The simulation of transport processes in cementitious materials with embedded healing systems
Brubeck Lee Freeman, Tony Jefferson

Abstract
A new model for simulating the transport of healing agents in self-healing (SH) cementitious materials is presented. The model is applicable to autonomic SH material systems in which embedded channels, or vascular networks, are used to supply healing agents to damaged zones. The essential numerical components of the model are a crack flow model, based on the Navier-Stokes equations, which is coupled to the mass balance equation for simulating unsaturated matrix flow. The driving forces for the crack flow are the capillary meniscus force and the force derived from an external (or internal) pressure applied to the liquid healing agent. The crack flow model component applies to non-uniform cracks and allows for the dynamic variation of the meniscus contact angle, as well as accounting for inertial terms. Particular attention is paid to the effects of curing on the flow characteristics. In this regard, a kinetic reaction model is presented for simulating the curing of the healing agent and a set of relationships established for representing the variation of rheological properties with the degree of cure. Data obtained in a linked experimental programme of work is employed to justify the choice and form of the constitutive relationships, as well as to calibrate the model’s evolution functions. Finally, a series of validation examples are presented that include the analysis of a series of concrete beam specimens with an embedded vascular network. These examples demonstrate the ability of the model to capture the transport behaviour of this type of SH cementitious material system.

Keywords
Transport model, Finite element, Self-healing, Coupled models, Multi-physics

1 Introduction
Despite being one of the most widely used materials in construction, concrete frequently suffers from significant durability problems, which are usually associated with cracking. These problems include alkali-silica reaction, reinforcement corrosion and calcium leaching, all of which contribute to the high maintenance and repair costs associated with concrete structures. One approach to mitigating this problem is to design the concrete to be self-healing (SH), such that cracks heal as they form. A wide range of approaches have been employed for achieving this; some of these are classified as ‘autonomic’ (or manufactured) healing techniques, whilst other methods enhance the natural ‘autogenous’ healing capabilities of cementitious materials. A significant number of these SH technologies utilise encapsulated healing agents that are released and transported to damage sites when cracking occurs. The techniques differ in the methods used for encapsulation, release and delivery, as well as in the type of healing agent used. Methods of embedding healing agents within the cementitious matrix include microencapsulation, macro-encapsulation, and vascular networks. Healing agents range from bacterial spores, mineral admixtures, and adhesives. Full reviews of self-healing technologies and associated experimental characterisation techniques can be found in De Belie et al., Ferrara et al., Sidiq et al., and Xue et al.

There is now an ever expanding body of work on numerical modelling of SH systems, with significant progress having been made in recent years. A number of these authors have acknowledged the complexity of SH systems and have highlighted the many interacting physical processes that govern the behaviour of these systems. To date, few models fully consider the coupling between the transport, curing and mechanical healing processes of SH systems. In addition, the validation of many previous models against experimental data has been limited. A comprehensive review of numerical models for SH systems can be found in Jefferson et al., with exception of the most recent of contributions (see for example, Algaifi et al., Mauludin et al., Oucif et al., Ponnusami et al., Shahsavari et al., Voyiadjis and Kattan, Zhang and Zhuang, and Sanz-
Herrera et al.36). Here, only recent relevant papers that address transport processes in SH materials are considered in more detail.

Algaifi et al.28 developed a model for SH bio-concrete that simulates the microbial precipitation of calcium carbonate. Urea transport, urea hydrolysis (including the effect of bacterial cell concentration) and calcite production were all taken into account in the model formulation. The transport of urea was simulated using Fick’s law, whilst the reactions were modelled using first order kinetics. To verify the predicted crack healing, experimental work was carried out on a self-healing beam. The model results compared well with the experimental data, with the former predicting complete healing in 60 days, which compared with 70 days from the measured data.

Sanz-Herrera et al.36 presented a coupled mechano-chemical-diffusive model for SH materials. Their model couples a continuum damage mechanics (CDM) model with a reactive diffusive chemical model. The CDM model was developed under the strain equivalence hypothesis and used a rate-dependent damage evolution model derived from that presented by Darabi et al.37 The chemical diffusive model was based on a self-healing mechanism in which a mobile species is transported into the material from the environment and reacts with a static species present in the matrix material. The diffusion of the mobile species was modelled using Fick’s law, whilst the reaction was modelled using first order kinetics. The performance of the model was demonstrated through a series of numerical experiments concerning the cyclic loading of self-healing materials.

Many numerical transport models for cementitious materials have concentrated on moisture and ion transport associated with carbonation and autogenous healing.22,38-42 Although such models have general relevance to this study, it is previous work on simulating the flow of autonomic healing agents in discrete cracks, and the associated continuum matrix flow, that has greater importance for the present work.43-46 Gardner et al.’s model used a modified Lucas-Washburn equation that allowed for stick-slip of the meniscus, frictional dissipation and wall slip, to simulate liquid flow in discrete cracks.43-45 The model was shown to be able to accurately predict the capillary rise response of a range of healing agents in both natural and artificial cracks. Gilabert et al.46 used the open source computational fluid dynamics code OpenFOAM47 to simulate the flow of a healing agent in artificial concrete cracks for a range of crack openings. Their model used the Navier-Stokes equations to simulate flow in the embedded healing-agent supply tubes and within the crack plane. The authors introduced a piecewise linear contact-angle v time relationship, which was constructed from their own experimental data. The simulations were in reasonable agreement with their experimental observations. With the exception of the work of Gardner et al.43-45 and Gilabert et al.,46 there has been little (or no) other work on simulating the flow of autonomic healing agents in discrete cracks in SH cementitious materials. However, there is a large body of work on modelling coupled matrix and crack (or capillary) flow processes for other applications. Such models have been used for assessing the performance of nuclear waste repositories,48 predicting hydraulic fracture simulation in the oil and gas industry,49 studying moisture effects on the mechanical behaviour of building materials,50-52 and predicting blood flow and drug delivery in tumours.53,54

The above paper by Lecampion et al.49 reviews recent work on modelling hydraulic fracture. In general, the fracture fluid flow in such models is based on mass and momentum balance equations, with the inertial terms usually being neglected. Carter’s leak-off model is often used to calculate the loss of fluid to the surrounding medium.55 Carter’s model uses a 1D diffusion equation to give the leak off-rate, based on the assumptions that the rate of matrix diffusion is small compared to the fracture propagation rate, and that the net fluid pressure is much smaller than the far-field effective stress. A number of models couple continuum flow to the fracture flow to avoid the assumptions of Carter’s model,56,57 whilst others take into consideration the non-Newtonian behaviour of the fracturing fluid, including shear rate dependency and the effects of proppants suspended in the fluid.58,59 In hydraulic fracture, fluid flow and mechanical behaviour are strongly coupled processes. The dynamic fracturing was investigated by Cao et al.57 (see also Milanese et al.60), whose
model was able to capture the step-wise crack advancement and corresponding fluid pressure oscillations observed in a number of experiments (e.g. Pizzocolo et al.61).

Soltani and Chen,53 presented a coupled model of interstitial fluid and blood flow through a tumour. Their model allows for a network of interconnected capillaries and takes into account the non-Newtonian behaviour of blood, as well as the blood phase separation at bifurcations. The blood flow in the capillaries was calculated using Poiseuille’s law, whilst the tumour tissue was treated as a saturated porous medium, with Darcy’s law being used to describe the flow. The two were coupled through the transvascular flow rate, which is given as a function of the difference in pressure between the blood and the interstitial fluid through Starling’s law. The predictions of the model were shown to compare well with experimental data. It is interesting to compare blood flow models, such as that presented by Soltani and Chen53, with models for fluid flow in fractured porous media. Both sets of models consider fluid flow in capillary networks (i.e. blood vessels in the former case and crack networks in the latter) coupled to continuum flow in a porous medium (e.g. surrounding tissue and concrete matrix respectively), and both are based on the same basic mass balance and fluid flow equations. The differences between the two sets of models results from the contrasting physical, chemical and biological processes of the respective systems, which necessitate very different constitutive models for the fluid and mechanical systems, as well as different equations for coupling fluid transport to the solid-mechanics component of the models. For example, blood is normally simulated as a non-Newtonian fluid -with an associated constitutive relationship- whereas the fluids modelled in fracturing media are normally assumed to be Newtonian in nature. In blood flow systems, there is strong coupling between the large deformations of the biological tissue and the fluid flow behaviour, whereas in many fractured porous media applications (e.g. flow in building materials) the porous media is much stiffer than the fluid and the evolving network of cracks is the dominate feature of the mechanical system.

A model for the moisture uptake of cracked building materials has been presented by Roels et al.50 (see also Roels et al.51 and Carmeliet et al.52). The model considered unsaturated moisture flow in the continuum, governed by the moisture mass balance equation, with Darcy’s law being used to describe the moisture flux. This was coupled to the flow in the discrete crack through a source/sink term, representing flow through the crack faces. Discrete crack flow was modelled using Poiseuille’s law and a quasi-static pressure equation, which were solved in a staggered solution algorithm. The accuracy of the model was demonstrated through a series of validation tests, which considered the preferential uptake of moisture in naturally and artificially cracked bricks.

de Borst and co-workers developed a set of sub-grid scale models for fluid flow in fractured and fracturing porous media.56,62,63 The models consider both saturated and unsaturated flow, coupled to the deformation of the solid phase through the linear momentum balance equation. For the crack flow, both flow in fully open cracks and flow in partially open cracks were considered. For the former, the flow was governed by Stokes equations, whilst for the latter, the crack was treated as a porous medium, but with a much higher permeability than the surrounding continuum. The crack flow was coupled to the matrix flow through a mass coupling term, which represents a fluid flux discontinuity across the crack. In de Borst,56 the fluid pressure distribution across a crack is discussed in detail and a set of interface element formulations are presented that address the following cases; pressure continuity, pressure discontinuity and an independent pressure in the crack. A particular feature of the models is that they are applicable to a range of different discretisations, including isogeometric interface elements, which allow for a higher order continuity of the pressure and displacement fields. The performance of the model was demonstrated through a range of example calculations.

An aspect of capillary flow behaviour that was not taken into account in many of the aforementioned models was the variation with velocity of the angle of contact between a fluid meniscus and the substrate. This dynamic contact angle (DCA) variation can have a significant effect on the flow in a crack,64 particularly when a vascular SH system employs a pressurised flow network for healing agent delivery. Another aspect of behaviour that has not been addressed in previous SH transport models is the effect of curing on the flow
properties of fluid healing agents. Both of these issues are considered explicitly in the present model formulation.

The aim of the work described in this paper is to develop a comprehensive coupled model to simulate the transport processes in cementitious SH systems with embedded healing agents. The work focused on SH systems that use single-component adhesives as a healing agent, but could readily be extended to multi-component agents, through the addition of a second phase.

The innovations of this work are;

(i) a new model for flow in discrete cracks that considers fluid inertia, the dynamic variation in the meniscus contact angle, healing agent curing and rheology changes, tapering cracks and the coupled unsaturated flow in the surrounding matrix;

(ii) a new approach for simulating the kinetic curing of a single-agent adhesive, based on new experimental observations;

(iii) calibration of the model components using experimental data from others, as well as new data obtained by the authors’ group in Cardiff;

(iv) validation of the model using new experimental data.

The layout of the remainder of this paper is as follows;
• Section 2 presents the theoretical formulation of the model;
• Section 3 presents the numerical solution;
• Section 4 presents the dynamic contact angle theory and calibration;
• Section 5 presents the healing agent curing model, the rheological model, a wall-slip model and calibrations;
• Section 6 presents a series of validation examples concerning the flow of cyanoacrylate (CA) through concrete specimens;
• Section 7 presents the discussion.
• Section 8 presents some conclusions.

2 Theoretical Formulation
The problem domain is defined as \(\Omega \subseteq \mathbb{R}^d \) with boundary \(\Gamma \). The domain is made up of subdomains representing the discrete macro cracks (which may cross the underlying continuum mesh arbitrarily) and the continuum concrete matrix, denoted \(\Omega_{\text{crk}} \) and \(\Omega_{\text{mtx}} \) respectively, such that \(\Omega = \Omega_{\text{crk}} \cup \Omega_{\text{ mtx}} \) and where \(\Omega_{\text{crk}} \subseteq \mathbb{R}^1 \) and \(\Omega_{\text{mtx}} \subseteq \mathbb{R}^2 \). The boundaries of the subdomains are similarly defined as \(\Gamma_{\text{crk}} \) and \(\Gamma_{\text{ mtx}} \), such that \(\Gamma = \Gamma_{\text{crk}} \cup \Gamma_{\text{ mtx}} \). The time period considered is \(t \in [t_0, T] \).

Damage-healing behaviour
The mechanical damage-healing behaviour is the subject of a forthcoming paper by the authors, and so here only a brief outline is presented of this component of the work. A cohesive zone model is used for the mechanical behaviour of the concrete (See Appendix) which uses elements with embedded strong discontinuities (SD).\(^6\) Crack path continuity is ensured using an algorithm based on that found in Alfaia et al.\(^6\) The model allows for simultaneous damage-healing, re-damage of healed material and multiple healing cycles.

Discrete crack flow
Assuming that the air pressure within the crack remains constant at atmospheric pressure,\(^5\) and that the viscous stresses in the air are negligible, the governing equations for the discrete crack flow are the 1D incompressible single fluid Navier-Stokes equations.\(^6\) The governing momentum balance equation is given as:

\[
\frac{\partial (\rho u)}{\partial t} + u \frac{\partial (\rho u)}{\partial x} = - \frac{\partial p_{\text{hcrk}}}{\partial x} + \rho_H g \sin \phi + \dot{f} - \rho_H u Q_{\text{crk}} \quad \forall \mathbf{x} \in \Omega_{\text{crk}} \tag{1}
\]
where \(u \) is the cross-section averaged healing agent flow velocity, \(\chi \) is a convected coordinate (see Figure 1), \(\rho_h \) is the healing agent density, \(\partial P_h/cr\kappa /\partial \chi \) is the pressure gradient, \(g \) is the acceleration due to gravity, \(\phi \) is the inclination of the crack, \(f \) is a viscous resistance term and \(Q_{crk} \) is a source/sink term for flow between the crack and the matrix, as illustrated in Figure 1.

Assuming Poiseuille flow conditions,\(^{43-45,69,70}\) and adding a factor to allow for wall slip,\(^{43,44,71}\) the viscous resistance term is given by:

\[
f = -\left(\frac{\mu}{k + 0.5 \mu w_{crk} \beta_w} \right) u
\]

where \(\mu \) is the viscosity, \(k = w_{crk}^2/12 \) is the crack permeability (where \(w_{crk}(\chi, t) \) is the crack width, for which the dependencies have been dropped for clarity), \(\beta_w \) (with units \(m^3/Ns \)) is a wall slip factor.\(^{43,44,71}\)

The governing mass balance equation is given by:

\[
\frac{\partial (\rho_h A)}{\partial t} + \frac{\partial (\rho_h A u)}{\partial \chi} + \rho_h A Q_{crk} = 0 \quad \forall \chi \in \Omega_{crk}
\]

where \(A \) is the flow channel area (here taken as \(w_{crk} \times 1 \)).

In the present work, the coupling between flow in the discrete cracks and the concrete matrix is dealt with in a similar manner to an embedded discrete fracture model.\(^{72-75}\) The embedded discrete fracture flow model, originally proposed by Lee et al.\(^{72}\) (see also Li and Lee)\(^{73}\) employs separate domains for the matrix and the crack (which may cross the underlying matrix mesh arbitrarily). The two are coupled through transfer functions which describe the mass flux between the two domains. Here, the mass flux between the crack faces and the matrix is described as follows:\(^{72,76}\)

\[
Q_{crk} = -2 \frac{n \beta_{crk}}{\rho_h} (P_h - P_{hcrk}) \quad \forall \chi \in \Omega_i
\]

where \(\beta_{crk} \) (which has units of \(s/m \)) is a boundary transfer coefficient, \(n \) is the porosity of the surrounding matrix and \(P_h \) and \(P_{hcrk} \) are the pressures of the healing agent in the matrix and the crack respectively. The factor 2 is included to take into account flow through both crack faces (it is noted that in the case of different matrix pressures on each side of the crack, \(Q_{crk} \) would be calculated as the sum of fluxes through each crack face).

The total driving pressure for the crack flow (\(P \)) consists of the capillary pressure, a term to account for frictional dissipation at the meniscus (\(\beta_m \) with units \(Ns/m^2 \), applied at the free surface),\(^{43,44,77}\) and an applied pressure from the vascular network, as follows:

\[
P = P_c(\theta_a)(1 - \beta_s) - 2 \frac{\beta_m}{w_{crk}} u + P_{app}
\]

where \(\beta_s \) is a factor to allow for pinning of the meniscus.\(^{43,44,78}\)
Equations (1) and (3) form a coupled system to be solved for velocity and pressure. Application of the finite element method to this system requires the satisfaction of the inf-sup condition to ensure stability of the formulation, often achieved by using different orders of interpolation for the velocity and pressure. In the present work, however, equal order interpolations are preferred and stability is ensured using a continuous interior penalty method following the approach of Burman et al. (see also Claus and Kerfriden).

Continuum matrix flow

Fluid flow in a partially saturated porous medium is governed by the mass balance equations for the liquid, liquid vapour and dry air. In this study it is assumed that the combined effect of liquid and vapour transport can be captured through a single effective diffusion coefficient. It is also assumed that the medium is dry, such that there is no moisture (water) in the capillary pores and that the gas pressure remains constant at atmospheric pressure, following the approach of Chitez and Jefferson.

The mass balance equation governing continuum matrix flow of the healing agent is given by:

\[
\frac{d(\overline{\rho h})}{dt} + \nabla \cdot \mathbf{J}_h + Q_{mtx} = 0 \quad \forall \mathbf{x} \in \Omega_{mtx}
\]

(6)

where \(\overline{\rho_h} = \rho_h n_S \) is the phase averaged density \((S_h \) is the degree of saturation), \(Q_{mtx} \) is a source/sink term and \(\mathbf{J}_h \) is the healing agent flux given as:

\[
\mathbf{J}_h = -\rho_h K_{eff}(S_h)(\nabla P_h - \rho_h g)
\]

(7)

where \(P_h = P_g - P_c \) is the healing agent pressure \((P_g \) is the gas pressure) and \(K_{eff} \) is an effective diffusion coefficient based on Darcy’s law:

\[
K_{eff}(S_h) = \frac{K_{int} K_{hrel}(S_h)}{\mu}
\]

(8)

where \(K_{int} \) is the intrinsic permeability of the medium and \(K_{hrel} \) is the relative permeability which depends on the degree of saturation according to the well-known van Genuchten-Mualem relationship:

\[
K_{hrel}(S_h) = S_h^\kappa \left[1 - \left(1 - S_h^{1/m} \right)^m \right]^2
\]

(9)

where \(\kappa \) is the pore interaction factor which accounts for the connectivity and tortuosity of the pores. \(S_h \) is related to the capillary pressure by van Genuchten’s moisture retention function, as follows:

\[
P_c(S_h) = a(S_h^{-1/m} - 1)^{1-m}
\]

(10)

where \(a \) and \(m \) are constants that depend on the medium.

The source/sink term in equation (6) is associated with the embedded discrete cracks and is given as follows:

\[
Q_{mtx} = \mathbf{J}_r \cdot \mathbf{n}_r = 2n \beta_{crk}(P_h - P_{hcrk}) \quad \forall \mathbf{x} \in \Gamma_i
\]

(11)

where \(\Gamma_i \) represents the internal boundary.

3 Numerical Solution

Boundary conditions

In order to solve the system of equations (1, 3 & 6), initial and boundary conditions are required. The initial conditions give the values of the variables at time \(t = t_0 \) and are given by:

\[
u = u^0, P_{hcrk} = P_{hcrk}^0 \quad \forall \mathbf{x} \in \Omega_{crk}
\]

\[
P_h = P_h^0 \quad \forall \mathbf{x} \in \Omega_{mtx}
\]

(12)

(13)
The boundary conditions are of the Cauchy and Dirichlet type. The Cauchy type describe the rate of mass transfer from the environment to the sample and are given by:

\[J_q \cdot n - q_h - \beta_c (P_h - P_{h\text{env}}) = 0 \quad \forall x \in \Gamma_{\text{mtx,c}} \] (14)

where \(q_h \) is the healing agent flux, \(n \) is the unit normal vector to the boundary and \(\Gamma_{\text{mtx,c}} \subseteq \Gamma_{\text{mtx}} \) represents the part of \(\Gamma_{\text{mtx}} \) to which Cauchy boundary conditions are applied.

The Dirichlet boundary conditions are given by:

\[u(t) = u^\Gamma, P_{h\text{crk}}(t) = P_{h\text{crk}}^\Gamma \quad \forall x \in \Gamma_{\text{crk,d}} \] (15)

\[P_h(t) = P_h^\Gamma \quad \forall x \in \Gamma_{\text{mtx,d}} \] (16)

where \(\Gamma_{\text{crk,d}} \subseteq \Gamma_{\text{crk}} \) represents the part of \(\Gamma_{\text{crk}} \) to which Dirichlet boundary conditions are applied and \(\Gamma_{\text{mtx,d}} \subseteq \Gamma_{\text{mtx}} \) is defined similarly.

At the free surface of the fluid in the crack, the jump in fluid stress across the interface is balanced by the capillary pressure:

\[[n_f \cdot T] = P_c \quad \forall x \in \Gamma_{\text{crk,f}} \] (17)

where \([\cdot]\) is the jump operator, \(n_f \) denotes the unit normal to the free surface, \(\Gamma_{\text{crk,f}} \subseteq \Gamma_{\text{crk}} \) denotes the part of \(\Gamma_{\text{crk}} \) which is a free surface and \(T \) is the stress tensor which is given by (where \(v \) is the fluid velocity vector):

\[T = \mu (\nabla v + (\nabla v)^T) - P_{h\text{crk}} I \] (18)

where \(I \) denotes the identity matrix. For Poiseuille flow, the term in the jump operator in equation (17) is given by:

\[n_f \cdot T \cdot n_f = 2\mu \frac{\partial v}{\partial x} - P_{h\text{crk}} \] (19)

where \(v \) denotes the fluid velocity in the direction of the convected coordinate.

Taking the average over the interface length and inserting into (17) leads to:

\[\left[2\mu \frac{\partial u}{\partial x} - P_{h\text{crk}} \right] = P_c \] (20)

In the present work, the first term on the left-hand-side of equation (20) was found to be negligible in comparison with the second and was therefore not included.

Finite element formulation and solution method

The governing equations for crack and matrix flow describe a nonlinear system to be solved that are coupled through the sink/source term. The primary variables are the flow velocity in the crack and the healing agent pressure in the crack and in the matrix. Introducing the space for the trial functions as \(U = \{ \tilde{u} \in H^1(\Omega) | \tilde{u}(x) = \Phi^T \forall x \in \Gamma_d \} \), and employing the Gauss-Green divergence theorem, the weak form of the governing equations becomes:

find \(\Phi \in U \), such that:

\[\int_{\Omega_{\text{crk}}} W^T \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho_h} f + \frac{1}{\rho_h} \frac{\partial P_{h\text{crk}}}{\partial x} - g \sin \phi \right) d\Omega_{\text{crk}} + \int_{\Gamma_1} W^T (uQ_{\text{crk}}) d\Gamma_1 + \int_{\Gamma_{\text{crk,f}}} W^T \left(P_{h\text{crk}} + P_c - 2 \frac{\beta_{\text{m}}}{w_{\text{crk}}} \right) d\Gamma_{\text{crk,f}} = 0 \] (21)

\[\int_{\Omega_{\text{crk}}} W^T \left(\frac{\partial A}{\partial t} + \frac{\partial (Au)}{\partial x} \right) d\Omega_{\text{crk}} + \int_{\Gamma_1} W^T (AQ_{\text{crk}}) d\Gamma_1 = 0 \] (22)
\[
\int_{\Omega_{crk}} \mathbf{W}^T \frac{\partial \mathbf{P}}{\partial t} \, d\Omega_{crk} + \int_{\Gamma_{w}} \mathbf{W}^T \left(\rho_h \frac{K_{int}K_{hrel}}{\mu} \mathbf{v} \mathbf{P}_h - \rho_h \frac{K_{int}K_{hrel}}{\mu} \mathbf{P}_h \right) \, d\Gamma_{w} + \int_{\Gamma_{int}} \mathbf{W}^T \left(q_h + \beta_c \left(P_h - P_{henv} \right) \right) \, d\Gamma_{int,c} + \\
\int_{\Gamma_{i}} \mathbf{W}^T (q_{mtx}) \, d\Gamma_{i} = 0
\]
(23)

where \(\Phi \) is the vector of unknowns and \(\mathbf{W} \) is the vector of weight functions.

In the present work, the Galerkin weighted residual method is employed for the spatial discretisation. The resulting system of equations is as follows:

\[
\begin{bmatrix}
C_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & C_{33} & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{\mathbf{u}}_h \\
\ddot{\mathbf{P}}_{hcrk} \\
\ddot{\mathbf{P}}_h
\end{bmatrix} +
\begin{bmatrix}
K_{11} & K_{12} & 0 \\
K_{21} & K_{22} & 0 \\
0 & 0 & K_{33}
\end{bmatrix}
\begin{bmatrix}
\mathbf{u}_h \\
\mathbf{P}_{hcrk} \\
\mathbf{P}_h
\end{bmatrix} =
\begin{bmatrix}
\mathbf{F}_1 \\
\mathbf{F}_2 \\
\mathbf{F}_3
\end{bmatrix}
\]
(24)

where the superior dot denotes the time derivative and the primary variables are interpolated from the nodal values by:

\[
u = \zeta \mathbf{u}, \quad P_{hcrk} = \zeta \mathbf{P}_{hcrk}, \quad P_h = \zeta \mathbf{P}_h
\]
(25)

where \(\zeta \) and \(\chi \) are vectors of shape functions for the domains \(\Omega_{crk} \) and \(\Omega_{ mtx} \) respectively.

The global matrices are given by:

\[
C_{11} = \sum_{e=1}^{ne} \int_{\Omega_{crk}} \zeta^T \zeta \, d\Omega_{crk} \]
(26)

\[
C_{33} = \sum_{e=1}^{ne} \int_{\Omega_{ mtx}} \zeta^T \frac{\partial \mathbf{P}_h}{\partial \mathbf{u}} \zeta \, d\Omega_{ mtx}
\]
(27)

\[
K_{11} = \sum_{e=1}^{ne} \left(\int_{\Omega_{crk}} \zeta^T (\mu \nabla \zeta) \, d\Omega_{crk} + \int_{\Omega_{crk}} \zeta^T \left(\frac{1}{\rho_h k + 0.5 \rho_w c_w \rho_h} \right) \zeta \, d\Omega_{crk} \right)
\]
(28)

\[
K_{12} = \sum_{e=1}^{ne} \left(\int_{\Omega_{crk}} \zeta^T \left(\frac{1}{\rho_h} \right) \zeta \, d\Omega_{crk} + \int_{\Omega_{crk}} \zeta^T \zeta \, d\Omega_{crk} \right)
\]
(29)

\[
K_{21} = \sum_{e=1}^{ne} \int_{\Gamma_{crk}} \zeta^T \nu \zeta \, d\Omega_{crk} \cdot A I
\]
(30)

\[
K_{22} = \int_{\Gamma} \sum_{ed=1}^{\varepsilon_{ci}} \left(\frac{h^3}{2} \int_{\Gamma_{ed}} \left(\nabla \zeta^T \right)_{ed} \nabla \zeta_{ed} \, dE_{ed} - \int_{\Gamma_{ed}} \left(\nabla \zeta^T \right)_{ed} \nu \zeta_{ed} \, dE_{ed} \right)
\]
(31)

\[
K_{33} = \sum_{e=1}^{ne} \int_{\Omega_{ mtx}} \zeta^T \left(\rho_h \frac{K_{int}K_{hrel}}{\mu} \right) \zeta \, d\Omega_{ mtx}
\]
(32)

\[
F_1 = \sum_{e=1}^{ne} \left(\int_{\Omega_{crk}} \zeta^T (g \sin \phi) \, d\Omega_{crk} + \int_{\Gamma_{i}} \zeta^T \left(u \frac{2}{\rho_h} (\beta \mathbf{crk} \cdot \mathbf{n} (P_h - P_{hcrk})) \right) \, d\Gamma_{i} + \int_{\Gamma_{crk,f}} \zeta^T (P - P_{h} + \frac{\rho_{wcrk}}{\mu} \mathbf{u}) \, d\Gamma_{crk,f} \right) \]
(33)

\[
F_2 = \sum_{e=1}^{ne} \left(- \int_{\Omega_{crk}} \zeta^T \frac{\partial \mathbf{P}}{\partial t} \, d\Omega_{crk} + \int_{\Gamma_{i}} \zeta^T \left(A \beta \mathbf{crk} \cdot \mathbf{n} (P_h - P_{hcrk}) \right) \, d\Gamma_{i} \right)
\]
(34)

\[
F_3 = \sum_{e=1}^{ne} \left(\int_{\Omega_{ mtx}} \zeta^T \left(\rho_h \frac{K_{int}K_{hrel}}{\mu} \right) \, d\Omega_{ mtx} - \int_{\Gamma_{mtx,c}} \zeta^T (q_h + \beta_c \mathbf{n} (P_h - P_{henv}) \, d\Gamma_{mtx,c} - \int_{\Gamma_{i}} \zeta^T (2 \beta \mathbf{crk} \cdot \mathbf{n} (P_h - P_{hcrk})) \, d\Gamma_{i} \right)
\]
(35)

It can be noted that in the above, the particular form of the matrix \(K_{21} \) was preferred as this form requires no partial differentiation of the mass flux, \(\partial (\mathbf{u} A) / \partial \chi \) (which could lead to errors due to the dependence of \(\mathbf{u} \) on \(A \)). The matrix \(K_{22} \) arises from the continuous interior penalty employed to stabilise the Navier-Stokes equations, which is elaborated in the next section.

Equation (24) can be written in the following compact form:

\[
\mathbf{K} \Phi + \dot{\mathbf{C}} \Phi = \ddot{\mathbf{F}}
\]
(36)
Applying an implicit Euler backward difference scheme for the time discretisation leads to:

\[\mathbf{K} \Phi^{t+1} + \frac{1}{\Delta t} \mathbf{C}(\Phi^{t+1} - \Phi^t) = \mathbf{F} \quad (37) \]

Due to the different time scales associated with the matrix and crack flows (the crack flow, in general, occurs at a much higher rate than the matrix flow due to the applied pressure and much higher equivalent permeability), the equations are solved in a sequential manner, with a sub-stepping procedure being employed for the crack flow.

In the present work, the free surface stress balance condition as well as the interior penalty applied to the discrete crack flow equations are dealt with implicitly. The nonlinear convection and source/sink terms found in the Navier-Stokes equations, are accounted for using a Picard iteration that computes the new approximation from:

\[\Phi_{x_k+1}^{t+1} = (\Delta t \mathbf{K} + \mathbf{C})^{-1}(\Delta t \mathbf{F} + \mathbf{C} \Phi^t) \quad \forall \ x \in \Omega_{crk} \quad (38) \]

where the nonlinear terms are linearised as:\[80\]

\[u^{k+1} \frac{\partial(u^{k+1})}{\partial x} \approx u^k \frac{\partial(u^k)}{\partial x}, \quad u^{k+1} Q_{crk}(p_{crk}^{k+1}) \approx u^k Q_{crk}(p_{crk}^k) \quad (39) \]

where \(k \) denotes the iteration number.

The nonlinearity of the continuum matrix flow is dealt with using a standard Newton-Raphson procedure,\[81\] which gives the following iterative update of the solution, as follows:

\[\delta \Phi_{x_k+1}^{t+1} = \left[\frac{\partial}{\partial \Phi_{x_k+1}^t} \right]^{-1} (\xi) \quad \forall \ x \in \Omega_{mtx} \quad (40) \]

where \(\xi \) is the approximation error given by:

\[\xi = \Delta t \tilde{\mathbf{K}} \Phi^{t+1} + \tilde{\mathbf{C}}(\Phi^{t+1} - \Phi^t) - \Delta t \tilde{\mathbf{F}} \quad \forall \ x \in \Omega_{mtx} \quad (41) \]

The iterative updates are terminated once the norm of the error meets a defined tolerance.

Stabilisation

The stabilisation term, \(j \), for the Navier-Stokes equations is given as a penalty on the jump in pressure gradient over element edges: \[80\]

\[j(p_{crk}) = j_p \sum_{ed=1}^{E} \frac{h}{\mu} \int_{E} E [\nabla p_{crk}] [\nabla q] E dE_{ed} \quad (42) \]

where \(j_p \) is the stabilisation parameter, \(h \) is the local mesh size, \(E \) denotes an element edge and \(E_{ed} \) denotes the global set of interior element edges. \([\nabla q]_E \) denotes the jump of \(\nabla q \) across an edge shared by two elements, \(K_+ \) and \(K_- \) defined as \([\nabla q]_E = \nabla q_{x_K+} n_E - \nabla q_{x_K-} n_E \), where \(n_E \) denotes the unit normal to the edge \(E \).

The jump in pressure across an element edge is given by:

\[[\nabla p_{crk}]_E = \nabla q_{x_K+} p_{crk,K+} n_E - \nabla q_{x_K-} p_{crk,K-} n_E \quad (43) \]

where \(\nabla q_i \) and \(p_{crk,i} \) represent the vector of shape function derivatives and the vector of nodal pressures for element \(i \) respectively. For further details of this scheme, the interested reader is referred to Burman et al.\[79\]

Due to the highly nonlinear dependence of the permeability on the degree of saturation (which in turn depends on liquid pressure), equation (6) is subject to numerical oscillations, particularly for sharp wetting fronts into a dry medium. This issue was addressed in detail for 1D elements by Pan et al.,\[86\] who examined the difference between the neighbouring node response function (NNRF) for mass-distributed and mass-
lumped matrices (noting that oscillations are not found for linear elements when mass-lumped matrices are used). The issue with using mass-lumped matrices is that the numerical predictions become over-diffusive since an increase in moisture content at the drier node is always predicted independently of the position of the moisture front. To address this, Pan et al.86 proposed new shape functions for the storage matrices that were a function of a factor (α). This factor was derived from the NNRF and ensures that the response at the drier node is either positive or zero (mass-lumped schemes always predict a positive response, whilst mass-distributed sometimes predict a negative response).

In the present work, a different approach is employed, in which the storage matrix is computed as an interpolation between the mass-distributed and mass-lumped matrices. This is similar to the approach of Mirbagheri et al.87 who applied a higher order mass matrix to a discontinuous wave propagation problem to dampen spurious oscillations (see also Wu and Qiu,88 and Wang et al.89). This leads to:

$$C = \alpha C_L + (1 - \alpha)C_D$$

where C denotes the storage matrix for continuum matrix flow, the L and D subscripts refer to mass-lumped and mass-distributed matrices respectively and the weighting factor α is calculated such that the change in liquid pressure at a downstream node is greater than or equal to zero (or to the mass sink where appropriate) following the approach of Pan et al.86 and is given by:

$$\alpha = 1 - \min \left(1, \frac{\sum_{i=1}^{nd} K_{33i} P_{2i}}{\sum_{i=1}^{nd} C_{33i} \Delta P_{2i} / \Delta t} \right)$$

where the subscript i denotes the driest node.

This method prevents the occurrence of any spurious oscillations whilst reducing smearing of the wetting front.

Interface tracking

For the crack flow, the spatial discretisation within the crack needs to account for the transient movement of the free-surface of the fluid. Two approaches were considered for this, namely, the fixed mesh approach and the adaptive mesh approach.90 The former defines a mesh that does not move with or adapt to the fluid surface, in which case, it is necessary to track the movement of the surface within the mesh using, for example, a level set method.91 In the latter approach, the fluid surface lies on element boundaries. Thus, it is necessary to update the mesh adjacent to the fluid surface whenever it moves. However, a true fixed mesh approach is not applicable to problems with evolving cracks and because adapting the mesh adjacent to the surface is straightforward in a 1D situation the moving mesh approach, illustrated in Figure 2, was employed in this work. The essential steps of the algorithm are as follows:

1. The mechanics problem is solved, which gives the position and widths of the macro-cracks. These macro-cracks act as potential flow paths for the healing agent.
2. The Navier-Stokes equations (eqns. 1 & 3) are solved for the velocities, u, and pressures, P_{hcrk}.
3. The movement of the interface over a time step is calculated:52,91

$$\lambda^{t+\Delta t} = \lambda^t + \Delta t u_{\lambda}$$

where λ denotes the total accumulated length of flow within the crack.
4. If the interface crosses an element boundary (from the continuum element edge), a node is placed at this position.

The algorithm is illustrated in Figure 2, in which the quadrilateral elements indicate the underlying matrix mesh, the black circles (crack nodes) connected by the dashed lines indicate the crack flow mesh.
Algorithm

The algorithm for the model is given in Box 1. In the present work, it is assumed that the flow is initiated once a critical crack width is reached at the location of the capillary channels.

The mechanical and transport aspects of the model are solved sequentially, which is justified by the fact that the transport has no effect on the mechanical model, since the applied pressures are negligible with respect to the mechanical strength of the material.
Box 1 – Staggered solution algorithm

\[t = t_0; F_{\text{load}} = 0 \]

for \(\text{itm}=1 \) to \(n_{tm} \)

\[t_p = t \]

\[t = t + \Delta t \]

\[F_{\text{load}} = F_{\text{load}} + \Delta F_{\text{load}} \]

\[w_{\text{crk}} = w_{\text{crk}p} \]

if \(w_{\text{crk}} > w_{\text{crit}} \)

! Crack flow calculations

for \(\text{is}=1 \) to \(n_s \)

\[t_s = t + \left(\text{is}/n_{\text{sub}} \right) \Delta t \]

\[\theta_d \]

for \(\text{ict}=1 \) to \(n_{ct} \)

\[Q_{\text{crk}}, Q_{\text{mtx}} \]

\[\omega_{k+1} = \left(\Delta t \hat{R} + \tilde{C} \right)^{-1} \left(\Delta t \tilde{F} + \tilde{C} \omega \right) \]

if \(|\Delta \omega|/\omega_{\text{ref}} < \text{tol}_\omega \) exit

endfor ict

\[\lambda_t = \lambda_t + \Delta t u_\lambda \]

call meshupdate

endfor is

! end crack flow calculations

for \(\text{it}=1 \) to \(n_t \)

! Mechanical calculations

\[\delta d_{k+1} = \left[\frac{\partial \delta u}{\partial d_{k+1}} \right] \left(-\delta d \right) \]

\[d = d + \delta d \]

! end mechanical calculations

! Matrix flow calculations

\[\delta P_{h,k+1} = \left[\frac{\partial \delta P}{\partial P_{h,k}} \right] \left(-\delta P \right) \]

\[P_h = P_h + \delta P_h \]

! end matrix flow calculations

if \(|\delta d|/d_{\text{ref}} < \text{tol}_d \) \(\land |\delta P_{h}|/P_{h,\text{ref}} < \text{tol}_p \) exit

endfor it

endfor itm

in which;

\(w_{\text{crit}} \) is a critical crack width after which crack flow is initiated

\(F_{\text{load}} \) is the mechanical load vector

\(\omega \) is the vector of velocities and pressures for the crack flow

\(\omega_{\text{ref}}, \lambda_{\text{ref}} \) and \(P_{h,\text{ref}} \) are reference vectors for normalising \(\omega, d \) and \(P_h \) respectively

\(n_{tm}, n_s, \) and \(n_t \) are the number of time steps, sub steps and limiting number of iterations for the matrix flow respectively

\(\text{tol}_\omega, \text{tol}_d \) and \(\text{tol}_p \) are the tolerances for \(\omega, d \) and \(P_h \) respectively

Initialise all cumulative variables

Loop time steps

Set previous time

Increment the time variable

Increment loads

Extract crack widths for crack flow computations

Check for crack flow

Loop sub steps for crack flow

Sub time increment

Calculate DCA (eqn. 47)

Enter crack flow iteration loop

Calculate source/sink term (eqns. 4 & 11)

Solve for crack flow variables

Check convergence

Advect front position

Update 1D crack flow mesh

Enter iteration loop

Solve for increment of displacements

Update displacements

Solve for increment of healing agent pressure

Update healing agent pressure

Check convergence
Effect of inertia
The inertial terms in equation (1) (i.e. $\partial(\rho u)/\partial t$ and $u \partial(\rho u)/\partial x$) are neglected in many numerical models due to their minimal influence on the overall flow behaviour. Whilst this is justified in many cases, in the present application, in which the healing agent can be pressurised to drive it into the cracks and the crack widths can become relatively wide (reducing viscous resistance), these terms can become non-negligible. To demonstrate this, a hypothetical test case is considered that concerns the rise of CA in a vertical crack. The test conditions were chosen to represent a large-scale concrete structure in which cracks can become relatively wide (>0.5mm) and long (>1m). For this illustrative example, a non-uniform crack was chosen, with a width of 1 mm at the healing-agent source, a taper of 0.0001 mm/mm and a source pressure of 1.0 bar. The comparison between numerical predictions with and without the inertial terms is given in Figure 3. The parameters used in the simulation can be seen in Table 1.

Figure 3 – Comparison of predicted capillary rise height with and without inertial terms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ (N/m)</td>
<td>0.033</td>
</tr>
<tr>
<td>ρ_b (kg/m3)</td>
<td>1060</td>
</tr>
<tr>
<td>μ (Ns/m2)</td>
<td>0.004</td>
</tr>
<tr>
<td>θ_d (rad)</td>
<td>0.175</td>
</tr>
</tbody>
</table>

It may be seen from the figure that the inertial terms have a significant effect on the predicted response in this case and thus should not always be neglected.

4 Dynamic Contact Angle
The driving force for the healing agent flow within a discrete crack is made up of any applied pressure and the meniscus force. The meniscus force is a function of the surface tension and the curvature of the liquid-air interface. The equivalent capillary pressure is equal to the difference in pressure between two fluids (healing agent and air in the present case) and is given by the Young-Laplace equation:

$$P_c = \frac{2\gamma \cos(\theta_d-\sigma)}{w_{crk}}$$ \hspace{1cm} (46)

where γ is the surface tension of the healing agent, σ is the inclination of the capillary wall (measured relative to the crack inclination) and θ_d is the dynamic contact angle (DCA).

The contact angle varies significantly with velocity and this variation can have a marked effect on the fluid behaviour. In fact, if the velocity is sufficiently large to cause the dynamic contact angle to exceed 90°, which is possible in the present healing system, the meniscus force resists, rather than drives, flow.

A number of models have been proposed for the dependence of the contact angle on the capillary number (where the capillary number is given by: $Ca = \mu u/\gamma$), including models based on molecular kinetics, hydrodynamic theory, empirical observations or combinations of these approaches. Here, three particularly convenient models are selected for comparison, namely the models due to Jiang et al., Bracke et al., and Cox. The governing relationships for these three models are as follows:
Jiang et al.:97

\[\tanh(c_1 Ca^{c_2}) = \frac{\cos(\theta_s) - \cos(\theta_d)}{\cos(\theta_s) + 1}\] (47)

Bracke et al.:98

\[c_1 Ca^{c_2} = \frac{\cos(\theta_s) - \cos(\theta_d)}{\cos(\theta_s) + 1}\] (48)

Simplified Cox:95

\[\theta_d^{c_2} - \theta_s^{c_2} = c_1 Ca\] (49)

where θ_s is the static contact angle and c_1 and c_2 are constants.

In order to assess the applicability of the above DCA relationships to the dynamic flow of CA, Selvarajoo et al.,99 carried out a series of experiments at Cardiff University on the flow of healing agent through glass tubes under different pressures. In these tests, flexible tubes were placed at either side of a capillary tube with one end connected to an air-line (to apply pressure), and the other (open) end directing the CA into a plastic container filled with sand. LED lights were placed at either side of the set up to illuminate the tube. The flow was recorded using a high-speed camera and the contact angles were measured at different flow rates using the software Image-J. The test set up is illustrated in Figure 4.

![Figure 4 - Schematic of the DCA test set up of Selvarajoo et al.99](image)

A comparison between predictions with the above three expressions and the experimental data is given in Figure 5. The values for the DCA constants for each formula are given in Table 2 and the CA properties used for the simulations were those given in Table 1. The applied pressure range considered was from 0.0 to 2.0 bar.

<table>
<thead>
<tr>
<th>Model</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jiang et al. 1979</td>
<td>1.325</td>
<td>0.35</td>
</tr>
<tr>
<td>Bracke et al. 1989</td>
<td>0.8621</td>
<td>0.1947</td>
</tr>
<tr>
<td>Simplified Cox, 1986</td>
<td>722.9</td>
<td>7.654</td>
</tr>
</tbody>
</table>
It can be seen from the figure that all three models provide a good fit to the experimental data. Here, the model of Jiang et al.\(^9\) is chosen since the function is asymptotic to \(\pi\) (with increasing \(u\)), which is the maximum physically meaningful contact angle. It can be noted that the above data related to CA on a glass substrate, whereas in the examples considered, the substrate is concrete. The contact angle is a measure of the wettability, which depends on the physiochemical properties of the fluid and substrate. To account for the difference in substrate, the static contact angle was adjusted using values reported in Gardner et al.\(^{45}\) for CA on concrete.\(^9\) The effect of this adjustment on the dynamic contact angle can be seen in Figure 5. In the present work, the constants, \(c_1\) and \(c_2\), in the DCA expressions are assumed to be independent of the substrate. It can be noted that the effect of differences in the substrate on the frictional dissipation and wall slip are taken into account in the model through the factors \(\beta_m\) and \(\beta_w\) respectively.\(^{43,44}\) This issue is discussed further in Selvarajoo et al.\(^9\)

To demonstrate the difference between a simulation that uses a DCA with one that employs a static contact angle, a hypothetical test case concerning the rise of CA in a vertical crack is considered. In this case the crack width was chosen as 0.1 mm and no external pressure was applied. The comparison of the numerical predictions with and without the DCA can be seen in Figure 6. The parameters used in the simulation are given in Table 1.

It can be seen from the figure that neglecting the DCA leads to a significant difference in the predicted rise heights.

5 Healing Agent Curing

Degree of cure

The curing of a significant class of adhesives is by a polymerisation reaction that is initiated by adsorbed moisture.\(^{10}\) The curing is therefore dependent on moisture transport (or diffusion) within the adhesive body. For isocyanates and silicones, this diffusion process was found to exhibit a sharp propagating front that could be simulated accurately by Fick’s diffusion law. Solving this diffusion equation with the appropriate boundary
conditions led to the following equation for the position of the diffusion front,100 which may also be described in terms of the depth of cured material (z):

$$z = \left(2V K_p P_v t\right)^{\frac{1}{2}}$$

(50)

in which V is the volume of equivalent adhesive that reacts with 1 mole of water, K_p is the permeability of cured adhesive, P_v is the vapour pressure at the boundary and t is time.

The same polymerisation process applies to CA but in this case it has been found that the rate of propagation of the curing front gradually slows down as the depth of cured material increases and this zone of cured CA can eventually completely prevent hydroxide ions from reaching the central region of a layer of adhesive.101 This finding resulted from a study on the curing characteristics of CA films of varying thickness on different substrates, which employed near Fourier transform infrared spectroscopy (FTIR) to measure the degree of cure. The Cambridge polymer group,102 also used the FTIR technique to measure the degree of cure with time of CA droplets on glass slide substrates. Typical responses from both of these studies are shown in Figure 7.

Equation (50) does not well-represent the observed curing behaviour of CA due to the effects of the increasingly impermeable layer of cured CA, discussed above. Therefore, an alternative function was sought that can describe the progression of a CA curing front over time with reasonable accuracy. The function selected is given in equation (51) and its ability to represent the observed experimental behaviour is illustrated in Figure 7. It is noted that in the numerical results shown in Figure 7 are based on the assumption that the degree of cure (ϕ) may be calculated from $z(t)/z_{c0}$ in the two cases considered. This assumption is considered reasonable when a relatively narrow layer (or small droplet) of adhesive cures evenly from a smooth substrate. The selected function is expressed as:

$$z(t) = z_{c0} \left(1 - e^{-\frac{t}{\tau}}\right)$$

(51)

where z_{c0} is a critical curing depth at which the transport ceases and τ is a rate parameter (characteristic time).

Figure 7 – Comparison of the predictions of the degree of cure with experimental data for a) 0.07mm film of CA on dental glass with $z_{c0} = 0.03192$ mm and $\tau = 2.079$ min,101 and b) a droplet of CA on borosilicate glass with $z_{c0} = 0.5053$ mm and $\tau = 1.092$ min and assuming a droplet width of $2z_{c0}$.102

The above equation describes the progression of a sharp curing front, which has uncured material on one side and fully cured material on the other. However, in many situations the curing (or reaction) front is more diffuse,99,103 as was clearly shown by Li et al.103 in a series of experiments that studied the propagation of a polymerisation front of n-butyl CA adhesives mixed with an iodized oil in glass tubes. To determine the degree of polymerisation they used a grey-scale measurement of cure and found that the front was not sharp but took the form of a sigmoid function. Similarly, Selvarajoo et al.99 found that a CA curing front adjacent to a cementitious substrate also becomes increasingly diffuse over time.
The transport of this type of reaction front can be described by the following advection diffusion equation (for equilibrium reactions):

\[
\frac{\partial \varphi_{xc}}{\partial t} + v \frac{\partial \varphi_{xc}}{\partial x_c} - D \frac{\partial^2 \varphi_{xc}}{\partial x_c^2} = 0
\]

(52)

where \(x_c \) is a one-dimensional Cartesian coordinate measured from a defined boundary, \(\varphi_{xc} \) is the degree of cure at a point, \(v \) is the advective velocity and \(D \) is the diffusion coefficient.

The solution of equation (52) (with a boundary condition of \(\varphi_{xc=0} = 1 \)), which treats the curing front as a moving interface with velocity \(v \), is as follows:

\[
\varphi_{xc}(x_c, t) = \frac{1}{2} \left(1 - \text{erf} \left(\frac{x_c - vt}{2\sqrt{Dt}} \right) \right)
\]

(53)

where \(v \cdot t \) gives the position of the interface.

Here, \(v \cdot t \) is replaced by \(z(t) \), which gives:

\[
\varphi_{xc}(x_c, t) = \frac{1}{2} \left(1 - \text{erf} \left(\frac{x_c - z(t)}{2\sqrt{Dt}} \right) \right)
\]

(54)

The error function in equation (54) is non-elementary, which can be inconvenient from a numerical point of view, and so here a \(\tanh \) function is used as an approximation to the \(\text{erf} \) function, as illustrated in Figure 8, which leads to the following equation for \(\varphi_{xc} \):

\[
\varphi_{xc}(x_c, t) = \frac{1}{2} \left(1 - \tanh \left(\left(\frac{2}{\sqrt{\pi}} \right) \left(\frac{x_c - z(t)}{\sqrt{Dt}} \right) \right) \right)
\]

(55)

Figure 8 – Comparison between \(\text{erf}(x) \) and \(\tanh(2/\sqrt{\pi})x \) functions

The problem with this function is that it predicts that the curing depth will continue to increase with time – without limit– due to the \(2\sqrt{Dt} \) term, which is not consistent with the observations of Tomlinson et al. or with our own observations. To avoid this issue, we can instead use a term which is a function of \(z \) (which in turn is a function of time), as follows:

\[
\varphi_{xc}(x_c, t) = \frac{1}{2} \left(1 - \tanh \left(\left(\frac{2}{\sqrt{\pi}} \right) \left(\frac{x_c - z(t)}{\sqrt{Dt}} \right) \right) \right)
\]

(56)

Finally introducing a wall factor gives:

\[
\varphi_{xc}(x_c, t) = \frac{1}{2} \left(1 - \tanh \left(\left(\frac{2}{\sqrt{\pi}} \right) \left(\frac{x_c - z(t) - z_c}{\sqrt{Dt}} \right) \right) \right)
\]

(57)

where \(z_c \) is the wall factor.
To demonstrate the ability of the proposed function given in equation (57) to capture the curing profile of a CA adhesive, a comparison was made with the data from Li et al., which is given in Figure 9. The profile corresponds to the grey level measured at a selected time \(t = 62 \text{ min} \) and assumes that the initial grey level (135) corresponds to the uncured material and the final value (90) relates to fully cured material. The comparison made here shows that equation (57) provides an adequate description of a typical curing profile. The parameters used in the simulation can be seen in Table 3.

Figure 9 – Comparison between the predicted degree of cure profile and the measured data of Li et al. at \(t = 62 \text{ min} \), where \(z_L \) denotes the distance from the interface and \(D_e \approx 1.06 \text{ mm} \) denotes the diameter of the tube.

Table 3 – Curing model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_{c0}) (mm)</td>
<td>2.5</td>
</tr>
<tr>
<td>(z_c) (mm)</td>
<td>0.001</td>
</tr>
<tr>
<td>(\tau) (min)</td>
<td>95</td>
</tr>
<tr>
<td>(D) (mm/ mm(^2))</td>
<td>0.25</td>
</tr>
</tbody>
</table>

In order to determine the total degree of cure across the width of a crack, the integral of equation (57) is required, as follows:

\[
\phi(x_c, t) = \frac{x_c}{2} - \frac{1}{2} \ln \left(\cosh \left(\frac{2}{\sqrt{\pi}} x_c - \frac{2}{\sqrt{\pi}} z_c\sqrt{\tau(t)} \right) \right) \left(\frac{\sqrt{\pi}}{2} \frac{z_c}{D} + \frac{\sqrt{\pi}}{2} \frac{z_c}{D} \right) + c
\]

(58)

where \(\phi \) is the degree of cure between position \(x_c \) and 0 at time \(t \).

The rate of cure of moisture-cure adhesives shows a strong dependence on the width of the adhesive sample. Tomlinson et al. measured this effect for CA on dental glass and microscope slides. The experiments were carried out at a constant relative humidity of 40 % and temperature of 22.5 °C.

A comparison between selected data from Tomlinson et al’s and predictions with the present curing model is given Figure 10, for which the parameters are given in Table 4. It may be noted that the two sets of parameters reflect the two boundaries, which are air at an RH of 40 % and the glass substrate. It can be seen from the figure that the model captures the overall thickness dependency with reasonable accuracy although there are some notable differences between the numerical predictions of the curing rates and those observed in the experiments. The fact that the results for the thinnest film of CA suggest that the final degree of cure is below that for the next thinnest -in contrast to the overall trend- illustrates the variability (and difficulty of measuring) the curing process. It should be mentioned that for the case of a concrete crack, the boundary conditions are often equal on each side.
Figure 10 – Comparison of predictions of the degree of cure of different thicknesses of CA on a microscope slide with experimental data

Table 4 – Curing model parameters

<table>
<thead>
<tr>
<th>Parameter (air)</th>
<th>Value</th>
<th>Parameter (glass)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_{c0} (mm)</td>
<td>0.2</td>
<td>z_{c02} (mm)</td>
<td>0.03</td>
</tr>
<tr>
<td>τ (s)</td>
<td>2400</td>
<td>τ_2 (s)</td>
<td>240</td>
</tr>
<tr>
<td>D (mm2/mm2)</td>
<td>100</td>
<td>D (mm2/mm2)</td>
<td>100</td>
</tr>
<tr>
<td>z_c (mm)</td>
<td>0</td>
<td>z_c (mm)</td>
<td>0</td>
</tr>
</tbody>
</table>

Rheology

As liquid healing agent cures, its viscosity increases until, at complete curing, it becomes a solid. Three approaches were considered to simulate this effect; the first uses a chemorheological model proposed by Castro and Macosko,109 (See also, Ivankovic et al.110 and Teyssandier et al.111), which describes the increase in viscosity with fractional conversion (or degree of cure), as:

$$\mu = \mu_0 \left(\frac{\varphi_{g}}{\varphi_{g} - \varphi} \right)^{n_v}$$ \(59\)

where μ_0 is the initial viscosity, φ_{g} is the degree of cure at the gel point (where a rapid increase of viscosity is observed)110 and n_v is an exponent which defines the rate of change of μ with φ.

The second approach is based on the assumption that, during curing, the healing-agent can be idealised as a suspension of rigid spheres, with the spheres representing cured blocks of material and the liquid being the uncured agent. A mechanism that would justify this model is that, as the healing-agent flows through the crack under pressure and undergoes cycles of curing, re-damage and re-curing, particles of cured material break off and become suspended in the bulk fluid. In this case, the effective viscosity of a fluid with spherical rigid inclusions may be determined using a method proposed by Einstein.112,113 Here, the extended form of Chong et al.114 is preferred due to its applicability to a greater range of volume fractions. The relationship is given by:

$$\mu = \mu_0 \left(1 + \frac{[n]\varphi_m}{2} \left[\varphi / \varphi_m - \frac{1}{1-\left(\varphi / \varphi_m\right)} \right] \right)^2$$ \(60\)

where φ is the volume fraction (degree of cure in this case), φ_m is the volume fraction at which the viscosity becomes infinite,115 and $[n]$ is an intrinsic viscosity which is a measure of the effect of individual particles and is defined as:115,116

$$[n] = \lim_{\varphi \to 0} \frac{(\mu / \mu_0)^{-1}}{\varphi}$$ \(61\)

$[n]$ is 2.5 for rigid spheres but can range from 3-5 for angular particles.116
The third approach assumes that there is no appreciable transition zone between the fully cured and uncured material such that the cured material effectively reduces the width of channel (i.e. the crack opening) through which the healing agent can flow. This behaviour may be taken into account through a direct reduction of the crack width in the flow equation. An assessment of this third approach is made after the first two methods have been considered.

To calibrate the above viscosity relationships for CA, the experimental results of Gardner et al. are considered. Gardner et al. developed a custom-made viscometer to determine a time-viscosity relationship for CA. The viscometer consisted of a rectangular channel in a concrete specimen connected to transparent flexible tubes at each end, as illustrated in Figure 11. The flow of the healing agent through the viscometer was recorded using a high-speed video camera. The CA properties are given in Table 1.

Assuming that changes in flow rate can be described by an associated change in viscosity, the viscosities were calculated from a least-squares fit of the momentum balance equation to the experimentally measured flow rates.

The experimental results are compared with the corresponding model predictions in Figure 12. It can be seen from these data that the viscosity varies significantly throughout the course of the experiment. It was also observed that, after 2100 seconds, the flow of CA had ceased entirely.

It may be seen from the Figure that both viscosity models are capable of reproducing the experimental behaviour with reasonable accuracy. The parameters used in the simulation are given in Table 5.
Table 5 – Curing and viscosity model parameters used in simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_{c0}) (mm)</td>
<td>1</td>
<td>[n] (-)</td>
<td>2.5</td>
</tr>
<tr>
<td>(\tau) (s)</td>
<td>2400</td>
<td>(\varphi_m) (-)</td>
<td>1</td>
</tr>
<tr>
<td>(z_c) (mm)</td>
<td>0</td>
<td>(n_v) (-)</td>
<td>2.193</td>
</tr>
<tr>
<td>(D) (mm/mm²)</td>
<td>6</td>
<td>(\varphi_g) (-)</td>
<td>1</td>
</tr>
</tbody>
</table>

To assess the accuracy of the third approach, a computation was undertaken using the assumption that the change in flow rate results from a reduction in the crack width rather than a change in viscosity.

The crack widths were computed using a least-squares fit of the momentum balance equation to Gardner et al.’s flow data. A comparison between crack widths computed directly from the experimental data at selected time intervals and predicted crack widths using equation (51) -and the sharp curing-front curing assumption (denoted Cwr)- is given in Figure 13.

Under the sharp-front assumption, the crack width and the degree of cure are related as follows;

\[
\varphi_{cwr} = 1 - \frac{w_{crk}}{w_{crko}}
\]

where \(\varphi_{cwr} \) is the degree of crack width reduction, \(w_{crk} \) is the calculated crack width and \(w_{crko} \) is the original crack width.

Figure 13 - Comparison of the crack width reduction predictions with experimental data with \(z_{c0} = 0.5 \) mm and \(\tau = 900 \) s

As can be seen from the figures, the match between the experimental data and numerical predictions is much better for the first two approaches than for the equivalent crack width reduction approach. The chemorheological model (equation 59) was selected for use in the full numerical model because it provides a good fit to the experimental data and accounts for the diffuse nature of the curing front.

Continuum flow and wall slip behaviour

The approach used to account for healing-agent curing in the (continuum) concrete matrix is based on the same chemorheological model. This predicts that, at a particular degree of cure (namely \(\varphi_g \)), the viscosity becomes infinite, at which point the healing agent has become a solid. In the matrix flow model component, this is taken into account in the effective diffusion coefficient (equation 8), which tends to zero as the viscosity tends to infinity.

In the discrete crack flow sub-model, the change in viscosity due to curing is taken into account through the viscous force term \(f \) (equation 2), which should become infinite as \(\mu \to \infty \). However, this is not the case when the wall slip factor is included, since in this case \(f \) tends to the following expression:

\[
f_{\mu \to \infty} = - \left(\frac{\mu}{k + 0.5 \mu w_{crk} \beta_w} \right) u = - \left(\frac{1}{0.5 w_{crk} \beta_w} \right) u
\]

The wall slip factor \(\beta_w \) in equation (63) depends on the properties of the crack face, including the roughness and the level of interfacial bonding. In the present case, the value of \(\beta_w \) should reduce as the degree of
interfacial bonding increases until, at full-cure, the wall slip should become zero (i.e. no slip occurs). To account for this, a relative wall slip factor (β_{wr}) is proposed, which is a function of the local degree of cure given by:

$$\beta_{wr} = 1 - \left(\frac{\varphi(x_c)}{\varphi_g} \right)^{nv}$$ \hspace{1cm} (64)

where x_c denotes a position near the crack face and nv is the exponent taken from the chemorheological model.

Inserting this into the viscous force term results in the following expression that satisfies the limiting no-slip condition:

$$f_{\mu \to \infty} = -\left(\frac{\mu}{k + 0.5 \mu \omega_{crk} \beta_{wr} \beta_{crk}} \right) u = -\infty$$ \hspace{1cm} (65)

6 Examples

Having presented the model theory and the implementation algorithm, along with a set of calibrations for the various model components, a series of examples are now presented, which were undertaken with the purpose of validating the full coupled model. These employ test data from the linked experimental programme of work. The first example considers a test that measured the sorption of CA into a cracked concrete specimen; the second concerns the flow of CA within both a discrete natural concrete crack and a planar tapering crack, and the third considers a three-point bend test on a cementitious beam with embedded channels for delivering CA to cracked regions.

Table 6 – Parameters used in the simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value Example 1</th>
<th>Value Example 2a</th>
<th>Value Example 2b</th>
<th>Value Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{int} (m2)</td>
<td>3×10^{-17}</td>
<td>3×10^{-17}</td>
<td>3×10^{-21}</td>
<td>3×10^{-17}</td>
</tr>
<tr>
<td>n (-)</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>ρ_h (kg/m3)</td>
<td>1060</td>
<td>1060</td>
<td>1060</td>
<td>1060</td>
</tr>
<tr>
<td>μ (Ns/m2)</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>a (N/m2)</td>
<td>1.86×10^7</td>
<td>1.86×10^7</td>
<td>1.86×10^7</td>
<td>1.86×10^7</td>
</tr>
<tr>
<td>m (-)</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>κ (-)</td>
<td>-3.0</td>
<td>-3.0</td>
<td>-3.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>τ_m (s)</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
<td>28.5</td>
</tr>
<tr>
<td>φ_g (-)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>nv (-)</td>
<td>2.193</td>
<td>2.193</td>
<td>2.193</td>
<td>2.193</td>
</tr>
<tr>
<td>β_c/β_{crk} (s/m)</td>
<td>-</td>
<td>5×10^{-7}</td>
<td>5×10^{-8}</td>
<td>5×10^{-7}</td>
</tr>
<tr>
<td>z_{c0} (mm)</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>z_c (s)</td>
<td>-</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>D (mm/mm2)</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>z_e (mm)</td>
<td>-</td>
<td>1×10^{-5}</td>
<td>1×10^{-5}</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>θ (rad)</td>
<td>-</td>
<td>0.17453</td>
<td>0.17453</td>
<td>0.17453</td>
</tr>
<tr>
<td>y (N/m)</td>
<td>-</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
</tr>
<tr>
<td>β_m (Ns/m2)</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>β_s (-)</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>β_w (m3/Ns)</td>
<td>-</td>
<td>0.003</td>
<td>0.01</td>
<td>0.003</td>
</tr>
<tr>
<td>c_1 (-)</td>
<td>-</td>
<td>1.325</td>
<td>1.325</td>
<td>1.325</td>
</tr>
<tr>
<td>c_2 (-)</td>
<td>-</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>w_{crit} (mm)</td>
<td>-</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

In all cases, the prismatic concrete specimens considered in these examples were cast, demoulded at 24 hours, cured under water for 5 days, dried in an oven for 1 day at 90 °C and then left in air for 1 day prior to testing.
The parameters used in the model for each of the examples can be seen in Table 6, and additional information on the mechanical model parameters is given in the Appendix.

The mesh(es) used for each example is shown in the relevant sub-section but all of these were chosen after mesh convergence studies. Similarly, the time steps used for the transient analyses, which were typically in the range 1 to 3 s for a full model problem, were selected after time-step convergence checks. The mesh and time-step sizes were considered converged when the nodal variables changed by less than 1 \%.

The value of the pore interaction factor (κ, in equation 9) was calibrated using experimental data from a set of concrete liquid permeability tests by Kameche et al.118 The resulting comparison between the van Genuchten-Mualem relationship and Kameche et al.’s experimental results is given in Figure 14. It is noted that the negative value used for κ is consistent with the values given for concrete by Monlouis-Bonnaire et al.119 and Poyet et al.120

![Figure 14 - Comparison of the permeability model predictions with experimental data](image)

Example 1: Sorption.

The first example concerns the sorption of CA into a concrete sample through a crack surface.99 In these experiments, the cured prisms (beams) were loaded to failure in three-point bending and then each half of the failed beam formed an individual specimen with a size of 127 x 75 x 75 mm. The sorption test involved placing the specimen, cracked side down, into a shallow bath of CA and capturing the sorption rise response using a high-speed camera. The test set up is illustrated in Figure 15. Two meshes were employed for the analysis, as illustrated in Figure 16.

![Figure 15 – Schematic of the absorption test set up of Selvarajoo et al.99](image)
The experimental data were extracted from the video files based on the assumption that the mean capillary rise within the sample is that seen on the surface of the specimen, as illustrated in Figure 17c. These data are shown, along with the model predictions from both meshes, in Figures 17a & b. In may be seen that there is considerable scatter in the experimental data, which reflects the degree of variability of the sorption process in concrete. The simulations were based on the assumption that the observed rise height corresponded to a degree of saturation of 0.6, the value of which was chosen after a number of trial analyses and experimental saturation tests. The permeability coefficient was selected to reflect the fact that the concrete matrix adjacent to the crack face would have been micro-cracked since this zone was within the fracture process zone.

Notwithstanding the high variability of the experimental data, the comparison shows that the model is able to capture the characteristic sorption rise behaviour. A simulation in which healing-agent curing is not considered is also shown in Figure 17b. This shows the importance of simulating curing the present transport model.
Example 2: Flow through in a natural crack

The next example concerns the capillary rise of CA through a discrete natural concrete crack in unsaturated specimens. The samples were prepared using essentially the same procedure as that described in example 1 except that the final tests specimens were cut from the centre of the cracked beam to a size of 90 x 75 x 25 mm and then clamped together with spacers to create crack widths of 0.1, 0.2 and 0.3 mm. The capillary rise test involved raising a reservoir of CA to the underside of the sample and then recording the fluid rise response with a high-speed camera. The test set up can be seen in Figure 18. The finite element meshes used for the analysis are shown in Figure 19.

![Figure 18](image1)

Figure 18 – Schematic of the natural crack flow test set up of Selvarajoo et al.

![Figure 19](image2)

Figure 19 – Finite element meshes used for analysis a) Mesh1 and b) Mesh2

![Figure 20](image3)

Figure 20 – Comparison of the rise height predictions with experimental data
The results of the numerical simulation, along with the experimental data, are presented in Figure 20. It can be seen from the figure that the experimental data show similar rise height behaviour for all three crack widths, with the 0.1 mm and 0.2 mm results being particularly close to one another. This behaviour is significantly different from that observed in similar tests on planar (smooth surface) openings, in which there were substantial differences between the flow response in channels with different openings (see below). The reason for this difference in behaviour between smooth-sided openings and natural cracks is believed to relate to the tortuous nature of natural cracks in which the actual flow path may be considerably greater than the recorded rise height. Furthermore, in cracks with rough surfaces, the crack opening varies considerably from the mean and cured CA may block the narrowest sections of the opening long before all flow ceases. Despite the above complexities, the figure shows that the numerical model is able of capturing the capillary rise behaviour reasonably well although it is acknowledged that local crack tortuosity effects are not explicitly simulated.

For completeness, the results from a series of simulations that considered the aforementioned tests on planar tapered openings are presented here. The test set up and finite element meshes used for the analyses were the same as in the previous example.

![Figure 21– Comparison of the rise height predictions with experimental data](image)

The results of the numerical simulation along with the experimental data are given in Figure 21. It can be seen from the figure that the experimental data in this case shows a greater difference in rise height behaviour for each of the crack widths, and that the numerical simulation is able to accurately capture this behaviour.

Example 3: Three-point bend test on a beam with embedded channels

The final example considers a series of tests on notched concrete beam specimens (255 x 75 x 75 mm) with embedded channels that were loaded in three-point bending, as illustrated in Figure 22. The channels were connected to flexible tubes at either side of the specimen and then filled with CA. One of the ends was then clamped, whilst the other was attached to a pressure regulator and an airline. The specimens were then tested in three-point bending under different loading rates and under different applied pressures (namely 1.0, 0.5, 0.3, 0.1 and 0.0 bar). In the present study, the tests corresponding to a loading rate of 0.001 mm/s were simulated.
Figure 22 – Schematic of the three-point bending test set up of Selvarajoo et al.117 a) elevation and b) cross-section

A section of the two finite element meshes, used for the analysis can be seen in Figure 23.

Experimental observations suggest that the minimum size of the opening that the healing agent could flow through depended on the applied pressure.117 In the present work, the minimum crack width which the flow can enter is dealt with using an empirical function of the applied pressure and is given here as:

\[w_{\text{cmin}} = A P_{\text{app}} + B \] \hspace{1cm} (66)

The proposed function (applicable in the range \(1 \text{bar} \geq P_{\text{app}} \geq 0\)) is consistent with the experimental data. In the present work, the constants are given as \(A = -0.05 \text{ mm/bar} \) and \(B = 0.095 \text{ mm}\).
The experimental data is limited in this case and only relates to the extent of healing agent visible on the side of the test beam. Nevertheless, a comparison between these data and the 2D numerical predictions is given in Figure 24. The resulting comparison between this limited experimental data and the numerical model is considered to provide a partial validation of the coupled flow model.

The stepped nature of the numerical responses shown in Figure 24 relate to the fact that the flow is much faster than the cracking; thus, the crack widths increase with loading until, ahead of the flow front, the crack width becomes greater than w_{cmin}, and the flow advances.

A comparison between the saturation contours predicted by the model and pictures taken from recordings of the experiment can be seen in Figure 25; whilst a deformed mesh plot showing the healing agent in the crack and the degree of cure can be seen in Figure 26. A deformed contour plot showing the degree of cure in the crack and in the concrete matrix can be seen in Figure 27. Figure 25 shows that the numerical model provides a reasonable prediction of the saturation of the specimen. The deformed contour shown in Figure 26 shows that by the end of the test, the crack tip has almost reached the top of the beam, and that the adhesive fills most of the crack.

The average degree of cure (φ_{av}) of the healing agent at any position (height) within a crack is determined from the curing-front model by integrating the degree of cure across the crack opening (Section 5). In general, φ_{av} depends on the curing time, which is measured from when the fluid is first in contact with the substrate.
(crack wall), and the transient crack opening. A plot of ϕ_{av} values in the crack at three different times is shown in Figure 26. As expected, ϕ_{av} is least at the flow front, where the glue has not yet had time to cure, and is also less for wider cracks, since the greater the crack opening, the greater the time required for the curing front to propagate across the body of fluid. At the final time shown, the maximum value is 23.06 %. Figure 27 shows ϕ_{av} for both the crack and the surrounding matrix and it is apparent that the degree of cure is much higher in the matrix, with a maximum value of 99.44 %, than in the crack. This is again as expected since the size of the pores is much smaller than that of the crack opening.

![Figure 26](image1)

Figure 26 – Deformed mesh plot showing the healing agent in the crack and the degree of cure for the case corresponding to an applied pressure of $P_{app} = 0.5$ bar at a) $t = 85$ s b) $t = 127$ s and c) $t = 147$ s

![Figure 27](image2)

Figure 27 – Deformed contour plot showing the degree of cure in the crack and the concrete matrix for the case corresponding to an applied pressure of $P_{app} = 0.5$ bar at a) $t = 85$ s b) $t = 127$ s and c) $t = 147$ s

7 Discussion

The coupled model presented in this study is based on experimental observations of the underlying physical processes that govern SH systems with embedded channels. Such SH systems are complex and are governed by a number of interacting processes, which are simulated using an associated set of tractable sub-models. Each of these sub-models requires a limited number of physically meaningful parameters that can either be determined directly using the type of test described in this paper, which might not be practicable in many situations, or obtained from product data (e.g. glue material data sheets), with guidance from the values given in this article. Although any one sub-model requires a limited number of parameters, it is acknowledged that the aggregated set of parameters is relatively large (i.e. 23 parameters are given in Table 6).

The results of the sensitivity studies presented in this paper (i.e. on the effect of inertia, DCA and healing agent curing), as well as the overall comparisons with experimental responses, suggest that neglecting any of these processes can lead to a significant difference in the predicted behaviour. This leads the authors to conclude that it is necessary to consider all of the identified physical processes in the model.
Although the complexity of the combined coupled model might suggest that it is computationally expensive, in 3D, it only has three main transport variables and three mechanical variables (i.e. displacement components), which is similar to many of the coupled models reviewed in the introductory section of this paper. This, combined with the experience the authors have gained with the model to date, suggests that it would be viable for simulating full-scale structural self-healing systems.

8 Conclusions

In this study, a new coupled computational model for simulating the reactive discrete-continuum flow of a healing agent in cementitious materials was described. The following conclusions can be drawn from the work:

- The proposed coupled computational model is capable of simulating the reactive flow of a healing agent in cementitious materials, including unsaturated matrix flow and flow through discrete cracks.
- The addition of a jump penalty on the pressure gradient across element edges is an effective approach for stabilising transient discrete crack flow simulations.
- Spurious oscillations in the unsaturated continuum matrix flow computations can be effectively damped using a higher order mass matrix approach.
- The meniscus dynamic contact angle behaviour is well-represented using the relationship proposed by Jiang et al. with the parameters computed using experimental data from an associated experimental study.
- The new approach for modelling the effects of CA curing within discrete concrete cracks, using a diffuse curing front model, is able to accurately reproduce experimental observed curing behaviour for a range of crack openings.
- The transient variation of CA viscosity, in both continuum and discrete-crack flows, is well-represented by the chemorheological model of Castro and Macosko.
- The effects of curing on the wall-slip behaviour of CA flow in a discrete crack may be simulated with a new relationship that accounts for the gradual reduction in slip potential with the increasing degree of cure.
- The proposed coupled finite element model is able to represent the characteristic continuum and discrete flow of a cementitious vascular self-healing system, as demonstrated with a series of validation examples.

Appendix

The constitutive relationship for the damage-healing model relates the stress to the relative displacements across the crack band and is expressed as (for a single phase of healing):

\[
\sigma = (1 - \omega)Ku + \omega h(1 - \omega_h)K(u - u_h)
\]

(67)

where \(K=E/\rho_b\) is the stiffness of the crack band (\(E\) denotes Young’s modulus and \(\rho_b\) the width of the crack band), \(\omega\) is the damage variable which ranges from 0 for no damage to 1 for full damage, \(h\) is the degree of healing, \(u_h\) is the relative displacement at which healing takes place and \(\omega_h\) is the damage variable for the healing material.

The damage evolution functions depend on the maximum values of the inelastic relative displacements, \(\zeta\) and \(\zeta_h\), and are given as:

\[
\omega(\zeta) = 1 - \frac{f_t}{K\zeta} e^{-\frac{\zeta}{\zeta_m}} \quad \omega_h(\zeta_h) = 1 - \frac{f_{th}}{K\zeta_h} e^{-\frac{\zeta_h}{\zeta_{mh}}}
\]

(68)

where \(f_t\) and \(f_{th}\) are the tensile strengths of the virgin and healed material, \(c = 5\) is a softening constant and \(\zeta_m\) and \(\zeta_{mh}\) are the effective relative displacements at the end of the softening curve for the virgin and healed material respectively.
The mechanical damage-healing model parameters can be seen in Table 7.

Table 7 – Mechanical damage-healing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_t (N/mm²)</td>
<td>2.1-3.0</td>
<td>E (N/mm²)</td>
<td>30000</td>
</tr>
<tr>
<td>ζ_m (mm)</td>
<td>0.13-0.15</td>
<td>ν (-)</td>
<td>0.2</td>
</tr>
<tr>
<td>f_{th} (N/mm²)</td>
<td>3.0</td>
<td>w_b (mm)</td>
<td>4</td>
</tr>
<tr>
<td>ζ_{mh} (mm)</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

Financial support from the EPSRC Grant EP/P02081X/1 “Resilient materials for life (RM4L)” is gratefully acknowledged.

Information on the data underpinning the results presented here, including how to access them, can be found in the Cardiff University data catalogue at (http://doi.org/10.17035/d.2019.0082101918).

References

18 Xue C, Li W, Li J, Tam VWY, Ye G. A review study on encapsulation-based self-healing for cementitious materials, Structural Concrete. 2019;20:198-212

40 Koenders EAB. Modelling the self healing potential of dissoluble encapsulated cement systems. 2012

60 Milanese E, Yilmaz O, Molinari JF, Schrefler BA. Avalanches in dry and saturated disordered media at fracture in shear and mixed mode scenarios. Mechanics Research Communications. 2017;80:58-68

Li L, Lee SH. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reservoir Evaluations and Engineering. 2008;11(4):750-758

