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Abstract

The heterogeneous manifestations of MYH9-related disorder (MYH9-RD), character-
ized by macrothrombocytopenia, Dohle-like inclusion bodies in leukocytes, bleeding
of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make
the diagnosis for these patients still challenging in clinical practice. We collected
phenotypic data and analyzed the genetic variants in more than 3,000 patients with a
bleeding or platelet disorder. Patients were enrolled in the BRIDGE-BPD and
ThromboGenomics Projects and their samples processed by high throughput
sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients
had macrothrombocytes and all except two had thrombocytopenia. Some degree of
bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented
hearing impairment, three renal failure and two elevated liver enzymes. Among the
28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in
diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9-
RD and show that, in the presence of an unclassified platelet disorder with
macrothrombocytes, MYH9-RD should always be considered. A HTS-based strategy is

a reliable method to reach a conclusive diagnosis of MYH9-RD in clinical practice.

Research Centre; FIS-Fondos FEDER; NIHR
KEYWORDS

1 | INTRODUCTION

Nonmuscle myosin heavy chain 9 related disorder (MYH9-RD) is a
rare autosomal-dominant syndrome characterized by large/giant
platelets and thrombocytopenia associated with the presence of
Déhle-like inclusion bodies in neutrophils (Kunishima et al., 2003).
Clinical manifestations include a mild to moderate bleeding tendency
(Orsini et al, 2017) and the risk of developing progressive
nephropathy, sensorineural deafness, pre-senile cataract, or altera-
tion of liver enzymes during infancy or adult life (Balduini, Pecci, &
Savoia, 2011; Pecci et al., 2012; Pecci, Ma, Savoia, & Adelstein, 2018).
The disease is caused by heterozygous variants in MYH9, the gene
coding for the heavy chain of nonmuscle myosin of class [IA
(NMMHC-1IA), a 1,960 amino acid residue protein involved in
platelet cytoskeletal contraction, granule secretion, and in the Rho
GTPases and CaZ*/calmodulin signaling pathways (Vicente-Manza-
nares, Ma, Adelstein, & Horwitz, 2009). MYH9 is located on
chromosome 22q12-13 and is composed of 41 exons. The coding
region from exons 2-19 encodes for the globular head domain (HD),
exon 20 for the neck region, and exons 21-40 for the coiled-coil tail
domain (TD). The final 34 amino acid residues of the C-terminal
nonhelical tail domain (NHTD) are encoded by exon 41.

About 101 MYH® variants are listed in the Human Gene Mutation
Database (HGMD, public version, as of July 2019; Stenson et al.,

ACMG guidelines, clinical diagnosis, genomics, high throughput sequencing, MYH9-related
disorders, variant classification

2017): 72 missense/nonsense, 4 splicing substitutions, 25 deletions/
insertions. Some cases of somatic or germinal mosaicism have also
been described (Gresele et al., 2013; Kunishima et al., 2005;
Kunishima, Takaki, Ito, & Saito, 2009).

Genotype-phenotype correlation studies in MYH9-RD patients have
reported that variants in the HD are associated with more severe
thrombocytopenia and a higher frequency and/or a more rapid
progression of nephropathy and deafness than variants in the TD, with
the amino acid substitution p.Arg702Cys resulting in the most severe
phenotype reported to date (Pecci et al., 2014; Pecci et al, 2008b;
Saposnik et al, 2014). However, some exceptions exist: the p.As-
p1424His variant which lies in the TD, is also associated with a high risk
of developing syndromic manifestations. Moreover, patients carrying
variants at the interface between the SH3-like motif and the motor
domain (MD) of the HD (SH3/MD interface), present a mild clinical
phenotype consisting of mild macrothrombocytopenia and delayed risk
of sensorineural deafness (Pecci et al., 2014).

The diagnosis of MYH9-RD requires skilled laboratory investiga-
tions, including the correct assessment of the degree of thrombocy-
topenia, made difficult by the abnormal size of platelets, the
identification of macrothrombocytes, and the determination of the
presence of Dohle-like inclusion bodies in neutrophils on a blood
smear (Balduini et al., 2003). The latter test is performed by
May-Griinwald-Giemsa (MGG) staining or through the identification
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of NMMHC-IIA aggregates by immunofluorescence (Kunishima et al.,
2003; Pecci et al., 2008b), a test which is not available in most of the
hematology diagnostic laboratories despite its high sensitivity.
Moreover, heterogeneity in the syndromic manifestations can
complicate the interpretation of the clinical presentation. The
identification of the causal MYH9 variant in a patient is key to reach
a conclusive diagnosis, predict the course of extra-hematological
symptoms and consequently implement a personalized clinical
monitoring and therapeutic approach (Pecci et al., 2010a; Pecci,
Granata, Fiore, & Balduini, 2008a). HTS techniques represent a
comprehensive and cost-effective strategy for diagnosing inherited
bleeding, thrombotic and platelet disorders (BPDs; Simeoni et al.,
2016; Zhang et al., 2016). The efficacy of HTS in patients with
uncharacterized macrothrombocytopenia has been recently demon-
strated (Rabbolini et al., 2017). Here, we report the patients with rare
MYH9 variants discovered after genome sequencing of 1,481
subjects enrolled in the BRIDGE-BPD study and 1,550 patients
enrolled in the clinical diagnostic ThromboGenomics study (Simeoni
et al, 2016). We identified 28 causal rare MYH9 variants in 50
patients (44 index cases), 20 with a diagnosis of MYH9-RD based on
the presence of macrothrombocytopenia, Dohle-like bodies and an
extra-hematological phenotype in some cases but without genetic
confirmation, 11 with suspected but unconfirmed MYH9-RD, and 19
in whom MYH9-RD was not previously suspected despite an expert
evaluation of their clinical and laboratory data. We describe the 28
MYH9 variants identified, 12 of which are novel, and classify the
variants for pathogenicity and contribution to phenotype. We also
describe the phenotypic profiles of this MYH?-RD cohort, adding new
insight into genotype-phenotype correlations and expanding the

knowledge of this rare inherited platelet disorder.

2 | METHODS

2.1 | Patient cohort

Patients gave their written informed consent and were enrolled
through two main projects: the NIHR BioResource - Rare Diseases
study (specifically, the BRIDGE-BPD project) and the clinical
diagnostic ThromboGenomics study. The BRIDGE-BPD project
includes patients with rare inherited BPDs of unknown etiology
who were screened mainly by genome sequencing and a small subset
by exome sequencing. DNA samples from BPD patients with clinical
and laboratory phenotypes indicative of a particular molecular
etiology were sequenced using the ThromboGenomics HTS test.
Inclusion criteria have been previously described (Simeoni et al.,
2016; Westbury et al, 2015). Ethics authorities and approval

numbers are provided in Table S1.

2.2 | Clinical and laboratory phenotypes

Clinical and laboratory phenotypes were submitted by the referring
clinicians as Human Phenotype Ontology (HPO) terms, as previously

described (Westbury et al., 2015). The severity of bleeding was coded
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as numerical scores using the MCMDM-1 VWD Bleeding Assessment
Tool  (http://www1l.wfh.org/docs/en/Resources/Assessment_Tools_
MCMDM-1VWD.pdf). Centralized analysis of blood smears was
performed by two independent centers for the identification of
Dohle-like inclusion bodies in patients who had either not been
tested or had received an initial negative result for the presence of
Dohle-like inclusion bodies. Blood films obtained from patients and
from healthy controls were randomly analyzed by two operators
blindly. Inclusions in neutrophils were classified as type |, I, and Il
based on their size, shape and pattern of distribution (Kunishima
et al., 2003; Pecci et al., 2008b). Information on hearing impairment,
renal and liver dysfunctions were also collected.

2.3 | Variant prioritization and assessment

Sequencing results were processed by using a single bioinformatic
approach as previously described (Greene, BioResource, Richardson,
& Turro, 2016; Simeoni et al., 2016; see also Supporting Information).
An average of five variants per patient remained after bioinformatic
filtering of variants and each of these variants was assessed following
the ACMG Guidelines (Richards et al., 2015) by a MultiDisciplinary
Team (MDT) composed of clinicians, clinical geneticists, bioinforma-
ticians and clinical scientists. The Congenica software (Congenica
Ltd., Hinxton, UK) was used to visualize the data and assign
pathogenicity and contribution to phenotype to each variant based
on the clinical picture, predicted consequence for the protein,
presence in the Human Gene Mutation Database (HGMD; Stenson
et al., 2017) and allele frequency in control datasets such as the
Exome Aggregation Consortium (ExAC; Karczewski et al., 2017) and
the genome Aggregation Database (gnomAD; Lek et al., 2016)). The
MDT also evaluated the minor allele frequency (MAF) of the variants
found in more than 13,000 participants enrolled in other non-BPD
BRIDGE projects. The LRG transcript LRG_567t1 (NM_002473.5,
ENST00000216181.10) was used as the reference sequence.
Variants and their pathogenicity have been deposited in ClinVar
under accession numbers SCV000891130 to SCV000891157. They
are accessible by searching for the accession number (e.g.,
SCV000891130) or with the keywords “MYH9 AND NIHR AND
BioResource”(https://www.ncbi.nlm.nih.gov/clinvar/?term =

MYH9 + AND + NIHR + BioResource).

3 | RESULTS

3.1 | Novel MYH9 variants

Total of 3,031 patients were enrolled in the BRIDGE-BPD and
ThromboGenomics studies and screened for rare variants in the MYH?
gene. We found 74 individuals with a variant in the MYH? gene, however
only 50 patients were considered for this study. The remaining 24 were
excluded for the following reasons: (a) the MYH9 variant was also present
in other non-BPD patients; (b) the platelet disorder and/or phenotype
was not compatible with MYH9-RD (e.g, thrombocytosis); (c) the

phenotype was explained by the presence of a causal variant in another
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gene; (d) the MYH9 variant was also identified in an unaffected family
member. All the patients excluded from this study and the reasons for
their exclusion are shown in detail in Table S2.

In the remaining 50 patients analyzed, of whom 44 are index cases,
we found 28 MYH?9 variants, namely 21 missense, three frameshifts, two
stop gains, one in-frame deletion, and one in-frame insertion. The
variants identified were positioned in 11 of the 41 exons of the MYH?
gene (Figure 1). Of the 28 variants, 12 were absent from the HGMD
database (public version, as of July 2019, Stenson et al., 2017), the
literature and all other publicly accessible MYH9-RD databases at
the time of the analysis (Table 1). Of the novel variants, three affect the
SH3/MD interface of the globular MYH9 head, including a new c.97T>G
transversion in exon 2, leading to p.Trp33Gly amino acid change, an in-
frame deletion p.Asp37_Ser39del and one missense variant p.Phe41Ser
caused by the ¢.353T>C transition. In silico protein modeling predicts
that these three variants may disturb the hydrophobicity of the SH3/
MD interface (Figure S1). We also found eight novel variants localized in
the coiled-coil domain. These include one missense variant p.Glu921Lys
and a nonsense variant p.GIn890Arg*, leading to a premature stop
codon causing the formation of a shorter MYH9 protein of 890 amino

acids, both in exon 22; one in-frame insertion p.GIn1068_Leu1074dup in

(a)

GLOBULAR HEAD DOMAIN (HD) NECK

(b)

exon 25 and five missense variants, p.Ser1195Leu in exon 27,
p.Glu1421Ala and p.GIn1434His in exon 31, p.Aspl1649Gly and
p.Met1678Val in exon 33. In the nonhelical tail domain of the protein,
we found one further novel variant and a frameshift leading to a
premature stop in the protein, p.Gly1938Alafs*10. The read coverage of
whole genome sequencing (WGS) and targeted sequencing results for
the 12 novel variants (in 11 patients) are shown in Figure S2.

3.2 | Variant pathogenicity and contribution to
phenotype

The MDT assigned pathogenicity and contribution to phenotype to each
variant according to the clinical features of each patient following the
ACMG Standards and Guidelines (Richards et al, 2015; shown in
Table 1). The choice of the transcript for variant reporting was based on
transcript and protein lengths, and expression in blood cells according to
the Blueprint data (Javierre et al,, 2016). Eleven MYH9 transcripts are
expressed in the different blood cells, but only three of them are protein
coding. ENST00000216181 (NM_002473, LRG_567t1) is the longest
transcripts (7,501 base pairs (bp), corresponding to a protein with the
expected 1,960 amino acids (aa) length), with an equivalent in the RefSeq

NON-HELICAL TAIL

COILED COIL TAIL DOMAIN (TD) DOMAIN (NHTD)

5 3’
— HIINI -

Exon 2 Exon 17 Exon27  Exon 31 Exon 39 Exon 41
wase §7°§°“2'J 3)# # 47# R”AGSC A E1421A (29) E1841K(:;};‘ f"w ‘;}3;";‘52’; 392«18(?5)
D37_S39del (2) TIBW (1451SR16%177) (2212324, 500 1N (30.31,32,33) M) N93aWETor14 (49)
F41S (3) 2526.27)  D1424Y (349 350,36) G1938AfrTer10 (50)
i S1195L(28) Q1434H (37)
D1447V (38
ND3K (5) Exon 21 (38)
A95T(6) Exon 11 P836L (18,19)
S96L (7-8-9,10
( ) K373N (11) Exon 22 Exon 25 Exon 33
Q890R*(20) Q1068_L1074dupl (21) *D1649G (39)
*E921K (39) M1678V (40)

FIGURE 1 Schematic representation of the heavy chain A of nonmuscle myosin class IIA (NMMHC-IIA) and variants position. (a) Schematic
representation of NMMHC-IIA protein. Nonmuscle myosin Il A shows a hexameric structure consisting of two heavy chains, namely
NMMHC-IIA, and two pairs of light chains. Each heavy chain includes a N-terminal globular head domain (HD), a neck region which binds the
light chains, and a C-terminal a-helical coiled-coil tail domain (TD), which ends with a nonhelical tail domain (NHTD) involved in the subcellular
localization of the protein. The HD includes four subdomains: the N-terminal SRC-Homology 3 like motif (SH3), the upper and lower 50 kDa
subdomains, that together form the motor domain (MD), and the converter subdomain. In green the globular HD, in violet the neck domain and
in blue the coiled coil TD with the NHTD at the 3’-UTR in orange. (b) Affected exons and variants identified. The most affected exons are
highlighted with red stars. The novel variants are shown in bold and the number in brackets is the patient ID number. Colors reflect protein
domains. All variants described were confirmed by Sanger sequencing. The * indicates the two mutations identified in the same patient (39).
#r ol represent members of the same family. 3’-UTR, 3’-untranslated region
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database (NM_0024736). This is the most expressed transcript in
platelets, while its expression is lower in neutrophils and megakaryocytes
and much lower in erythroblasts. Of the two remaining protein coding
transcripts, ENSTO0000401701 is much shorter (789 bp, 218aa) and
markedly less expressed; ENSTO0000456729 is also shorter (449 bp,
103aa) and absent (log2(FPKM) < 1) in blood cells (Figure S3). For these
reasons, ENST00000216181 (NM_002473) was used for variant report-
ing. This is also the transcript subsequently selected by LRG (LRG_567t1).

The MDT classified the novel variants as follows: the three variants in
exon 2 found in patients 1, 2, and 3, as likely pathogenic (in patient 1) and
variant of uncertain significance (VUS; in patients 2 and 3) with full
contribution to phenotype. The stop gain p.GIn890Arg*, in patient 20,
was classified as VUS with full contribution to the phenotype. Based on
the high impact of the variant on the MYH?9 protein causing a premature
stop, the variant might be considered to be likely pathogenic. However,
we have not been able to perform any functional tests due to the
difficulties of recalling the 86-year-old patient, thus we remained
conservative and classified this variant as VUS. The in-frame insertion
GIn1068_Leu1074dup and the frameshift variant, p.Gly1938Alafs*10,
were considered VUS and likely pathogenic with full contribution to the
phenotype, respectively. The six novel missense variants (present in
patients 28-29-37-39-40) identified in the coiled-coil domain of the
MYH9 protein were classified as VUSs with full contribution to
phenotype. The referring clinicians of these five patients with a VUS

variant, were re-contacted to arrange cosegregation studies. Pedigree

%
[

©
)

MYH9

FIGURE 2

CWILEY—L2

analysis was possible only for two of these patients. This has confirmed, in
patient 28, the absence of the variant in the nonaffected mother and in
patient 39 the presence of the same variant in the daughter affected with
mild thrombocytopenia. The pathogenicity and contribution to phenotype
assigned to the remaining nonnovel variants are listed in Table 1.

For all the variants identified in this study we investigated the
evolutionary conservation in the MYH9 protein domains. We found
that all pathogenic, likely pathogenic and VUS variants affect highly
conserved amino acid residues providing further confidence that the
variants identified have an impact on MYH9 protein function and
consequently on the patients’ phenotypes (Figure 2).

3.3 | Immunofluorescence analysis

At enrollment, the presence of Dohle-like inclusion bodies was
reported only in 21 (42%) of the 50 patients analyzed. Given that the
Dohle-like bodies are reported to be invariably present in MYH9-RD
patients, at least when analyzed by immunofluorescence, we recalled
the remaining 29 patients, initially labeled as Dohle-like bodies
negative, for a centralized blood smear analysis (Table S3). Of these
29 patients, we obtained a fresh blood smear from 18 patients. An
abnormal neutrophils MYH9 distribution was found in all 18 (100%)
patients when analyzed by immunofluorescence and in 11 patients
(61%) when analyzed by the MGG staining, in accordance with

previous results (Balduini et al., 2011).

600

s CONserved amino acid

gnomaAD allele frequency
e Variants in ClinVar and LOVD
s Pathogenic variant
Likely pathogenic variant
m— Variant of unknown significance

Evolutionary conservation variant analysis. From the outer to the inner circle. MYH9 protein domains: in green the N-terminal

globular head domain (HD), in purple the neck domain, in blue the C-terminal a-helical coiled-coil tail domain (TD) and in orange the 3'-UTR.
Evolutionary conserved regions in the MYH9 protein in gray. All the pathogenic, likely pathogenic and VUS variants affect highly conserved
amino acid residues. Variant minor allele frequency (MAF) in gnomAD database is represented by green bars. Smaller is the green bar lower is
the allele frequency. Variants present in ClinVar and LOVD are represented by blue bars. The height of each blue bar represents the number of
patients previously described with the same variant. Variants in this cohort previously seen in the literature include ‘pathogenic’ and ‘likely

pathogenic’ variants, in red and orange, respectively. Novel variants in this cohort include ‘likely pathogenic” variants and VUS in orange and

black, respectively. 3'-UTR, 3’-untranslated region
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Immunofluorescence was performed for all the 11 patients with
novel variants, except for those in which the Dohle-like bodies were
previously identified (patients 2, 3, 21, and 50) and in patients 37 and 39
not available for further analysis. In the remaining five patients, we
obtained the following results: in patients 1 and 20, neutrophils had
circular to oval shaped cytoplasmic spots that have been classified as
type Il inclusions. In patients 28 and 40, neutrophils had speckled
inclusions and in patient 29 inclusions resembled small dots scattered
throughout the cytoplasm inclusions were classified as type III.

In conclusion, 33% of the all the 18 patients re-analyzed had type
Il inclusions and 67% type Il myosin IIA inclusions (Table S3). An
example of the altered NMMHC-IIA distribution in neutrophils in

patients with a pathogenic variant and VUS is shown in Figure 3.

3.4 | Phenotypic description of the MYH9-RD
cohort and genotype-phenotype correlation

Our cohort includes 21 males and 29 females from 44 unrelated

pedigrees. The median age at diagnosis was 20 years (range 1-76). Over

a third (19) of the patients were enrolled with a diagnosis of
‘unclassified platelet disorder’ while the remaining (31) had a suspected
(11) or known (20) but unconfirmed MYH9-RD, based on family history,
presence of large/giant platelets, thrombocytopenia, presence of Dohle-
like bodies and/or extra-hematological symptoms.
Macrothrombocytes were present in all patients, while thrombo-
cytopenia, with various degrees of severity, was present in all but
two patients (17 and 40). The median platelet count was 54 x 10%/L
(8-220 x 10%/L) from automated measurements and 48.5 x 10%/L by
microscopic assessment, although the latter was only available for
eight patients (Table S4). The mean platelet volume (MPV) values are
shown in Table S5. Three cases had a normal MPV when measured by
automatic blood cell counting, however, macrothrombocytes were
noticed upon examination of their blood smears (Greinacher et al.,
2017; Kunishima et al., 2001a). Hematological and non hematological
symptoms are shown in Figure 4. Bleeding symptoms, mostly mild
mucocutaneous bleeding, were reported in 82% of the patients (41
out of 50). Bleeding scores, calculated by the MCMDM-1 VWD

Bleeding Assessment Tool, are shown in Table Sé6. Of the 29 females

Pathogenic (32)

o hd

VUS (28)

VUS (40)

ﬁ N

‘

£,

.
L s
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Control Pathogenic (43

5um

" VUS(28))

s A WY ¢
T v DO e S 5

X Sume, e Sl Sy,

VUS (29) VUS (40) 4

A
XIV 5 um XV

@

FIGURE 3 Dohle-like inclusion bodies localization by NMMHC-IIA immunofluorescence or MGG staining. Light microscopy and
immunofluorescence analyses of granulocytes in a healthy control (control), in patients (32 for immunofluorescence and 43 for light microscopy)
with a pathogenic variant (pathogenic) and in three patients (28, 29, and 40) with a variant of uncertain significance (VUS). The analysis was
performed by two independent centres: Panels |-V show results obtained by centre 1; Panels VI-X show results obtained by centre 2. Both
centres used rabbit antihuman NMMHCIIA Ab followed by Alexa-Fluor 488-conjugated secondary antibody. Results between the two centers
were highly comparable. The patient’s sample in which a pathogenic variant was identified shows circular to oval shaped cytoplasmic punctuate
spots, classified as type Il inclusions (panels Il and VII). Patients’ samples in which VUSs were identified show a speckled staining (panels Ill and
VIIl and panels V and X, respectively), and many small dots scattered throughout the cytoplasm (panels IV and IX) classified as type Il inclusions.
Panels XI-XV show May-Griinwald-Giemsa staining. Panels Xll and XV show the presence of Doéhle-like bodies (arrowhead) in patients’
samples with a pathogenic variant (XII) and a VUS (XV). NMMHCIIA, nonmuscle myosin of class IlA; VUS, variant of uncertain significance
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(a)

Leukocyte inclusion bodies
Subcutaneous hemorrhage

Bleeding with minor or no trauma

Prolonged bleeding after dental extraction
Menorrhagia
Anemia

Petechiae
Post-partum hemorrhage
Excessive bleeding from superficial cuts

Abnormal

Impaired ADP-induced platelet aggregation

Impaired arachidonic acid-induced platelet aggregation
Abnormal neutrophil cell number

Prolonged bleeding after surgery

Abnormal leukocyte count

Abnormal bleeding

Increased mean platelet volume

Thrombocytopenia

Intramuscular hematoma IIIII-II-IIIIIIIIIIII AN EEEEN

Oral cavity

FANOTODONOO » v~

i G

Hearing impairment
Abnormality of the kidney
Elevated hepatic transaminases

QERRRABS %%838:-;8 95928

gt i

[ = Phenotypic feature identified in the patient after centralized analysis
[l = Phenotypic feature not available

[l = Phenotypic feature present in the patient

[J = Phenotypic feature absent in the patient

FIGURE 4 Cohort Phenotype. (a) HPO terms coded for hematological and (b) nonhematological symptoms. Y axis: HPO terms; X axis:
patient ID number (from 1 to 50). Red box: the presence of the phenotypic feature; green box: the presence of NMMHC-IIA aggregates
identified only after centralized immunofluorescence analysis; and blue box: data not available. Pale yellow box: the absence of phenotypic

feature. NMMHCIIA, nonmuscle myosin of class I1A

enrolled, 11 (38%) had menorrhagia, one of the most common
symptoms reported by women with congenital platelet disorders.
Genotype-phenotype correlations were analyzed by plotting the
seven HPO terms representing the major MYH9-RD clinical features
against the exons in which both previously described and novel
MYH9 variants were found (Figure S4). We first investigated the
correlation between the position of variants in the MYH9 protein and
the degree of thrombocytopenia, by dividing patients into two groups
according to the platelet count being below (severe/moderate) or
above 50 x 10%/L (mild). We found that 39% of the patients with
severe thrombocytopenia have a variant affecting exons in the HD
and 61% of the individuals had a variant in the coiled coil domain
instead. Genotype-phenotype correlations were also studied for the
extra-hematological manifestations of MYH9-RD. Details on how
patients were screened for hearing impairment, renal dysfunction,
and liver enzymes alteration are summarized in Table S7. Nephro-
pathy was reported in patients 8 and 17, who carry p.Ser96Leu and
p.Arg718Trp variants, respectively. Patient 8 also has hearing
impairment. However, five other patients (10% of this cohort), two
unrelated individuals carrying the same variant, p.Ser96Leu (patients
7 and 9), and three pedigree members of case 17, carrying the
p.Arg718Trp, did not present any of these nonhematological
features. Hearing impairment was present in 22% of the patients:
8% with variants involving the HD, as expected, and 14% involving
the coiled-coil and the NHT domains (Balduini, Pecci, & Noris, 2012;
2014, 2008b). Variants observed in patients with

bleeding symptoms were randomly distributed across the MYH9

Pecci et al.,

domains, confirming a lack of genotype-phenotype correlation for
the bleeding phenotype (Pecci et al., 2014; Saposnik et al., 2014).
Moreover, no correlation was found even between platelet count and
bleeding tendency (Figure S5).

4 | DISCUSSION

MYH9-RD, although rare, is considered the most frequent inherited
macrothrombocytopenia. In Italy, where a large active patient registry
was established in 2006, MYH9-RD has an estimated frequency of 1 in
312,000, representing 12% of the inherited thrombocytopenias (Balduini
et al., 2012; Pecci et al., 2014). The complexity and variability of patients’
phenotypes can make the diagnosis of MYH9-RD rather challenging, even
by skilled clinicians at specialist centres. As a consequence, a significant
number of patients with MYH9-RD are initially misdiagnosed as immune
thrombocytopenic purpura (ITP), and thus subjected to ineffective and
potentially harmful treatments, or classified as inherited platelet disorder
of unknown origin. In this scenario, HTS techniques may represent a
reliable method for the diagnosis of MYH9-RD.

The present study represents the first systematic analysis of
MYH9 variants by HTS analysis in a large cohort of patients and
controls enrolled from over 100 centres worldwide. Here, we report
50 MYH9-RD patients with 28 rare variants in MYH9 found in a group
of 3,031 patients (of whom 764 were classified as having

thrombocytopenia) and over 13,000 controls.
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In agreement with previous studies, 75% of the variants identified
(21 out of 28) are annotated in the most commonly affected MYH9
exons (Pecci et al., 2014, 2008b; Saposnik et al., 2014).

We identified 12 novel variants affecting MYH9 in highly
conserved amino acid residues, including eight missense variants
(one in a previously described amino acid residue but with a different
nucleotide change (Jang et al., 2012; Kahr et al., 2009), one in-frame
deletion, one stop gain, one in-frame insertion, and one frameshift.
Patients carrying the eight missense variants did not show extra-
hematological symptoms, had a platelet count ranging from 15 to
96 x 10%/L and three of them (1, 20, and 21) had a history of
excessive bleeding. The in-frame deletion, Asp37_Ser39del, was
found in a 31-year-old man with no bleeding symptoms, moderate
thrombocytopenia and no extra-hematological symptoms. The new
pathogenic stop codon in the coiled-coil domain, GIn890Arg*, leading
to removal of 1,070 amino acids in the MYH9 protein was found in an
86-year-old man who was originally diagnosed as having an
“unclassified platelet disorder”, with mild thrombocytopenia
(88 x 10%/L), no extra-hematological manifestations and a pathologic
bleeding score due to major bleeding after surgery. We have not
been able to test the presence of the truncated MYH9 protein in this
patient’s cells, and a non classical distribution of NMMHC-IIA, with
just small punctuate clusters (Althaus & Greinacher, 2009) was
observed by IF- and MGG-staining in granulocytes (Figure S6). We
also report the first in-frame insertion, GIn1068_Leu1074dup. The
same amino acids were previously described to be involved in an in-
frame deletion in two patients (Ishida, Mori, Ota, Inaba, & Kunishima,
2013; Saposnik et al., 2014). This was found in a young girl who
presented with moderate thrombocytopenia (70 x 10%/L), large
platelets and moderate/severe bleeding (Bleeding score 7), similarly
to the previously published cases, but with no current extra-
hematological symptoms. In contrast, the two patients previously
described present several extra-hematological features like hearing
loss since childhood, congenital cataracts and mild proteinuria in a 59
year-old woman (Saposnik et al., 2014) and end-stage renal disease
and bilateral hearing loss in a 27-year-old woman (Ishida et al., 2013).
The novel frameshift, Gly1938Alafs*10, located in a known muta-
tional hot spot, was found in a patient with severe thrombocytopenia
(16 x 10%/L), large platelets and mild bleeding.

All the variants were discussed in MDT meetings and pathogeni-
city and contribution to phenotype assigned according to the ACMG
Guidelines. The novel variants were labeled as pathogenic or likely
pathogenic when supported by strong evidence, including the impact
of the variant on the protein, the presence of strong MYH9-RD
phenotype and/or another MYH9-RD feature and, when possible, by
pedigree analysis. In all the remaining cases, the novel variants were
classified as VUS. Previously reported variants were classified mainly
as pathogenic. One variant, initially classified as VUS, was re-
classified as benign (patient 71 in Table S2), one variant initially VUS
to a likely pathogenic (in patients 18 and 19) and four initially likely
pathogenic as pathogenic (in patients 5, 6, 12, and 13).

We have previously shown that HTS technologies can success-

fully be applied to diagnose inherited bleeding, platelet and

thrombotic disorders (Simeoni et al., 2016). In the present study, a
total of 23 patients, 12/19 initially coded as “unclassified platelet
disorder” and 11/11 for whom only a suspicion of MYH9-RD was put
forward with no conclusive diagnosis, received a molecular diagnosis
of MYH9-RD because a likely pathogenic or pathogenic variant in
MYH9 was found.

Our data confirm that the presence of Doéhle-like bodies is an
invariable feature of MYH9-RD. Indeed, Dohle-like bodies were found
in all 18 patients that were re-analyzed by immunofluorescence (in 9
patients with a pathogenic, in 5 patients with a likely pathogenic, and
in 4 patients with a VUS variant) and in 11/18 by MGG (in 6 patients
with a pathogenic, in 4 patients with a likely pathogenic, and in a
single patient with a VUS variant) bringing the percentage of patients
positive for Dohle-like bodies inclusion and with a variant in the
MYH9 to 100%. Interestingly, we noted that 52% (11 out of the 21)
of the patients in which Dohle-like bodies were reported at
enrollment by MGG staining had a variant in the tail or in the S2
fragment, which are the regions of the MYH9 protein that, when
mutated, are associated with the presence of type | inclusions, the
most visible at MGG staining and more easy to identify. Our attempt
to identify genotype/phenotype correlations in this cohort of patients
generally confirms previously published data (Pecci et al, 2014,
2008b; Saposnik et al., 2014), although with some exceptions. Our
study confirms that variants in the HD are frequently associated with
more severe thrombocytopenia and higher risk of other organ
involvement contrarily to variants in the TD. In fact, two patients
(cases 8 and 10) with severe/moderate thrombocytopenia, kidney
disease and hearing impairment had variants in the HD (exon 2 and
17, respectively), while most of the cases with variants in the TD
showed mild thrombocytopenia and no extra-hematological organ
involvement. Regarding the exceptions, three patients in our series
carrying variants in the HD (patients 11, 12, and 13) had only mild
thrombocytopenia, very mild or absent bleeding symptoms, and no
other extra-hematological manifestations, except hearing loss in
patient 12. Moreover, four patients in our cohort (cases 28, 30, 33,
and 50) with variants in the TD had severe thrombocytopenia
(<20 x 10%/L). Also patients carrying the same variant (p.Ser96Leu
and p.Arg718Trp) did not share the same extra-hematological
phenotype, showing that the risk of developing deafness or renal
failure may be variable among patients carrying the same variant.
The risk to develop these phenotypes is known to increase with age.
In our cohort we did not observe a clear age-dependency for the
development of an extra-hematological phenotype, however, it must
be considered that our patients are mostly relatively young. For
instance, patients 12 and 13 with the p.Arg702Cys variant are 7 and
11 years old, respectively. Their health care management will take in
consideration the high risk of developing extra-hematologic features
by age of 40 due to this known pathogenic variant.

QOur cohort confirms that the presence of macrothrombocytes is an
invariable feature of this disorder while thrombocytopenia, although
highly frequent, may be absent (Pecci et al., 2014; Saposnik et al., 2014).
This is the case for patients 17 and 40, with a platelet count of 187 and

220 x 107 /L, respectively. Patient 17 shares the same variant with her
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sister (patient 14), her nephew (patient 15) and her mother (patient 16)
who have all three mild thrombocytopenia. Unfortunately, we could not
investigate further patient 40. Thus, this cohort confirms that a wide
platelet count variability is a feature of MYH9-RD (Balduini et al., 2011).
In conclusion, our study expands the number of variants causing MYH9-
RD, highlights the heterogeneity of the MYH9-RD phenotypes and,
despite supporting previous correlation studies, shows that exceptions
exist in genotype/phenotype correlations. The application of HTS-based
strategies revealed to be a reliable and fast method to reach a
conclusive diagnosis of MYH9-RD and exclude other thrombocytopenias
with potential susceptibility to malignancies and may represent the first
line of investigation for this disorder, even after preliminary expert

evaluation.

ACKNOWLEDGEMENTS

We are grateful to patients who accepted to participate in these
projects. We would like to thank all the members of the BRIDGE-BPD
and ThromboGenomics Consortia for their valuable contributions. In
particular, Veerle Labarque from Leuven for recruiting patients for the
ThromboGenomics panel, and Dr Romina Petersen for helping with data
analysis. We thank Anna Maria Mezzasoma (University of Perugia, Italy)
for the help with MGG-staining and analysis of blood smears. We
gratefully acknowledge the participation of all NIHR BioResource
volunteers, and thank the NIHR BioResource centre and staff for their
contribution. We thank the National Institute for Health Research and
NHS Blood and Transplant.

AUTHOR CONTRIBUTIONS

L. B. wrote the paper, performed immunofluorescence and provided
samples; K. M. reviewed the paper, managed data, set up, and
oversaw MDT meetings; J. C. S. provided genotyping results and
processed samples; L. G. provided BLUEPRINT data; D. G. performed
statistical analysis and provided HPO tables; N. G. performed variant
conservation analysis; K. A. performed immunofluorescence; D. A, T.
K.B,M.B,N.V.B,P.C,N.C,K. E,E.F,B.F,D.K,C.M.M, M. P. L,
S.M,D.JP,S S S KW, K F, K G, L. B, and P. G. provided
samples and clinical data; S. V. V. D supported the bioinformatics
analysis, K. D. managed ThromboGenomics; R. M. performed DNA
extraction; D. D processed ThromboGenomics samples, S. P.
coordinated the NIHR BioResource Rare Diseases BPD project;
C. P. managed and supervised the WGS pipeline; K. S. managed the
NIHR BioResource sequencing pipeline; E. T. managed BRIDGE-BPD
data analysis; K. F. and K. G. chaired the MDT meetings; P. G, K. F.,,
and W. H. O. reviewed the paper; I. S. wrote the paper, managed, and

processed ThromboGenomics samples.

FUNDING INFORMATION

WHO is supported by: NIHR RG65966 and RBAG/181, NIHR
BioResource - Rare Diseases, British Heart Foundation (RBAG/245,
208, 226), European Commission (RBAG/344), MRC (RBAG/285,

WiLEY-L®

295), NHS Blood and Transplant (RBAG/142), and Wellcome
Trust (RBAG/342). P. G. is supported by: MIUR-FIRB (Protocol
#RBFR12W5V5_004), Telethon Foundation Grant (GGP15063), and
Fondazione Umberto Veronesi. C. M. M. is supported by the NIHR
Imperial College Biomedical Research Centre. N. V. B. is recipient of
FIS-Fondos FEDER CP14/00024.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

Loredana Bury http://orcid.org/0000-0003-0333-0948
http://orcid.org/0000-0001-5365-8445

http://orcid.org/0000-0001-5039-2194

Paolo Gresele

llenia Simeoni

REFERENCES

Althaus, K., & Greinacher, A. (2009). MYH9-related platelet disorders.
Seminars in Thrombosis and Hemostasis, 35, 189-203.

Arrondel, C., Vodovar, N., Knebelmann, B., Griinfeld, J. P., Gubler, M. C,,
Antignac, C,, ... Heidet, L. (2002). Expression of the nonmuscle myosin
heavy chain IlIA in the human kidney and screening for MYH9
mutations in Epstein and Fechtner syndromes. Journal of the American
Society of Nephrology, 13, 65-74.

Balduini, C. L., Cattaneo, M., Fabris, F., Gresele, P., lolascon, A., Pulcinelli,
F. M, .. ltalian Gruppo di Studio delle, P. (2003). Inherited
thrombocytopenias: A proposed diagnostic algorithm from the Italian
Gruppo di Studio delle Piastrine. Haematologica, 88, 582-592.

Balduini, C. L., Pecci, A., & Noris, P. (2012). Inherited thrombocytopenias:
The evolving spectrum. Hdmostaseologie, 32, 259-270.

Balduini, C. L., Pecci, A., & Savoia, A. (2011). Recent advances in the
understanding and management of MYH9-related inherited throm-
bocytopenias. British Journal of Haematology, 154, 161-174.

Greene, D., Richardson, S., & Turro, E. (2016). Phenotype similarity
regression for identifying the genetic determinants of rare diseases.
The American Journal of Human Genetics, 98, 490-499.

Greinacher, A., Pecci, A., Kunishima, S., Althaus, K., Nurden, P., Balduini,
C. L., ... Bakchoul, T. (2017). Diagnosis of inherited platelet disorders
on a blood smear: A tool to facilitate worldwide diagnosis of platelet
disorders. Journal of Thrombosis and Haemostasis : JTH, 15,
1511-1521.

Gresele, P., De Rocco, D., Bury, L., Fierro, T., Maria Mezzasoma, A., Pecci,
A, ... Savoia, A. (2013). Apparent genotype-phenotype mismatch in a
patient with MYH9-related disease: When the exception proves the
rule. Thrombosis and Haemostasis, 110, 618-620.

Ishida, M., Mori, Y., Ota, N, Inaba, T., & Kunishima, S. (2013). Association
of a novel in-frame deletion mutation of the MYH9 gene with end-
stage renal failure: Case report and review of the literature. Clinical
Nephrology, 80, 218-222.

Jang, M. J,, Park, H. J,, Chong, S. Y., Huh, J. Y., Kim, I. H,, Jang, J. H,, ... Oh, D.
(2012). A Trp33Arg mutation at exon 1 of the MYH9 gene in a Korean
patient with May-Hegglin anomaly. Yonsei Medical Journal, 53, 662-666.

Javierre, B. M., Burren, O. S., Wilder, S. P., Kreuzhuber, R., Hill, S. M,
Sewitz, S., ... Fraser, P. (2016). Lineage-specific genome architecture
links enhancers and non-coding disease variants to target gene
promoters. Cell, 167, 1369-1384.

Kahr, W., Savoia, A., Pluthero, F., Li, L., Christensen, H., De Rocco, D., ...
Blanchette, V. (2009). Megakaryocyte and platelet abnormalities in a


http://orcid.org/0000-0003-0333-0948
http://orcid.org/0000-0001-5365-8445
http://orcid.org/0000-0001-5039-2194

BURY ET AL

“ | wiLey-

patient with a W33C mutation in the conserved SH3-like domain of
myosin heavy chain I1A. Thrombosis and Haemostasis, 102, 1241-1250.

Kanematsu, T., Suzuki, N., Yoshida, T., Kishimoto, M., Aoki, T., Ogawa, M.,
... Kunishima, S. (2016). A case of MYH9 disorders caused by a novel
mutation. Annals of Hematology, 95, 161-163. p.K74E.

Karczewski, K. J., Weisburd, B., Thomas, B., Solomonson, M., Ruderfer,
D. M., Kavanagh, D., ... MacArthur, D. G. (2017). The ExAC browser:
Displaying reference data information from over 60 000 exomes.
Nucleic Acids Research, 45, D840-D845.

Kunishima, S., Kojima, T., Matsushita, T., Tanaka, T. Tsurusawa, M.,
Furukawa, Y., ... Saito, H. (2001a). Mutations in the NMMHC-A gene
cause autosomal dominant macrothrombocytopenia with leukocyte
inclusions (May-Hegglin anomaly/Sebastian syndrome). Blood, 97,
1147-1149.

Kunishima, S., Matsushita, T., Yoshihara, T., Nakase, Y., Yokoi, K., Hamaguchi,
M., ... Saito, H. (2005). First description of somatic mosaicism in MYH9
disorders. British Journal of Haematology, 128, 360-365.

Kunishima, S., Matsushita, T., Kojima, T., Amemiya, N., Choi, Y. M., Hosaka,
N., ... Saito, H. (2001b). Identification of six novel MYH9 mutations
and genotype-phenotype relationships in autosomal dominant macro-
thrombocytopenia with leukocyte inclusions. Journal of Human
Genetics, 46, 722-729.

Kunishima, S., Matsushita, T., Kojima, T., Sako, M., Kimura, F., Jo, E. K,, ... Saito,
H. (2003). Immunofluorescence analysis of neutrophil nonmuscle myosin
heavy chain-A in MYH?9 disorders: Association of subcellular localization
with MYH9 mutations. Laboratory Investigation, 83, 115-122.

Kunishima, S., Takaki, K., Ito, Y., & Saito, H. (2009). Germinal mosaicism in
MYH?9 disorders: A family with two affected siblings of normal
parents. British Journal of Haematology, 145, 260-262.

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell,
T., ... MacArthur, D. G. (2016). Analysis of protein-coding genetic
variation in 60,706 humans. Nature, 536, 285-291.

Neveling, K. Feenstra, I, Gilissen, C., Hoefsloot, L. H., Kamsteeg, E. J.,
Mensenkamp, A. R,, ... Nelen, M. R. (2013). A post-hoc comparison of the
utility of sanger sequencing and exome sequencing for the diagnosis of
heterogeneous diseases. Human Mutation, 34, 1721-1726.

Orsini, S., Noris, P., Bury, L., Heller, P. G., Santoro, C., Kadir, R. A, ...
Gresele, P. (2017). Bleeding risk of surgery and its prevention in
patients with inherited platelet disorders. Haematologica, 102,
1192-1203. European Hematology Association - Scientific Working
Group on, t. & platelet function, d..

Pecci, A., Biino, G,, Fierro, T., Bozzi, V., Mezzasoma, A., Noris, P., ... Gresele,
P. (2012). Alteration of liver enzymes is a feature of the MYH9-
related disease syndrome. PLOS One, 7, e35986.

Pecci, A, Granata, A, Fiore, C. E., & Balduini, C. L. (2008a). Renin-angiotensin
system blockade is effective in reducing proteinuria of patients with
progressive nephropathy caused by MYH9 mutations (Fechtner-Epstein
syndrome). Nephrology Dialysis Transplantation, 23, 2690-2692.

Pecci, A, Gresele, P., Klersy, C., Savoia, A., Noris, P., Fierro, T., ... Balduini, C. L.
(2010a). Eltrombopag for the treatment of the inherited thrombocyto-
penia deriving from MYH9 mutations. Blood, 116, 5832-5837.

Pecci, A, Klersy, C., Gresele, P., Lee, K. J. D., De Rocco, D., Bozzi, V., ...
Savoia, A. (2014). MYH9-related disease: A novel prognostic model to
predict the clinical evolution of the disease based on genotype-
phenotype correlations. Human Mutation, 35, 236-247.

Pecci, A.,, Ma, X,, Savoia, A., & Adelstein, R. S. (2018). MYH9: Structure,
functions and role of non-muscle myosin IlA in human disease. Gene,
664, 152-167.

Pecci, A., Panza, E., De Rocco, D., Pujol-Moix, N., Girotto, G., Podda, L., ...
Savoia, A. (2010b). MYH?9 related disease: Four novel mutations of

the tail domain of myosin-9 correlating with a mild clinical phenotype.
European Journal of Haematology, 84, 291-297.

Pecci, A, Panza, E., Pujol-Moix, N., Klersy, C., Di Bari, F., Bozzi, V., ...
Savoia, A. (2008b). Position of nonmuscle myosin heavy chain IIA
(NMMHC-IIA) mutations predicts the natural history of MYH9-
related disease. Human Mutation, 29, 409-417.

Rabbolini, D. J., Chun, Y., Latimer, M., Kunishima, S., Fixter, K., Valecha, B.,
... Morel-Kopp, M. C. (2017). Diagnosis and treatment of MYH9-RD in
an Australasian cohort with thrombocytopenia. Platelets, 1-8.

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., ... Rehm, H. L.
(2015). Standards and guidelines for the interpretation of sequence
variants: A joint consensus recommendation of the American College of
Medical Genetics and Genomics and the Association for Molecular
Pathology. Genetics in Medicine, 17, 405-423.

Saposnik, B., Binard, S., Fenneteau, O., Nurden, A., Nurden, P., Hurtaud-
Roux, M. F., & Schlegel, N. (2014). Mutation spectrum and genotype-
phenotype correlations in a large French cohort of MYH9-related
disorders. Molecular Genetics & Genomic Medicine, 2, 297-312.

Savoia, A., Germeshausen, M., De Rocco, D., Henschel, B.,, Kratz, C. P.,
Kuhlen, M,, ... Ballmaier, M. (2010). MYH9-related disease: Report on
five German families and description of a novel mutation. Annals of
Hematology, 89, 1057-1059.

Syndrome Consortium, T. M. F. (2000). Mutations in MYH9 result in the
May-Hegglin anomaly, and Fechtner and Sebastian syndromes. Nature
Genetics, 26, 103-105.

Simeoni, ., Stephens, J. C., Hu, F., Deevi, S. V. V., Megy, K., Bariana, T. K,, ...
Turro, E. (2016). A high-throughput sequencing test for diagnosing
inherited bleeding, thrombotic, and platelet disorders. Blood, 127,
2791-2803.

Stenson, P. D., Mort, M, Ball, E. V., Evans, K., Hayden, M., Heywood, S., ...
Cooper, D. N. (2017). The Human Gene Mutation Database: Towards
a comprehensive repository of inherited mutation data for medical
research, genetic diagnosis and next-generation sequencing studies.
Human Genetics, 136, 665-677.

Vicente-Manzanares, M., Ma, X., Adelstein, R. S., & Horwitz, A. R.
(2009). Non-muscle myosin |l takes centre stage in cell adhesion
and migration. Nature Reviews Molecular Cell Biology, 10, 778-790.

Westbury, S. K., Turro, E., Greene, D., Lentaigne, C., Kelly, A. M., Bariana,
T. K, ... Freson, K. (2015). Human phenotype ontology annotation and
cluster analysis to unravel genetic defects in 707 cases with
unexplained bleeding and platelet disorders. Genome Medicine, 7, 36.

Zhang, J., Barbaro, P., Guo, Y., Alodaib, A,, Li, J., Gold, W., ... Christodoulou,
J. (2016). Utility of next-generation sequencing technologies for the
efficient genetic resolution of haematological disorders. Clinical
Genetics, 89, 163-172.

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section.

How to cite this article: Bury L, Megy K, Stephens JC, et al.
Next-generation sequencing for the diagnosis of MYH9-RD:
Predicting pathogenic variants. Human Mutation. 2019;1-14.
https://doi.org/10.1002/humu.23927



https://doi.org/10.1002/humu.23927



