in Chapter 

2.2.1. 

As for plasma EVs, the isolation was performed as detailed in Chapter 2.2.2.  

3.2.2 Oil Red O staining 

Confirmation of adipogenesis in 3T3-L1 cells culture was established by Oil Red o-

staining, described in Chapter 2.1.2. 

3.2.3 Nanoparticle Tracking Analysis 

NTA was conducted to estimate the size and concentration of EVs obtained from 3T3-

L1 culture media and plasma.  

3.2.4 Western blotting 

EV lysates were subjected for western blotting as described in Chapter 2.7. 10mg of 

protein was loaded into the gels after estimating the protein concentration by BCA 

assay outlined in Chapter 2.5.2. Antibody control experiment under the absence of a 

primary antibody was not conducted during the protein detection stage. 

3.2.5 Time Resolved Fluorescence based Immunoassay (TRFIA) 

3T3-L1- and plasma-derived EVs were probed for EV and adipocyte-specific proteins 

using an immunoassay as outlined in Chapter 2.4.2. 

3.2.6 Column chromatography 

SEC using Exospin™ midi-columns (Cell Guidance systems) was performed on EVs 

as described in Chapter 2.8.2. 

3.2.7 Statistical Analysis 

Unpaired t-test was used to compare means and p<0.05 was deemed statistically 

significant. 
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3.3 Results 

3.3.1 Measurement of size and concentration by NTA 

The ability of NTA to discriminate and measure particles of different sizes was 

investigated using 100 nm, 200 nm and 400 nm sized polystyrene calibration beads 

provided by the manufacturer (Nanosight, Malvern). The experiment also studied the 

efficiency in the detection range of NTA (Table 3.1). 

 

Bead size Dilution Concentration Mean Mode 

100 nm 1:1000 
(1.8 ± 0.1) x 

10e8 
113 ± 1.1 103 ± 08 

200nm 1:1000 
(2.2 ± 0.3) x 

10e8 
193 ± 1.8 198 ± 2.7 

400 nm 1:1000 
(7.1 ±0.4) x 

10e8 
373 ± 11.1 374 ± 20.6 

Mix (100, 

200, 400nm) 
1:1000 

(9.5 ± 0.1) x 

10e8 
154 ± 2.5 109 ± 0.4 

 

 

 

 

 

 

NTA was able to resolve and accurately measure different-size particles, in terms of 

diameter and concentration in monodisperse (single size) and polydisperse medium 

(mixed size) solution. Sharp defined peaks were observed when uni-sized beads were 

analysed using NTA (Figure 3.1 (C), (D) and (E)). In case of the polydisperse 

sample, made of the same individual calibration beads, although the peaks slightly 

overlap, NTA clearly discriminates three differently sized populations of beads 

Table 3.1: Calibration beads evaluated by Nanoparticle tracking analysis. Polystyrene 

calibration beads of three different diameters were diluted 1:1000 and analysed using NTA 

to generate a measure of the machine’s accuracy in calculating bead diameter and 

concentration, (n=3). A mix of the three beads in equal proportion was also analysed to 

test the capability of NTA in detecting individual populations in a polydisperse sample. 
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revealed by three peak maxima (Figure 3.1 (F)), which is an essential prerequisite 

for analysing extracellular vesicles in biological fluids. The slight overlap of the 

peaks in Figure 3.1(F) is a potential problem and an inherent limitation owing to 

measuring a stochastic process (Brownian motion) by sampling over a finite time 

period (the time for which each particle can be tracked). For the analysis of beads of 

a defined, narrow size range, the NTA software can correct for this and produce 

tighter peaks. However, when measuring EVs, we cannot make assumptions about 

the size distribution, resulting in the apparent poorer resolution and/or under 

estimation as seen. The concentration measurement is also less precise in 

polydisperse samples. This is due to the optimisation of the instrument settings 

(camera shutter speed and screen gain) to include smaller particles (e.g.100 nm or 

less) for their effective analysis, thus, larger particles are either missed or there is 

increased uncertainty over their precise size (they appear over a broader range and 

the peak is lower in amplitude – Figure 3.1(F)). As an illustration of this, simple 

summing of the measured concentration of each individual size (~15.5 x 10e8 

particles/ml) should yield the same total as the mixed sample (~9.5 x 10e8 

particles/ml). 
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(A) (B) 

(C) (D) 

(E) (F) 

Figure 3.1: NTA analysis of size and concentration of polystyrene beads. 

A typical trace generated by Nanosight (A) and a video screenshot from video 

of light scatter by beads (B). (C), (D) and (E) are plots generated of particle 

concentration versus size in monodisperse sample of bead size 100 nm, 200 nm 

and 400 nm respectively, and (F) represents polydisperse medium of beads, 

(n=3). 
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3.3.2 Confirmation of Adipogenesis 

Oil red staining was used to qualitatively assess and confirm the maturation of 3T3-

L1 cells from pre-adipocyte cells to mature adipocytes, by measuring the lipid 

accumulation within the cell. Microscopic pictures were taken at Day 0 and Day 14 

for comparison (Figure 3.2) and showed clear accumulation of red-stained lipid 

droplets. The absorbance was also measured by spectrophotometer at 492 nm. Day 14 

showed increased lipid accumulation indicating differentiation and maturation of 3T3-

L1 cells. Statistical analysis was conducted using t-tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(A) (B) 

(C) 

Figure 3.2: Evidence of Adipogenesis in 3T3-L1 cells. Lipid accumulation was 

visualised by Oil red O staining with light microscopy at Day 0 in preadipocytes 

(A) and at Day 14 in mature adipocytes (B). (C) The absorbance of Oil Red O at 

492 nm was also quantified at each time point, p<0.001, (n=6). 
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3.3.3 Size and Concentration in cell and plasma derived EV sample 

EVs collected from 3T3-L1 cell culture media were analysed by NTA to measure the 

size distribution, average particle size and total concentration of particles in the EV 

sample. The EVs collected from conditioned 3T3-L1 culture media yielded an average 

diameter of 163 ± 65 nm and an average concentration of 4.87 x 107 particles/ml of 

culture media (Figure 3.3 (A)). Similarly, plasma EVs were analysed for average size 

and concentration. The plasma EVs were calculated to have a mean diameter size of 

95 ± 34 nm and concentration of 2.74 x 108 particles/ml of plasma (Figure 3.3 (B)). 

EVs from plasma exhibited a wider size distribution (10nm - 700nm) compared to 

3T3-L1-derived EVs (30 nm - 500 nm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.3: Measurement of the size and concentration of EVs. NTA analysis on 3T3-

L1 derived EVs after maturation on Day 14 (A) and plasma-derived EVs (B) with mean 

diameter of 163 ± 65 nm and 95± 34 nm, respectively, (n=3). 

(A) 

(B) 
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3.3.4 Analysis of EV protein markers by Western blotting 

The isolated EVs from mature 3T3-L1 cells were subjected to western blot analysis to 

identify EV markers (namely CD9 and CD63) and adipocyte-specific markers (namely 

FABP4, Adiponectin, PPAR-γ). Figure 3.4 (A) below clearly indicates the presence 

of a classic tetraspanin (CD9) in both 3T3-L1 and plasma-derived EVs as well as 

positivity for adipocyte specific markers, strongly confirming EVs derived from the 

adipocytes cell line. Hence, they are considered an appropriate positive control and 

model system for the remainder of the study described in this thesis. 

Similarly, the plasma-derived EVs were also investigated for EV markers and 

adipocyte markers. The EVs stained positive for adipocyte markers FABP4, 

adiponectin and PPAR-gamma as well as CD9 (Figure 3.4 (B)) 

 

 

 

 

 

 

 

 

 

  

Figure 3.4: Western blot analysis of adipocyte markers in EV lysates. EV lysates 

collected from 3T3-L1 (A) and plasma (B) were evaluated for exosomal and 

adipocyte markers namely CD9 (25 kDa), FABP4 (15 kDa), Adiponectin (30 kDa) 

and PPAR-γ (53 kDa for PPAR-γ1 and 57 kDa for PPAR-γ2). Each blot shows 2 

technical repeats (n=2) 
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3.3.5 Analysis of EV protein markers using a Time Resolved Fluorescence Immuno-

Assay  

Protein markers were also evaluated by immunoassay and Figure 3.5 shows the profile 

of adipocyte markers measured in a defined EV population (5x1010 particles/mL). It 

shows the relative abundance of adipocyte-associated proteins in a controlled 

population of EVs (as opposed to the relative number of EV containing a particular 

marker). The EVs from 3T3-L1 cells and plasma were assessed for CD9 as well as 

FABP4, adiponectin and PPAR-γ (Figure 3.5 A/B). This generated a profile of the 

selected adipocyte markers in a defined population, where adiponectin and FABP4 

protein markers were in relative abundance, compared to PPAR-γ. The abundance of 

adipocyte markers relative to CD9 was higher greater in plasma-derived EVs as 

compared to 3T3-L1-derived EVs (Figure 3.5 (C)). 

In addition, plasma EVs were also probed for different protein markers to identify 

different populations of EV origin (CD41, CD11b, CD144 and CD235a; Figure 3.5 

(D)). The component of each marker detected was expressed as a fraction of the total 

fluorescence of all markers and plotted as a pie chart. 
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CD41

46%

CD11b

21%

CD144

20%

CD235

13%

Ratio 

X/CD9 
1 1.84 4.28 0.4 

Ratio 

x/CD9 
1 1.26 1.93 0.7 

(A) (B) 

(C) 

Figure 3.5: Measurement of EV protein content by TRF-IA. TRF-IA was used to 

measure exosomal (CD9) and adipocyte proteins (FABP4, adiponectin and PPAR-γ) in 

3T3-L1 EVs (A) and plasma-derived EVs (B), (n=3). The relative abundance of 

adipocyte proteins compared to CD9 was calculated for both 3T3-L1 EVs and plasma 

EVs (C). The proportion of the four major EV populations in plasma-derived EVs was 

also measured by TRF-IA (D), (n=3). 

(D) 
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3.3.6 Separation of soluble, free protein from EVs within a sample 

Recognising that EV samples prepared by UC of cell supernatant or plasma likely 

contain free protein; initial studies were carried out on the utility of common 

laboratory separation techniques. 

In an attempt to purify the EV prep, dialysis was employed with the use of 

appropriately sized membrane pores. The system was feasible with 3T3-L1 cell culture 

supernatant, but precarious with purifying plasma EVs, hence, this approach was 

discontinued. (Refer Appendix 1 for data) 

 

3.3.6.1 Column purification of 3T3-L1 - derived EVs 

3T3-L1-dervied EVs were loaded onto size exclusion columns and fractions were 

collected as with plasma samples. Protein was prevalent in fractions 4 - 10 and the 

particle concentration increased from fraction 4 through to fraction 10 with subsequent 

fractions dwindling in number (Figure 3.6 (A)). Western blot analysis showed the 

expression of CD63 and FABP4 was limited to fractions 6-8 which corresponded with 

the peak in the particle-to-protein ratio (Figure 3.6 (B), (C)). This share of work was 

conducted with help of Dr Rebecca Wadey. 
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(A) 

(C) 

(B) 

Figure 3.6: The elution of 3T3-L1 EVs through a size exclusion column. 3T3-L1-

derived EVs isolated by ultracentrifugation (1 mL) were loaded onto size exclusion 

chromatography columns and 30 fractions were collected Particle concentration (assessed 

by NTA) and protein content (assessed by Nanodrop) were plotted for each fraction (A), 

(n=4). The concentration of particles was divided by the protein concentration in each 

fraction to yield the particle-to-protein ratio (B). Samples between fractions 4 and 20 were 

tested for the presence of the exosomal marker CD63 and the adipocyte marker FABP4 

using western blotting (C). 
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3.3.6.2 Column purification of plasma EVs 

Size exclusion chromatography was tested for its ability to separate EVs from soluble 

protein. The particle concentration and protein content was measured in fractions 1-

30 (Figure 3.7 (A)). The protein content showed a modest increase in fractions 5-10, 

which coincided with a minor peak in the particle concentration. A large peak in 

protein begins after fraction 10, which is accompanied by an increase in particle count. 

Fractions 2-28 were then assessed for EV markers (CD9, CD81 and ALIX) by western 

blot to verify the elution of EVs in the fractions (Figure 3.7 (B)). Fractions 5-10 

revealed bands for the protein markers whereas the fractions 11-28 showed no 

indication of these proteins. Plotting the number of particles against the concentration 

of protein in each fraction revealed a peak in the particle-to-protein ratio from fractions 

5-10 which aligns with fractions exhibiting positivity for the exosome markers 

(Figure 3.7 (C)). 

A comparative study was undertaken of EV concentration and size by NTA, after 

isolation by either UC or SEC with starting volume of approximately 12-13 mL of 

plasma as illustrated in Table 3.2. EVs isolated by UC showed an average size of 255 

nm whereas that of EVs eluted from the column was 180 nm. The apparent yield of 

EVs derived from the column is nearly 10x less than that obtained from UC. It should 

be noted that NTA will detect single particles with a diameter larger than 50 nm, which 

may not necessarily be extracellular vesicles, but could also include protein 

aggregates, lipoproteins and other serum particulates. Typically, column fraction 12 

and above showed an increased protein content (Figure 3.7 A). Hence, these could 

account for increases in EV number observed by NTA with UC method of isolation, 

especially with no defined pre-purification step involved. 
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Figure 3.7: Evaluation of plasma eluent through a size exclusion column. Column eluent 

was collected over 30 fractions and the particle concentration (measured by NTA) was 

plotted against the protein content (measured by Nanodrop) of each fraction (A), (n=3). An 

equal amount of protein from fraction 2-28 was loaded for western blot analysis of exosomal 

markers CD9, CD81 and ALIX (B). The concentration of particles in each fraction was 

divided by the protein content of each fraction and plotted as the particle-to-protein ratio (C). 
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Sample Repeat 
Concentration 

(particles/ml) 

Mean diameter 

(nm) 

Mode diameter 

(nm) 

1 1.88 x 1011 179 105 

2 6.7 x 1010 209 162 

3 9.5 x 1010 159 127 

Mean 1.16 x 1011 182.3±14 131.3±16 

 

 

 

  

Sample Repeat 
Concentration 

(particles/ml) 

Mean diameter 

(nm) 

Mode diameter 

(nm) 

1 8.38 x 1011 274 213 

2 5.96 x 1012 248 209 

3 9.39 x 1011 245 275 

Mean 2.58 x 1012 255.6±15 232.3±37 

(A) NTA analysis of plasma-derived EVs isolated by direct ultracentrifugation 

(crude prep) 

(B) NTA analysis of plasma-derived EVs isolated by size exclusion column 

chromatography (purified prep) 

Table 3.2: Comparison of EV size and concentration of EVs following UC and 

SEC (A) NTA analysis of plasma-derived EVs isolated from direct ultracentrifugation 

of platelet-free plasma (crude prep). (B) EVs were isolated by SEC where 1 mL 

platelet-free plasma was loaded onto the column and fractions 5-10 were pooled and 

ultracentrifuged (purified prep). 
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3.4 Discussion 

3.4.1 Main discussion 

Key findings 

▪ 3T3-L1 derived and plasma-derived EVs exhibit adipocyte and EV markers 

which were detectable by both western blotting and TRF-IA. 

▪ TRF-IA was able to detect dual epitopes in the same EV sample posing the 

potential of double-labelling. 

▪ Size-exclusion chromatography columns provide a convenient, 

reproducible and highly effective means of eliminating non-vesicular 

protein from complex bio-fluids   such as plasma. 

 

As discussed in detail in Chapter 1, adipocytes generate EVs as means of cellular 

communication for a range of metabolic functions. Adipocyte-derived EVs (ADEVs) 

were first characterised by Aoki et al. (2007) from 3T3-L1 adipocytes who reported 

the presence of several of integral, cytosolic and nuclear proteins as constituent 

components (Aoki et al. 2007). Their work formed the basis for identifying standard 

adipocyte EVs and to a lesser extent in the choice of adipocyte-specific protein 

markers to be tested in this thesis. 

Extracellular vesicles are potential markers of human disease. To employ these 

vesicles in diagnosis, a simple and rapid method of simultaneously determining their 

size, concentration, and phenotype in bio-fluids such as plasma and urine is required. 

NTA was developed as an effective and efficient technique to serve this purpose. This 

technology, although relatively new, is well established in other fields including the 

measurement of engineered nanoparticles, protein aggregates, and viral particles. 

NTA offers distinct advantages over other methods EV quantification methods, such 

as flow cytometry (FC). The instruments for NTA are widely provided by the 

manufacturer NanoSight (Malvern UK) that states NTA can measure cellular vesicles 

as small as ∼50 nm and there is broad agreement it more is sensitive than conventional 

flow cytometry, which typically has a lower limit of detection of ∼300 nm. In this 

chapter, NTA analysis of plasma-derived EVs confirmed the presence of large 

vesicles with size >500 nm, but these were of a relatively low incidence compared to 
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the major population below 300 nm (Figure 3.3(B)). NTA has been reported to 

effectively categorise particle according to their size in a polydisperse sample with 

credible resolution (Gardiner et al. 2014; Vestad et al. 2017). EVs from plasma 

exhibited a wide distribution (50nm - 400nm) compared to 3T3-L1 EVs (50 - 270nm) 

indicated by a broader peak (Figure 3.3). It is important to recognise that the sample 

origin of 3T3-L1 derived EVs is a single cell type, hence exhibit tighter size range. 

On the other hand, the plasma EVs are sourced from different cells/tissues and thus, 

display a range of sizes and concentration that would depend on the plasma yield as 

well as the individual giving the blood sample (Figure 3.3(B)). As understood from 

the literature, much of the EV population from conditioned culture media and plasma 

fall within the size range of 50-300 nm and NTA has proven to be a useful tool in 

providing high resolution particle size and concentration distribution data by means 

of single particle (particle-by-particle) detection and analysis. Although the latest 

generation of high-resolution flow cytometers can detect beads as small as 100 nm 

and can discriminate these from 300 nm beads in a mixture, how these measurements 

relate to the minimum size of EVs that can be resolved must be interpreted with 

caution. FC relies on the refractive index of the analyte for accurate enumeration and 

sizing. EVs have a lower refractive index compared to latex or polystyrene beads, and 

this discrepancy could lead to an underestimation of their size and concentration 

(Dragovic et al. 2011). Because NTA determines particle size from Brownian motion, 

it is independent of the refractive index of the particle (Filipe et al. 2010). To 

overcome this challenge, tagging EVs with beads with a view to increasing its size for 

detection by FC has proved promising (Suárez et al. 2017; Volgers et al. 2017). 

Although NTA can analyse particles as large as 1 μm in diameter (above this the 

Brownian motion is too slow to measure), with large number of small vesicles in these 

preparations, the sample may require dilution prior to analysis. The effect of this is 

that the number of large vesicles analysed is significantly reduced, which means their 

concentration will be underestimated. Thus, studies of large vesicles (>500 nm) alone 

(e.g. apoptotic bodies) may be better carried out by flow cytometry than by NTA. The 

limitation of NTA lies in its inability to determine the phenotype of the vesicles. 

Biological fluids such as plasma and urine will inevitably contain mixtures of vesicles 

derived from different cell types. It is, therefore, crucial to be able to determine the 

cellular origin of the vesicles and, the molecules that they express on their surface to 

understand their biological function. Newer generation of NTA instruments allow the 
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use of 1–2 lasers for measuring fluorescence-antibody tagged vesicles (Backmark et 

al. 2013; Wang et al. 2016). 

The immunoassay used in this study is based on time resolved fluorescence (TRF) 

which is highly sensitive in detecting even low concentration proteins (Hagan and 

Zuchner 2011). Especially, the use of europium lanthanide greatly amplifies the 

fluorescent signal and their lifetime is more protracted than the conventional 

fluorescent probes. The in-house developed TRF-IA was employed to analyse the 

proteins expressed on the 3T3-L1- and plasma- derived EVs based on earlier work by 

colleagues in cancer cell-derived EVs (Webber et al. 2014). CD9 and CD63 are 

tetraspanins frequently used to identify EVs. The detection of tetrapspanins in an EV 

sample forms part of the guidelines for the minimal requirements for an EV population 

as set out by ISEV (Mateescu et al. 2017). Here, EVs collected from both 3T3-L1 cells 

and plasma showed the presence of these tetraspanins markers by both western 

blotting (Figure 3.4 (A) & (B)) and TRF-IA (Figure 3.5 (A) & (B)). As an endocrine 

organ, adipose tissue releases a host of hormones and signalling molecules, termed 

adipokines. A range of adipokines are expressed at different stages of adipogenesis 

(the transition from a pre-adipocyte to a mature adipocyte). Certain 

adipokines/adipocyte-associated proteins were selected as markers for adipocyte 

character on EVs as detected by TRFIA. FABP4 is predominantly expressed by 

adipocytes and has been implicated in obesity and associated co-morbidities, such as  

type-2 diabetes and cardiovascular diseases (Garin-Shkolnik et al. 2014; Rodríguez-

Calvo et al. 2017). Adiponectin is also predominantly expressed in adipocytes and is 

strongly involved in lipid metabolism, glucose regulation and maintenance of insulin 

sensitivity (Robinson et al. 2011). The expression of both FABP4 and adiponectin 

increases as adipocytes undergo adipogenesis (Connolly et al. 2015). However, both 

FABP4 and adiponectin are released in a soluble form and can be detected in plasma. 

A small proportion also is derived from other cell types, namely macrophages 

/leukocytes  (Furuhashi et al. 2008; Agardh et al. 2013; Steen et al. 2016) and 

therefore, although highly indicative of adipocyte character, these markers cannot be 

considered unique in isolation. PPAR-γ is an essential nuclear transcription factor in 

the initiation and maintenance of adipogenesis by activating key transcription factors 

associated with fat accumulation and a mature adipocyte phenotype. The level of 

PPAR-γ remains constant in the cells from the differentiating pre-adipocyte through 
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to maturation (Ahmadian et al. 2013; Connolly et al. 2015). There are two isoforms of 

PPARγ, with PPAR-y2 being unique to adipocytes (Tontonoz et al. 1995). Western 

blot and TRF-IA analysis conducted on the EVs harvested from 3T3-L1 cells and 

plasma substantiates the presence of these adipocyte proteins in the EV sample 

(Figure 3.4 and Figure 3.5). 

A typical plasma-derived EV sample contains vesicles primarily sourced from 

platelets, leukocytes, endothelial and erythrocytes (Orozco and Lewis 2010; Nielsen 

et al. 2014). The CD markers provide hallmarks in identifying populations of EVs 

from different cell sources. The chosen CD markers should be unlikely to exist as free 

proteins and ideally be definitive to the tissue/cell i.e.: CD41 for platelets, CD11b for 

monocytes, CD144 for endothelial cells and CD235a for erythrocytes. They are 

transferred to the corresponding EVs during their release from the cell; hence provide 

a unique tag to identify populations of EVs in a mixed isolate. The experiments 

performed in this study proved effective in the detection of classical blood component 

markers, CD41, CD11b, CD144 and CD235 in the plasma-derived EV prep, inferring 

the cellular source of EVs (Figure 3.5 (D)). The results also inferred that different 

markers on each EV can be detected in a mixed EV population. This could potentially 

lead to the development of an array-based system for the simultaneous isolation and 

detection of EVs from varying cellular origin. It also gives an indication of the ratio 

of the different EV source populations in a defined sample. The results obtained are in 

agreement with previous work from our laboratory (and that of others) in determining 

the primary EVs in plasma as being platelet-derived and erythrocyte-derived EVs 

being the least populous (Orozco and Lewis 2010; Nielsen et al. 2014; Willis et al. 

2014; Witczak et al. 2017; Connolly et al. 2018). 

The isolation procedure for EVs has been a long-debated issue and researchers have 

developed different approaches (Szatanek et al. 2015). At the outset of this study 

differential UC remained the standard and widely applied technique for the isolation 

of EVs from cell culture conditioned media. Some researchers had suggested using a 

combination of techniques coupling UC with filtration, density gradient separation or 

magnetic bead capture (Gardiner et al. 2016). However, an unfavourable aspect of UC 

is the contamination by non-vesicular particles or macromolecules, which may give 

false estimations of particle concentration in EV samples, contaminate further 

downstream analyses (e.g. analysis of protein, lipid mRNA, miRNA content of EVs) 
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and interfere with functional studies using EVs (Webber and Clayton 2013; Van Deun 

et al. 2014). UC can also cause aggregation of EVs which may reduce their overall 

concentration, epitope availability and functionality (Linares et al. 2015). 

SEC was recently proposed as a novel method to purify EVs from blood plasma 

(Böing et al. 2014; Welton et al. 2015). Column chromatographic approaches offer a 

simple and efficient method for vesicle enrichment from complex biofluids. Pre-made 

commercially available columns offer the advantages of convenience and importantly, 

reducing variation between columns to provide consistency in EV separation. 

Following significant characterisation of the system, the rather arduous workflow of 

collecting multiple column fractions can be streamlined to collecting only the eluate 

fractions of interest. This can be achieved in around 10-15 minutes which makes this 

a viable method in the context of multiple clinical samples. Co-elution of plasma 

proteins and certain lipoproteins, some of which share the same physical properties as 

EVs, is a common trait in the processing of plasma-derived EVs (Yuana et al. 2014; 

Sódar et al. 2016; Simonsen 2017), thus, it was decided to perform the molecular 

characterisation of isolated vesicles by analysing total protein content, particle 

population profiles (NTA) and confirmation of EV markers by western blotting. The 

columns demonstrated good utility as a simple and rapid tool separating most plasma 

proteins in a single step. With plasma EV loaded on SEC, fractions 5-10 consistently 

contained the highest particle-to-protein ratio, expressed exosomal markers including 

CD9 and CD63, and were separate to the most abundant proteins peak (Figure 3.7). 

Hence, pooling fractions 5-10 yielded a selective vesicle-rich, low-contaminant 

sample of robust quality for downstream applications. Unlike the column elution of 

plasma, there was no additional peak to indicate the presence of substantial ‘free’ 

protein or particulates while purifying 3T3-L1 EV sample prepared after resuspending 

UC pelleted EVs. This suggests that the resuspended pellet after UC of cell supernatant 

predominantly contains EV and negligible amount of free protein contaminants. Thus, 

the mode of isolating EVs from 3T3-L1 culture media by ultracentrifugation was 

considered robust and was used throughout this thesis. 

Research studies have demonstrated that SEC is a suitable option for obtaining 

purified vesicle preparations that retain morphology and phenotype (Muller et al. 

2014a; de Menezes-Neto et al. 2015; Gámez-Valero et al. 2016). Importantly in the 

context of my research SEC was able to yield an EV sample exhibiting EV markers 
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and expressing epitopes that were highly characteristic of adipocyte character. In 

conclusion, SEC is in itself a method of EV isolation and sample purification. 

The concentration of vesicles measured by NTA when isolated by UC shows a 

dramatic increase when compared to the isolate harvested from SEC fractions (Table 

3.2). This could be because the UC co-pellets free circulatory proteins and lipoproteins 

with EVs, which was observed during SEC in the later fractions (past fraction 10). In 

addition, it appears that the greater EV number in UC as compared to SEC is because 

SEC has eliminated free proteins which are being counted by NTA in UC samples. 

Although the apparent yield of EVs from SEC is lower, it grants an effective means 

of isolating EVs from non-vesicular protein in biological fluids. It further highlights 

the importance for consideration of the method utilised for pre-analytical processing 

for EV isolation as each method gives varying purities of EVs.  

Overall, the 3T3-L1 derived EVs showed heterogeneity in size and displayed the 

classical EV markers as well as protein markers consistent with an adipocyte origin. 

Thus, the data confirms the adipocyte cell line 3T3-L1 secretes a significant amount 

of EVs that can be considered to be a pure ADEV population for control experiments 

and comparison in future experiments. Importantly, blood plasma contains EVs from 

different tissue sources and yet it was possible to detect the same panel of adipocyte-

specific markers that were found in 3T3-L1-derived EVs, implying the presence of 

adipocyte-derived EVs in circulating plasma. My results also confirmed that the TRF-

IA was able to differentiate sub-populations of EV epitopes and pointed the way 

forward to specifically ‘select-out’ ADEVs from the mixed sample prep. The work 

therefore forms the basic groundwork for achieving the long-term objectives of the 

project. 
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3.4.2 Limitations and Conclusion 

At this point of my studies, no primary (human) cell line had been used. 3T3-L1 cell 

line is derived from mouse but has been well characterised and has been an established 

model to study adipogenesis and adipocyte-related biology/disease. Hence, they are 

considered a positive control and an appropriate model system in this study. However, 

the adipocyte and exosomal markers used here are also present in primary adipocyte 

derived EVs (M. E. Kranendonk et al. 2014; M. E. G. Kranendonk et al. 2014). 

Isolation of EVs has always been a cause for debate and regularly updated based on 

new evidence-based findings. Studies have argued large vesicle populations may be 

lost by differential centrifugation, which may lead to significant loss of target EVs 

(Aatonen et al. 2014; Livshits et al. 2015). Hence, further research is required to 

improve techniques for the isolation and the purification of EVs from different 

biological sources. In the case of EV isolation from blood/plasma, the basic techniques 

of UC are not efficient enough to deplete free proteins/contaminants. The EV prep can 

contain relatively large amounts of free protein/contaminant which can compromise 

the molecular detection-based techniques. Hence, the use of SEC columns provides a 

valuable tool in enriching the EV sample. A shortcoming of this technique in filtering 

out free proteins is the fact there is a considerable loss of particles when compared to 

isolation by UC. With the extent of EV size range, some EVs could be excluded along 

with the other contaminant proteins, thus compromising on EV concentration. It can 

be argued that the increased EV/particles in UC prep as counted by NTA could be free 

circulatory proteins that have compromised the purity. Whilst the column method is 

successful in significant clean-up of blood proteins, some optimisations are certainly 

still required to concentrate selectively, and to minimise vesicle losses during 

subsequent handling steps. Purification techniques prior to evaluating EVs by TRF-

ELISA should be an integral step in the experimental set up, which has been addressed 

in the chapters following. 

Another limitation lies in the TRFIA assay, wherein the assay does not confer an 

account on EV enumeration, rather gives a relative proportion of the protein markers 

in a defined number of EV. Thus, there has been no single standard technique for 

evaluating EVs of a unique source or character, and a combination of techniques may 

be the most appropriate approach. 
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NTA cannot discriminate vesicles from non-vesicular particulate material; and here 

we have assumed that all detected particles are vesicles. This assumption may be 

unfounded, as there may be protein aggregates, and large crystals of salts and other 

components present giving us an overestimation of the true number of vesicles 

present. We anticipate that as this technology platform evolves, particularly in relation 

to its capacity to measure fluorescent particles, future approaches will be able to 

discriminate vesicles from aggregated material, and aid in the refinement of our 

proposed method. These results stress that appropriate EV-isolation method should be 

considered and will vary depending on the intended application of the purified EV 

sample. 
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4. Results II: EVs with adipocyte character in 

circulation  
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4. Perspective 

Development of an efficient methodology to specifically isolate adipocyte-derived 

EVs (or EVs of adipocyte character) from a mixed population is the primary focus. 

Hence, the strategic development of an EV purification technique will inform this 

overall goal directly. Clearly the greatest challenge is in ensuring the markers we have 

associated with adipocyte character are indeed bound to or within the EV, as opposed 

to free soluble protein being loosely associated or co-isolated in the preparation 

protocol. This is particularly important in the context of plasma that contains a large 

number of potential contaminant proteins. 

Based on the findings of chapter 3, it was understood that the EV isolate obtained from 

ultracentrifugation was a ‘crude’ prep. Hence, SEC separation was necessary to 

remove much of the protein contaminants that infiltrated through the UC. Also, 

recognising that ultracentrifugation as a means of EV isolation from plasma would 

procure EVs from all cell types, it was then necessary to investigate ways to selectively 

gather adipocyte-derived EVs from the mixed population of EVs. Hence, I decided to 

employ two well characterised approaches based on immunoaffinity (antigen-antibody 

interaction), namely magnetic bead and solid phase capture technique, to selectively 

isolate and purify an EV sample to conclusively obtain semi-purified adipocyte- 

derived EV fraction from plasma. 
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4.1 Introduction 

Ultracentrifugation is undoubtedly the favoured and commonly adopted technique for 

EV isolation. However, the drawback of the technique is that as it pulls down the total 

population of EVs, it cannot discriminate based on their size (exosomes (30-100 nm) 

and microvesicles (100-1000 nm)) or phenotype (EVs secreted by different cellular 

mechanisms) or particles other than EV. Antibody-based techniques could potentially 

overcome this limitation due to the principle of immunoaffinity where the antigen-

antibody binding is highly specific. Isolation of EVs based on the principle of 

immunoaffinity has been an attractive strategy, also capable of characterising EVs in 

terms of size distribution, enumeration, protein composition, and intravesicular cargo 

(Li et al. 2017a). It can further provide information on EV functionality and their 

potential use as biomarkers for the identification of diseases. The technique recognises 

the surface antigen present on EVs typically using magnetic beads coated with an 

antibody against the target protein. Commercially available beads bound to specific 

exosomal markers (e.g., CD9, CD63, and CD81) allow the separation of 

subpopulations of EVs. Similarly, these antibody-bound immunomagnetic beads 

allow purification of EVs expressing cell-specific target markers, allowing the 

selective isolation of EVs derived from a single cell type. In other words, this design 

of the technique excludes the capture of those EVs that fail to express a particular 

surface protein/marker of interest. The advantage of this method lies in the EV yield 

being pure and homogeneous (Mathivanan et al. 2010; Tauro et al. 2012).  

Antibody-coated magnetic bead isolation of EVs for antigen presenting cells has been 

shown by Clayton et al. (2001). Immunoaffinity capture microbeads was successfully 

used to capture exosomes from a tumour cell line and further utilised for proteomic 

studies (Mathivanan et al. 2010). Circulating tumour-derived EpCAM-positive EVs 

were isolated using magnetic beads coated with anti-EpCAM antibody (Taylor and 

Gercel-Taylor 2008). Antibody-coated magnetic beads are a promising strategy to 

isolate and characterise EVs; however, they cannot be utilised for the isolation of large 

amounts of EVs. Hence, a pre-concentration step is considered to scale down the initial 

sample (Momen-Heravi et al. 2013). Immunoaffinity based isolation of exosomes 

using antibody-coated magnetic beads against specific antigens offers the advantage 

of their further characterisation in flow cytometric, immunoblot, and electron 

microscopic analysis of bead-EV complexes. However, elution of the captured EVs 
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from the bead surface may distort their functionality in some instances (Théry et al., 

2006). 

Likewise, the immunoassay principle can also be applied in a 96-well immunoassay 

plate. Plates are typically pre-coated with a capture antibody to isolate EVs with the 

selected antigen and subsequent detection with another set of antibodies, executing a 

sandwich immunoassay mechanism. It facilitates an enrichment procedure for 

isolating subpopulations of EV in addition to providing a quantitative and qualitative 

analysis of captured EVs. ExoQuantTM, ExoPureTM and ExoAssay™ (Biovision, USA) 

have developed kits that consists of ELISA plates pre-coated with exosome antibodies 

that enable specific capture of exosomes sourced from different biological samples, 

including cell culture supernatants and human biological fluids. Subsequently, 

quantification and characterisation of exosomal proteins is performed using 

appropriate detection antibodies against exosome associated antigens that can be for 

either generic or cell/tissue-specific exosomes (Zarovni et al. 2015; Brett et al. 2017). 

Hansabiomed (Lonza), a scientific company has designed different types of plates for 

capturing the overall or enriching specific exosome subpopulations (tumour, neural, 

glial, monocytes and platelets). Some of the advantages of using immunoplates are 

that the assay requires small amounts of sample (100-200ul); the setup is stable for a 

long period of time and further allows multiple profiling of EV markers from a single 

sample. They do not induce any molecular changes to the vesicles and the enriched 

sample can be processed for downstream analysis of RNA/protein. These 

immunoplates can be custom developed to cater for the capture of selective EV 

population based on their antigenic marker protein. Besides offering the advantage of 

high sensitivity and specificity, the antibody-based assay has been developed for its 

potential to perform multiplexed phenotyping of EVs.  

There has been mounting evidence for the generation of EVs from adipocytes; most 

studies in this context are conducted using the 3T3-L1 cell line model. Recently, EVs 

have been isolated from human adipocytes and adipose tissue explants. Research 

studies have highlighted the endocrine and paracrine role of ADEVs in adipocyte 

metabolism, tissue inflammation, macrophage induction and insulin signalling. EVs 

originating from adipocyte or adipose tissue (AT) may mediate the promotion of 

tumour metastasis (Lazar et al., 2018), and may also be involved in angiogenesis since 

they carry bioactive molecules in their cargo and travel through the circulation to 
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induce signalling cascades in target/recipient cells. However, their presence in the 

human circulation has not yet been definitively established. There has been some 

preliminary evidence from flow cytometric analyses that plasma contains ADEVs, as 

evidenced by expression of FABP4 and PREF-1 (Gustafson et al. 2015b). Other 

studies have associated EVs with the presence of perilipin and PPAR-γ. Populations 

of EVs are pre-dominantly derived from platelets and leukocytes and to a lesser extent 

from endothelial cells and erythrocytes. Lack of a signature protein marker/markers 

and an optimal technique fail to distinguish ADEVs readily in plasma. Therefore, there 

is a compelling need to seek evidence for the presence of ADEVs in the circulation, 

in order to explore their potential as a novel biomarker in adipose tissue health. 

This chapter explores two approaches, magnetic bead capture and solid phase 

immunoassay, to selectively enrich a population of particles positive for EV markers 

(CD9, CD81, CD63 or Alix) and adipocyte specific proteins (FABP4, adiponectin, 

PPAR-γ, perilipin and other relevant adipokines). Nanosight tracking analysis (NTA), 

Time resolve fluorescence immunoassay (TRFIA) and western blot are the underlying 

techniques used to assess EV characteristics. 

4.1.1 Overall Aim: 

To develop an approach to provide evidence for the presence of adipocyte -derived 

EVs in the human circulation. 

Objectives: 

1. Validation of magnetic bead capture and solid phase assay techniques to specifically 

deplete an EV population.  

2. Sequential removal of EV populations (platelets-, leukocytes-, vascular endothelial- 

and erythrocyte-derived) by magnetic bead and solid phase capture methods to obtain 

a purified sample (‘residual’ sample).  

3. Assess the purified (residual) sample for adipocyte markers (FABP4, adiponectin, 

perilipin and PPAR-gamma) and exosomal markers (CD9, Alix, CD81, CD63). 
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4.2 Methods 

4.2.1 Isolation of extracellular vesicles and plasma-derived EVs 

3T3-L1 cells were cultured to mature adipocytes as described in Chapter 2.1.1 and 

EVs were isolated by differential UC as described in Chapter 2.2.1. In addition, SEC 

was also used in the isolation of plasma EV, as per the procedure outlined in Chapter 

2.8.  

Plasma-derived EVs were obtained from blood of healthy volunteers as described in 

Chapter 2.2.2 by differential UC. Additionally, in this chapter, EVs were isolated and 

purified from plasma by size exclusion chromatography, as per the procedure outlined 

in Chapter 2.8. EVs were resuspended in 100μl of 1X PBS. 

4.2.2 Nanoparticle Tracking Analysis  

The concentration of cell-derived and plasma-derived EVs were determined by NTA 

procedure as described in Chapter 2.3.2. Company (Nanosight)-provided 100nm sized 

beads were used as calibration beads and indicated a mean concentration of 1.77e11 ± 

0.06 between the batches of experiments. 

4.2.3 Selective capture of EV populations 

Magnetic bead capture and solid phase immunoassay were used to selectively capture 

EVs positive for a protein marker.  The procedures are detailed in Chapter 2.10. The 

magnetic bead capture technique to isolate EVs exhibiting a particular CD 

epitope/protein marker is an established method for isolation of specific cell types. 

The concept was of particular interest to us because it was hypothesized that the same 

primary antibodies used for TRF-IA could also be utilised in this capacity. To be 

noted, the term ‘selective capture’ is interchangeably used with the term ‘selective 

depletion’ or to understand the concept better under different contexts. 

4.2.4 Detection of proteins in EVs 

Protein markers in EVs were detected using TRF-IA and western blotting, conducted 

as outlined in Chapter 2.4 and Chapter 2.7, respectively. Antibody control experiment 

under the absence of a primary antibody was not conducted during the protein 

detection stage. 
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4.2.5 Adipokine array 

Plasma EVs were probed for adipokines using a commercially available array kit, and 

protocol is outlined in Chapter 2.9.2. 

4.2.6 Sequential depletion of EV population 

Following SEC and UC of the pooled EV, they are diluted to a final concentration of 

1 x 1011particles/ml with 1X PBS. EVs were incubated with anti-CD41 for 2 hours at 

room temperature at a final concentration of 3μg/ml. 50µl of prepped Dynabeads 

(outlined in Chapter 2.10.1) were then added and incubated for a further 30 mins with 

gentle mixing. Samples were then placed on the magnet (DyanMagTM, Life 

Technologies) to deplete the CD41+EV. The process was sequentially repeated with 

the addition of 3μg/ml anti-CD11b, anti-CD144 and anti-CD235a to consequently 

deplete EV population positive for these markers. Final supernatant, referred as the 

‘post-depleted sample’ was examined for adipocyte and EV-specific markers. 

4.2.7 Statistical Analysis 

Statistical analysis was conducted by GraphPad Prism version 5.0 (GraphPad 

Software, San Diego, USA). Paired t-tests were used to compare means where 

significance was marked by * reflects p<0.05, ** reflects p<0.01 and *** reflects 

p<0.001. One-way ANOVA with Tukey’s Multiple comparison test was used to 

determine significant differences between groups. Data is expressed as mean ± SD, 

where applicable. 
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4.3 Results 

4.3.1 Magnetic bead capture of selective EV population 

At this stage of the work, the EV sample was isolated by ultracentrifugation without 

column purification and herein referred to as ‘crude’ prep. The change in EV 

concentration after the bead capture was measured by NTA and the percentage 

decrease calculated from the total number of EVs in the original sample, i.e., the 

amount (expressed as percentage) EVs decreased following magnetic bead capture of 

a defined EV subtype. TRFIA experiments were also conducted on the sample prior 

(pre-) and after (post-) capture by the magnetic beads. Calibration beads of 100nm 

varied with   

With respect to 3T3-EVs, the difference in the concentration of the sample was 

measured by NTA (Figure 4.1 (A)). There was a mean decrease of ~64% in EV 

concentration following bead capture based on CD9 as the primary capture antibody. 

FABP4 bead capture resulted in the loss of nearly ~60% EVs, compared to the starting 

concentration. Both the drop was deemed significant with p<0.0005). The results are 

shown in Figure 4.1(B) also indicates a drop in protein signal readings. 

As with plasma-derived EVs, the NTA readings indicated a ~62% capture for CD9+ve 

EVs and resulted in a ~35% capture when probed for FABP4+ve EVs with magnetic 

beads (Figure 4.1 (C)) which is also indicated by TRFIA (Figure 4.1 (D)).  
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  CD9 FABP4 

% drop in 

EV count 

65.09 % ± 

5.22 

60.19 % ± 

5.31 

  CD9 FABP4 

% drop in 

EV count 

61.96 % ± 

13.21 

35.6 % ± 

3.96 

Figure 4.1: Analysis of magnetic bead capture by NTA and TRFIA in crude prep. In 

separate experiments, magnetic bead capture for CD9+ and FABP4+ EVs was conducted on 

was conducted on 3T3-L1 EVs and plasma-EVs and examined for particle count and protein 

signal drop by NTA and TRFIA, respectively. (A) and (C) indicating change in EV 

concentration measured by NTA pre- & post- bead capture in 3T3-L1 and plasma-EVs 

respectively, significance marked by***p<0.001, (n=5). (B) and (D) show TRFIA conducted 

on pre- & post- bead capture with CD9 and FABP4 antibody in 3T3-L1 and plasma-EVs 

respectively, showing a change in fluorescence signal (n=3). 

(A) (B) 

(D) (C) 
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Further, to examine if the FABP4 capture affected other populations of plasma EVs, 

TRFIA probing for CD235, CD11b, CD144, CD41 was carried out pre- and post- bead 

capture (Figure 4.2). The graph shows a modest and consistent decline in all EV 

populations of ~10%.  This could be the result of (a) free FABP4 from the circulation 

(plasma) contaminating the EV preparation or (b) free FABP4 in the circulation 

covalently binding to other EV species, causing them to be pulled out. Among the EV 

population, endothelial EVs (CD144) were found to visibly but not significantly, 

decreased (p>0.05). To test if this was the result of non-specific binding by magnetic 

beads, magnetic bead capture was carried out on 3T3-EVs using CD9 as a positive 

capture control followed by TRFIA (re-probed for CD9) on the residual sample to 

measure the loss. (Figure 4.3). Following a magnetic bead capture for CD9+ EVs, the 

residual EV samples were incubated with normal IgG, non-specific Ab and anti-CD9 

(specific). The sample incubated with anti-CD9 showed a marked decrease whilst EVs 

with beads (no antibody) also showed a slight 10% decrease; this might be attributable 

to some non-specific binding taking place (Figure 4.3). 
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 Figure 4.3: Control experiment of on 3T3-EVs through a CD9+ magnetic bead 

capture. The experiment was designed to validate non-specific binding by magnetic 

beads in the absence of an inital primary antibody interaction, by setting five 

conditions namely A: EV (control), B: EV+beads, C: EV+normal IgG+beads, D: 

EV+non-specific primary Ab+beads E: EV+specific anti-CD9+beads (n=2). E 

showed a visible decrease, indicating the system had successfully pulled out CD9+ 

EVs where a decrease in B likely reflects occurrence of non-specific binding. No 

statistical testing was undertaken due to the low number of biological replicates. 

Figure 4.2: Effect of FABP4+ve EV pullout on plasma EV populations. 

Plasma derived EVs were subjected to a FABP4+ EV pull-out by magnetic beads 

and TRFIA was conducted on the initial and residual sample to observe any change 

in EV sub-population markers, n=3. 
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4.3.2 Effect of magnetic bead capture on column purified EV samples 

In this section of work, the EV samples were isolated by SEC followed by UC as 

discussed in Chapter 3 (Section 3.3.6.2). EV sample obtained post SEC was subjected 

to magnetic bead capture for CD9+ and FABP4+ EVs in separate experiments, 

followed by TRFIA validation (Figure 4.4 (A) and (B)). Similarly, plasma EVs 

isolated by SEC was subjected to either CD9 or FABP4+ve capture. These results are 

shown below (Figure 4.4 (C) and (D)). 

Interestingly, after the column purification the extent of CD9+EVs pulled out by the 

beads was shown to increase in the case of 3T3 EVs (Figure 4.4 (A) and (B)) from 

previously ~65% (Figure 4.1 (A)) in the “crude” preparation to ~72% in the post-

column sample(*p<0.05). Similarly, in the case of plasma EVs, there was an 

additional 6% increase in the pullout of CD9+ EVs to 66% when compared to the 

previous “crude” non-columned preparation at ~60% (Figure 4.4 (C)). However, the 

FABP4+ EVs captured in plasma EVs was drastically reduced to ~10% (Figure 4.4 

(C)) in the columned prep when compared to a previous drop of 35% in the “crude” 

preparation (Figure 4.1 (C)). This could mean the additional EVs / particles captured 

in the crude sample were potentially free protein that contaminated the EV prep. While 

this part of the work was undertaken using the SEC purified EV prep, whether these 

EVs are purely adipocyte-derived or not requires further investigation by probing for 

other adipocyte markers on these captured EVs.  

. 
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 CD9 FABP4 

% drop in 

EV count 

72.98 % ± 

7.19 

73.15 % ± 

5.91 

 CD9 FABP4 

% drop in 

EV count 

66.84 % ± 

1.07 

10.72 % ± 

2.77 

(B)  (A)  

(C)  (D)  

Figure 4.4: Evaluation of CD9+ve and FABP4+ve magnetic bead pullout on 3T3-

derived and plasma-derived EVs post column (SEC) purification. Samples of EVs were 

incubated with anti-CD9 and anti-FABP4, pulled out with the secondary antibody bound-

magnetic bead, and residual sample was reprobed for CD9 and FABP4 to evaluate the loss. 

The concentration of EV samples pre- and post- pull-out by was determined by NTA (A) 

and (C) for 3T3- and plasma- derived respectively whereas (B) and (D) shows TRFIA signal 

generated for CD9+ and FABP4+ in pre- and post- samples from 3T3- and plasma- derived 

respectively. 
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Although the adipokine FABP4 is pre-dominantly released by adipocytes, FABP4 

expression has been demonstrated in several types of cells and tissues (Lee et al. 

2014a; Fuseya et al. 2017). For example, FABP4 and FABP5 are expressed in 

macrophages and dendritic cells, though their concentration is much lower than in 

adipocytes (Furuhashi et al. 2014). Moreover, FABP4 exist in circulation and their 

levels are elevated in disease conditions.  

Under these arguments, FABP4 alone cannot therefore confirm the EVs as adipocyte 

in origin. In addition, adiponectin and PPAR-gamma are not transmembrane proteins 

that can be probed by external antibody. Therefore, I employed a strategy to 

sequentially deplete the known major populations of circulating EVs (platelet-, 

endothelial-, leukocyte-, and erythrocyte- derived) in order to further purify the EV 

preparation for detection of ADEVs. A solid phase immunoassay was undertaken to 

capture a pool of EVs positive for certain markers using antibodies immobilised on an 

ELISA plate (detailed in Chapter 2.10.2). 

The efficiency of the depletion process on individual markers was undertaken as an 

initial measure to validate how much of the target EV pool remained post-magnetic 

bead and post-solid phase removal. This was undertaken on a column-purified plasma 

EV sample. The expression of each marker used for depletion was reduced by both 

methods. With the magnetic bead-based approach, markers were depleted to beyond 

the detection limits of time resolved fluorescence (Figure 4.5 (A) (B)). 
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Figure 4.5: Validating efficiency of magnetic bead and solid phase assay in 

depleting EV-sub population. Equal numbers of EVs were immobilised onto 

ELISA plates pre- and post-CD41, -CD11b, -CD144 and -CD235a depletion using 

magnetic beads (A) and solid phase capture (B). Pre and post samples were 

assessed by TRFIA for the presence of the depleted marker and plotted as a 

percentage of the “Pre” sample fluorescence. ND = not detected, (n=2). 
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4.3.3 Analysis of plasma-derived EVs using size-exclusion chromatography 

To address the issue of contamination by soluble free plasma proteins, platelet-free 

plasma was subjected to size exclusion column chromatography to obtain a more 

enriched EV sample. Although EV isolation by SEC was established earlier in Chapter 

3.3.6.2, this further examined adipocyte specific proteins in column fractions. 

NTA of column fractions showed a minor peak (expressed as concentration of 

particles/ml) between fractions 5-10, followed by a major peak in particle/ml and 

protein from fractions 11 through to 30. Western blot on all fractions detected the 

adipocyte-selective protein markers FABP4, adiponectin, PPAR-γ and perilipin in 

fractions 5-30, whereas both adipocyte and EV marker proteins were exclusively 

found in fractions 5-10 (Figure 4.6). EV markers CD9, CD81 and Alix were absent 

from fractions 11 to 30.  

A plot of particle-to-protein concentration ratio was generated as previously described  

(Webber and Clayton 2013). This showed a high value in fractions 5-10 (Figure 4.7 

(A)). The column eluents from these fractions (5-10) were thus pooled and centrifuged 

to pellet plasma-derived EVs (pooled EV prep). TEM on the pooled EV sample was 

conducted by my colleague Dr Katie Connolly, who also helped in part developing 

this chapter. Figure 4.7 (B) demonstrated the presence of EV structures. The pooled 

EV prep was then subjected to western blot analysis which indicated the presence of 

classical EV and adipocyte markers (Figure 4.7 (C)). 
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Figure 4.6: Evaluation of human plasma on SEC. Thirty of 500µl fractions were 

collected after loading 1ml plasma on SEC and these eluents were examined for particle 

concentration using NTA and the protein concentration measured using Nanodrop for each 

fraction. The fractions were then analysed by WB (8µg/lane) for the EV markers: CD9, 

CD81 and Alix, and the adipocyte markers: Adiponectin, FABP4, Perilipin and PPARγ. 

The small peak in particle concentration from fraction 5-10 coincides with the presence of 

EV and adipocyte markers. The adipocyte markers begin to appear from fraction 5 through 

to fraction 28. However, fractions 11- 30 show absence of EV markers but presence of 

adipocyte markers (n=3). [Published image: (Connolly et al., 2018)] 
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Figure 4.7: Investigation of pooled plasma EVs. (A) Plot of particle-to-protein 

concentration ratio showed the highest ratio in fractions 5-10 and the presence of EV 

structures by TEM (B, red arrows indicate EV structures) following ultracentrifugation. 

(C) Pooled EVs were then probed by western blot for EV markers: CD9, CD63, CD81 

and Alix, and adipocyte markers: Adiponectin, FABP4, PPARγ and Perilipin (1, 2, 3 refers 

to the replicates, n=3). Solid red boxes indicate the predicted molecular weight for each 

antigen; the dotted red box may indicate a FABP4 dimer ~32 kDa. [Published image: 

(Connolly et al., 2018)]. 
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4.3.4 Sequential depletion of EV sub-populations with “column purified” plasma-

derived EVs 

Magnetic bead capture and solid phase-immunoassay were used to sequentially 

deplete EVs bearing markers of the four major EV populations in plasma (platelets: 

CD41, monocytes: CD11b, endothelial: CD144 and erythrocytes: CD235). EV 

structures were present in both post-magnetic bead and post-solid phase depletion 

samples as revealed by TEM (conducted by Dr Connolly) (Figure 4.8 (A)). EV 

concentration was reduced by a total of approximately 75%  post-magnetic bead and 

post-solid phase depletion: 1.01 x 1011 ± 1.00 x 1010 particles/ml to 3.10 x 1010 ± 6.90 

x 109 particles/ml and 2.50 x 1010 ± 6.50 x 109 particles/ml respectively, p < 0.001, 

(n=5) (Figure 4.8 (B)). Adiponectin, FABP4, PPARγ, perilipin, CD9 and Alix were 

detected in both pre- and post-magnetic bead and solid phase depleted samples 

(Figure 4.8 (C)). Interestingly, in post-depletion samples, only the adipocyte specific 

PPARγ-2 isoform was retained. TRFIA provisionally indicated the presence of 

adipocyte markers post-solid phase depletion Figure 4.8 (D)). 

Meanwhile, EV concentration using NTA was measured after each step during 

sequential depletion of EV populations by the two techniques of magnetic bead and 

solid phase; and represented graphically in Figure 4.8 (E) and (F), respectively. 
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Figure 4.8: Evaluation of adipocyte and EV markers in the post-magnetic bead and solid phase depletion sample. The column purified plasma EV 

sample was subjected to sequential depletion of EV populations by magnetic beads and solid phase method using antibodies against the specific marker 

of an EV population. The retained EV sample (supernatant) was evaluated for EV and adipocyte character. (A) EV structures were visible by TEM in 

post-magnetic bead depletion (left, scale bar 200 nm) and post-solid phase depletion (right, scale bar 1000 nm) (figures provided by Dr Connolly). (B) 

EV concentration was reduced following sequential depletion of major EV families using magnetic beads or a solid phase method, ***p = 0.005 (n=5). 

(C) Adiponectin, FABP4, PPARγ-2, Perilipin, CD9 and Alix were still present in post-depletion samples of three different individuals (D) Presence of 

adipocyte markers in the EV sample post solid phase depletion, detected by TRFIA (n=3). [Published image: (Connolly et al., 2018)]. (E) and (F) 

represents the concentration of EVs following each step of depletion by post-bead and post-solid phase method, respectively as measured by NTA. 
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4.3.5 Measurement of adipokines in pre- and post-depletion samples 

As an additional validation, I subsequently used a commercially available adipokine 

protein array to probe for 58 adipokines in pre-depletion, post-magnetic bead and post-

solid phase depletion plasma EV samples. The list of adipokines assessed is tabulated 

in Figure 4.9. Adipokines were expressed at a consistent level in pre- and post-

depleted samples, with no significant differences observed between samples. This is 

evidenced by the raw expression data, but perhaps more conveniently by the heat map 

analysis subsequently undertaken whereby the most and least abundant proteins are 

ascribed the colour red and green, respectively. The heat map analysis takes into 

account potential differences in sample loading. Results were subsequently grouped 

according to their functional role as shown in Figure 4.10. The inflammatory and 

metabolic category of proteins showed stronger expression compared to the other 

groups. Some of the key adipokines detected were adiponectin, resistin, lipocalin, 

RANTES and angiopoietin proteins (reflected by red or approaching red colour). 

There was a strong correlation between the two methods (magnetic bead versus solid 

phase). Correlation analysis also confirms the reliability of the results obtained across 

n=3 experiments (Figure 4.10). 
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Figure 4.9: Profile of adipokines in the pre- and post-depleted samples using a protein array kit. The pre- and post- depleted 

(by magnetic bead capture and solid phase immunoassay) EV samples were loaded on the nitrocellulose membrane fixed with 

appropriate antibodies. The amount of proteins bound was proportional to the signal generated. List of probed adipokines 

arranged in decreasing order of expression, represented as mean pixel density, n=3. Colour coded to match the intensity of 

strength, expressed as mean pixel density (n=3), red being the strongest and green the weakest.  

 

Adipokines Pre- Post bead Post plate

Fibrinogen 35002.30 38828.37 36146.27

CCL5/RANTES 26495.39 15406.44 25518.39

Adiponectin/Acrp30 24424.83 17417.31 24429.29

Lipocalin-2/NGAL 26196.83 24183.83 24199.73

Cathepsin S 13899.33 13171.52 11030.98

Cathepsin D 8319.74 7733.59 11027.72

DPPIV/CD26 9590.78 11137.80 10305.98

IL-10 8715.85 8237.28 10025.47

Pappalysin-1/PAPP-A 8221.91 5699.47 8714.91

C-Reactive Protein/CRP 8584.86 6316.50 8281.09

CXCL8/IL-8 7350.44 7811.21 8001.43

ICAM-I/CD54 11422.10 8229.85 7768.31

Angiopoietin-2 9963.17 8095.09 7482.38

Endocan 7882.17 9139.75 7220.83

FGF-19 6986.70 5403.05 7196.50

IGFBP-4 7911.42 8848.39 6902.52

Angiopoietin-like 2 7484.10 6259.68 5543.49

Angiopoietin-1 5977.72 4961.13 5464.78

IGFBP-6 5850.25 7141.42 5144.34

Oncostatin M (OSM) 4983.73 3646.65 4960.57

TNF-alpha 4260.46 5899.59 4942.25

Serpin E1/PAI-1 5613.21 4857.81 4560.42

Nidogen-1/Entactin 4819.65 7034.23 4173.26

MIF 4646.22 12565.70 4129.67

Resistin 4120.89 4731.44 4023.87

BMP-4 3402.76 3267.41 3564.52

TIMP-1 4024.13 24027.90 3550.11

Adipokines Pre- Post bead Post plate

PBEF/Visfatin 4028.56 3819.79 3540.30

IGFBP-3 4233.48 3944.95 3488.55

Pentraxin-3/TSG-14 3902.59 3638.66 3401.13

RAGE 3676.08 3040.67 3193.67

EN-RAGE 3845.86 4634.37 3032.56

IL-6 3233.92 3238.41 2918.91

Cathepsin L 3309.52 9065.20 2661.36

BAFF/BLyS/TNFSF13B 3181.60 3212.43 2584.02

CCL2/MCP-1 2639.67 2864.04 2464.09

IL-1beta/IL-1F2 2920.53 3149.47 2446.61

Pref-1/DLK-1/FA1 3525.18 3236.58 2324.70

Complement Factor D 2577.66 4493.91 2253.80

M-CSF 2847.02 3269.67 2160.51

Fetuin B 2619.78 3059.76 2104.09

Chemerin 1999.87 2404.60 1963.85

IL-11 1927.95 2621.63 1778.52

Angiopoietin-like 3 2152.97 2581.56 1771.96

Myeloperoxidase 2034.63 2377.53 1726.93

LIF 2309.85 2055.08 1704.48

FGF basic 2407.20 2355.44 1623.88

TIMP-3 1932.06 1015.11 1557.41

VEGF 1541.17 2668.90 1555.16

Serpin A8/AGT 1712.30 1978.99 1436.52

Proprotein Convertase 9/PCSK9 1934.60 1904.36 1422.87

Growth Hormone 1513.65 2059.59 1403.80

Serpin A12 2215.42 1997.35 1327.15

IGFBP-2 1972.47 2242.84 1312.99

HGF 1207.26 1433.42 1210.28

Leptin 1901.92 1554.29 1116.38

LAP (TGF-beta1) 1033.40 1254.15 1007.97

IGFBP-rp1/IGFBP-7 804.82 937.23 527.49
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Correlation Table  

post plate (N1) v/s post plate (N2) 0.86 

post plate (N2) v/s post plate (N3) 0.73 

post plate (N3) v/s post plate (N1) 0.51 

  

post bead (N1) v/s post bead (N2) 0.89 

post bead (N2) v/s post bead (N3) 0.86 

post bead (N3) v/s post bead (N1) 0.72 

  

post plate (N1) v/s post bead (N1) 0.85 

post plate (N2) v/s post bead (N2) 0.83 

post plate (N3) v/s post bead (N3) 0.89 

Figure 4.10: Adipokine array results (A) Adipokines grouped in order of functionality. 

The adipokines detected in the pre- and post-depleted samples were categorised into 

groups of inflammatory, metabolic, angiogenic and growth proteins. The intensity of 

signal strength, expressed as mean pixel density (n=3), colour coded from red being the 

strongest and to the green the weakest. (B) Table indicative of correlation between the 

two methods and between the individual experiments of a technique (n=3). 

(B) 
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4.4 Discussion 

Key findings 

o Magnetic bead technique and solid phase assay proved effective in depleting 

EV populations for a given marker. 

o Adipocyte associated proteins, FABP4 and adiponectin do exist as free 

proteins and hence, not an exclusive marker to identify ADEVs 

o Sequential depletion of major EV families recovered a sample of EV that 

expressed adipocyte specific proteins and contained a range of adipokines. 

This chapter aimed to provide evidence for the presence of adipocyte-derived EVs in 

the human circulation. Demonstrating the existence of EVs in the circulation may be 

a key step in understanding and assessing the health of adipose tissue as well as 

employing them as a potential biomarker in the assessment of metabolic health. 

However, the presence of adipocyte-derived EVs in circulation has not been 

definitively confirmed. Owing to the lack of a unique adipocyte marker and the 

overwhelming presence of EVs from other sources, primarily from platelets and 

leucocytes (endothelial and erythrocyte-derived EV to a lesser extent), establishing the 

presence of ADEVs in circulation is a challenge. Flow cytometric detection of EVs 

has met with limitation in lower end detection size of ~300nm, resulting in an 

underestimation. As mentioned before, adipocyte proteins adiponectin, FABP4 and 

perilipin have been associated with plasma-derived EVs, though the EV-processing 

from plasma in such studies is questionable with soluble proteins not being 

distinguished, leading to false assessment. Given the lack of conclusive evidence, this 

study combines proficiency of sample processing techniques in accordance with ISEV 

guidelines, and validation using EV/adipocyte-specific markers to conclusively 

provide evidence for the presence of ADEVs in human circulation. Size-exclusion 

chromatography coupled with ultracentrifugation was employed for EV isolation from 

platelet-free plasma, whilst magnetic bead pull-out and solid phase immunoassay were 

the two techniques adopted to deplete EVs from major circulating sources (platelet, 

monocyte, endothelial & erythrocyte). The purified EV sample obtained was assessed 

for adipocyte origin by a selection of adipocytes markers and using an adipokine array. 

When studying the magnetic bead capture in 3T3-EVs (Figure 4.1 (A), (B)), 

observation of similar percentage capture of CD9+ and FABP4+ was considered 
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conclusive, since the EVs used in this study were solely of adipocyte cell line origin, 

and all the sampled EVs potentially carry the adipocyte marker FABP4. It also 

convinces us that the magnetic bead technique works in selectively pulling out EVs 

with the desired antibody marker. The result was further supported by TRFIA pre- and 

post- bead capture.   

In the case of plasma-EVs (Figure 4.1 (C), (D)), the results were intriguing when 

FABP4+ capture given that the proportion of adipocyte-derived EVs in the circulation 

is anticipated to be much lower than 35% (according to recent flow cytometry-based 

studies <1%) (Gustafson et al. 2015b) and suggested FABP4 might adhere to the 

surface of many EV types and therefore may not necessarily be specific to adipocyte-

derived EVs (despite FABP4 protein being of adipocyte origin). This implied although 

FABP4 is produced exclusively by adipocytes, it may not represent a strong adipocyte 

marker or at least not exclusive to adipocyte cell origin. It is also noteworthy that 

FABP4 and adiponectin, circulate free in plasma in measurable concentrations 

whereas that contained on or within EV likely represents a relatively small proportion 

of the total. In the case of EVs derived from the 3T3 cell line, column separation did 

not improve the situation significantly, with both CD9 and FABP4 capturing similar 

amounts from the EV population comparing columned to non-columned samples 

(Figure 4.1 (A), (B) and Figure 4.4 (A), (B)). This agrees with very little 

contaminating protein being detected in later fractions when isolating the purified EV 

fraction by column (Figure 3.6). In the case of plasma-derived EVs, there was a 

significant reduction in the number of EVs captured by FABP4 as a result of removal 

of a significant amount of free FABP4 from the starting EV sample (Figure 4.1 (C) 

and Figure 4.4 (C)). Overall, it can be concluded that the magnetic bead capture 

technique works well to isolate EVs of a specific population, provided the purity of 

the EV sample is assured. 

During the time of this study, no specific marker of adipocyte-derived EVs had been 

defined nor had a consensus EV cargo been identified; this was a challenge in pinning 

down ADEVs from plasma. However, based on previous studies, the adipocyte protein 

markers FABP4, adiponectin and PPAR-gamma were chosen to identify adipocyte 

character in isolated EVs (Looze et al. 2009; Siersbæk et al. 2010; Shan et al. 2013; 

Mariette E G Kranendonk et al. 2014; Connolly et al. 2015).  Perilipin, a protein 

associated with lipolysis, has also been identified in circulating EVs and used as a 



 161 | P a g e  

 

biomarker for ADEVs (Eguchi et al. 2016). FABP4 has been extensively used to 

characterise EVs from the adipocyte cell line 3T3-L1. FABP4 expression is almost 

exclusive to adipose tissue although macrophages have also been found to express this 

protein, albeit in restricted amounts. FABP4 is highly regulated during adipocyte 

differentiation (Furuhashi et al. 2008). In vivo studies on mouse serum have detected 

adiponectin in the exosomal fraction, rendering it a protein of interest to establish 

adipocyte lineage (Phoonsawat et al. 2014).  

Isolation of pure EVs from human plasma faces considerable challenge largely related 

to potential “contamination” with larger vesicles, subcellular fractions, protein 

aggregates, protein-nucleic acid aggregates or plasma proteins. Contamination with 

high levels of protein in blood can mask significant vesicular-associated proteins and 

generate misleading/overestimated data. The conventional procedure of EV isolation 

by differential centrifugation or ultracentrifugation of plasma alone is not adequate to 

remove various “contaminants” or non- EV particles (Muller et al. 2014a). Several 

research studies have evaluated the efficiency of SEC in isolating EVs from biological 

fluids (e.g. human plasma, urine and CSF) and found it more effective in reducing the 

non-vesicular protein contaminants and lipoproteins than UC and density gradient 

methods. These commercially available columns have been shown to purify EVs with 

commendable yield and good reproducibility (Welton et al. 2015). A ‘cleaner’ EV 

preparation from plasma was obtained by subsequent application of a size-exclusion 

chromatography (SEC) column, critical for removal of plasma proteins and other 

soluble components. 

Here, I adopted size-exclusion chromatography with platelet-depleted plasma to 

obtain a cleaner preparation of plasma EVs with the removal of non-specific proteins. 

This proved effective to eliminate free proteins (Figure 4.6). As discussed in the 

previous chapter, fractions 5-10 were observed to contain the tetraspanin-containing 

EVs with subsequent fractions containing abundant proteins. Column fractions 5 -10 

exhibited the highest particle-to-protein ratio and tested positive for the EV markers 

CD9, CD81 and Alix. In addition to these EV markers, the pooled fractions also 

identified adipocyte markers FABP4, adiponectin, perilipin and PPAR-γ. Although 

the adipocyte proteins were detected in the EV-rich fractions 5-10, they were also 

detectable in subsequent fractions (Figure 4.6). This could imply that the adipocyte 

proteins previously detected in non-columned plasma EV preparations are free 
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proteins and less likely to be expressed by EVs themselves. Nevertheless, FABP4 and 

adiponectin are soluble and found freely in the circulation (Arita et al. 1999; Furuhashi 

et al. 2011), and thus, detected in the non-EV fractions 10 - 30. These later fractions 

carried no EV markers (CD9, CD81, ALIX) and their particle-to-protein ratio was 

lower. PPAR-gamma and perilipin were also detected in these later fractions, but 

negative for EV markers. This observation is of key significance when considering the 

measurement of these adipocyte markers in plasma EV preparations, where the SEC 

technique is crucial to exclude the majority of soluble proteins in order to avoid 

overestimations. The initial strategy of selectively obtaining adipocyte-EVs using 

FABP4 as a marker failed, due to the same reason that an un-columned EV preparation 

carries soluble proteins that cause erroneous capture with magnetic beads. Hence 

employing an adipocyte marker as a probe to select out ADEVs from a crude plasma 

EV preparation was unreliable. I, therefore, subjected EVs collected from plasma 

(platelet-free plasma) to column purification by SEC to obtain a working EV 

preparation/sample largely free from soluble proteins for subsequent experiments.  

In the human circulation, whole blood carries EVs originating primarily from platelets, 

leukocytes, endothelial cells and erythrocytes (Orozco and Lewis 2010; Gustafson et 

al. 2015b). Adipose tissue is also capable of generating EVs which may be released 

into the circulation; however, their proportion in plasma is yet to be defined. Obesity, 

which is characterised by ‘stressed’ or inflamed adipocytes, is associated with elevated 

amounts of EV compared to those observed in healthy or lean individuals (Goichot et 

al. 2006; Agouni et al. 2008; Kranendonk et al. 2014c). Adiponectin, PPAR-𝛾, FABP4 

and perilipin are secretory proteins predominantly produced in adipose tissue whose 

levels vary in the metabolic syndrome. EV preparations traditionally processed from 

platelet-free plasma by UC alone, can sediment these soluble proteins, thereby 

overestimating adipocyte character. In these studies, eluents from fraction 5-10 were 

pooled and ultracentrifuged; the obtained EV pellet tested positive for EV markers and 

adipocyte markers (Figure 4.8). Transmission electron microscopy further confirmed 

the presence of EV structures.  

As discussed above, some of the adipocyte proteins chosen in this study (e.g. FABP4 

and adiponectin) may also be associated with other cell types and readily secreted in 

the circulation. Ultracentrifugation might thus, co-pellet these soluble proteins leading 

to falsely attributed EV adipocyte expression. A study has shown exogenous FABP4 
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was internalised by endothelial cells,  primarily through the plasma membrane proteins 

to subsequently mediate vascular functions (Saavedra et al. 2015).  Similar FABP4-

cell interaction could cause this protein to be packaged into other EV populations. 

Therefore, two separate techniques, magnetic bead capture and immuno-affinity on 

solid-phase, were employed to selectively remove/deplete the major populations in 

plasma-derived EVs (platelets, leukocytes, endothelial cells and erythrocytes) with a 

view to evaluating the ‘retained’ EV sample for adipocyte character. I hoped therefore 

to use this as a means of generating conclusive evidence for the presence of ADEVs 

in the circulation. Specifically, I hoped to evaluate whether the signature adipocyte 

markers were retained in the residual EV population after depletion of ‘non-adipocyte’ 

EVs. 

Both the techniques of magnetic bead capture and solid phase immunoassay adopted 

for the depletion of selective EV populations showed significant reduction in marker 

expression, confirmed by TRFIA (Figure 4.5). Hence, these techniques proved 

effective in lowering the concentration of major circulating EV populations in plasma 

preparations.  The NTA analysis from both techniques showed an overall drop of 

around 75% in the EV concentration post-depletion, which accounts for the proportion 

of other major EV populations in plasma (Figure 4.8 (B)). The post-depleted sample 

was positive for the classic adipocyte markers FABP4, adiponectin, perilipin and 

PPAR-γ (Figure 4.8 (C)). However, their expression was reduced. This could imply 

that these protein markers could perhaps be associated with EVs generated from non-

adipocyte sources, i.e., loss of proteins with the pull-out of the other ‘non-adipocyte’ 

EV populations. Numerous studies have shown that FABP4 and PPAR-γ are produced 

by other cell types besides adipocytes, especially macrophages (Hertzel et al. 2017; 

Heming et al. 2018). Expression of FABP4 varied with individual donors, such that 

some were not readily detected by western blot, which advocates the use of multiple 

markers to affirm ADEVs in plasma. FABP4 can take a homodimeric configuration 

depending on ligand activation, thus explaining the detection at higher molecular 

weight than expected (Gillilan et al. 2007). PPAR-γ, a master regulator of 

adipogenesis, exists in isoforms namely PPAR-γ1 and PPAR-γ2 which were evidently 

seen in pre-depletion samples; however, only PPAR-γ2 was retained in post-depleted 

samples. Interestingly, PPAR-γ2 is an adipocyte-specific transcription factor and 

contributes a greater role in inducing adipogenesis (Tontonoz et al. 1994a; Mueller et 



 164 | P a g e  

 

al. 2002), thus its presence in post-depleted EV samples is a strong indicator of 

adipocyte origin. Adiponectin and perilipin were also consistently expressed in pre- 

and post-depleted samples. The EV markers CD9 and Alix were present in post-

depletion samples from both techniques, although the intensity of expression was 

reduced; this agrees with the decrease in the concentration of EVs (Figure 4.8). 

An adipokine protein array evaluated the relative levels of other adipokines in the pre- 

and post- depletion (cleaner preparation) samples (Figure 4.9 and 4.10). Among the 

metabolic adipokines, adiponectin expression was abundant in the pre- and post- 

depleted samples, in addition to resistin, visfatin, cathepsin D and leptin. A study by 

Ogawa et al., (2010) provided evidence for the presence of gene transcripts of 

adiponectin and resistin in microvesicles isolated from serum (Ogawa et al. 2010). 

These transcripts were transported into macrophages, mediating intercellular 

communication in a paracrine/endocrine manner. 

Inflammatory adipokines demonstrated more intense expression compared to other 

protein groups, particularly RANTES, MCP-1, cathepsin S, lipocalin and cytokines 

such as TNF-α, IL-6, IL-10 and IL-8 in the EV sample post removal of major 

circulating EV populations. RANTES and MCP-1 have previously been reported to 

be packaged in plasma-derived exosomes of healthy individuals (Wahlgren et al. 2012; 

Kodidela et al. 2018), whilst the expression of inflammatory adipokines such as TNF-

α, IL-6, IL-10 and IL-8 has been demonstrated within ADEVs (Mariette E G 

Kranendonk et al. 2014). These packaged proteins may potentially facilitate 

intercellular communication to induce inflammation in recipient cells and disease 

progression. RANTES is a chemokine secreted by adipocytes that has been shown to 

trigger leukocyte infiltration into adipose tissue to mediate a state of chronic immune 

activation. Mature adipocytes release RANTES particularly at higher concentration in 

obese individuals and under hypoxic conditions. It has been identified as an immune 

mediator for adipose tissue (Skurk et al. 2009). Expression of cathepsin S has been 

directly implicated in obesity through observations of increased expression by 

adipocytes in obese as compared to healthy controls. Macrophage-derived pro-

inflammatory molecules, such as TNFα and IL-1β, have been shown to cause a 

stimulatory effect in the release of cathepsin S by adipose explants (Naour et al. 2010). 

Owing to its selective increased secretion by adipocytes in obese individuals, 

cathepsin S has been considered a biomarker for adiposity and also been implicated in 
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atherosclerosis, dysregulated glucose metabolism and contribution to cardiovascular 

risks (Taleb et al. 2005).  

The production of lipocalin by adipocytes up-regulates the production of adiponectin 

and PPAR-γ and suppresses TNFα-induced inflammation in adipose tissue, whilst also 

suppressing stimulation of cytokine expression in macrophages (Zhang et al. 2008). 

Lipocalin coupled with FABP4 modulates vascular function and mediates chronic 

inflammation (Wu et al. 2014). A study by Borkham-Kamphorst et al. (2018) showed 

compelling evidence for the trafficking of lipocalin 2 into the secreted exosome cargo 

from human carcinoma cell lines. Both glycosylated and non-glycosylated variants of 

lipocalin 2 were equally steered into membranous extracellular vesicles (Borkham-

Kamphorst et al., 2018). Urinary exosomes secreted at different stages of renal disease 

carry lipocalin and its abundance correlates with kidney dysfunction (Alvarez et al. 

2013). The presence of the angiopoietin family of proteins in post-depleted EV 

samples is also relevant. Angiopoeitin-2 has a beneficial role in white adipose tissue 

depots by promoting vascular function or angiogenesis as well as reducing AT 

inflammation (An et al. 2017). It should be noted that SEC is efficient in clearing 95% 

of non-vesicular soluble/free proteins in a single step; hence the residual non-EV 

associated plasma proteins are likely to remain in the supernatant. The adipokine array 

was also undertaken on the supernatant obtained during EV pelleting; this also showed 

the presence of adipokines, whilst western blotting for CD9 showed its absence in the 

post-ultracentrifugation supernatant (non-EV segment) as compared to the pelleted 

EV prep (Connolly et al. 2018). Therefore, the proteins (including adipokines) found 

in the post-ultracentrifugation supernatant are not associated with EVs and can be 

referred as non-EV supernatant. 

On the whole, the detection of major adipokines coupled with the presence of classical 

adipocyte and EV markers in the EV samples post-depletion of major circulatory EV 

populations by either magnetic bead capture or solid phase immunoassay technique, 

provides strong evidence for the presence of adipocyte-derived EVs within the human 

circulation. The work also emphasises the need to judiciously choose techniques for 

EV isolation and sample preparation, being particularly careful to avoid 

misinterpretation of adipocyte marker signal from the soluble protein fraction.  
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Although ADEVs have been comparatively well studied in terms of vesicle cargo, 

function and metabolic effects, their passage into the circulation through the 

endothelial barrier is still under study. In healthy individuals, lean AT is well 

vascularised by a capillary network through which EVs can be potentially trafficked. 

In obese AT, the tissue can be viewed as being closely related to a tumour 

environment, namely hypoxic and poorly vascularised. It has been found that tumour 

EVs can alter cellular physiology triggering vascular permeability (Zhou et al., 2014) 

or by conditioning pre-metastatic sites in distant organs (Costa-Silva et al., 2015; 

Hoshino et al., 2015). Adipokines have been implicated in the development of cancer 

(Ayoub et al. 2017). Similarly, the hypoxic environment and chronic inflammation of 

adipose tissue can cause continuous infiltration of pro-inflammatory cytokines and 

immune cells in addition to self-generated adipokines. This can cause oxidative stress 

on the endothelium, destabilising the junctions and increasing vascular permeability, 

thereby potentially providing an escape route for the ADEVs (Félétou and Vanhoutte 

2006; Chistiakov et al. 2015; Rahimi 2017). 

The ADEVs constitute a small proportion of circulating EVs but perhaps show major 

effects on vascular and adipose tissue health. The EVs produced from ‘unhealthy’ 

adipocytes tend to carry a different profile of proteins that can negatively impact on 

recipient cells or organs. Thus, ADEVs may have considerable potential as biomarkers 

in obesity-driven metabolic disease and cancer. 
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4.4.1 Limitations and Conclusion 

The work produced in this chapter has some limitations. The number of experimental 

repeats for the pre- & post- depletion experiments was minimal at a number of 3. This 

can be scaled up in future studies to minimise any biological variation. TRF 

immunoassay confirmation could not be conducted for certain proteins namely 

perilipin and Alix. Furthermore, the EVs captured on the beads could not be effectively 

evaluated, although multiple attempts were made to release the bound EVs from the 

magnetic beads. In addition, studies on ADEV protein cargo in terms of RNA content 

were not undertaken and flow cytometric analysis was not undertaken to examine 

surface marker expression.  

To summarise, my data, using a combination of methodologies including NTA, 

TRFIA and western blotting, provide convincing evidence for the presence of ADEVS 

in the human circulation. Adipocytes seem capable of secreting EVs loaded with 

adipokines and other adipocyte-specific proteins, lending a unique character. By 

employing two depletion methods (magnetic bead capture and solid phase 

immunoassay) to selectively remove four major circulatory EV populations from non-

adipocyte sources (i.e., platelet-, leukocyte-, endothelial-, and erythrocyte-derived) in 

platelet-free plasma, a signature population of EV was established with adipocyte 

character. 
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5. Results III: Effect of circulating adipocyte-

derived EVs on leukocyte attachment to 

endothelial cells 
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Perspective 

Having provided evidence in chapter 4 for the presence of adipocyte-derived EVs 

(ADEVs) in the circulation, I thought it important to establish if circulating ADEVs 

isolated according to the protocol developed in the previous chapters elicited any 

functional effects, especially with respect to vascular homeostasis since cardiovascular 

disease is one of the major morbidities associated with obesity. Adipose tissue in obese 

individuals is often inflamed and hypoxic; this study thus, sought to establish if 

ADEVs derived from obese individuals could elicit changes in endothelial cells that 

resulted in the promotion of leukocyte adhesion. I focused on leukocyte adhesion since 

this is an early step in the development of atherosclerosis. Whilst this chapter presents 

early results, this might nevertheless prompt future studies in a larger patient cohort.  
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5.1 Background 

The prevalence of cardiovascular disease has risen dramatically over the past 

decade. The state of obesity predisposes individuals to CVD mortality and morbidity, 

and poses a risk factor for a host of metabolic syndromes, insulin resistance, 

dyslipidemia, diabetes, hypertension, atherosclerosis, coronary heart disease, and 

stroke (Van Gaal et al. 2006; Ritchie and Connell 2007). Of note, visceral fat plays 

a key role in altering the physiological balance of adipose tissue and skewing the 

release of adipokines and EVs, rendering the AT hypertrophic and hypoxic. 

Although efforts are being made to understand the link between obesity and 

development of CVD, the molecular mechanisms that trigger the dysfunction of AT 

are still the subject of research.  

AT is a heterogeneous tissue comprising pre-mature and mature adipocytes, a 

stromal fraction of inflammatory cells (predominantly macrophages and 

lymphocytes of various phenotype), fibroblasts, stem cells as well as vascular cells 

(Badimon and Cubedo 2017). As adipocytes expand, systemic metabolism of the 

AT is affected at the molecular and cellular level. Increased secretion of free fatty 

acids (FFAs) and glycerol has been reported in obese compared to lean individuals 

and subsequently promotes insulin resistance (Horowitz et al. 1999; Shulman 2000). 

Perilipin, a phosphoprotein that regulates the release of FFAs, was highly deficient 

in obese subjects with increased rate of lipolysis (Wang et al. 2003). AT produces 

several pro-inflammatory factors with increasing obesity. Higher expression of 

proinflammatory proteins in AT is observed in obese persons as compared to lean 

individuals, including TNF-α, interleukin 6 (IL-6), monocyte chemotactic protein 

1, inducible nitric oxide synthase (iNOS) and procoagulant proteins (Hotamisligil 

et al. 1993; Perreault and Marette 2001; Sartipy and Loskutoff 2003; Samad et al. 

2018). Obese adipose tissue attracts and harbours increasing numbers of 

macrophages; this is associated with enhanced TNF-α expression and increased 

iNOS and IL-6 expression within the AT environment (Weisberg et al. 2003). 

Furthermore, adiponectin, a potent inhibitor of TNF-α–induced inflammation, is 

reduced in obesity (Bruun et al. 2003). 

With the accumulation of macrophages, AT shifts to a state of inflammation and 

disrupts the normal metabolic state of the tissue. Preadipocytes residing within the 
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tissue have the potential to convert to a macrophage phenotype, emphasising the 

great cellular plasticity of adipose precursors (Charrière et al. 2003). Activated 

macrophages release cytokines and biologically active molecules such as NO, TNF-

α, IL-6, and IL-1 (Duque and Descoteaux 2014). Supplemented with the escalation 

of pro-inflammatory molecules particularly TNF-α, this induces the activation of 

vascular endothelial cells to express adhesion molecules. Coupled with the low 

levels of adiponectin, the inflammatory process is amplified and leukocyte 

attachment to the vascular endothelium is heightened. This process leads to a 

chronic state of inflammation within the AT and with the absence of anti -

inflammatory intervention, impairs the endothelium. Endothelial dysfunction is the 

hallmark for the subsequent development of CVD, especially atherosclerosis.  

Adipocytes release EVs and moreover their presence has been established in the 

circulation. Since EVs carry characteristics from the source cell, ADEVs derived 

from inflamed and hypoxic AT may be different to that from lean AT. AT-derived 

exosomes from individuals of higher BMI exhibit atheroma-promoting properties 

by decreasing cholesterol efflux proteins and increasing LDL accumulation in 

macrophages, mediated through their miRNA cargo (Siegart et al. 2017). 

Depending on their adipokine content, ADEVs can affect insulin signalling in liver 

and muscle cells, contributing to systemic insulin resistance (Kranendonk et al. 

2014). Also, EVs generated from stressed adipocytes have been identified as a 

chemoattractant in vitro and in vivo (Eguchi et al. 2015). They were shown to attract 

monocytes and macrophages by activation of caspase-3 signalling, thus contributing 

to macrophage infiltration in obesity. 

The mechanism through which adipocytes elicit an endothelial inflammatory 

response and recruitment of monocytes and macrophages in atherosclerotic plaques 

is yet to be fully understood. It is likely that EVs can mediate the cross talk between 

tissues leading to plaque formation in atherosclerosis. Adipocyte EVs generated 

from obese AT could contain pro-inflammatory molecules to mediate an 

inflammatory response in vascular endothelial cells. Moreover, previous work from 

our group was able to establish that EVs from inflamed cultured 3T3-L1 adipocytes 

induced VCAM-1 expression on vascular endothelial cells that in turn increased 

leukocyte attachment to vascular endothelial cells (Wadey et al., 2019). Hence, I set 

out to test if ADEVs (isolated according to the techniques developed in Chapter 4) 
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from plasma of healthy and obese subjects could promote leukocyte attachment on 

endothelial cells, and thus, might be involved in mediating the pathogenesis of 

atherosclerosis. Primary vascular endothelial cells were obtained from human 

umbilical cords. Although not a true representation of adult endothelium, based on 

previous publications the HUVEC model was considered ideal for a pilot study on 

inflammation (endothelial activation) and leukocyte attachment (Makó et al. 2010; 

Onat et al. 2011; Zhang et al. 2014; Cao et al. 2017).  

 

5.1.1 Aims:  

To explore the effects of circulating ADEVs, obtained from healthy versus obese 

individuals, on leukocyte adhesion to endothelial cells (HUVECs). 

Objectives:  

1. To validate the leukocyte attachment assay using varying doses of TNF-α (0-50 

ng/ml).  

2. To study the effect of ADEVs from healthy and obese individuals on leukocyte 

attachment and endothelial adhesion molecule expression.  
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5.2 Methods 

5.2.1 HUVEC isolation and culture 

HUVECs were sourced from umbilical cords and cultured as per the procedure 

detailed in Chapter 2.11. 

5.2.2 Recruitment of healthy and obese subjects  

With ethical approval (REC approval number 16/EE/0342; East of England, 

Cambridge South Research Ethics Committee and local R&D (approval no: 

16/JUL/6572) applied under Dr Justyna Witczak, along with Cardiff Metropolitan 

University ethical approval (CHS ethics no 8371)) and informed consenting, seven 

patients were considered as obese subjects for this study. Patients were recruited from 

Specialist Weight Management Service, conducted at University hospital Llandough 

under Dr Dev Datta. 

The individuals for the ‘obese’ cohort were chosen with inclusion criteria of BMI > 

40kg/m2. The healthy cohort was limited to individuals with BMI ranging from 19-

25kg/m2, no history of illness and clear of medications. The women included in the 

study were not pregnant.   

5.3.3 Isolation and purification of ADEVs from plasma  

EVs were obtained from plasma of healthy (n=7) and obese subjects (n=7) as 

described in Chapter 2.2.2. Following, the EV samples were subject to sequential 

depletion of major EV populations derived with marker CD41-, CD11b-, CD144-, and 

CD235a-. The post depleted sample was considered the working stock and henceforth 

referred to as ADEVs, as established from previous Chapter 4.  

The concentration of these plasma-derived EVs were determined by NTA procedure 

as described in Chapter 2.3.2. Company (Nanosight)-provided 100nm sized beads 

were used as calibration beads and indicated a mean concentration of 1.82e11 ± 0.04 

between the batches of experiments.  
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5.2.4 Leukocyte Adhesion Assay 

Leukocytes were freshly harvested on the day of the experiment and the steps involved 

in the isolation of leukocytes and assay as detailed in Chapter 2.12. In order to reduce 

variation, leukocytes obtained for the experiments were isolated from a single 

consistent source. 

5.2.5 Western blot 

HUVEC cell lysates were probed for endothelial markers using western blot as 

described in Chapter 2.7. Antibody control experiment under the absence of a primary 

antibody was not conducted during the protein detection stage. 

5.2.6 Statistical analysis 

GraphPad prism (Version 5) was used to generate graphical representation of data. 

One-way ANOVA was used to test for significance with Bonferroni’s multiple 

comparison test significance where marked by * reflects p<0.05, ** reflects p<0.01 

and *** reflects p<0.001. Data were assessed for normality using the Kolmogorov-

Smirnov test. Data is expressed as mean ± SD, where applicable. 
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5.3 Results 

5.3.1 Subject characteristics 

Seven volunteers each were recruited from healthy and obese volunteers, with 

matching for gender.  Average ages for the healthy and obese groups were 42.5 ± 8.5 

and 44.7 ± 6.1 years, respectively. The difference in EV concentration between the 

two cohorts were significant with *p<0.5 valued at 0.0262. By design, BMI was 

different between the two groups. Table 5.1 summarises the characteristics of the 

subjects involved in this study. 

 

 

Factors Healthy Obese 

Gender 
Female - 2 

Male - 5 

Female - 2 

Male  - 5 

Age Range (years) 42.5 ± 8.5 44.7 ± 6.1 

BMI (kg/m2) 19 - 25 > 40 

EV concentration 

(particles/ml) 

2.256e+011 ± 

9.802e+010 

4.267e+011 ± 

2.021e+011 

EV Size (mean/mode)  
 

215.0 ± 15.68 nm /  

180.6 ± 28.38 nm 

200.7 ± 17.10 nm /  

166.4 ± 19.77 nm 

   

Table 5.1: Summary of subject characteristics. Seven subjects each were chosen for 

obese and healthy cohort based on difference in BMI. Gender and age of the subjects 

were closely matched. SEC was used to isolate the EVs from the subjects’ plasma. The 

size and concentration of the collected EVs were measured by NTA procedure and 

recorded. The EV concentration varied significantly between healthy and obese 

subjects, with p=0.026 
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5.3.2 Collection (Isolation) of Human umbilical vein endothelial cells (HUVECs) 

In order to validate the protocol used to collect HUVECs, immunofluorescence was 

undertaken to establish the expression of endothelial markers. This showed that the 

cells collected from human umbilical cord veins exhibited a typical cobblestone-like 

appearance under bright-field microscopy. Strongly positive staining was observed for 

the endothelial cell markers CD144 (VE-Cadherin) and CD62E (E-selectin) (Figure 

5.1). As anticipated, expression of CD144 was observed predominantly at the cell 

surface whilst CD62E expression was predominantly cytoplasmic/peri-nuclear, 

confirming an endothelial phenotype. 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5.1: Immunofluorescence staining of HUVECs: HUVECs grown on 

coverslips, fixed with 4% paraformaldehyde, probed with primary antibodies 

(1:200) against CD144 and CD62E and stained with fluorescent secondary antibody 

(1:500). Nuclei were counterstained using DAPI. Images were captured using 

fluorescent microscope.  (A) Indicates CD144 staining and (B) indicates CD62E 

staining. Scales bar: 20µm. 

(A) 

(B) 
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5.3.2 Effect of TNF-α on leukocyte-endothelial cell adhesion 

A model for leukocyte adhesion to endothelial cells was developed by our research 

group (Wadey et al., 2019). TNF-α is known to increase leukocyte adhesion to 

HUVECs (Mackay 1993) and hence we sought to validate this model with varying 

doses of TNF- α. Increasing doses of TNF-α ranging from 0 to 50ng/ml was added to 

confluent HUVECs grown in 6-well plates, prior to the addition of leukocytes. 

Leukocyte attachment escalated with increasing dose of TNF-α (Figure 5.2 (A) and 

(B)). Maximal attachment was observed at TNF-α concentration of 12.5 ng/ml; 

beyond this, the percentage attachment reduced. Figures 5.2 (A) and (B) show the 

leukocyte coverage obtained expressed in quantitative and illustrative formats, 

respectively. Subsequently, expression of the cell adhesion molecule vascular cell 

adhesion molecule-1 [VCAM-1] was examined by western blotting. This confirmed 

an increase in expression in response to TNF-α at all concentrations used (Figure 5.2 

(C)).  

 

 

 

  

(A) 



 178 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(C) 

β actin  

VCAM-

1 

A           B           C          D          E           F           G          

H 

81kDa 

42 kDa 

(B) 

Figure 5.2: Effect of varying doses of TNF-α on leukocyte attachment to HUVECs. 

HUVECs pre-treated with TNF-α of varying doses from 0 (blank) to 50 ng/ml prior to the 

addition of CellTraceTM-stained leukocytes; the percentage leukocyte adhesion to HUVECs was 

subsequently investigated.  (A) Denotes the percentage area covered by leukocytes to a confluent 

monolayer of HUVECs (n=3), *** , ** denotes p<0.001 and p<0.01, (B) corresponds to the 

representative fluorescent images of the percentage area covered (n=3), and (C) Western blot 

analysis of VCAM-1 expression in HUVECs where A = Blank, B = 0.75 ng/ml, C = 1.625 ng/ml, 

D = 3.125 ng/ml, E = 6.25 ng/ml, F = 12.5 ng/ml, G = 25 ng/ml, H = 50 ng/ml. 
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5.3.3 Effect of ADEVs (post-depletion) from Healthy and Obese subjects on 

leukocyte- endothelial cell adhesion  

Following the validation of the leukocyte-endothelial cell adhesion model using TNF-

α, I next sought to compare the effect of EVs, specifically ADEVs, obtained from 

healthy (n=7) and obese individuals (n=7) on leukocyte-endothelial cell adhesion. EVs 

obtained from plasma (of all subjects) were subjected to sequential purification by 

solid phase immunoassay to obtain a preparation of ADEVs, as described in the 

previous chapter (section). HUVECs were subsequently incubated with these purified 

ADEVs and leukocyte adhesion was evaluated. The mean percentage adhesion in the 

two groups was:  healthy (0.91 ± 0.11 %) and obese (1.78 ± 0.20 %) that proved 

significantly different with p<0.05 

 

 

 

 

(A) 
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Figure 5.3: Effect of ADEVs from healthy and obese subjects on leukocyte attachment 

to HUVECs. ADEVs at a concentration of 3 x 10e9 particles/ml (absolute) obtained from 

both cohorts were incubated on HUVECs for 6 hours, followed by the addition of stained 

leukocytes. (A) Graphical representation of the mean of percentage leukocyte coverage in 

healthy (n=7) and obese (n=7) subjects, ***, **, * denotes p<0.001, p<0.01, p<0.05 (B) 

three representative images of healthy and obese subjects  ; (C) Western blot analysis of 

HUVECs treated with: A = Blank (no EVs), B = 10 ng/ml TNF (positive control), C and E 

= ADEVs from two healthy subjects, D and F = ADEVs obtained from two obese subjects. 

Obese  
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5.4 Discussion 

This chapter utilised the leukocyte adhesion assay to investigate the effect of ADEVs 

derived from two sample cohorts with characteristic differences in their BMI, in 

promoting the attachment of leukocytes to vascular endothelium. The sampled EVs 

(ADEVs) obtained from obese individuals elicited an increase in VCAM-1 on 

HUVECs that increased leukocyte attachment, when compared to EVs obtained from 

healthy individuals. Hence, it can be speculated that these ADEVs activate a pro-

inflammatory response on HUVECs that mediates the recruitment of leukocytes. The 

crosstalk communication between leukocytes and endothelial cells plays a pivotal role 

in chronic vascular inflammation that hallmarks the development and progress of 

atherosclerosis, and consequently leads to CVD (Hosseinkhani et al. 2018). Thus, 

ADEVs are (or could be considered) potential mediators in the recruitment of 

leukocytes and contributing to vascular endothelial dysfunction.  

HUVECs are a classic endothelial cell model used in scientific research to study 

aspects of endothelial function and pathways, under normal and disease-conditions. 

HUVECs were first cultured in the 1970s and soon were deemed a primary choice 

for vascular research (Jaffe et al. 1973). Their advantages include easy accessibility 

compared to other blood vessels, relative ease of culture, high proliferation rate, 

versatility and commercial availability. A standard laboratory protocol has been 

established for their isolation and maintenance with essential requirements, thus 

providing a fresh supply of primary cells (Marin et al. 2001; Baudin et al. 2007). 

HUVECs express characteristic endothelial markers, e.g. ICAM‐1, VCAM‐1 and 

selectins, and other signalling molecules associated with vascular physiology 

pathways (phosphorylation of VEGFR, Akt, MAPK, and expression eNOS) and 

dysfunction such as oxidative stress, hypoxia and inflammation (Boerma et al. 2006; 

Adya et al. 2008; Caniuguir et al. 2016). 3D culture models of HUVECs have been 

produced to gain better insights into the behaviour of ECs in vivo (Andrejecsk et al. 

2013; Heiss et al. 2015).  Furthermore, HUVECs are very responsive to physiological 

stimuli such as high glucose, TNF-α and lipopolysaccharide (Mackay 1993; Otu et al. 

2005; Zhao et al. 2015b). HUVECs are harvested at an early developmental stage; a 

limitation may thus be that they are not truly representative of the in vivo condition 

as they derive from immune-privileged foetal tissue. Furthermore, some adult 
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endothelial markers may be absent. However, in this preliminary study I was able to 

demonstrate that the positive control TNF-α enhanced expression of VCAM-1.   

TNF-α is a well-known pro-inflammatory cytokine that causes an increase in the 

expression of adhesion molecules on endothelial cells, thus inducing leukocyte 

attachment and a cascade of events (capture, rolling, migration) for their eventual entry 

into the vascular tissue bed (Muller 2003). Leukocytes, particularly monocytes, adhere 

poorly to ECs under normal conditions due to relatively low-level expression of 

adhesion molecules, whereas ECs can be activated by pro‐atherogenic stimuli to 

release inflammatory mediators and express adhesion molecules to recruit monocytes. 

Numerous studies have been undertaken to show that ECs respond to several 

exogenous and endogenous pro-inflammatory stimuli; the three most recognised are 

lipopolysaccharide, TNF-α and interleukin-1β. These proinflammatory factors differ 

in the pathways by which they bring about endothelial activation (Makó et al. 2010). 

HUVEC expression of TNF receptors TNF-R55 and TNF-R75 facilitate the binding 

of TNF-α on ECs, and the inflammation cascade is activated by the NFκβ (Mackay 

1993). Studies have demonstrated different mechanisms through which TNF-α 

signalling can mediate endothelial breakdown and onset of vascular disease. TNF-α 

can induce gene expression of inflammatory cytokines and chemokines (Zhang et al. 

2009), generate vascular oxidative stress by production of radicals (Picchi et al. 2006), 

decrease NO bioavailability (Gao et al. 2007), impair vasodilation, induce endothelial 

apoptosis and accelerate vascular atherothrombotic processes (Virdis et al., 2018). A 

study in mice with type-2 diabetes, inflammatory cytokines such as TNF-α and IL-6 

were found to elicit endothelial dysfunction characterised by oxidative stress, reduced 

phosphorylation of eNOS and premature senescence  (Khan et al. 2017; Lee et al. 

2017). In this chapter of work, TNF-α in increasing dose was applied to examine its 

inflammatory effects on HUVECs (Figure 5.2). Western blotting confirmed the 

expression of VCAM-1 which is an indicator of endothelial activation. The leukocyte 

attachment reached a peak adherence at a concentration of about 12.5ng/ml and 

decreased thereafter. The decrease in leukocyte attachment with TNF concentrations 

above this critical point might reflect apoptosis or necrosis of HUVEC, but this was 

not investigated further. Others have also shown that a TNF-α concentration of 

10ng/ml is optimal in inducing endothelial activation for leukocyte attachment (Turner 

et al. 2010). 
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EVs generated from various cell sources readily interact with endothelial cells (ECs). 

Besides cytokines and inflammatory molecules, studies have shown that EVs regulate 

activation of endothelial cells. Being the most exposed tissue, the endothelial surfaces 

come into contact with EVs released into the circulation. Studies have established their 

role in cell-to-cell communication, resulting in systemic effects by transferring their 

contents to recipient cells that differ from the cell of origin and transmitting metabolic 

signals from organ-to-organ (Tkach and Théry 2016, Thomou et al., 2017, Zhao et al., 

2018). EVs shed by cancer cells (carcinoma cell lines) triggered HUVECs into a 

proangiogenic phenotype in vitro, by a defined CD147-mediated mechanism, 

promoting malignancy (Millimaggi et al. 2007). Tumour cell-derived EVs can carry 

oncogenes that switch the endothelial cells to an autocrine mode modulating 

angiogenesis via signalling receptors (Allison et al. 2009). ECs when pre-treated with 

EVs generated from infected macrophages, promoted macrophage migration through 

the monolayer as well as an upregulation of genes involved in cell adhesion and the 

inflammatory process (Li et al. 2018).  

Our research group recently published a study culturing the preadipocyte cell line 3T3-

L1 in different conditions of inflammation (TNF-α treated) and hypoxia that mimic 

the adipose tissue environment (Wadey et al., 2019) before the EVs were harvested. 

HUVECs were pre-treated with these EVs before measuring the extent of endothelial 

cell activation by leukocyte adhesion assay. EVs generated under TNF-α alone, and 

TNF-α plus hypoxia conditions showed significant activation of HUVECs and 

increased leukocyte adhesion when compared to EVs generated under normoxia. In 

my study, whilst ADEVs increased leukocyte attachment in both groups, this was 

significantly more marked in obese compared to lean subjects (Figure 5.3). This 

implies that obese ADEVs may elicit enhanced endothelial activation compared to 

lean ADEVs. Endothelial activation by these obese EVs was further reflected by the 

detection of VCAM-1 and ICAM-1, by western blot, taken to reflect an inflammatory 

character in obese-derived ADEVs. This preliminary observation could suggest a 

difference in the composition/nature of ADEVs derived from the two groups. 

However, this requires further investigation.  

The EV samples used in the pre-treatment of HUVECs were obtained as developed in 

the previous chapter in order to comprise predominantly EVs of adipocyte character. 

The plasma collected from patients (healthy and obese) was column purified and 
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ultracentrifuged to obtain a preparation with maximum EV concentration. 

Subsequently, the major families of circulating EV populations were sequentially 

depleted to ensure an optimal isolation of ADEV. However, it should be 

acknowledged that the sample might still contain some trace amounts of other soluble 

particles and possibly other EVs that could have contributed to the activation of 

endothelial cells. 

Obesity has been associated with increased levels of EVs in the circulation. An in vitro 

study revealed that stressed human primary adipocytes elicited a surge in EV 

production with a unique proteomic cargo following hypertrophy (Eguchi et al. 2016). 

During obesity, there is amplification in the release of EVs from adipocytes in the 

stromal fraction of AT which intensifies the vesicular effect in recipient tissue/organs 

(Stepanian et al. 2013; Lazar et al. 2016). This is exemplified in observations 

suggesting that ADEVs from obese subjects increase tumour metastasis, angiogenesis 

and AT inflammation. Lazar et al. demonstrated a positive correlation between BMI 

and EV shedding from AT and progression of exosome shedding with adipocyte 

maturation (Lazar et al. 2016). With the growth of adipose tissue in continuing obesity, 

the EVs generated are modified in a quantitative and qualitative manner. Metabolic 

changes in obese individuals were associated with differential expression of 

adipocyte-derived exosomal miRNAs between lean and obese individuals (Ferrante et 

al. 2015). Interestingly, miRNA expression profile of circulating ADEVs were also 

modified after bariatric surgery, correlating with improved insulin resistance (Hubal 

et al. 2017; Bae et al. 2019). Adipokine profiles differ between subcutaneous AT EV 

and visceral AT EV, with concentrations of IL-6, TNF-α, MIF and MCP-1 

significantly higher in visceral AT EV compared to those from subcutaneous AT 

(Kranendonk et al. 2014a). A differential EV proteomic profile has also been observed 

between obese diabetic and obese non-diabetic rats (Lee et al. 2015). 

A key aspect of obesity is the expansion in adipose tissue mass leading to adipocyte 

hypertrophy that directly correlates with BMI and metabolic dysfunction as studied in 

humans and mice (Cotillard et al. 2014; Rydén et al. 2014). In extreme obesity, as the 

hypertrophic threshold of adipocytes in AT is exceeded, it leads to ectopic lipid 

deposition in peripheral tissues (Muir et al. 2016). With adipocyte hypertrophy beyond 

a diameter of 100 microns, the effective oxygen supply to the tissue from the 

vasculature is compromised ensuing hypoxia (Muir et al. 2016). Hypertrophy coupled 
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with hypoxia within the AT instigates hypoxic-response genes, endoplasmic reticulum 

and oxidative stress, inflammation, and metabolic dysfunction, rendering the tissue 

inflammatory. Studies in in vitro cell culture systems and animal models have 

provided strong evidence for a role of hypoxia in modulating the production of several 

inflammation-related adipokines, including increased TNF-α, IL-6, leptin and 

macrophage migratory inhibition factor along with reduced adiponectin synthesis (Ye 

et al. 2007; Trayhurn 2013). Activated macrophages in inflamed AT also contribute 

to the production of TNF-α (Hagita et al. 2011) within adipose tissue. Interestingly, 

AT macrophages switch phenotype with increasing obesity. It has been observed in 

obese mice that  a greater proportion of the macrophage population in AT are the 

classically activated M1 macrophages (Lumeng et al. 2008). On the other hand, the 

macrophage population in lean AT comprises the activated M2 phenotype that carries 

genes encoding anti-inflammatory proteins. Weisberg et al., (2003) demonstrated that 

AT macrophages contribute almost all AT TNF-α expression as well as significant 

amounts of iNOS and IL-6 expression (Weisberg et al. 2003). This TNF-α could be 

packaged into EVs and released from AT into the circulation to elicit an inflammatory 

response in vascular endothelium.  

EVs have been established as one of the key mediators in intercellular communication 

owing to their ability to traffic proteins, lipids and RNA between source and recipient 

cells. Inflammatory processes through endothelial cell activation have been propelled 

by EVs from various cell sources including leukocyte/monocyte adhesion and 

transmigration (Robbins et al. 2016). In vitro studies have shown that ECs and 

leukocytes release the pro-inflammatory cytokines IL-6 and IL-8 in response to EV 

signalling, promoting the expression of the adhesion molecules ICAM-1, VCAM-1 

and E-selectin. This encourages monocyte adhesion onto vascular endothelium and 

subsequent transmigration, causing vascular inflammation and plaque development 

(Mesri and Altieri 1998; Mesri and Altieri 1999; Nomura et al. 2001). However, there 

has been limited work in understanding the role of ADEVs in endothelial activation in 

response to inflammation. An extensive study conducted by Crewe et al. (2018) 

unravelled a pathway of EV trafficking between adipocytes and endothelial cells 

influenced by the systemic nutrient state i.e. governed by fasting and obesity (Crewe 

et al. 2018). The extracellular molecules and signalling proteins were packaged into 

EVs by ECs for subsequent uptake in adipocytes. Conversely, adipocytes were seen 
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to release EVs that were taken up by ECs.  EVs generated from a stressed adipocyte 

or an inflamed AT could pack itself with pro-inflammatory molecules like TNF-α, IL-

1β, IL-6, or leptin that are ubiquitously produced in AT and upon release into the 

circulation could induce an inflammatory response in vascular endothelium. The 

HUVECs in my studies demonstrated an inflammatory-like response as indicated in 

Figure 5.3 (B), but investigation into the EV content, specifically for proinflammatory 

mediators such as TNF-α in healthy and obese derived EVs would have confirmed 

this. 

In vitro studies conducted by our group under Dr Wadey’s lead, were the first to show 

that adipocyte EVs (3T3-L1-derived) cultured in inflamed, TNF-α treated and hypoxic 

culture conditions, augmented the production of adhesion molecules on vascular 

endothelium and increased leukocyte attachment (Wadey et al., 2019). This model 

mimics the pathophysiological environment in extreme obesity, where AT is inflamed 

and hypoxic. These inflammatory adipocyte EVs significantly induced VCAM-1 

expression, although other cell adhesion molecules including ICAM-1, E-selectin, P-

selectin, PECAM and VE-cadherin was also detected. Similarly, in my work (Figure 

5.3 (C)) ICAM-1 was expressed by HUVECs treated with EVs derived from both 

healthy and obese subjects, whereas VCAM-1 was selectively expressed by HUVECs 

treated with obese EVs and not detectable following exposure to lean EVs. The 

expression of VCAM-1 on activated endothelial cells is a strong indicator and critical 

for the development of atherosclerosis (Cybulsky et al. 2001). VCAM-1 mediates the 

firm adhesion to α4β1 integrin which is constitutively expressed on leukocytes, 

especially lymphocytes and monocytes. Its expression is tightly regulated (Chen et al. 

1999; Blankenberg et al. 2003). VCAM-1 is rapidly induced by pro-atherosclerotic 

conditions in rabbits, mice and humans, including in early lesions and not expressed 

under baseline conditions(Cybulsky and Gimbrone 1991; O’Brien et al. 1993; 

Nakashima et al. 1998). VCAM-1 and ICAM-1 participate in the pathogenesis of 

atherosclerosis by facilitating monocyte accumulation in the arterial intima. 

Expression is upregulated in atherosclerosis. However, VCAM-1 strongly induces the 

initiation of atherosclerosis and dominates at sites of lesion formation (Cybulsky et al. 

2001). Antibodies targeting the blockade of VCAM-1 can be developed as a potential 

therapeutic agent. Anti-VCAM-1 antibody treatment in ApoE−/− mice significantly 

reduced infiltration, adhesion and transmigration of immune cells into the 
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atherosclerotic plaques (Park et al. 2013). Reduced inflammation has proven to be an 

effective therapy to ameliorate and prevent CVD states such as atherosclerosis. 

To summarise, if we extrapolate the results of my in vitro studies to the in vivo 

scenario, inflamed and hypoxic AT in obesity might release EVs with pro-

inflammatory character that interact with the vascular endothelium. When released 

into the circulation, this subset of EVs with a proinflammatory character might prime 

the activation of endothelial cells in the peripheral vasculature to induce the expression 

of VCAM-1 that in turn increases leukocyte adhesion causing dysfunction of 

endothelial cells. The impaired endothelium subsequently leaks immune cells into the 

tissue, inducing a chronic state of inflammation that contributes to the progression of 

CVD notably atherosclerosis. The Figure 5.10 demonstrates a conceptual 

representation of the role of ADEVs in endothelial dysfunction, as discussed above. 

This piece of work provides preliminary data to indicate a potential role of ADEVs in 

cascading the adhesion of leukocytes to vascular endothelium, which is a hallmark of 

inflammatory processes associated with obesity-related vascular disease. 
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Figure 5.4: Conceptual illustration of the role of ADEVs in endothelial dysfunction. Under conditions of obesity where the adipose tissue is 

hypoxic and inflamed, it releases characteristic EV with altered profile. These ADEVs enter into circulation. Downstream, these ADEVs elicit 

an inflammatory response, potentially due to certain antigen present on them, inducing endothelial activation. Endothelial cells express adhesion 

molecules VCAM-1 and ICAM-1 that facilitate the attachment of leukocytes that otherwise travel through the circulation. ADEVS in circulation 

can also act as chemo-attractants. With increased attachment of leukocytes, a state of inflammation is intensified with presence of TNF-α and 

interleukins, eventually leading to endothelial dysfunction and vascular damage. 
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5.4.1 Limitations and future studies 

This chapter comprises a pilot study into the role of circulating ADEVs in vascular 

endothelial inflammation. HUVECs provided an in vitro model to study interactions 

of ECs, whereas adult endothelial cells might offer a more relevant phenotype. The 

subject number in each cohort was also very limited; hence, although my results are 

compelling, a larger scale study with more detailed subject characterisation is still 

needed. In addition, a notable limitation of the study was that the comorbidities 

(including waist measurements) of the obese subjects could not be recorded during the 

time of this study. Based on earlier results, only two adhesion markers, VCAM-1 and 

ICAM-1, were examined, hence other adhesion molecules including PECAM-1 and 

E-selectin need to be evaluated. The key pro-inflammatory molecule delivered by 

ADEVs and the influence of EV content in leukocyte attachment also demands further 

investigation. Furthermore, elucidation of the pathway and mechanisms involved in 

the expression of adhesion molecules following incubation with ADEVs is required. 

Future studies should undertake more functional assays to delineate the role of ADEVs 

in tissue inflammation and progression of CVD. Indeed, the impact of ADEVs is likely 

not to be limited to vascular endothelium but may extend to other tissues and organs 

that orchestrate a systemic metabolic dysfunction. A better understanding of the effect 

of ADEVs on vascular endothelium may pave the way for the development of 

therapeutic targets for the diagnosis and treatment of obesity-associated CVD. 

 



 190 | P a g e  

 

 

 

 

 

 

 

6. General discussion 
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6.1 Thesis summary 

The overall aim of this research work was to establish techniques to obtain a purified 

EV population with a view to gathering evidence for the presence of adipocyte-derived 

EVs in the human circulation (plasma) and their potential functional impact on 

vascular endothelium.  

Initially, I sought to gain an understanding in the relevant laboratory techniques for 

assessing EV concentration and character, in order to establish a footing for 

subsequent objectives. The well-established adipocyte cell line, 3T3-L1 was used as a 

comparative model to understand adipogenesis and establish adipocyte protein 

markers. Two approaches were considered while isolating EVs from plasma: 

ultracentrifugation of platelet-free plasma and size exclusion chromatography of 

platelet-depleted plasma. My results showed that the latter proved optimal for the 

isolation of plasma EVs with minimal protein contamination. After careful processing 

of the EV sample, magnetic bead capture and solid phase immunoassay was employed 

to deplete populations from major cell sources (non-adipocyte sources), leaving 

behind a portion of EV that was positive for a panel of EV- and adipocyte- specific 

markers along with certain adipokines, confirming a population of EVs sourced from 

adipocytes. This piece of work was novel in establishing that circulating human 

plasma contained adipocyte-derived EVs in healthy individuals. Furthermore, these 

ADEVs were examined for potential clinical implication, particularly in linking 

obesity and CVD. Samples containing ADEVs were procured by SEC followed by 

sequential magnetic bead depletion after collecting plasma from healthy and clinically 

obese individuals. The ADEV samples were used to pre-treat HUVECs before 

measuring the degree of leukocyte attachment on endothelial cells. An increased 

adherence was observed in ADEV samples obtained from obese subjects, 

accompanied by increased expression of VCAM-1 and ICAM-1 in HUVECs, when 

compared to healthy subjects. Leukocyte attachment on endothelium is an important 

initial event in atherosclerosis. This pilot study thus provided preliminary evidence of 

a functional effect of ADEVs which demands further in-depth investigation. 

The potential of EVs as biomarkers is appreciable both in understanding physiological 

and disease states, since their protein content reflects information about the originating 

tissues, the pathophysiologic context and the severity of disease. EVs have also gained 
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interest as mediators in intercellular communication (Pitt et al. 2016). Notably, there 

are a growing number of studies examining their association with CVD (Zhao et al. 

2015a; Lawson et al. 2016). However, if EVs are to be used as biomarkers of diseases, 

it is fundamentally important that the isolation technique ensures maximal vesicle 

yield in high purity while preserving biological structure. Since the field of EV 

research is relatively young, there are challenges in standardising EV isolation 

procedures, storage and analysis (Ramirez et al. 2018). However, during the course of 

this work, ISEV issued a statement with regards to the minimal requirements to 

identify EV populations as guidelines for researchers in the field (Lötvall et al. 2014). 

Although no gold standard isolation procedure was singled out, ISEV stated that the 

choice should depend on the downstream application and objectives in question. Due 

to their nanometric size and the complex composition of biological fluids, isolation of 

EVs at high yield is technically challenging. Therefore, methods and protocols to 

achieve this goal are under constant development.  

The initial objective of Chapter 3 was to explore the principle techniques available in 

the research field for the phenotyping of EVs, as groundwork to achieve the aims of 

the subsequent chapters. NTA is a well-established method to estimate the 

concentration and particle size of EVs whereas TRF is a highly sensitive method of 

estimating the protein content in EVs by the principle of antigen-antibody binding and 

using lanthanide chelate-labelled reagents for an enhanced fluorescence detection 

(Webber et al. 2014b; Connolly et al. 2015; Szatanek et al. 2017). The presence of 

specific proteins was also detected by the well-established technique of western 

blotting. These techniques examined EV samples from 3T3-L1 cells and plasma for 

the adipocyte protein markers FABP4, adiponectin and PPAR-γ along with the 

classical EV marker CD9 (Figure 3.4 & Figure 3.5). SEC coupled with UC was 

assessed for the isolation of pure EVs from 3T3-L1 culture media (Figure 3.7) and 

similarly in plasma samples. 

The initial section of this thesis included isolation of EVs through differential 

ultracentrifugation. Differential ultracentrifugation is a classical and common method 

of EV isolation. However, the efficiency of EV recovery from biological fluids is not 

fully optimised. Despite the advantages of the technique in handling large volumes of 

biological fluids, easy reproducibility, minimal use of reagents and chemicals, and 

cost effectiveness, the yield and purity of the EV isolate obtained through this protocol 
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is questionable (Lawson et al. 2016; Konoshenko et al. 2018). In downstream analysis 

(e.g., proteomic) which requires washing of the EV pellet, Webber and Clayton (2013) 

(Webber and Clayton 2013) demonstrated that washing reduced the EV yield (losses 

accounted by incomplete sedimentation and aggregation in the pellet); additional 

washing did not significantly improve the purity (the ratio of EVs to total protein) of 

the EV fraction as compared to the unwashed fraction. Parameters affecting the 

performance of UC include rotor type and sedimentation rate (Livshits et al. 2015). 

The buoyant density of EVs must be considerably different to other surrounding 

particles to enable isolation of pure fractions of particles. UC can sediment a mixture 

of particles with the same buoyant density if the sedimentation rates are not 

sufficiently different. Thus, during successive stages of differential centrifugation, a 

certain portion of small particles is sediment at earlier stages together with larger 

particles. In the meantime, a portion remains in the supernatant even after 

ultracentrifugation at 100,000 ×g. Such issues have been noted when processing urine 

samples for EV isolation (Musante et al. 2013). The UC pellet fraction contained large 

vesicles and protein aggregates, whilst the supernatant tested positive for EV markers. 

The authors concluded that nearly 40% of EVs were lost in the final UC supernatant. 

Furthermore, a longer centrifugation time increased the level of non-EV proteins in 

the EV preparation. Downstream EV protein analysis is thus compromised due to the 

formation of protein aggregates and co-sedimentation of non-EV particles. However, 

UC remains a favoured technique for EV isolation for in vitro studies (e.g. cell culture 

media-derived EVs) where the heterogeneity in particles is minimal, and samples are 

largely devoid of contaminating proteins or lipids. Ultracentrifugation can co-isolate 

plasma proteins, lipoproteins or RNP complexes that often contaminate EV working 

samples (Sódar et al. 2016; Takov et al. 2019). A one-step EV isolation method may 

thus, not ensure sufficient EV purification. This is especially important when 

considering purification from biological fluids that contain a mixture of particles, 

where UC cannot be used as a standalone technique for EV isolation. Under such 

circumstances, UC instead should be complemented by other isolation techniques. 

Novel strategies of coupling UC with ultrafiltration, dialysis and SEC are becoming 

increasing popular and adopted in research studies involving biological fluids 

(Benedikter et al. 2017; Mitchell 2017).  
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SEC has become the method of choice for rapid isolation of relatively pure EVs from 

biological fluids, blood plasma, urine and CSF; SEC removes soluble proteins and 

lipoprotein impurities, which can be challenging, and where other methods fail 

(Muller et al. 2014b; Lozano-Ramos et al. 2015; Kreimer and Ivanov 2017). As 

demonstrated in Figure 4.6 by western blotting and protein quantification, EVs and 

‘free’ proteins are eluted in separate fractions which manifest a definite segregation of 

two populations by SEC. Although the later fractions (fractions 11 - 28) showed 

expression of the adipocyte marker proteins adiponectin, FABP4, perilipin and PPAR-

γ, these were not associated with EVs. This observation has important implications in 

the evaluation of ADEVs in human plasma and underlines the importance of 

undertaking SEC prior to the analysis of adipocyte markers to avoid overestimations 

leading to flawed results. Thus, SEC ensures the isolation of EVs from biological 

fluids in an efficient, rapid, and almost loss-free method with a high reproducibility 

and reduced or absent contamination with non-EV proteins (Welton et al. 2015). In 

addition, since interaction with buffers and column fixed phase is minimal, the 

biological activity and integrity of the EVs (proteins and RNA) is preserved, which 

may be of particular value  when undertaking downstream analysis for RNA profiling 

(Taylor et al. 2011; Taylor and Shah 2015; Gámez-Valero et al. 2016). The 

performance of column purification does, however, vary by commercial manufacturer. 

In a comparative study of columns from two manufacturers, SEC qEV (Millipore) 

showed enhanced performance in EV isolation from plasma with minimum protein 

contaminants and enriched identification of EV markers, as compared to the 

membrane affinity-based exoEasy kit (Qiagen) (Stranska et al. 2018). In another study, 

efficiency of SEC columns in EV isolation was evaluated based on albumin 

contamination (Baranyai et al. 2015). Sepharose CL-4B or Sephacryl S-400 columns 

eluted exosomes with significantly reduced albumin content whereas Sepharose 2B 

columns co-eluted albumin with exosomes. Therefore, it is critical to evaluate and 

validate such commercial columns prior to use in EV extraction from human plasma 

or urine samples.  

The EVs found in the healthy human circulation are primarily derived from blood-

borne and lining cells including platelets, leukocytes, endothelium and erythrocytes. 

Numerous in vitro studies have invoked evidence for the release of EVs from adipose 

tissue (Koeck et al. 2014; Mariette E G Kranendonk et al. 2014; Connolly et al. 2015). 
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Since adipose tissue comprises a mix of fibroblasts, leukocytes and endothelial cells, 

EVs released from the embedded adipocytes may be restricted in their entry into the 

circulation. Furthermore, ADEVs could be ingested by neighbouring cells before 

reaching the bloodstream (Crewe et al. 2018). For these and other reasons, ADEVs 

only form a small proportion of the totality of EVs present in human plasma. Based 

on some preliminary evidence gathered by our research group, Chapter 4 comprised 

an in-depth investigation into the presence of ADEVs in the human circulation. Two 

immuno-based techniques of magnetic bead capture and solid phase immunoassay 

were employed to sequentially deplete major circulating EV populations and establish 

if an adipocyte protein signature was retained in the post-depleted EV sample and 

verify if these adipocyte markers were reduced by the removal of non-adipocyte EV 

populations. The post-depleted EV sample tested positive for the expression of 

adipocyte-associated markers, namely FABP4, adiponectin, PPAR-γ and perilipin, as 

well as EV markers CD9 and ALIX (Figure 4.8). Also, the presence of major 

adipokines was recognised in the post-depleted sample, and TEM identified EV 

structures (Figure 4.9). Together, these findings confirm that an EV population 

derived from AT appears to exist in the human circulation. On the other hand, these 

proteins were also detected in the pre-depleted samples, indicating that these markers 

may also be associated with EVs from non-adipocyte origin. For example, 

macrophages are known to express FABP4 and PPAR-γ (Makowski et al. 2001; 

Furuhashi and Hotamisligil 2008).   

Over the last decade, adipose tissue and adipocyte function have held the attention of 

the researchers due to its role in obesity and energy homeostasis, and potential role in 

the pathogenesis of diabetes, CVD and glucose metabolism (Rosen and Spiegelman 

2006). AT is recognised as an endocrine organ that releases adipokines and cytokines, 

thus extending its role into metabolic regulation (Farmer 2006). More recently, it has 

become clear that ADEVs may contribute to AT dysregulation, insulin resistance and 

inflammation (Gao et al. 2017). Some studies have highlighted a paracrine role of 

ADEVs in the crosstalk between adipocytes and macrophages (Deng et al. 2009; 

Mariette E G Kranendonk et al. 2014). For example, differentiation of monocytes into 

macrophages of mixed phenotype (M1/M2) was induced by EVs derived from both 

subcutaneous and visceral adipose tissue explants (Mariette E G Kranendonk et al. 

2014). Our group has previously shown that stressed 3T3-L1 adipocytes produce EVs 
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that act as chemo-attractants for monocytes and primary macrophages (Connolly et al. 

2015). Furthermore, exosomes generated from AT explants was able to integrate into 

recipient cells and cause metabolic disruption. A study by Koeck et al. (2014) showed 

that AT-EVs can dysregulate TGFβ signalling pathways in hepatocytes and impair the 

extracellular matrix, which in theory might contribute to liver fibrosis and link obesity 

to non-alcoholic fatty liver disease (NAFLD) (Koeck et al. 2014). A positive 

correlation has been established between ADEV shedding and BMI; moreover, EVs 

in overweight and obese individuals increased melanoma migration (Lazar et al. 

2016). Adipocytes located in the tumour environment have been implicated in 

promoting tumour progression. EVs have been identified to modulate proliferation and 

survival of a tumour microenvironment by a signalling mechanism between tumour 

cells and stromal cells (Dirat et al. 2010). In the context of obesity, exosomes produced 

by mice adipose tissue explants exerted a pro-atherosclerotic role, by regulating 

macrophage foam cell formation and polarization, providing a link between AT and 

atherosclerosis (Xie et al. 2018). Of particular mention, the adipokine FABP4 has been 

implicated in the development of coronary atherosclerosis (Holm et al. 2011; 

Furuhashi et al. 2016). A study that investigated carotid atherosclerotic lesions of 

nearly 500 subjects recorded high levels of FABP4 in the plaque.  FABP4 contributed 

to the instability of the plaque and increased risk of cardio vascular events (Peeters et 

al. 2011). With obesity-induced inflammation, FABP4 release is exaggerated in AT 

by adipocyte, inherent macrophages and recruited immune cells (macrophages, 

dendritic cells) and potentially harbouring in secreted EV load.  

With this knowledge of a potential role of EVs in causing functional disruption and 

tissue damage, Chapter 5 investigated the role of circulatory ADEVs gathered from 

two cohorts (healthy and obese), in leukocyte adhesion, thus linking obesity and CVD. 

Recently, Crewe et al. (2018) established that EVs can signal between adipocytes and 

endothelial cells. They found that the systemic metabolic state was a regulating factor 

in the EV traffic from adipocytes and transfer of deprived proteins by packaged EVs 

from endothelial cells to adipocytes.  

As discussed in Chapter 1, obese AT marked by increased adiposity and hypoxia, is 

associated with an increased infiltration of proinflammatory macrophages. This gives 

rise to tissue inflammation,  predominantly via TNF-α secreted from large mature 

adipocytes and infiltrated or inherent macrophages (Thomas and Apovian 2017). Our 
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research group has recently shown that EVs generated from an inflamed and hypoxic 

AT model, can increase leukocyte adhesion accompanied by expression of endothelial 

adhesion molecules (Wadey et al., 2019). Connolly et al., (2015) found that hypoxic 

adipocyte (3T3-L1)-derived EVs are enriched in the monocyte chemoattractant 

protein, MCP-1, suggesting an aptitude of these EVs to communicate with monocytes 

and macrophages (Connolly et al. 2015). In the data I presented in chapter 5, ADEVs 

from obese subjects had a profound effect on leukocyte attachment compared to lean 

subjects (& control), established by the expression of VCAM-1 and ICAM-1 (Figure 

5.3). Proinflammatory cytokines such as TNF-α, IL-1, IL-6 and MSP-1 could be 

contained in the EVs and mediate the activation of endothelial cells. I was careful to 

harvest and purify ADEVs as per protocols established in Chapter 4, by coupling SEC 

with UC and sequentially removing non-adipocyte EV populations. One of the 

limitations lies in the small subject numbers in each cohort and the practical difficulties 

in obtaining sufficient amount of plasma from clinics. Although this can be considered 

as a pilot study, the findings of increased leukocyte adhesion in ADEVs derived from 

obese subjects are nevertheless highly novel. As discussed in Chapter 5, this 

observation provides a new pathway linking obesity with vascular dysfunction, and  is 

in agreement with a  similar study conducted in mice where stressed AT released 

exosomes that had pro-atherosclerotic effects embodied through macrophage foam 

cell formation and M1 macrophage polarization (Xie et al. 2018). EV concentrations 

are known to increase in CVD and may contribute to atherosclerotic plaque formation 

and arterial stiffening (Rautou et al. 2011). However, further work is required to 

investigate these mechanisms further. 

In summary, my data provide evidence for the existence of ADEVs in the human 

circulation, identified by adipocyte-specific proteins and adipokines, and their 

potential role in endothelial dysfunction. With EVs emerging as important mediators 

of intercellular communication, ADEVs are being recognised as novel markers of 

adipose tissue health and dysfunction. Adipocyte- and adipose tissue- derived EVs 

may be considered as active players in the pathogenesis of cardiovascular and 

metabolic diseases. On the other hand, they also hold promise as biomarkers and 

therapeutic targets with respect to AT function and obesity 

.  
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6.2 Future directions 

Research on EVs has seen unprecedented growth in recent years. This interest has 

arisen due to their potential roles as signalling molecules, pathogenic mediators, 

biomarkers and therapeutic vehicles. The EV research field is steadily growing, 

however, the isolation and measurement procedures have always been a topic of 

contention. ISEV has laid guidelines for the identification of EVs and defined standard 

procedures for isolation and characterisation (Lötvall et al. 2014). However, research 

studies that are designed under medical setting, it is essential that protocols are 

clinically approved and standardised in order for EVs to be considered as novel 

biomarkers or targets for therapeutic intervention. 

Diagnostic tools for EV enumerations and characterisation are challenging and 

precarious when addressing plasma derived EVs, due to it containing a large number 

of proteins. The magnetic bead and solid phase capture techniques explored in this 

thesis could be developed as an immunoassay to selectively identify and quantify 

specific plasma EV populations by dual staining or testing positive for multiple 

markers (exosomal & cell-origin). This could be developed by adding a blend of 

carefully chosen antibodies to avoid cross-reactivity, which was attempted during 

early phases of this study but was met with limited success. A similar concept was 

used in the development of a one-step assay which was developed as a lateral flow 

immunoassay for the capture of exosomes with CD9 and CD81 (Oliveira-Rodríguez 

et al. 2016).  

Given the evidence for a circulating population of ADEVs, it opens the door to several 

opportunities for research into identifying the types of EVs generated under varying 

systemic metabolic states, their protein signature, and functional role in the 

pathogenesis of metabolic disorders (Amosse et al. 2018). Another avenue for research 

is the pathway and mechanisms underlying the biogenesis of characteristic ADEVs 

under different physiological condition. Studies have established distinctive EV 

populations under pre- versus post adipogenesis, hypoxic versus normoxic, insulin-

impaired EVs, inflammation induced EVs, etc in animal models and tissue explants 

and consequently, it would be interesting to investigate their existence in the 

circulation. With respect to obesity, inflamed AT and CVD has been linked based on 

clinical evidence from cohorts of different disease categories (Willerson 2004; Lopez-
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Candales et al. 2017). EVs with pro-inflammatory character provide an alternative 

pathway for the propagation of endothelial dysfunction and breakdown, which could 

be the focus of further investigation. In parallel, this could also assist and benefit in 

the development of therapeutic strategies for the treatment of obesity driven CVDs 

(Welsh et al. 2017b). Furthermore, the function of ADEVs extends beyond vascular 

damage and my studies point to the potential in exploring other roles and functional 

impact of ADEVs. 
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Appendix 1 

Dialysis 

In an attempt to purify the EV prep, dialysis device called Slide-A-Lyzer™ MINI 

(ThermoScientific) was employed with the use of appropriately sized membrane pores 

and 1ml sample volume. This system was initially validated by assessing a starting 

sample of albumin (mol weight 67kDa) and lysozyme (mol weight 14kDa) using a 

17kDa cut off pore. This molecular weight was chosen to be directly comparable with 

that of FABP4 (one of the key adipocyte markers that also exist as a free protein). 

Having verified the method, this was then applied to 3T3-L1 cell line and results are 

presented in Table I.  

There was no significant change in EV protein concentration over time in the sample 

holder (as assessed by NanoDrop), and a small but measurable increase in buffer 

protein concentration was detected, which implies the amount of free FABP4 protein 

was negligible in the sample. It can be concluded that the FABP4 is less likely to exist 

as free protein instead bound to the EV. However, in the case of plasma EVs, owing 

to the high protein content in blood, one step dialysis is precarious for plasma EVs. 

Hence, other alternate approaches of EV purification was explored.  
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(A) Albumin  

Time (hrs) 
Buffer conc 

(mg/ml) 

Sample conc 

(mg/ml) 

0 0 0.65 

2 0.01 0.65 

4 0 0.66 

overnight 0.01 0.65 

 

(B) Lysozyme 

Time (hrs) 
Buffer conc 

(mg/ml) 

Sample conc 

(mg/ml) 

0 0 4.02 

2 0.01 3.74 

4 1.77 2.68 

overnight 1.77 2.66 

   

(C) 3T3-L1 cell culture media  

Time (hrs) 
Buffer 

conc(mg/ml),  

3T3 EV sample 

conc (mg/ml),  

0 0 0.8 

2 0.01 0.79 

4 0.01 0.77 

6 0.01 0.77 

overnight 0.01 0.77 

 

  

 

 

 

Table I: Dialysis of control proteins and 3T3 EVs using a 17kDa cut off pore. 

0.1ml of protein sample of albumin, lysozyme and 3T3-L1 culture media 

supernatant were loaded into the sample cup and placed into the dialysis buffer. 

Protein concentration of the samples were measured by Nanodrop at regular 

interval at hour 1, 2 and 4 during an overnight dialysis. The mean concentration 

was recorded for (A) Albumin (B) Lysozyme and (C) cell culture supernatant, n=3. 


