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ABSTRACT

Structured data formats are gaining momentum in electronic health record systems
and can be leveraged for decision support and research. Nevertheless, such struc-
tured data formats have not been explored for clinical coding, which is an essential
process requiring significant manual workload in health organizations. This article
explores the extent to which fully structured clinical data can support the assign-
ment of clinical codes to inpatient episodes, through the design and application
of a methodology that tackles high dimensionality issues, addresses the multi-label
nature of coding and optimizes model parameters. The methodology encompasses
transforming database entries to define a feature set and build a data matrix repre-
sentation, and testing combinations of filter feature selection methods with machine
learning models to predict code assignment. The methodology is tested with a real
hospital dataset, with results showing varying predictive power across codes but
demonstrating the potential of leveraging structuring data to reduce workload and
increase efficiency in clinical coding.
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1. Introduction

Clinical coding has been conceived with the primary purpose of reporting health
statistics in standardized formats, creating a basis for statistical analysis. Using mul-
tiple schemes, such as the International Classification of Diseases (ICD) (France,
2003), coded data has later been used in many countries as the basis for funding
providers through prospective payment systems, such as through diagnosis-related
groups (DRGs) (Mateus, 2008). Considering its strong financial implications, ICD
coding represents a key process for health organizations. In practice, ICD coding re-
quires manual review of data in clinical records after patient discharge, assigning a set
of diagnosis and procedure codes to each episode (Schraffenberger, 2010).

The coding process is typically carried out by certified professionals — who may be
physicians (as it happens in Portugal), scribes or other technical staff — making use
of dictations, manuals and code look-up tools. Due to its complexity, ICD coding is a
resource-intensive and error-prone process. With growing pressures for cost reduction
and with the increasing availability of health data in digital formats as a result of the
widespread implementation of electronic health record (EHR) systems (AHIMA, 2013;
Ford et al., 2006; Patel et al., 2013), there has been significant research devoted to



develop coding support tools which combined with additional clinical and demographic
attributes may be used to determine the patients’ DRG (Gartner et al., 2015).

EHR systems have changed the paradigm of data collection in health settings and
currently produce massive amounts of data (Davidson et al., 2015). These large data
volumes and their increasing availability for research (Mortenson et al., 2015) enable
retrospective analyses (Faber et al., 2016) and the construction of decision support sys-
tems (Capan et al., 2017; Nadler and Downing, 2010). As such, research has focused on
developing coding support methodologies using unstructured EHR data and applying
natural language processing (NLP) methods (Stanfill et al., 2010). NLP methods have
been used since free-text formats are not machine-readable and therefore not directly
usable for decision support (McDonald and Tierney, 1988). Nevertheless, NLP meth-
ods cannot be used in many contexts, due to limitations in their generalizability when
there is intrinsic variability of medical texts and due to a lack of NLP source tools
for non-English languages (Meystre et al., 2008). In face of these difficulties related to
the reuse of unstructured clinical data, EHR systems have evolved towards the use of
structured data formats (Hypponen et al., 2014; Kalra et al., 2013). These structured
formats entail potential benefits in data uniformity, easy of reporting and advanced de-
cision support (Bleeker et al., 2006). In practice, structured data entry is performed by
using controlled formats and terminologies (Fernando et al., 2012; Kalra et al., 2013),
through pick lists and catalogs, dropdown fields and checkboxes to record clinical data
— as opposed to narrative free-text typically used in clinical notes. The majority of
studies addressing clinical coding support have been based on NLP applications using
traditional free-text EHR data. Structured EHR data has been used in several stud-
ies focusing on patient phenotyping and subtyping (i.e. finding patients with certain
health characteristics or patterns (Shivade et al., 2013), and in predicting specific di-
agnoses in ICD formats. While these studies generally indicate that structured data
entail potential for predicting clinical codes, many of these studies focus on limited
subsets of diagnoses and/or analyze predictions at more aggregate levels (e.g. only at
general disease or 3-digit ICD level (Choi et al., 2016)). In this article, we sought to
develop and test a methodology that would address a wide range of clinical conditions
and codes, and to use detailed EHR data, as aligned with the type of information used
by coding professionals to assign clinical codes to patient episodes.

This article develops a methodology to assess the extent to which coding can be
supported by fully structured EHR data. This methodology is designed to handle
dimensionality and multi-label issues, and addresses both data pre-processing tasks
(including construction of feature sets), as well as the data mining stage using ma-
chine learning models. The applicability of the methodology is illustrated with real
EHR data from a public hospital in Portugal. This article contributes to the litera-
ture by proposing (and applying to a real case study) a comprehensive coding support
methodology using exclusively structured EHR data, as opposed to previous stud-
ies which invariably used free-text data. This article sheds light onto the extent to
which structured data can assist coding, as a means to reduce manual workload and
improve the usage of health care resources. Additionally, it provides useful informa-
tion for researchers and software developers working in coding support technology on
how to handle EHR data to build prediction models. It further raises issues for EHR
system designers, implementers and users by identifying potential factors influencing
performance of code prediction models.

This article is structured as follows: Section 2 reviews studies proposing method-
ologies for coding support. Section 3 describes the proposed methodology, and section
4 presents key results from its application in a case study using a real-world dataset.



Section 5 discusses key findings, with section 6 presenting main conclusions and lines
for future research.

2. Review of Studies

Coding support studies are generally based on the active interpretation of clinical
record data, proposing a set of codes to be validated by coding professionals (AHIMA,
2013). Extremely varied approaches and contexts of application are found in the liter-
ature (Stanfill et al., 2010). Previous studies focusing specifically in the clinical coding
process have been largely based on free-text since this format is typically preferred by
health professionals in recording clinical information (Stanfill et al., 2010). Amongst
these, one study demonstrated the value of incorporating structured EHR data to im-
prove code prediction (Scheurwegs et al., 2015), indicating the potential value of these
formats. Moreover, multiple research studies have leveraged structured EHR data to
predict certain patient phenotypes and other characteristics expressed in terms of clin-
ical codes. While not explicitly aiming to support clinical coding, these studies provide
insight into the potential of using structured formats for diagnosis prediction.

The utilized coding schemes included several ICD versions and different levels of gran-
ularity. Sometimes the 3-digit category (Choi et al., 2016) or the ICD chapter level
(Che et al., 2018) are used. Other studies exist that used SNOMED-CT (Cornet and
de Keizer, 2008; Lussier et al., 2001), UMLS (Friedman et al., 2004), ICF (Kukafka
et al., 2006) and procedure classification (ICD-10-PCS) (Subotin and Davis, 2014).
The corpora of clinical records used in previous studies ranged from admission notes
(Gundersen et al., 1996) to radiology or pathology reports (Aronson et al., 2007; Cram-
mer et al., 2007; Farkas and Szarvas, 2008; Goldstein et al., 2007; Matykiewicz et al.,
2006; Oleynik et al., 2017; Rizzo et al., 2015; Suominen et al., 2008; Zhang, 2008), dis-
charge summaries (Delamarre et al., 1995; Dinwoodie and Howell, 1973; Franz et al.,
2000; Friedman et al., 2004; Kevers and Medori, 2010; Kukafka et al., 2006; Larkey
and Croft, 1995; Li et al., 2011; Lussier et al., 2000,0; Medori and Fairon, 2010), death
certificates (Koopman et al., 2015,1) and entire medical records (Kavuluru et al., 2015;
Lita et al., 2008; Morris et al., 2000; Pakhomov et al., 2006; Ruch et al., 2008), with
variable structure and level of curation. Moreover, the majority of studies has been
based on English texts, with the exception of particular studies in French (Kevers and
Medori, 2010; Medori and Fairon, 2010; Pereira et al., 2006; Ruch et al., 2008), Spanish
(Pérez et al., 2015), Italian (Chiaravalloti et al., 2014; Rizzo et al., 2015) or German
(Franz et al., 2000), while information extraction from Portuguese medical texts is
still emmerging (Ferreira, 2011; Rijo et al., 2014). The scope of clinical conditions
comprised in each study also varied greatly, ranging from limited sets of respiratory
(Farkas and Szarvas, 2008), cerebrovascular (Li et al., 2011) or coronarography exams
(Delamarre et al., 1995) to heterogeneous episodes (Kevers and Medori, 2010). Such
variable scope has also been reflected on the range of codes considered — one (principal
diagnosis) (Avillach et al., 2008), five (Lita et al., 2008), six (Li et al., 2011), twenty
(Yan et al., 2010) or fifty (Xu et al., 2007) codes, with only one study considering
a significantly larger number of codes (more than 1,400 codes) (Medori and Fairon,
2010).

Regarding methodological approaches to assist clinical coding, previous studies typ-
ically used NLP in data preparation and transformation stages to extract concepts
and achieve a feature-vector representation (most often using a bag-of-words model),
then applying machine learning models to predict code assignment. These models are



frequently coupled with feature selection methods (such as chi-square) to reduce di-
mensionality by retaining only the most relevant features. Machine learning models
used across the literature included support vector machines (SVM) (Aronson et al.,
2007; Lita et al., 2008; Perotte et al., 2013; Xu et al., 2007; Yan et al., 2010; Zhang,
2008), Deep Learning (Shi et al., 2017; Xu et al., 2018; Yao et al., 2018), naive Bayes
(Medori and Fairon, 2010; Pakhomov et al., 2006), decision trees (Farkas and Szarvas,
2008), (ridge) regression (Lita et al., 2008; Xu et al., 2007) and k-nearest neighbors
(Aronson et al., 2007; Larkey and Croft, 1995; Ruch et al., 2008), exhibiting highly
variable, yet encouraging, results. Recent studies in related areas of research have
started exploring deep learning methods (Oleynik et al., 2017). Frequently used NLP
tools include MedLEE (Friedman et al., 1994), MetaMap (Aronson and Lang, 2010),
NegEx (Chapman et al., 2001) and UMLS dictionaries (Lindberg et al., 1993), which
have variable availability across languages. In studies leveraging structured EHR data,
authors applied - in addition to the methods mentioned above - temporal modeling and
deep learning methods such as recurrent and convolutional neural networks based on
long short-term memory (LSTM) to predict diagnoses or generically clinical conditions
(Choi et al., 2016; Lipton et al., 2016).

In spite of the myriad of coding support studies found in the literature, the use
of structured EHR data formats for clinical coding support has not been explored
in a systematic way, as previous studies often focused on smaller subsets of clini-
cal conditions or predicted ICD codes at a more aggregate level, e.g. 3-code level.
Notwithstanding, these studies show promise on the value of using structured data,
which can be advantageous in contexts where NLP-based methods are difficult to ap-
ply due to language and text quality constraints. Considering the growing interest
and availability of structured data formats in EHR systems, the key objective of this
article is to investigate the extent to which structured data can be used for coding
support. In addition, the use of structured formats in a data mining approach requires
a series of data preparation and transformation steps, in line with general knowledge
discovery frameworks (Corne et al. 2012). However, literature does not provide specific
guidelines on the preparation and transformation of structured EHR data for coding
support. As such, we incorporate these data preparation steps into our methodology
as described in the next section. The proposed methodology is particularly relevant in
contexts where the use of NLP tools is limited — notably when NLP tools are scarce
for many languages other than English (this is the case for Portuguese) — and when
there is increasing availability of structured EHR data. Moreover, the implementation
of structured formats requires system users to adapt to the used of predefined data
formats as opposed to using the often preferred free-text. Developing research that di-
rectly leverages and realizes benefits from these structured formats can also motivate
professionals to increase adoption and improve data collection patterns, which in turn
can bring benefits care quality and safety, improve clinical documentation and further
enable secondary uses of EHR data.

3. Methods

In order to explore whether structured EHR data can assist clinical coding, the pro-
posed methodology follows a general knowledge discovery framework (Corne et al.
2012) which entails the two building blocks represented in Fig. 1. The first block
represents the EHR data transformation steps through which structured data are ex-
tracted, integrated and transformed into a data matrix, providing a format suitable



for predictive modeling (Bishop, 2006). These steps construct a set of features (inde-
pendent variables) and populate the data matrix with corresponding values. This first
block is explained in detail in section 3.2. The second block — described in section 3.3 —
refers to the actual data mining framework, which entails filter feature selection meth-
ods to reduce dimensionality, machine learning models to predict code assignment,
and the use of cross-validation to evaluate these models.
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Figure 1. Methodology framework: the upper blocks correspond to EHR data transformation steps, and
lower blocks represent data mining stages.

3.1. FHR data structure

Before delving into the stages of data transformation and data mining, we provide
a brief overview of the specificities of the EHR system that inspired the develop-
ment of this research. This research was conducted on the EHR system Soarian®
(Haux et al., 2003), originally developed by SIEMENS and currently owned by Cerner
Inc., with numerous implementations in healthcare providers around the world. De-
spite its own specificities, Soarian®) shares the main data elements and formats with
most EHR systems from other vendors and also with locally-developed systems. As
such, the proposed methodology is generalizable and can be applied to other systems
in which essential clinical data is represented in structured formats. Soarian®) is a
patient-centered system and stores the majority of data in structured formats, ensur-
ing coherence and integration of the different data elements. Table 1 describes the key
data elements in which data are conceptually structured, along with the catalogs used
for pick list-based entries and the type of features derived from each of these elements.
Catalogs consist in system-embedded lists for a specific domain (e.g. diagnoses, medi-
cation) from which users select one or multiple relevant entries, either through a search
function or scrolling the catalogs. Further details on feature construction (including
harmonization of allergy data) are provided in section 3.2.

Besides demographic data, EHR data elements can be grouped into two sets. The
first group contains diagnoses, personal history, allergies and assessments, and is pri-
marily meant to characterize the patient’s health status. The second group comprises
information on medical services (prescriptions and medication) provided during each
episode. In our context, an inpatient episode represents a separate contact with the
hospital, i.e. a single interval between admission and discharge.



Table 1. Main EHR data elements comprised in the EHR system Soarian®).

Data Description Catalog Derived
ele- feature
ment type
Demo- Age and sex information - Numerical
graphics (age) and
binary (sex)
Diagnoses Diagnoses (including principal, co- 3 catalog options: Binary
morbidities and complications) as- ICD-9-CM, ICD-
signed by clinicians, selected from 10 and a local
system-embedded catalogs “working  diag-
noses” catalog
with preferred
terms
Personal Personal history conditions selected Local system cat- Binary
history from a small set configured in the alog
EHR system; these conditions are
selected through checkboxes and be-
come assigned to a given patient, be-
ing transversal to all episodes from
that patient
Allergies  Allergy conditions selected from a Local system cat- Binary (after
system-embedded catalog or written alog + free-text free-text har-
by clinicians as narrative designations monization)
Pre- Medical and nursing procedures, di- Local system cat- Binary
scriptions agnostic and imaging exams, labo- alog
ratory tests
Medica-  Medications prescribed to the pa- Local system cat- Binary
tions tient alog
Assess- Clinical forms parametrized for dif- — Multiple
ments ferent scopes, such as evaluation of (numerical,
respiration, feeding, fluid balance ordinal and
and elimination, scoring scales, clin- categorical);
ical and nursing notes, admission Narrative
and discharge forms; composed of fields are not
structured (checkboxes, dropdowns, considered

buttons and pick-lists) and free-text
fields for additional information




Diagnoses are selected from system-embedded catalogs and provide a visible repre-
sentation of conditions characterizing the patient’s health status, enabling statistical
analyses. Nonetheless, diagnosis data produced across EHR systems can vary in struc-
ture and content due to the use of either standard vocabularies or local system-specific
catalogs. Personal history consists of checkboxes indicating chronic or persistent clin-
ical conditions. After these conditions are assigned to a patient in a given episode,
they will remain associated with that patient and will be replicated in all subsequent
episodes of the same patient. Allergies are selected similarly to diagnoses, but also
allow manual input as short free-text. Lastly, EHR assessments consist of structured
forms (with pick-lists, checkboxes, dropdown lists and buttons) to record information
for a particular scope, such as for capturing respiration function, feeding, fluid balance
and elimination, and for scoring scales (e.g. Glasgow), as well as of clinical, nursing,
admission and discharge notes. Content-wise, these assessments may be considered
equivalent to classic clinical narrative notes and are composed of labeled fields to
record data. In certain contexts, the system also allows free-text fields to accommo-
date additional information needs. Free-text was not considered in our research (with
the exception of short allergy designations, as described in section 3.2) due to the as-
sumption that in the EHR system most relevant information is recorded and available
in structured formats. The EHR system is, by design, highly focused on structured
data entry, in line with industry trends (Kalra et al., 2013).

In terms of care services provided, prescriptions include diagnostic exams such as
imaging scans, physiological measurements and laboratory tests, and medical and nurs-
ing procedures. Medication refers specifically to drug therapies prescribed to patients.
Similarly to diagnoses, prescription and medication entries are made through pick-lists
and specifically using locally-defined catalogs. Some EHR systems may use standard
catalogs for these components (e.g. LOINC (Huff et al., 1998) for laboratory, RxNorm
(Liu et al., 2005) for medication).

Making use of these structured data elements, the first methodological stage ad-
dresses the construction of feature sets to be used for developing prediction models,
i.e. defining the attributes based on which the EHR dataset is described (Meisel and
Mattfeld, 2010). In this context, features are regarded as attributes that characterize
each instance (i.e., each episode) in the dataset, such as the allergies, personal his-
tory information, clinical observations or prescribed medications. The values of each
of these features then allow models to make predictions for a given dependent vari-
able (code assignment in this context). The next section describes the approach to
construct the feature set based on the structured EHR data.

3.1.1. Modeling FHR data

The definition of the study objective is the primary step in any data mining framework
and guides the subsequent stages of data source identification, data extraction and pre-
processing (Olafsson et al., 2008). As such, the data preparation and transformation
steps are tailored to support clinical coding. Since the coding process entails a broad
review of the medical record, the proposed methodology makes use of all data elements
presented in Table 1 (clinician-assigned diagnoses are analyzed but are often modified
or discarded as the relevance criteria differ between clinicians and coding professionals).
This EHR data transformation stage includes both the definition of features and the
appropriate pre-processing (transformation) tasks in order to map raw EHR data into
the target feature set (Meisel and Mattfeld, 2010). Thereby, we achieved a data matrix
format as a basis for subsequent data mining stages. It is important to note that the



process of feature set construction requires a combination of domain knowledge (to
represent clinical concepts in a meaningful way) and best practices from data analysis,
given that literature does not provide guidance on how to effectively use structured
EHR data for coding support.

The straightforward approach to construct a feature set from structured EHR
data involves exhaustively defining binary features for all catalog items and cate-
gorical /numerical features for all assessment fields. However, this approach is not ad-
equate due to frequent redundancy within EHR data. Redundancy occurs when the
same clinical information is recorded in different contexts, for example when catheter
information is recorded in different assessments, or when a diagnosis of hyperlipidemia
is recorded in two episodes using different catalogs or different levels of granularity. To
mitigate undesired data dispersion and bias, redundant features are collapsed under
the same feature.

In addition, assessment fields produce different feature types (nominal, ordinal or
numerical) which need to be properly defined and handled according to the underly-
ing clinical concept. These aspects must be taken into account upon constructing a
feature set, mapping EHR fields to features and populating a data matrix from raw
EHR data. In this article, we address the construction of features from each EHR
data element in two groups: catalog-based data elements (diagnoses, prescriptions,
medication, personal history and allergies) and assessment fields.

Firstly, for catalog-based data elements, a binary feature was defined for each unique
catalog item, assigning value 1 if an entry was present in the episode, or assuming value
0 if the catalog entry was absent. Subsequently, data were manipulated to mitigate
redundancy. Due to the simultaneous use of multiple diagnosis catalogs (see Table 1),
equivalence mappings (cross-walks) between catalogs were developed and validated
by experts (in our case, ICD-10 and “working diagnoses” catalogs were mapped to
the ICD-9-CM catalog, a similar procedure that has been used by (Gartner et al.,
2015) and (Gartner, 2015)). Personal history features were defined directly from sys-
tem labels provided that these did not exhibit redundancy. For allergy data, free-text
labels were harmonized by modifying terms to ensure that all allergies are expressed
in terms of allergen (e.g. cat, egg albumin) or active ingredient in the case of drug
allergy. For prescriptions, catalog entries were simplified by taking only the main des-
ignation of each diagnostic exam (e.g. removing information on number/axes of X-ray
shots), laboratory test or medical/nursing procedure. Lastly, medication entries were
simplified by taking only information on active ingredient (removing dosage and ad-
ministration mode) and decomposing entries with mixtures of active ingredients (e.g.
when a solution of potassium and sodium chloride was prescribed, we decomposed
this prescription into two entries — one of sodium chloride and a second for potassium
chloride).

All the data elements described above — diagnoses, personal history, allergies, pre-
scriptions and medication — were entered through catalogs or pick-lists. The fea-
ture construction process generated binary features whose value was based on pres-
ence/absence of concepts in each episode and, therefore, did not produce any missing
data. This approach is analogous to the presence or absence of concepts/terms in
NLP-based methodologies.

For assessment-based data, we performed an exhaustive listing of all field labels
from the EHR system, listed the clinical concepts conveyed by these fields and mapped
redundant fields to the same concept. While numerical concepts were directly trans-
formed into features (e.g. blood pressure) and assumed the corresponding field value,
binary concepts were inferred both from field values (e.g. presence of catheter: yes/no)



and from associated fields (e.g. entry with date of catheter insertion indicated the
presence of a catheter). Additional specificities of defining features from assessments
included:

(1) Creation of dummy variables for all categorical features;
(2) Handling multiple values of the same feature (due to multiple measurements of
the same parameter during each episode), by:
a) Defining value 1 (of dummy variables) for all categories of the same feature
occurring in each episode;
b) Splitting numerical features into two features for maximum and minimum
values occurring in each episode;
(3) Handling data missingness according to the feature type and corresponding data
entry mechanism:

e For categorical checkbox-based features, absence of record was assumed to
represent feature value 0 for each possible feature categories;

e For categorical dropdown/button-based, absence of records was assumed to
represent missing data, since these data entry mechanisms imply mandatory
data entry by users;

e For numerical features, absence of records was assumed to also represent
missing data.

All the methodological stages and decisions outlined above aimed to minimize in-
formation loss when collapsing EHR, data into a data matrix format. Fig. 2 depicts
the process of mapping raw EHR database entries to a data matrix. We streamlined
this process by creating a mechanism that automatically created and populated a
data matrix from raw EHR data. For catalog-based data, this was performed by list-
ing all unique catalog entries and removing redundancy. For assessment-based data,
there was the creation of a feature specification (master) file which defined features,
mapped EHR fields (i.e., their system labels) to be inspected in order to determine
feature values, and defined the corresponding type, admissible values and missingness
pattern. The construction of a data matrix was performed by a custom-made algo-
rithm that read the list of unique catalog entries and the master file, analyzed raw
EHR data by looking up mapped EHR fields and populated values in the data matrix.
In such configuration, the process of building a data matrix can be automated for new
datasets with the same EHR structure. If there are changes in catalog-based items
or in allergies, these would only require analysis of redundancy and free-text harmo-
nization after listing unique entries. On the other hand, changes in assessment-derived
features (e.g., when field labels are changed in the EHR system) would only require
these to be added/modified/deleted in the feature specification (master) file, followed
by execution of the custom-made algorithm to create a new data matrix.
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Figure 2. EHR data transformation and data matrix construction processes to create and populate a data
matrix from raw EHR database entries.

3.2. Data mining approach for clinical coding

3.2.1. Modeling framework

After performing the data preprocessing steps, the data mining approach was applied
to extract patterns from data using inductive learning algorithms (Olafsson et al.,
2008). In our context, data mining aimed to model relationships between clinical
(EHR) data from each episode and the set of clinical codes assigned to that episode.
These relationships may then guide clinical code assignment for future episodes, both
for the same and future patients, as the coding patterns are learned. As such, each
data point in the dataset contains episode EHR data and the corresponding codes.

In this study, we adopted a supervised learning approach for coding support. Su-
pervised learning can be used to model patterns between features (the independent
variables) and labels (dependent variables) in a training set, making use of knowledge
from all previous episodes of the overall hospital population. Model predictive power
was then evaluated on a test set (Bishop, 2006; Corne et al., 2012). Unsupervised learn-
ing, which represents a different machine learning paradigm, would have been unable
to perform such pattern modeling. Within supervised learning, classification mod-
els were suitable for this study given that we aimed to predict categorical dependent
variables (the assignment of each code) and not a numerical variable (in which case re-
gression models would be appropriate). Using the constructed data matrix of inpatient
episodes, feature selection was required to reduce dimensionality. Subsequently, it was
necessary to choose which machine learning models to apply and optimize correspond-
ing model parameters. Additionally, code prediction required handling the existence
of multiple labels for each instance (episode).

Multiple supervised classification models are currently established in the literature
(Corne et al., 2012), highly differing in terms of type of features handled, mechanism
for modeling feature-label relationships, model training algorithms and interpretabil-
ity of results (Bishop, 2006). In order to choose which models to use for coding sup-
port, one should consider the need to accommodate both numerical and categorical
features, be scalable for datasets with high number of features and instances, and
preferentially yield interpretable outputs. Since there is no axiomatic guideline as to
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which model should be applied in each problem, we tested and compared five machine
learning methods to predict the assignment of ICD codes: decision trees, naive Bayes
classifiers, logistic regression models, SVM and Deep Neural Networks (DNN). These
approaches have been widely used, particularly in other ICD coding support studies,
and show potential applicability in our context. We adopted a data-driven approach
whereby models were selected based on predictive power observed throughout a set of
experiments with a case study dataset. We excluded other methods such as k-nearest
neighbors as these are typically computationally-intensive with a high number of bi-
nary features (resulting in artificial distance measures), and neural networks due to the
complex process of topology and parameter optimization that would likely compromise
applicability and scalability.

Since each episode may be assigned one or more codes, clinical coding represents a
multi-label classification problem. To tackle this matter, we used a binary relevance
method whereby the problem was decomposed into single-label problems (Tsoumakas
et al., 2009), creating a binary classifier for each code which predicted if a code should
be assigned (or not) to each episode.

Moreover, structured EHR data produces a high number of features (i.e., high di-
mensionality) which are computationally-intensive and prone to overfitting issues. To
reduce dimensionality, feature selection methods were applied prior to developing pre-
diction models. We detail below the feature selection methods and supervised learning
models tested in this study.

3.2.2. Feature selection

Feature selection methods represent mechanisms to determine a subset of relevant fea-
tures based on a specific metric (Guyon and Elisseeff 2003). In this article, we adopted
filter methods, which analyze dataset characteristics independently from classifiers
and are more scalable (Saeys et al., 2007). Within the family of filter methods (Lazar
et al., 2012), we tested several feature selection methods based on different metrics.
To select which methods to test, we performed a literature review using combina-
tions of “feature selection”, “electronic health record” and “filter” search terms. We
then selected seven methods that are scalable and able to handle the required feature
types: fast correlation-based filter (FCBF) (Yu and Liu, 2004), information gain (IG)
and chi-square (Yang and Pedersen, 1997), Relief (Kira and Rendell, 1992), symmet-
rical uncertainty (SU) (Press et al., 1992), correlation-based feature selection (CFS)
(Hall and Holmes, 2003) and minimal-redundancy maximal-relevance (nRMR) (Peng
et al., 2005). Some of these methods required setting user-defined parameters upon
implementation, see section 4.2.

3.2.8. Overview of selected classification models

The models selected to predict code assignment — decision trees, naive Bayes classifiers,
logistic regression models, SVM and Deep Neural Network models — highly differ in
the approach to model patterns in data, using measures based on entropy, likelihood or
distances. Similarly to feature selection methods, each prediction model entails specific
parameters which are also addressed in section 4.2.

3.2.3.1. Decision Trees. Decision trees are suitable for datasets with categori-
cal features and have the key advantage of producing interpretable results (Dreiseitl
and Ohno-Machado, 2002). These models recursively partition the dataset based on
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splitting criteria and are represented in a tree structure (Mitchell et al., 1997). Each
instance is classified by evaluating feature values in the specified order and assigning
the label of the resulting leaf node. Model building was performed by determining the
splitting criterion at each node using the Gini index (Rokach and Maimon, 2005). To
mitigate overfitting, two techniques were employed: pre-pruning to avoid excessive tree
growth (by imposing a minimum number of instances in leaf nodes), and post-pruning
by discarding branches of the final model that resulted in improved performance. In
this study, we used the CART (classification and regression trees) variant of decision
trees (Breiman, 2017).

Classification models can also be built by estimating a posteriori probabilities
P(Ck|z) of an instance belonging to class Ck of k possible classes given its feature
values x (Mitchell et al., 1997). These probabilities may be estimated using either
generative or discriminative approaches. The naive Bayes classifier is a generative
method wherein priors P(C}) and likelihood values P(z|Cy) are firstly estimated in
order to compute P(Cy|z) for each class using Bayes rule:

P(Cy) - P(z|Cy)

P(Cylz) = 00) (1)

3.2.3.2. Naive Bayes. In the naive Bayes model, prior probabilities may be ob-
tained empirically from the training set. While the class-conditional probability es-
timation is simplified with the assumption of conditional independence, models may
still perform well in contexts where this assumption does not hold (Hand and Yu,
2001). In fact, class-conditional joint probabilities can be modeled as the product of
the class-conditional probabilities for each feature x;. In practical terms, the classifica-
tion decision involved assigning an instance to the positive class if the output P(Cj|x)
was higher than a user-defined threshold, whose manipulation helped compensating
for class imbalance (i.e., much lower number of instances of the negative class).

3.2.3.83. Logistic Regression. Conversely, logistic regression represents a discrim-
inative approach which models a posteriori probabilities directly from training data
to build binary classifiers. The positive class probability (k = 1) was modeled for a
given instance = (with N features) using a logistic link function, as represented in eq.
(2). Training logistic regression models was performed by estimating the parameters
w0 and wj (logistic regression coefficients) which best fitted the training dataset using
maximum likelihood estimation (Hosmer and Lemeshow 2000). Fitted models were
used to predict class assignment for new instances similarly to the mechanism of naive
Bayes, assigning the positive class if the model output was higher than a specified
threshold.

1

P(Cr=1z) = (2)

*(w0+§: w;-T;)
1+e J=1

3.2.3.4. Support Vector Machines. The fourth machine learning model, SVM,
defines a hyperplane that separates data points of different classes by maximizing the
margin of the nearest training instances of different classes. This provides a decision
boundary to classify new instances (Cortes and Vapnik, 1995). Since training sets may
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not be linearly separable, the feature space can be mapped to another space with
different dimension, by applying a kernel function ¢(z). We performed preliminary
analyses to compare different kernels and observed that linear kernels yielded con-
sistently better results. In model training, SVM classifiers (represented as vectors w)
were obtained by determining the solution to a quadratic optimization problem for
each instance i in a dataset with N instances (Olafsson et al., 2008), as formulated
in eq. (3) and subject to the constraints in eq. (4). Parameters x, b and C' represent,
respectively, the incorrectly classified instances, the bias and the penalty (cost) applied
to these misclassifications (reflected in the number of misclassified instances). y; repre-
sents the classifier function (or class assigned) for each instance i. Upon training SVM
models with linear kernels, it was necessary to manipulate parameter C', as described
in section 4.2.

1 N
. T A
glé% S ‘w+CiZI§, (3)
yi(wl o(w;) +b) > 1 ¢ (4)

3.2.3.5. Deep Learning. The fifth method, Deep Neural Networks (DNN), has
achieved great success in many application domains including computer vision, natu-
ral language processing, and speech recognition (Bhandare et al., 2016). DNN archi-
tectures mainly consist of input, multiple hidden and output layers. According to the
types of layers and the corresponding learning methods, there are many variants of
DNNs, among which typical examples are multi-layer perceptrons (MLP), deep belief
networks (DBN) and stacked auto-encoders (SAE), as well as convolutional neural
networks (CNN) and recurrent neural networks (RNN). These models are the widely
used in biomedical analysis with a certain representative property of model structure
and training process. In our classification problem, deep learning was applied using a
multi-layer deep neural network MLP and the DL4J library (Deeplearning4j (2017))
in combination with the WEKA Java API (Witten and Frank (2011)). These models
entail multiple hyperparameters, of which the learning rate is the most important.

3.2.4. Parameter selection and optimization

The selected machine learning models contain one or more specific hyperparameters
whose values needed to be manipulated in order to find the combination of values yield-
ing the best results. For this purpose, we made use of a grid search procedure which is
suitable for problems with a low number of parameters (Bergstra and Bengio, 2012).
Grid search involved defining a range and interval of variation for each parameter
and then systematically testing performance of parameter combinations, selecting the
parameter combination which yielded the highest Fl-score (see this metric in section
3.2.5). For models where only one hyperparameter was tuned - e.g. the learning rate in
deep learning - we used a simple parameter search procedure by testing a given subset
of hyperparameter values and observing resulting performance The implementation of
the parameter search procedure is described in further detail in section 4.2.
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3.2.5. Model evaluation metrics

The selected prediction models produced a set of binary outputs (as many as the
number of codes considered) for each episode, indicating the codes to be assigned to
that episode. Since the number of assigned codes is unknown for each episode, we
predicted code assignment for all codes in the dataset by developing a binary classifier
for each code. Model performance was evaluated by comparing model outputs with
the known assigned codes (gold standard) in test data. We then counted true positives
(TP), false positives (FP) and false negatives (FN). In this case-study, the gold stan-
dard consists of the codes assigned to each episode by coding professionals (without
any coding assistance), which allowed evaluating models against real-world practice.
Human-assigned codes in the gold standard were subject to validation mechanisms
(based on inter-code restrictions and admissible primary diagnoses) embedded in the
national database of hospital episodes.

Model performance was assessed on each test set using three key metrics found in
other coding support studies and based on TP, FP and FN counts. These metrics
consist of precision P; = T'P;/(T'P; + FF;), recall R, = TP; /(T P;+ FN;) and Fl-score
F1, =2P,R;/(P;+ R;), computed for each clinical code i. These performance measures
were aggregated using macro-averaging (averaging measures obtained for each code)
(Tsoumakas et al., 2009).

To produce training and test sets for each experiment, we used 5-fold cross validation
whereby the dataset was randomly partitioned into 5 non-overlapping subsets, using
4 of subsets as training sets (to fit prediction models) and then testing models on
the remaining (test) set (Kohavi et al., 1995). For each model, this procedure was
performed 5 times, using one of the 5 subsets as test set at a time, and ensuring that
each instance was used as test instance exactly once.

3.2.6. Experimental design

The coding scheme used in this study was the 9th Revision, Clinical Modification of
ICD (ICD-9-CM) (Bowie and Schaffer, 2014). During the time this study was devel-
oped, ICD-9-CM was the national coding standard in the Portuguese National Health
Service, firstly to characterize mortality and morbidity statistics, and later as a basis
for hospital episode classification. Coding professionals (physicians) were, therefore,
required to code all inpatient episodes using ICD-9-CM, as determined by the Min-
istry of Health. Specific issues related with the use of ICD-9-CM are discussed later
in section 5.3.

The first experiment aimed to analyze average and code-by-code performance for the
50 most frequent diagnosis codes (which accounted for approximately 50% of the total
code effort), using combinations of the 7 feature selection and the five classification
methods, looking into the patterns of variation and comparative model performance
across codes. We also computed models using the full feature set so as to analyze the
influence of feature selection. These results are presented in section 4.3. For the best
performing feature selection method, we further analyzed selected feature subsets for
high and low performing codes in order to investigate factors influencing performance.
These results are presented in section 4.4.

Additionally, we carried out a second experiment encompassing 90% of total code
occurrences, aiming to analyze the influence of class imbalance (i.e., the fact that many
codes occur in very few episodes, resulting in a much higher proportion of negative
examples for each code) and the applicability of the proposed methodology using the
same metrics, thereby allowing comparison with previous results. These results are
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Table 2. Proportion of code occurrences of Top-50 ICD-9-CM codes, grouped by ICD group (chapter).

Chapter Description % in Top 50
001-139 Infectious and Parasitic Diseases 1.16%
240-279 Endocrine, Nutritional and Metabolic Diseases, And 23.33%
Immunity Disorders
280-289 Diseases of the Blood and Blood-Forming Organs 4.30%
290-319 Mental Disorders 5.59%
390-459 Diseases of the Circulatory System 28.74%
460-519 Diseases of the Respiratory System 12.47%
580-629 Diseases of the Genitourinary System 7.91%
V01-V91 Supplementary Classification of Factors Influencing 15.23%
Health Status and Contact with Health Services
E000-E999 Supplementary Classification of External Causes of In- 1.27%

jury and Poisoning

presented in section 4.5.

4. Results

4.1. Dataset

The dataset used in this study contained 5,089 anonymized medical records pertaining
to 4,210 different patients (3,595 patients had a single episode) admitted in Internal
Medicine, Pneumology, Nephrology, Infectiology and Gastroenterology departments
during the first semester of 2013 (note that this particular EHR system had started
going live in early 2012, and in 2013 had achieved a considerable maturity of routine
use). The dataset was composed exclusively of inpatient episodes. The mean and me-
dian patient ages were 67.7 and 72 years, respectively, with 50.5% female and 49.5%
male patients. No information about race or ethnicity was collected in the EHR.

Using 5-fold cross-validation, training and test sets are composed of 4,072 and 1,017
instances, respectively. After performing the data pre-processing tasks described in
Fig. 2, the resulting feature set contained a total of 5,023 features, of which 3,714 were
catalog-based and 1,309 were assessment-based. 203 features exhibited missing values
— these refer to assessment-based features (frequently numerical and non-mandatory)
that were not filled in for all patients (e.g., patient weight, volumes of drained liquids
or level of muscle strength).

Conversely, catalog-based features did not produce missing values since the absence
of a record was defined as feature value 0. Due to the low representativeness of missing
features in the dataset (4% of all features), these features were removed, thus resulting
in 4820 features. Coding data associated with these episodes contained 39,273 code
occurrences in total, corresponding to 2,272 different ICD-9-CM diagnosis codes. The
observed occurrence of ICD codes was highly imbalanced (the 50 most frequent codes
account for approximately 50% of total code occurrences), as evidenced by the relative
frequencies in Fig. 3 (in effect, 860 of these 2,272 ICD codes occurred only once in the
dataset). The ICD codes were also divided across different groups of clinical conditions,
as shown in Table 2.
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Code occurrences

0 500 1000 1500 2000
[401.9] Hypertension NOS . ' : 3 2043
[272.4] Hyperlipidemia NEC/NOS ] 902
[427.31] Arrial fibrillation ] 893
[486] Pneumonia, organism NOS ] 885
[428.0] CHF NOS 1 876
[250.00] DMII wo cmp nt st uncntr ] 802

[305.1] Tobacco use disorder
[414.8] Chr ischemic hrt dis NEC
[403.90] Hy kid NOS w cr kid I-1V

[278.00] Obesity NOS

[599.0] Urin tract infection NOS
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[285.9] Anemia NOS
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[276.1] Hyposmolality
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[402.91] Hyp ht dis NOS w ht fail
[584.9] Acute kidney failure NOS
[466.0] Acute bronchitis

[303.91] Alcoh dep NEG/NOS-contin
[V12.59] Hx-circulatory dis NEG
[V15.29] Hx surgery to organs NEC
[W14.0] Hx-penicillin allergy
[E888.8] Fall NEC

[244.9] Hypothyroidism NOS
[518.81] Acute respiratry failure

[280.9] Iron defic anemia NOS

[041.49] E.coli infection NEG/NOS
[V12.54] Hx TIA/stroke w/o resid
[272.0] Pure hypercholesterolem

[518.82] Other pulmonary insuff
[V58.67] Long-term use of insulin
[434.91] Crbl art ocl NOS w infrc
[311] Depressive disorder NEC
[595.0] Acute cystitis

[276.7] Hypermpotassemia

[511.9] Pleural effusion NOS
[V49.84] Bed confinement status
[V45.01] Status cardiac pacemaker
[285.29] Anemia-other chronic dis

[491.21] Obs chr bronc wiac) exac

[593.9] Renal & ureteral dis NOS
[V46.2] Depend-supplement oxygen
[276.2] Acidosis

[518.84] Acute & chronc resp fail

[275.2] Dis magnesium metabolism
[491.20] Obst chr bronc w/o exac
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Figure 3. Relative frequencies of the 50 most frequent ICD-9-CM diagnosis codes. ICD-9-CM codes described
in Table A.1 in the Appendix. Legend: NOS — Not Otherwise Specified; NEC — Not Elsewhere Classified
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4.2. Feature selection and model implementation

This section specifies in further detail the settings and parameters associated with
the implementation of the proposed methodology. Firstly, the data pre-processing
tasks were carried out using the source files extracted from the EHR database. Since
assessment data (the last element in Table 1) contained more than 22 million entries,
it required the use of a database management system. We used MySQL to manage
raw data and implemented stored procedures to automatically split source data and
create a single comma-separated file for each episode. Using the feature specification
master file (as mentioned in Fig. 2), we implemented a custom-made algorithm in
Matlab@®) which received as input arguments the source data files and the master file,
and automatically built and populated the data matrix. The resulting matrix was
then coupled with the other matrices derived from demographic, diagnoses, personal
history, allergies, prescriptions and medication data. Integration of these matrices was
performed using episode identifiers (typically available in a patient-centered system).

For the implementation of feature selection and classification methods, we used
available functions or implemented methods as needed, using Matlab® R2013a as
well as the DL4J library (Deeplearning4j (2017)) in combination with the WEKA
Java API (Witten and Frank (2011)). Filter feature selection was performed for each
code with the parameters described in Table 3 (when no toolbox or source function
is specified, the methods were implemented by the authors in Matlab®). Using each
filter method, we obtained the 50 most relevant features, ranked by decreasing order of
importance according to the relevance criterion underlying each method. The decision
of selecting the 50 most relevant features was informed by preliminary analyses in
which we did not observe any performance improvement by adding more features.
Reducing the feature set helped significantly in keeping the runtimes of computational
simulations manageable. These feature subsets were then used to develop prediction
models in a stepwise forward selection process, starting by building models using only
the most relevant feature and then adding one feature to the model at a time, in
decreasing order of relevance.
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Table 3. Implementation parameters for feature selection methods.

Feature selection method Implementation

Fast Correlation Based Filter e Decreasing order of relevance

(FCBF)

10~* SU threshold

e FEAST Toolbox for Matlab® (Brown et al., 2012)

Information Gain (IG)

Decreasing order of relevance
Forward selection — first order utility (Brown, 2009)

Relief e Decreasing feature weight
e 10 nearest neighbors
e Matlab® function

Chi-square e Decreasing order of x? (chi-square) value

Symmetrical uncertainty (SU) e Decreasing order of SU value

Correlation-based Feature Se- e Decreasing order of heuristic merit M, for each
lection (CFS) feature subset S with k features (ros and rgy rep-
resent the average feature-class and feature-feature
correlations, respectively) (Hall and Holmes, 2003):

MS = —k'rcf —
(k+k(k—=1)7s5

e Correlation based on symmetrical uncertainty (SU)

Minimal Redundancy Maxi- e Decreasing order of relevance
mal Relevance (mRMR)
e FEAST Toolbox for Matlab® (Brown et al., 2012)

Supervised classification models were developed and tested using Matlab®) using
its Statistics toolbox. In order to select the combination of model-specific parameters
yielding best performance, the authors implemented scripts to automatically execute
the grid search procedure described in section 3.3.4, using the values and settings
shown in Table 4. These values were replicated for each feature subset in the stepwise
forward selection approach.

For each code prediction model developed (i.e., each combination of feature set and
model hyperparameter values), we computed precision, recall and F1-score values to
measure predictive performance using 5-fold cross validation. The combination of fea-
ture set and hyperparameter values yielding the highest Fl-score (computed through
cross-validation) was selected to report performance results and conduct subsequent
analyses presented in sections 4.3, 4.4 and 4.5.
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Table 4. Implementation parameters for the classification methods.

Method Implementation

Decision trees e Splitting criterion: Gini index
e Pre-pruning: minimum of 1, 3 and 5 instances in
lead nodes

e Post-pruning: test all admissible prune levels be-
tween minimum and maximum values for each tree

Naive Bayes e Feature distributions: multivariate multinomial (dis-
crete), kernel estimation (continuous)
e Classification threshold: from 0 to 1 in steps of 0.005

Logistic regression e (Classification threshold: from 0 to 1 in steps of 0.005

Support Vector Machines e Linear kernels
e Penalty parameter (C) 1072 to 10? (unitary expo-
nent increments)

Deep Neural Network e Stochastic Gradient Descent
e Number of epochs: 10
e Softmax activation function
e Learning rate 107! to 107 (unitary exponent in-
crements)

4.3. Average and code-by-code performance

We start by reporting the average performance of the classification methods combined
with each feature selection method. This allows us to demonstrate the usefulness of
feature selection in combination with classification. Table 5 presents the results ob-
tained for all combinations of feature selection and classification methods, as well as
with the full 4,820 feature set (without feature selection). This table shows that logis-
tic regression models achieved the best average results in terms of F1-scores. Decision
trees exhibited higher precision (i.e., lower rate of false positives), while SVM mod-
els showed higher recall (i.e., lower rate of false negatives). In practice, these results
mean that decision trees would be less likely to incorrectly suggest codes, while SVM
would be less likely to miss/overlook codes that should be assigned. Note that recall
is lowest for the Deep Learning results which can, however be boosted using a filtered
classifier. This takes into account the class imbalance in the dataset. The results using
this method are shown in Table C1 and demonstrate that deep neural network clas-
sification reaches a precision of 0.77. Amongst the tested feature selection methods,
mRMR, CFS and FCBF showed consistently better results while for the deep learning
results, there was no significant difference in precision and F1-scores with or without
attribute selection.
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Table 5. Average precision, recall and F1-score obtained for 50 most frequent ICD codes with combinations of
feature selection methods (FSM) and classification methods (CM). Underlined numbers represent the maximum
value in each measure across all models. Numbers in boldface represent the highest values within each machine
learning model.

Macro Micro
CM FSM Precision Recall Fl-score Precision Recall F1l-score
None 0.512 0.417 0.453 0.494 0.428 0.454
FCBF 0.680 0.411  0.479 0.644 0.400 0.470
1G 0.556 0.411 0.464 0.532 0.419 0.462
DT Relief 0.574 0.424 0.476 0.539 0.425 0.467
Chi-square  0.680 0.411 0.479 0.589 0.440 0.494
SU 0.632 0.443 0.506 0.603 0.437 0.495
CFS 0.686 0.414 0.483 0.643 0.422 0.486
mRMR 0.642 0.456 0.518 0.604 0.452 0.506
None 0.201 0.400 0.254 0.238 0.416  0.293
FCBF 0.568 0.611 0.572 0.533 0.590 0.543
1G 0.421 0.547 0.451 0.423 0.547  0.459
NB Relief 0.490 0.577 0.495 0.473 0.563  0.487
Chi-square  0.548 0.588  0.536 0.514 0.576  0.517
SU 0.546 0.587  0.540 0.519 0.567  0.523
CFS 0.573 0.603 0.572 0.540 0.579 0.546
mRMR 0.554 0.608  0.563 0.526 0.581  0.539
None 0.121 0.504 0.189 0.163 0.526  0.241
FCBF 0.578 0.618 0.577 0.542 0.600 0.551
1G 0.543 0.561  0.533 0.423 0.552  0.523
IR Relief 0.550 0.568 0.535 0.530 0.550  0.521
Chi-square  0.569 0.601  0.569 0.540 0.579  0.546
SU 0.567 0.604 0.569 0.541 0.580  0.547
CFS 0.578 0.617  0.580 0.554 0.585  0.556
mRMR 0.588 0.612 0.585 0.558 0.586  0.559
None 0.294 0.502  0.363 0.319 0.487 0.378
FCBF 0.499 0.659  0.520 0.480 0.632 0.511
1G 0.543 0.522  0.138 0.524 0.472  0.187
SVM Relief 0.441 0.674  0.467 0.446 0.620 0.473
Chi-square  0.506 0.628 0.510 0.486 0.604  0.503
SU 0.502 0.629 0.514 0.487 0.603  0.507
CFS 0.484 0.686 0.527 0.480 0.640 0.517
mRMR 0.479 0.684 0.516 0.475 0.642 0.512
DL None 0.602 0.408 0.472 0.581 0.417 0.474
FCBF 0.658 0.366  0.442 0.630 0.370  0.445
1G 0.629 0.389  0.462 0.608 0.403  0.469
Relief 0.598 0.341 0.411 0.577 0.346  0.412
Chi-square  0.622 0.396  0.467 0.603 0.408 0.473
SU 0.626 0.400 0.471 0.607 0.411 0.477
CFS 0.637 0.372 0.444 0.616 0.385  0.454
mRMR 0.640 0.369  0.442 0.618 0.384 0.453
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Fig. 4 depicts the performance of the five models broken down by the 50 most
frequently occurring ICD codes. This chart shows that model performance has a wide
range of variation across codes and does not seem to depend directly on the relative
frequency of codes (since it does not decrease steadily as the frequency decreases). For
example, code 595.0 (acute cystitis) shows better results than the most frequent code
(401.9 — hypertension, not otherwise specified), despite having lower relative frequency.
Secondly, Fig. 4 also shows that tested models have a similar pattern of variation across
codes, as Fl-scores do not significantly vary for each code. This finding is interesting
considering the fact that the tested prediction models use very different approaches
for modeling patterns and predicting code assignment.
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[491.20] Obstchr bronc wio exac
[275.2] Dis magnesiummetabdlism
[518.84] Acute & chronc resp fail
[276.2] Acidosis
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[593.9] Renal & ureteral dis NOS
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Figure 4. Fl-scores obtained with decision trees, naive Bayes, logistic regression, SVM and deep learning
methods, using mRMR feature selection for the 50 most frequent ICD codes (ordered by relative frequency).
ICD-9-CM codes described in Table A.1 in the Appendix.
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4.8.1. Analysis of selected features

Table 6 presents the six most relevant features selected with the mRMR method,
for codes with high performance (466.0 — acute bronchitis; and 486 — pneumonia,
organism unspecified) (codes description provided in the Appendix), as well as with
low performance (402.91 — hypertensive heart disease, not otherwise specified, with
heart failure; and 518.82 — other pulmonary insufficiency, not elsewhere classified).
This table shows that selected features are mostly related to diagnoses, medication
and prescriptions, showing clinically meaningful correlations with the corresponding
code. For each code, this clinical meaningfulness is observed by having features with
clinical conditions, medication or tests related to the code being predicted. Having
such meaningful correlations appears to be associated with higher model performance,
as observed in codes 466.0 and 486. Conversely, unexpected features (such as the
malignant neoplasm of ureter used to predict pulmonary insufficiency — 518.82) which
are not clinically meaningful (at least directly) are also observed. Furthermore, similar
diagnosis-related features with different levels of granularity are seen, showing that
information detail is not uniformly recorded within the EHR system. This is the case
of hypertensive heart disease (402.91), for which different (yet related) features appear
in the feature set, albeit using different modifiers of heart disease or just stating the
condition as unspecified.
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Table 6. Six most relevant features selected by the mRMR filter (all exhibited features are binary). Legend:
ht — heart; dx — assigned diagnosis; med — prescribed medication; w/ - with; w/o - without; unspec - unspecified

466.0 (Acute bron-
chitis)

486  (Pneumonia,
organism unspec)

402.91 (Hyperten-
sive ht disease NOS
with ht failure)

518.82 (Other
pulmonary insuffi-
ciency NEC)

Acute  bronchitis

(dx)

Amoxicillin (med)

Acute laryngo-
tracheitis w/o
obstruction (dx)
Use of non-invasive
mechanical ventila-
tion

Ipatropium (med)

Acute upper respi-
ratory infection site
unspec (dx)

Pneumonia, organ-
ism NOS (dx)

Clarithromycin
(med)
Other bacterial

pneumonia (dx)

Bacterial pneumo-
nia, unspec (dx)

Compromised
breathing

Hemoculture (aero-
biosis)

Hypertensive ht
disease NOS w/ ht
failure (dx)
Furosemide (med)

Acute lung edema,
unspec (dx)

Malignant hyper-
tensive ht disease
w/ ht failure (dx)
Benign hyperten-
sive ht disease w/
ht failure (dx)
Unspec hyperten-
sive ht disease w/
ht failure (dx)

Acute respiratory
failure (dx)

Acute and chronic
respiratory failure
(dx)

Ceftriaxone (med)

Benign hyperten-
sive ht disease w/
ht failure (dx)
Hypertensive ht
disease NOS with
ht failure (dx)

Malignant neo-
plasm of ureter
(dx)
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4.4. Impact of class itmbalance on performance

The influence of class imbalance on model performance was also analyzed by encom-
passing a wider range of ICD codes. For this purpose, prediction models for the 544
most frequent codes were developed, covering 90% of code occurrences (as described
in Table 7). We tested the prediction models and parameter selection technique earlier
described, using all non-redundant features selected with FCBF (due to its faster ex-
ecution times and elimination of redundant features). The results in Fig. 5 show that
the average performance decreases more abruptly when more than 60% of occurrences
are covered. Comparing to the results in Fig. 4, one can argue that this performance
decrease was caused by much lower performance for highly imbalanced codes. While
more frequent codes did not provide evidence of decreasing performance with relative
frequency, performance effectively deteriorates for extremely imbalanced codes.

Table 7. Occurrences of positive instances of ICD-9-CM codes in relation to the dataset coverage. This Table
shows the number of top ICD codes (ordered by decreasing frequency) corresponding to various proportions of
total code occurrences. # positive examples represents the number of occurrences.

Cumulative 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
occurrences

# Top codes 1 4 9 19 35 59 98 161 272 544 2272
(K)

# positive 2043 885 492 324 200 133 79 49 25 8 1

examples

(K™ code)

1.00 -

0.90 -

0.80 -

0.70 -

0.60 -

0.50 -

F1-SCORE

0.40 -

0.30 -

0.20 -

——DT «— NB —«— Regression SW  ——DL

0.10 -

0.00

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

% CODE OCCURRENCES COVERED

Figure 5. Variation of average F1-scores with the percentage of covered ICD code occurrences.
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5. Discussion

5.1. Implications for coding support and EHR systems

Despite achieving high performance for several ICD-9-CM codes, average model per-
formance across the spectrum of ICD codes was not fully sufficient to allow direct im-
plementation in real-world settings. As stated by Stanfill et al. (Stanfill et al., 2010),
comparing performance across studies is typically challenging due to differences in
problem scope and complexity. If we compare our results directly with other stud-
ies, we obtained lower performance than Pakhomov et al. (Pakhomov et al., 2006)
and Perez et al. (Pérez et al., 2015). Conversely, our results outperform those from
Kavuluru et al. (Kavuluru et al., 2015; Lipton et al., 2016). Also, results across codes
varied significantly in ranges similar to the ones reported by Xu et al. (Xu et al.,
2007). Results are aligned with the studies emphasizing that clinical coding is still
an extremely challenging research problem and model results are typically lower than
results communicated in other machine learning applications — see literature reviewed
by (Scheurwegs et al., 2017).

Our results exhibited high performance levels for multiple codes with high occur-
rence rates. The use of these results could potentially entail a considerable relief on
coding workload. In comparison, many other studies addressed fewer codes (e.g. ((Avil-
lach et al., 2008; Li et al., 2011; Lita et al., 2008; Yan et al., 2010) and therefore po-
tentially brought about a much lower impact in relieving the coding workload. In spite
of the observed performance challenges, the proposed methodology can still produce
valuable results with potential in (1) automating coding for high performing codes,
(2) suggesting ranked lists of codes to avoid looking up large code lists, and (3) ex-
plaining why codes are assigned by analyzing associated features. These applications
illustrate the potential value of using structured EHR data for coding support. Since
there is not a generally acceptable threshold to define high performing codes which
would be candidates for automatic coding (e.g. some authors suggest 95% accuracy
or higher (Pakhomov et al., 2006)), it would be recommended to implement a manual
verification step after automatic code assignment, particularly as this may likely be a
quality requirement by healthcare stakeholders..

Since the tested models did not rank consistently in the different metrics, it is
not possible to make a straightforward recommendation as to which model is best
for coding support based on structured EHR data. The choice of prediction model
must account for its impact on clinical coding — as investigated in our study — as
well as on episode classification and financing. Our results suggest that in cases where
incorrectly suggesting a code may lead to upcoding penalties (i.e., a hospital receiving
a fine for classifying and/or billing diagnosis or procedure codes incorrectly, for which
there is no clinical evidence), decision trees should be preferred in order to minimize
false positives. Conversely, for codes representing losses in clinical data quality and/or
funding for care provision, it is important to avoid overlooking codes and in this case
SVM models should be chosen to minimize false negatives.

Based on our results, we can argue that the causes explaining variations in per-
formance across codes resided not only in the selection of prediction models and in
data imbalance, but also in the clinical concepts underlying each code. The observed
results suggest that health professionals do not use the same level of granularity when
documenting clinical information, leading to variability in granularity and in use of
modifiers. These modifiers represent elements used to add detailed information to
the core diagnosis, such as infectious/acute/subacute modifiers used for bronchiolitis.
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These findings raise questions on how data recording practices of clinicians can influ-
ence model performance, notably by introducing dispersion (i.e., identical diagnoses
being recorded differently) in the dataset. Given that clinical coding requires using
the most granular level, EHR data needs to be recorded with the necessary detail in
order to properly support the coding process. The influence of data quality is also evi-
denced by comparison with the lower results obtained in preliminary works (reference
omitted), which were obtained in earlier stages of EHR implementation when system
users were expected to have lower levels of proficiency.

5.2. Methodology applicability and scalability

The development of a coding support methodology based on structured EHR data
is relevant in light of the evolution of EHR systems towards structured formats. Our
study differs from studies found in the literature which are either based on unstructured
data, or on leveraged structured data and which are focused on a small subset of
diagnoses, on predicting diagnoses at a less granular level and which are less tailored
to support the clinical coding process. Our results indicate that the coding process
may in fact be supported by using only structured EHR data. This is particularly
valuable in contexts where using NLP is deemed impractical, namely NLP resources
are lacking for specific languages and many EHR systems are being developed to entail
mostly structured data.

In terms of applicability over the ICD spectrum, our methodology reveals pitfalls
for heavily imbalanced codes (as seen in Fig. 5), exhibiting performance over 0.5 ap-
proximately for the most frequent 150 codes. Still, these codes cover around 70% of
code occurrences, which is higher than most studies found in the literature. Data im-
balance is a pervasive issue in coding support and may give rise to statistical artifacts
and lower results (He and Garcia, 2008). It may be worth exploring ensemble learning
(Khalilia et al., 2011) and bootstrap methods (Dupret and Koda, 2001) to compensate
this imbalance.

The applicability of the proposed methodology to datasets from other EHR systems
is viable since we have used data elements that are typically found and routinely
collected in most EHR systems. Examples of such elements are diagnoses, prescribed
exams and therapies, and structured assessments, on which analogous steps of feature
construction (Fig. 2) can be applied. In such cases, it will be instrumental to adequately
transform data to minimize redundancies and define features in terms of their type and
missing patterns. The possibility of generalization to other EHR systems will also be
determined by the degree of structuring of EHR data found in such systems. In effect,
although structured EHR formats are increasingly more common (Hypponen et al.,
2014; Kalra et al., 2013), free-text is invariably preferred by clinicians in expressing
clinical information (Johnson et al., 2008). Some EHR components, such as discharge
summaries and descriptive reports from generic medical observations and diagnostic
exams, are typically only available in unstructured formats.

The proposed methodology is applicable to multiple coding schemes in use world-
wide (Busse et al., 2011). It would be important to tailor the feature set according
to the scope and level of granularity of each coding scheme, and thereby minimize
eventual information losses when transforming EHR data into a data matrix format.

As the volume of episode data is continuously increasing, it is also important that the
proposed methodology is scalable for larger volumes, so that we can take advantage
of new data points and incorporate changes in the hospital population over time.
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Computation times for each code were manageable (see Table A.2 in the appendix).
Scalability over the range of clinical codes is also ensured via decomposition in binary
classification problems, which results in computation times growing linearly with the
number of codes. In effect, scalability to contexts with higher volume and complexity
may highly benefit from the constant innovation and contributions from the operations
research field to the improvement in efficiency of inductive learning algorithms (Corne
et al., 2012; Meisel and Mattfeld, 2010; Olafsson et al., 2008).

5.3. Critical assessment of the methodology

In terms of data processing automation, the proposed methodology aimed to bal-
ance streamlining tasks while ensuring and preserving clinical meaningfulness. Expert
knowledge (both medical and coding-related) and manual review/input are required
only in specific tasks, notably mapping diagnosis catalogs and structuring assessment-
based features. These efforts are expected to be performed mostly in the first de-
ployment of the proposed methodology to provide the input information necessary
for the automatic data processing. Further modifications in the EHR can easily be
incorporated in the feature specification (master) file.

Looking into the predictive modeling framework, it is important to address the ad-
equacy of feature selection methods, of machine learning models and of evaluation
metrics. Firstly, feature selection was found to be extremely relevant to tackle di-
mensionality and improve results (as seen in Table 5). The appearance of clinically
meaningful features (in Table 6) also corroborates their adequacy. The impact of fea-
ture selection was lower for decision trees since these models already entail intrinsic
feature selection (upon splitting criteria). Although filter methods may yield sub-
optimal performance, we argue that wrapper methods would have been inadequate
due to computational limitations. Secondly, the choice of supervised learning models
suited the purpose of modeling patterns between EHR data and corresponding codes.
Thirdly, we chose not to use other traditional measures, such as the area under the
receiving operating characteristic (ROC) curve for being less intuitive, and accuracy
due to its propensity to be over-optimistic in highly imbalanced problems.

Notwithstanding limitations of the ICD-9-CM coding scheme — see for example
(Bergstra and Bengio, 2012) — in this study we were bound to use it since it was the
coding standard dictated by the Portuguese Ministry of Health at the time of this
research (episodes in the dataset were all coded in ICD-9-CM). It would be relevant to
evaluate the proposed methodology in other coding schemes, e.g. ICD-10-CM, which
is increasingly adopted and more widely used worldwide.

As an additional remark, it is important to point out the possibility of leveraging
the five-level hierarchical structure of coding schemes. This has been addressed in
previous studies and it has produced positive results (Perotte et al., 2013; Zhang,
2008). Although coders must assign codes with the most granular level according to
guidelines (Centers for Disease Control, 2011), the proposed methodology could be
used, in a first stage of coding support, to predict codes at a less granular level and
then let coders decide which codes to assign within that level.

6. Conclusions

In this work, we proposed and applied an end-to-end data mining methodology to
predict ICD code assignment using fully structured EHR data. We addressed the
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stages of transforming EHR data into a data matrix, performing feature selection,
building classification models and evaluating performance. We tested the extent to
which structured data — which is becoming increasingly common in healthcare settings
— can be used for coding support and which challenges arise in the use of these data
formats. Our research work differs from other studies predicting diagnoses and/or
clinical codes by leveraging a comprehensive scope of structured EHR data across a
broad spectrum of diagnoses, specifically aiming to support the clinical coding process,

Our case study experiments revealed higher performance for logistic regression mod-
els, while decision trees were able to predict with higher precision and support vector
machines with higher recall. Furthermore, combined with a filtered classifier that takes
into account the class imbalance, the DNN’s recall can be improved substantially with
the drawback of a reduction in precision and F1l-score. Results also have shown the
positive contribution of feature selection techniques. These promising results and in-
sights provide evidence of the potential of structured EHR data in reducing coding
workload, improving human resource utilization and mitigating coding errors. The
proposed methodology can lay a sound groundwork to introduce improvements in the
coding process in numerous healthcare settings.

As future research, it would be useful to further develop the building blocks of
the proposed methodology, starting with more systematic analysis of data quality
and inconsistencies between EHR data and ICD codes, as well as exploring different
approaches to handling missing data (Cismondi et al., 2013). It may also be valuable
to incorporate additional expert knowledge in validating feature subsets, so as to
mitigate artifacts and include additional clinically relevant features. Expert knowledge
can also help improving data quality by harmonizing feature specificity and including
clinical conditions inferred from medication and test results. In order to prioritize
research efforts, it may be useful to firstly address codes with higher impact in terms
of a) operational workload (with higher frequency), b) health statistics and indicators
(Zhan and Miller, 2003), and c) in provider financing (e.g. ICD codes associated with
higher reimbursement rates). Moreover, domain knowledge may play a central role in
imposing restrictions on code combinations.

In terms of models and algorithms, it may also be pertinent to test the viability
of using wrapper feature selection with simpler space search procedures to cope with
the high computational demand. It may also be valuable to explore cost-sensitive
classification to mitigate the impact of the imbalanced class distribution in the dataset
(Dupret and Koda, 2001; He and Garcia, 2008) and include inter-label relationships
(Alvares-Cherman et al., 2012). Another area of future work in terms of methodology
is to formulate and solve the classification problem using multi-label classification
algorithms (Read et al., 2016).

Lastly, it may also be worth exploring more complex evaluation metrics aligned to
the actual benefit for coders. This subject has recently been addressed in the literature,
namely by Puentes et al. (Puentes et al., 2013) through usability-related performance
measures (from the coder perspective), by Perotte et al. (Perotte et al., 2013) through
hierarchy-based distance measures, and by (Chiaravalloti et al., 2014) based on code
rankings. Accordingly, future work should consider these advanced performance mea-
sures, as well as issues concerning the acceptability and adoption of coding support
tools by coding professionals in line with evidence on EHR system adoption (Weeger
and Gewald, 2015).
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Appendix A. List of ICD-9-CM codes

Table Al.: List of the 50 most frequent ICD-9-CM codes an-
alyzed in this study (NOS — not otherwise specified; NEC —
not elsewhere classified; TIA - transient ischemic attack).

ICD-9-CM code

Description

401.9
272.4
427.31
486
428.0
250.00
305.1
414.8
403.90
278.00
599.0
276.8
276.51
285.9
V58.66
276.1
585.9
V15.82
V58.61
402.91
584.9
466.0
303.91
V12.59
V156.29
V14.0
E888.8
244.9
518.81
280.9
041.49
V12.54

272.0
518.82
V58.67
434.91
311
595.0
276.7
511.9

Hypertension NOS

Hyperlipidemia NEC/NOS

Atrial fibrillation

Pneumonia, organism NOS

Congestive heart failure NOS

DMII without complications, not stated as uncontrolled
Tobacco use disorder

Chronic ischemic heart disease NEC

Hypertensive chronic kidney disease, unspecified, stage I-IV
Obesity NOS

Urinary tract infection NOS

Hypopotassemia

Dehydration

Anemia NOS

Long-term use of aspirin

Hyposmolality

Chronic kidney disease NOS

History of tobacco use

Long-term use of anticoagulants

Unspecified hypertensive heart disease with heart failure
Acute kidney failure NOS

Acute bronchitis

Other and unspecified alcohol dependence, continuous
Personal history of other diseases of circulatory system
Personal history of surgery to other organs

Personal history of allergy to penicillin

Fall NEC

Hypothyroidism NOS

Acute respiratory failure

Iron deficiency anemia NOS

E. coli infection NEC/NOS

Personal history of TIA and cerebral infarction without residual
deficits

Pure hypercholesterolemia

Other pulmonary insufficiency

Long-term use of insulin

Cerebral artery occlusion, unspecified with cerebral infarction
Depressive disorder NEC

Acute cystitis

Hyperpotassemia

Pleural effusion NOS
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V49.84 Bed confinement status

V45.01 Status cardiac pacemaker

285.29 Anemia of other chronic disease

491.21 Obstructive chronic bronchitis with (acute) exacerbation
593.9 Unspecified disorder of kidney and ureter

V46.2 Depend-supplement oxygen

276.2 Acidosis

518.84 Acute and chronic respiratory failure

275.2 Disorders of magnesium metabolism

491.20 Obstructive chronic bronchitis without exacerbation

Appendix B. Computational Analysis

Table B1l. Execution times for feature selection and model training algorithms (including parameter opti-
mization) obtained for a binary classification problem. Training times were obtained with a subset of 50 mRMR
features and 4,072 training instances. Simulations were performed using an Intel Core i5-2520M CPU 2.50 GHz,

4 GB RAM.

Feature selection

Execution time (ms)

FCBF 18,922
1G 787,152
Relief 2,612,942
Chi-square 4,671
SU 2,008
CFS 2,884,391
mRMR, 21,652

Prediction model

Training time (ms)

DT (mRMR) 30,585
NB (mRMR) 141,530
Logit (mRMR) 12,341
SVM (mRMR) 59,465
DNN (mRMR) 85,770

Appendix C. Deep Learning Classification Results using Class Imbalance
Filtering
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Table C1. Deep Learning Classification Results using Class Imbalance Filtering.

Precision Recall F1

None 0.294 0.742  0.406
FCBF 0.348 0.763  0.446
1G 0.294 0.773  0.408
Relief 0.271 0.756  0.380
Chi2 0.298 0.774 0.413
SU 0.300 0.770 0414
CFS 0.353 0.763  0.453
mRMR  0.353 0.761  0.453
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Table C2. List of abbreviations.

Abbreviation = Description

API Application Programming Interface
CART Classification and regression trees
CFS Correlation-based feature selection
CNN Convolutional neural networks
DBN Deep belief network

DRG Diagnosis-related groups

DL Deep Learning

DNN Deep Neural Network

DT Decision trees

EHR Electronic health record

FCBF Fast correlation-based filter

FN False negative

FP False positive

ICD-9-CM International Classification of Diseases, 9th revision, Clinical

ICD-10(-PCS)
ICF

IG
LOINC
MLP
mRMR
NEC
NOS
NB
NLP
RNN
SAE
SNOMED-CT
SU
SVM
TIA
TP
UMLS

Modification

International Classification of Diseases, 10th revision (Pro-
cedure Classification System)

International Classification of Functioning, Disability and
Health

Information gain

Logical Observation Identifiers Names and Codes
Multi-layer perceptron

Minimal redundancy maximal relevance

Not elsewhere classified

Not otherwise specified

Naive Bayes

Natural language processing

Recurrent neural networks

Stacked auto-encoder

Systematized Nomenclature of Medicine — Clinical Terms
Symmetrical uncertainty

Support vector machines

Transient ischemic attack

True positive

Unified Medical Language System
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