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ABSTRACT Existing research on on-grid microgrid planning is carried out with a free trading assumption
and without considering the limitation of annual electricity exchange. Therefore, the existing planning and
sizing scheme may be not viable for the application of partially self-sufficient microgrid (PSSMG) with a
limited amount of electricity exchange. To address this issue, a new planning method for PSSMG is proposed
in this paper considering the limited annual electricity exchanging amount (AEEA). The sizing model and
energy management are linearized and simultaneously integrated into one model, which could be solved in
polynomial time. In order to effectively reduce the number of variables of a full year horizon and to cope
with the uncertainty both of DGs and loads, a data-driven method based on K-means algorithm is utilized to
choose a set of typical days that are representative of historical data of one full year. Finally, the validity and
effectiveness of the proposed model are verified by comparative numerical simulations, and the sensitivity
of limited AEEA to the planning scheme is analyzed.

INDEX TERMS Microgrid, optimal planning, optimal sizing, data-driven.

I. INTRODUCTION
With the rapid development of Distributed Generation (DG)
technology, integration of DG in the end-user side is boom-
ing [1]–[3]. Due to its uncertainty and non-schedulable fea-
tures, it is not suitable to install DGs independently, which
would otherwise result in an undesired fluctuation. There-
fore, integrating the DGs, loads, and energy storage sys-
tem (ESS) into a microgrid is one of the most common
technological options. It can not only supply stable clean
electricity to the end-users and increase the penetration of
DGs but also enhance the system reliability with advanced
planning and energy management [4], [5]. Depending on its
operating mode, a microgrid may be categorized into on-grid
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microgrid or off-grid microgrid [6], [7]. Also, by its appli-
cation scenarios, microgrids may be classified into industrial
microgrids, commercial microgrids, community microgrids
etc. So, different microgrids may have different operation
purpose and modes, as well as load profiles. Thus, the types
and sizings of DGs may be different from each other, and
some specific characteristics need to be thoroughly consid-
ered in the planningmethod. It is clear that a successful imple-
mentation of advanced microgrids will require advanced
planning strategies to best capture operational and financial
benefits. If the internal sources are not properly planned
according to the operation purpose of a microgrid, it may
affect the performance of microgrid energy management.
Thus, it may result in high investment and operation cost at
low energy efficiency. So, the optimal planning scheme is
the premise of economic operation of a microgrid and many
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endeavors have been conducted on the planning or sizing
problem of microgrids [8]–[20].

Since battery storage is of great significance to enhance
the power-supply reliability and operational feasibility, a bat-
tery optimization model of microgrid planning is studied
in [8], [9]. A life cycle planning methodology considering
demand growth, battery capacity fading and components’
contingencies under a multi-timescale decision framework
is studied in [8]. An optimization model for battery stor-
age is proposed to reduce the operation cost and improve
the reliability of microgrid in [9], in which some normally
overlooked factors of battery are considered in the opti-
mization model. In [10], a reliability-driven DG siting and
sizing framework is proposed with the consideration of the
existing DGs. An energy index of reliability is presented as
the reliability criteria. In [11], an optimal capacity planning
method is studied for off-grid remote community microgrids
considering the N-1 security constraints. In [12], a com-
prehensive generalized methodological framework based on
the synergies of decision analysis and optimization model is
proposed for the design of rural community microgrids. This
framework is comprised of three stages, namely, an energy
alternative selection, an optimal sizing and an optimal scheme
selection. In [13], an optimal planning framework is proposed
for the design of low-power low-voltage DC microgrids
along with photovoltaic (PV) panels and battery storage. All
the researches mentioned above only focus on the planning
sub-problem with a deterministic scenario, without consid-
ering the uncertainties of DGs or the relation between oper-
ation sub-problem and planning sub-problem. The planning
stage and operation stage are the two key problems that
have intensive interactions. Getting the best profits both in
the economy and the stability are their common purposes.
So, a joint planning framework is essential to ensure that
the operation strategy fit in the planning scheme well. The
uncertainty of DGs is one of the important factors that affect
the reliable operation of microgrids. So, the uncertainty of
DGs should also be taken into consideration during the plan-
ning stage. In [14], to cope with the uncertainty associated
problem, an optimal planning method based on stochastic
programming andMonte Carlo approach is proposed to study
the battery capacity expansion for remote microgrids with
wind farms. In [15], aiming at maximizing the total profit,
a probability-weighted robust optimization method is pro-
posed for microgrids planning over a long-term horizon. The
uncertainties of wind turbine (WT) output and loads are
modelled as probability-weighted uncertainty sets. In [16],
a stochastic programming method is utilized to optimize the
investment of energy storage system in microgrids, where the
random scenarios of renewable energy generation are con-
sidered. To cope with the uncertainties, a chance-constrained
information-gap decision model for multi-period microgrid
expansion planning is presented in [17]. The investment cost
and the operation cost are jointly minimized in the pro-
posed method, but the computational burden is large due
to the complex optimization model. In [18], a joint optimal

design method for off-grid microgrids considering security
constraints is studied. It also points out that techniques
based on a probabilistic nonlinear model entail significant
computational burdens and cannot sufficiently guarantee the
optimality of their solutions, especially when applied to
large problems. So, some reasonable simplification steps are
presented, such as using some typical days to represent a
one-year planning horizon to reduce the number of vari-
ables. But the typical days are usually chosen according to
human experiences, which may reduce the viability of the
planning scheme. Considering load forecast errors, renewable
energy generation and electricity market, a robust optimiza-
tion approach is proposed for microgrid planning in [19]. The
planning and operation are jointly considered by decompos-
ing the planning problem into one investment master problem
and one operation sub-problem in a sequential way. However,
by the sequential calculation model, it may take a dramatic
amount of CPU time to simulate over a long period of time
for every tested design point generated by the sizing loop [20].
Hence, a design approach aiming at combining the energy
management and the sizing model is proposed to reduce the
computational time in [20].

From the perspective of methodology, the way to cope with
uncertainties and the combination of planning sub-problem
and operation sub-problem are the two latest concerns to
make the planning scheme more reasonable. However, these
two aspects may both increase the complicity of the planning
model and result in a significant calculation burden. In this
regard, a simplified method to reduce the complicity of the
planning model without compromising the validity of the
planning scheme is necessary.

From the perspective of the microgrids operation modes,
both the researches on on-grid microgrids or off-grid micro-
grids are conducted. In terms of off-grid microgrids, all loads
are supplied by internal sources and energy storage system
without other systems to either complement the electricity
shortage or absorb the excessive electric power. So, economy
and reliability are the two main concerns and many efforts
have been contributed to that [21], [22]. With regard to
on-grid microgrids, surplus electric power generated by DGs
can be fed back to the distribution network and the electricity
shortage can be replenished by the distribution network. So,
the distribution network is regarded as a free reserve system
without limitation in existing literature. However, this will
not generally be the case. At first, the system operator will
charge a reserve service bill according to the maximum load
at the point of common coupling (PCC) or the power rating
of the transformer at the connection. This needs to be account
for in the planning model. Besides, in order to motivate the
development of distributed energy microgrids, some policies
are issued by some provinces in China, such as Jiangsu
province [23]. According to this policy, the capacity of RESs
should be no less than 50% of the maximum load in a micro-
grid and the annual electricity exchanging amount (AEEA)
should be no more than 50% of the annual electricity
demand. Thus, the planning model with a limited AEEA and
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a minimum capacity limit of RESs is a new challenging prob-
lem for on-grid microgrids. Hence, this paper proposes a new
planning method to tackle this problem taking into account
the newly introduced regulation constraints mentioned above.

The main contributions of this paper are summarized as
follows.

1) The proposed planning model integrates the sizing and
the optimal operation problems into one model. Also,
no sequential interaction loop between the sizing prob-
lem and energy management is needed when solving
the model, which could substantially reduce the com-
putational burden.

2) Some nonlinear problems are linearized to model the
proposed integrated planning model as a linear one so
that the optimal planning model could be solved in
polynomial time.

3) Unlike conventional ways of choosing typical days by
experiences, a data-driven method based on K-means
clustering algorithm is used to group the historical
data so that the data of typical days could be more
representative.

4) The reserve service bill of the distribution network is
considered by formulating the capacity of the trans-
former at the PCC as a decision variable and including
in the objective function.

The rest of this paper is organized as follows. In section
II is partially self-sufficient microgrid is described in detail.
The detailed planning model of the PSSMG is introduced in
section III and IV. To validate the proposed method, numeri-
cal studies are conducted and summarized in section V. The
final conclusion is presented in section VI.

II. DESCRIPTION OF THE PARTIALLY SELF-SUFFICIENT
MICROGRIDS
A. SYSTEM STRUCTURE
Consider an on-grid microgrid with a limited AEEA and a
minimum capacity limit of RESs. A certain part of electric-
ity demand should be supplied by the DGs in the micro-
grid. So, this kind of microgrid can be called as partially
self-sufficient microgrid (PSSMG), which needs electricity
exchange with the distribution network, not entirely self-
sufficient. As shown in Fig. 1 is the diagram of system struc-
ture. It consists of dispatchable sources (diesel engine (DE)
and energy storage system), non-dispatchable sources (WT
and PV) and loads. Loads can be classified into controllable
loads and uncontrollable loads [24]. In this paper, all loads
in MG are assumed to be uncontrollable in the planning
model. The electricity between the on-grid microgrid and
the distribution network is only exchanged through the PCC.
Hence, exchanged power should not exceed the power rat-
ing of the transformer at the PCC. In addition, the AEEA
should not exceed a certain value (such as 50%) of the annual
demand in microgrid either and the capacity of RESs should
be larger than a certain value (such as 50%) of the maximum
load.

TABLE 1. Definitions of symbols used in section II.

FIGURE 1. The structure of on-grid microgrids.


Pex ≤ Ptr
Eex ≤ αEan, α ∈ [0, 1]
Eres ≥ βPmax

ld , β ∈ [0, 1]
Eres = Ewd + Epv

(1)

where, α, β are constant coefficient.

B. POWER EXCHANGING BETWEEN DISTRIBUTION
NETWORK AND MICROGRIDS
For on-grid microgrids, distribution network always works
as a reserve system to replenish power shortage and absorb
excessive power. It will not only cost system resources to
keep on-grid microgrids stable but also need to pay for the
electricity fed into the network. In practice, utility operator
would charge a reserve service bill according to the reserve
capacity, which is proportional to the power rating of the
transformer or the maximum load at the PCC. In other words,
if the power rating of the transformer and the maximum
load at the PCC are small, the reserve service bill would
be marginal. However, this would require a high capacity
of the internal generation sources leading to an increased
investment of microgrids. Furthermore, because of the uncer-
tainties, the high penetration level of DGswould result in high
complicity of microgrids control and scheduling. Therefore,
the power rating of the transformer should be taken as a
decision variable and incorporated into the objective func-
tion of the planning model. It will be favourable to make a
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FIGURE 2. The two parts of the planning model.

TABLE 2. Definitions of symbols used in section III.

trade-off between the capacity of RESs and the power rating
of the transformer, to improve the economic outlook and
viability of the planning scheme.

III. PSSMG PLANNING MODEL
In this paper, the planning model comprises two parts.
The first part is a formulation of typical days based on a
data-drivenmethod and historical data, which is also regarded
as preprocessing; the second part is a joint planning model,
shown in Figure 2.

The purpose of the data preprocessing is to capture the
underlying production and consumption patterns from the
historical data. By doing so, most of the basic characteristics
of the power uncertainties could be included by the typical
days. Then, the typical days with most of the characteristics
can be used to represent a full year time horizon. In the linear
integrated planning model, the capacities sizing sub-problem
and the energy management are integrated into one model,
which is not calculated in a sequential way.

A. DATA-DRIVEN METHOD FOR COPING WITH
UNCERTAINTIES IN PSSMG
In microgrids, RESs and loads are the main uncertainty
sources. WT and PV are two kinds of most commonly used

RESs. Their power outputs depending on the weather, which
determines their stochastic intermittent nature. Generally,
the penetration of RESs in PSSMG is high, so their uncer-
tainties would cause significant random power fluctuation.
On the other hand, loads in microgrids always depend on
end-user patterns and vary with time, whichmay also result in
the power fluctuation. All things considered, the uncertainties
both on the power side and the load side would have a
significant impact on the exchanging power and AEEA. For
planning models, the uncertainty characteristics are obtained
from the input data. Therefore, the ability to cope with the
uncertainties of input data is important.

Due to the uncertainties, the power output of RESs and
loads in each day varies. If we take every day as input the
planning model may be more viable, but the scales of the
variables would be prohibitive in a full year time horizon.
Hence, in recent researches, probabilistic methods are often
utilized to model and quantify the uncertainties, such as using
Beta distribution function to model the uncertainty of PV and
using Weibull distribution function to model the uncertainty
ofWT [22], [25]. Then, the Monte Carlo method is utilized to
generate a large number of scenarios to imitate the real ones.
However, it is hard to get the actual probabilistic distribution
function and it will increase the computational burdens [18].
In order to tackle this problem, the typical day-types method
is utilized to model a full year horizon in [18]. This may work
in some way, but not all the outputs of RESs and loads in the
same day-type are the same. A more effective identification
method of typical days is needed. Hence, choosing typical
days is not only important in reducing the number of vari-
ables, but also in handling the uncertainties in the planning
model.

In this paper, a data-driven method based on the K-means
algorithm is utilized to extract characteristics from one-year
historical data and cluster historical data into different groups
according to their similarities to obtain typical days. Shown
in (2) - (6), historical data of WT, PV and load are classified
into k classes. In each I iwt , I ipv and I ild , the minimum value,
the maximum value and the class center are included.

I ∝ Kmeans (Wm×n,Pm×n,Lm×n, k) (2)

I =


I1
=

(
I1
wt , I1

pv, I1
ld

)
...

Ik =
(
Ikwt , Ikpv, Ikld

)
 (3)

I iwt =
{
I i,min
wt , I i,max

wt , I i,centerwt |∀i ∈ [1, k]
}

(4)

I ipv =
{
I i,min
pv , I i,max

pv , I i,centerpv |∀i ∈ [1, k]
}

(5)

I ild =
{
I i,min
ld , I i,max

ld , I i,centerld |∀i ∈ [1, k]
}

(6)

N =
{
N 1
ld , · · · ,N

k
ld

}
(7)

The process of obtaining typical days by the K-means
algorithm is similar to the process of reducing and getting
typical scenarios of stochastic optimization in handling the
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FIGURE 3. The typical flow chart of the sequential joint model.

uncertainties. The difference is that the scenarios data set of
stochastic optimization is generated according to a proba-
bility distribution function but the scenarios data set in this
paper is obtained directly from historical data. By clustering,
the typical days in this paper can represent the trend of
variation of most scenarios.

Because load determines the capacities of generations,
the day number of each load class is counted to represent the
horizon of one full year. Based on the classified data classes,
the data of typical daysD are formulated by (8) - (11). In (11),
dayi,center is a typical day of the i-th class, which takes along
the basic tendency information of the i-th class.

D =


(
day1,min, day1,max, day1,center

)
...

...(
dayk,min, dayk,max, dayk,center

)
 (8)

dayi,min
=

(
I i,min
wt , I i,min

pv , I i,min
ld

)
, ∀i ∈ [1, k] (9)

dayi,max
=

(
I i,max
wt , I i,max

pv , I i,max
ld

)
, ∀i ∈ [1, k] (10)

dayi,center =
(
I i,centerwt , I i,centerpv , I i,centerld

)
, ∀i ∈ [1, k]

(11)

B. THE INTEGRATED PLANNING MODEL
Generally, a planning model could technically be catego-
rized into three different types, namely, the independent
planning model, the planning model sequentially combined
with energy management and the integrated model. For the
independent one, planning models are always carried out
independently neglecting the operation of microgrids. How-
ever, the purpose of planning is to seek an optimal system
configuration for operation. If the requirement of operation
is not considered, the planning scheme maybe not result in
optimal operation. For the second type, the operation require-
ment is combined with the planning model and solved in
a sequential way. Although this combined model is much
better than the independent one, the connection between the
planning and the operation is not fully exploited. Each tested

FIGURE 4. The flow chart of the proposed integrated model.

design point of sizing loop should be simulated in the man-
agement loop, which could lead to a prohibitive amount of
CPU time [20].

Besides, many constraints calculated in the planningmodel
should be recalculated in the operation model, such as system
safety constraints. This repeated process may also increase
the computational burden. In this paper, energy management
is combined with the sizing model. The objective functions
of the sizing and operation problem are constructed as a joint
one, and their optimization variables are combined as one
decision vector. The constraints of sizing and operation are
integrated into one set, which only needs to be calculated
once in the integrated model. The comparison between the
sequential joint model and the proposed integrated model is
shown in Figure 3 and Figure 4. The process of getting the
optimal results in the sequential joint model is much more
complex than that in the integrated model.

IV. INTEGRATED PLANNING PROBLEM FORMULATION
A. OBJECTIVE FUNCTION
The definitions of symbols in subsection A, section IV are
shown in Table 3.

In this paper, the energy management for minimizing
the operation cost is integrated into the planningmodel, so the
objective function comprises both the investment and the
operation costs. Because the reserve service bill charged by
the utility operator would affect the sizing of the transformer
at the PCC, it is also considered in the operational cost.
The objective is to minimize the annual total cost, shown
in (12)-(18).

min fc = M inv
mg +M

opr
mg +M

rsb
mg (12)

M inv
mg = M inv

total
(
r (1+ r)τ

)/(
(1+ r)τ − 1

)
(13)

M inv
total =

∑
s

γsπ
inv
s Es, s ∈ {S|pv,wt, de, es, tr} (14)

γs = cell
(
T/
τj

)
, s ∈ {S|pv,wt, de, es, tr} (15)

Mopr
mg = Mma

mg +

k∑
i=1

N i
ld

(
Mopr,i
de +Mopr,i

ex,b +M
opr,i
ex,s

)
(16)

Mma
mg =

∑
s

λsEs, s ∈ {S|pv,wt, de, es, tr} (17)
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TABLE 3. Definitions of symbols in subsection A.



Mopr,i
de =

J∑
j=1

λ
i,j
dep

i,j
de1T

Mopr,i
ex,b =

J∑
j=1

θ i,jex λ
i,j
ex,bp

i,j
ex,b1T

Mopr,i
ex,s =

J∑
j=1

(
1− θ i,jex

)
λi,jex,sp

i,j
ex,s1T

(18)

M rsb
mg =

12∑
u=1

λutrEtr (19)

The annualized investment cost is calculated according to
(13)-(15). The life expectancy is used to calculate the annu-
alized investment cost in (13). If the lifetime of one device is
shorter than the planning horizon, it needs to be replaced by a
new one, the cost of a replacement should be included in the
total investment cost. A coefficient is introduced to calculate
the replacement times of devices by (15). In (15), T is the
planning horizon of MG, function cell(·) means getting the
nearest upper integer of a decimal. The total investment is
calculated by (14). Take the i-th (∀i ∈ [1, k]) typical day
as an example, the operation cost includes the maintenance
cost, the operation cost of DE and the operation cost of
exchanging electricity, shwon in (16). In (18), θ i,jex is a binary
variable which indicates that the exchanging power is either
purchasing electricity or selling electricity, θ i,jex ∈ {0, 1}. The
reserve service bill is calculated by (19).

B. CONSTRAINTS
Take the i-th (∀i ∈ [1, k]) typical day as an example. Power
balance is the most important criteria. In PSSMGs, the load
is supplied not only by PV, WD, DE and ESS but also by
exchanging power (EXP). The power balance for a typical

day is shown as (20).
ζ i,1pv ζ

i,1
wt

...
... Ide Ies Iex

ζ i,Jpv ζ
i,J
wt



Epv
Ewt
Pide
Pies
Piex

=
 P

i,1
ld
...

Pi,Jld

 (20)

where, ζpv, ζwt represent the generation coefficient of PV and
WT in a typical day, respectively; They are calculated from
the historical data. pi,jld represents the load at j-th time interval
in the i-th typical day; Ide, Ies, and Iex represent the identity
matrix of DE, ESS and EXP, respectively; Pide, P

i
es, and Piex

represent the power vector of DE, ESS and EXP in the i-th
typical day, respectively, as shown in (21).

Pide =
[
pi,1de , p

i,2
de , · · · , p

i,J
de

]T
Pies =

[
pi,1es , p

i,2
es , · · · , p

i,J
es
]T

Piex =
[
pi,1ex , p

i,2
ex , · · · , p

i,J
ex
]T (21)

The power dispatch of the DE in each time interval of the i-
th typical day should neither exceed its capacity nor fall below
the minimum limit (22).

0
0
...

0

 ≤

Pi,1de
Pi,2de
...

Pi,Jde

 ≤

Ede
Ede
...

Ede

 (22)

In practice, Ede is not a constant, so (22) needs to be
transformed into another form. The lower limit is shown
as (23) and the upper limit is shown as (24).

−Pi,1de
−Pi,2de
...

−Pi,J−1de
−Pi,Jde

 ≤

0
0
...

0
0

 (23)


Pi,1de
Pi,2de
...

Pi,Jde

−

Ede
Ede
...

Ede

 ≤

0
0
...

0

 (24)

Then, the upper limit (24) is transformed to (25).


1 0 0 · · · −1
0 1 0 · · · −1
... · · ·

...

0 0 · · · 1 −1



Pi,1de
Pi,2de
...

Pi,Jde
Ede

 ≤

0
0
...

0

 (25)

Unlike the DE, ESS does not generate electric energy itself.
It needs to store energy first and then discharge according
to the requirement. So the initial energy state of ESS is also
critical in the energy management of microgrids. But this is
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often overlooked by specifying an arbitrary value. Further-
more, the energy state of ESS does not jump from one level
to another suddenly. It needs to be accumulated with time and
is tightly related to the current state and the power in the next
time interval. Assume that the storage energy degradation
and leakage effects are negligible [26], then, the relationship
between energy states and charging or discharging power in
each time interval is shown in (26).

ei,1 = ei,0 − pi,1es 1T
ei,2 = ei,0 − pi,1es 1T − p

i,2
es 1T

...

ei,J = ei,0 − pi,1es 1T − p
i,2
es 1T − · · · p

i,J
es 1T

(26)

where, ei,0 indicates the initial energy state of ESS
and ei,j indicates the energy state in j-th time inter-
val of i-th typical day; 1T is the length of the time
interval.

In order to prolong the life expectancy of ESS, the energy
state of ESS should not exceed the capacity or be lower than
a certain value, usually 0.2Ees for lithium-ion batteries. The
constraints of ESS are shown as (27).

0.2Ees
0.2Ees
...

0.2Ees

≤

ei0
ei0
...

ei0

−


0 0 · · · 0
pi,1es 0 · · · 0
...

...
...

...

pi,1es pi,2es · · · pi,Jes



1T
1T
...

1T



≤


Ees
Ees
...

Ees

 (27)

Based on (27), the upper limit and lower limit of energy
states are written as (28) and (29), respectively.


1 0 0 · · · −1
1 −1T 0 · · · −1
... · · ·

...

1 −1T · · · −1T −1




ei0
pi,1es
...

Pi,Jes
Ees

 ≤

0
0
...

0


(28)

−1 0 0 · · · 0.2
−1 1T 0 · · · 0.2
... · · ·

...

−1 1T · · · 1T 0.2




ei0
pi,1es
...

Pi,Jes
Ees

 ≤

0
0
...

0


(29)

For ESS, the maximum charging power should not exceed
the capacity, and the discharging power should be lower than
the capacity. Hence, the upper limit and lower limit of charg-
ing power of ESS are written as (30) and (31), respectively.
Wherein, the negative value indicates charging state and the

positive value indicates discharging state.
1 0 0 · · · −1
0 1 0 · · · −1
... · · ·

...

0 0 · · · 1 −1



pi,1es
pi,2es
...

pi,Jes
Ees

 ≤

0
0
...

0

 (30)

In order to keep the ESS in a sufficient energy state in each
day, the energy state at the end of the last time interval is set
as the same as the initial energy state (32).
−1 0 0 · · · −0.5
0 −1 0 · · · −0.5
... · · ·

...

0 0 · · · −1 −0.5



pi,1es
pi,2es
...

pi,Jes
Ees

 ≤

0
0
...

0

 (31)

ei,J = ei,0 (32)

For a PSSMG, a portion of the electric power needs to
be satisfied by the internal sources to ensure the exchanging
power does not exceed the capacity of the transformer at the
PCC (33). The total capacity of RESs should not be less than
a certain value of the maximum load, such as 50% of the
maximum load (34) and the annual exchanging electricity
should not exceed a certain value as well, such as 50% of
the annual electricity demand (35).

−Etr
−Etr
...

−Etr

 ≤

pi,1ex
pi,2ex
...

pi,Jex

 ≤

Etr
Etr
...

Etr

 (33)

Epv + Ewd ≥ γresmax (pld ) (34)
k∑
i=1

N i
ld

J∑
j=1

∣∣∣pi,jex ∣∣∣
 ≤ γex k∑

i=1

N i
ld

J∑
j=1

pi,jld (35)

where, pex is the exchanging power; γex , γres represent the
percentage of exchanging electricity and penetration of RESs,
respectively.

Due to the uncertainties of RESs, some extreme situations
may happen. So, the capacities of dispatchable DGs and TR
need to be sufficient to guarantee the power supply. The
combined capacity of DE, ESS and TR should be larger than
the maximum load (36).

Ede + Eess + Etr ≥ max (pld ) (36)

1) MODEL LINEARIZATION
As shown in (18), because the exchanging power is bidirec-
tional and the purchasing price and selling price are different,
a binary variable θ i,jex is introduced in the integrated planning
model to specify the direction of exchanging power. Besides,
the constraint of exchanging power (34) contains an absolute
operator. These make the planning model non-linear, which
belongs to the class of NP-hard problem and cannot be solved
within polynomial time. In this paper, a linearization method
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based on our previous work [27] is introduced to transfer the
bi-linear objective into a linear one. In addition, a method
dealing with the non-linear constraint with an absolute oper-
ator is proposed.

Recall (16) and (18), let Mopr,i
ex indicate the operation

cost of exchanging power in a typical day, pi,jex indicate
the exchanging power in a typical day and λ

i,j
ex indi-

cate the exchanging electricity price in a typical day.
Then, the operation cost of the microgrid is rewritten
as (37) - (38).


Mopr
mg = Mma

mg +

k∑
i=1

N i
ld

(
Mopr,i
mt +M

opr,i
ex

)
Mopr,i
ex =

J∑
j=1

λi,jexp
i,j
ex1T

(37)

λ
i,j
ex =

{
λ
i,j
ex,b, if pi,jex ≥ 0

λ
i,j
ex,s, if pi,jex < 0

pi,jex = pi,jld − p
i,j
de − p

i,j
pv − p

i,j
wt − p

i,j
es

(38)

Because (38) is a piecewise function, the optimization
problem cannot be solved by existing optimization tools
directly. Therefore, (37) with (38) is transformed to (39) and
then to (40) and (41) according to [27], which are equiva-
lent linear functions. To keep the readability of the paper,
the detailed transformation process is not presented in the
main text but presented in Appendix A, which is at the end
of the paper.



Mopr
mg = Mma

mg +

k∑
i=1

N i
ld

(
Mopr,i
de +Mopr,i

ex

)
Mopr,i
ex =

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) ∣∣∣pi,jex ∣∣∣
+

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)

(39)



Mopr
mg = Mma

mg +

k∑
i=1

N i
ld

(
Mopr,i
de +Mopr,i

ex

)
Mopr,i
ex =

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) (
gjb + g

j
s

)
+

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)

(40)

{
pi,jex + g

j
b − g

j
s = 0

gjb ≥ 0, gjs ≥ 0
,∀j ∈ J (41)

where, gjb and g
j
s are auxiliary variables.

By linearizing the objective function, pi,jex,b and pi,jex,s are

unified described by the exchanging power pi,jex . So, the con-
straint of exchanging power in (33) is further transformed

as (42) - (43).
1 0 0 · · · −1
0 1 0 · · · −1
... · · ·

...

0 0 · · · 1 −1



pi,1ex
pi,2ex
...

pi,Jex
Etr

 ≤

0
0
...

0

 (42)


−1 0 0 · · · −1
0 −1 0 · · · −1
... · · ·

...

0 0 · · · −1 −1



pi,1ex
pi,2ex
...

pi,Jex
Etr

 ≤

0
0
...

0

 (43)

Regarding the constraint (35), the absolute operator needs
to be further transferred. Let yi,j indicate the absolute value
of exchanging power, shown as (44).

yi,j =
∣∣∣pi,jex ∣∣∣ (44)

Then, from (35) we have (45).

N∑
i=1

N i
ld

J∑
j=1

yi,j

 ≤ γex N∑
i=1

N i
ld

J∑
j=1

pi,jld ,

yi,j ≥ 0 (45)

Let x indicate the variables vector of the current model,
f (x) indicate the original linear objective function and g(y)
indicate a linear function of yi,j. Then, we can formulate a new
objective function (46) and corresponding constraints (47).

min F = f (x)+ g(y) (46)
g (y) = ayT, a→ 0
x ∈ h (x)
yi,j ≥ 0, yi,j ≥ pi,jex , yi,j ≥ −pi,jex

(47)

where, a is the coefficient vector; yT is the column vector of
yi,j; h(x) is the set of constraints formulated in the original
problem (20) - (36) and (42) - (43).

Next, we are going to prove the equivalent condition
between the original objective and the new one. In (46), f (x)
and g(y) are both linear function. So F will obtain its mini-
mum value only if f (x) and g(y) are both at their minimum,
f (x∗) and g(y∗), respectively. x∗ is the optimal solution of the
original problem. Because g(y) is a linear function, g(y∗) will
be obtained at the lower bound of yT, namely (48).

g
(
y∗
)
=

J∑
j=1

ai,j
∣∣∣pi,jex ∣∣∣, y∗ =

[∣∣∣pi,1ex ∣∣∣ , · · · , ∣∣∣pi,Jex ∣∣∣] (48)

So, when the new problem F gets its minimum value,
(45) is equivalent to (35). However, in order not to impact
the minimum value of the objective of the original problem,
the coefficient vector a needs to be further determined. The
minimum value of F , shown in (49), is not equal to the
original problem.

F∗ = f (x∗)+ g
(
y∗
)

(49)
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If (49) equals to the original one only when (50) is held,
namely, g(y∗) is small enough.

g
(
y∗
)
→ 0 (50)

Then, according to (48), ai,j needs to be sufficiently small,
as in (51).

ai,j→ 0, ∀i ∈ [1,N ], j ∈ [1, J ] (51)

2) MODEL SCALE-UP
At present, all the constraints are described using a typical
day. In this paper, the k classes of typical days are utilized to
scale up the model to a full year horizon by the number of
typical days in set N .
The overall integrated planning model after linearization

and scaling up is shown as (52) - (60).

min F = f (x)+ g (y) (52)

f (x) = M inv
mg +M

opr
mg +M

rsb
mg

g (y) =
k∑
i=1

N i
ld

J∑
j=1

ai,jyi,j (53)

M inv
mg = M inv

total
(
r (1+ r)τ

)/(
(1+ r)τ − 1

)
(54)

M inv
total =

(
π invpv Epv + π

inv
wt Ewt + π

inv
de Ede

+π inves Ees + π
inv
tr Etr

)
(55)

Mopr
mg =

k∑
i=1

N i
ld

(
Mopr,i
de +Mopr,i

ex

)
(56)

Mopr,i
ex =

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) (
gjb + g

j
s

)
+

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)

M rsb
mg =

12∑
u=1

λutrEtr (57)

x ∈ h (x) (58)


−1 0 · · · 0 −1 0 · · · 0
0 −1 0 0 −1 0
...

...
...

...

0 0 · · · −1 0 0 · · · −1





yi,1
...

yi,J

pi,1ex
...

pi,Jex



≤



0
...

0
0
...

0


(59)


−1 0 · · · 0 1 0 · · · 0
0 −1 0 0 1 0
...

...
...

...

0 0 · · · −1 0 0 · · · 1





yi,1
...

yi,J

pi,1ex
...

pi,Jex



≤



0
...

0
0
...

0


(60)

All the decision variable vectors after being scaled up is
shown as (61) - (68).

x =
[
Ewd ,Epv,Emt ,Ees,Etr , e0,P1

day, · · · ,P
k
day

]T
(61)

Piday =
[
pide,p

i
es,p

i
ex ,G

i
b,G

i
s,Y

i
]
, i ∈ [1, k] (62)

Pide =
[
pi,1de , · · · , p

i,J
de

]
, i ∈ [1, k] (63)

Pies =
[
pi,1es , · · · , p

i,J
es

]
, i ∈ [1, k] (64)

Piex =
[
pi,1ex , · · · , p

i,J
ex

]
, i ∈ [1, k] (65)

Gi
b =

[
gi,1b , · · · , g

i,J
b

]
, i ∈ [1, k] (66)

Gi
s =

[
gi,1s , · · · , g

i,J
s

]
, i ∈ [1, k] (67)

Yi
s =

[
yi,1, · · · , yi,J

]
, i ∈ [1, k] (68)

where Pidayis the dispatch variable vector on the i-th typical
day; Pide is the dispatch power variable vector of DE on the
i-th typical day; Pies is the dispatch power variable vector of
ESS on the i-th typical day; Piex is the dispatch power variable
vector of ESS on the i-th typical day; Gi

b, G
i
s and Yi

s are the
three auxiliary variable vectors.
So far, all the objectives and constraints are modeled as a

set of linear equations and are scaled up to a full year horizon.
So the integrated planning model can be solved by a linear
program method.

V. NUMERICAL STUDY
A. SIMULATION PARAMETERS
In this section, a PSSMG with WT, PV, DE and ESS is taken
as an example. The time horizon for planning is one year with
a time interval of 1 hour. The key parameters of DGs, ESS
and TR are shown in table 4, 5, 6, respectively [17], [28]. The
planning horizon is 15 years. The designed life expectancies
of all the equipment are assumed to be 15 years, except the
ESS is 10 years. Because the lifetime of ESS is shorter than
the planning horizon, it has to be replaced at the end of life
expectancy and the replacement cost is also included in this
model. The time of use (TOU) price of buying electricity and
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FIGURE 5. The minimum values, maximum values and centers of ten classes of WT, PV and load (WT capacity 2.3MW, PV capacity 350 kW).

TABLE 4. Parameters of candidate DGs.

TABLE 5. Parameters of energy storage system.

TABLE 6. Parameters of transformer.

selling electricity are shown in table 7 and table 8, respec-
tively. ai,j = 10−10.

In this section, the historical data of WT, PV and load
is classified into ten typical classes. The maximum value,
the minimum value and the centroid value of each class are
utilized to form the generation of three different scenarios,
shown in Figure 5. The peak load is 2,267 kW. Considering
some real limitation, such as land area, the upper bounds of
WT and PV are set as 80% of the maximum load.

In order to verify the validity of the proposed model, four
scenarios are conducted in this section.

Scenario 1: the maximum value of WT, PV and load in
ten typical days are used as the input data for the proposed
model; Scenario 2: the minimum value of WT, PV and load
in ten typical days are used as the input data for the proposed
model;

Scenario 3: the centroid value of WT, PV and load in ten
typical days are used as the input data for the proposedmodel.

Scenario 4: typical day selection method used in [6],
namely, one typical day in each season is used as input
data for the proposed model. Because typical days cannot
represent all the information of a full year, after getting the

TABLE 7. Price of buying electricity.

TABLE 8. Price of selling electricity.

results, further evaluation for a full year operation is carried
out to verify the viability of the planning scheme obtained
by each scenario. The scheme viability index (SVI), defined
as the ratio between the estimated total cost by the planning
model and actual total cost from the evaluation is used to
evaluate the reliability of the planning scheme.

B. RESULTS ANALYSIS
The four comparison simulation results are shown in Table 9
and Fig. 6, and the evaluation results are shown in Table 10.

The planning input data in scenario 1 is the maximum
values of WT and PV assuming a high efficiency of RESs
generation, which implies that it is very economical to supply
the load demand using RESs. Therefore, the capacity of RESs
in scenario 1 is the largest and many batteries are installed
and supposed to store the surplus power from RESs. If the
output of RESs in a full year is similar to the input data, which
implies a high efficiency as shown in Fig. 6 (a), the overall
cost is lower because of selling a lot of electricity to the
distribution network. However, in scenario 1, the generation
efficiency of RESs in most of the days in one full year cannot
reach that high level, and thus causes a high actual operation
and maintenance (O & M) cost. The actual O & M cost is
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FIGURE 6. Simulation results of four comparison scenarios.

0.9884 million $ which is almost 2.52 times than the esti-
mated O & M cost, shown in Table 10. Finally, the planning
scheme in scenario 1 results in a higher total cost. Comparing
Table 9 with Table 10, the actual total cost is much higher
than the estimated total cost, which results in lower scheme
viability, 62.83%. Due to the uncertainty of RESs, the actual
exchanging power is 52.72%, which is slightly above the
limit. So the planning scheme obtained in scenario 1 is not
only unreliable but also not economical.

In scenario 2, due to the lowest efficiency of the input
RESs generation data, the RESs with lowest capacities are
installed to meet the minimum capacity limitation, 50% of
the maximum load. Due to the limitation of the exchanging
electricity, DEs with large capacities are installed to supply
most of the load demand. So, most of the power is supplied
by the internal DEs and the distribution network, see Fig. 6
(b). This would lead to a high O & M cost and total cost.
Actually, the total cost in scenario 2 is the highest, but the
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TABLE 9. Price of selling electricity.

TABLE 10. Evaluation results of four scenarios.

exchanging power is 49.02% which is within the limitation
and the scheme viability is 97.39%. This is because that (1)
the actual power of RESs in one full year is larger the typical
input date (lowest output efficiency of RESs) in scenario 2;
(2) the capacity of RESs is lowest and less than the capacity
of DE and load, all the power generated by RESs could be
consumed within the microgrid and the uncertainty could be
well regulated by DEs.

In scenario 3, because the input data of RESs in typical
days are selected by theK-meansmethod, the data could carry
most of the actual situations and is much similar to the actual
characteristics in one full year. Thus the estimated total cost is
much closer to the actual total cost and the scheme viability
index is much larger than that in scenario 1 and scenario 4.
But the actual exchanging power is 50.36% which is slightly
over the limitation due to the uncertainty of RESs.

In scenario 4, the actual total cost of the planning scheme
is much higher than that in scenario 1 and scenario 3, because
the four typical days selected by experiences from each sea-
son are not representative enough for the characteristics in
one full year. Besides, the scheme viability index is the lowest
and the actual exchanging power is much higher than the
limitation.

From the results of the four comparison cases, it can be
concluded that:
(1) Regarding the scheme viability index and the exchang-

ing electricity rate, scenario 2 may be the best option.
But its total cost is the highest, which is unacceptable.
Besides, the planning scheme is too extreme.

(2) Although the scheme viability index and the exchang-
ing electricity rate in scenario 3 are not better than

that in scenario 2, its total cost is the most economical
and the capacity structure is much better than that
in scenario 2. Besides, the scheme viability index is
acceptable and the exchanging electricity rate is very
close to the limit. The limit is slightly violated, but it
could easily be solved in real operation.

(3) It is important for the planning model to select a suit-
able set of input data that include enough characteristics
of one full year. Otherwise, the scheme obtained by the
planning model may not be reliable.

(4) Due to the uncertainty of RESs, the planning scheme
may not ensure that the exchanging power does not
exceed the limit exactly. It also needs to optimize the
operation of MG according to the actual situation.

C. CALCULATION EFFICIENCY ANALYSIS
The complicity and calculation burden is another important
factor. In this paper, the complicity is reduced and the calcu-
lation efficiency is improved in three aspects.

(1) In order to reduce the computational burden and
improve the efficiency of the proposed integrated
planning model, a data-driven method based on the
K-means algorithm is utilized to choose a typical set
of input data to reduce the number of variables in one
full year horizon. The number of optimization variables
in the proposed model is 1446, which is only 2.75%
of the number of variables in the unsimplified prob-
lem. By using the K-means algorithm to obtain typical
days is much simpler than the process of scenarios
generating and reducing in stochastic planning. It is no
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TABLE 11. Planning scheme with different EERs.

need to get the distribution function and then generate
scenarios by Monte Carlo algorithm.

(2) The planning problem is modeled in a linear form
so that the model could be easily solved in polyno-
mial time. Otherwise, the computational burden would
increase exponentially as the number of variables
grows.

(3) The sizing sub-problem and operation sub-problem are
combined as one model, and there is no need to cal-
culate sequentially, whereas a two-stage model needs
to calculate the sizing problem first, and then calculate
the operation problem sequentially. Themost important
factor is that it may take a prohibitive amount of CPU
time to simulate over a long period (such as a full year)
of time for every tested design point generated by the
sizing loop [20].

The proposed integrated model is solved by a computer
with i7-3632QMCPU and 4GBmemory. The time of solving
the proposed integrated planning model is about 0.815 sec-
onds. However, the total time of solving two-stage model is
composed of the time of solving sizing loop and the time of
evaluating the results from sizing loop. The time of evaluating
once with 365 days is about 8.184 seconds. So it may take
many times longer than 8.184 seconds to get the optimal value
in the two-stage model, which would take much longer than
the proposed model.

D. SENSITIVITY ANALYSIS
The limitation of exchanging electricity and the number of
classes are two of the most important elements affecting
the planning scheme. In this part, the impact of electricity
exchanging rate (EER) and the number of classes on the
planning scheme are analyzed, shown in Fig. 7, Fig. 8 and
Table 11.

In Fig. 7, the annual total cost would increase with the
decrease in electricity exchanging rate in a certain range,
EER ∈ [0, 0.5]. This is because when the electricity exchang-
ing rate decreases, more load demand has to be supplied by
internal generations. Thus, the PSSMG needs to increase the
capacity of DE, which would result in a high operation cost.
But as the EER continue increasing from 0.5 to 1, the sizing
scheme and the total cost would not change. This is because

FIGURE 7. Total annual cost VS electricity exchanging rate.

FIGURE 8. Total annual cost VS number of classes.

the sizing scheme with EER = 0.5 is also the optimal scheme
for an on-grid MG without any electricity exchanging limit.

In Fig. 8, the annual total cost would decrease with the
number of classes increases. But the decrease rate tends to
be smaller when the number of classes is larger than 10.

VI. CONCLUSION
In order to solve the planning problem for microgrids with
a limited AEEA, a planning method has been proposed in
this paper. The sizing problem and operation problem are
jointly considered in one model with a linear formulation.
Typical days identified by a data-driven method based on
the K-means algorithm are utilized as an input to reduce the
number of optimization variables substantially.
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Compared with a two-stage model, no interacting loop
is needed, which makes the proposed integrated model to
be more concise. Thus, the computational burden could be
reduced dramatically. Besides, the proposed integrated plan-
ning model is built in a linear way, so it could be solved in
polynomial time.

In addition, since the typical days identified by the data-
driven method based on the K-means algorithm are repre-
sentative of the historical data of one full year, the planning
scheme is much more reliable.

Although the limitation of AEEA is considered in the plan-
ning model, the actual operation situation may be different
from the typical days. This may result in the AEEA exceeding
the limit. Hence, real operation needs to be adjusted to respect
the limitation.

APPENDIX
This appendix proves that (37) with the piecewise function
(38) is equivalent to (39), and then equivalent to linear func-
tions (40) and (41). (37)-(41) have been presented as follows
again for convenience.

Mopr
mg = Mma

mg +
k∑
i=1

N i
ld

(
Mopr,i
mt +M

opr,i
ex

)
Mopr,i
ex =

J∑
j=1

λi,jexp
i,j
ex1T.

(37)

λ
i,j
ex =

{
λ
i,j
ex,b, if pi,jex ≥ 0

λ
i,j
ex,s, if pi,jex < 0

pi,jex = pi,jld − p
i,j
de − p

i,j
pv − p

i,j
wt − p

i,j
es .

(38)



Mopr
mg = Mma

mg +

k∑
i=1

N i
ld

(
Mopr,i
de +Mopr,i

ex

)
Mopr,i
ex =

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) ∣∣∣pi,jex ∣∣∣
+

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)
.

(39)



Mopr
mg = Mma

mg +

k∑
i=1

N i
ld

(
Mopr,i
de +Mopr,i

ex

)
Mopr,i
ex =

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) (
gjb + g

j
s

)
+

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)
.

(40)

{
pi,jex + g

j
b − g

j
s = 0

gjb ≥ 0, gjs ≥ 0
,∀j ∈ J (41)

Actually, similar conclusions have been drawn in
Appendix B of [27], but the detailed proof in the context of
this paper is still presented as follows.

A. PROOF OF (39) BEING EQUIVALENT TO (37) WITH (38)
In this section, it will be proved that (39) is equivalent to (37)
with (38). The proof includes two parts.

For the first part of the proof, when pi,jex ≥ 0, based on (37)
and 38, there is

Mopr,i
ex =

J∑
j=1

λi,jexp
i,j
ex1T =

J∑
j=1

λ
i,j
ex,bp

i,j
ex1T. (A1)

At the same time, given that pi,jex ≥ 0, based on (39), there
is

Mopr,i
ex

=

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) ∣∣∣pi,jex ∣∣∣+ (λi,jex,b + λi,jex,s) pi,jex)

=

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

)
pi,jex +

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)

=

J∑
j=1

1T
2

(
2λi,jex,bp

i,j
ex

)

=

J∑
j=1

λ
i,j
ex,bp

i,j
ex1T. (A2)

Comparing (A1) and (A2), it can be seen that Mopr,i
ex has

the exactly same expression, showing that (39) is equivalent
to (37) with (38) when pi,jex ≥ 0.

For the second part of the proof, when pi,jex < 0, based on
(37) and (38), there is

Mopr,i
ex =

J∑
j=1

λi,jexp
i,j
ex1T =

J∑
j=1

λi,jex,sp
i,j
ex1T. (A3)

At the same time, given that pi,jex < 0, based on (39), there
is

Mopr,i
ex

=

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) ∣∣∣pi,jex ∣∣∣+ (λi,jex,b + λi,jex,s) pi,jex)

=

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
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) (
−pi,jex

)
+

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)

=

J∑
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1T
2

(
2λi,jex,sp

i,j
ex
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=

J∑
j=1

λi,jex,sp
i,j
ex1T. (A4)

Comparing (A3) and (A4), it can be seen that Mopr,i
ex has

the exactly same expression, showing that (39) is equivalent
to (37) with (38) when pi,jex < 0.

Combining the conclusions of the two parts of the proof,
it is proved that (39) is equivalent to (37) with (38).
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B. PROOF OF EQ. (40) With EQ. (41) BEING EQUIVALENT
TO EQ. (39)
In this section, it will be further proved that (40) with (41) is
equivalent to (39). The proof also includes two parts.

For the first part of the proof, when pi,jex > 0, based on (41),
there is

gjs = pi,jex . (A5)

To derive (A5) from (41), it is important to note that for
gjb and gjs, at least one of them equals to 0. This is because
that theMopr,i

ex expressed in (40) is minimized in the objective
function [see (12) and (16)], and if both gjb and gjs are not
equal to zero, theMopr,i

ex cannot be minimized. The principles
behind this conclusion have been described in other existing
studies, such as in Appendix B of [27], as well. With this
conclusion, if gjs = 0, then according to (41), there is gjb =
−pi,jex < 0, but this is contradictory to gjb ≥ 0. Therefore,
it is gjb that equals to 0. Substituting g

j
b = 0 into (41), (A5) is

obtained.
Substituting (A5) and gjb = 0 into (40), there is

Mopr,i
ex =

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) (
gjb + g

j
s

)
+

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)

=

J∑
j=1

1T
2

((
λ
i,j
ex,b − λ

i,j
ex,s

) (
0+ pi,jex

)
+

(
λ
i,j
ex,b + λ

i,j
ex,s

)
pi,jex
)

=

J∑
j=1

1T
2

(
2λi,jex,bp

i,j
ex

)

=

J∑
j=1

λ
i,j
ex,bp

i,j
ex1T. (A6)

Comparing (A6) and (A2), it can be seen that Mopr,i
ex has

the exactly same expression, showing that (40) with (41) is
equivalent to (39) when pi,jex > 0.

Following the similar procedure, it is easy to derive that
(40) with (41) is also equivalent to (39) when pi,jex ≤ 0.
Therefore, it is proved that (40) with (41) is equivalent to (39).
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