The Turing Model for Biological Pattern
Formation

Philip K. Maini and Thomas E. Woolley

Abstract How spatial patterning arises in biological systems is still an unresolved
mystery. Here, we consider the first model for spatial pattern formation, proposed
by Alan Turing, which showed that structure could emerge from processes that, in
themselves, are non-patterning. He therefore went against the reductionist approach,
arguing that biological function arises from the integration of processes, rather than
being attributed to a single, unique, process. While still controversial, some 65 years
on, his model still inspires mathematical and experimental advances.

1 Biological Pattern Formation

Biological systems exhibit a diverse range of patterns, such as animal pigmenta-
tion patterns, limb skeletal structures, etc. (Fig. 1). Despite decades of research, a
detailed understanding of how these patterns arise still eludes us. We know many
of the genes involved and can map out the spatiotemporal dynamics of some of
them, but how these dynamics arise is still largely a mystery. In 1952, the logician,
computer scientist, code breaker and mathematician Alan Turing proposed a novel
mathematical model for pattern formation [1]. He hypothesised that the patterns we
see arise due to cells responding to underlying pre-patterns of chemical concentra-
tions. He termed these chemicals morphogens, and showed that spatially heteroge-
neous patterns could arise in systems in which these chemicals reacted with each
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other and also underwent diffusion - a phenomenon termed diffusion-driven insta-
bility. Making the further assumption that cell fate was determined in a morphogen
concentration-dependent manner, the chemical pre-pattern would manifest itself in
a pattern composed of spatially heterogeneous cell fates. In Sect. 2 we will describe
the phenomenon of diffusion-driven instability and deduce the properties exhibited
by the resultant patterns. We will also give some examples of reaction-diffusion
systems. In Sect. 3 we present some applications and in Sect. 4 we will present
conclusions and discussion.

Fig. 1 Examples of biological pattern formation. Zebra stripes are shown in the background and
going from left to right: poison arrow frog labyrinthine pigmentation pattern; digit pattern of a
human; serval spots transitioning to stripes on the tail.

2 Mathematical Model
2.1 Diffusion is stabilising

Let us consider the case of a chemical, concentration u(x,t), diffusing in space x
(assumed to be in one dimension for simplicity), where ¢ is time. Let us also assume
that the chemical is being produced at a rate f(u) where f is typically either a
polynomial, or rational, function of u. Then

du d’u
—Z _p—= 1
a t axz + f (u)7 ( )
where D > 0 is the diffusion coefficient (assumed constant), is the reaction-diffusion
equation satisfied by u(x, ).
We will assume further that the spatial domain is [0, L] for some L > 0 and that
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the chemical concentration at the edge of the domain is fixed at some value ug, that
is,
u(x,t) =up atx=0,Land V1. 2)

This is often called a Dirichlet boundary condition. Furthermore, suppose that
f(up) = 0. Then, u(x,t) = ug satisfies equation (1) and the boundary conditions
(2) and is termed a spatially uniform steady state for u. To find the linear stability of
this state we wish to determine if a small perturbation #(x,7) from the steady state
will grow or decay in time. Substituting into equation (1), expanding f in a Taylor
series and keeping only the linear terms, we have:

o0 rn ., .
o :Dﬁ + f'(uo)tt 3)

where ' = df/du and we have used the fact that f(ug) = 0. Furthermore, i satisfies
i(x,t) =0atx=0,L.

In the case where D = 0, equation (3) has the solution
a(x,t) = tgexp(f (xo)t) )

where £ is the initial perturbation. Clearly, if f'(ug) < O then the steady state is
linearly stable (as ¢ tends to infinity, #(¢) tends to zero) while if f/(up) > 0, then the
perturbation grows and the steady state is linearly unstable.

Now suppose that D > 0 in (3). Then, using the method of separation of variables,
and taking into account the boundary conditions (2), the solution for #(z) is the
Fourier sine series

n—oo

a(x,t) = Z ay sin (nTnx) exp(Ant) ®)
n=1

where 4, = f'(up) — D(nx/L)?, for n = 1,2,..., and a, are determined by equat-
ing the solution to the Fourier sine series of the initial condition for the perturba-
tion. Now we see that even when f’(ug) > 0, if D > f'(uo)(L/7)?, it follows that
Ay <0V n, that is, each term sin (n7rx/L) in the Fourier expansion, termed an admis-
sible mode, will have either an exponentially decaying amplitude (if a, # 0) or zero
amplitude (if a, = 0) and so 4(x,) tends to zero as ¢ tends to infinity. Therefore, the
steady state u = ug, although unstable in the absence of diffusion, is stabilised by
the presence of diffusion. Hence, diffusion is stabilising.

Note that if the boundary conditions were instead zero flux (so-called homoge-
neous Neumann) boundary conditions (du/dx =0 at x = 0,L V t) then the solu-
tion to the linearised system would be a Fourier cosine series and so, in the pres-
ence of diffusion, the zeroth mode (constant) term in the Fourier expansion could
still grow but every spatially heterogeneous (patterned) term, cos(nmx/L), would
have negative growth rate for sufficiently large D. For periodic boundary conditions
(u(0,7) = u(L,t) V 1), the Fourier series solution would now be a combination of
sines and cosines but the above arguments still hold.
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2.2 Diffusion is de-stabilising

The previous mathematical result, namely that diffusion is a stabilising process, also
agrees with our intuition, for example if we think of heat. The genius of Turing was
to show that this was not necessarily the case if there was more that one chemical,
that is, if we had a reaction-diffusion system. Let u(x,t) and v(x,) be two chemicals
satisfying the equations:

du %u av 9%y
E:Dlﬁ—"_f(uav)a EZDZW_Fg(uﬂ))? (6)

where f(u,v) and g(u,v) are functions describing the reaction kinetics of the mor-
phogens represented by u and v, and D and D, are constant (positive) diffusion
coefficients. For simplicity, let us assume that once again x is the finite domain [0, L]
and that u and v satisfy homogeneous Neumann boundary conditions.

Now suppose there there are positive values (ug, vo) such that f(ug,vo) = g(uo,vo)
0. Then (ug,vp) is spatially uniform steady state of the system (6). To examine
the linear stability of this steady state we extend the analysis in Sect. 2.1 by de-
riving equations for small perturbations (#4(x,?),9(x,t)) to the steady state. Sub-
stituting into equations (6), expanding f and g in Taylor series and recalling that
S (uo,vo) = g(up,vo) = 0, we arrive (ignoring higher order terms) at the linearised
system:

o 2 A ~ 2A
%:D1%+fuﬁ+fv9, %:DZ% + guit + &V, (N

where f,, f,, gu, & denote the partial derivatives of f and g evaluated at the steady
state (ug,vo). We may re-write this in the more concise form:

oit 2% )
o Pz I, ®
where 1)
(e _(D; 0 (fufo
‘e (VA(N))’D_ ( 0 Dz) and J = (gu gv)' ©)

We generalise the analysis in Sect. 2.1 by looking for a solution of the form
i1(x,t) = aexp(ikx + A (k*)t) where, again, we are looking for a separable solution,
in this case with a a constant vector and the x component of the solution is written
as exp(ikx) — a convenient way to encompass the Fourier components. Substituting
this into equation (8) we arrive at the equation

(J—Di*—AI)a=0, (10)

where I is the 2 X 2 unit matrix. For non-trivial solutions, we thus require that the
matrix multiplying the vector a is singular, that is,

Det (J — Dk* — A1) =0, (11)
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where Det denotes the determinant. This is an eigenvalue problem, that is, the tem-
poral growth rate, A, is the eigenvalue of the matrix J — Dk? and is, in fact, a function
of the wave number, k.

Now, in the previous subsection, we showed that in the case of a single reaction-
diffusion equation, a spatially uniform steady state, linearly stable in the absence
of diffusion, could be stabilised in the present of diffusion. Here, Turing showed
the opposite. Let us consider the case when D; = Dy = 0. Then A is simply the
eigenvalue of the matrix J and satisfies the eigenvalue problem

)LZ_(fu"’gv)l_F(fugv_fvgu) =0. (12)

For the spatially uniform steady state to be stable we require both solutions to the
eigenvalue equation (12) to have negative real part, and this will be true if the fol-
lowing two conditions hold:

futg» <0, and f,g,— frgu > 0. (13)

Now, in the presence of diffusion (D; and D, both non-zero), the eigenvalue
problem, from equation (11), relating the growth rate, A, to the wave number, k, is

A% —b(k)A +c(k*) =0, (14)
where

b(k*) = fu+gv— (D1+Dy)k* and c(k*) = D1 Dak* — (D2 fy + D18y )K* + fugv — fu8u-

(15)
In this case, we wish diffusion to be de-stabilising and a necessary condition for
this to hold true is that at least one of the roots, l(kz), of equation (14) must have a
positive real part for some non-zero (positive) k. This can happen if either b(k?) > 0
or c(k?) < 0. However the first condition in (13), and the fact that the diffusion
coefficients are non-negative, ensures that b(kz) < 0, so we require c(kz) < 0. For
this to occur, the second condition in (13) forces D, f, + D1g, to be positive as a
necessary condition. More precisely, we require

Dyf,+Dig, >2\/D1D2(fugv_fvgu) >0. (16)

Conditions (13) and (16) ensure that the uniform steady state is linearly stable in
the absence of diffusion but has at least one k for which A (k?) has positive real
part. However, to satisfy the zero flux boundary conditions, admissible modes are
restricted to k = n7 /L for at least one integer value n. This leads to the 4th condition:

N 2 fut8v £/ (fu+8)* —4D1D(fusy — fr8u)
< () <k i - e TP
(I7)

Hence, if these conditions are satisfied for at least one integer value, n > 0, we
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see that a spatially uniform steady state, stable in the absence of diffusion, becomes

unstable in the presence of diffusion. This is termed diffusion-driven instability and

is an example of self-organisation (or sometimes termed an emergent phenomenon).
A number of key properties are immediately apparent from these conditions:

1. The diffusion coefficients must be unequal. This follows from the first inequality
in (13) and (16), because if D; = D, = D > 0 then we can divide inequality (16)
by D to obtain f,, + g, > 0, which contradicts the first inequality of (13).

2. The matrix of partial derivatives J must take one of the following two forms:

J,,(i:) och<jr:r>. (18)

This follows from the first inequality in (13) and (16) and observing that the

matrix forms
J,,<::[> andJc(J_”_L> (19)

are in fact captured, respectively, by J, and J, by appropriately re-defining u
and v or f and g. In detail, from the first inequality in (13) and (16) it follows that
fu and g, must have opposite signs. Hence f, g, < 0, and the second inequality of
(13) forces f,g, to be less than zero, implying that f,, and g, have opposite signs.

3. Minimum domain size for pattern formation. This follows from inequality (17).
For fixed parameter values in the reaction-diffusion model, for L sufficiently
small, this inequality cannot be satisfied for non-zero n.

4. As the domain size increases, the pattern becomes more complicated for two
reasons: (i) the lower inequality of equation (17) means that the minimum allow-
able wave mode increases. Explicitly, the pattern appearing on a larger domain
will have a smaller wavelength (i.e. the peaks will be packed closer together),
when compared to the pattern on a smaller domain; (ii) the range of allowable
modes increases. This again follows from inequality (17) by observing that as L
increases the number if viable integers must also increase.

5. The idea from point 4 can be extended to higher dimensions. For example, if the
spatial domain is the 2-dimensional rectangle [0, L,] x [0, Ly] then the admissible
modes take the form (for zero flux boundary conditions)

cos (nmx/Ly)cos (mmy/Ly),

where k* = (nm/Ly)? 4+ (mn/Ly)* and n = 0,1,2,....m = 0,1,2,.... Clearly, if
L, is very small, while L, is large (that is, the domain is long and thin), then
from the obvious extension of condition (17) to this case, it follows that m = 0
and so any spatially patterned structure will vary only in the x-direction, that is,
the system will exhibit stripes. However, if L, and L, are both large, then (17)
can hold for n and m both non-zero. In this case we have spots. Note that in 2
dimensions we have the issue of degeneracy. For example, suppose Ly = L, = 1
and (ug,vo) was unstable to a mode with k> = 2572, then the admissible modes
would have wave number pairs (5,0),(0,5) (both corresponding to stripes) and
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(3,4),(4,3) (both corresponding to spots). In this case, initial conditions and the
form of the non-linear terms determine which mode is selected (or indeed the
solution could be a combination of all possibilities). More recently, these results
have been generalised using an energy function to show that pattern selection can
be determined by investigating the stationary solutions of an associated Fokker-
Planck equation [2].

It is important to point out that the above analysis, and properties derived, hold
for linear theory, while the original system is non-linear. The obvious question to ask
is, do the linear results hold for the non-linear system? While this can be answered to
some extent by carrying out a weakly non-linear analysis in the vicinity of a primary
bifurcation point [3, 4], we need to resort to numerical solution of the non-linear
system for a fuller answer. In Fig. 2 we show some results of numerical simulations
of the full non-linear system (see Sect. 2.3) to illustrate the properties 1-4.

In the above, if the linearised kinetics are represented at (ug,vo) by Jp the system
is termed a pure activator-inhibitor system while, if they are represented by J. the
system is called a cross activator-inhibitor system or a substrate-depletion system.
We now explain this terminology. For the case J, we see that at the spatially uni-
form steady state, f, > 0 and f, < 0. Hence, at steady state, u is activating its own
production, but v is inhibiting the production of u. Moreover, g, > 0 and g, <0
which means that u activates the production of v. Hence, u is termed an activator
and v is termed an inhibitor. Note further that from the first inequality in (13), and
(16) it follows that D, > D;. That is, the inhibitor diffuses more widely than the
activator. This leads to the self-organising patterning principle of short-range acti-
vation long-range inhibition [5]. For the case J., u is a substrate that produces v but
is itself depleted. Note that if we calculate the eigenvector a in the case of J, then
equating the second component to zero in the vector equation (8) forces the compo-
nents of u and v to have the same sign, that is, the solutions are in phase. Conversely,
for J., equating the first component to zero in the vector equation (8) implies that
u and v must have opposite signs and therefore the solutions are 180 degrees out of
phase (see 2(a), (b)).

2.3 Defining the reaction kinetics

The functions f(u,v) and g(u,v) can take many forms, too numerous for us to list
them all, so we simply give a small sample here. Perhaps the best known is the
Gierer-Meinhardt model variant [5] that, when non-dimensionalised, takes the form

2
f(u,v)za—bu—!—%;g(u,v)zuz—v, (20)

where a and b are positive constants. Here, the model has been constructed such that
v inhibits u but u activates v. Another model of this class presented by Gierer and
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Fig. 2 Turing pattern properties. (a) Schnakenberg kinetics D; =1, D, =40,a=0.1 and 5 =0.9.
(b) Gierer-Meinhardt kinetics D; = 0.7, D, =70, a = 0.03 and b = 1. (c) If the Schnakenberg
kinetics are on a domain of length 3 no pattern emerges. However, a domain length of 4 allows
heterogeneity to appear. (d) Two-dimensional simulation of the Schnakenberg kinetics. The top
simulation shows a thin rectangle that is only able to support stripes across the domain. However,
when we increase the vertical height we see that the pattern can produce spots. Note that only one
chemical concentration is shown in (c) and (d), the other one will be 180 degrees out of phase.
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Meinhardt, but later derived from a hypothetical chemical reaction using the Law of
Mass Action, is the Schnakenberg model [6], which takes the form

fu,v) =a—u+u*v; g(u,v) =b—uv, (21)
where a and b are constants. The Thomas model [7], on the other hand, describes
the interaction of uric acid, u, with oxygen, v, where both reactants diffuse from
a reservoir maintained at fixed concentrations, and interact via kinetics empirically
determined by data fitting:

uy uy

flu,v) = a(a—u)—m; g(u,v) :B(b*")*ma

(22)
where a,b,c,d,a, and f are positive constants. More recently, Barrio et al. [8]
proposed a caricature model (which we will denote as BVAM) for ease of analysis.
In this model, they simply postulated a system in which the linear, quadratic and
cubic terms are explicit:

flu,v)=au+v—r w? — rouv; g(u,v) =bu+cv+r w? + rouv, (23)

where a, b, c, 1, and rp are non-negative constants. The inclusion of non-linear terms
of this form allowed them to easily consider the case where the linear system is de-
generate and the non-linear terms then specify the pattern, with quadratic terms
favouring spots and cubic terms favouring stripes [9]. Of course, this model can ex-
hibit negative values of # and v which at first, appear unphysical, but # and v should
not be interpreted as concentrations, but rather as deviations from some positive
spatially uniform steady state. This seemingly simple model actually gives rise to
an incredibly large range of different types of patterns [10]. In Fig. 3, we present a
selection of stationary patterns while in Fig. 4 we illustrate some temporally evolv-
ing patterns. The latter are non-stationary and their analysis is beyond the scope of
this paper.

(a)

Fig. 3 Stationary patterns appearing in the BVAM model. We see that we can generate stripes,
labyrinthine patterns and spots, respectively.
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Fig. 4 Non-stationary patterns appearing in the BVAM model. The images illustrate snapshots of
non-stationary patterns, with time increasing to the right along each row. In (a) we see travelling
waves, whilst (b) shows scroll waves.

3 Applications

The ability of the Turing model to produce patterning has meant that it has been
used in a bewildering array of applications, ranging from regeneration in Hydra, to
digit patterning, to animal pigmentation, shells, hair, teeth and feather patterns etc.
(see [11, 12, 13] and Fig. 5). While the model can produce an astonishing array of
patterns, properties 3 and 4 suggest that the patterns that are formed are constricted
by domain size. Specifically, property 3 states that if the patterning region is too
small then no pattern will form even if the reaction parameters are chosen to produce
a Turing pattern. Further, property 4 suggests that as the domain increases in size, the
derived linear theory predicts that patterns increase in complexity and, conversely,
a decrease in domain dimensions would reduce patterning complexity. This is an
example of a developmental constraint [14].

One of the problems with Turing reaction-diffusion models is that the patterns
they produce can be very sensitive to small variations in parameter values and to
variations in initial conditions, questioning their applicability to situations where
robustness is essential — for example, we only want one head! — and this was first
pointed out by Bard and Lauder [15]. This sensitivity can either arise due to the fact
that the parameter space in which Turing patterns can form can be very small [16]
or because the system can exhibit multiple stable spatially heterogeneous solutions
(see, for example, Fig. 6).

This issue is still not fully resolved. Dillon et al. [17] showed that choosing different
types of boundary conditions could enhance the robustness of some modes while
eliminating the admissibility of other modes. Crampin et al. [18] reformulated the
model on a growing domain, noting equations of the form (1) will transform to
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Fig. 5 Illustration of more complex Turing dynamics that can reproduce the patterns seen on
seashells. Taken from [12].
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Fig. 6 Illustrating the robustness issue. All solutions are stationary. The simulations are of the
Schnakenberg model [6] and the parameters are the same for both simulations, the only difference
being that the initial conditions were two different randomly chosen states which were uniformly
distributed around their unique spatially uniform steady state.

du  dsu u
E*‘x:D@‘H‘(“)’ 24

where s is the velocity of flow induced by growth (in higher dimensions, this term
would take the form V.(su), see the original paper for the derivation of this form).
They showed that this system could robustly generate mode doubling for the case
of uniform domain growth as well as generating, in a robust fashion, a sequence of
consecutive modes for the case of apical growth (Fig. 7).

An obvious question to ask now is, if pattern complexity increases with domain
size under this theory, then shouldn’t we have a large number of heads? However,
cells can only respond to signals for a certain time window before they differentiate
and therefore can no longer respond to changing signals. One dramatic situation
in which this is not the case is pigmentation patterning in certain fishes where, as
the domain grows, the pattern continually changes to preserve wavelength, again
consistent with the Turing model [19].
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Fig. 7 Deterministic simulations of the Schnakenberg model [6] on a domain growing (a) expo-
nentially uniformly everywhere, and (b) linearly, but only at the tip (apical growth).

Another key issue is the identification of the morphogens involved. While this
remains a controversial issue, there have been many potential activator-inhibitor
pairs identified (see, for example [20, 21, 22]). Moreover, it has been posited that the
activator-inhibitor system might actually be composed of cells - a particular example
being the interaction of melanophores and xanthophores in zebrafish pigementation
patterning [23, 24, 25].

While in the above we have considered robustness in response to different ini-
tial conditions or parameter values, none of these studies investigated the effect of
noise, which we would expect to be present in a biological system throughout the
patterning process. Woolley et al. [26] showed the presence of noise could disrupt
the robust period-doubling patterning sequence seen by Crampin et al. [18] (Fig. 7)
but robustness was preserved in the case of apical growth (Fig. 8).

)
4000 6000
Time, t

(b)

8000 10000

Fig. 8 Stochastic simulations of the Schnakenberg model [6] on a domain growing (a) exponen-
tially uniformly everywhere, and (b) linearly, but only at the tip (apical growth).

This offers a possible reason why, in biology, we usually see patterns forming
behind a propagating front, rather than simultaneously across the full domain. A
propagating front allows patterns to form in a sequentially controlled and robust
fashion.
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The robustness issue has recently been tackled in a different way by Kurics et al.
[27] who showed that extending the Turing model to be more biologically realistic
by including receptor and feedback dynamics actually could greatly enhance the
parameter space in which patterns are predicted.

While still controversial biologically, Turing structures have been found in chem-
istry - the first example being the Chloride-Iodide-Malonic-Acid (or CIMA) reac-
tion [28]. One of the reasons why it had been difficult to find Turing structures in
chemistry was due to property 1 in Sect. 2.2, namely that the diffusion coefficients
D and D,, must be different. While it is possible, theoretically, to obtain Turing
structures for D and D, arbitrarily close to one another [29], for robust patterning
D1 and D; have to be quite different from each other and, typically, when chemicals
react with each other the chemical molecules have similar sizes and therefore quite
similar diffusion coefficients. In the CIMA reaction, however, one of the reactants
was bound to starch as an indicator and this changed its diffusion coefficient signif-
icantly to move the system into the Turing patterning regime. This was modelled by
Lengyel and Epstein [30] in the following way:

o = D15 + () —coups +ep- (25)
J PR

o = D25 +g(u) (26)
J

a—f = coupy —cp-. @7

Here, u and v are the concentrations of the chemical species and u is assumed to be
interacting with the indicator (starch). Assuming that the starch is in excess we can
take its concentration to be fixed at cg. Then, by the Law of Mass Action, the rate
at which u binds with starch to create the complex c is coup., where p, is a rate
constant, while the rate at which u is recovered from the complex is cp_. Assuming
the indicator, and therefore the complex, is immobile, we obtain the equation for the
complex c.
Adding equations (25) and (27) we obtain

d(u+c) %u

The further assumption that the binding between u and the indicator is fast, allows
us to replace ¢ in the equation (27) by Pu, where P = cop+/p—, which essentially
rescales the diffusion coefficient D; by a factor 1 /(1 + P) (recall that for diffusion-
driven instability D; < D assuming u« is the activator and v the inhibitor. Hence, D
is effectively lowered).

Turing’s original derivation of his reaction-diffusion model was on a discrete
array of “cells” or compartments in which reactions took place while the chem-
icals were transported down chemical gradients to neighbouring compartments.
He essentially arrived at a spatially discretised version of the system described in
Sect. 2.2. Recently, Tompkins et al. [31] actually made a physical model of this
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set up with compartments in which chemicals reacted and diffused to neighbouring
compartments. They showed that this system could produce patterns.

4 Conclusions and Discussion

We have shown how spatial patterning can arise from a coupled system of two
reaction-diffusion equations and given some examples of applications of the theory
of diffusion-driven instability in biology. We have only looked at the basic Turing
model but, since Turing’s original paper, there have been many extensions made of
the model. For example, in a series of papers Nagorcka and colleagues [32, 33] pro-
posed that the initial structures formed by a Turing model could serve as sources or
sinks of further Turing models, leading to very complex patterned structures simi-
lar to those observed in hair follicles and feather primorida. Kondo and colleagues
have carried out extensive experimental studies on fish pattern regeneration, patterns
on fish mutants and addressed the issue of how one could link the parameters in a
Turing model with more refined genetic information (see the review: [34]).

It is important to point out that there are many other self-organisation models
that can produce patterns. For example, in 1983, Oster, Murray and Harris [35, 36]
proposed that patterns arose due to cells mechanically interacting with each other,
leading to spatially heterogeneous patterns of cells themselves, which they then as-
sumed differentiated into structures. It is also known that cells can move in response
to gradients in chemicals (chemotaxis) and it has been shown that such chemotaxis
models can also lead to spatial pattern formation Keller and Segel [37]. Painter e?
al., [38, 39] showed how a Turing system combined with chemotaxis could lead to
patterns of varying wavelengths, consistent with those formed in Pomacanthus and
generalising the concept of positional information [40].

In summary the Turing model has generated a great deal of experimental and
mathematical interest, which continues to this day.
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