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Active Arrangement of Small Objects
in 3D Indoor Scenes

Suiyun Zhang, Zhizhong Han, Yu-Kun Lai, Matthias Zwicker, Hui Zhang

Abstract—Small object arrangement is very important for creating detailed and realistic 3D indoor scenes. In this paper, we present an

interactive framework based on active learning to help users create customized arrangements for small objects according to their

preferences. To achieve this with minimal user effort, we first learn the prior knowledge about small object arrangement from a 3D

indoor scene dataset through a probability mining method, which forms the initial guidance for arranging small objects. Then, users are

able to express their preferences on a few small object categories, which are automatically propagated to all the other categories via a

novel active learning approach. In the propagation process, we introduce a novel metric to obtain the propagation weights, which

measures the degree of interchangeability between two small object categories, and is calculated based on a spatial embedding model

learned from the small object neighborhood information extracted from the 3D indoor scene dataset. Experiments show that our

framework is able to help users effectively create customized small object arrangements with little effort.

Index Terms—3D object layout, Active learning, Scene enrichment, Computer-aided aesthetic design, Human computer interaction.

✦

1 INTRODUCTION

SMALL objects are key components for increasing the real-
ism of 3D indoor scenes in various applications, such as

virtual reality, interior design and 3D video games [1]. How-
ever, it is time-consuming and tedious to manually arrange
small objects in 3D indoor scenes, especially when the num-
ber of scenes becomes large. Although small object arrange-
ments can be simply achieved by applying basic heuristic
rules in an automatic manner, e.g., using collision tests [2],
the arrangement results are not always plausible. Moreover,
users have their own preferences, and such customized small
object arrangements are more tedious to achieve. Therefore,
how to efficiently generate both plausible and customized
small object arrangements remains a challenge in the field
of 3D scene modeling and understanding.

This problem has been little explored. The previous
work on small object arrangement can be divided into data-
driven methods and user-guided methods. In data-driven
methods, the arrangements are generated by applying the
occurrence statistics of small objects learned from either
a few example images [3] or 3D indoor scenes [4]. Al-
though these methods are capable of generating plausible
arrangements, users cannot easily express their intentions
about small object arrangements. Hence the results are not
easily customizable. In contrast, the user-guided methods
can generate customized arrangements thanks to the de-
tailed information specified by users, such as the absolute
priority of each small object category [5] and the targeted
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location of each small object [1]. However, too much hu-
man labor is required in these cases. First, users need to
exhaustively provide information for each single category.
Second, new input is required when arranging a new set
of small objects. Our work fills the gap as being both
data-driven and user-guided. Human effort is dramatically
reduced as our framework maximizes the benefits of user
input preferences through a propagation process. Thus, we
address the demanding problem of combining knowledge
learned from a dataset with a small set of user preferences
to efficiently produce both plausible and customized small
object arrangements.

In this paper, we propose an active arrangement frame-
work to address this challenge. The proposed framework
pays attention to the pairwise spatial relationship between
any two small object categories, which we define as a rela-
tive priority probability. In addition, our key contribution
to reduce user effort is to automatically propagate user
preferences for a small set of object categories across all cate-
gories in a meaningful manner. To achieve this, we present a
novel active learning method that inherits the advantages of
traditional active learning methods [6], while also absorbing
the prior knowledge learned from a dataset, which remedies
the disadvantages of traditional methods [7].

Our framework consists of an offline knowledge learn-
ing stage and an online arrangement generation stage. The
offline stage learns the initial priority probabilities about
relative placements of pairs of object categories from a 3D
scene dataset. Due to the limited information provided by
the current dataset, a probability mining method is pro-
posed to infer the priority probability for any two small
object categories that do not co-occur in the dataset by
indirectly bridging them through a third category. These
priority probabilities serve as the initial guidance for ar-
ranging small objects in the online stage. Meanwhile, to
model the user preference propagation process, we need to
calculate a meaningful degree of interchangeability between
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any two categories. The intuition is that if two categories are
interchangeable, then user preferences can be propagated
from one to the other. We achieve this using a neural
network model to learn the spatial embedding of small
object categories from the context information of categories
in the 3D scene dataset. The idea is that two categories with
similar neighborhoods tend to be interchangeable, and the
spatial embedding can be leveraged to quantify the degree
of interchangeability.

In the online stage, an initial arrangement is first gen-
erated by applying the initial priority probabilities learned
from the dataset. Users can then specify their preferences
for the spatial relations of any pair of categories on the
arrangement result. The preferences are propagated across
all categories according to the degree of interchangeability
between two categories, which we calculate from the spatial
embedding space. Afterwards, we apply the propagated
priority probabilities to update the original arrangements
into customized ones as specified by user preferences. In
summary, our main contributions are as follows:

• We present an active arrangement framework for
small object arrangement in 3D indoor scenes, which
simultaneously exploits both the prior knowledge
learned from data and user specified preferences
to efficiently produce plausible, customized small
object arrangement results.

• We introduce a probability mining approach that
infers the unknown priority probabilities of two 3D
small object categories which never co-occur in the
dataset, using the information of a third category
which co-occurs with both categories.

• We propose a neural network model that learns the
spatial embedding of small object categories, based
on which we introduce a novel metric to measure
the degree of interchangeability between categories.

• We provide a user friendly graphical interface that
allows users to interactively express their preferences
for small object arrangement. Our overall system
significantly reduces interaction time required to pro-
duce desired results.

2 RELATED WORK

According to the techniques involved in our framework, we
review three classes of related work.

2.1 Small object arrangement

Many researchers seek to automatically arrange small ob-
jects in 3D scenes by applying the knowledge learned from
datasets. Majerowicz et al. [3] populated the arrangement
of an example shelf to empty shelves in a style-preserving
manner, where the style denoted the relative positions
between any two small objects and the global properties
including density, grouping and symmetry. Fisher et al. [4]
learned Gaussian mixture models from example 3D scenes
to represent pairwise spatial information between object
categories, such as locations and rotations. Kermani et
al. [8] learned an arrangement model from an RGB-D image
dataset based on a factor graph. Jiang et al. [9] modeled
the spatial relationship between small objects and human

poses using Dirichlet process from a given 3D scene. Wang
et al. [10] learned the spatial distribution of 3D objects in the
scenes from a large 3D scene dataset with three different
Convolutional Neural Networks (CNNs). Although these
methods could generate quite plausible arrangements based
on the knowledge learned from datasets, it is hard for users
to express their preferences in order to create customized
arrangements.

To involve users into the process of arranging small ob-
jects, a few works allowed users to define their preferences
by specifying detailed information. Yu et al. [1] proposed an
interactive indoor scene detailing system which arranged
small objects according to user specified locations. Savva
et al. [11] presented an interactive system for 3D scene
assembling, using the prior knowledge of object support,
position and orientation learned from a 3D scene dataset.
Zhang et al. [5] generated small object arrangements using
the priority of each small object category which needed to
be specified as absolute values by users. In these methods,
although customized arrangements can be obtained, they
are at the cost of involving substantial human labor, because
the relationship between the spatial properties of small ob-
ject categories is not effectively modeled, and the involved
human effort is not sufficiently exploited.

Different from these works, we base our framework on
the prior knowledge learned from the dataset, and mean-
while maximize the use of information provided by the lim-
ited number of user preferences through an active learning
method. In this way, we manage to find a balance between
the learned knowledge and user preferences to generate
both plausible and customized small object arrangements.

Ma et al. [12] simulated the scene evolution process by a
group of human actions, which are sampled from an action
graph learned from a scene dataset. However, the choice
of human actions is limited to the nodes of the learned
action graph. Comparatively, our approach mainly focuses
on incorporating user preferences for small object arrange-
ments by active learning. This allows users to manipulate
the arrangement results at a finer level. Moreover, in their
method, the spatial distribution of 3D objects is relative to
the human poses. Thus, unlike our approach, their method
cannot model the relation between the supporting heights
of small objects to support the small object arrangement on
multi-layer furniture objects.

2.2 Active learning in 3D

Active learning has been used in various 3D applications for
its potential of propagating the information provided by few
labeled instances to other unlabeled ones [6]. Gao et al. [13]
proposed an active learning based approach to explore
large 3D model repositories, where the user preferences
for the shapes were propagated to other shapes in order
to display those of interest. Top et al. [14] applied active
learning to segment 3D medical images by querying users
with the most uncertain segments. Yi et al. [15] enriched the
semantic region annotations of 3D shape datasets, which
was achieved by propagating the manual annotations of a
few shapes across the whole shape set under an active learn-
ing framework. Song et al. [16], [17] learned a customized
classifier for 3D shapes in an interactive way, where the
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Figure 1. The pipeline of our framework. In the offline stage, the initial spatial relation matrices are learned (a) to provide the prior knowledge of
arrangement (d). The spatial embedding space for small object categories is learned by training a neural network (c) using the spatial context
information extracted (b) from a 3D scene dataset. The similarity of spatial embeddings (e) provides the degree of interchangeability between
categories, which is further used for propagating (f) user preferences. In the online stage, the relation matrices are updated (g) according to both
prior knowledge and user preferences. Then, small object arrangements are generated (h) using the matrices and are presented (i) to users, where
they can specify (j) further preferences.

classifier was refined according to user provided feedback.
Wang et al. [18] proposed an active learning method to
carry out shape segmentation and labeling, where users
were asked to assign must-link or cannot-link constraints
between segments.

Our framework shares the spirit of propagating user
preferences across the whole set of small object categories
with these methods. However, the prior knowledge learned
from the dataset is also considered in our framework in the
optimization process to improve the propagation results.

2.3 Embedding methods in 3D

Creating an embedding space for unstructured data in order
to measure their similarity with continuous representations
is fundamental for various applications in computer vi-
sion [19], [20], [21], [22], [23]. Recently, to facilitate the
analysis across different modalities such as 3D shapes, depth
images, sketches, descriptions, etc., embedding methods are
applied in 3D applications as well [24]. Tesse et al. proposed
Shape2Vec [25], which introduced word embedding space
of shape categories as a common space to link the features
of various modalities in order to perform cross-modal re-
trieval. Li et al. [26] learned a common embedding space
between 3D shapes and 2D images. They first constructed
another embedding space from 3D descriptors, then trained
a CNN to purify images so that each image could be
mapped to a feature point in the common embedding space.

Different from these methods, rather than embedding
the semantic meaning of 3D shapes, we embed the spatial
context of small object categories into a vector space through
a neural network model, which facilitates the propagation of
user preferences about small object arrangements.

3 OVERVIEW

Given a set of small object categories C = {ci|i =
1, . . . , NC}, where NC is the number of categories, our
framework aims to arrange small objects of categories ci
in C on a supporting furniture object, conforming to both
prior knowledge learned from the dataset and user specified
preferences for small object arrangements.

It is observed that “viewers care about the relative
rather than absolute difference between small objects’ prop-
erties” [3]. Regarding the property of 3D position, we tackle
the arrangement problem by considering three types of
relative spatial relations between small object categories, in-
cluding middleness, height and depth. They denote the relative
spatial information along the x, y and z axes, respectively, in
the right-handed coordinate system. It should be noted that
middleness denotes the quantity of being close to the middle
axis of a supporting surface for a small object. The definition
of the spatial relations will be detailed in Sec. 4.2. For each
type of relation, the probability of priority of any two cate-
gories ci and cj is given by two matrices, representing the
inequality and equality probabilities respectively, denoted
as R>

X and R
=
X , where X is one of the three types of relations,

including H for height, M for middleness and D for depth.
For example, R>

H (ci, cj) is the probability that ci is placed
higher than cj , and R

=
H(ci, cj) is the probability that ci is

placed at the same height as cj . The equality relations are
necessary because e.g. objects are often placed at the same
height on a shelf. The corresponding entries in a pair of two
matrices R>

X ,R=
X should meet the condition

R
>
X (ci, cj) +R

>
X (cj , ci) +R

=
X (ci, cj) = 1. (1)

Thus, our goal is to obtain a set of 6 matrices R =
{R>

X ,R=
X |X ∈ {D, M, H}}, as shown in Fig. 1, which rep-
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resents both the prior knowledge learned from the 3D scene
dataset and the user specified preferences.

Fig. 1 shows the pipeline of our framework, which is
composed of an offline knowledge learning stage and an
online active arrangement generation stage.

In the offline stage, two aspects of knowledge are learned
to feed the online stage. First, the initial spatial relation
matrix set, denoted as R̃, is learned by analyzing the co-
occurrence information of small object categories from a
3D scene dataset (Sec. 4). R̃ is fixed once learned. As
not every pair of small object categories co-occur in the
same scene from the dataset, a probability mining method
(Fig. 1a) is proposed to infer the priority probabilities of
these pairs, where a third common category that co-occurs
separately with each category from the pair is employed
to bridge the two categories. R̃ is used to provide prior
knowledge (Fig. 1d) for the matrix updating in the online
stage. Second, knowledge for propagating user preferences
is learned. In the online stage, users will provide a small set
of preferences for arrangements of pairs of object categories.
To reduce user effort, we propagate these preferences to
all other semantically similar, interchangeable categories.
The propagation weights are calculated by the degree of
interchangeability between categories, which is measured
based on the similarity (Fig. 1e) of the spatial embeddings
of categories. We train a neural network model (Fig. 1c) in
the offline stage to learn the spatial embedding (Sec. 6) of
small object categories using the spatial context information
extracted (Fig. 1b) from the 3D scene dataset.

In the online stage, users are interactively involved in
the process of arranging small objects (Sec. 5). An initial
arrangement is generated (Sec. 4.4) and presented (Fig. 1h,i)
to users using R̃ (Fig. 1d) obtained from the offline stage.
Then, starting from R = R̃, R is iteratively updated
(Fig. 1g) through an active learning based optimization pro-
cess according to each new user preference. The updated R

is in return applied to arrange the set of small objects on the
furniture object. With the current arrangement results, users
can specify (Fig. 1j) their preferences, each about any type of
spatial relations for two categories shown in the results. For
example, a possible preference could be “the depth of the
mug should be greater than the pen’s”. The preferences are
firstly converted to constraints on the priority probability
between the specified categories, which are further propa-
gated to the whole set of categories (Fig. 1f) through the
optimization process, using the degree of interchangeability
calculated from the spatial embedding learned in the offline
stage. This process will iterate until users get satisfied with
the arrangement results.

4 PRIORITY PROBABILITY MINING

We learn the priority probabilities of three relative spatial
relations (Sec. 4.2) for each pair of small object categories in
C from a 3D indoor scene dataset (Sec. 4.1). Sparse initial
spatial relation matrices are first extracted from the co-
occurrence information of small object categories shown in
the dataset. Then, these matrices are completed by a priority
probability inference method to form the initial probability
matrices R̃, which provide the prior knowledge about small
object arrangement (Sec. 4.3). Small object arrangements are

generated using the priority probabilities provided by the
matrices in R (initialized with R̃ and updated with active
learning) (Sec. 4.4).

4.1 Dataset

The 3D indoor scene dataset constructed by Fisher et al. [4]
provides rich information about small object occurrence and
arrangement. Thus, we use it as the source for learning both
the priority probabilities between small object categories
and the spatial embedding of small object categories. The
original dataset contains 133 3D scenes, which were com-
posed by human modelers using 1,741 unique 3D objects.
Although each 3D object was assigned with a list of names
and tags, the basic categories of these objects were not
provided consistently. To facilitate the analysis between
categories, each 3D object is manually assigned to a category
by us. Besides furniture categories, 203 different small object
categories are observed in this dataset, i.e., NC = 203, of
which the top 30 categories with most 3D objects are shown
in Fig. 2.
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Figure 2. The 30 most common categories and their numbers of objects.

4.2 Relative spatial relations

Unlike [27], which computed a few total orderings of all
the items under certain user preferences, we instead use
probabilities to define the relation between any two small
object categories. Specifically, we consider three types of
relative spatial relations between two categories ci and cj ,
as defined below.

Height priority. There are certain rules for placing small
objects on different layers of a multi-layer furniture object,
e.g., shoes are more likely to be placed on a lower layer than
a perfume on a shelf. We use yH(ci) to denote the supporting
height of ci when it is placed on a multi-layer furniture, and
R

>
H (ci, cj) to denote the probability that ci is placed at a

higher position than cj , i.e., p(yH(ci) > yH(cj)).
Depth priority. Some categories are more likely to be

placed in front of others, e.g., placing a cup in front of a
lamp is more reasonable than the opposite way. We use
yD(ci) to denote the depth of ci, and R

>
D (ci, cj) to de-

note the probability of ci being placed in front of cj , i.e.,
p(yD(ci) > yD(cj)).

Middleness priority. Similarly, some small objects tend
to be placed nearer to the middle axis of a supporting
surface than others, e.g., placing a laptop to the middle of
a desk is beneficial for accessibility. We use yM(ci) to denote
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the distance from ci to the middle axis of the supporting fur-
niture, and R

>
M(ci, cj) to denote the probability of ci being

placed farther to the axis than cj , i.e., p(yM(ci) > yM(cj)).
In addition to the inequality probabilities, we also

consider equality probabilities, which are denoted as
R

=
D (ci, cj), R

=
M(ci, cj) and R

=
H(ci, cj) for depth, middleness

and height priorities, respectively. For example, R=
H(ci, cj)

denotes the probability that ci and cj are placed at the same
height on a furniture object.

4.3 Priority probability inference

Let X be any type of the spatial relations, according to the
probability definition, the probabilities of inequality and
equality relations between two categories ci and cj are
estimated by enumerating the occurrence of unequal/equal
relations of the two categories in the dataset and computing
their proportion w.r.t. the total number of co-occurrence
between ci and cj :

R
>
X (ci, cj) = p(yX(ci) > yX(cj)) =

n(yX(ci) > yX(cj))

n(ci, cj)
,

(2)

R
=
X (ci, cj) = p(yX(ci) = yX(cj)) =

n(yX(ci) = yX(cj))

n(ci, cj)
.

(3)
n(yX(ci) > yX(cj)) and n(yX(ci) = yX(cj)) denote the
number of times that the corresponding property regard-
ing relation X of ci, yX(ci), is larger than and equal to
that of cj , yX(cj), in the dataset, respectively. For example,
n(yH(book) > yH(cup)) is the number of times that book is
placed at a higher position than cup on the same furniture
object. n(ci, cj) is the number of times that ci and cj co-
occur on the same furniture. When calculating middleness
and depth relations, the equality condition is relaxed to
be within a threshold ǫ, which is set to 5 cm for both
relations. The diagonal elements of R

>
X and R

=
X are the

probabilities of self relations for a category c, where the
equality probability R

=
X (c, c) is computed similarly using

Eq. 3 and the inequality probability R
>
X (c, c) is computed

by 1−R
=
X (c, c).

The priority probabilities are calculated for each co-
occurring pair of categories that has ever been observed on
some furniture in the dataset. The six matrices recording
these priority probabilities are denoted as R0.

4.3.1 Matrix completion

Due to the inadequate 3D scenes in the dataset, not all pairs
of categories co-occur on the same furniture object, so the
priority probabilities for the three types of spatial relations
of these pairs could not be directly calculated using Eq. 2
or Eq. 3. As a result, many entries of the matrices in R

0

remain uninitialized. To resolve this issue, the information
for a pair of categories ci and cj , which do not co-occur with
each other, is predicted through a third category ck, which
co-occurs with ci and cj separately on the same furniture.

Specifically, we wish to use known probabilities of
(ci, ck) and (ck, cj) to predict the unknown probabilities
of (ci, cj). We assume that the distribution of the property
value of each category is independent in our dataset. For
example, the distribution of the depth of a lamp is irrelevant
to that of a cup, as a lamp is usually placed at the back while

a cup is placed in the front. Therefore, we further assume
that the relation between the corresponding property values
of two small object categories, e.g., (ci, ck), is independent
from another pair of categories, e.g., (ck, cj). As derived
in Appendix A, under the above independence assump-
tions, by applying the sum rule of probability, R>

X (ci, cj),
R

>
X (cj , ci) and R

=
X (ci, cj) can be computed as follows,

which are denoted by R
>
i,j , R>

j,i and R
=
i,j , respectively:

R
>
i,j =

∑
ck∈Kci,cj

p(ck)( R
>
i,kR

=
k,j +R

>
i,kR

>
k,j +R

=
i,kR

>
k,j)

∑
ck∈Kci,cj

p(ck)( 1−R
>
j,k −R

>
k,i )

,

(4)

R
>
j,i =

∑
ck∈Kci,cj

p(ck)( R
>
j,kR

=
k,i +R

>
j,kR

>
k,i +R

=
j,kR

>
k,i)

∑
ck∈Kci,cj

p(ck)( 1−R
>
i,k −R

>
k,j )

,

(5)

R
=
i,j =

∑
ck∈Kci,cj

p(ck)R
=
i,kR

=
k,j

∑
ck∈Kci,cj

p(ck)(1−R
>
i,k −R

>
k,j)

, (6)

where R
>
i,j , R>

j,i and R
=
i,j are normalized by their sum to

meet Eq. 1. Kci,cj is the set of co-occurring categories with
both ci and cj . p(ck) is the prior occurrence probability of
a category ck, which is the frequency of ck appearing in
the dataset. The numerators of Eqs. 4, 5 and 6 calculates
the priority probabilities of ci and cj that can be inferred
when the property of ck, i.e., yX(ck), is in-between those of
ci and cj . Take Eq. 4 for an example, R>

i,kR
>
k,j calculates the

probability of yX(ci) > yX(ck) > yX(cj) while R
=
i,kR

>
k,j cal-

culates that of yX(ci) = yX(ck) > yX(cj). yX(ci) > yX(cj) can
be inferred from both relations. Summing the probabilities
from all possible ck gives the priority probability for ci and
cj .

We apply a greedy strategy to update the matrix set
R. Starting from R = R

0, in each iteration, for each
uninitialized entry indexed by ci and cj in each matrix
from R, we find the co-occurring category set Kci,cj , and
then update corresponding uninitialized entries by Eqs. 4,
5 and 6. The algorithm ends when no more co-occurring
categories can be found for ci and cj . In our experiments,
this process converges after 3 iterations. Table 1 shows the
completion rate after each iteration, which is the proportion
of the entries that have been calculated in matrices. It should
be noted that, not all kinds of matrices are necessarily
completely filled, such as R

=
D or R

>
M. It is because for

some pairs of categories, there is no category co-occurring
with them, thus they can never reach each other even after
exhaustive augmentation. In case we need to arrange small
objects from such pairs of categories, say, ci and cj , we set
by default R=

X (ci, cj) = R
>
X (ci, cj) = R

>
X (cj , ci) = 1/3 in

our experiments for completeness. These should be rare,
assuming the 3D scene dataset is reasonably extensive.
The resulting matrix set is denoted as R̃, which provides
the prior knowledge about spatial relations of small object
categories learned from the dataset.

4.4 Arrangement generation

The goal is to arrange a set of small objects on a furniture
object f according to the spatial relation matrices in R.
We follow a similar process of arranging small objects as
detailed in [5], in which a cost function was defined to
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Table 1
The completion rate of each matrix through each iteration. The

inference process converged after 3 iterations.

Compl. Rate Initial Iter. 1 Iter. 2 Iter. 3

R
>
D ,R=

D 9.67% 60.88% 94.19% 94.23%

R
>
M ,R=

M 9.34% 57.92% 91.92% 91.96%

R
>
H ,R=

H 13.11% 74.84% 99.81% 100.00%

measure how an arrangement on f conforms to the user-
specified absolute priorities of each small object category.

4.4.1 Cost function

Our cost function differs from theirs in two ways. First, in-
stead of absolute priorities, it is composed using the relative
priority probabilities from R, which are more flexible to
apply. Second, in addition to inequality relations, our cost
function considers equality relations as well. Specifically, for
a pair of small object categories ci and cj that are placed
on f , their cost w.r.t. the spatial relation X ∈ {D, M, H} is
defined as follows:

FX(ci, cj) =1(yi < yj)R
>
X (ci, cj)g(|yi − yj |)

+1(yi 6= yj)R
=
X (ci, cj)g(|yi − yj |),

(7)

where yi is short for yX(ci). 1(·) is an indicator function,
which returns 1 if the condition meets and 0 otherwise.
g(z) = 1/(1 + e−z) is the sigmoid function which maps the
value of z to 0 ∼ 1. The two terms on the right side of Eq. 7
represent the cost for inequality and equality of two cate-
gories ci and cj . The general idea is to penalize the degree
of misplacement of two categories according to their pri-
ority probabilities. For inequality case, as R

>
X (ci, cj) is the

probability of yX(ci) > yX(cj), thus a cost will be introduced
and weighted by R

>
X (ci, cj) only if ci and cj are placed in

the opposite way, which makes 1(yX(ci) < yX(cj)) return
1. The cost is defined by the difference of the properties of
ci and cj , which is mapped through a sigmoid function and
weighted by the priority probability R

>
X (ci, cj). For equality

case, the cost is only introduced when yX(ci) 6= yX(cj) if X
is H, or when |yX(ci)− yX(cj)| > ǫ if X is M or D.

Thus, the cost for spatial relations between small object
categories is defined as the sum of the costs from all pairs of
small object categories on f for all three spatial relations:

FRel(A) =
∑

ci,cj∈Cf ,i 6=j

FD(ci, cj) + FM(ci, cj) + FH(ci, cj),

(8)
where Cf is the set of categories on furniture f . FD, FM

and FH are specialized forms of Eq. 7. Then, the overall cost
function for an arrangement A is composed of two parts:

Farr(A) = FRel(A) + FHard(A), (9)

where FRel(A) is the cost for spatial relations and FHard is
the cost for hard constraints such as collision cost or out-of-
boundary cost, which are defined the same as in [5].

4.4.2 Optimization

Since Farr(A) is multi-modal, we apply a stochastic sam-
pling method to obtain the optimized arrangement, which
is similar to the method in [28], [29].

Specifically, Eq. 9 is first converted to a Boltzmann-like
density function:

q(A) = 1/J · e−β1Farr(A),

where β1 is a constant temperature parameter and is set to
5 empirically in our experiments. Afterwards, we use the
Metropolis-Hasting algorithm [30], [31] to explore the den-
sity function q(A) to avoid the computation of the partition
function J .

The algorithm starts with an initial arrangement as the
current arrangement A, and keeps obtaining the next ar-
rangement A∗ by applying a randomly picked proposal
move from the following on A:

• Swap the positions of two randomly selected small
objects.

• Perturb the position of a random small object by a
Gaussian term.

The acceptance probability of each proposal move from A
to A∗ is computed from q:

α(A → A∗) = min(1,
q(A∗)

q(A)
)

This process stops when the iteration number reaches the
budget. All the accepted arrangements are retained and
sorted by their cost. The lowest-cost one is returned as the
final arrangement.

5 ACTIVE SMALL OBJECT ARRANGEMENT

Based on the initial arrangement on furniture f generated
by R̃, users can provide their preferences about small object
arrangement by specifying the spatial relation for any two
categories in Cf . These preferences are then converted to
entries in the relation matrices in R (Sec. 5.1), and propa-
gated to other entries by updating R through optimizing an
energy function (Sec. 5.2). During the optimization, the three
groups of matrices in R, including (R>

D , R
=
D ), (R>

M, R
=
M)

and (R>
H , R

=
H), are updated separately according to user

specified preferences on different spatial relations. For each
spatial relation X, R=

X and R
>
X are updated in sequence to

meet the probability constraint defined in Eq. 1 (Sec. 5.3).

5.1 User preferences

Given an arrangement result on furniture f , users are
queried to specify the spatial relation preferences for any
two categories in Cf using our graphical user interface, as
shown in Fig. 3. Different from the typical active learning
methods, our query process is implied by the arrangement
result in each iteration. Specifically, two categories ci and
cj are first selected by clicking on the corresponding 3D
objects in the arrangement result, which will be highlighted
with red bounding boxes, as shown in the left display panel
in Fig. 3. Then, from the option panel on the right side,
one of the spatial relations X, i.e., depth, middleness and
height priority, is chosen. Afterwards, users can specify the
relation of the priority preference between the property of X
for ci and cj , including yX(ci) > yX(cj), yX(ci) = yX(cj) or
yX(ci) < yX(cj).

As R
>
X and R

=
X are used for generating small ob-

ject arrangements, user preferences are embedded through
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Figure 3. Graphical user interface of our framework.

changing certain entries in these two matrices for spatial
relation X. Specifically, the priority preference between two
categories specified by users is converted to priority proba-
bilities of 1 or 0 in R

>
X and R

=
X as detailed in Table 2. For

simplicity, we consider one of the matrices, either R
>
X or

R
=
X , and the same process applies to all the 6 matrices. Let

rp be the priority probability for a pair of categories p in the
matrix, and r be the vector containing all rp values. As there
are NC categories in total, r is of size NC

2. Then we denote
the set of indices in r that the user preferences are applied
on as UX. The size of UX is proportional to the number of
user preferences specified on spatial relation X.

Table 2
User preferences are embedded into R by fixing corresponding

probabilities to 1 or 0.

Values v in R R
>
X (ci, cj) R

>
X (cj , ci) R

=

X (ci, cj)

yX(ci) > yX(cj) 1.0 0.0 0.0

yX(ci) < yX(cj) 0.0 1.0 0.0

yX(ci) = yX(cj) 0.0 0.0 1.0

5.2 Propagation energy function

In order to effectively utilize user preferences, we develop
an active learning approach, where user preferences for a
few small object categories can be propagated to all the
categories in C. Typical active learning methods cannot be
directly applied to our problem for two reasons. First, with
a typical active learning method [6], users are asked to pro-
vide labels only for those instances considered ‘informative’,
which may not necessarily be of interest to users. In our
problem, users have clear intentions about their preferences
for the arrangement of small object categories, and thus it is
more meaningful to let users actively label their concerned
categories. Second, the unlabeled instances in typical active
learning methods do not have initial values for their labels,
so the propagated results are completely dependent on the
labels specified by users [7]. However, in our case, we
require the propagated results of small object categories to
additionally conform to the prior knowledge learned from
the dataset.

Our goal is to find the optimal priority probabilities,
encoded in vector r, for both R

>
X and R

=
X . It should meet the

following two conditions. First, similar pairs should have

similar priority probabilities, e.g., the priority probability
of pen and cup should be similar to that of pencil and
mug. Second, the updated probability of a pair of categories
should to some extent conform to the value in the previous
iteration in order to balance the impact of user preference
and prior knowledge. Considering these two aspects, we
construct the following energy function of r regarding R

>
X

or R=
X :

E(r) =
1

2

∑

p,q∈[1,NC
2]

wpq(rp − rq)
2 +

1

2
λ

∑

p∈[1,NC
2]

(rp − r′p)
2.

(10)
The two terms in Eq. 10 correspond to the above two condi-
tions, respectively. In the first term, to encourage two pairs
of categories with great interchangeability to have similar
priority probabilities in R

>
X or R

=
X , we use the degree

of interchangeability of them as the punishing coefficient
heuristically. The degree of interchangeability is denoted by
wpq and will be detailed in Sec. 6. The second term accounts
for the conformance of the propagated result to the prior
knowledge learned from the dataset, where r′p is the value
of rp in the previous iteration during the optimization. The

initial value of r′p is from R̃. As the two terms have very
different magnitudes, λ = 10 is used empirically to balance
the contribution from them. Both wpq and λ are fixed during
the optimization process of Eq. 10.

5.3 Optimization

For a specific r, let W be the similarity matrix which
contains wpq , λ be a diagonal matrix whose diagonal entries
are λ, D be a diagonal matrix whose diagonal entries are
the sum of the rows of W . W , λ and D are all of size
NC

2 × NC
2. Eq. 10 can be rewritten in the matrix form as

follows:

E(r) =
1

2
[rT (D −W )r + (r − r

′)Tλ(r − r
′)]

=
1

2
r
T (D −W + λ)r − r

′T
λr +

1

2
r
′T
λr

′.
(11)

In Eq 11, since the last term is a constant which is only
related to the value in the previous iteration, i.e., r′, it can be
ignored for optimization. Thus, the optimal r can be found
by solving the following quadratic programming problem:

r̂ =argmin(
1

2
r
T (D −W + λ)r − r

′T
λr),

subject to 0 ≤ rp ≤ 1, p = 1, . . . , NC
2

ru = vu, u ∈ UX

(12)

where u is an index from UX, and its corresponding value
is vu, as given in Table 2.

It should be noted that, after the optimization, the values
of entries indexed by two categories ci and cj in R

>
X and

R
=
X should still meet the probability condition defined in

Eq. 1. Thus, the optimization process is carried out first on
R

=
X , then with R

=
X (ci, cj) fixed, Eq. 1 is applied as extra

constraints in Eq. 12 to optimize r for R>
X .

The iteration starts from R = R̃, where an arrangement
is generated using the priority probabilities provided by
R with the method described in Sec. 4.4. Then, users can
interactively specify preferences on the arrangement result,
i.e., UX, which will be applied to update R. The updated R
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can then be used to update the current arrangement. This
process continues until no more preferences are provided.

6 INTERCHANGEABILITY METRIC

To reduce user effort, we propagate the user preference on
a pair of small object categories to other pairs of categories
according to their spatial interchangeability. Two categories
are considered to be interchangeable if they have similar
neighbors around them [4] and of similar sizes. While mea-
suring size similarity is trivial, measuring the similarity of
their neighborhoods or context is not. Inspired by the recent
success of word embedding for various applications [25],
[32], we aim to find an embedding space of small object
categories to capture their spatial context information.

To achieve this goal, we first construct a spatial context
corpus from the dataset by finding neighbors for each small
object within a radius (Sec 6.1). Then, a neural network is
trained from the corpus to obtain a spatial embedding of
categories, where each category is represented by a con-
tinuous vector and the spatial context similarity between
categories can be measured (Sec. 6.2). Afterwards, an in-
terchangeability metric is proposed to measure the degree
of interchangeability between categories by including both
the category size similarity and the spatial context similarity
provided by the spatial embedding (Sec. 6.3). Finally, the in-
terchangeability between two pairs of categories, i.e., wpq in
Eq. 10, is defined based on the proposed interchangeability
metric, which forms the propagation weights in the active
learning process (Sec. 6.4).

6.1 Spatial context corpus

For a small object d of category ci on a supporting surface
of a furniture object, the categories of all the small objects
on the same supporting surface that are within a spatial
context radius l to the small object d are considered to be
the neighboring categories of ci. We refer to such a spatial
context relationship as a context record, and denote it as
“fC(d) : N d”, where fC(d) is the category of small object d
and N d is the set of neighboring categories for small object
d. A context record is only valid if |N d| > 0.

For a radius l, denote by Nl the spatial context corpus,
which is the set of all context records discovered using
radius l in all 3D scenes in the dataset. Technically, for each
3D small object in our dataset, there should always be a
corresponding context record. However, when the radius l
is very small, there might be no neighboring small objects
around a small object d, which makes N d empty. Thus, the
size of the constructed corpus will increase as the context
radius l grows. Fig. 4 plots the size of Nl (y-axis) w.r.t. the
spatial context radius l (x-axis). We set l = 40 cm in our
experiments as it is a radius that not only enables a fair
amount of context records (1,454) but also is small enough
to account for a meaningful spatial context for a small object.

6.2 Spatial embedding model

Inspired by Word2Vec [33], we train a neural network
to embed small object categories into a spatial embed-
ding space, in which their similarity of spatial context is
measured through their embedding vectors. Our model
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tiplied by an embedding matrix M and averaged to form an embedding
vector m̂ in the projection layer. The vector is then mapped through a
matrix U and converted to a probability distribution ŝ over all categories
via a softmax function in the output layer.

shares the spirit with the Continuous Bag-Of-Words model
(CBOW) [33], which predicts a target word using its context
words within a window size from the position of the target
word. In our problem, the neighboring categories in N d for
a small object d are used to predict the category of d.

Specifically, there are three layers in our neural network,
including an input layer, a projection layer and an output
layer. Let Cl be the set of unique categories in the spatial
context corpus Nl, and V be the dimension of the target
embedding vector. Fig. 5 illustrates the structure of the
network, taking a context record as an example, where
mug is the target category fC(d). {cup, plate} is the set of
neighboring categories N d. For a context record regarding
a small object d, each neighboring category c ∈ N d is first
converted to a one-hot vector, denoted as xc ∈ R

|Cl|. The
one-hot vectors are fed to the input layer. Then, all the one-
hot vectors are multiplied by a spatial context embedding
matrix M

V×|Cl| = [m1, . . . ,m|Cl|], where mi ∈ R
V is

the embedding vector for the ith category in Cl. The mul-
tiplication operation extracts the corresponding embedding
vectors for each category c in N d. These extracted vectors
are then averaged to form an embedding vector m̂ in the
projection layer:

m̂ =
1

|N d|

∑

c∈Nd

Mxc. (13)
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Figure 6. 2D visualization of small object category vector representa-
tions in spatial embedding space.

Afterwards, m̂ is converted to a probability distribution
over all the categories in Cl, denoted as ŝ, by first being
mapped with a weighting matrix U ∈ R

|Cl|×V , and then
applied with a softmax function:

ŝ = softmax(Um̂). (14)

For a target category t ∈ Cl, its predicted probability is ŝt.
The loss for t is then defined as the negative logarithm of its
predicted probability, i.e., − log(ŝt). Thus, the overall loss
for our spatial context embedding model is:

L = −
∑

t∈Cl

log(ŝt), (15)

which is back-propagated to update both M and U .
The training process is accelerated by applying the hi-

erarchical softmax scheme [33]. The resulting M contains
the spatial context embedding vectors for each category in
Cl. We denote the cosine similarity between the embedding
vectors of two categories ci and cj in M as L(ci, cj).
The embedding matrix M for our experimental setting
l = 40 cm and V = 20 is projected in 2D using parametric
t-SNE [34], as shown in Fig. 6, where several sets of small
object categories with similar spatial context are highlighted.

6.3 Interchangeability metric

Two categories are regarded interchangeable if they are sim-
ilar in both spatial context and size. For two categories such
as eraser and pen, as they have similar spatial context, i.e.,
both are surrounded by notebook and ruler, they are likely
to be interchangeable. Moreover, for a category ci, among
the categories of most similar spatial context with ci, the
ones with similar sizes are considered more interchangeable
with ci. For example, both eraser and pencil are suggested to
have similar spatial context to pen by our spatial embedding

model. However, pencil is obviously more interchangeable
with pen than eraser as they have more similar sizes.

For a specific category, only a few categories are actually
interchangeable with it. Thus, to achieve more meaningful
interchangeability and to reduce the computation, the de-
gree of interchangeability is only measured for those pairs of
categories with similar spatial context obtained by L(ci, cj).
Denote by knnci the set of K nearest neighbor categories
of ci, i.e. knnci = {cj |rank(L(ci, cj)) ≤ K, ∀j}, where
rank(·) gives the order of the number. We define the degree
of interchangeability of two categories ci and cj as the
weighted sum of their spatial context similarity and their
size similarity:

S(ci, cj) = 1(cj ∈ knnci)[α1so(ci, cj)+α2e
−β2|d(ci)−d(cj)|],

(16)
where 1(cj ∈ knnci) ensures that interchangeability is
only measured between ci and the categories in knnci .
so(ci, cj) is the spatial context similarity which will be
detailed shortly. The last term in Eq. 16 accounts for the
size difference, where d(ci) is the average diagonal length
of the bounding boxes of all 3D objects in category ci, which
is used as the size of ci. β2 = 4 and K = 10 are used in our
experiments empirically. Specifically, β2 is chosen to ensure
that a small difference of d(ci) and d(cj) leads to a similarity
value very close to 1 while a large difference leads to a quite
small similarity value. α1 and α2 are both set to 0.5 so that
the two terms are equally weighted.

As the categories in knnci are very close to ci in the
spatial embedding space, their spatial context similarities
with ci are with quite similar values, e.g., all slightly larger
than 0.9, which are not well differentiated. Thus, the spatial
context similarity of two categories ci and cj ∈ knnci is
normalized to 0 ∼ 1 as follows:

so(ci, cj) = 1−
rank(cj)

K + 1
, (17)

where rank(cj) ∈ [1,K] is the order of cj in knnci .

6.4 Propagation weights

The interchangeability between two pairs of categories
(ci, cj) and (ck, cm) can then be measured as the product of
the degree of interchangeability of corresponding categories:

w((ci, cj), (ck, cm)) = S(ci, ck)S(cj , cm), (18)

which corresponds to wpq in Eq. 10. Since only interchange-
ability between each category and their top-K neighbor
categories are measured, the weighting matrix W is very
sparse, which makes the propagation of user preferences
more effective and efficient.

7 EVALUATION AND RESULTS

The offline prior knowledge learning is implemented in
Python and the online active arrangement is implemented
in C++. Our experiments were carried out on a laptop with
a 2.50 GHz Intel Core i5-7300HQ CPU and 8 GB RAM.

The experiments are carried out as follows: Sec. 7.1
shows that our framework can generate small object ar-
rangements that can at least meet all the user-specified
preferences. Afterwards, in Sec. 7.2, we demonstrate the
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effectiveness of our interchangeability metric between small
object categories, which can thus be reliably used to prop-
agate the user preferences to other categories, as shown in
Sec. 7.3. Lastly, we compare our framework with the most
related work [5] in a few different aspects in Sec. 7.4.

7.1 User preferences

In this experiment, we show that all the preferences speci-
fied by users can be effectively employed by our framework
to generate arrangements. In this experiment, we do not
focus on demonstrating propagation.

Fig. 7 demonstrates the arrangement results for a cabinet
and a desk in (a)-(e) and (f)-(i), respectively. Figs. 7 (a) and (f)
show the arrangements generated using the initial priority
probabilities learned from the dataset, i.e., R̃. Afterwards,
one user preference w.r.t. one type of spatial relations is
applied to update the previous arrangement. For example,
(b) is generated by applying the user preference ‘H: book
> photo frame ’, which states that “book should be placed
higher (>) than photo frame” on the cabinet in (a), where
the two small objects are highlighted with red bounding
boxes. As shown in (a) and (b), after applying this user
preference, book has been accordingly moved above photo
frame. Based on (b), another user preference ‘H: doll <
book’ is applied to generate (c). (d) and (e) are generated
based on (c) and (d) respectively by applying another two
user preferences for height priority. It should be noted that
when users provide a new preference, the previous ones
are also retained. As a result, the arrangement in (e) not
only meets the user preference specified on (d), which is
‘H: notebook > trophy’, but also meets the previous three
preferences. Similarly, (g), (h) and (i) are the arrangements
for a desk generated by applying another three different
user preferences in terms of middleness (M) and depth (D)
on (f), (g) and (h), respectively. (i) also meets all the three
user preferences.

7.2 Interchangeability metric

In this experiment, we evaluate the effectiveness of our
proposed interchangeability metric (Eq. 16) which consid-
ers both spatial context similarity and size similarity by
comparing it with the metric merely calculated by spatial
embedding (Eq. 17) or Word2Vec [35].

Specifically, for Word2Vec, we use a pre-trained word
embedding model [33] which is trained from a public corpus
containing 100 billion words using the negative sampling
method [35]. The model produces 300-dimensional vectors
for 3 million words and phrases. To allow comparison
between our spatial interchangeability metric and the one
calculated by applying Word2Vec, all the names of small
object categories in C are mapped to the closest words
found in the vocabulary list in the Word2Vec model.

Next, we carried out a user study to demonstrate the ef-
fectiveness of our interchangeability metric for small object
categories. As shown in Fig. 8, starting from an initial set of
small objects that have been arranged on a furniture object
(a), three sets of small objects are generated by replacing
each small object in the initial scene with a small object from
the most interchangeable category suggested by different
metrics (b-d). For Word2Vec metric (b), the cosine similarity

Table 3
Statistical Comparison of Interchangeability Metrics

p-value S.E.+Size vs Word2Vec S.E.+Size vs S.E.

Desk 2.01× 10−5 1.21× 10−6

Dining Table 2.79× 10−7 1.66× 10−3

TV Stand 5.63× 10−9 1.69× 10−3

S.E. is short for Spatial Embedding. p-values of t-test between the Spatial
Embedding+Size metric (Eq. 16) against Word2Vec and Spatial Embedding
metric (Eq. 17) are reported.

between the 300-dimensional vectors of categories is used
while for our “Spatial Embedding” metric (c) and “Spatial
Embedding+Size” metric (d), Eq. 17 and Eq. 16 are used
respectively to measure the degree of interchangeability.

In the user study, three sets of rendered images for
each scene including Desk, Dining Table and TV Stand,
were obtained by the three metrics and presented to users.
In each set, users were provided with the image for the
initial scene arranged with the initial set of small objects
(a) and were asked to rank the three images for the same
scene arranged with replaced sets of small objects (b-d)
based on two criteria, including the plausibility of the small
object replacement and the spatial similarity to the initial
scene. The three rendered images for the same scene were
displayed in a random order to avoid bias. To quantify the
results, for each image, its rankings of 1st, 2nd and 3rd from
a user are mapped to scores of 3, 2, 1 respectively. 60 users
participated in this user study. The average ranking scores
w.r.t. different scenes generated by the three metrics with
95% confidence intervals are shown in Fig. 9.

In Fig. 9, our interchangeability metric involving both
spatial context similarity and size similarity (Eq. 16) con-
sistently achieves the highest score in all the three scenes.
Specifically, given a category c, Word2Vec suggests a cat-
egory with most similar semantics to c, but it may not
necessarily be interchangeable when assembling a 3D scene.
For example, in the Dining Table scene shown in Fig. 8
(b), Word2Vec suggests coffee machine for coffee in the ini-
tial scene, which is semantically similar while spatially
improper. For the metric with merely spatial embedding
(Eq. 17), although it can suggest categories with similar
spatial context, it may generate results with less resemblance
of the spatial distribution as the initial scenes. For example,
in Fig. 8 (c), the result generated by “Spatial Embedding”
metric for the Desk scene is too empty compared to the
initial scene, while the results for Dining Table and TV
Stand contain occasional collisions between small objects,
e.g., flower and fruit for the Dining Table. By considering the
similarity of both spatial context and size, the replaced sets
of small objects in Fig. 8 (d) are not only plausibly inter-
changeable with the initial sets of categories but also with
similar sizes to those in initial scenes to avoid emptiness
or collision. As a result, the results in Fig. 8 (d) are most
preferred by the participants in our user study.

A two-sample t-test was carried out to compare the user
ranking scores of our interchangeability metric (Eq. 16) with
Word2Vec and the metric with merely spatial embedding
(Eq. 17). As shown in Table 3, our metric that considers both
spatial context similarity and size similarity is superior to
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(a) Initial arrangement (b) H:book>photoframe (c) H:doll<book (d) H:trophy=photoframe (e) H:notebook>trophy

(f) Initial arrangement (g) M:laptop < lamp (h) D:eyeglasses > laptop (i) M:mobilephone < eyeglasses

Figure 7. Effectiveness of employing user preferences. (a)-(e) are arrangement results for a cabinet, where (a) is the arrangement generated by
applying priority probabilities learned from the dataset, and (b)-(e) are the arrangements generated in sequence by applying an additional user
preference for height priority to the previous arrangements. The arrangement in (e) meets all the four user preferences specified. Similarly, (f)-(i)
are arrangement results for a desk, where (f) is the initial arrangement and (g)-(i) are those generated by applying user preferences. (i) meets all
the three user preferences. H, M and D denote preferences for height, middleness and depth priorities respectively, as detailed in Sec. 4.2.
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Figure 8. Comparison between different small object category interchangeability metrics.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Desk Dining Table TV Stand Overall

S
co

re

Word2Vec [35]        Spa�al Embedding (Eq. 17)       Spa�al Embedding+Size (Eq.16)

Figure 9. Average ranking scores for different scenes generated by
Word2Vec metric [35], Spatial Embedding metric (Eq. 17) and Spatial
Embedding+Size metric (Eq. 16) with 95% confidence intervals.

the other two metrics at p = 0.01 level in all cases.

7.3 User preference propagation

Through our active learning process, we can effectively
propagate user preferences on spatial relations of a few
categories to the entire set of categories as shown in Fig. 10.
Specifically, (a) is the initial arrangement generated by ap-
plying the initial spatial relation matrices learned from the
dataset, i.e., R̃, and the two matrices about height priority
probabilities, i.e., R=

H and R
>
H , are shown together with the

result. From the initial arrangement result, a user specified
a spatial relation preference as ‘Height: headphone (B) >
pen (C)’. The two categories were originally placed on the
same layer in (a). (b) shows the result of directly applying
user preferences without propagation, which only updated
the probabilities related to the user preference in the two
spatial relation matrices R=

H and R
>
H , including R

=
H(B, C) =

R
=
H(C, B) = 0, R

>
H (B, C) = 1 and R

>
H (C, B) = 0, as
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Figure 10. The effects of propagating user preferences. (a) is the arrangement result using priority probabilities learned from the dataset. Given
a user preference Height:headphone > pen, (b) and (c) are the results of applying user preference without and with propagation, respectively.
The two matrices R

=

H and R
>
H

used for generating arrangements are shown correspondingly with the results on the right. A to F denote the six
categories shown in the scene, including tablet, headphone, pen, pencil, eraser and usb.

highlighted in the red boxes on the two matrices in (b).
As can be seen in (b), pen is moved to the lower layer to
meet the user preference by using the updated matrices to
generate arrangement. In comparison, (c) shows the result
of propagating user preferences to other categories. In the
two matrices shown in (c), some other probabilities are also
updated due to the active learning process. For example,
tablet (A) and pencil (D) are considered to be spatially
interchangeable with headphone (B) and pen (C) respectively
by our method, thus, the user preference towards B and C
will strongly affect the probabilities relating A and D, as
highlighted in the green boxes in (c). As a result, in the
arrangement result in (c), not only headphone is placed higher
than pen, but also tablet is placed higher than pencil.

Fig. 11 demonstrates more examples of propagating user
preferences for three different scenes. (a), (e) and (i) in
the first column show the arrangement results generated
using the initial spatial relation matrices R̃. The rest three
columns are the arrangement results generated by applying
and propagating a new user preference over the previous
arrangement results. For example, (b) is the arrangement
result after applying the user preference ‘H:notebook > fruit’
on (a). Similar to Fig. 10, in each image, red bounding
boxes denote the small objects corresponding to the user
specified preference and green boxes denote those small
object categories that are strongly affected by the active
learning process. For example, after propagating the user
preference ‘D: notebook < usb’ on (b), the arrangement result
in (c) shows that both notebook and calendar are placed be-
hind usb and ipod respectively. It proves that the preference
of notebook and usb is successfully propagated to calendar
and ipod due to their high interchangeability. The same
observation also applies to the height priority. For example,
the result in (k) shows that after propagating preference
‘H: milk > headphone’, not only milk is placed higher than
headphone, but also teapot is placed higher than loudspeaker at
the same time.

7.4 Comparison with [5]

Our method differs from [5] in the following three aspects.
Prior knowledge. With the prior knowledge about spa-

tial relations for all small object categories learned from the

dataset, our method can generate plausible arrangements
even without any user intervention, as shown in Fig. 12 (b).
Comparatively, [5] can merely generate arrangement results
that only meet the hard constraints to avoid collision and
out-of-boundary cases, as shown in Fig. 12 (a). To achieve
arrangements of similar quality in Fig. 12 (b), [5] requires
users to exhaustively assign an absolute value for each small
object category to denote their priorities for arrangement,
which is time-consuming and laborious.

User interface. In the sense of interaction, although both
our method and [5] allow users to specify preferences, we
provide a friendly user interface to help users to employ
their preferences more conveniently, as shown in Fig. 3.
In [5] however, no such user interface was provided, which
made it very difficult for users to specify the absolute
priorities for each small object category.

Active learning. As our method utilizes active learning
to propagate the user preferences on a few small object
categories to the whole set of categories, satisfactory ar-
rangements can usually be generated within a few user
interactions, as shown in Fig. 11. However, in [5], users
need to modify the priority values for all related small
object categories. For example, in Fig. 10, our method can
generate the arrangement shown in (c) by only providing
one preference on (a), which is ‘H: headphone > pen’. The
other two categories, e.g. tablet and pencil are adapted ac-
cordingly as a result of propagation. In [5], from (a) to (c),
users need to explicitly modify the height priorities for all
the four categories, which involves much more human labor
than our method. To generate similar results in Fig. 11, [5]
requires users to modify the priority values for at least 4
categories for each user preference while our method only
needs one user interaction each time.

User study. A user study was conducted to compare
the effectiveness of our method and the method in [5]. 12
users were invited to arrange a same set of small objects
for each furniture shown in Fig. 11 using the two meth-
ods. Specifically, a user was first provided with an initial
arrangement on the furniture. Then, they were asked to
figure out an ideal arrangement in their mind and to adjust
the initial arrangement to meet their desired arrangement as
much as possible using both methods. With our method, the
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(a) Initial arrangement (b) H:notebook>fruit (c) D:notebook<usb (d) M:fruit>eyeglasses

(e) Initial arrangement (f) D:tank>lamp (g) D:stapler>lamp (h) M:car<stapler

(i) Initial arrangement (j) H:headphone>fax (k) H:milk>headphone (l) M:usb>milk

Figure 11. Effectiveness of propagating multiple user preferences. The first column shows the initial arrangements generated by using prior
knowledge learned from the dataset. The rest three columns are the arrangement results generated by applying and propagating the user
preferences shown under each image over the previous arrangement results. H, M and D denote preferences for height, middleness and depth
priorities respectively.

(a) (b)

Figure 12. The comparison between the initial arrangements generated
by [5] (a) and our method (b).

user can specify preferences and apply them to update the
arrangement. With the method in [5], the user can modify
the absolute priority values for each small object category to
update the arrangement. Both processes are iterated until
the users get their desired arrangement results. All the
arrangement results from the 12 users can be found in the
supplementary material.

The interaction time of specifying preferences or modi-
fying priorities is recorded separately for the two methods.
The average interaction time of all the users for the three
furniture objects with 95% confidence intervals is plotted in
Fig. 13. A two-sample t-test shows that the time spent using
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Figure 13. Average interaction time for different scenes generated by our
method and method in [5] with 95% confidence intervals.

our method is shorter than [5] at p = 0.01 level for the night
table (p = 0.009) and the coffee table (p = 0.006), and at
p = 0.05 level for the cabinet (p = 0.01).

8 DISCUSSION AND FUTURE WORK

Our framework provides users with an effective way to
arrange small objects according to their preferences in terms
of relative spatial relations of small object categories. As
our analysis is based on small object categories instead
of 3D object instances [4], our framework can potentially
achieve higher variety for small object arrangements than
their method by using different 3D small objects from the
same category. Moreover, our framework can be used to
assist enhancing the output scenes of the furniture layout
methods [28], [29], [36] by placing small objects to increase
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the realism. Our framework can be improved in a few ways
as follows.

Firstly, our framework targets the small object arrange-
ment problem which involves the relative relations between
small objects that can be converted to pairwise spatial
priority probabilities, such as height, middleness and depth
priorities as detailed in Sec. 4.2. Users can define their pref-
erence for small object arrangement interactively with our
framework by manipulating the spatial relations between
any two small objects. However, at the current stage, our
framework cannot support advanced spatial relations such
as “surrounded by” [37], which cannot be simply inter-
preted as multiple pairwise relations. It would be interesting
to include these relations by proposing another effective
data form, e.g. scene graph [12], to store the spatial relations
as well as to enable user manipulation.

Secondly, our framework assumes that all the furniture
objects for placing small objects have only one front di-
rection, such as the Desk and TV Stand shown in Fig. 8.
However, in real life, some furniture objects might have
multiple front directions such as the round Dining Table
in Fig. 8. In such cases, our current solution is to specify
one direction as the front direction so that all the front
directions of small objects will be aligned with this direction.
In the future, we would like to explore how to arrange small
objects according to the geometric shape of furniture objects.

Thirdly, in our framework, users need to specify pref-
erences between two small objects manually from the right
panel shown in Fig. 3, which is not the most natural way of
interaction. In the future, preferences between small objects
can be inferred through users’ direct manipulations on the
small objects. For example, swapping two small objects on
different layers of a cabinet can be interpreted as one of them
should be placed higher than the other one.

Fourthly, without taking into account appearance, geom-
etry or orientation properties of small objects leads to less
aesthetic results. It would be a promising and interesting
direction to explore how to incorporate these factors into the
small object arrangement algorithms similar to those in [38],
[39], [40].

Lastly, due to the insufficiency of data, we use the same
relation matrices for all the furniture categories. As a result,
currently our framework cannot automatically differenti-
ate the small object arrangements for different furniture
categories which have completely different small object
relations. However, our framework provides the users with
the flexibility to adjust the arrangement according to their
preferences through a few interactions. We are interested
in mining the relations of small objects separately for each
furniture category in the future.

9 CONCLUSIONS

We proposed an interactive active small object arrangement
framework that reduces the human labor required to ob-
tain customized small object arrangements in 3D indoor
scenes. Our framework employs both the prior knowledge
learned from a 3D indoor scene dataset and user spec-
ified preferences for small object arrangement. We first
learn the prior knowledge by inferring the spatial prior-
ity probabilities between any two small object categories

𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑘𝑘

< 𝑦𝑦𝑗𝑗
𝑦𝑦𝑖𝑖 < 𝑦𝑦𝑘𝑘 < 𝑦𝑦𝑗𝑗𝑦𝑦𝑘𝑘 < 𝑦𝑦𝑖𝑖 𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗 < 𝑦𝑦𝑘𝑘

Figure 14. The relation of yi, yj and yk.

with our probability mining method. Then, to reduce user
effort, we effectively propagate the user preferences on a
few small object categories to all other categories using
active learning. The propagation weights are determined
by the degree of interchangeability between small object
categories, which are calculated based on our spatial em-
bedding model learned from the neighborhood information.
Our experiments demonstrate the effectiveness of both the
prior knowledge and the active learning based preference
propagation for generating small object arrangements. We
expect our framework to help users to arrange small objects
with their preferences in a more efficient and effective way.
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APPENDIX A

DERIVATION OF EQUATIONS 4, 5 AND 6

For clarity and to be consistent with the symbols in
Sec. 4.3.1, we use yX(ci), yX(cj) and yX(ck) to denote three
random variables which represent the property value on any
one of the three spatial relations for three different small
object categories ci, cj and ck, respectively. For simplicity,
we use yi in short for yX(ci).

Assume ck co-occurs with both ci and cj , the probability
of the inequality relation between yi and yj can thus be cal-
culated through yk according to the sum rule of probability:

p(yi < yj) =
∑

yk

p(yi < yj , yk)

= p(yk < yi < yj) + p(yi = yk < yj) +

p(yi < yk < yj) + p(yi < yk = yj) +

p(yi < yj < yk),

(19)

where p(yi < yj) can be considered as the marginal proba-
bility. The summation in Eq. 19 is expanded by enumerating
all the situations that yk can have with yi < yj fixed, as
illustrated by Fig. 14.

There are more than one category that can co-occur with
ci and cj , the co-occurred category set is denoted by Kci,cj .
Each ck ∈ Kci,cj can be used to calculate p(yi < yj) with
Eq. 19. To utilize the whole set of categories that co-occur
with ci and cj , p(yi < yj) is estimated by the weighted
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results of using each corresponding yk for ck ∈ Kci,cj , as
shown in below:

p(yi < yj) =
1∑
p(ck)

∑

ck∈Kci,cj

p(ck)[ p(yk < yi < yj) +

p(yi = yk < yj) + p(yi < yk < yj) +

p(yi < yk = yj) + p(yi < yj < yk) ],
(20)

where
∑

p(ck) is short for
∑

ck∈Kci,cj
p(ck), which is used

to normalize p(yi < yj).
We assume that the relation between a pair of any two

variables is independent from a different pair, e.g., yk < yi
is independent from yi < yj . Therefore, each single term
in the summation of Eq. 20 can be derived by applying the
product rule of probability. For example, p(yk < yi < yj) can
be derived as follows:

p(yk < yi < yj) = p(yk < yi, yi < yj)

= p(yk < yi | yi < yj)p(yi < yj)

= p(yk < yi)p(yi < yj)

(21)

Expanding all items in Eq. 20, we can achieve:

p(yi < yj) =
1∑
p(ck)

∑

ck∈Kci,cj

p(ck)[ p(yk < yi)p(yi < yj) +

p(yi = yk)p(yk < yj) + p(yi < yk)p(yk < yj) +

p(yi < yk)p(yk = yj) + p(yi < yj)p(yj < yk) ].
(22)

In Eq. 22, p(yi < yj) is irrelevant to the choice of ck, by
moving it outside of the summation, we can further derive:

p(yi < yj) =

p(yi < yj)∑
p(ck)

∑

ck∈Kci,cj

p(ck)[ p(yk < yi) + p(yj < yk)]+

1∑
p(ck)

∑

ck∈Kci,cj

p(ck)[ p(yi = yk)p(yk < yj) +

p(yi < yk)p(yk < yj) + p(yi < yk)p(yk = yj) ].

(23)

Moving all terms with p(yi < yj) to the left side of the
equation then multiplying each side with

∑
p(ck), we can

obtain:

p(yi < yj)
∑

ck∈Kci,cj

p(ck)[ 1− p(yk < yi)− p(yj < yk) ]

=
∑

ck∈Kci,cj

p(ck)[ p(yi = yk)p(yk < yj) +

p(yi < yk)p(yk < yj) + p(yi < yk)p(yk = yj) ].
(24)

In our paper, we use symbol R>
X (cj , ci) to denote p(yi <

yj). For short, we use R>
j,i to denote R>

X (cj , ci) and omit the
subscript of the summation. Therefore, Eq. 5 can be derived
from Eq. 24 by first dividing the coefficient on the left side
of Eq. 24 then substituting the symbols:

R
>
j,i =

∑
p(ck)( R

>
j,kR

=
i,k +R

>
j,kR

>
k,i +R

=
j,kR

>
k,i)∑

p(ck)( 1−R
>
i,k −R

>
k,j )

.

Eq. 4 is a symmetric form of Eq. 5, which can be obtained
by swapping i and j in Eq. 5.

For the equality relations, p(yi = yj) can be derived
similarly as follows:

p(yi = yj) =
1∑
p(ck)

∑

ck∈Kci,cj

p(ck)[ p(yk < yi = yj) +

p(yi = yk = yj) + p(yi = yj < yk) ]

=
p(yi = yj)∑

p(ck)

∑
p(ck)[p(yk < yi) + p(yj < yk)]

+
1∑
p(ck)

∑

ck∈Kci,cj

p(ck)p(yi = yk)p(yk = yj)

(25)

Substituting p(yi = yj) with R
=
i,j , we can obtain Eq. 6:

R
=
i,j =

∑
p(ck)R

=
i,kR

=
k,j∑

p(ck)(1−R
>
i,k −R

>
k,j)

It should be noted that the derivation is not unique, as
there are different ways to write the probability of relations
containing equality relations. For example, p(yi < yk = yj)
can also be written in p(yi < yj = yk), which will lead to a
different formulation. However, these formulations should
be equivalent to each other and can all be used to estimate
p(yi < yj).
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