This is an Open Access document downloaded from ORCA, Cardiff University’s institutional repository:https://orca.cardiff.ac.uk/id/eprint/125951/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Publishers page: http://dx.doi.org/10.3855/jidc.11541

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Emergence of mcr-1 mediated colistin resistant Escherichia coli from a hospitalized patient in Bangladesh

Refath Farzana 1*, Lim S Jones 2, Md. Anisur Rahman 3, Mark A Toleman 1, Kirsty Sands 1, Edward Portal 1, Ian Boostrom 1, Md. Abul Kalam 4, Brekha Hasan 1, AKM Nasir Uddin 5, Timothy R Walsh 1*

1 School of Medicine, Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
2 Public Health Wales Microbiology, University Hospital of Wales, Cardiff, United Kingdom
3 Department of Virology, Dhaka Medical College, Dhaka, Bangladesh
4 Sheikh Hasina National Institute of Burn and Plastic Surgery, Dhaka, Bangladesh
5 Dhaka Medical College Hospital, Dhaka, Bangladesh

* Authors contributed equally to this work.

Abstract
Introduction: The emergence of plasmid mediated mcr in bacteria has become global public health threat. Herein, we report a mcr-1 positive E. coli in normal human flora from a patient admitted in Dhaka Medical College Hospital (DMCH).

Methodology: In total, 700 non-duplicate rectal swabs were collected from DMCH during 13th May to 12th June 2018. E. coli from rectal swabs were isolated on chromogenic UTI media containing vancomycin 10mg/Liter (Liofilchem, Italy) and confirmed by MALDI-TOF. Minimum inhibitory concentrations (MIC) were determined by agar dilution and interpreted according to EUCAST breakpoints. Genomic analysis of mcr positive E. coli (MCRPEC) was performed by Illumina MiSeq sequencing and pulsed field gel electrophoresis (PFGE) using S1 nuclease DNA digests and bla mcr-1 probing. Transferability of bla mcr-1 were determined by conjugation assays.

Results: We found one MCRPEC from 700 rectal swab screening which was isolated from the rectal swab culture of a 17-year boy who was admitted to the burns ICU, DMCH with 53% flame burn involving much of the trunk and face. Genome sequencing revealed that mcr-1 was present on an IncH12 plasmid of 257,243 bp and flanked by IS ApaI1. The colistin resistance can be transferred to the recipient Klebsiella varicola with a frequency of 8.3 × 10^{-5}. Transconjugants were more resistant to colistin than donor (MIC 32 µg/mL).

Conclusions: This is the first human associated mcr in Bangladesh. These data indicate the need for a systematic “one health” surveillance in the country.

Key words: mcr-1; human; Bangladesh.

(Received 06 April 2019 – Accepted 24 July 2019)

Copyright © 2019 Farzana et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Study

The emergence of the plasmid mediated colistin resistance gene, mcr in bacteria of environmental, animal, food and human origin has become global public health threat and radically limits therapeutic options for multidrug resistant (MDR) Gram-negative bacterial infections [1,2]. There are few studies on the prevalence of mcr in Southeast Asia. Recently, mcr has been detected in the food-chain and environment from Pakistan, India and Bangladesh [3-5]. Here, we report the presence of mcr-1 in an E. coli strain retrieved from human faecal flora in a Bangladeshi hospital and provide evidence of its emergence into the clinical sector.

In total, 700 non-duplicate rectal swabs were collected from both inpatients and the outpatient department (OPD) of Dhaka Medical College Hospital (DMCH) from the 13th May to 12th June 2018. Informed consent was taken from each participant and the project was ethically approved by Ethical Review Committee of DMCH (MEU-DMC/ECC/2017122). E. coli from rectal swabs were isolated on chromogenic UTI media containing vancomycin 10mg/Liter (Liofilchem, Roseto degli Abruzzi, Italy) and confirmed by MALDI-TOF. Minimum inhibitory concentrations (MIC) were determined by agar dilution and interpreted according to EUCAST breakpoints [6]. E. coli resistant to colistin were examined by PCR for mcr variants. Genomic analysis of mcr positive E. coli (MCRPEC) was...
performed by Illumina MiSeq (Illumina Inc., San Diego, CA) (please see Supplementary methods) and miniION (Oxford Nanopore technologies, Oxford, UK) sequencing (please see Supplementary methods) and pulsed field gel electrophoresis (PFGE) using S1 nuclease DNA digests and bla\textit{mcr-1} probing. Conjugation assays used a \textit{Klebsiella variicola} strain (accession number: PJQN00000000) as the recipient. Transconjugants were selected on UTI agar (colistin 4mg/Liter) and investigated for \textit{mcr-1} by PCR (please see Supplementary methods).

The MCRPEC (RS571; accession no: CP034389-CP034392) was isolated from the rectal swab culture of a 17-year boy who was admitted to the burn’s ICU, DMCH with 53% flame burn involving much of the trunk and face. He suffered a smoke inhalation injury and became severely hypoxic. The patient worked as a laborer in a garment factory in Munshiganj district and the injury was sustained due to a gas pipe leak. Rectal swabs were collected 2 days after admission so RS571 could have been acquired in the community or the hospital. Clindamycin and ceftriaxone treatment were commenced early in the hospital stay. The patient died on day 5 of the admission, with the cause of death given as septicemia. No clinical specimens were referred for culture during his hospital stay so it is not known whether RS571 was colonising flora only or played a pathogenic role, although it was resistant to all of the antibiotics received during the admission.

Whole genome sequencing revealed a 1626 bp open reading frame (ORF) encoding putative phosphoethanolamine transferase, consisting of 541 amino acids which exhibited 100% nucleotide sequence identity to \textit{mcr-1.1} (Supplementary Figure 1) [1]. \textit{E. coli} (RS571) belonged to sequence type 648. The strain was resistant to amoxicillin-clavulanate (MIC >256 µg/mL), piperacillin-tazobactam (MIC 8 µg/mL), ceftazidime (MIC 32 µg/mL), cefotaxime (MIC >256 µg/mL), cefepime (MIC 32 µg/mL), ciprofloxacin (MIC 256 µg/mL), gentamicin (MIC 256 µg/mL), trimethoprim-sulfamethoxazole (MIC 256 µg/mL) and colistin (MIC 16 µg/mL). \textit{E. coli} RS571 was susceptible to imipenem (MIC 0.25 µg/mL), meropenem (MIC 0.25 µg/mL), amikacin (MIC 8 µg/mL), fosfomycin (MIC ≤ 1 µg/mL) and tigecycline (MIC 0.25 µg/mL) (Table 1).

\textbf{Figure 1.} Structural organization of plasmid, pRS571-MCR-1.1 (Accession no: CP034390).
Table 1. MIC of antimicrobials against transconjugants obtained in this study along with donor (RS571, accession no: CP034389-CP034392) and recipient (BD_DM_07, accession no: PJQN00000000).

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Donor (RS571)</th>
<th>Recipient (BD_DM_07)</th>
<th>Transconjugant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin-tazobactam</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>32</td>
<td>0.125</td>
<td>0.25</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>>256</td>
<td>0.125</td>
<td>0.25</td>
</tr>
<tr>
<td>Cefepime</td>
<td>32</td>
<td>0.125</td>
<td>0.125</td>
</tr>
<tr>
<td>Imipenem</td>
<td>0.25</td>
<td>0.125</td>
<td>0.25</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.25</td>
<td>≤0.06</td>
<td>≤0.06</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>256</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>32</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Amikacin</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>256</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>256</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Minocycline</td>
<td>1</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Colistin</td>
<td>16</td>
<td>0.5</td>
<td>32</td>
</tr>
</tbody>
</table>

1MIC values for the antibiotics are in µg/mL.

Figure 2. Linear comparison of plasmid sequence pRS571-MCR-1.1 (Accession no: CP034390), pSA186_MCR1 (Accession no. CP022735.1) and pSA26-MCR-1 (Accession no. KU743384.1).

Forward matches are indicated by red and reverse matches by blue. Region of sequence with homology to the other genomes are separated by black lines. Genes associated with pRS571-MCR-1.1 are represented by colour. Resistance genes are represented by red, transposase elements in green, genes associated with conjugation in blue, replication-associated genes in purple, regulatory/accessory genes in grey and hypothetical proteins in yellow. Genomic comparison was performed by artemis comparison tool (ACT) (v.18.0.1).
In addition to mcr-1, other resistance genes such as blaTEM-1B, aac(3)-IId, aph(3')-Ib, aph(6)-Id, aph(3')-Ia, aadA1, aadA2, sul3, dfrA14, mph(A), tet(A), catB3, cml and floR (plasmid mediated) and aac(6')-Ib-cr, aac(3)-Ila, bIaTEM-1B, blaOXA-1 and blaCTXM-15 (chromosomal) were present.

The draft genome sequence of E. coli strain RS571 was assembled into 4 contigs with an \(N_{50} \) length of 5,085,958 bp. A 257,243 bp long plasmid which carried mcr-1.1 was named pRS571-MCR-1.1 (accession no: CP034390) and belongs to the IncH12-ST3 replicon type. One copy of mcr-1 (nucleotide 214,483 to 216,108) was found in pRS571-MCR-1.1, flanked by ISApAI (nucleotide 213,314 to 214,287) at the 5' end (Figure 1). Other resistance genes such as tet(4)-floR-aph(6)-Id- aph(3')-Ib- aph(3')-Ia- aadA1-sul3-aad2-bIaTEM-1B- mph(A)-dfrA14 were carried elsewhere (Figure 1), suggesting independent capture of mcr-1 by ISApAI. The variable region of pRS571-MCR-1.1 shared the most identity with pSA186_MCR1 (CP022735.1) and pSA26-MCR-1 (KU743384.1) (88% coverage and 99% nucleotide identity for both), isolated at the 5' end (Figure 2) [7]. The colistin resistance in E. coli can be transferred to the recipient Klebsiella varricola and with a transfer frequency of \(8.3 \times 10^{-5} \). Transconjugants were more resistant to colistin than donor (MIC 32 μg/mL) and conferred resistance to gentamicin and trimethoprim-sulfamethoxazole as well (Table 1).

Conclusion

This is the first comprehensive report of mcr in humans from South-Asia, and detected on a MDR IncH12 plasmid that is widespread throughout China [8,9]. However, mcr positive strains were detected from the food-chain in India and Pakistan those were related to IncH12 and IncI2 plasmids, respectively [3,4]. These data indicate the need for a “one health” surveillance system to prevent the spread of mobile colistin resistance.

Acknowledgements

The Authors thank to Prof. Khan Abul Kalam Azad, Principal, Dhaka Medical College for access to collecting clinical data and to provide laboratory support in Dhaka. Farzana is the recipient of a Commonwealth Scholarship. Sequencing and molecular data was supported by Cardiff University (CU).

References

Corresponding author

Refath Farzana, MBBS. M.Phil
Cardiff University,
Department of Medical Microbiology,
Institute of Infection and Immunity,
School of Medicine,
Heath Hospital, Heath Park, Cardiff CF 14 4XN, UK.
Tel: +447397127962
Fax: 02920742161
E-mail: FarzanaR@cardiff.ac.uk

Conflict of interests: No conflict of interests is declared.
Annex – Supplementary Items

Supplementary Methods

Transferability of the mcr-1 gene by conjugation

Conjugation experiment was performed using isolates carrying the mcr-1 gene as donors (RS571) and Klebsiella variicola (BD_DM_07) as recipient. Donor and recipient strains were grown in Luria broth (Sigma-Aldrich, Darmstadt, Germany) until they reached the exponential growth phase (optical density at 620 nm [OD$_{620}$] of 0.6). Conjugation experiments were performed on chromogenic UTI agar (Sigma-Aldrich, Darmstadt, Germany) plates, using a 1:1 donor-recipient mix, and plates were incubated at 37°C for 6 hours. The conjugation mixture was suspended in 1 mL of phosphate-buffered saline, and dilutions were plated on chromogenic UTI agar containing colistin (4 μg/mL) for selection. Blue colonies on chromogenic UTI agar containing colistin (4 μg/mL) were considered as transconjugants. Transferability of mcr-1 in transconjugants was confirmed by PCR. Transfer frequencies were calculated by colony forming unit (cfu) count of transconjugants against the cfu count of donor.

Illumina MiSeq sequencing and bioinformatics

Whole genome sequencing (WGS) was performed on the Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA). Briefly, gDNA was extracted from overnight culture using the QIAcube (Qiagen, Hilden, Germany), and resulting gDNA was quantified using the Qubit 3.0 (Thermos Fisher Scientific). DNA libraries were prepared for paired-end sequencing (2×301 cycles) using Nextera XT. Quality control of raw reads included fastqc (0.11.2), and quality and adaptor trimming was performed using Trimgalore (0.4.3). Reads were assembled in contigs using the de novo assembler SPAdes (3.9.0) (fasta) and were aligned to the original fastq reads using BWA aligner (0.7.15). Any error was corrected using Pilon (1.22). Assembly metrics were evaluated using Quast (2.1).

MinION sequencing and bioinformatics

MCR-1 positive strain was sequenced by MinION sequencing (Oxford Nanopore Technologies Ltd., Oxford Science Park, UK). Large scale bacterial gDNA was extracted. Two loop full bacterial colony in 9.5 mL of TE buffer was mixed with 50 μL proteinase K (20mg/mL) and 0.5 mL of 10% SDS. After incubation at 37°C for 1 hour, 1.8 mL heated 5M NaCl was added and was incubated at 65°C for 5 minutes. The suspension was treated with 1.5 mL of heated CTAB/NaCl and was incubated at 65°C for 20 minutes. Then equal volume of chloroform was added into the mixture followed by gently shaking for 1 hour. The mixture was centrifuged at 13,000 rpm for 15 minutes. Supernatant was taken and equal volume of isopropanol was added until visualizing the clumping of gDNA. DNA was washed with 70% ethanol and 200 μL of water was added to dissolve the gDNA. DNA library was prepared by pooling of all barcoded samples to aim a final DNA concentration >500ng/μL and 1 μL of RAD was added to DNA. A final mixture of 75 μL (34 μL sequencing buffer, 30 μL water and 11 μL DNA library) was loaded to flow cell. MinION device was connected to MinKNOW GUI to obtain the reads. Demultiplexing of Nanopore reads was performed by Porechop (0.2.3). Unicycler (0.4.4) was used to yield hybrid assembly using both Illumina short reads and minION long reads.

Supplementary Figure 1. Phylogenetic tree of the amino-acid sequences of phosphoethanolamine transferases MCR variants (MCR1-8) using Geneious (10.2; Biomatters Ltd.).