
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/12 5 8 9 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Booth,  Rich a r d  , Casini, Giova n ni, M eyer, Tho m a s  a n d  Varzinczak, Ivan  2 0 1 9.  O n

r a t ion al e n t ailm e n t  for  P ro posi tion al  Typic ali ty Logic. Artificial In t ellige nc e  2 7 7  ,

1 0 3 1 7 8.  1 0.1 01 6/j.a r tin t.20 1 9.10 3 1 7 8  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.10 1 6/j.a r tin t.20 1 9.1 03 1 7 8  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



On Rational Entailment for Propositional Typicality

Logic✩

Richard Bootha, Giovanni Casinib, Thomas Meyer,✩✩c, Ivan Varzinczakd

aCardiff University, United Kingdom
bCSC, University of Luxembourg, Luxembourg

cUniversity of Cape Town and CAIR, South Africa
dCRIL, Univ. Artois & CNRS, France

Abstract

Propositional Typicality Logic (PTL) is a recently proposed logic, obtained by

enriching classical propositional logic with a typicality operator capturing the

most typical (alias normal or conventional) situations in which a given sen-

tence holds. The semantics of PTL is in terms of ranked models as studied in

the well-known KLM approach to preferential reasoning and therefore KLM-

style rational consequence relations can be embedded in PTL. In spite of the

non-monotonic features introduced by the semantics adopted for the typicality

operator, the obvious Tarskian definition of entailment for PTL remains mono-

tonic and is therefore not appropriate in many contexts. Our first important

result is an impossibility theorem showing that a set of proposed postulates that

at first all seem appropriate for a notion of entailment with regard to typicality

cannot be satisfied simultaneously. Closer inspection reveals that this result is

best interpreted as an argument for advocating the development of more than

one type of PTL entailment. In the spirit of this interpretation, we investigate

three different (semantic) versions of entailment for PTL, each one based on

the definition of rational closure as introduced by Lehmann and Magidor for

KLM-style conditionals, and constructed using different notions of minimality.
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1. Introduction

Propositional Typicality Logic (PTL) [3, 4] is a recently proposed logic allow-

ing for the representation of and reasoning with an explicit notion of typicality.

It is obtained by enriching classical propositional logic with a typicality oper-

ator •, the intuition of which is to refer to those most typical (or normal or5

conventional) situations in which a given sentence holds. PTL is characterised

using a preferential semantics similar to that originally proposed by Shoham [42]

and extensively developed by Kraus et al. [33] and Lehmann and Magidor [35]

in the propositional case, with close connections to the formalisms developed

by Pearl and Goldszmidt [39, 40], and by others [6, 14, 15, 31, 41, 19, 20, 21] in10

more expressive languages.

In spite of the non-monotonic features introduced by the adoption of a pref-

erential semantics for •, the obvious definition of entailment for PTL, i.e., the

one based on a Tarskian notion of logical consequence, remains monotonic.

Of course, such a notion of entailment is inappropriate in non-monotonic con-15

texts, in particular when reasoning about typicality, as is already clear from

an enriched version of the classical Tweety example: If birds typically fly, and

penguins are birds (and that is all we know), we would expect to be able to

conclude that typical penguins are typical birds, and therefore that typical pen-

guins fly. Learning that penguins typically do not fly should lead us to conclude20

that penguins are not typical birds, and to retract the conclusions about typical

penguins being typical birds, and about typical penguins flying.

In this paper, we investigate three semantic versions of entailment for PTL,

constructed using three different forms of minimality. All these are based on the

notion of rational closure as defined by Lehmann and Magidor [35] for KLM-25

style conditionals in a propositional setting. We show that they can be viewed

as distinct extensions of rational closure, equivalent with respect to the condi-

tional language originally proposed by Kraus et al., but different in the PTL
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framework.

We shall study the aforementioned forms of entailment in an abstract formal30

setting, obtained by proposing a set of postulates that, at first glance, seem

appropriate for any notion of entailment with regard to typicality. Our first

important result is a negative one, though. It is an impossibility result proving

that the set of postulates cannot all be satisfied simultaneously. A more detailed

analysis of the result shows that, instead of being viewed as negative, this result35

should rather be interpreted as an indication that PTL allows for different types

of entailment, corresponding to different subsets of the full set of postulates we

provide. In line with this argument, we define three types of entailment for

PTL corresponding to distinct subsets of the postulates, referred to as LM-

entailment, PT-entailment, and PT’-entailment, a modification of the latter.40

Our argument for more than one type of entailment for the same logic is in

line with the proposal put forward by Lehmann in the context of entailment for

conditional knowledge bases, where he proposes both prototypical reasoning and

presumptive reasoning as acceptable forms of entailment [34]. We elaborate on

this point in Section 8, but the gist of the argument is the acknowledgement of45

the existence of more than one form of entailment for the same representational

formalism.

The remainder of the present paper is structured as follows. Section 2 pro-

vides the background and notation for the rest of the work. In Section 3 we

discuss the complexities surrounding a notion of entailment for PTL. In Sec-50

tion 4 we put forward our postulates and show the impossibility result. In

Section 5 we define LM-entailment while Section 6 is devoted to the definition

of PT-entailment, and Section 7 to the definition of PT’-entailment. Section 8

addresses the implications of the impossibility result, making the case for three

forms of PTL entailment. Section 9 discusses related work, while Section 1055

concludes and discusses future work.
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2. Logical preliminaries

Let P be a finite set of propositional atoms with at least two elements.1

We use p, q, . . . as meta-variables for atoms. Propositional sentences (and, in

later sections, sentences of the richer language we shall introduce in Section 2.360

below) are denoted by α, β, . . ., and are recursively defined in the usual way:

α ::= p | ¬α | α ∧ α | ⊤ | ⊥. All the other Boolean connectives (∨, →, ↔, . . . )

are defined in terms of ¬ and ∧ in the standard way. With L we denote the set

of all propositional sentences.

We denote by U the set of all propositional valuations v : P −→ {0, 1}, i.e.,65

U := {0, 1}P . Whenever it eases the presentation, we shall represent valuations

as sets of literals (i.e., atoms or negated atoms), with each literal indicating

the truth-value of the respective atom. Thus, for the logic generated from

P = {p, q}, the valuation in which p is true and q is false will be represented

as {p,¬q}. Satisfaction of a sentence α ∈ L by v ∈ U is defined in the usual70

truth-functional way and is denoted by v  α.

2.1. KLM-style rational conditionals

In the conditional logic investigated by Kraus et al. [33], often referred to

as the KLM approach, one is interested in (defeasible) conditionals of the form

α |∼ β, read as “typically, if α, then β” (or, depending on the example at hand,75

as “αs are typically βs” and variants thereof). For instance, if P = {b, f, p},

where b, f and p stand for, respectively, “being a bird”, “being able to fly”, and

“being a penguin”, the following are examples of defeasible conditionals: b |∼ f

(birds typically fly), p ∧ b |∼ ¬f (penguins that are birds typically do not fly).

Kraus et al. put forward the following list of properties that the condi-

tional |∼ ought to satisfy in order to be considered as appropriate in a non-

monotonic setting (these properties have been discussed at length in the non-

1This (reasonable) assumption is needed for technical reasons.
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monotonic reasoning community and we shall not do so here):

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ

α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ

α ∨ β |∼ γ
(RW)

α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ β |∼ γ

A conditional satisfying such properties is called a preferential conditional.

We can require |∼ to satisfy other properties as well, one of which is rational

monotonicity:

(RM)
α |∼ γ, α 6|∼ ¬β

α ∧ β |∼ γ

A preferential conditional also satisfying (RM) is called a rational conditional.80

The semantics of KLM-style rational conditionals is given by structures

called ranked interpretations [35]:

Definition 2.1 (Ranked interpretation) A ranked interpretation R is a

function from U to N ∪ {∞} satisfying the following convexity property: for

every i ∈ N, if R(v) = i, then, for every j such that 0 ≤ j < i, there is a v′ ∈ U85

for which R(v′) = j.

Observe that R generates a modular order ≺R on U as follows: u ≺R v if and

only if R(u) < R(v) (where i < ∞ for every i ∈ N). If there is no ambiguity,

we will omit the subscript and refer to the modular order as ≺.2

In a ranked interpretation R the intuition is that valuations lower down in90

the ordering are deemed more normal (or typical) than those higher up, with

those with an infinite rank (a rank of ∞) being regarded as so atypical as to be

impossible.

The possible valuations in R are defined as follows: UR := {u ∈ U | R(u) <

∞}. Given α ∈ L, we let JαKR := {v ∈ UR | v  α}. Note that it may be95

possible that R(u) = ∞ for every u ∈ U , and therefore that UR = ∅.

2Recall that, given a set X, ≺ ⊆ X × X is modular if and only if there is total order ≤

on a set Ω and a ranking function rk : X 7→ Ω s.t. for every x, y ∈ X, x ≺ y if and only if

rk(x) < rk(y).
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Given α, β ∈ L, we say R satisfies (is a ranked model of) the conditional α |∼

β (denoted R  α |∼ β) if all the ≺-minimal α-valuations also satisfy β, i.e., if

min≺JαKR ⊆ JβKR. We say R is a ranked model of a set of conditionals C if

R  α |∼ β for every α |∼ β ∈ C, and that a set of conditionals C is satisfiable100

only if it has a ranked model R for which UR 6= ∅. Observe that if C is

unsatisfiable, it has as its only ranked model the ranked interpretation R for

which UR = ∅.

Sometimes it is convenient to represent a ranked interpretation R as a

partition (L0, . . . , Ln−1, L∞) of U where, for i ∈ N ∪ {∞}, Li = {u ∈ U |105

R(u) = i} and where n is some i ∈ N for which Li = ∅. That is, for each

i ∈ {0, . . . , n− 1,∞}, Li is the set of all valuations of rank i. We refer to such

a ranked interpretation as an n-rank interpretation.

Observe that the partition above has a finite number of cells, but includes

the possibility for some of the Lis to be empty. This is necessary for three110

reasons. First, the cell L∞ (the set of all impossible valuations) may be empty.

Second, it may be the case that L∞ = U . That is, it may be that all valuations

are impossible. Third, as we shall see below, this representation will often be

used to compare ranked interpretations. In cases where such ranked interpre-

tations do not have the same number of non-empty cells, this representation115

allows us to represent them as having the same (finite) number of cells, say

(L0, . . . , Ln−1, L∞) and (M0, . . . ,Mn−1,M∞), where n is the smallest integer

such that Li =Mi = ∅.

Figure 1 depicts an example of a ranked interpretation for P = {b, f, p}

satisfying both b |∼ f and p ∧ b |∼ ¬f. (In our graphical representations of the120

ranked interpretations we frequently omit the rank ∞.)

2 {b, f, p}

1 {b,¬f,¬p}, {b,¬f, p}

0 {¬b,¬f,¬p}, {¬b, f,¬p}, {b, f,¬p}

Figure 1: A ranked interpretation for P = {b, f, p}.
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For a better understanding of the reasons behind the aforementioned prop-

erties and the semantic constructions, the reader is referred to the work of

Kraus et al. [33, 35].

2.2. Rational closure125

Given a set of conditionals C, reasoning in the KLM framework amounts

to the derivation of new conditionals from C. Towards this end, Lehmann and

Magidor [35] proposed what they refer to as rational closure. Here we focus on

the semantic version of rational closure they present.

Their idea was to define a preference relation ELM over the set of possible130

ranked interpretations and then to base entailment on choosing only the most

preferred, i.e., minimal w.r.t. ELM, ranked models of C.

The relation ELM can be described as follows.

Definition 2.2 (LM-preference) Let R1 = (L0, . . . , Ln−1, L∞) and R2 =

(M0, . . . ,Mn−1,M∞) be any pair of ranked interpretations. Then,

R1 ELM R2 if either Li =Mi for all i ∈ {0, . . . , n− 1,∞},

or Lj ⊇Mj for the smallest j ≥ 0 s.t. Lj 6=Mj .

R1 ⊳LM R2 if and only if R1 ELM R2 and not R2ELMR1.

ELM forms a partial order over ranked interpretations, and, for every satisfi-135

able set of conditionals C, there exists a unique ELM-minimum element Rrc(C)

among all the ranked models of C (see Proposition A.2 in Appendix A). We will

refer to this element as the LM-minimum.

This is not exactly the semantic representation defined by Lehmann and

Magidor, but this representation can easily be derived from other work on ra-140

tional closure, such as that of Booth and Paris [2] (see Appendix A).

Proposition 2.1 Given a set of conditionals C and a conditional α |∼ β. α |∼ β

is in the rational closure of C iff:

1. C is unsatisfiable; or
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2. Rrc(C)  α |∼ β.145

The idea is that those ranked interpretations should be preferred in which

as many valuations as possible are judged to be as plausible as the background

knowledge C allows. Observe also that one of the consequences of this ordering

is that, all other things being equal, a ranked interpretation in which a valuation

is deemed to be possible will be preferred over one in which the same valuation150

is seen as impossible.

Then the rational closure of C is the set |∼rc
C := {(α, β) | Rrc(C)  α |∼ β}.

Rational closure is commonly viewed as the basic (although certainly not the

only acceptable) form of entailment over propositional conditional knowledge

bases, on which other, more venturous, forms of entailment can be constructed.155

It is therefore an appropriate choice on which to base our investigations into

versions of entailment for PTL.

2.3. Propositional Typicality Logic

PTL [3] is a logical formalism explicitly allowing for the representation of

and reasoning about a notion of typicality. Syntactically, it extends classical160

propositional logic with a typicality operator •, the intuition of which is to cap-

ture the most typical (alias normal or conventional) situations or worlds. Here

we shall briefly present the main results about PTL relevant for our purposes.

The language of PTL, denoted by L•, is recursively defined by:

α ::= p | ¬α | α ∧ α | ⊤ | ⊥ | •α

As before, p denotes an atom and all the other Boolean connectives are defined

in terms of ¬ and ∧.165

Let P = {b, f, o, p}, where b, f and p are as before and o represents “being an

ostrich”. The following are examples of L•-sentences: •b (being a typical bird),

o→¬•b (ostriches are not typical birds), (p∨o) ↔ (b∧•¬f) (being a penguin or

an ostrich is equivalent to being a bird and being a typical non-flying creature).

Intuitively, a sentence of the form •α is understood to refer to the typical170

situations in which α holds. Note that α can itself be a •-sentence. The se-
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mantics of PTL is also in terms of ranked interpretations (see Definition 2.1).

Satisfaction is defined inductively in the classical way, adding the following con-

dition: v  •α if v  α and there is no v′ such that v′ ≺ v and v′  α.

That is, given R, J•αKR := min≺JαKR. In the ranked interpretation R of Fig-175

ure 1, we have J•bKR = {{b, f,¬p}}, J•pKR = {{b,¬f, p}} and J•(b ∧ ¬f)KR =

{{b,¬f,¬p}, {b,¬f, p}}.

We say that α ∈ L• is satisfiable in a ranked interpretation R if JαKR 6= ∅,

otherwise α is unsatisfiable in R. We say that R is a ranked model of α (denoted

R  α) if JαKR = UR. Observe that when UR = ∅, then R is a model of every180

α ∈ L•.

For X ⊆ L• we define Mod(X) := {R | R  α for every α ∈ X}. X is

satisfiable iff X has at least one model R for which UR 6= ∅. Observe that if X

is unsatisfiable, it has as its only ranked model the ranked interpretation R for

which UR = ∅. A PTL knowledge base is a set of sentences KB ⊆ L•.185

A useful property of the typicality operator • is that it allows us to express

KLM-style conditionals. That is, for every ranked interpretation R and every

α, β ∈ L, R  α |∼ β if and only if R  •α → β. The converse does not

hold since it can be shown that there are L•-sentences that cannot be expressed

as a set of KLM-style |∼-statements on L. To give an example (taken from190

Booth et al. [4]), assuming P = {p, q} then •p is one such sentence, since •p

has exactly four ranked models, corresponding to the cases in which UR is

respectively taken to be (1) {{p, q}, {p,¬q}}, (2) {{p, q}}, (3) {{p,¬q}} and

(4) ∅ (and where, in each case the ordering ≺R is taken to be empty). Yet there

exists no set X of KLM-style |∼-statements with exactly these models.195

The representation result below, extending Theorem 3.12 of Lehmann and

Magidor [35] to L•, shows that the formalisation of the KLM rational condi-

tional |∼ inside PTL is appropriate.

Observation 1 (Booth et al. [4], Corollary 22) Let R be a ranked inter-

pretation and let |∼R := {(α, β) | α, β ∈ L• and R  •α → β}. Then |∼R is a200

rational conditional. Conversely, for every rational conditional |∼, there exists

9



a ranked interpretation R such that, for every α, β ∈ L•, α |∼ β if and only if

R  •α→ β.

For more details on PTL and the aforementioned properties, the reader is

referred to the work by Booth et al. [4].205

3. The entailment problem for PTL

The purpose of this section is to provide a more formal motivation for the

remainder of the paper. From the perspective of knowledge representation and

reasoning (KR&R), a central issue is that of what it means for a PTL sentence

to follow from a PTL knowledge base KB. An obvious approach to the matter210

is to embrace the notion of entailment advocated by Tarski [43] and largely

adopted in the logic-based KR&R community.

Definition 3.1 (Ranked entailment and consequence) Let KB be a PTL

knowledge base and α ∈ L•. We say KB ranked-entails α (noted KB |≈0 α)

if Mod(KB) ⊆ Mod(α). Its associated ranked consequence operator is defined215

by setting Cn0(KB) := {α ∈ L• | KB |≈0 α}.

As we shall see below, this version of entailment is not appropriate in the con-

text of PTL for a number of reasons. For one, consider the following definition

of a conditional induced from a set of PTL sentences.

Definition 3.2 (Induced conditional relation) Let KB ⊆ L•. We define220

|∼KB := {(α, β) | α, β ∈ L and •α→ β ∈ KB}.

It is worth investigating whether |∼Cn0(KB) is rational for a PTL knowledge

base KB, i.e., whether it satisfies all the KLM properties for rationality from Sec-

tion 2.1. The following proposition, which mimics a similar result by Lehmann

and Magidor in the propositional case, shows that this is not the case:225

Observation 2 (Booth et al. [4], Proposition 25) For a PTL knowledge base

KB, |∼Cn0(KB) is a preferential conditional, but is not necessarily a rational con-

ditional.
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Hence, ranked consequence as defined above delivers an induced defeasible

conditional that is preferential but that need not be rational. This forms an230

argument against ranked entailment being an appropriate notion of entailment

for PTL.

One of the principles to give serious consideration when investigating PTL

entailment is the presumption of typicality [34, p. 63]. Informally, this means

that one should assume that every situation is as typical as possible. Sections 4235

and 6 contain a formalisation of this principle. For now, we illustrate it with an

example.

Example 3.1 Let KB1 = {p → b, •b → f} (penguins are birds, and typical

birds fly). Given just this information about birds and penguins, it is rea-

sonable to expect •p → •b (typical penguins are typical birds), and therefore240

•p → f (typical penguins fly), to follow from KB1. With ranked entailment,

these requirements are not met, as there is a ranked model of KB1, depicted

in Figure 2, invalidating the expected conclusions. This is so because ranked

entailment, being a Tarskian relation, is not ampliative, i.e., it does not allow

for venturing beyond what necessarily follows from the knowledge base. �245

2 {b, f, p}

1 {b,¬f,¬p}, {b,¬f, p}

0 {¬b,¬f,¬p}, {¬b, f,¬p}, {b, f,¬p}

Figure 2: A ranked model of KB1 = {p → b, •b → f} satisfying neither •p → •b nor •p → f.

Besides requiring PTL entailment to be ampliative, we also want it to be

defeasible, that is, the conclusions derived under the presumption of typicality

in an ampliative way can be retracted in case of new conflicting information.

This is illustrated by the following example.

Example 3.2 Assume •p → •b and •p → f (somehow) could follow from KB1250

in Example 3.1, but then we are informed that typical penguins do not fly. That

11



is, let KB2 = KB1 ∪ {•p → ¬f}. While we want p → ¬•b (penguins are not

typical birds) to follow from KB2, we do not want •p → f to follow from KB2,

which is not possible with ranked entailment. �

4. Towards a notion of entailment for PTL255

We have seen that ranked entailment has some serious drawbacks in a non-

monotonic context. Therefore, the question as to what logical consequence

in PTL should mean remains mostly unanswered so far. In this section, we first

specify and discuss a list of postulates formalising the requirements motivated

in the last section and that, at first glance, seem reasonable for an appropriate260

notion of entailment in PTL. In the subsequent section, we consider specific

alternatives to ranked entailment and check them against our postulates.

We start by introducing some notation. With |≈? ⊆ P(L•) × L•, we de-

note any entailment relation on the language of PTL. Given an entailment

relation |≈?, its associated consequence operator is defined in the usual way by265

setting, for each KB ⊆ L•, Cn?(KB) := {α ∈ L• | KB |≈? α}.

Following the tradition in the non-monotonic reasoning literature, the obvi-

ous starting point is to consider some of the basic properties of classical conse-

quence operators.

P1 For every KB ⊆ L•, KB ⊆ Cn?(KB) (Inclusion)270

P2 For every KB,KB′ ⊆ L•,

if KB ⊆ KB′ ⊆ Cn?(KB), then Cn?(KB′) = Cn?(KB) (Cumulativity)

Note that Cumulativity and Inclusion imply Idempotence. Idempotence,

formalised as

For every KB ⊆ L•, Cn?(KB) = Cn?(Cn?(KB)) (Idempotence)275

can be derived from Cumulativity by setting KB′ = Cn?(KB), and letting In-

clusion impose the satisfaction of the antecedent. Idempotence indicates that

a consequence operator behaves as a ‘once-off’ operation, that is, as a closure

12



operator. There is agreement in the literature that both Inclusion and Cumu-

lativity are desirable properties to have [36, p.43].280

Ranked entailment, as defined in Section 3, satisfies Properties P1 and P2.

Nevertheless, Cn0(·), the associated consequence relation of ranked entailment,

also satisfies the classical property of Monotonicity: If KB ⊆ KB′, then Cn0(KB) ⊆

Cn0(KB′). As seen in Example 3.2, this is a property that we do not want Cn?(·)

to satisfy (certainly not in general).285

So, we require Cn?(·) to be a non-monotonic consequence operator. This

amounts to requiring Cn?(·) to satisfy the following two postulates:

P3 For every KB ⊆ L•, Cn0(KB) ⊆ Cn?(KB) (Ampliativeness)

P4 For some KB,KB′ ⊆ L•, KB ⊆ KB′ but Cn?(KB) 6⊆ Cn?(KB′) (Defeasibil-

ity)290

Ampliativeness, a property generalising supra-classicality [37] (where the

basic underlying entailment relation is classical), says that Cn?(·) should be at

least as venturous as its underlying ranked entailment. Defeasibility specifies

that Cn?(·) should be flexible enough to disallow previously derived conclusions

in the light of new (possibly conflicting) information. In Example 3.1, assuming295

•p → f ∈ Cn?(KB1) is the case, then •p → f should no longer be concluded

if •p → ¬f is added to KB1. Note that adding Defeasibility to Ampliativeness

actually implies a strict version of Ampliativeness which says Cn?(·) should in

some cases be more venturous than its underlying ranked entailment. (Since, if

Cn?(KB) = Cn0(KB) for all KB, then Cn?(·) is just ranked entailment, which300

is monotonic.)

P1, P2 and P3 together imply that the closure operation Cn?(·) gives as

output a theory that is closed under Cn0(·).

Lemma 4.1 If Cn?(·) satisfies P1, P2 and P3, then, for every KB ⊆ L•,

Cn?(KB) = Cn0(Cn?(KB))

Proof:

Cn0(·) is a Tarskian consequence relation (see Definition 3.1), and, as such, it305
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satisfies Inclusion. That is, for every set of formulas S, S ⊆ Cn0(S). To see

it, it is sufficient to check that, according to Definition 3.1, for every α ∈ S,

S |≈0 α. Hence, since Cn0(·) satisfies Inclusion, Cn?(KB) ⊆ Cn0(Cn?(KB)).

By P3 we have Cn0(Cn?(KB)) ⊆ Cn?(Cn?(KB)), that, by Idempotence (con-

sequence of P1 and P2), implies Cn0(Cn?(KB)) ⊆ Cn?(KB).310

�

Similarly to KLM in the propositional case, we would ideally like the de-

feasible conditional induced by Cn?(KB) (see Definition 3.2) to satisfy all the

rationality properties:

P5 For every KB ⊆ L•, |∼Cn?(KB) is a rational conditional relation on L (Con-315

ditional Rationality)

As observed above, P5 requires the defeasible conditional induced by Cn?(KB)

to be rational—that is, to satisfy all the rationality properties. But from Theo-

rem 3.12 of Lehmann and Magidor [35] it follows that every rational defeasible

conditional can be obtained from a single ranked interpretation. So, from this320

it follows that requiring the defeasible conditional induced by Cn?(KB) to be

rational amounts to requiring that the defeasible conditional be generated by a

single ranked interpretation. That is, by courtesy of this result, P5 can also be

rephrased as follows:

P5’ For every KB ⊆ L•, there is a ranked interpretation R s.t., for every325

α, β ∈ L, α |∼Cn?(KB) β if and only if R  •α→ β. (|∼ Single Model)

The next postulate we consider, which is easily shown to be a strengthening

of P5, simply applies this same requirement, not just to defeasible statements,

but to all statements expressible in PTL:

P6 For every KB ⊆ L•, there is a ranked interpretation R s.t., for all α ∈ L•,330

α ∈ Cn?(KB) if and only if R  α (Single Model)

An important special case of a PTL knowledge base is when the individual

elements of KB correspond to KLM-style conditionals.
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Definition 4.1 ((Propositional) conditional knowledge base) A PTL knowl-

edge base KB will be called a (propositional) conditional knowledge base if335

each element of KB is of the form •α→ β, for α, β ∈ L.

The next postulate says that if KB is a propositional conditional knowledge

base, then the result should coincide with Lehmann and Magidor’s definition of

rational closure:

P7 For every conditional knowledge base KB, |∼Cn?(KB)= |∼rc
KB (Respects340

Rational Closure)

P7 implies P4, since rational closure is a non-monotonic closure operation.

The following property was shown by Lehmann and Magidor to be satisfied

by the rational closure for conditional knowledge bases.

P8 For every KB ⊆ L• and α ∈ L, α ∈ Cn?(KB) if and only if α ∈ Cn0(KB)345

(Strict Entailment)

P8 states that Cn?(·) should coincide with ranked entailment for those sen-

tences not involving typicality. The motivation for Strict Entailment is twofold.

First, it is a proposal for ranked entailment to be the lower bound for entail-

ment w.r.t. classical sentences (those not involving typicality), a proposal that350

is not controversial. But secondly, it also requires entailment of classical sen-

tences to correspond to exactly those sanctioned by ranked entailment. This

can be viewed as adhering to the principle of minimal change. Being Tarskian,

ranked entailment is monotonic, and the argument is therefore that, while non-

monotonicity may be applicable for sentences involving typicality, it should not355

be applicable to classical statements.

We are also interested in a couple of progressively weaker versions of Strict

Entailment (the reasons for that will become clear later on). The first restricts

it to hold only when KB is a conditional knowledge base.

P9 For every conditional knowledge base KB and α ∈ L, α ∈ Cn?(KB) if and360

only if α ∈ Cn0(KB) (Conditional Strict Entailment)
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Note that P7 also implies P9. To see this, first it is easy to check that every

propositional formula α is equivalent to the PTL formula •¬α→ ⊥.

Proposition 4.1 For every formula α ∈ L and every ranked interpretation R,

R  α iff R  •¬α→ ⊥.365

Proof:

R  α implies JαKR = UR, that is equivalent to R  ¬α → ⊥, that, in turn,

implies R  •¬α → ⊥. In the opposite direction, R  •¬α → ⊥ means that

for every u ∈ UR, u 6 •¬α. u 6 •¬α for every u ∈ UR implies that for every

u ∈ UR, u 6 ¬α: if we had a valuation v satisfying ¬α in some cell Li, with370

i <∞, we would either have that v  •¬α, or there would be a valuation v′ in

some Lj , j < i, such that v′  •¬α. Consequently, u  α for every u ∈ UR,

that is, R  α. �

P7 implies that, for every α ∈ L and every conditional knowledge base

KB, (α,⊥) ∈|∼Cn?(KB) iff (α,⊥) ∈|∼rc
KB. A well-known result by Lehmann375

and Magidor [35, Lemma 5.16] states that for every α ∈ L and every condi-

tional knowledge base KB, α |∼ ⊥ is in the rational closure of KB iff α |∼ ⊥

is a ranked consequence of KB, that is, (α,⊥) ∈|∼rc
KB iff (α,⊥) ∈|∼Cn0(KB).

Hence we have that for every α ∈ L and every conditional knowledge base KB,

(α,⊥) ∈|∼Cn?(KB) iff (α,⊥) ∈|∼Cn0(KB), that, together with Proposition 4.1,380

implies P9.

In turn, P9 implies that entailment for PTL coincides with classical propo-

sitional entailment in the case of propositional knowledge bases, as formalised

by the next property.

P9’ For every KB ⊆ L and α ∈ L, α ∈ Cn?(KB) if and only if KB entails α in385

classical propositional logic. (Classical Entailment)

Since for every KB∪{α} ⊆ L, KB entails α in classical propositional logic if

and only if α ∈ Cn0(KB), and any α ∈ L is equivalent •¬α→ ⊥, P9’ is indeed

a weakening of P9 (provided that P8 also holds).
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Finally, we consider another property shown by Lehmann and Magidor to390

be satisfied by the rational closure for conditional knowledge bases.

P10 For every KB ⊆ L• and α ∈ L, •⊤ → α ∈ Cn?(KB) if and only if

•⊤ → α ∈ Cn0(KB) (Typical Entailment)

The motivation for P10 is similar to that for P8 above in that we want

to constrain what should hold in the most typical situations. That is, given a395

knowledge base, the property speaks to which formulas of the form •⊤ → α

should follow. Ranked entailment clearly provides a lower bound for such a

kind of statement, but P10 also proposes to consider ranked entailment as the

upper bound, thereby requiring that the set of statements •⊤ → α entailed

by a knowledge base should correspond exactly to those sanctioned by ranked400

entailment. The argument for this is that ranked entailment is monotonic and,

applying the principle of minimal change, it is only when dealing with atypical

situations that ranked entailment is not always sufficient.

Although these postulates all seem reasonable on their own, it turns out

that they cannot all be satisfied simultaneously. In fact, this impossibility result405

already holds for a strict subset of the postulates.

Theorem 4.1 There is no PTL consequence operator Cn?(·) satisfying all of P1,

P2, P3, P5, P8 and P10.

Proof:

Regarding P5, requiring |∼Cn?(·) to satisfy (RM) is equivalent to requiring that,410

for every knowledge base KB and whatever formulas α, β, γ, if •α→ γ ∈ Cn?(·)

and •α→ β /∈ Cn?(·), then we have •(α ∧ ¬β) → γ ∈ Cn?(·).

Assume Cn?(·) satisfies the given properties, and let KB = {•⊤ → p, •¬p→

•q}. By Strict Entailment (P8), p 6∈ Cn?(KB) (because of e.g. the 2-rank

model ({{p,¬q}}, {{¬p, q}}) of KB). By Typical Entailment (P10), •⊤ →415

¬q 6∈ Cn?(KB) (because of e.g. the 1-rank model ({{p, q}, {p,¬q}}) of KB). By

Inclusion (P1) •⊤ → p ∈ Cn?(KB), and then by (RM) we must conclude that
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•(⊤ ∧ q) → p ∈ Cn?(KB), that is, (⊤ ∧ q, p) ∈|∼Cn?(KB); since |∼Cn?(·) must

satisfy LLE, the latter implies (q, p) ∈|∼Cn?(KB), that is, •q → p ∈ Cn?(KB).

Since by Inclusion (P1) •¬p → •q ∈ Cn?(KB), we have {•q → p, •¬p →420

•q} ⊂ Cn?(KB). Since •¬p → p ∈ Cn0({•q → p, •¬p→ •q}) and Cn0(·) is

monotonic, we have •¬p → p ∈ Cn0(Cn?(KB)). Then, by Lemma 4.1, that

assumes P1, P2 and P3, we have that •¬p→ p ∈ Cn?(KB).

We have that p ∈ Cn0({•¬p→ p}) holds: let R  •¬p → p, and let v be

a world in R s.t. v  ¬p. v cannot satisfy •¬p, since we would have that425

v  ¬p ∧ p; but v  ¬p and v 6 •¬p implies that in R there is a world w, such

that w ≺ v and w  •¬p, that, again, implies w  ¬p ∧ p.

From p ∈ Cn0({•¬p→ p}), •¬p → p ∈ Cn?(KB), and the monotonicity

of ranked entailment, we must conclude also p ∈ Cn0(Cn?(KB)), that is, by

Lemma 4.1, p ∈ Cn?(KB), against P8. �430

While, at first glance, this seems to be a negative result, our contention is

that it should be interpreted as an indication that a logic as expressive as PTL

admits more than one form of entailment. We elaborate directly on this point

in Section 8, and indirectly in Sections 5 and 6, where we define and discuss two

instances of entailment for PTL.435

5. LM-entailment

We now come to our first construction of an entailment relation in PTL. We

first observe that there is nothing to stop us from using the preference relation

ELM (see Section 2.2) to compare ranked interpretations of any PTL knowledge

base KB. The question then is, does there always exist a unique LM-minimum440

element of the ranked models of KB, as there does in the restricted conditional

case? And if so, how can we construct it? We now answer these questions.

We assume as input a PTL knowledge base KB, where each sentence α ∈ KB

is in normal form:
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Definition 5.1 (Normal form) α ∈ L• is in normal form if it is of the445

form
∧

i≤t •θi → (φ ∨
∨

i≤s •ψi), where t, s ≥ 0 and the θi, φ and ψi are all

purely propositional sentences.

Theorem 5.1 The normal form is complete for L•, i.e., for every sentence

α ∈ L• there is a (finite) set of sentences X ⊆ L•, each one in normal form,

such that Mod(α) = Mod(
∧
X).450

Proof:

From the results by Booth et al. [3, Section 4], it follows that we need only

consider sentences with non-nested instances of the typicality operator. So we

let α be such a sentence. We let the set of typicality atoms be the propositional

atoms occurring in L• together with every sentence of the form •β where β is455

a propositional sentence (we refer to the latter as pure typicality atoms). And

we define the set of typicality literals in the obvious way: the set of typicality

atoms and their negations. The set of pure typicality literals consists of the pure

typicality atoms and their negations.

Now we define typicality conjunctive normal form as a conjunctive normal460

form defined on typicality atoms. It follows immediately that α can be rewritten

as a sentence, say α′, in typicality conjunctive normal form. Let X ′ be the set

of conjuncts occurring in α′. We show below how to rewrite each conjunct in X ′

into a sentence in normal form. The resulting set X of sentences in normal form

is the set referred to above.465

By construction, each sentence γ ∈ X ′ is a disjunction of typicality literals.

We separate them into three disjoint sets, the set of propositional literals, the

set of positive pure typicality literals (with cardinality of, say t, where t ≥ 0)

and the set of negative pure typicality literals (with cardinality of, say s, where

s ≥ 0). Let φ be the disjunction of propositional literals, denote the s positive470

pure typicality literals by ψ1, . . . , ψs, and the t negative pure typicality literals

by θ1, . . . θt. It follows immediately that γ can be rewritten as the sentence
∧

i≤t θi → (φ ∨
∨

i≤s ψi). �
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For any ranked interpretation R, and S ⊆ UR, let R∞
S be the ranked in-

terpretation such that R∞
S (v) = R(v) for every v ∈ S, and R∞

S (v) = ∞ for475

every v ∈ U \ S. That is, R∞
S is the ranked interpretation obtained from R

by turning all valuations not in S into impossible valuations. Similarly, let R1
S

be the ranked interpretation such that R1
S(v) = R(v) for every v ∈ S, and

R1
S(v) = R(v) + 1 for every v ∈ U \S. That is, R1

S is the ranked interpretation

obtained from R by increasing the rank of all valuations not in S by 1.480

Given a PTL knowledge base KB we now define a ranked interpretation

R∗
KB, obtained from KB, as follows:

Step 1 Set R0(v) := 0 for all v ∈ U , S0 := ∅, and i := 1;

Step 2 S1 := JKBKR0 (separate the valuations which satisfy KB w.r.t. the cur-

rent ranked interpretation R0 from those that do not);485

Step 3 If Si = Si−1, then R∗
KB := (Ri)

∞
Si

, and stop. (if there is no change in

the new Si then set the rank of those valuations that do not satisfy KB

w.r.t. Ri to ∞, let R∗
KB be the interpretation that remains, and stop);

Step 4 Otherwise Ri := (Ri−1)
1
Si

(otherwise create a new ranked interpretation

Ri by increasing the rank of every valuation not in Si by 1);490

Step 5 Si+1 := JKBKRi and i := i + 1 (separate the valuations which satisfy

KB w.r.t. the current ranked interpretation Ri from those that do not, and

increment i);

Step 6 Go to Step 3.

Algorithm 1 below gives a compact description of the steps above. Note that495

if the input to the algorithm, KB, is unsatisfiable, the ranked interpretation R∗
KB

that it returns is such that UR
∗

KB = ∅.

Example 5.1 Let us assume, for the sake of the example, that we are only

talking about birds. Let KB := {•⊤ → (¬p ∧ ¬r), •p → •¬f, •r → •f, p → ¬r}

(the most typical things are neither penguins nor robins, typical penguins are500
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Algorithm 1: LM-minimal

Input: KB

Output: R
∗

KB

1 PKB := {p | p is a propositional letter occurring in KB};

2 Let U be the universe of valuations for the vocabulary PKB;

3 R0(v) := 0 for every v ∈ U ;

4 S0 := ∅;

5 S1 := JKBKR0 ;

6 i := 1;

7 while Si 6= Si−1 do

8 Ri := (Ri−1)
1
Si

;

9 Si+1 := JKBKRi ;

10 i := i+ 1;

11 R
∗

KB := (Ri−1)
∞

Si
;

12 return R
∗

KB

typical non-flying birds, and typical robins are typical flying birds, penguins

are not robins). The procedure initialises with all valuations being assigned the

rank of 0. The only valuations that satisfy all three sentences w.r.t. R0 are those

satisfying both ¬p and ¬r. Thus S1 := JKBKR0 = {{¬f,¬p,¬r}, {f,¬p,¬r}} and

so we obtain R1 by changing the rank of all valuations not in S1 to 1. Note that505

J•¬fKR1 = {{¬f,¬p,¬r}} and J•fKR1 = {{f,¬p,¬r}}, so we can see that none of

the valuations in U \ S1 is able to satisfy either •p → •¬f or •r → •f w.r.t. R1.

As a consequence, S2 := JKBKR1 = S1 and so the procedure terminates here

with R∗
KB as the ranked interpretation in which all valuations in S1 ({¬f,¬p,¬r}

and {f,¬p,¬r}) have rank 0 and all other valuations have rank ∞. See Figure 3510

for the ranked interpretations generated by this example. �

We now proceed to show that: (i) the algorithm always terminates if KB

is finite; (ii) the ranked model R∗
KB it returns is a ranked model of KB, and

(iii) for any other ranked model R of KB, we have R∗
KB ELM R. We know the

following about (i) and (ii):515
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R0 0 {¬f,¬p,¬r}, {¬f,¬p, r}, {¬f, p,¬r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}

R1

1 {¬f,¬p, r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}

0 {¬f,¬p,¬r}, {f,¬p,¬r}

R∗
KB

∞ {¬f,¬p, r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}

0 {¬f,¬p,¬r}, {f,¬p,¬r}

R∗
KB with the valuations of rank ∞ omitted: 0 {¬f,¬p,¬r}, {f,¬p,¬r}

Figure 3: The ranked interpretations generated in Example 5.1.

Lemma 5.1 The following hold for each i ≥ 0:

1. Si ⊆ Si+1, i.e., [S0 ⊆ S1 and, for all i ≥ 0, JKBKRi ⊆ JKBKRi+1 ];

2. For all v1, v2 ∈ U , if Ri(v1) < Ri(v2), then v1 ∈ JKBKRi ;

3. Ri is a ranked interpretation.

Proof:520

See Appendix B.1. �

From Item 1 in Lemma 5.1 above, we know the algorithm terminates if KB

is finite, since it generates a sequence of ranked interpretations (by Item 3)

in which the set of valuations satisfying KB increases monotonically from one

ranked interpretation to the next. Since each of these is finite, and since there is525

a finite number of valuations, the stopping criterion in Line 7 of the algorithm

is guaranteed to occur eventually.

To show that the algorithm returns a ranked model of KB it suffices to show

the following.

Lemma 5.2 For every i > 0, (Ri)
∞
Si

is a ranked model of KB.530

Proof:

See Appendix B.2. �

So, at each stage of the algorithm, the current ranked interpretation, when

those valuations not satisfying KB are excluded, forms a ranked model of KB.
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Since the output R∗
KB takes precisely this form we have the following result.535

Proposition 5.1 R∗
KB 

∧
KB.

Proof:

Follows from Lemma 5.2 and the construction of R∗
KB. �

Next we want to show that for any other ranked model R of KB, we have

R∗
KB ELM R.540

Lemma 5.3 Let R∗
KB := (L0, . . . , Ln−1, L∞) and let R := (M0, . . . ,Mn−1,M∞)

be any other ranked model of KB. Let i ∈ {0, . . . , n − 1}. If Lj = Mj for all

j < i, then Mi ⊆ Li.

Proof:

See Appendix B.3. �545

From this lemma we can state:

Proposition 5.2 Consider any KB and let R be a ranked model of KB. Then

R∗
KB ELM R.

That Algorithm 1 runs in time that is (singly) exponential in the size of

the input knowledge base KB whenever KB is finite is not hard to see. Let550

|KB| = k and |PKB| = j. The procedure starts by computing the universe U of

all valuations for the vocabulary PKB, and therefore we have |U| = 2j . Next, in

the first round of the loop, each sentence in KB has to be checked against all of

the exponentially many valuations in U , which amounts to k × 2j verifications.

In the worst-case scenario, only one valuation is kept at level 0, with all the555

others moved up to level 1. In the next round, each sentence in KB has to

be checked against the 2j − 1 valuations at level 1, but also against the only

valuation at level 0, because the truth of •-sentences in a model also depends

on those valuations that are lower down in the model. This amounts to k × 2j

verifications, which in the worst case will again result in a single valuation kept560

at level 1 with all the 2j − 2 ones moved up to level 2, and a number of k × 2j
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checks to be performed in the next round. By repeating this argument one can

see that, in the worst case, the algorithm will have built a ranked interpretation

consisting of 2j layers, each one containing a single valuation, i.e., a linear

ordering on the 2j valuations. This process will have involved 2j runs, each run565

requiring k × 2j valuation checks to create a new layer. It remains to know

the cost of checking whether a sentence is satisfied by a valuation in a ranked

model. In the first run of the loop, namely when there is a single layer, since the

preference relation at this stage is empty, each of such verifications amounts to

a propositional verification, which is a polynomial-time task. From the second570

run of the loop onward, i.e., when truth depends on the lower layers, we have

that all valuations at the lower layers have to be inspected, which in the worst

case amounts to m × 2j checks to be performed, with m the number of sub-

formulas of the one being checked. Putting the results together, we have that in

the worst case there are a maximum of 2j runs of the main loop, each with k×2j575

checks, and each of such valuation checks taking at most m′ × 2j operations,

with m′ the number of sub-formulas in KB, i.e., m′ = 2ℓ, for some ℓ. Hence

the algorithm runs in 2j × (k × 2j) × (2ℓ × 2j) = k × 23j+ℓ, and is therefore

in exptime.

We are now in a position to define our first form of entailment for PTL.580

Definition 5.2 (LM-entailment) Let KB ⊆ L• and α ∈ L•. We say KB

LM-entails α, denoted KB |≈LM α, if R∗
KB  α. Its corresponding consequence

operator is defined as CnLM(KB) := {α ∈ L• | R∗
KB  α}.

The next result outlines which properties from the previous section are sat-

isfied by CnLM(·).585

Theorem 5.2 CnLM(·) satisfies P1–P7, P9, and P10, but not P8.

Proof:

For P1, Proposition 5.1 guarantees that R∗
KB is a model of KB. About P2,

by Proposition 5.2, R∗
KB is the LM-minimum model of KB. If KB ⊆ KB′ ⊆
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CnLM(KB), then Mod(KB′) ⊆ Mod(KB) and R∗
KB ∈ Mod(KB′); consequently590

R∗
KB must also be the LM-minimum model of KB′. For P3, note that R∗

KB

is a ranked model of KB (Lemma 5.1, Item 3, plus Proposition 5.1), and so

if α ∈ Cn0(KB), then α ∈ R∗
KB. P4 is an immediate consequence of the

satisfaction of P7.3 P5 is an immediate consequence of the satisfaction of P6.

The latter holds by definition of CnLM(KB). For P7, see Section 2.2. P9 is an595

immediate consequence of the satisfaction of P7.

Now consider P10. From right to left, it is an immediate consequence of P3.

From left to right, assume there is a formula •⊤ → α that is in CnLM(KB), but

not in Cn0(KB). It means that there is a ranked model R of KB that has

in its lower layer a propositional valuation v s.t. v  ¬α; but, given that the600

model R∗
KB defining CnLM(KB) is the LM-minimum model of KB, then also the

lower layer of R∗
KB must contain the valuation v, against the hypothesis.

Failure of P8 can be seen in Example 5.1. There we have ¬p ∈ CnLM(KB)

(there is no penguin) because ¬p holds in both valuations occurring in R∗
KB.

Thus LM-entailment forces us to infer ¬p from KB. But ¬p 6∈ Cn0(KB), because605

there does exist a ranked model R of KB for which JpKR 6= ∅, for instance the

model R2 appearing in Example 6.1 below. �

In summary then, LM-entailment satisfies all our postulates, except for Strict

Entailment (P8). Lest this be seen as a negative result, bear in mind that LM-

entailment satisfies Conditional Strict Entailment (P9), the weakened version610

of Strict Entailment, and therefore also Classical Entailment.

In the next section we turn to a form of entailment satisfying Strict Entail-

ment, but at the price of having to forego Conditional Rationality, and therefore

the Single Model postulate as well.

3For this conclusion we need the requirement (specified in Section 2) that P contains at

least two elements.
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6. PT-entailment615

In this section we consider another option for entailment based on a ver-

sion of minimality, and derived from the characterisation of rational closure by

Giordano et al. [30, 32]. The general idea is to respect the principle of pre-

sumption of typicality (see Section 3), We shall refer to this form of entailment

as Presumption of Typicality entailment, shortened to PT-entailment. Such a620

principle indicates the way in which the property (RM) should be satisfied. If

we have α |∼ γ in our knowledge base KB, then, in order to satisfy (RM),

we have to add either α |∼ ¬β or α ∧ β |∼ γ. The presumption of typicality

requires that, whenever possible, we prefer the latter (that corresponds to a

constrained application of monotonicity) over the former. Semantically, given625

the ranked models of a knowledge base KB, this corresponds to considering only

those models in which every valuation is taken as typical as possible, that is, it

is ‘pushed downward’ in the model as much as possible, modulo the satisfaction

of KB.

In order to identify the interpretations that are necessary for the definition630

of a notion of entailment, we introduce a preference relation EPT on the set of

ranked interpretations that follows directly from the presumption of typicality.

Definition 6.1 (Relation EPT) For two ranked interpretations R1 and R2,

R1 EPT R2 if and only if for every w ∈ U , R1(w) ≤ R2(w). R1 ⊳PT R2 if and

only if R1 EPT R2 and not R2EPTR1.635

It is easy to check that EPT is a pre-order. Consistent with the principle of

presumption of typicality, as a guideline in the choice of the relevant interpreta-

tions, the relation EPT can be used to identify the relevant interpretations for

the definition of a notion of entailment: we choose the models of KB in which

the valuations are presumed to be as typical as possible, that is, the relevant640

models are those that are in minEPT
Mod(KB). Then, KB entails α if and only

if α holds in all the (preferred) models in minEPT
Mod(KB). We will sometimes

refer to the models in minEPT
Mod(KB) as the PT-minimal models of KB. Note
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that if KB is unsatisfiable, it has exactly one PT-minimal model, namely the

ranked interpretation R for which UR = ∅.645

If we consider knowledge bases composed only of classical non-monotonic

conditionals α |∼ β, Giordano et al. have proved that for every satisfiable knowl-

edge base there is a unique PT-minimal model [32, Theorem 1], and that such

a PT-minimal model characterizes the rational closure of the knowledge base

[32, Theorem 2]. Given such results, it is quite immediate to prove that, given650

a satisfiable conditional knowledge base, its PT-minimal model corresponds to

the LM-minimal model.

Proposition 6.1 Let KB be a satisfiable conditional knowledge base. A ranked

interpretation R is KB’s PT-minimal model iff it is KB’s LM-minimal model.

Proof:655

If KB is a satisfiable conditional knowledge base, then it has a unique LM-

minimal model R (see Proposition A.2) and a unique PT-minimal model R′

[32, Theorem 1]. R and R′ are equivalent, in the sense that they satisfy exactly

the same conditionals, since they both characterise the rational closure of KB

(see Proposition 2.1 here for LM-minimality and the theorem by Giordano and660

others for PT-minimality [32, Theorem 2]).

In order to show that they are exactly the same model, we just need to

prove that whenever two ranked interpretations R and R′ satisfy exactly the

same set of conditionals, then they are the same interpretation. Let R =

(L0, . . . , Ln−1, L∞) and R′ = (M0, . . . ,Mn−1,M∞).665

First of all, we prove UR = UR
′

: let v ∈ UR and v /∈ UR
′

, and let v be

the characteristic formula of the valuation v; we would have R′  v |∼ ⊥ and

R 6 v |∼ ⊥, against the hypothesis that R and R′ satisfy the same set of

conditionals. UR = UR
′

immediately implies that L∞ =M∞.

We conclude the proof by induction on the rank of the cells below ∞. Given670

a cell Li = {v1, . . . , vn}, let Li := (v1 ∨ . . . ∨ vn).

Assume L0 6=M0, that is, w.l.o.g., there is a v s.t. v ∈ L0 and v /∈M0. That

implies R′  ⊤ |∼ ¬v, while R 6 ⊤ |∼ ¬v, against the hypothesis.
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Given a number j ≤ (i − 1), let Lk = Mk for every k s.t. 0 ≤ k < j, but

Lj 6= Mj , that is, w.l.o.g., there is a v s.t. v ∈ Lj and v /∈ Mj . That implies675

R′  ¬(
∨

0≤k<j{Lk}) |∼ ¬v, while R 6 ¬(
∨

0≤k<j{Lk}) |∼ ¬v, against the

hypothesis. Since all their cells must contain the same valuations, R and R′

are the same model. �

Despite Proposition 6.1, given the extra expressive power of PTL, we obtain

the surprising result that the two semantic constructions are not equivalent680

anymore. Moreover, in the present context, this notion of minimality can give

back a number of minimal models, as the following example shows.

Example 6.1 Consider the knowledge base KB from Example 5.1. Then, one

can see that minEPT
Mod(KB) = {R1,R2,R3}, where:

R1 : 0 {¬f,¬p,¬r}, {f,¬p,¬r},685

R2 :

2 {f, p,¬r}

1 {¬f,¬p,¬r}, {¬f, p,¬r}

0 {f,¬p,¬r}

R3 :

2 {¬f,¬p, r}

1 {f,¬p, r}, {f,¬p,¬r}

0 {¬f,¬p,¬r}

In Example 6.1, note that R1 is the LM-minimum of KB. In fact, it is

easy to check from the characterisation of rational closure in Section 2.2 and

Definition 6.1 that the LM-minimum of KB is always in minEPT
Mod(KB).690

Proposition 6.2 For every knowledge base KB, the LM-minimum of KB is in

minEPT
Mod(KB).

Proof:
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Consider the definition of the preference relation for LM-minimality.

R1 ELM R2 if and only if either Li =Mi for all i ∈ {0, . . . , n− 1,∞},

or Lj ⊇Mj for the smallest j ≥ 0 s.t. Lj 6=Mj ,

where R1 = (L0, . . . , Ln−1, L∞) and R2 = (M0, . . . ,Mn−1,M∞). The result

follows from the fact that if R1 ⊳PT R2 then R1 ⊳LM R2. To see that this holds,

assume R1 ⊳PT R2. Then R1(w) ≤ R2(w) for all w ∈ U , with R1(w
′) < R2(w

′)695

for at least one w′ ∈ U . From the latter, we know we cannot have Li = Mi

for all i, so let j ≥ 0 be minimal such that Lj 6= Mj . To show the conclusion

R1 ⊳LM R2 we must show Lj ⊇ Mj , so let u ∈ Mj . Then R2(u) = j. Since

R1 ⊳PT R2 we know R1(u) ≤ j. But if R1(u) = k < j then u ∈ Lk = Mk

(by minimality of j), contradicting u ∈ Mj . Hence R1(u) = j, i.e., u ∈ Lj as700

required.

Knowing that R1 ⊳PTR2 implies R1 ⊳LMR2, it is easy to conclude our proof.

Let R be the LM-minimum of KB, but not an element of minEPT
Mod(KB).

That is, there is an R∗ ∈ Mod(KB) s.t. R∗ ⊳PT R, that implies R∗ ⊳LM R, thus

contradicting the LM-minimality of R. �705

We are now ready for the definition of our second type of entailment.

Definition 6.2 (PT-entailment) Let KB ⊆ L• and α ∈ L•. We say KB PT-

entails α, denoted KB |≈PT α, if and only if minEPT
(Mod(KB)) ⊆ Mod(α).

Its corresponding consequence operator CnPT(·) is inferentially weaker than

CnLM(·), since it is defined on a possibly larger set of models.710

Proposition 6.3 CnPT(·) satisfies P1–P4 and P7–P10.

Proof:

P1. CnPT(KB) is defined using only models of KB.

P2. Since KB ⊆ KB′ ⊆ CnPT(KB), we have minEPT
Mod(KB)) ⊆ Mod(CnPT(KB)) ⊆

Mod(KB′) ⊆ Mod(KB). It is sufficient to prove that minEPT
Mod(KB′)) =715

minEPT
Mod(KB)).
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Let R be a model of KB and KB′ s.t. R ∈ minEPT
Mod(KB′) and R /∈

minEPT
Mod(KB)). That is, there must be a model R′ of KB s.t. R′ ⊳PT R

and R′ ∈ minEPT
Mod(KB). However, since minEPT

Mod(KB)) ⊆ Mod(KB′),

R′ is also a model of KB′ that is PT-preferred to R, that is, it cannot be the720

case that R ∈ minEPT
Mod(KB′). Inversely, let R be a model of KB and KB′

s.t. R ∈ minEPT
Mod(KB) and R /∈ minEPT

Mod(KB′)). That is, there must

be a model R′ of KB′ s.t. R′ ⊳PT R and R′ ∈ minEPT
Mod(KB′). However,

since KB ⊆ KB′, R′ is also a model of KB that is PT-preferred to R, that is, it

cannot be the case that R ∈ minEPT
Mod(KB).725

Hence, for every KB,KB′ s.t. KB ⊆ KB′ ⊆ CnPT(KB), it must be minEPT
Mod(KB) =

minEPT
Mod(KB), that implies P2.

P3. Every model in minEPT
Mod(KB) is by definition a ranked model of KB.

Hence if α ∈ Cn0(KB), i.e., α is true in all ranked models of KB, then it is true

in all ranked models in minEPT
Mod(KB), i.e., α ∈ CnPT(KB).730

P4. It is an immediate consequence of the satisfaction of P7.4

P7. See the analagous result by Giordano et al. [32, Section 2.3.2]; in par-

ticular Theorem 2, that implies that in case of a conditional KB the use of

PT-minimality leads to a single minimal model, characterising Rational Clo-

sure.735

P8. Let α be a propositional formula s.t. α /∈ Cn0(KB): then there is a ranked

model R of KB s.t. R(v) < ∞ for some v s.t. v  ¬α. Either R is a PT -

minimal model of KB itself, or there is a PT -minimal model R′ of KB s.t.

R′ EPT R; that is, it must be the case that R′(v) < ∞ for some model

R′ ∈ minEPT
Mod(KB), that in turn implies that α /∈ CnPT(KB).740

P9. It is an immediate consequence of the satisfaction of P7, as explained in

Section 4, immediately after introducing P9.

P10. It is a direct consequence of Proposition 6.2 and the satisfaction of P10

for LM-entailment. �

4As in Theorem 5.2, for this conclusion we need the requirement (specified in Section 2)

that P contains at least two elements.
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Unfortunately, Conditional Rationality (P5) is not valid and therefore, nei-745

ther is the Single Model postulate (P6).

Theorem 6.1 There is some KB such that the conditional induced by CnPT(KB)

is not a rational conditional.

To see this, consider Example 6.1: we have •¬p → ¬r ∈ CnPT(KB) (typical

non-penguins are not robins). This is because we have min≺Ri
J¬pKRi ⊆ J¬rKRi

750

for each i = 1, 2, 3. However both •¬p → ¬f 6∈ CnPT(KB) and •(¬p∧ f) → ¬r 6∈

CnPT(KB). The former holds because, e.g., min≺R1
J¬pKR1 * J¬fKR1 , the latter

because min≺R3
J¬p ∧ fKR3 * J¬rKR3 . This means the rational monotonicity

property (RM) is not satisfied.

On the other hand, observe that ¬p /∈ CnPT(KB). Recall from the proof755

of Theorem 5.2 that we used the fact that ¬p ∈ CnLM(KB) to show that LM-

entailment does not satisfy Strict Entailment (P8).

7. PT’-entailment

As we have shown above, relying on LM-minimality results in the loss of

property P8 (Strict Entailment), while using PT-minimality results in the loss of760

the uniqueness of the minimal model (P6) and the rationality of our conditional

reasoning (P5). To summarise, on the one hand LM-minimality, failing to

satisfy P8, can potentially enforce classical propositional information that is

not a necessary consequence of the knowledge base. On the other hand, PT-

minimality can be inferentially too weak. In this section we consider a third765

possibility, aimed at strenghtening the inferential power while still preserving

the satisfaction of P8. This third proposal is based on using the same approach

as in PT-minimality, but among the PT-minimal models we consider only the

“biggest” ones, that is, the ones with the maximal sets of possible valuations

(w.r.t. ⊆). This should allow us to augment the inferential power (we define the770

entailment relation using fewer models), while still preserving P8 (we consider
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all the biggest models, that is, the models that assume as little propositional

knowledge as possible). We now analyse this option.

We let min⊇EPT
Mod(KB) := {R ∈ minEPT

Mod(KB) | there is no R′ ∈

minEPT
Mod(KB) s.t. UR

′

⊃ UR}.775

The corresponding entailment relation |≈PT′ can be defined as follows.

Definition 7.1 (PT’-entailment) Let KB ⊆ L• and α ∈ L•. We say KB

PT’-entails α, denoted KB |≈PT′ α, if and only if min⊇EPT
Mod(KB) ⊆ Mod(α).

For example, in Example 6.1 we would consider only R2 and R3.

Note that if KB is unsatisfiable then min⊇EPT
Mod(KB) is a singleton set780

containing the ranked interpretation R for which UR = ∅. Also, recall from

Section 6 that for every satisfiable conditional knowledge base KB there is a

single PT-minimal model [32, Theorem 1], that characterises the rational closure

of KB [32, Theorem 2]. Such a single PT-minimal model is by definition also

the only PT’-minimal model of KB, and consequently, in case of conditional785

knowledge bases, PT’-entailment also characterises the rational closure.

Our first result regarding PT’-entailment is that it is inferentially stronger

than PT-entailment.

Proposition 7.1 (i) For every KB ⊆ L• and every α ∈ L•, if KB |≈PT α

then KB |≈PT′ α. (ii) There exists some KB′ ⊆ L• and β ∈ L• such that790

KB′ |≈PT′ β and KB′ 6|≈PT β.

Proof:

(i). Note that, since min⊇EPT
Mod(KB) ⊆ minEPT

Mod(KB) for every KB,

|≈PT⊆|≈PT′ . (ii). Observe from Example 7.1, here below, that KB′ |≈PT′

•⊤ → ¬f but KB′ 6|≈PT •⊤ → ¬f. �795

Example 7.1 Consider the knowledge base KB′ := {•⊤ → (¬p ∧ ¬r), •p →

¬f, •r → •f, p → ¬r}, which is a modified version of the knowledge KB from

Example 5.1. The only difference is that now we state that typical penguins are

non-flying birds, not that they are typical non-flying birds.
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Then, one can check that minEPT
Mod(KB′) = {R1,R2}, where:800

R1 :

2 {f, p,¬r}

1 {¬f, p,¬r}

0 {¬f,¬p,¬r}, {f,¬p,¬r},

R2 :

2 {¬f,¬p, r}, {f, p,¬r}

1 {f,¬p, r}, {f,¬p,¬r}, {¬f, p,¬r}

0 {¬f,¬p,¬r}

while min⊇EPT
Mod(KB′) = {R2}, since UR2 ⊃ UR1 .

Unfortunately, while PT’-entailment is an improvement over PT-entailment

in terms of inferential strength, it is weaker than PT-entailment when it comes805

to the satisfaction of the list of desirable properties. That is, it satisfies, and fails

to satisfy, the same properties as PT-entailment, except for Typical Entailment

(P10), which PT-entailment satisfies, but PT’-entailment does not.

Proposition 7.2 CnPT′(·) satisfies P1–P4 and P7–P9, but does not satify

P5, P6, and P10.810

Proof:

Regarding P1, P2, P3, P4, and P9 the proof for CnPT ′(·) is the same as for

CnPT (·) (Proposition 6.3 above).

Regarding the failure of P5, consider Example 6.1. In this example, while

minEPT
Mod(KB) = {R1,R2,R3}, we have that min⊇EPT

Mod(KB) = {R2,R3}.815

We can use the same case used in the proof of Theorem 6.1: we have KB |≈PT′

•(¬p) → ¬r, but neither KB |≈PT′ •(¬p) → ¬f, nor KB |≈PT′ •(¬p ∧ f) → ¬r

hold.

The failure of P5 immediately implies the failure of P6.

P7. As pointed out in Proposition 6.3, in case we are dealing with a conditional820

KB, deciding PT -minimality over a satisfiable conditional KB gives back a single

minimal model, characterising Rational Closure. It follows immediately that

such a model is also the only PT’ -minimal one.
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P8. Again, it follows from the satisfaction of P8 for PT -entailment (see Propo-

sition 6.3). Let KB be a knowledge base and α be a propositional formula. If825

there is a PT -minimal model R s.t. R(v) ≤ ∞ for some v 6 α, then, by defini-

tion, there must be also in min⊇EPT
Mod(KB) a model R′ of KB s.t. R′(v) ≤ ∞.

For the failure of P10, we consider Example 7.1 and the case used in the proof

of Proposition 7.1: KB′ |≈PT′ •⊤ → ¬f but, since KB′ 6|≈PT •⊤ → ¬f and |≈PT

satisfies Ampliativeness (P3), •⊤ → ¬f is not in Cn0(KB′).830

�

8. Making sense of the impossibility result

Theorem 4.1 in Section 4 shows that there is no PTL consequence opera-

tor satisfying all of our postulates—more specifically, none satisfying P1, P2,

P3, P5, P8, and P10. This raises the important question of which of these835

postulates ought to be foregone in the search for an appropriate form of PTL

entailment. In trying to find an answer to this question, it is useful to consider

the three forms of entailment we proposed in the previous sections. The answer

seems to be that it makes sense to consider (at least) two forms of entailment for

PTL, represented here by LM-entailment and PT-entailment. PT’-entailment840

is not viewed as a viable option, given that it satisfies fewer properties than

PT-entailment. In essence then, it comes down to a choice between having a

form of entailment that satisfies Strict Entailment (PT-entailment), and one

that satisfies the Single Model postulate and Conditional Rationality, i.e., is

based on a rational conditional (LM-entailment).845

The advantage of LM-entailment is that it satisfies all postulates except

for Strict Entailment, which includes not only Single Model and Conditional

Rationality, but also Conditional Strict Entailment and Classical Entailment,

the weakened versions of Strict Entailment. On the other hand, the argument for

PT-entailment is that the Single Model property is too restrictive in the context850

of full PTL, and ought to be dropped. That is, in a logic as expressive as PTL

in which there are not any restrictions on the typicality operator, any form of
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entailment based on minimality, and adhering to the presumption of typicality,

as outlined in Section 6, is likely to violate the Single Model property.

The point of view that different forms of entailment can be appropriate in855

enriched versions of propositional logic, particularly enriched versions dealing

with aspects of typicality, is not surprising, nor new. Lehmann [34] makes the

case for two forms of entailment for the conditional logic discussed in Section 2.1

on which PTL is based. He draws a distinction between prototypical reasoning,

corresponding to rational closure as discussed in Section 2.2, and presumptive860

reasoning.

The intuition underlying prototypical reasoning is that conclusions to be

drawn are constrained by the typicality of the objects under consideration. To

make matters more concrete, suppose we know that birds typically fly, that birds

typically have wings, that robins are birds, that penguins are birds, and that865

penguins typically don’t fly. Robins can be regarded as typical birds and there-

fore inherit the properties of typical birds, such as having wings. Penguins, on

the other hand, should be regarded as atypical birds since they typically cannot

fly, and therefore do not inherit the properties of a typical bird, such as having

wings. This is to be contrasted with presumptive reasoning, a more permissive870

form of reasoning for which the intuition is to draw conclusions unless we have

specific information to the contrary. In our example above presumptive reason-

ing would allow us to conclude that penguins typically have wings (since we

do not have explicit information contradicting that conclusion), thereby distin-

guishing it from prototypical reasoning.875

Our argument here is not that the relationship between PT-entailment and

LM-entailment is analogous to the relationship between prototypical reason-

ing and presumptive reasoning, although it is true that LM-entailment can be

viewed as a refinement of PT-entailment (yielding more conclusions), just as

presumptive reasoning is a refinement of prototypical reasoning. Rather, the880

important point is that differences in context will determine which form of en-

tailment is appropriate. It is our contention that the same principle applies to

the differences between LM-entailment and PT-entailment. Below we discuss
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the technical differences between the two forms of entailment and then provide

an example to illustrate the principle.885

As we have seen above, the difference between these two forms of entailment

comes down to a choice between Strict Entailment on the one hand, Conditional

Rationality (and Single Model) on the other hand. Employing LM-entailment

ensures that we remain rational (i.e., satisfying all the KLM properties), but at

the cost of going beyond Tarskian monotonicity for typicality-free sentences.890

Conversely, making use of PT-entailment allows us to remain Tarskian for

typicality-free sentences, but forces us to forego rationality, and in particular,

the rational monotonicity property RM. Intuitively then, LM-entailment is the

more permissive form of entailment here. Not only do we remain rational, un-

like PT-entailment, but we do so at the cost of allowing the entailment of more895

typicality-free sentences than permitted by PT-entailment. The example below

is indicative of the factors to take into account when deciding, in a specific con-

text, which of LM-entailment or PT-entailment is the more appropriate form of

reasoning.

Example 8.1 Consider again the knowledge base KB := {•⊤ → (¬p∧¬r), •p →900

•¬f, •r → •f, p → ¬r} introduced in Example 5.1. From Examples 5.1 and 6.1

it is not hard to verify that both LM-entailment and PT-entailment sanction

the conclusion that typical non-robins are not penguins (KB |≈LM •(¬r) → ¬p

and KB |≈PT •(¬r) → ¬p), and do not allow for the entailment that typical

non-robins can fly (KB 6|≈LM •(¬r) → f and KB 6|≈PT •(¬r) → f). This leaves905

us with a choice. On the one hand it is reasonable to conclude from this that

typical non-flying non-robins are not penguins (that is, •(¬r ∧ ¬f) → ¬p). In

fact, rational monotonicity requires of us to be able to draw this conclusion. But

in order to do so, we need to be able to conclude that there are no penguins,

which violates Strict Entailment. This is the route followed by LM-entailment.910

The other option would be to insist that we do not have enough information to

conclude that there are no penguins, but in the process of doing so, also forego

the conclusion that typical non-flying non-robins are not penguins. That is, we
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insist on Strict Entailment at the expense of rational monotonicity. This is the

path followed by PT-entailment. �915

9. Related work

To the best of our knowledge, the first attempt to formalise an explicit notion

of typicality in defeasible reasoning was that by Delgrande [24]. Given the strong

links between our constructions and the KLM approach, most of the remarks in

the comparison made by Lehmann and Magidor [35, Section 3.7] are applicable920

in comparing Delgrande’s approach to ours and therefore we shall not repeat

them here.

Crocco and Lamarre [23] as well as Boutilier [6] have explored the links

between conditionals and notions of normality similar to the one we investigate

here. In particular, Boutilier defines a family of conditional logics of normality925

in which a statement of the form “if α, then normally β” is formalised via a

binary modality ⇒ as a conditional α ⇒ β. Here we achieve the same with a

unary operator.

Roughly speaking, Boutilier’s semantic intuition is the same as that of KLM

(and therefore the same as ours). The main difference is that Boutilier defines930

a conditional connective ⇒ in the language, whereas Kraus et al. define |∼ at a

meta-level to the language. In this respect, Boutilier’s approach is more general

in that it allows for nested conditionals. If these are omitted, i.e., if one works

in the ‘flat’ conditional logic in which ⇒ is the main connective and no nesting

is allowed, then one gets the same results for preferential entailment with both935

systems. So Boutilier achieves with modalities (he works in a bi-modal language)

what Kraus and colleagues achieve with a (meta-level) preference order.

It turns out that in Boutilier’s approach one cannot always capture the

notion of “most typical α’s”. In Boutilier’s modal logic, such a set (of most

normal α-worlds) need not exist in general. This is because Boutilier drops the

smoothness condition [6, p. 103] and therefore at any point in a ranked model

one can have infinitely descending chains of increasingly more normal α-worlds.
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If one imposes smoothness in Boutilier’s approach, which can be done by e.g.

requiring the ordering determined by Boutilier’s � also to be Noetherian, one

could then define his conditional ⇒ more elegantly as follows:

α⇒ β := •α→ β (1)

where, in Boutilier’s notation, •α would be given by

•α := α ∧�¬α (2)

(Of course negated conditionals of the form α 6⇒ β can then be expressed

as ¬(•α → β).) In adopting smoothness and defining conditionals in this way,

one would expect both approaches to become equivalent modulo the underlying940

language — ours is propositional, whereas Boutilier’s is modal. However, our

statement •α → β differs from Boutilier’s α ⇒ β in a significant way. In

Boutilier’s approach, a statement of the form α⇒ β is true at some world (in a

ranked model) if and only if it is true at all worlds in that ranked model [6, p.

114]. On the other hand, it is not hard to find a ranked model in which •α →945

β holds at a world without being true in the whole model. This establishes

Boutilier’s conditional as a ‘global’ statement, while ours has the (more general)

‘local flavour’. We can easily simulate Boutilier’s notion of acceptance [6, p. 115]

by stating ⊤ → (•α→ β).

It is also worth mentioning that our interpretation of the conditional ⇒950

in (1) above and Boutilier’s differ in another subtle way, which also relates

to whether one adopts smoothness or not. In (1), α ⇒ β is defined as “the

normal α’s are β’s”, whereas, strictly speaking, Boutilier’s definition of α ⇒ β

reads as “there is a point from which α→ β is not violated”. Such a ‘frontier’ for

normality, implicitly referred to in Boutilier’s definition of α⇒ β, is not as crisp955

as ours in the sense that the point where one draws the normality line might

be too ‘far away’ (in the ordering) from the more and more normal α-worlds.

One can definitely make a case for dropping the smoothness condition, but

requiring it is a small price to pay given the much simpler account of typicality

one obtains.960
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When it comes to entailment from a defeasible knowledge base, all ap-

proaches discussed above adopt a Tarskian-style notion of consequence and

therefore do not go beyond ranked entailment. The move towards a non-

monotonic notion of entailment and an investigation of its different facets in

the context of PTL was precisely our motivation in the present work.965

Giordano et al. [29] proposed the system Pmin which is based on a language

that is as expressive as the one we propose in this paper. However, they end

up using a constrained form of such a language that goes only slightly beyond

the expressivity of the language of KLM-style conditionals (their well-behaved

knowledge bases). More importantly, their approach differs from ours since they970

build Pmin on a semantic approach that relies on preferential models and a

notion of minimality that is more akin to circumscription [38].

In a description logic setting, Giordano et al. [25] also study notions of typ-

icality. Semantically, they do so by placing an (absolute) ordering on objects in

first-order domains in order to define versions of defeasible subsumption rela-975

tions in the description logic ALC. The authors moreover extend the language

of ALC with an explicit typicality operator T(·) of which the intended meaning

is to single out instances of a concept that are deemed as ‘typical’. That is,

given an ALC concept C, T(C) denotes the most typical individuals having the

property of being C in a particular DL interpretation. It is worth pointing out,980

though, that most of the analysis in the work of Giordano et al. is dedicated to

a constrained use of the typicality operator T(·), that is allowed to occur only

in the left-hand side of GCIs and not in the scope of other concept construc-

tors. Not having such a syntactic constraint is a feature of our approach that

we have put forward in the present work. Still in the framework of Description985

Logics, also Bonatti et al. [1] introduce a typicality operator N(·), with a mean-

ing that mirrors the operator T(·); also the use of the N operator is generally

constrained, and their semantic framework is differs from the present one, not

being preferential.

Giordano et al.’s approach has been extended in a series of papers [26, 27, 31,990

32], in particular also to deal with the computation of non-monotonic entailment
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from defeasible knowledge bases. In the latter case, the authors define a hyper-

tableau calculus to compute the rational closure of a defeasible ontology via a

minimal-model construction [30, 32] that, as mentioned before, is closely related

to our notion of PT-entailment. Nevertheless, that remains the only notion of995

non-monotonic entailment investigated by the authors. We conjecture the more

expressive DL setting has the potential to give rise to a much broader spectrum

of consequence relations when enriched with typicality operators, in particular

when these apply not only to concepts but also to roles [44]. Nevertheless,

that remains the only notion of non-monotonic entailment investigated by the1000

authors. We conjecture the more expressive DL setting has the potential to give

rise to a much broader spectrum of consequence relations when enriched with

typicality operators, in particular when these apply not only to concepts but

also to roles [44].

Finally, Britz and Varzinczak [11, 12] investigate another, complementary1005

aspect of defeasibility to the one here presented by introducing (non-standard)

modal operators allowing us to talk about relative normality in accessible worlds.

With their defeasible versions of modalities, namely p∼∼p and p∼∼
p , formalising re-

spectively the notions of defeasible necessity and distinct possibility, it becomes

possible to make statements of the form “α holds in all of the normal (typical)1010

accessible worlds”, thereby capturing defeasibility of what is ‘expected’ in tar-

get worlds. (Note that this is different from stating something like � •α, which

says that all accessible worlds are typical α-worlds.) Such preferential versions

of modalities allow for the definition of a family of modal logics in which defea-

sible modes of inference such as defeasible actions, knowledge and obligations1015

can be expressed. These can be integrated either with existing |∼-based modal

logics [14, 16] or with a modal extension of our typicality operator in striv-

ing towards a comprehensive theory of defeasible reasoning in more expressive

languages.
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10. Conclusion1020

The focus of this paper is an investigation into the entailment problem for

the logic PTL. We approached the problem from two angles: an abstract for-

mal perspective, in which a set of appropriate postulates was presented and

discussed, and a constructive perspective, in which three specific entailment re-

lations were defined and studied. The primary conclusion to be drawn from1025

this investigation is that a logic as expressive as PTL supports more than one

form of entailment. This conclusion is supported from the abstract perspective

via an impossibility result, as well as through the constructive approach via the

definition of two of the three distinct types of PTL entailment: LM-entailment

and PT-entailment. While both forms of entailment are generalisations of ra-1030

tional closure, only one, LM-entailment, retains all the rationality properties

associated with rational closure, formalised as the Conditional Rationality pos-

tulate (P5). However, it does not satisfy Strict Entailment (P8), a postulate

which requires an entailment relation to remain Tarskian for conclusions not

involving typicality, although it satisfies weakened versions of Strict Entailment1035

(P9 and P9′). On the other hand, the other form of entailment we studied,

PT-entailment, satisfies P8, but not Conditional Rationality (P5).

The framework of Booth et al. [3, 4] is, to the best of our knowledge, the first

attempt to introduce a full-fledged typicality operator into propositional logic.

In terms of other related work, the closest we are aware of is the restricted form of1040

typicality for description logics by Giordano et al. [28]. However, a consequence

of their restricted use of typicality is that a propositional version of their logic

would correspond to a KLM-style conditional logic in which rational closure

behaves well, and which is much less expressive than PTL.

Britz et al. [13] and Giordano et al. [28] have investigated the connection1045

between the KLM approach and Gödel-Löb modal logic, which is closely re-

lated to PTL. Exploiting this connection should deliver an axiomatisation of

an inference relation corresponding to ranked entailment, but it does not seem

useful for modelling entailment relations based on minimisation as LM- and
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PT-entailment.1050

For future work, an obvious open question is whether our conjecture, that

the subsets of postulates satisfied by LM-entailment and PT-entailment respec-

tively provide appropriate abstract formalisations of two distinct forms of PTL

entailment, can be formalised through representation theorems. From a compu-

tational perspective, it is worth investigating whether, as is the case for rational1055

closure for conditional logics, the computation of (the different forms of) PTL

entailment can be reduced to a series of classical entailment checks.

Our results in the propositional setting pave the way for an investigation

of appropriate forms of entailment in other, more expressive, preferential ap-

proaches, such as preferential description logics [15, 31, 17, 8, 9, 22, 18] and1060

modal logics of defeasibility [14, 7, 10, 12]. The move to logics with more struc-

ture is of a challenging nature, and a simple rephrasing of our approach to these

logics may not deliver the expected results. We are currently investigating these

issues.
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Appendices

A. Proofs for Section 2

We give here a proof of Proposition 2.1. In order to do that, we need to

introduce some extra notions and prove some extra propositions. First of all,1215

analogously to the definitions for PTL introduced in Section 2.3, we say that a

set of conditionals C is satisfiable iff there is a ranked interpretation R for which

UR 6= ∅ satisfying all the conditionals in it, and let Mod(C) be the set of all the

ranked models of C.

We are going to use a notion of merging ranked interpretations.1220

Definition A.1 (Ranked Union) Given a set of ranked interpretations R =

{R1, . . . ,Rn}, its ranked union RR is defined as follows:

• for every v, v′ ∈ U , v ≺RR v′ iff min{Ri(v) | Ri ∈ R} < min{Rj(v
′) |

Rj ∈ R}.

• RR := (LR
R

0 , . . . , LR
R

n−1, L
R

R

∞ ) is defined as1225

– LR
R

∞ :=
⋂
{LRi

∞ | Ri ∈ R}.

– LR
R

0 := min≺
RR

(U \ LR
R

∞ ); LR
R

1 := min≺
RR

(U \ LR
R

0 ∪ LR
R

∞ ); and

so on until LR
R

n = ∅.

Proposition A.1 Let C be a satisfiable set of conditionals, and let R := {R1, . . . ,Rn}

be a set of models of C. Then their ranked union RR is a model of C, and1230

RR ⊳LM Ri for every Ri ∈ (R \ RR).
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Proof:

We first prove that RR := (LR
R

0 , . . . , LR
R

n−1, L
R

R

∞ ) is a model of C. For every

v ∈ LR
R

0 , it must be the case, by Definition A.1, that v ∈ LRi

0 for some Ri ∈ R;

since such Ri is a model of C and v ∈ LRi

0 , v  ¬α ∨ β for every α |∼ β ∈ C.1235

Now, let v ∈ LR
R

i , with 0 < i < n, s.t. v  α ∧ ¬β for some α |∼ β ∈ C

(if there is no such v, RR is necessarily a model of C). Being every Rj ∈ R

a model of C, it must be the case, again by Definition A.1, that hRj
(v) ≥ i

and hRj
(v′) < hRj

(v) for some v′ satisfying α ∧ β. Hence, it must be that

min{Ri(v
′) | Ri ∈ R} < min{Rj(v) | Rj ∈ R} for some v′ satisfying α ∧ β,1240

that is, v′ ≺RR v, that implies v′ ∈ LR
R

j , with j < i.

To summarise, for every α |∼ β ∈ C, if there is a valuation v ∈ RR s.t. v 

α ∧ ¬β, then there is a valuation v′ ∈ RR s.t. v′  α ∧ β and v′ ≺RR v; hence

RR is a model of C.

Now we prove that RR ELM Ri for every Ri ∈ R.1245

Let Ri := (L0, . . . , Ln−1, L
R

R

∞ ) s.t. Ri ∈ R and RR 6ELM Ri. That is, there

is an i s.t. LR
R

i 6⊆ Li, while LR
R

j = Lj for every j < i. That is, there is a

v ∈ Li s.t. v /∈ LR
R

i . By definition of RR, that implies that v ∈ LR
R

j for some

j < i, but that cannot be the case, since LR
R

j = Lj for every j < i. Hence

RR ELM Ri for every Ri ∈ R.1250

We finish by proving that Ri 6ELM RR for every Ri ∈ (R \ RR).

Let Ri be a model in C s.t. Ri ELM RR. Since RR ELM Ri, we must conclude

that for every i, for every cell LRi

i composing Ri and every cell LR
R

i composing

RR, LRi

i = LR
R

i ; that is, Ri and RR are exactly the same model. Hence

RR ⊳LM Ri for every Ri ∈ (R \ RR). �1255

Proposition A.2 Let C be a satisfiable set of conditionals. Then the ranked

union of the elements of Mod(C) is the only ELM-minimum element in Mod(C).

Proof:

It is an immediate consequence of Definition A.1 and Proposition A.1. �
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Proposition 2.1 Given a set of conditionals C and a conditional α |∼ β. α |∼ β1260

is in the rational closure of C iff:

1. C is unsatisfiable; or

2. Rrc(C)  α |∼ β.

Proof:

It has been proved by Booth and Paris [2, Theorem 2] that the rational closure1265

of a KB is determined by a model that is equivalent to the ranked union of

Mod(C). According to Proposition A.2, the ranked union of Mod(C) is the only

ELM-minimum element in Mod(C), that is, the model Rrc(C). �

B. Proofs of Lemmas 5.1, 5.2 and 5.3

B.1. Proof of Lemma 5.11270

Lemma 5.1 The following hold for each i ≥ 0:

1. Si ⊆ Si+1, i.e., [S0 ⊆ S1 and, for all i ≥ 0, JKBKRi ⊆ JKBKRi+1 ];

2. For all v1, v2 ∈ U , if Ri(v1) < Ri(v2), then v1 ∈ JKBKRi ;

3. Ri is a ranked interpretation.

Proof:1275

We show all three simultaneously by complete induction on i. So, assume all

of Items 1, 2 and 3 hold for all m < i. We will show this implies all three hold

also for i. We assume each α ∈ KB is in normal form.

1. JKBKRi ⊆ JKBKRi+1 .

Let v ∈ JKBKRi and let α ∈ KB with α =
∧

i≤t •θi → (φ ∨
∨

i≤s •ψi) (for some1280

s, t ≥ 0). We must show v ∈ JαKRi+1 . Since v ∈ JKBKRi we know v ∈ JαKRi .

Hence we know that one of the following must hold:

• v 6∈ J•θkK
Ri for some k: This means (since θk is propositional) v is not

≺Ri -minimal in JθkK
Ri = JθkK

Ri+1 . But then it is also not ≺Ri+1 -minimal

since, by construction, if Ri(v) ≤ Ri(w) then Ri+1(v) ≤ Ri+1(w). Hence1285

in this case v 6∈ J•θkK
Ri+1 .
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• v ∈ JφKRi : In this case also v ∈ JφKRi+1 , since JφKRi = JφKRi+1 (because

φ is purely propositional).

• v ∈ J•ψkK
Ri for some k: This means v is ≺Ri -minimal in JψkK

Ri . But

then it is also ≺Ri+1 -minimal, since we assumed v ∈ JKBKRi = Si+1, and1290

so by construction of Ri+1 we have that Ri+1(w) < Ri+1(v) if and only

if Ri(w) < Ri(v) for all w ∈ U . Since JψkK
Ri = JψkK

Ri+1 (since ψk is

purely propositional) we obtain that v is ≺Ri+1 -minimal in JψkK
Ri+1 , i.e.,

v ∈ J•ψkK
Ri+1 .

Thus in all three possible cases we obtain v ∈ JαKRi+1 as required.1295

2. Ri(v1) < Ri(v2) implies v1 ∈ JKBKRi .

Suppose Ri(v1) < Ri(v2). Observe that, by construction, this can only be the

case if i > 0. Then either Ri−1(v1) < Ri−1(v2) or v2 /∈ Si. If Ri−1(v1) <

Ri−1(v2) then, by the inductive hypothesis, v1 ∈ JKBKRi−1 , while if v2 /∈ Si,

then v1 ∈ Si = JKBKRi−1 . So either way we get v1 ∈ JKBKRi−1 and so we get1300

the desired conclusion by applying JKBKRi−1 ⊆ JKBKRi which was just proved

in Item 1 above.

3. Ri is a ranked interpretation.

By construction it immediately follows that Ri is a function from U to ◆∪{∞}.

We need to show the convexity property: if Ri(u) = j then, for every k such1305

that 0 ≤ k < j, there is a v ∈ U for which Ri(v) = k. If i = 0, this follows

immediately (since R0(u) = 0 for all u ∈ U). Otherwise we have by the inductive

hypothesis that Ri−1 is a ranked interpretation. We have two cases. (1) Si =

Si−1: Then Ri = (Ri−1)
∞
Si

from which convexity follows immediately. (2)

Si 6= Si−1: Then Ri = (Ri−1)
1
Si

from which convexity also follows immediately.1310

�

B.2. Proof of Lemma 5.2

Lemma 5.2 For every i > 0, (Ri)
∞
Si

is a ranked model of KB.

Proof:

Let R denote (Ri)
∞
Si

. We need to show that for every valuation v ∈ UR,1315
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i.e., every v ∈ Si = JKBKRi−1 , and for every α ∈ KB, we have v ∈ JαKR.

Since v ∈ JαKRi−1 we know one of the following must hold (recalling that α is

expressed in normal form
∧

i≤t •θi → (φ ∨
∨

i≤s •ψi).):

• v 6∈ J•θkK
Ri−1 for some k: This means v is not ≺Ri−1 -minimal in JθkK

Ri−1 .

But then it is also not ≺R-minimal in JθkK
R = JθkK

Ri−1 ∩ Si, since if1320

w ≺Ri−1 v and w ∈ JθkK
Ri−1 , then from the former we know w ∈ Si by

Item 2 of the previous lemma. Hence in this case v 6∈ J•θkK
R.

• v ∈ JφKRi−1 : In this case also v ∈ JφKR, since JφKR = JφKRi−1∩Si (because

φ is purely propositional).

• v ∈ J•ψkK
Ri−1 for some k: This means v is ≺Ri−1 -minimal in JψkK

Ri−1 .1325

But then it is also ≺R-minimal in JψkK
R = JψkK

Ri−1∩Si, since ≺Ri−1⊆≺R.

Hence v ∈ J•ψkK
R.

Thus in all three possible cases we obtain v ∈ JαKR as required. �

B.3. Proof of Lemma 5.3

Lemma 5.3 Let R∗
KB := (L0, . . . , Ln−1, L∞) and let R := (M0, . . . ,Mn−1,M∞)1330

be any other ranked model of KB. Let i ∈ {0, . . . , n − 1}. If Lj = Mj for all

j < i, then Mi ⊆ Li.

Proof:

Let v ∈Mi. By construction, Si = JKBKRi−1 where Ri−1 = (L0, . . . , Li−1, (U \
⋃

j<i Lj , ∅). Let α ∈ KB, with α =
∧

i≤t •θi → (φ ∨
∨

i≤s •ψi) (for some1335

s, t ≥ 0). We must show v satisfies α in Ri−1, so assume v satisfies ¬φ and

is a minimal θk-state in Ri−1 for all k. We must show v is a minimal ψk-

state in Ri−1 for at least one k. Since we assume Mj = Lj for all j < i, we

have Ri−1 = (M0, . . . ,Mi−1, (U \
⋃

j<iMj), ∅). Since v ∈ Mi, we can show

that, for any propositional sentence λ, we have that v is a minimal λ-state1340

in (M0, . . . ,Mi−1, (U \
⋃

j<iMj), ∅) if and only if it is a minimal λ-state in

(M0, . . . ,Mi, ∅). Thus, from the fact that (M0, . . . ,Mi, ∅) is a ranked model of

KB, we obtain our conclusion. �

52


	Introduction
	Logical preliminaries
	KLM-style rational conditionals
	Rational closure
	Propositional Typicality Logic

	The entailment problem for PTL
	Towards a notion of entailment for PTL
	LM-entailment
	PT-entailment
	PT'-entailment
	Making sense of the impossibility result
	Related work
	Conclusion
	Appendices
	Proofs for Section 2
	Proofs of Lemmas 5.1, 5.2 and 5.3
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Lemma 5.3


