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Summary 

The body of work presented in this thesis focuses on the conversion pathway from 

glucose to γ-valerolactone (GVL). GVL has been identified as a potential fuel 

additive, and the developments in this thesis contribute towards making it a more 

sustainable process.  

There are two results chapters in this thesis, chapter 3 and 4s; the first one explores 

the dehydration of glucose to methyl levulinate. A range of solid acid catalysts was 

evaluated. Efforts were taken to limit the polymerisation side reaction by changing 

reaction conditions and introducing methanol as a solvent, as opposed to the typically 

used water. It was found that the polymerisation greatly depends on the concentration 

of substrate. Reducing the polymerisation is crucial, as they not only reduce the 

carbon balance, but adsorb on the catalyst surface, reducing re-usability. 

The second results chapter tackles the hydrogenation of levulinic acid to γ-

valerolactone with the use of Cu-ZrO2 catalysts. A novel catalyst preparation method 

was developed which allowed to reduce the copper loading from 50% mol. to 30% 

while retaining high activity. The surface species were investigated and it was found 

that well-dispersed copper particles with strong metal-support interactions are the 

most active for this reaction. Steps were taken to maximise the number of those sites, 

such as optimising the reduction conditions and acid washing the labile copper off 

the surface. Mechanistic studies were also carried out to prove that H2O from the 

solvent is critically involved in the hydrogenation mechanism. 
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Chapter 1 

 

Introduction 

All references are self-contained to within this chapter, and do not refer to any other 

chapters. 

1.1. An introduction to catalysis 

The term “catalysis” has been first coined by Jacob Berzelius, a 19th century 

Swedish chemist. He initially called it “catalytic power”, referring to phenomena by 

which new compounds are formed.1 However, catalysis has been unknowingly used 

by mankind for centuries before that. The fermentation of sugar to alcohol is a 

catalytic process in which yeast is the enzyme catalyst, and sugar is the substrate. In 

the modern world, catalysis underlines every aspect of modern living. It is used 

extensively in polymer synthesis of polyethylene using the Ziegler-Natta catalysts.2 

Perhaps the most significant catalytic process to date is the Haber-Bosch process, 

where an iron catalyst facilitates the formation of ammonia from nitrogen and 

hydrogen.3 The ammonia is chiefly used in fertilisers, without which current world 

food demands would not have been met.  

Catalysts are usually fall into three categories: homogeneous, heterogeneous, 

and enzymatic. Homogeneous catalysts are in the same phase as the reactants. These 

catalysts are generally very effective as each molecule possesses an active site for 

catalysis, maximising the contact with the substrate; but they are also difficult to 

separate from the product mixture, and therefore their re-use is problematic. 

Heterogeneous catalysts are found in a phase different the reactants, typically solid 

powders (which can also be pressed and shaped into pellets). They can have lower 
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activities than their homogeneous counterparts; homogeneous catalysts are 

predominately more selective than heterogeneous catalysts, as they have very well-

defined active sites.  However, the latter can be easily separated from the reaction 

mixture, and typically feature consistent re-use cycles, making them incredibly 

valuable in the industry. Indeed, the majority of catalysts used commercially are 

heterogeneous in nature. Enzymes are large organic molecules with active centres 

specifically tailored to carry out a small set of functions. Because of this, they are 

incredibly effective at what they do, however their scope of use is limited. Because 

of their biological nature, they are also only usually useful in a narrow range of 

conditions. The catalysts featured in this thesis are exclusively heterogeneous.  

A catalyst can be described as a substance which lowers the activation energy 

(Ea) for a reaction by offering an alternate pathway. A catalyst changes the kinetic 

properties of a reaction without altering the thermodynamics of it. In other words, it 

does not alter the energy states of the reactants or products, and has no effect on the 

position of the equilibrium in a given reaction. Figure 1 illustrates a graphic 

representation of how a catalyst influences a reaction.  

 

Figure 1. An energy diagram for a given reaction which compares reaction profile 

with catalyst and without catalyst. The energy states at the start and end of the 

reaction remain unchanged. 
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The activation energy can be calculated from the Arrhenius equation: 

𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅𝑇 

Where k is the reaction constant; A is the pre-exponential factor; Ea is the 

activation energy; R is the gas constant; and T is the temperature in Kelvin. 

Thus it can be deduced that the smaller the activation energy, the larger the 

reaction constant, k – indicating faster rate of reaction. 

1.2. Biomass 

Biomass is an all-encompassing term, used to define animal or plant matter, and 

is the most abundant raw material on earth. Most common usage of it refers to dead 

plant matter such as wood residues or waste from food crops. The application of 

biomass has evolved over the years, and can be classified into three major categories: 

first, second, and third generation. First generation biomass refer to biomass derived 

from food crops such as sugar cane or oil crops.4 Second generation biomass 

describes biomass from non-food sources, for example agricultural waste or wood 

residue. It is therefore much more attractive than first generation biomass as it does 

not compete with food crops for arable land. Third generation biomass refers to 

biofuels such as bioethanol produced with the use of algae.5 

As the global demand for energy continues to increase every year,6 and global 

petroleum reserves are in finite supply, there is much need for the development of 

new and renewable sources of energy. Additionally, there is need for new bio-

derived platform chemicals and to source existing commodity chemicals from 

biomass. Therefore, there is a growing interest in biomass valorisation. 

Lignocellulose is a promising biomass source due to its abundance.7 
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For the purposes of this thesis, biomass refers to lignocellulosic biomass. 

Lignocellulose has three main components: cellulose (35 - 50%), hemicellulose (20 

- 35%) and lignin (10 – 25%).8 While all three can be valorised to various products, 

such as 5-HMF, toluene (and other aromatic compounds), furans, levulinic acid, and 

others,8–11 this thesis focuses on the chemistry of glucose and its derivatives.  

1.3. Dehydration of glucose 

With cellulose being the major component of biomass, it is made up of β(1→4) 

linked glucose molecules. This means that each glucose molecule is bonded to 

another through an equatorially-oriented C-O bond from first carbon on the first 

molecule, to the fourth carbon on the second molecule (using IUPAC nomenclature; 

hence 1→4). Glucose is therefore the most common naturally occurring 

monosaccharide and is a highly attractive target for valorisation due to its renewable 

nature. It can be extracted from biomass using various strategies, such as chemical 

or enzymatic hydrolysis,12,13 heterogeneous catalysis,14 or simply through the use of 

mineral acids.15 The dehydration reaction of glucose produces chiefly two 

compounds of interest: 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA). 

5-HMF can be converted into a multitude of chemicals through catalytic means, 

including levulinic acid.16 LA is also considered a platform chemical, due to its 

reactive carbonyl functional groups allowing it to be derived into many other 

compounds, like γ-valerolactone or 2-methyltetrahydrofuran (2-MTHF).17,18  

One of the biggest issues to overcome with this reaction is the formation of 

humins, furan-based polymers that are produced from some of the reaction 

intermediates.  One of the ways to limit this process is to carry the reaction out in 

methanol.19 As most compounds in the mixture will rapidly form methyl esters, the 

ester acts as a protecting group, slowing down the rate of side-reactions. Depending 

on the alcohol solvent used, a corresponding levulinate ester will form as a product, 

for example methyl levulinate (ML). The most commonly used catalysts for the 
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dehydration are zeolites and sulfated metal oxides. Zeolite types β and Y have been 

shown to give good yields of levulinate esters in methanol at 160 °C (47% and 49%, 

respectively), however under long reaction times (20 hours) and with low carbon 

mass balance of approximately 50%.20 ZSM-5 was also tested, however it only 

yielded 8% of the desired product after 20 hours. Xu et al. also reported very poor 

yields of methyl levulinate with ZSM-5, 0.3% after 150 minutes.21 They speculate 

that this difference in activity between zeolites is likely due to the inability of ZSM-

5 to facilitate the isomerisation of glucose to fructose effectively, however there is 

very little evidence that isomerisation to fructose happens in methanol. Indeed, the 

catalytic performance is most likely to be associated with the corresponding pore 

sizes of these materials.22 Aside from zeolites, sulfated metal oxides such as SO4-

ZrO2 and SO4-TiO2 are also a popular choice of catalyst for this reaction. Jiang et al. 

reported moderate yield of 18% ML from glucose using SO4-ZrO2; this yield 

increased to 49% upon addition of a Sn-Beta co-catalyst.23 Peng et al. showed SO4-

TiO2 yield as high as 45% ML after one-hour reaction time, however they used 50  

wt.% catalyst loading with respect to substrate.24 They also correlated the turn over 

number with amount of acid sites on the catalyst and their density, demonstrating the 

importance of acid sites for this dehydration reaction.  

 

Figure 2. A simplified reaction scheme showing transformation of glucose to 

levulinic acid 



6 
 

 

Figure 3. A more detailed reaction scheme of the reaction in methanol solvent. 

Methanol reacts with all the substrates, intermediates and products to form methyl 

esters. 

There are several industrial processes available for the production of levulinic 

acid, such as the Biofine process. This process utilises wood pulp as a feedstock and 

in the presence of dilute acids, LA yields of 57% can be achieved.25 Another patented 

process published in 1953 focuses on levulinic acid production from corn.26 More 

recent process patents from 201327 and 201428 are also available, indicating that this 

is an area of active interest. In 2015, “GFBiochemicals” opened a pilot plant which 

produces levulinic acid from biomass. LA yields in excess of 8,000 MT/year are 

reported. However, details on their production process are somewhat elusive. Global 

production and market size statistics are not widely available, as the current interest 

in LA is chiefly academic, predominately due to the cost of its production when 

compared to alternatives such as bioethanol. Most industrial processes utilise 

mineral acids to convert biomass into LA. In fact, mineral acids remain to be the best 

performing acids for this reaction; yields vary depending on the temperature, 

reaction time, flow or batch conditions, type of mineral acid used – however, mineral 

acids generally outperform solid acids. Qi et al. reported LA yield of 51% with 

H2SO4 after 2 hours at 130 °C.29 Szabolcs et al. reported 49% yield of LA with HCl 

after 30 minutes at 170 °C – interestingly, HCl outperformed H2SO4 by 

approximately 8%, but environmental concerns were expressed about using a 
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chlorinated chemical.30 The maximum theoretical yield of LA from hexose was 

speculated to not exceed 70%.31 Therefore, any yield approaching this value is 

significant. Dumesic group approached this theoretical maximum reporting a 63% 

yield of LA using 0.05M H2SO4 at 160 °C for 4 hours.32 Impressively, they achieved 

59% yield under identical conditions when using solid acid Amberlyst 70. They 

found that 90% GVL solvent aided the reaction, likely by solubilizing humins and 

cellulose. This is important because neither cellulose nor humins are soluble in most 

solvents. Solubilizing cellulose allows it to reach the catalyst more easily; 

solubilizing humins is important as they often stick to, and solidify on the catalyst, 

covering the active sites and reducing catalyst activity. Mineral acids are hard to 

recover from the reactant mixture and are non-reusable. Extraction of LA from 

different solvents, specifically alcohols, is possible with the use of Amberlite LA-

2.33 With LA prices approximately $5-8 per kilogram, levulinic acid stands to 

compete with ethanol as a fuel additive (approximately $5 per kilogram) if a more 

economic process is found. A heterogeneously catalysed process could potentially 

be more economical due to easier reuse of catalyst, and easier separation of catalyst 

from reactant mixture. 

1.4.  Hydrogenation of levulinic acid and methyl levulinate 

 

Figure 4. Reaction scheme for the hydrogenation of levulinic acid. 

Many catalytic systems have been reported for the conversion of levulinic acid 

(LA) to γ-valerolactone (GVL) in the literature, both homogeneous and 

heterogeneous. Supported ruthenium catalysts are popular for this reaction due to 
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their consistently excellent GVL yields (>95%) under relatively mild conditions (e.g. 

130 ⁰C, 30 minutes, 40 bar H2). Various supports such as carbon, silica or alumina 

have been reported, and Ru-based catalysts are generally accepted as an activity 

benchmark for this reaction, with typical metal loadings of 0.5 – 2% Ru.34–37 Other 

noble metals have also been studied, such as palladium,38,39 gold40 or platinum36. 

However, due to the relatively high costs associated with noble metals stemming 

from their low natural abundance and their use on an industrial scale, there is a drive 

to develop hydrogenation catalysts using cheap, non-noble metals. Copper has been 

explored as an alternative to ruthenium for this reaction, and is one of the more 

abundant metals. Hengne and Rode were one of the first groups to utilise 50% Cu-

ZrO2 and 50% Cu-Al2O3 for hydrogenation of LA with complete conversion.41 

Samadhan et al.42 use 6 wt. % CuO-SiO2 with formic acid as a hydrogen source, 

demonstrating versatility of the metal. Kai et al.17 show successful synthesis of GVL 

using a 1:1 Cu-Fe material prepared by forming a hydrotalcite precursor and 

calcining it at high temperature (950 °C), obtaining 90% yield after 10 hours. Jun 

Hirayama et al. noted excellent yields of GVL exceeding 80% after just 30 minutes 

by doping a 50%Cu-ZrO2 catalyst with 1% wt. manganese.43  

Methyl levulinate (ML) is an ester derivative of levulinic acid, similar to ethyl 

levulinate (EL)44 and butyl levulinate (BL),45 both of which have been explored in 

literature and can be prepared readily from levulinic acid in yields exceeding 90% in 

as little as 30 minutes.46 Similarly to levulinic acid, alkyl levulinates can be used as 

fuel additives or as platform chemicals,47,48 as they undergo similar chemistry as 

levulinic acid. This means lower sulfur emissions than ethanol-based additives, and 

much better relative engine efficiency.47 The longer-chain alkyl levulinates such as 

butyl levulinate are functionally similar as fuel additives to shorter chain compounds, 

however they can form polymers (humins) in their production, and potentially form 

more carbon deposits once combusted in the engine.49 Typically, ethyl levulinate has 
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been considered over the other levulinates as a fuel additive due to its better mixing 

with certain diesel blends.47,50 Li et al. has used sulfated ZrO2/TiO2 nanocomposite 

to obtain 90% conversion of levulinic acid to ethyl levulinate after 180 minutes at 

105 °C.51 Nandiwale et al. reached 95% yield of EL at 120 °C by after 5 hours by 

using de-silicated H-ZSM-5.52 In fact, the industrial Biofine process poses that the 

levulinic acid is esterified downstream, rather than adding alcohol solvent at an 

earlier stage.47 Production of methyl levulinate can be achieved through the same 

means as production of levulinic acid or indeed any alkyl levulinate – the addition 

of methanol (or other alcohol) as a solvent during the dehydration of hexoses in the 

presence of an acid can cause esterification of most reaction intermediates and 

products. For example, Wilson and co-workers obtained yields of approximately 

25% alkyl levulinate using both methanol and ethanol with sulfated zirconia grafted 

onto SBA-15 at 140 °C for 24 hours.53 Peng et al. reported 33 mol% yield of ML 

from glucose using SO4-TiO2 at 2 hours, however using a 50:50 mass ratio of 

catalyst:substrate.54 Ding et al.  achieved approximately 45% ML yield from methyl 

glucoside using a niobium-phosphate catalyst after 24 hours at 180 °C.55 A relatively 

high ML yield of 51% from glucose was reported in 2018 by the Xu group, by 

combining Amberlyst-15 with Sn-Beta at 160 °C for 5 hours.56  

As most of the academic and industrial spotlight is focused on the use of ethyl 

levulinate or levulinic acid, and current industrial applications do not utilise 

heterogeneous catalysts, there is currently a gap in research on heterogeneous 

solutions for formation of methyl levulinate. A lot of current literature on the subject 

does not tackle the formation of humins (polymers) and mechanistic pathways in 

detail, a subject which is discussed in this work. Additionally, as part of the aims set 

out for this work, our research partners were working on the extraction of cellulose 

and hexoses from biomass using methanol as solvent – therefore work presented in 

chapter 3 was a continuation of that process. 
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The hydrogenation of levulinic acid and its corresponding esters can result in the 

formation of is γ-valerolactone (GVL). The generally accepted mechanism for this 

reaction can be seen in Figure 5. Levulinic acid is hydrogenated to 4-

hydroxypentanoic acid (4-HPA), which then undergoes a spontaneous cyclisation 

reaction to form GVL. The presence of an ester group on LA does not affect this 

mechanism, however it may have an effect on the rate of reaction. Therefore, many 

of the same catalysts can be used for the hydrogenation of ML to GVL as LA to 

GVL, provided they are not sensitive to methanol. In fact, certain copper catalysts 

such as CuO57 or Cu-Cr58 oxide material are capable of decomposing MeOH into H2 

in situ, removing the need to supply gaseous H2. The resulting hydrogenation 

reaction reached yields of 89% after 4 hours at 250 °C. Another pathway is also 

possible, with LA forming an enol form and dehydrating  to form angelica lactone, 

which then hydrogenates to GVL – though this pathway is rarely observed.59 As 

discussed in chapter 4 of this thesis, the LA enolate formation is a spontaneous event 

which happens at higher reaction temperatures – however dehydration into angelica 

lactone requires presence of a weak acid, for example SiO2.60 

 

Figure 5. Possible reaction pathways of LA to GVL. 

 Like LA, GVL has several applications which make it a desirable molecule. 

Both molecules are non-toxic and renewable. GVL can be used as a solvent, as 

mentioned previously in the formation of LA from cellulose;32,61 it can be used as a 
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non-toxic replacement to solvents such as chloroform or ethyl acetate in the 

production of phosphatidylserine (drug supporting healthy brain function).62 Likely, 

there are many reactions for which GVL could potentially replace toxic solvents. It 

could also have applications in polymer chemistry, forming monomers such as α-

methylene-γ-valerolactone.63 GVL can also be used as a fuel source and fuel 

additive, similarly to levulinic acid and ethanol. Horvath et al. has shown that a 

mixture of 10% GVL and 90% 95-octane gasoline not only has similar properties to 

10% ethanol 90% 95-octane mix, it also featured a lower vapour pressure, ranking it 

favourably. 64 GVL retains 97% of the energy stored in glucose, and can be broken 

down further to form various hydrocarbons.65 Priced at approximately $10-20 per 

kilogram, it is not only economically favourable to upgrade from levulinic acid, it 

can also enable high-volume industrial processes such as production of jet fuel range 

alkenes.66 However, while industrial production of both LA and GVL is possible, it 

is often the issue that their “competitors” such as ethanol are cheaper. Therefore, 

there is need for development of cheaper, optimised processes. A twofold approach 

can be taken to this problem: research of cheaper ways of extracting hexoses from 

biomass, which would reduce price of the feedstock; and innovation of the 

conversion of biomass into LA and GVL to make it less expensive. Currently, the 

benchmark catalysts for hydrogenation of LA to GVL are ruthenium based,34 which 

is a relatively expensive and scarce metal. Development of a novel catalytic system 

which makes use of more abundant and cheaper materials could reduce the cost of 

GVL production and make it more economically viable on an industrial scale. 

1.5. Aims of the thesis 

This work is part of the international NOVACAM project supported by the European 

Union and Japan Science and Technology Agency. The overall aims of the 

NOVACAM project were to develop novel catalysts based on non-critical metals to 

facilitate the conversion of lignocellulose to useful chemicals and biofuels. The 
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group at Cardiff University focused on the valeric platform – efficient formation of 

γ-valerolactone from cellulose and glucose. The objectives of this body of work were 

not to find the strictly best performing catalysts for these reactions; it was to 

synthesise relatively inexpensive catalysts, optimise their activity and gain a deeper 

insight into how these reactions take place. The goals can be outlined: 

1. To develop a methodology for the production of levulinic acid from glucose. 

To gain an insight into the methodology and limit the polymerisation side 

reactions. 

2. To develop a novel material from non-critical metals for the hydrogenation 

of levulinic acid to γ-valerolactone.  

3. To incorporate the “catalysis by design” approach. Thorough examination 

of the catalytic systems is required in order to drive future catalyst design. 

4. The catalysts should be active in water or methanol, as these are the two 

most common solvents for industrial processing of biomass. 

1.6.  References 

1 J. J. Berzelius, Edinburgh New Philos. J., 1836, XXI, 223. 

2 I. Prefecture and K. Prefecture, Ziegler–Natta Catal. Polym., 2016, 22, 1503–

1546. 

3 B. Lindström and L. J. Pettersson, Cattech, 2003, 7, 130–138. 

4 M. A. Martin, N. Biotechnol., 2010, 27, 596–608. 

5 O. Fenton and D. Ó hUallacháin, Algal Res., 2012, 1, 49–56. 

6 British Petroleum, BP Statistical Review of World Energy 2017, 2017. 

7 C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong and J. Beltramini, Chem. Soc. 

Rev., 2011, 40, 5588. 

8 J. Wang, J. Xi and Y. Wang, Green Chem., 2015, 17, 737–751. 



13 
 

9 I. Delidovich, K. Leonhard and R. Palkovits, Energy Environ. Sci., 2014, 7, 

2803–2830. 

10 S. Ur-Rehman, Z. Mushtaq, T. Zahoor, A. Jamil and M. A. Murtaza, Crit. 

Rev. Food Sci. Nutr., 2015, 55, 1514–1528. 

11 C. V. T. Mendes, M. G. V. S. Carvalho, C. M. S. G. Baptista, J. M. S. Rocha, 

B. I. G. Soares and G. D. A. Sousa, Food Bioprod. Process., 2009, 87, 197–

207. 

12 K. Przybysz Buzała, H. Kalinowska, P. Przybysz and E. Małachowska, Wood 

Sci. Technol., 2017, 51, 873–885. 

13 J. B. Binder and R. T. Raines, Proc. Natl. Acad. Sci., 2010, 107, 4516–4521. 

14 B. Qi, A. Vu, S. R. Wickramasinghe and X. Qian, Biomass and Bioenergy, 

2018, 117, 137–145. 

15 A. L. Stern, J. Chem. Soc. Trans., 1895, 74–90. 

16 Z. Xue, M. G. Ma, Z. Li and T. Mu, RSC Adv., 2016, 6, 98874–98892. 

17 K. Yan and A. Chen, Fuel, 2014, 115, 101–108. 

18 J. J. Bozell, L. Moens, D. C. Elliott, Y. Wang, G. G. Neuenscwander, S. W. 

Fitzpatrick, R. J. Bilski and J. L. Jarnefeld, Resour. Conserv. Recycl., 2000, 

28, 227–239. 

19 S. Kang and J. Yu, Ind. Eng. Chem. Res., 2015, 54, 11552–11559. 

20 S. Saravanamurugan and A. Riisager, ChemCatChem, 2013, 5, 1754–1757. 

21 J. Xu, Y. Su, L. Wu, T. Lu, H. Zou, J. Nan, X. Yang and L. Zhou, Catal. 

Commun., 2014, 50, 13–16. 

22 M. Moliner, Y. Roman-Leshkov and M. E. Davis, Proc. Natl. Acad. Sci., 



14 
 

2010, 107, 6164–6168. 

23 L. Jiang, L. Zhou, J. Chao, H. Zhao, T. Lu, Y. Su, X. Yang and J. Xu, Appl. 

Catal. B Environ., 2018, 220, 589–596. 

24 L. Peng, J. Zhuang and L. Lin, J. Nat. Gas Chem., 2012, 21, 138–147. 

25 K. C. C. G.G. Liversidge  J.F. Bishop, D.A. Czekai, 1980, 96, 62–66. 

26 US Patent 2,813,900, 1953. 

27 US Patent 9,073,841, 2013. 

28 Patent WO2014087016A1, 2014. 

29 L. Qi, Y. F. Mui, S. W. Lo, M. Y. Lui, G. R. Akien and I. T. Horváth, ACS 

Catal., 2014, 1–11. 

30 Á. Szabolcs, M. Molnár, G. Dibó and L. T. Mika, Green Chem., 2013, 15, 

439–445. 

31 R. H. Leonard, Ind. Eng. Chem., 1956, 48, 1330–1341. 

32 D. M. Alonso, J. M. R. Gallo, M. A. Mellmer, S. G. Wettstein and J. A. 

Dumesic, Catal. Sci. Technol., 2013, 3, 927–931. 

33 H. Uslu, Ş. I. Kirbaşlar and K. L. Wasewar, J. Chem. Eng. Data, 2009, 54, 

712–718. 

34 J. Tan, J. Cui, T. Deng, X. Cui, G. Ding, Y. Zhu and Y. Li, ChemCatChem, 

2015, 7, 508–512. 

35 Z. Yan, L. Lin and S. Liu, Energy & Fuels, 2009, 23, 3853–3858. 

36 P. P. Upare, J. M. Lee, D. W. Hwang, S. B. Halligudi, Y. K. Hwang and J. S. 

Chang, J. Ind. Eng. Chem., 2011, 17, 287–292. 

37 S. Cao, J. R. Monnier, C. T. Williams, W. Diao and J. R. Regalbuto, J. Catal., 



15 
 

2015, 326, 69–81. 

38 K. Yan, T. Lafleur, C. Jarvis and G. Wu, J. Clean. Prod., 2014, 72, 230–232. 

39 K. Yan, T. Lafleur, G. Wu, J. Liao, C. Ceng and X. Xie, Appl. Catal. A Gen., 

2013, 468, 52–58. 

40 K. Mustafin, F. Cárdenas-Lizana and M. A. Keane, J. Chem. Technol. 

Biotechnol., 2017, 92, 2221–2228. 

41 A. M. Hengne and C. V. Rode, Green Chem., 2012, 14, 1064. 

42 S. Lomate, A. Sultana and T. Fujitani, Catal. Sci. Technol., 2017, 7, 3073–

3083. 

43 J. Hirayama, I. Orlowski, S. Iqbal, M. Douthwaite, S. Ishikawa, P. J. 

Miedziak, J. K. Bartley, J. Edwards, Q. He, R. L. Jenkins, T. Murayama, C. 

Reece, W. Ueda, D. J. Willock and G. J. Hutchings, J. Phys. Chem. C, 2018, 

123, 7879–7888. 

44 F. Wang, Z. Chen, H. Chen, T. A. Goetjen, P. Li, X. Wang, S. Alayoglu, K. 

Ma, Y. Chen, T. Wang, T. Islamoglu, Y. Fang, R. Q. Snurr and O. K. Farha, 

ACS Appl. Mater. Interfaces, 2019, 11, 32090–32096. 

45 H. J. Bart, J. Reidetschläger, K. Schatka and A. Lehmann, Ind. Eng. Chem. 

Res., 1994, 33, 21–25. 

46 S. Quereshi, E. Ahmad, K. K. Pant and S. Dutta, Ind. Eng. Chem. Res., 2019, 

58, 16045–16054. 

47 D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes and J. R. H. Ross, Biorefineries-

Industrial Process. Prod. Status Quo Futur. Dir., 2008, 1, 139–164. 

48 U.S. Patent, 4,364,743, 1982. 

49 X. Hu, L. Wu, Y. Wang, D. Mourant, C. Lievens, R. Gunawan and C. Z. Li, 



16 
 

Green Chem., 2012, 14, 3087–3098. 

50 E. Ahmad, M. I. Alam, K. K. Pant and M. A. Haider, Green Chem., 2016, 18, 

4804–4823. 

51 Z. Li, R. Wnetrzak, W. Kwapinski and J. J. Leahy, ACS Appl. Mater. 

Interfaces, 2012, 4, 4499–4505. 

52 K. Y. Nandiwale, P. S. Niphadkar, S. S. Deshpande and V. V. Bokade, J. 

Chem. Technol. Biotechnol., 2014, 89, 1507–1515. 

53 G. Morales, A. Osatiashtiani, B. Hernández, J. Iglesias, J. A. Melero, M. 

Paniagua, D. Robert Brown, M. Granollers, A. F. Lee and K. Wilson, Chem. 

Commun., 2014, 50, 11742–11745. 

54 L. Peng, L. Lin, H. Li and Q. Yang, Appl. Energy, 2011, 88, 4590–4596. 

55 D. Ding, J. Xi, J. Wang, X. Liu, G. Lu and Y. Wang, Green Chem., 2015, 17, 

4037–4044. 

56 L. Jiang, L. Zhou, J. Chao, H. Zhao, T. Lu, Y. Su, X. Yang and J. Xu, Appl. 

Catal. B Environ., 2018, 220, 589–596. 

57 X. Tang, Z. Li, X. Zeng, Y. Jiang, S. Liu, T. Lei, Y. Sun and L. Lin, 

ChemSusChem, 2015, 8, 1601–1607. 

58 Z. Li, X. Tang, Y. Jiang, Y. Wang, M. Zuo, W. Chen, X. Zeng, Y. Sun and 

L. Lin, Chem. Commun., 2015, 51, 16320–16323. 

59 M. Sudhakar, V. V. Kumar, G. Naresh, M. L. Kantam, S. K. Bhargava and 

A. Venugopal, Appl. Catal. B Environ., 2016, 180, 113–120. 

60 D. Sun, Y. Takahashi, Y. Yamada and S. Sato, Appl. Catal. A Gen., 2016, 

526, 62–69. 

61 D. Fegyverneki, L. Orha, G. Láng and I. T. Horváth, Tetrahedron, 2010, 66, 



17 
 

1078–1081. 

62 Z. Q. Duan and F. Hu, Green Chem., 2012, 14, 1581–1583. 

63 L. E. Manzer, Appl. Catal. A Gen., 2004, 272, 249–256. 

64 I. T. Horváth, H. Mehdi, V. Fábos, L. Boda and L. T. Mika, Green Chem., 

2008, 10, 238–242. 

65 N. Savage, Nature, 2011, 474, S9–S11. 

66 J. Han, J. Ind. Eng. Chem., 2017, 48, 173–179. 

 

Chapter 2 

Experimental 

All references are self-contained to within this chapter, and do not refer to any other 

chapters. 

2.1. Materials 

Table 1. Chemical materials used in this thesis 

Material Supplier Purity 

Cu(NO3)2.3H2O Acros Chemicals 99% 

ZrO(NO3)2.6H2O Acros Chemicals 98% 

Mn(NO3)2.4H2O Sigma Aldrich 99% 

Ce(NO3)3 Sigma Aldrich 99% 

Zeolites β Alfa Aesar n/a 

Zeolites ZSM-5 Alfa Aesar n/a 

K2CO3 Sigma Aldrich 99% 

Oxalic acid Sigma Aldrich 99% 
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NH4OH solution (25-28% conc.) Sigma Aldrich 99% 

H2SO4 Sigma Aldrich 95% 

H3PO4 Sigma Aldrich 85% 

Methanol Sigma Aldrich 99% 

Ethanol Sigma Aldrich 99% 

Levulinic acid Sigma Aldrich 99% 

γ-valerolactone Sigma Aldrich 99% 

α-D-methyl glucopyranoside Sigma Aldrich 99% 

β-D-methyl glucopyranoside Sigma Aldrich 99% 

5-Hydroxymethylfurfural Sigma Aldrich 99% 

Methyl levulinate Sigma Aldrich 99% 

Formic acid Sigma Aldrich 99% 

Methyl formate Sigma Aldrich 99% 

Ammonium metatungstate Sigma Aldrich 99% 

Mesitylene Sigma Aldrich 98% 

 

2.2. Catalyst preparation 

2.2.1. Preparation of Cu-ZrO2 catalysts 

2.2.1.1. Co-precipitation 

Co-precipitation is a catalyst synthesis technique, in which two or more metals are 

precipitated out of solution simultaneously. Changing preparation variables such as 

temperature, aging time, or metal source can have significant effects on the final 

catalyst, and therefore need to be controlled carefully; it is also necessary to identify 

the optimal conditions and timings to use for each step of the preparation. It is 

important that nay catalyst synthesis and pre-conditioning methods lead to 

reproducible materials. 
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The co-precipitation of Cu-ZrO2 is reported in literature, as follows: Cu(NO3)2.3H2O 

(0.01 mol) and ZrO(NO3)2 (0.01 mol) are dissolved in separate solutions of water 

(100 mL each). Both solutions are then added together and stirred in a beaker at room 

temperature for 5 minutes. Once homogenous mixing is achieved, K2CO3 is added 

to the solution dropwise (0.2 M) to raise the pH to 9. The mixture is then aged for 6 

hours, filtered on a Buchner funnel, and washed with hot deionised water (1 L). The 

catalyst is then dried for 16 hours at 110 ⁰C. After drying, the precursor is ground to 

a fine powder using a mortar and pestle, and calcined under static air at 550 ⁰C, 10 

⁰C min-1 for 2 hours. After calcination the catalyst is reduced under flowing 5% 

H2/Ar (200 mL min-1) at 300 ⁰C, 10 ⁰C min-1 for 2 hours. 

2.2.1.2. Oxalate gel precipitation 

Oxalate gel precipitation is a catalyst synthesis method similar to co-precipitation, 

however the pH of the solution is not intentionally adjusted, and instead the catalyst 

is precipitated out of reaction by the formation of an alcohol insoluble CuZr-oxalate 

gel (og). 

The co-precipitation of Cu-ZrO2 (og) is reported in literature, as follows: 

Cu(NO3)2.3H2O (0.01 mol) and ZrO(NO3)2 (0.01 mol) are dissolved in separate 

solutions of ethanol (100 mL each). Both solutions are then added together and 

stirred in a beaker at room temperature for 5 minutes. Once homogenous mixing is 

achieved, oxalic acid (0.024 mol) is added, causing the metals to precipitate out of 

solution. The mixture is aged for 2 hours at room temperature, and filtered on a 

Bucher funnel. The catalyst is then dried for 16 hours at 110 ⁰C. After drying, the 

catalyst is subject to the same calcination and reduction treatment as co-precipitation 

catalysts. 
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2.2.1.2.1. Doping Cu-ZrO2 catalysts with manganese 

Doping of Cu-ZrO2 catalyst with manganese is achieved using the wet impregnation 

method. In order to achieve 1% wt. doping, Mn(NO3)2.4H2O (0.0231 g, 0.00009 

mol) is dissolved in 3 mL ethanol by sonication. Then, the calcined Cu-ZrO2 (0.5 g) 

is dispersed in the metal salt solution, and the resulting slurry is dried under vigorous 

stirring and heating (100 ⁰C). After that, the solid was re-calcined at 550 ⁰C for 2 h 

with a 10 °C min–1 ramp under static air, and reduced at 300 °C for 2 h with a 10 °C 

min–1 ramp under 5% H2/Ar mixture gas (200 mL min-1). 

2.2.1.3. pH gradient precipitation 

Another method of catalyst preparation used in this thesis is pH gradient 

precipitation. It is a catalyst synthesis method derived from co-precipitation. The 

main aim of the pH gradient method is reduction in the amount of metal loading 

while retaining high activity. This is achieved by taking advantage of the fact that 

certain metals precipitate out of solution at different pH values. One of the main 

catalysts used in this thesis is CuZrO2; in the standard, non-gradient co-precipitation 

method, both metals are precipitated at the same time, which leads to a lot of copper 

being locked in the bulk lattice of zirconia, where it is inactive, and therefore wasted. 

Zirconia starts to precipitate at around pH 4.5, whereas copper precipitates around 

pH 5.5. By creating a pH gradient over time, a layered catalyst can theoretically be 

synthesised, with zirconia at the core and most of the copper on the outside.  

In a typical synthesis, calculated amounts of Cu(NO3)2.3H2O and ZrO(NO3)2.6H2O 

are dissolved in separate solutions of deionised water (100 mL). The solutions are 

then mixed together and stirred for 5 minutes to achieve thorough mixing. The 

starting pH of the solution is measured to be around 1.7, depending on the total 

amount of nitrates used (higher copper loading catalyst require more 

Cu(NO3)2.3H2O, which in turn lowers the pH of solution), and the mixture is kept at 
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25 oC with a heated water bath. The pH of the solution is then adjusted to 4.5 by a 

slow and controlled addition of K2CO3 solution (0.2 M). Initially, the addition of 

base was carried out by hand, using either a burette or a pipette; however use of an 

autotitrator proves to be much more consistent as manual preparation is prone to 

errors. A value of pH 4.5 was chosen as the starting point due to the very slow rate 

of precipitation of nitrates at pH values lower than 4.5. Once pH 4.5 was achieved, 

the mixture is aged for 30 minutes. After 30 minutes, pH is adjusted to 5.5 and the 

mixture is left to age for another 30 minutes. The process is repeated again for pH 

setpoints of 6.5, 7.5, and 9.5. These setpoints were selected basing on experimental 

data gathered when evaluating this preparation method, discussed in chapter 4. Once 

pH of 9.5 is reached, the mixture is aged for 4 hours. After aging, catalyst is 

recovered by vacuum filtration and washed with room temperature deionised water 

(1 L). The precursor is then dried at 110 ⁰C for 16 hours. After drying, catalyst was 

ground to a fine powder using mortar and pestle and calcined under static air at 400 

⁰C, 20 ⁰C min-1 for 4 hours. A range of catalysts denoted xCuZrO2 was prepared this 

way, where x = 10%, 20%, 30%, 40% and 50%.  

Reduction treatment 

Some catalysts were subjected to reduction treatment (after calcination) under 5% 

H2/Ar, at 300 ⁰C for 2 hours with a ramp rate of 10 ⁰C/min. 

2.2.1.4. Preparation of SO4-ZrO2 catalysts 

Preparation of SO4-ZrO2 catalysts utilised a standard precipitation method, followed 

by acid treatment, as described below. 

ZrO(NO3)2.6H2O (0.03 mol, 10 g) is dissolved in deionised water (200 mL). A 

solution of ammonium hydroxide (25-28%) is then slowly added under constant 

stirring until pH 9 is reached. White sol appears. The mixture is then aged for an 

hour at room temperature, filtered under vacuum and dried at 110 ⁰C for 16 hours. 
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After drying, the white powder is ground using mortar and pestle and stirred at room 

temperature in a solution of sulfuric acid (0.5 M, 20 mL g-1) for an hour. Catalyst is 

then recovered by filtration, dried at 110 ⁰C for 16 hours and calcined under static 

air at 550 ⁰C for 4 hours, with a ramp rate of 10 ⁰C min-1. 

2.2.1.5 Treatment of zeolites 

Commercial zeolites β and ZSM-5 (NH4-form) were obtained from Alfa Aesar. 

Zeolites are calcined before use under flowing N2 at 550 ⁰C for 4 hours, with a ramp 

rate of 5 ⁰C/min. Treatment was done in order to convert the zeolites from NH4-form 

into the H-form. 

2.2.1.6. Silylation of zeolites 

A silylation procedure has been adapted from literature.1 Zeolite β (38) (2 g) was 

added to hexane (50 mL) and heated under stirring until reflux. 

Tetraethylorthosilicate (TEOS, 0.3 mL) was then added into the mixture and it was 

stirred under reflux for an hour. The mixture was then cooled down and solvent was 

evacuated using a rotary evaporator. The resulting zeolite was then dried at 110 °C 

for 16 hours, and subsequently calcined at 500 °C for 4 hours in flowing air. 

2.2.1.7. Preparation of phosphated zirconia 

ZrO(NO3)2 (10 g) was dissolved in 200ml of deionised water. 25% NH4OH was 

added dropwise to the solution until pH 9 was reached and white precipitate 

appeared. The mixture was left to stir for an hour at room temperature. It was then 

filtered and dried at 110 °C for 16 hours. The dried powder was ground, stirred in 

0.5M H3PO4 for an hour, filtered and dried at 110 °C for 16 hours. The dried powder 

was calcined at 550 oC under static air for 3 hours (10 oC/min). 
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2.2.1.8. Preparation of CeO2 

Ce(NO3)3 (10 g) was dissolved in 200ml of deionised water. 25% NH4OH was added 

dropwise to the solution until pH 9 was reached and beige precipitate appeared. 

Solution was left to stir for an hour at room temperature. It was then filtered and 

dried at 110 °C for 16 hours. The dried powder was calcined at 450 oC under static 

air for 4 hours (10 oC/min). 

2.2.1.9. Preparation of SO4-CeO2 

The dried, pre-calcination material prepared in 2.2.1.8 was ground, stirred in 0.5M 

H2SO4 for an hour, filtered and put in an oven overnight. The dried powder was 

calcined at 450 oC under static air for 4 hours (10 oC/min). 

2.2.1.10. Preparation of 15% WO3-ZrO2 

Solutions of ammonium metatungstate (0.00038 mol, 1.1 g)and ZrO(NO3)2.6H2O 

(0.03 mol, 10 g) in de-ionised water (200 mL) were prepared separately. Ammonium 

metatungstate was added to zirconyl nitrate; white precipitate was observed 

immediately, and 28% NH4OH was then slowly added to the solution until pH ~9.5 

was reached. The catalyst was then put in an autoclave and heated to 180 oC under 

autogenous pressure for 18h. The catalyst was then filtered, dried at 110 °C for 16 

hours and calcined under flowing air at 800 oC, 10 oC/min, 4h.  

2.3. Catalyst testing 

2.3.1. Hydrogenation of levulinic acid to γ-valerolactone 

Catalytic testing of xCu-ZrO2 catalysts for the conversion of levulinic acid was 

carried out using a 50 mL, Parr Instruments 5500 stainless steel stirred autoclave. A 

Teflon liner is used to hold the reactants. The liner was loaded with 5% levulinic 

acid solution (10 g) and catalyst (0.05 g); the autoclave is then sealed, and purged 

with H2 three times to remove any residual atmospheric gases. The autoclave is then 
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heated to 200 oC under 200 rpm stirring. Once reaction temperature was reached, the 

autoclave is charged with 35 barg H2 and stirring rate is increased to 2000 rpm. This 

is considered to be t0 for the reaction, and the reactor is then left for a desired amount 

of time. After reaction has finished, the reactor is cooled on ice, gasses are vented 

once the reactor has cooled below 15 oC. Reaction solution is then recovered by 

filtration and analysed using GC equipped with a HP-5ms boiling point column. 

2.3.2. Conversion of glucose and methyl glucosides to methyl levulinate 

Catalytic testing of solid acid catalysts and zeolites was carried out using a 50 mL, 

Parr Instruments 4957 stainless steel stirred autoclave equipped with a Teflon liner. 

The liner is loaded with a desired amount of substrate, methanol (7.85 g), catalyst 

(0.08 g) and mesitylene (0.1 g, used as internal standard). The reactor is then sealed, 

purged three times with N2 to remove any residual atmospheric gases, and charged 

with 10 bar of N2. The reactor is kept under inert pressure in order to prevent 

evaporation of the solvent at high temperatures, and to avoid any oxidation side 

reactions. The autoclave is then heated to the desired temperature under 600 rpm 

stirring. After the reaction, the autoclave is cooled on ice and gasses are vented once 

the reactor has cooled below 15 oC. Reaction solution is then recovered by filtration 

and analysed using GC and HPLC. 

2.3.3. Re-use testing of Cu-ZrO2 catalysts 

Catalyst reuse testing was carried out by running a reaction with large amount of 

catalyst (0.25 g) under standard conditions. The catalyst was then filtered, washed 

with deionised water (100 mL) and dried at 110 °C for 16 h. From the used catalyst, 

50 mg was taken, and a standard reaction was carried out. However, since catalyst 

recovery rates were only ~60%, it was necessary to combine the used catalysts of 

more than one reaction to generate the required 50 mg. Two approaches were used. 

In one, a large batch of catalyst (0.25 g) was synthesised and all initial catalysts were 
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taken from this single batch. In the other, multiple smaller batches (0.05 g) were used 

for the initial catalysts. In both cases the recovered catalysts from multiple runs were 

combined to generate the catalyst for the next set of reuse tests. 

No difference in results was observed between these methods, and as such the single-

batch method was used for consistency. 

2.3.4. Re-use testing of zeolites 

Catalyst reuse testing was carried out by running a reaction with large amount of 

catalyst (0.25 g) under standard conditions. The catalyst was then filtered, washed 

with deionised water (100 mL) and dried at 110 °C for 16 h. The zeolite was then 

subject to calcination procedure decompose any humins adsorbed on the surface. 

The zeolite was calcined before use under flowing N2 at 550 ⁰C for 4 hours, with a 

ramp rate of 5 ⁰C/min. From the used catalyst, 80 mg was taken, and a standard 

reaction was carried out. However, since catalyst recovery rates were only ~50%, it 

was necessary to combine the used catalysts of more than one reaction to generate 

the required 80 mg. In a fashion identical to Cu-ZrO2 reuse, two approaches were 

used, one utilising large batch (0.25 g) and one utilising multiple smaller batches 

(0.08 g). No difference in results was observed between these methods, and as such 

the single-batch method was used for consistency. 

2.4. Analytical techniques 

2.4.1. Gas chromatography 

Gas chromatography (GC) is an analytical technique which is able to separate a 

chemical mixture into individual substances in the gas phase. The separation is 

achieved by utilising the interaction of the injected gas with both mobile phase 

(mixture) and stationary phase (column). A typical gas chromatograph is built of 

several distinct parts, listed in order in which a sample goes through them: 
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1. Injector port – this port is kept at a temperature sufficiently high to vapourise 

the injected sample. The injector port is important, as the whole analytical 

technique relies on the sample being evaporated into gas phase. 

2. Column – a key component in a GC; a column contains the stationary phase, 

which defines how an analyte mixture (mobile phase) interacts with it and 

therefore dictates how the output chromatogram will look (signal separation, 

intensity, and retention time). A column is placed inside an oven, in order to 

keep the sample temperature high and prevent condensation, which can lead 

to analytical errors. Liquid samples in this thesis were analysed using a GC 

equipped with a HP-5ms column, which separates components based on 

their boiling points.  

3. Detector – Like with columns, there are many different types of detectors 

available to use in GCs. The detector used in this thesis was a Flame 

Ionisation Detector (FID). The sample is carried from the column into the 

FID, where it is pyrolised by a hydrogen/air flame. The ionised carbons 

generate a signal with the detector electrodes and a detector output is 

produced. FIDs are often used to analyse hydrocarbon mixtures, because 

they are easily ionised. It is a destructive technique of analysis. 

4. Data collection – signal is collected from the FID, processed and plotted by 

a computer. 

5. Carrier gas – carrier gas is, alongside the injected sample, part of mobile 

phase and accompanies every step of the analytical process. It carries the 

analyte mixture from the injector port into the detector. Typically, helium, 

nitrogen or argon are chosen as the carrier gas because of their inert nature.  

Samples analysed by GC in chapter 4 were liquid samples prepared by mixing 0.9 

mL of the reaction mixture with 0.1 mL acetonitrile (AcCN) or mesitylene standard. 

A standard was used in order to minimise any errors associated with injection of the 
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sample, and all other signals were normalised to it. Calibration curves used for 

measurement of conversions and yields are shown in figures 6 – 12.  

 

Figure 6. Calibration curve used for measuring levulinic acid with GC for chapter 4. 

Response factor of 4.8651 was obtained. Acetonitrile was used as external standard. 

 

Figure 7. Calibration curve used for measuring GVL yield with GC for chapter 4. 

Response factor of 5.1407 was obtained. Acetonitrile was used as external standard. 

For experiments in chapter 3 when mesitylene was used as an internal standard, the 

calibration curves used are shown in figures 8 – 12. 
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Figure 8. Calibration curve used for measuring GVL with GC for chapter 3. 

Response factor of 0.3588 was obtained. Mesitylene was used as internal standard. 

 

 

Figure 9. Calibration curve used for measuring methyl levulinate with GC for chapter 

3. Response factor of 0.3936 was obtained. Mesitylene was used as internal standard. 
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Figure 10. Calibration curve used for measuring methyl formate with GC for chapter 

3. Response factor of 0.0.0987 was obtained. Mesitylene was used as internal 

standard. 

 

Figure 11. Calibration curve used for measuring furfural alcohol with GC for chapter 

3. Response factor of 0.3128 was obtained. Mesitylene was used as internal standard. 
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Figure 12. Calibration curve used for measuring furfural (FF) with GC for chapter 

3. Response factor of 0.3444 was obtained. Mesitylene was used as internal standard. 

2.4.2. High Performance Liquid Chromatography (HPLC) 

HPLC works on an identical basis to GC, however the samples are injected as liquid, 

and remain liquid for the duration of analysis. A typical HPLC machine consists of 

several components: 

1. Pump – the pump is responsible for maintaining a constant flow of mobile 

phase throughout the instrument. It is capable of delivering high pressures 

(typically 50 – 300 bar) at high-precision flow rates. A pump takes mobile 

phase from the solvent reservoir, takes it to the degasser were atmospheric 

gasses are removed and then flows it to the rest of the instrument. A pump 

is a very important component of any HPLC, as variations in flow rates will 

affect the output signal retention times and strength.  

2. Injector valve – the injector valve introduces the analyte sample into the 

mobile phase.  

3. Column – similarly to a GC, the role of a column is separation of chemicals. 

Column is packed with porous adsorbate material (stationary phase) which 

interacts with the injected chemicals and changes their individual flow rates 
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throughout the column, thus achieving signal separation. The column used 

for analysis of liquid samples in this thesis was MetaCarb 67H. 

4. Detector – typically, two types of detectors are used in a HPLC – Refractory 

Index Detector (RID) and UV/Vis absorbance detector. UV/Vis detector can 

scan a range of UV values at once, however it is best applied to systems with 

unsaturated bonds present, as saturated hydrocarbons might be undetected 

or produce weak signals. An RID detector is considered to be a universal 

detector, because it detects changes in refractive index with relation to the 

mobile phase. RID was used for analysis of post-reaction mixtures in this 

thesis. 

5. Data collection – raw signal from the RID was collected, processed and 

plotted by a computer. 

6. Mobile phase – the mobile phase used in this thesis was 0.1% H3PO4. Many 

different mobile phases can be used in HPLC analysis, and they are picked 

appropriately to fit the chemicals analysed and the column used. 

All samples analysed by HPLC in this thesis were 1 mL liquid samples of the 

reaction mixture. Calibration curves used for measurement of conversions and yields 

are shown in figures 13-16. 
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Figure 13. Calibration curve for α-MeGlc with HPLC for chapter 3. Response factor 

of 33863445.4545 was obtained. 

 

Figure 14. Calibration curve for β-MeGlc with HPLC for chapter 3. Response factor 

of 31502783.3636 was obtained. 
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Figure 15. Calibration curve for methyl levulinate with HPLC for chapter 3. 

Response factor of 7958032.3636 was obtained. 

 

Figure 16. Calibration curve for formic acid with HPLC for chapter 3. Response 

factor of 62961436.7599 was obtained. 
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NMR is a non-destructive spectroscopic technique used to identify molecules present 

in a sample. Various types of NMR analysis exists, such as 1H and 13C, both of which 

were used in this thesis. The technique can be applied to any atom which has a spin 

value of ½. A sample of analyte was prepared by mixing known quantities of the 

sample solution and D2O. A deuterated solvent is necessary for NMR analysis, as 
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the machine locks on to the signal of the pre-configured deuterated compound. This 

is done to compensate for any drift in magnetic field. An internal standard 

(tetramethylsilane, TMS) of known quantity was sealed in a glass tube and added to 

the vial, so that quantitative analysis could be carried out. A strong magnetic field 

(B0) is then applied to the sample, which causes the ½ spin nuclei to separate into 

two energy states: the lower +½  and the excited -½. The energy of the spin state 

becomes excited, after which it relaxes to the original state; as part of this process, 

energy is given emitted at a specific wavelength which can then be measured and 

interpreted by the instrument.  

2.4.4. Gas chromatography-mass spectrometry (GC-MS) 

GC-MS is an analytical method which combines gas chromatography and mass 

spectrometry in tandem for a more complete analysis. GC-MS assigns mass 

fragments detected to each peak in the GC spectrum, making positive identification 

of a chemical possible. The prepared sample is injected into the GC instrument, as 

described in section 2.4.1. However, at the end of the column, the sample is then 

carried over into a mass spectrometer.  

Mass spectrometry is an analytical technique which ionises the compounds in the 

sample and outputs a report of ions present and their charge/mass ratio. The sample 

is first vapourised at the injector, and ionised by being bombarded with electrons. 

Organic molecules break down into identifiable fragments. The fragments are then 

accelerated and a magnetic field is applied to deflect them. The amount by which a 

fragment is deflected depends on their charge/mass ratio; lighter fragments will be 

deflected more by the magnetic field. As the ions are sorted by their mass/charge 

ratio, they hit the detector which analyses the relative abundances of the ions. GC-

MS was utilised in chapter 4 of this thesis. A gas chromatograph Shimadzu GC-2010 

Plus was paired with a Shimadzu GCMS-QP2010 SE mass spectrometer. 



35 
 

2.4.5.  Calculation of yields and conversions 

Yields and conversions were calculated using calibrated response factors for both 

GC and HPLC machines. Typically, calibrations were carried out by preparing five 

solutions containing the desired chemicals, at a range of concentrations spanning 

values typically seen in reactions. If a standard (internal or external) was used for 

calibration, then two values were calculated for each solution: a) molecule peak area 

divided by standard peak area and b) moles of molecule, divided by moles of 

standard. The obtained values were plotted on an area vs. moles graph and the 

resulting plots’ gradient was taken as the response factor (R2≥0.99). 

If no standard was used for calibration (i.e. HPLC analysis), then peak area vs. moles 

graph was plotted for each chemical and the gradient was taken to as the response 

factor (R2≥0.99).  

The amount of chemical, x, in the sample could then be calculated as such from GC 

or HPLC data using equations 2.1 – 2.4. 

Equation 2.1. 

𝑚𝑜𝑙𝑒𝑠 𝑥 = (
(

𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑥
𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

)

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑥
) ∗  𝑚𝑜𝑙𝑒𝑠 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 

Knowing the amount of moles in a sample, conversion could be calculated: 

Equation 2.2. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑥 =  
𝑥0 − 𝑥𝑓

𝑥0
𝑥 100% 

Where x0 is the starting moles of the substrate x and xf is the moles of the substrate x 

after a reaction. 

Yields of product, m, were calculated from moles: 
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Equation 2.3. 

𝑌𝑖𝑒𝑙𝑑 𝑜𝑓 𝑚 =  
𝑚𝑓

𝑥0
∗ 100% 

Where mf is the moles of m after a reaction, and x0 is the starting moles of a substrate 

x. 

For the conversion of α-D-methyl glucopyranoside to methyl levulinate, where both 

α and β anomers are present in the reaction, xf is taken to be the sum of moles of α 

and β anomers at the end of a reaction as their reactivity profiles are very similar and 

there is an equilibrium established between the two molecules.  

Finally, carbon balance was calculated from moles of carbon of identified products: 

Equation 2.4. 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =  
𝐶𝑓𝑖𝑛𝑎𝑙

𝐶0
∗ 100% 

Where Cfinal is the total moles of carbon in known products after a reaction, and C0 

is the total moles of carbon before a reaction. 

2.5. Catalyst characterisation 

2.5.1. Bruanuer-Emmett-Teller (BET) surface area analysis 

Determination of surface area is one of the primary characterisation techniques for 

many catalysts, as surface area can often be correlated to catalytic activity. The BET 

model is commonly used for surface area analysis, and it’s based on the Langmuir 

model for monolayer molecule adsorption. The BET model features several 

assumptions to allow it to be applied to surface area analysis: 

1. Gas molecules adsorb on a solid surface in infinite layers. 

2. There is no interaction between each adsorbed layer. 

3. The Langmuir model can be applied to each layer. 
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BET surface are can be calculated by using the following BET equations: 

Equation 2.5. 

1

𝑣[(
𝑝0
𝑝 ) − 1]

=
𝑐 − 1

𝑣𝑚𝑐
(

𝑝

𝑝0
) +

1

𝑣𝑚𝑐
 

Where v is the quantity of gas adsorbed, p0 is the saturation pressure of adsorbed gas 

at adsorption temperature, p is the equilibrium pressure of adsorbed gas at adsorption 

temperature, vm is the quantity of a gas adsorbed needed for a monolayer, and c is a 

BET constant, which is calculated from the heat of adsorption. Equation 2.5 can then 

be plotted on a graph where 𝑥 = (𝑝 𝑝0)⁄  and 𝑦 = 1 𝑣[(𝑝 𝑝0) − 1]⁄⁄ . Slope and the 

intercept can be used to calculate vm, from which total surface area, Stotal, cam be 

calculated.  

Equation 2.6. 

Stotal =  
(𝑣𝑚𝑁𝑠)

𝑉
 

Where Stotal is the total surface area, N is the Avogadro’s number, s is the adsorption 

cross section of the adsorbed gas, and V is the molar volume of the gas adsorbed. 

From total surface area Stotal, specific surface area, SBET, is calculated. 

Equation 2.7. 

𝑆𝐵𝐸𝑇 =  
𝑆𝑡𝑜𝑡𝑎𝑙

𝑚
 

Where m is the mass of the sample or adsorbent used. 

All surface areas for in this thesis were determined using a 5-point adsorption method 

performed at liquid nitrogen temperature (-196 ⁰C) on a Micromeretics Gemini 2360 

using the BET model. Each sample was subject to a degass procedure at 120 ⁰C for 

2 hours under flowing N2 before analysis, to remove any adsorbed species. 
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2.5.2. X-ray diffraction 

X-ray diffraction (XRD) is one of the most popular techniques for characterisation 

of heterogeneous catalysts. It is a non-destructive, crystallographic technique which 

allows for the determination of crystallites present and their size, phases or unit size. 

However, it is only useful for crystalline materials, where atoms are regularly spaced. 

Amorphous materials will not produce useful information with this technique.  

XRD works on the basis of measuring the constructive interference stemming from 

elastic scattering of the x-rays as the incident beam hits the atoms of a measured 

material. Elastic scattering means that the scattered x-rays is of the same wavelength 

as the source x-rays. As the incoming x-ray beam hits the atoms, it is scattered in a 

specular (mirror-like) fashion, and depending on the diffraction angle θ, the 

interference of the outgoing radiation can be either constructive or destructive; a 

constructive interference will produce a signal, and therefore a peak in XRD, 

whereas destructive interference will not. Constructive interferences can be 

described by Bragg’s law (equation 2.8). 

Equation 2.8. 

2𝑑 sin 𝜃 = 𝑛𝜆 

Where d is the inter-planar spacing, θ is the diffraction angle, n is a positive integer, 

and λ is the wavelength of incoming x-rays. 

Powder XRD was used for all XRD analysis in this thesis. A PANalytical X'Pert Pro 

diffractometer equipped with a CuKα source operated at 40 kV and 40 mA was used 

for data collection, with 2θ range of 10-80⁰. Analysis of data was carried out by 

comparison of data to a PDF library of XRD patterns.   
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2.5.3. Temperature-programmed reduction  

Temperature-programmed reduction (TPR) is a catalyst characterisation technique 

where hydrogen is passed over a heated sample in order to identify the oxidation 

state of a metal and its reducibility. Optimal reduction temperature for a catalyst can 

also be determined from TPR. As the catalyst is reduced during TPR, it consumes 

hydrogen, which produces a signal and results can be plotted on a graph.  

TPR was carried out using a Thermo 1100 TPDRO instrument. Samples (0.25 g) 

were pre-treated at 110 ⁰C, with 20 ⁰C/min heating rate, for 1 hour under flow of 

helium (20 mL/min) in order to clean the catalyst surface. The sample was then 

cooled to room temperature, and subject to reduction under 10% H2/Ar (20 mL/min), 

heating to 350 ⁰C at 1 ⁰C/min. 

2.5.4. Diffuse reflectance infrared fourier transform (DRIFTS) analysis 

DRIFTS is a technique which analyses the diffuse infrared reflection of a solid 

sample. In this thesis, pyridine DRIFTS was used as a way of measuring acidity of 

a catalyst. Pyridine is absorbed onto the catalyst, and interacts with acid sites. 

Bronsted-acid sites protonate pyridine, producing an IR absorption at around 1540 

cm-1. Lewis acid sites form a complex with pyridine, giving an IR absorption at 

around 1445 cm-1. There are also several other IR adsorption bands that can be 

attributed to either Bronsted sites (B), Lewis sites (L), or both; these bands can be 

found around 1635 cm-1 (B), 1610 cm-1 (L) and 1488 cm-1 (L+B). Quantification of 

acid site strength is difficult, but possible with this technique. It is mainly used as a 

qualitative tool. 

Pyridine DRIFTS was carried out using Bruker Tensor 27 instrument. The sample 

cuvette was filled with catalyst and the sample chamber was sealed. Nitrogen was 

bubbled through pyridine and carried through a heated steel line (120 ⁰C), and passed 

over the sample at 60 mL/min for 5 minutes at room temperature. Once the surface 
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of the catalyst has been saturated with pyridine, flow of nitrogen was stopped and 

the catalyst was exposed to a vacuum line. The sample was then heated to pre-

determined set points and IR measurements were taken. The temperature was 

ramped in stages until a maximum of 550 ⁰C, in order to desorb pyridine off the 

surface of the catalyst.  

2.5.5. Microwave plasma atomic emission spectroscopy (MPAES) 

MPAES is an elemental analysis technique which can be used to analyse the specific 

metal content in solution. For example, a catalyst can be digested in aqua regia, and 

the solvated metal content can be analysed to give an accurate metal loading on the 

catalyst. MPAES can also be used to find the amount of metal leached into the 

reaction solution.  

The technique is based on passing a nebulized sample over a nitrogen plasma, heated 

to 5000K with the use of microwave radiation and magnetic fields. Electrons in the 

metal atoms in the sample are excited into higher energy states as they pass over the 

plasma, followed by a relaxation into lower energy. As the electrons relax, they give 

off photons of defined wavelengths which are specific to certain elements, due to the 

fact that energy levels are quantized. The photons are then detected and the response 

can be quantified using a calibrated response curve made up from stock solutions.  

Solution samples from reactions using CuZrO2 catalysts were checked for copper 

metal leaching using an Agilent MP-AES 4100 instrument. 

2.5.6. Scanning electron microscopy (SEM) 

SEM is a powerful surface analysis technique which uses a focused beam of 

electrons originating from a LaB6 filament to scan the surface of a sample with a 

raster pattern. As the electron beam interacts with the surface of the catalyst, several 

types of radiation are generated, including backscattered electrons (BSE), x-ray 

(EDX), and secondary electrons (SE). Secondary electrons are emitted from the 



41 
 

sample due to high energy of the beam. The SE are detected and an image can be 

generated from the data. As electrons are emitted off the sample, electron holes may 

form; in order to fill these electron holes, electrons from higher energy levels may 

fill the hole, and in the process give off x-rays correspondent to the difference in 

energy between the two levels. The x-rays can be detected by SEM and a map of 

elements and their positions can be generated, giving the composition of the surface.  

Samples were prepared for SEM by sonicating a small amount of catalyst in ethanol 

and depositing them onto a carbon-supported, 300-mesh copper grid, and drying any 

excess solvent. SEM was then carried out using a Tescan MAIA3 Triglav FEG-SEM, 

with the beam operating at 15 kV.  

2.5.7. Copper surface area measurement by N2O titration 

Aside from total surface area, normally measured by BET method, the specific 

surface area of a metal can also be measured by using N2O titration. N2O is capable 

of oxidising copper particles to cuprous oxide. A known quantity of N2O is passed 

over the catalyst, where the redox reaction happens (2Cu + N2O → N2 + Cu2O). Any 

excess N2O is captured by a molecular sieve, and the produced N2 is carried to the 

detector. The specific copper surface area can be calculated by comparing the N2 

output of the catalyst to a N2 calibration peak. 

N2O titration experiments were carried out using a Quantachrome ChemBet Pulsar 

instrument. Prior to analysis, the catalyst was reduced inside the instrument under 

flow of 10% H2/Ar at 280 °C. Once reduced, the catalyst was cooled under a flow of 

He to 70 ⁰C. The instrument was then injected with 12 pulses of 113 μL N2O and 4 

pulses of N2 for calibration.  

2.5.8. Ammonia temperature programmed desorption 

Ammonia temperature programmed desorption (TPD) is an analytical technique 

which allows for quantitative measurement of acid sites present on a material. 
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Ammonia is a small molecule which can penetrate most pores and therefore a good 

choice for a probe molecule. The probe molecule adsorbs onto acid sites on the 

material. The sample is then heated; depending on the strength of the adsorption, the 

probe molecule will desorb at different temperatures. As the ammonia desorbs and 

passes through TCD, it generates a signal which is then recorded on a computer. The 

signal can then be plotted and used for qualitative and quantitative analysis of acid 

sites on the catalyst. 

NH3 TPD experiments were carried out using a Quantachrome ChemBet instrument. 

Prior to analysis, the catalyst was subject to pre-treatment to remove any adsorbed 

water on the surface by heating it under flowing helium for an hour (130 °C, 15 °C 

min-1). Sample was then cooled to room temperature, and ammonia gas was passed 

over it at approximately 50 ml min-1 for 15 minutes to saturate the surface. Any 

physisorbed ammonia was then removed by heating the sample under flowing 

helium for 1 hour (100 °C, 15 °C min-1). Once ready, TPD was performed by heating 

the sample to 900 °C, ramp rate 15 °C min-1. 

2.5.9. References 

1 S. Zheng, H. R. Heydenrych, A. Jentys and J. A. Lercher, J. Phys. Chem. B, 

2002, 106, 9552–9558. 
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 Chapter 3 

 

Conversion of methyl glucoside to methyl levulinate using 

solid acid catalysts 

All references are self-contained to within this chapter, and do not refer to any other 

chapters. 

3.1. Introduction 

Methyl glucoside (MeGlc) is a methyl ester derivative of glucose, the most 

common monosaccharide on the planet. As a renewable chemical, glucose can be 

derived from lignocellulosic biomass; more specifically cellulose, which makes up 

to 50% of biomass.1 Glucose can be converted into a wide range of useful chemicals, 

such as 5-HMF, fructose, furfural, and levulinic acid amongst others.2 Levulinic acid 

(LA) has been identified by the US Department of Energy as one of the top ten high-

value target molecules derived from biomass.3 Levulinic acid can be industrially 

extracted from cellulose using the Biofine process with sulfuric acid.4 While 

comparatively inexpensive, use of a mineral acid has several disadvantages: 

additional costs in the recovery of acid from mixture, lack of control over selectivity, 

lack of control over polymerisation side reactions, potential equipment corrosion.5 

Because of this, there is an interest in developing a heterogeneous catalysis approach 

to this issue.  

There are numerous examples in literature of heterogeneous materials 

applied to this reaction, as discussed in chapter 1. There is a range of conditions 

reported, varying in catalysts, temperature, solvents used, etc. One unifying factor is 

that vast majority of these materials are Brønsted acidic, meaning they are proton 
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donors. The dehydration reaction from glucose to levulinic acid requires acidic 

conditions to take place, somewhat limiting the scope of materials available. Further, 

acidity of a catalyst can be difficult to control and tailor; zeolites are customisable in 

that the Si:Al ratio and pore size can be modified as necessary, however on most 

other materials the acidity is poorly controlled.  

While most of the catalysts used in this chapter are not novel, the goal was 

not to develop new materials, but rather to gain a better understanding of the 

dehydration reaction. The aims of this chapter are to carry out a study on the 

production of methyl levulinate from methyl glucoside with heterogeneous catalysts; 

assess the relationship between acidity of the material and activity; gain a better 

understanding of how humins are produced and how to optimise the reaction 

conditions to limit their formation.  

3.2. Results and discussion 

3.2.1. Conversion of glucose to methyl glucoside 

The main substrate used in this chapter was methyl glucoside (MeGlc). The 

methylated version was used because of two reasons; firstly, the work in this chapter 

was carried out as part of an EU-Japan collaboration. The glucose extraction from 

biomass sources was initially reported to have been carried out in methanol as 

solvent by our partners. Therefore, methylated glucose was the product of the 

reaction. Secondly, use of alcohols as solvents for the dehydration of glucose has 

been reported in literature to limit the formation of humins, the polymer side-

products.6,7 As a first step in this reaction, the ease of conversion of glucose into 

methyl glucoside was assessed.  
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Figure 17. Reaction scheme for methylation of glucose. 

Methylation of glucose is an esterification reaction. Esterifications are 

catalysed by acids, and therefore sulfuric acid was selected as one of the most 

common and simple acids. Varying amounts of conc. H2SO4 were used – 1 mmol, 3 

mmol and 5 mmol, seen in Figure 18. This was done in order to determine whether 

any side reactions took place when more acid was used. It was found that 100% 

conversion was reached at 1 mmol acid, which was a stoichiometric amount; 

conversion and selectivity did not change with increasing acid concentrations. It is 

known that glucose can undergo dehydration reactions, resulting in a myriad of 

products, ranging from polymers, lactones to simple acids.8–11 However, only two 

products were observed in this reaction, α-MeGlc and β-MeGlc. This is most likely 

because temperature at which this reaction was carried out at was too low to initiate 

the dehydration reactions. The selectivity for α-MeGlc and β-MeGlc was 70% and 

30%, respectively, despite the fact that the beta anomer is slightly less sterically 

hindered. This is in agreement with known glucose chemistry – for a large number 

of glucose derivatives, the alpha anomer is more stable than the beta anomer.12 This 

is because of the anomeric effect, which has several causes: there is good orbital 

overlap between the ring-oxygen lone pairs and the δ* orbital of the axial ester 
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(hyperconjugation); the dipoles of these oxygens point in opposite directions when 

in the axial position. The effect was significant enough so that α-MeGlc was the 

major product. 

 

Figure 18. Methylation of glucose using different amounts of acid. Squares: 

conversion; slanted lines: α-MeGlc selectivity; vertical lines: β-MeGlc selectivity. 

Reaction conditions: Glucose 1 mmol, Methanol 20 mL, H2SO4 1-3 mmol, temp. 80 

°C (reflux), time 16 hours. 

It is clear that 16-hour reaction time was sufficient to carry the reaction to 

full conversion. As such, shorter reaction times were explored, shown in Figure 19. 

After 2 hours, 77% conversion was observed, with selectivity for α-MeGlc and β-

MeGlc of 40% and 60%, respectively. This is in contrast to the 16 hour reaction, 

where the selectivities were essentially reversed. This means that β-MeGlc was a 

kinetic product, and α-MeGlc was a thermodynamic one. The beta anomer, with the 

methyl group in equatorial position, is less sterically hindered; the alpha anomer is 

thermodynamically more stable because of the anomeric effect. Typically, the beta 

anomer is the thermodynamic product when the 2-substituent includes a positively 

charged N+ ion. This is known as a reverse anomeric effect; it appears to be exclusive 

to nitrogen-containing compounds, and is a rare occurrence.12 The conversion after 

4 hours reached 80%, a marginal improvement over the 2 hour reaction. However, 
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the selectivity towards α-MeGlc and β-MeGlc were different, at 47% and 53% 

respectively. The data suggests that the esterification reaction proceeded quickly, 

and much of the reaction time was spent on isomerisation between the two anomers, 

to reach an equilibrium. Roughly 80% of glucose was converted within the first 2 

hours, whereas the remaining 12 hour period accounted for 20% conversion. 

 

Figure 19. Methylation of glucose at different reaction times. Squares: conversion; 

slanted lines: α-MeGlc selectivity; vertical lines: β-MeGlc selectivity. Reaction 

conditions: Glucose 1 mmol, Methanol 20 mL, H2SO4 1 mmol, temp. 80 °C (reflux). 

 Considering that methylation of glucose appeared to happen readily even at 

short reaction times, a comparison was made between homogenous and 

heterogeneous acids (Figure 20). A common, commercial solid acid was used -  

Amberlyst-15 (wet). The amount of glucose was increased tenfold from 1 mmol to 

10 mmol, as 1 mmol of substrate proved to be too low at the time frame of a 16 hour 

reaction. Ideally, the conversion will not reach 100% for either heterogeneous or 

homogenous catalysts, so that their activity can be compared effectively. Under these 

conditions, sulfuric acid gave 92% conversion, with 55% and 45% selectivities 

towards α-MeGlc and β-MeGlc, respectively. The slightly lower than expected ratio 

of alpha to beta anomers suggests that the reaction was not finalised even after 16 
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hours. The equilibrium ratio was expected to be around 70:30. When the 

heterogeneous catalyst was used, a slightly lower conversion of 76%, with 

selectivities of 43% and 57% towards α-MeGlc and β-MeGlc, respectively. The 

lower conversion when compared to the mineral acid was not unexpected. Despite 

the fact that 1 mmol of both was used, H2SO4 had a higher concentration of acid sites 

at 20 meq H+/g, compared to 4.8 meq H+/g.13 At the same time, Amberlyst is 

considered a superacid thanks to its much lower pKa value of -6.5 compared to 

approximately -3 for H2SO4.13 Any acid stronger than concentrated H2SO4 is 

considered a superacid. The low ratio of alpha to beta anomers, and conversion of 

roughly 80% indicated that the reaction was at similar stage after 16 hours as the 

homogenous reaction was after 2 hours, shown in Figure 19 (despite slightly 

different conditions). This shows that the heterogeneous material catalysed the 

reaction much more slowly. Aside from acid strength and quantity, this was likely 

due to sterics. Amberlyst-15 has a polymer structure. Glucose had to be transported 

to the acid sites before any methylation could take place and was therefore subject 

to mass transfer limitations. Sulfuric acid was fully dissolved, and each molecule 

was a single active site because it is a homogenous acid. Additionally, each sulfuric 

acid molecule can potentially donate two protons. 
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Figure 20. Methylation of glucose using homogenous and heterogeneous acid. 

Squares: conversion; slanted lines: α-MeGlc selectivity; vertical lines: β-MeGlc 

selectivity. Reaction conditions: Glucose 10 mmol, Methanol 20 mL, acid 1 mmol, 

temp. 80 °C (reflux), time 16 hours. 

 Overall, the esterification process was easy to achieve. It occurred at 

temperatures much lower than most dehydration reactions, and there was no side-

products. Both heterogeneous and homogenous acids were capable of carrying out 

the methylation. It was assumed that this part of the reaction would not be a rate-

limiting step, especially at higher temperatures. It was therefore acceptable to use 

methyl glucoside as the starting substrate for future reactions. Specifically, the alpha 

anomer was chosen due to its natural abundance and much lower cost. 

3.2.2. Dehydration of methyl glucoside using solid acids 

Several metal oxides were prepared and tested for the dehydration of α-

MeGlc. The target molecule was levulinic acid (LA), or a levulinate ester. Initially, 

the focus was some of the most commonly used oxides – titania and zirconia. Both 

oxides were tested on their own, and were subject to a sulfation procedure, which 

added Brønsted functionality to them. The results can be seen in Table 2. The 

reaction was monitored for levulinic acid, and any levulinate esters. Since the 
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reaction was carried out in methanol, methyl levulinate (ML) was a possible product. 

In fact, no LA was observed in any of the reactions, and only ML was present. Nearly 

all of the catalysts isomerised the starting material between alpha and beta anomers, 

however the beta anomer was not treated as a product and was considered as 

unreacted substrate for the purpose of calculations. This is because both the anomers 

are extremely similar, and their isomerisation was assumed to be a rapid process – 

the results presented in section 3.2.1. showed that 

When titania or zirconia (both prepared in-house) were tested, no ML was 

produced. This was also the case for P25, a commercially available form of titania. 

However, all three materials did convert the starting material into 5-

methoxymethylfurfural (5-MMF). 5-MMF is a methylated version of a common 

glucose product, 5-hydroxymethylfurfural (5-HMF). Yields in this case were 

estimated based on 5-HMF calibrations, since no commercial 5-MMF was available 

for purchase at the time of these experiments and synthesis of a pure compound 

proved difficult. The presence of 5-MMF was confirmed through 1H NMR studies, 

shown in (Figure 21).  The post-reaction NMR spectrum can be compared to 

commercially available 5-HMF (spectrum obtained from Sigma-Aldrich) in Figure 

22. Two characteristic alkene hydrogen doublets can be identified in those spectra.  
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Figure 21. 1H NMR of the post-reaction mixture. D2O was used as solvent 

 

 

Figure 22. NMR of commercial 5HMF. The corresponding peaks are identical in 5-

MMF as these are the alkene hydrogens. Solvent used = CDCl3 

The oxides on their own did not yield any levulinate species. Literature 

shows that Brønsted acidity is a desired functionality for glucose dehydration and 

production of levulinate molecules.14–16 Therefore, a simple sulfation procedure was 

carried out on the metal oxides; the materials were immersed in 0.5M H2SO4, dried 

and calcined, in order to add –SO3H group functionality. Upon sulfation, both titania 
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and zirconia became active towards the formation of methyl levulinate. The 

conversion has more than doubled for both materials. SO4-ZrO2 yielded more ML 

than SO4-TiO2, with yields of 24% and 14%, respectively. The maximum theoretical 

yield of levulinic acid from glucose has been calculated to be 64.5% in water, 

however realistically yields as low as 43.0% can be expected due to propagation of 

side reactions and formation of insoluble humins.16,17 Indeed, no higher yield than 

approximately 24% has been measured in this thesis, which could range anywhere 

from 37% to 56% of the maximum yield. Isolated examples of literature listing yields 

higher than 64.5% exist, but it is not clear if their yields are normalised, or listed as 

a weight fraction.18   

As ML was produced, formic acid was also produced. For SO4-TiO2, the amount of 

formic acid was stoichiometric with ML. When SO4-ZrO2 was used, a slight excess 

of formic acid was produced. This is not unexpected, as production of ML is not the 

only pathway for formic acid formation in this reaction.10,19–21 The traditional 

assumption in portion of the literature is that levulinate species (depending on the 

solvent) and formate species are produced in stoichiometric amounts. In fact, a great 

number of publications do not even try to quantify the formic acid in their reactions, 

either assuming it is formed in 1:1 ratio to levulinic acid or ignoring it altogether. 

However, several pathways to formic acid exist, and it is common for the ratio of 

formic acid to levulinic acid to exceed 1 – majority of the reactions in this chapter 

exceeded that ratio. This is because not every converted molecule of substrate will 

form the desired product. Aside from the pathway to methyl levulinate which results 

in one equivalent of methyl formate, there are furfuryl intermediates formed during 

the dehydration which are capable of producing formate species but do not lead to 

methyl levulinate/levulinic acid; formic acid could be produced during 

polymerisation of humins; yet undiscovered pathways could be taking place; methyl 

levuliante could be getting adsorbed and trapped on the humins; another possible 
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pathway is through D-erythrose,19 which can reportedly form from glucose.22–24 

Erythrose is a possible product in this reaction, however due to the sheer amount of 

by-products and intermediates formed, not every single compound was identified by 

chromatographic techniques. The pathways are illustrated in Figure 23. 

 

Figure 23. A non-exhaustive list of pathways to formic acid or methyl formate in the 

dehydration of methyl glucoside. Pathways are not direct, only end-product is 

shown. 1). Formation of methyl levulinate. 2). Formation of furfuryl alcohol 

derivative, which can further form levulinate species. 3). Formation of Furfural 

species. 4). Production of D-Erythrose. 5). Other unknown pathways 

Ceria, sulfated ceria and sulfated P25 did not yield any ML. Ceria has been 

demonstrated to display Lewis acidity,25,26 however the data suggests that both acid 

and base sites are needed. Zirconia and titania are known amphoteric materials (they 

have both acidic and basic properties), whereas ceria is not. Perhaps it is this 

amphoterism which drives the reaction. Sulfated ceria and titania did convert the 

starting material, but they failed to yield any ML. This is likely because of weaker 

Brønsted acid sites, and lack of amphoteric character of the support. However, 

without any measurements made, no definite conclusion can be made. The only 

material other than titania or zirconia which produced ML was WO3-ZrO2. Tungsten 

was considered as its acidic properties have been shown before.27–29 The theory 
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proved correct and the tungsten oxide-enriched zirconia yielded 1.5% ML. The result 

is significant for two reasons; the data shows that production of ML simply does not 

happen without an appropriate catalyst, so even a low yield is statistically important; 

the result also demonstrates that my understanding of the reaction requirements is 

correct, and Brønsted acidity is crucial; despite this, the material was not followed 

further as sulfated zirconia and titania were significantly more active, easier to 

prepare, and comparatively cheaper. Additionally, 0.5 CuZrO2 prepared in house 

was tested for this reaction (last two entries in the table). This catalyst is further 

explored in chapter 4 of this thesis. Copper zirconia was tried because of its ability 

to hydrogenate levulinic acid and its esters to gamma-valerolactone. This entire 

thesis has the premise of converting glucose into gamma-valerolactone; both 

catalysts are active under the same regimes, with the same solvents, temperatures 

and pressures, therefore a one-pot processed was tested. The copper catalyst on its 

own did not yield any conversion. This is because CuZrO2 contains no Brønsted acid 

sites, despite the amphoteric character of ZrO2. In order to add Brønsted functionality 

to the system, SO4-ZrO2 was added. Both catalysts were used in equal amounts. 

Surprisingly, the mixed-catalyst system resulted in 0% conversion of the substrate. 

Even though SO4-ZrO2 performed well in previous tests, with significant yields of 

ML and formic acid, when paired with Cu-ZrO2 its activity was inhibited. This was 

likely caused by poisoning of the catalysts, as sulfur is a known poison for many 

metals, forming metal sulfides on the surface.30,31 It therefore became apparent that 

a one-pot process might not be possible with this configuration of catalysts, and 

focus was put on understanding and refining the individual processes. 
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Table 2. Initial results of dehydration of α-MeGlc. Reaction conditions: 0.62 g α-

MeGlc, 0.31 g catalyst, 8 g MeOH, 5 bar N2, temp 180 °C, time 1 hour. Error margins 

on all the results are within + 5%. 

Catalyst 
Conversion, 

% 

ML 

yield, 

% 

5MMF 

yield, % 

Formic 

acid yield, 

% 

LA 

yield, 

% 

TiO2 19 0 19 0 0 

SO4-TiO2 54 15 23 15 0 

SO4-TiO2 (2 hours) 91 35 29 23 0 

ZrO2 25 0 25 0 0 

SO4-ZrO2 56 24 0 31 0 

Phosphated ZrO2 0 0 0 0 0 

15% WO3-ZrO2 25 1.5 0 15 0 

P25 23 0 23 0 0 

SO4/P25 37 0 37 0 0 

CeO2 0 0 0 0 0 

SO4-CeO2 10 0 10 0 0 

0.5 Cu-ZrO2 0 0 0 0 0 

0.5 Cu-ZrO2 +  

SO4-ZrO2 
0 0 0 0 0 

 

Sulfated zirconia proved to be more selective towards the levulinate ester than 

sulfated titania, an effect possibly associated with higher Brønsted acidity. The 

relative strength of the sulfate group on the surface of these catalysts can be 

visualised by TGA analysis in Figure 24. The region of interest is above 500°C, 

where the sulfate species break down from a -SO4 bound to the metal surface, down 

to SO3 and zirconia, and subsequently into SO2.32 It was observed that the sulfate 

species on SO4-ZrO2 remained bonded to the zirconia at temperatures approximately 

100°C higher than SO4-TiO2. This indicates that SO4-ZrO2 featured stronger sulfate-

zirconia interactions, and therefore higher acidity than SO4-TiO2.  
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Figure 24. TGA profiles for sulfated catalysts. Red = SO4/TiO2, Black = SO4/ZrO2 

Quantifiable acidity profiles for these catalysts were measured using ammonia TPD 

(Figure 25). Zirconia-based catalyst had comparatively much stronger acid sites. The 

total surface acidity of SO4-ZrO2 was measured at 0.76 mmol/g, and SO4-TiO2 at 

0.33 mmol/g. The acidity of these materials is comparable to similar catalysts 

reported in literature, with acidity values in the region of approximately 0.1-0.7 

mmol/g.33–36 These findings strongly correlate several pieces of data obtained for the 

sulfated catalyst, such as XPS, surface area and activity. XPS data (Table 3) showed 

that the zirconia catalyst had approximately 2.85 times the amount of sulfur atom 

concentration of titania catalyst; ammonia TPD revealed that SO4-ZrO2 was 

approximately 2.30 times more acidic on the surface compared to SO4-TiO2; BET 

surface area of these catalysts showed that zirconia-based material had 

comparatively much higher surface area roughly 157 m2g-1, approximately a factor 

of 2 higher than titania-based material which was measured at roughly 80 m2g-1. 

Activity data followed suit, as SO4-ZrO2 yielded approximately 1.6 times the amount 

of ML as SO4-TiO2 at the same conversion. Higher surface area catalysts are able to 



57 
 

contain more active sites per area of catalysts. Therefore, it is possible that SO4-ZrO2 

was overall more acidic and more active than SO4-TiO2 due to the increased surface 

area. The increase in yield was not proportional to the increase in acidity, however 

it was not expected to be. It is likely that not every acid (active) site was available 

for the reaction to take place. For example, some sites could have been located in 

small pores where the substrate cannot reach, or be located too close to another active 

site for two ML molecules to fit in.  

 

Figure 25. Ammonia TPD patterns for sulfated titania (A) and sulfated zirconia (B).   

Table 3. Surface atom concentrations derived from XPS data for sulfated catalysts. 

 Surface concentration / at.% 

Catalyst Zr (3d) / Ti (2p) S (2p) O (1s) C (1s) N (1s) 

SO4-TiO2 19.13 1.19 53.48 23.34 1.16 

SO4-ZrO2 17.39 3.40 52.30 26.91 n/a 
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Table 4. BET surface areas for the sulfated catalysts. Margin of error is is 

approximately + 5%, based on commonly accepted errors on BET surface area 

measurements; still, multiple measurements were taken for consistency. 

Catalyst BET surface area (m2g-1) 

SO4-TiO2 80 

SO4-ZrO2 157 

 

The ammonia TPD profiles for both catalysts feature at least two relatively distinct 

peaks, which can be attributed to weak and strong acid sites. The weak acid site peak 

is located at approximately 300 °C for both catalysts; the strong acid site at approx. 

800 °C for SO4-ZrO2, and 740 °C for SO4-TiO2. Another prominent feature of the 

ammonia TPD profiles is the irregularity in the spectra for both catalysts at 510 °C 

and 640 °C for SO4-TiO2 and SO4-ZrO2, respectively. These temperatures correlate 

with significant weight loss events in TGA (Figure 24) and are likely present due to 

desorption of and breakdown of weakly bound sulfate species on the catalysts.32 

There is a small temperature delta between these events in TGA and TPD spectra of 

about 20 °C, with TGA event recorded at the higher temperatures. The heating ramp 

rate used for both measurements was identical at 5 °C min-1, however the TGA was 

carried out in a static air environment, whereas NH3 TPD was measured in flowing 

helium. The flow of room-temperature gas over a hot catalyst likely eliminated hot 

spots and had a small, but measurable effect on the ramp rate. In any case, 20 °C can 

be considered within margin of error given that the events measured happen over the 

range of nearly 100 °C (or approximately 20 minutes). 

While the difference between Lewis and Brønsted acid sites cannot be discerned 

from ammonia TPD, it has been suggested that the peak responsible for weak acid 

sites consists mainly of Lewis acid sites, as they tend to desorb at low temperatures.37 

This peak is not always observed in literature, as these acid sites can be weakened or 

removed depending on the pre-treatment or calcination temperature used when 

preparing the catalyst.38 At this stage in the testing, it became clear that SO4-ZrO2 is 
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the superior catalyst for the purposes of this thesis when compared to SO4-TiO2. 

Therefore, all tests and comparisons going forward were only carried out with 

zirconia-based catalysts. 

In order to assess the presence and strength of specific acid sites on the material, 

Pyridine DRIFTS experiments were carried out on ZrO2 and SO4-ZrO2 (Figure 26, 

Figure 27). Pyridine DRIFTS is able to differentiate between Lewis and Brønsted 

acid sites due to bonding differences between pyridine and the acid site, however 

quantitative analysis is notoriously difficult using this method.39 As such, DRIFTS 

experiments were used to categorise the sites, and the results were paired with 

ammonia TPD in order to paint a complete picture of the surface acidity. Peak 

identification was carried out based on existing literature.38,40–42 It can be seen that 

plain zirconia contained no Brønsted acidity, and only Lewis acid sites were 

observed at 1441 cm-1 and 1605 cm-1. A small peak was also measured at 1488 cm-

1, but it quickly reduced in size as the temperature increased. No temperature higher 

than 350 °C was tested as the peaks greatly reduced in size compared to the room 

temperature spectrum. The relative size of the peaks, their retention as the 

temperature increases, and their position are qualitatively useful way of measuring 

the type and strength of the acid sites. Considering these factors suggests that plain 

Zirconia had only Lewis-type acid sites of moderate strength.  

A similar experiment was carried out on sulfated zirconia (Figure 27). This catalyst 

featured several more peaks in its spectra, which were attributed to both Lewis and 

Brønsted-type acid sites; as such, it was confirmed that the sulfation procedure added 

Brønsted acidity to the material. Specifically, the peaks corresponding to Lewis-acid 

sites which were observed in plain zirconia were found at near-identical 

wavenumbers with the acidified catalyst – 1443 cm-1 and 1608 cm-1. The small peak 

observed at 1488 cm-1 is now much more prominent as it represented both acid site 

types. Additionally, Brønsted-site only peaks appeared at 1540 cm-1 and 1638 cm-1. 
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As the temperature was ramped up, it was noted that the peaks retained their size and 

shape more consistently than the non-sulfated support. In fact, the Brønsted-type 

peaks were easily identifiable up until 550 °C. The temperature limit of the 

equipment used was 575 °C, so no higher temperatures were tested. The Lewis-type 

peaks lost their definition in a similar fashion to the non-sulfated material. This 

suggests that the sulfation procedure did not have any significant effect on the Lewis 

acid sites. The Brønsted acid sites remained bonded to pyridine up to the maximum 

testing temperature – they are therefore strong sites. This is corroborated by the 

ammonia TPD data – a well-defined peak can be observed at 800 °C, indicating 

strong acid sites. 

 

Figure 26. Pyridine DRIFTS IR of ZrO2. L denotes Lewis-acid sites. 
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Figure 27. Pyridine DRIFTS IR for SO4-ZrO2. L denotes Lewis acid sites, B denotes 

Brønsted acid sites. 

Having proved that the sulfation procedure did indeed add desired functionality to 

the catalyst, variations in loadings were explored. This was done for two reasons: to 

reduce the amount of material used, and to test the scalability and efficiency of 

sulfated zirconia for this reaction. A range of catalyst loadings were used, while 

keeping all other reaction conditions the same. Initially, a relatively high loading of 

sulfated zirconia was used in a 1:2 mass ratio of catalyst to substrate. This is because 

several systems reported in literature exist where weight ratios of solid acid material 

to substrate ranging from 40% to 100% and more were utilised, due to the perceived 

difficulty in carrying out dehydration reactions on cellulose, glucose, and other 

sugar-based molecules.14,29,33,36,43–46 For testing, the amount of catalyst was halved 

for each experiment, until no yield of ML was observable by HPLC analysis (Figure 

28). With the reduction in catalyst mass a corresponding near-linear reduction in 

conversion and ML yield was noted. The smallest amount of SO4-ZrO2 tested was 

0.04 g, at which point no ML was measured post-reaction. The linear relationship 
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between catalyst mass and ML yield indicates that at these conditions, the reaction 

was under a kinetic regime. That is to say, the main rate limiting step was the intrinsic 

surface reaction rather than transfer of reagents or their diffusion into catalyst pores. 

 

Figure 28. Conversion of alpha methyl glucoside against catalyst loading. Catalyst 

tested is SO4-ZrO2. Temp. 180°C, time 1hr, 5 bar nitrogen, 0.62 g alpha methyl 

glucoside, 8 g methanol 

Going forward, it was decided that 0.08 g of catalyst would be used for all future 

reactions. The reason for this was twofold; it allowed for a more economic use of the 

material with the ability to scale up as the catalyst was not mass transfer limited 

under these conditions; additionally, perhaps as a by-product of lower conversion, 

the production of humins was reduced (the post-reaction solution was assessed 

visually) which made HPLC analysis easier. The production of humins in this 

reaction will be discussed further in section 3.2.4.  

3.2.3. Dehydration of methyl glucoside using zeolites 

 Zeolites are high-surface area, porous materials generally composed of 

Silicon and Aluminium, which very commonly have Brønsted-acid functionality. 
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Due to the requirement for acid functionality in this reaction, the availability and low 

cost of zeolites, they were chosen as natural candidates for testing and comparison 

to solid-acid materials prepared in-house. Both Brønsted and Lewis-acidity in 

zeolites stems from the structural arrangement of silicon and aluminium atoms in the 

lattice. Zeolite structures are generally based upon silicate moieties, which have a 

tetrahedral arrangement. As aluminium atoms are introduced to the structure, they 

disturb and deform this arrangement, creating a charge imbalance; this must be 

satisfied by a cation, frequently a hydrogen atom which becomes Brønsted acidic.47 

As the number of Al atoms increases (and therefore the Si/Al ratio decreases), the 

number of acid sites increases due to larger amount of defects. However, each 

individual acid site then becomes slightly weaker due to proton crowding in the 

porous structure. Many types of zeolites exist, with a multitude of structures and 

therefore various pore sizes and acidic strengths. In this chapter, the most commonly 

used zeolites were tested. Several types of zeolites of various acidic strengths were 

tested, with Si:Al ratios from 0 to 80. The data is presented in Table 5. Arguably the 

most popularly used zeolite, ZSM-5, was tested first. It was found that minimal 

conversion was achieved, and very low ML yield was observed. Both conversion 

and yield dropped to 0% as the Si:Al ratio increased to 50 and 80, an indication that 

the acid sites in those materials were not strong or numerous enough to facilitate the 

reaction. Examples of dehydration of glucose or cellulose using ZSM-5 do exist in 

literature, however conversion to levulinate species is uncommon, or yields are low 

(generally less than 5-10%) .48–51 The yields reported in literature are still higher than 

the ones tested in-house – this can likely be attributed to longer reaction times and 

higher reaction temperatures.  The low yield can be attributed to the small pore sizes 

of ZSM-5 compared to the glucose molecule. ZSM-5 pore sizes are about 5.5 Å in 

diameter due to maximum 10-member rings in the structure, notably smaller than the 

approximate length of the glucose molecule at 6 Å. The diffusion of the substrate 

throughout the material would therefore be greatly limited, or impossible; 
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considering that bulk of the zeolite surface area is contained within the porous 

structure, any chemistry would be limited to the surface interactions in this case. At 

the limited reaction length and temperature utilised, the conditions were likely not 

optimal for the formation of levulinate species, even though the catalyst is clearly 

capable of facilitating the dehydration of glucose.  

Due to the theorised pore size issue, Zeolite β was selected as the next catalyst for 

testing. Due to limited commercial availability, only two Zeolite β materials were 

tested, with Si:Al ratios of 25 and 38. Zeolite β has larger pore size than ZSM-5 at 

7.3 Å in diameter due to 12-member rings in the structure,52 which is sufficiently 

large for a methyl glucoside molecule to enter. This is reflected in the activity of the 

material. A similar observation was made by Moliner et. al.53  Conversion and yields 

are considerably improved over ZSM-5. Interestingly, despite higher acidity, Beta 

(25) yielded the same amount of ML as Beta (38) at 12%. The difference between 

the catalysts could be observed in conversion, formic acid yield and carbon balance. 

As expected, Beta (25) had higher conversion (51% compared to 41%), but it appears 

that any additional acidity assisted in the side reactions and the formation of humins 

(hence the lower carbon balance). The post-reaction mixture was also noticeably 

darker with Beta (25), a typical indication of increased humin production. It can 

therefore be speculated that there is likely an optimal amount and strength of 

Brønsted acid sites which balance between achieving high activity and low 

production of humins.  

Two additional zeolite-like materials were tested Sn-β and SBA-15. Both are silica-

based materials, however with no aluminium atoms in the structure, and therefore no 

Brønsted acidity. SBA-15 is a high surface area, mesoporous material which was 

mainly used as control for these tests. As it contains no desired acidity, it was not 

expected to facilitate any reactions. This assumption proved true, and 0% conversion 

was measured with this material.  
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Sn-β is a zeolite material in which all the aluminium atoms have been replaced by 

tin, therefore removing any Brønsted acidity – only Lewis acid sites are present on 

Sn-β. Typically, Sn-β is prepared by hydrolysis of tetraethylorthosilicate (TEOS) 

alongside tin (IV) chloride around dealuminated zeolite seeds.54–56 It is the presence 

of tin in the zeolite structure which gives it Lewis acidity.57 Tin-beta has been known 

to facilitate reactions of sugars such as isomerisation of glucose to fructose,53,54,58 

and was therefore selected as a reactive, but non-Brønsted acidic catalyst. The 

catalyst was not found to produce any ML or formic acid, however it did convert the 

starting material. The products were not fully identified, however they appeared to 

be sugar isomers, as they shared similar retention times and no polymer residue was 

observed in post-reaction mixture. 

Table 5. Catalytic testing of zeolites. Temp. 180°C, time 1 hr, 5 bar nitrogen, 0.62 g 

alpha methyl glucoside, 0.08 g catalyst, 8 g methanol 

Catalyst 

(Si:Al ratio) 

Conversion, 

% 

ML 

yield, 

% 

Formic 

acid yield, 

% 

C bal., 

% 

ZSM-5 (23) 5 0.5 0 95 

ZSM-5 (30) 3 0.5 0 97 

ZSM-5 (50) 0 0 0 100 

ZSM-5 (80) 0 0 0 100 

SBA-15 0 0 0 100 

Zeolite β (38) 41 12 14 71 

Zeolite β (25) 51 12 18 62 

Sn-β 8 0 0 92 

 

The best performing zeolite material was found to be Zeolite-β (38), and further 

testing was carried out with it. In order to limit the formation of humins, a silylation 

procedure was performed, which would cover the outside surface of the zeolite with 

silica, blocking surface acid sites. It was theorised that the large polymer molecules 

are most likely formed on the surface of the material, as they have the most room to 

grow there. A polymer within a zeolite pore would be greatly limited in its size due 
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to local sterics. Humin polymerisation is unavoidable in this reaction, but it may be 

limited. The required surface coverage was calculated based on some assumptions: 

- Aluminium atoms make up approximately 2.6% of Zeolite-β (38) 

composition. 

- The TEOS molecule will only interact with the zeolite surface (a reasonable 

assumption, given that TEOS is too large to enter the pores). 

- Coverage of surface will be uniform. 

Therefore, zeolite materials with 3% and 15% coverage of surface were prepared. 

The percentages correspond to the % wt. coverage of SiO2, as a result of TEOS 

treatment. The detailed silylation procedure can be found in the experimental section. 

3% SiO2 was considered to be approximately a thin surface layer which just covered 

the acid sites on the surface; 15% coverage was considered excess, and a thick layer 

of SiO2 would cover the surface and likely reduce pore size. These catalysts were 

then tested for the dehydration of methyl-glucoside (Table 6). It was found that when 

compared to an untreated zeolite, both 3% and 15% silylated catalysts had reduced 

conversion and yields, but higher carbon balance values. It appears that the 

additional SiO2 at 15% coverage either did not entirely work, or the addition of 

further silica layers had diminishing results, as the 3% and 15% materials produced 

very similar results. The conversion dropped by 11 and 17 percentage points, 

whereas the ML yields dropped by 4 and 5 percentage points, respectively. The 

carbon balance has improved, but when compared alongside the reduction in 

conversion and yields, this was not the expected result. 
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Table 6. Catalytic testing of silylated zeolite beta 38. Temp. 180°C, time 1 hr, 5 bar 

nitrogen, 0.62 g alpha methyl glucoside, 0.08 g catalyst, 8 g methanol 

Catalyst Conversion, 

% 

ML yield, % Formic acid 

yield, % 

C bal., % 

Zeolite β (38)  41 12 14 71 

Zeolite β (38) 

3% SiO2 

30 8 9 79 

Zeolite β (38) 

15% SiO2 

24 7 11 83 

 

The test was repeated with the untreated zeolite, but with reaction time reduced by a 

quarter (from 60 minutes to 45 minutes, Table 7). It was found that the results were 

similar to the 3% SiO2 treated material. The conversion, yields and carbon balance 

were within margin of error of each other. It was therefore concluded that the 

silylation procedure did not produce the desired effect; it merely slowed down the 

rate of reaction by approximately 25%, likely due to hindered access to pores 

because of additional SiO2 coverage. This was reflected in the significant reduction 

of surface area of the treated zeolite (Table 8). Silylation reduced the surface area by 

approximately 31% when compared to the untreated zeolite (H-form). 

Table 7. Comparison of fresh and silylated zeolite beta 38 at equal conversions. 

Temp. 180°C, time 1 hr, 5 bar nitrogen, 0.62 g alpha methyl glucoside, 0.08 g 

catalyst, 8 g methanol 

Catalyst Time, 

h 

Conversion, 

% 

ML yield, 

% 

Formic 

acid yield, 

% 

C bal., % 

Zeolite β (38) 0.75 31 9 8 79 

Zeolite β (38) 

3% SiO2 

1 30 8 9 79 
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Table 8. BET surface areas for the silylated zeolite 

Catalyst BET Surface area, m2 g-1 

Zeolite 38 β H form 579.2 

Zeolite 38 β NH4 form 439.4 

Zeolite 38 β 3% SiO2 399.3 

 

Re-usability of the Zeolite β (38) was evaluated next (Table 9). The catalyst was 

subject to a re-use testing by washing the post-reaction catalyst with water and 

acetone, followed by drying at 110 °C for 16 hours. A decrease in conversion and 

yields was observed with subsequent re-uses. By the second re-use, the yield of ML 

has dropped to 2%; it was therefore decided that further testing was not necessary, 

because the yield has dropped sharply. The main reason for this decrease in activity 

was likely the absorption of humins onto the surface of the catalyst. After the first 

use, zeolite has turned brown-black with the polymer and the washing procedure did 

not remove the residue, likely because it is not soluble in most solvents. The humins 

on the surface would have blocked active sites, preventing further reactions from 

taking place. While it was possible to remove a portion of the polymer by re-

calcination of the materials under standard conditions – essentially by burning the 

humins off – the activity did not improve when compared to the blackened catalyst, 

indicating that portion of the polymer was still located deep within the zeolite pores, 

blocking activity. Perhaps a long-time calcination procedure would have burned 

those humins off, however this was not tested due to equipment availability; 

additionally, there was little expectation that the material would behave as expected 

after this, due to carrying out prolonged pyrolysis in it. It was therefore accepted that 

a reduction in humin production would benefit re-usability the most, rather than 

attempting to salvage the used catalyst. 
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Table 9. Catalyst reuse of zeolite beta 38. Temp. 180°C, time 1 hr, 5 bar nitrogen, 

0.62 g alpha methyl glucoside, 0.08 g catalyst, 8 g methanol 

Catalyst Conversion, % ML yield, % Formic acid yield, 

% 

Zeolite β (38) first use 41 12 14 

Zeolite β (38) first re-use 34 5 9 

Zeolite β (38) second re-use 22 2 3 

 

3.2.4. Humins and reaction optimisation 

 Humins are a major and important part of this reaction. Reducing their 

production would potentially improve yields, re-usability of catalysts, ease of 

reaction handling due to reduced filtering and reactor cleaning and improve post-

reaction mixture analysis accuracy because of lower amount of intermediate 

products. Their production and characteristics were therefore evaluated.  

A comparison of solvents was carried out between water and methanol (Table 10). 

Methanol is known to inhibit the formation of humins6,7,59,60 due to replacing the 

possible hydrolysis sites for polymer bonds with -OMe functionality. A near-

complete conversion was observed with methanol because nearly all glucose was 

converted to methyl-glucoside species; this does not mean that methanol was a more 

active solvent for this reaction, but it’s a result of glucose being the substrate in these 

tests. Water was found to facilitate the production of humins much better than 

methanol, which was reflected in the carbon balance values. Carbon balance was 

significantly lower when water was used as solvent; the post-reaction mixture was 

also observed to be much darker, with insoluble flakes of humins floating on the 

surface. However, both solvents yielded a similar amount of levulinate species, 

suggesting that perhaps the yield of levulinate is not strongly affected by 

polymerisation under these conditions. Interestingly, formic acid yield varied 

significantly between the solvents – its yield was measured at 12% in water, and 

21% in methanol. This could have been a result of slightly different mechanistic 
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pathways. A measurable yield of 5-HMF was noted in water, but no corresponding 

furfural-derivative was observed in methanol. As 5-HMF is one of the major sources 

of formic acid in this dehydration, it is possible that this species is less stable (or 

more reactive) in methanol, and therefore decomposes into formic acid rapidly. The 

difference in furfural-species yield of 8% could approximately account for the 

additional 9% formic acid yield in methanol. Indeed, synthesis of 5-methoxymethyl 

furfural (5-MMF) in lab proved difficult, suggesting that it is not a desired product. 

Table 10. Comparison of solvents for the dehydration of glucoside species. Catalyst 

tested is SO4-ZrO2. Temp. 180°C, time 1 hr, 5 bar nitrogen, 0.62 g glucose, 0.08 g 

catalyst, 8 g methanol, 600 rpm stirring 

Solvent Conversion, % ML/LA 

yield, % 

5-HMF 

yield, % 

Formic acid 

yield, % 

H2O 56 10 8 12 

MeOH 99 12 0 21 

 

The next step was to attempt to attempt to reduce the polymerisation by reducing the 

amount of substrate available. Various amounts of substrate were tested under 

standard conditions with SO4-ZrO2 (Figure 29). Despite the reduction of substrate 

by up to four times, the conversion and yields remained almost the same, as seen in 

Table 11. This is indicative of first-order reaction kinetics with respect to substrate. 

This is because even though the yields and conversions are nearly the same, the 

absolute number of substrate molecules reacted increases as concentration of 

substrate increases.  

Table 11. Conversion of amlpha-methyl glucoside as a function of of substrate 

concentration. Catalyst tested is SO4-ZrO2. Temp. 180°C, time 1 hr, 5 bar nitrogen, 

alpha methyl glucoside, 0.08 g catalyst, 8 g methanol 

Concentration of 

MeGlc, mol dm-3 

Conversion, % ML yield, % 

0.32 21 + 2 8 + 2 

0.16 21 + 2 8 + 2 

0.08 20 + 1 6 + 1 
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Figure 29. Converted moles of alpha-methyl glucoside against substrate 

concentration. Catalyst tested is SO4-ZrO2. Temp. 180°C, time 1 hr, 5 bar nitrogen, 

alpha methyl glucoside, 0.08 g catalyst, 8 g methanol 

More likely, the reaction was pseudo-first order with respect to substrate. This is 

because of the apparent excess of acidic catalyst and water (even in a MeOH solvent, 

as this is a dehydration reaction – moreover, the methanol used was unlikely to be 

completely dry) which can be reduced to dependency on just the substrate. The 

complete kinetic rate equation can therefore be written as equation a) below; the 

simplified, pseudo-first rate equation is shown in equation b). Typically, a third order 

reaction would be very unlikely to occur due to collision theory. However, with the 

excess of both elements they are essentially always available.  

𝑎).  𝑟 = 𝑘[𝑀𝑒𝐺𝑙𝑐]𝑎[𝐻2𝑂]𝑏[𝐻+]𝑐 

𝑏).  𝑟′ = 𝑘′[𝑀𝑒𝐺𝑙𝑐]𝑎 

A natural log of pseudo-first equation rate b), where “a” is the order of reaction, can 

be taken. This results in ln(r’) = a ln[MeGlc] + ln(k’), an equation of a straight line 
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y = mx + c. Therefore plotting ln(r’) against ln[MeGlc] gives a straight line with a 

gradient of “a” and an intercept of ln(k’). This was visualised in Figure 30. The 

resulting plot has slope of 1.16 – indicating first order reaction. 

 

Figure 30. Effect of methyl glucoside concentration on activity of SO4-ZrO2 towards 

methyl levulinate. Reaction conditions: Temp. 180°C, time 1 hr, 5 bar nitrogen, 

alpha methyl glucoside, 0.08 g catalyst, 8 g methanol 

The reduction in substrate concentration resulted in a significant reduction in 

reaction polymerisation. The effects can be noted by comparing the post-reaction 

mixtures (Figure 31). When a lower concentration of methyl glucoside was used, the 

post-reaction mixture was significantly clearer, with much less insoluble humins 

observed. At higher concentrations, the solution turned brown-black, with black, 

insoluble particles in suspension visible to the naked eye. The reduction in humins 

was achieved while maintaining yield and conversion values. This reduction can be 

attributed to simple collision theory. There are less molecules present in solution to 

collide and form the polymers. However, the amount of catalyst remained the same; 

in effect, the catalyst to substrate ratio increased, which allowed to maintain the yield 

and conversion. 
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Figure 31. Comparison of post reactions solutions at 0.32M (left) and 0.08M (right) 

concentrations of alpha-methyl glucoside. 

Analysis of humins was also carried out. To obtain a large sample of humins, a 

standard reaction was carried out with phosphotungstic acid as the catalyst (Table 

12). Phosphotungstic acid was chosen as it is a heteropoly superacid; with a melting 

point of 89 °C, the acid would behave as a homogenous catalyst, maximising the 

conversion of substrate. The acid facilitated a near complete conversion of methyl 

glucoside, with a relatively high yield of ML. A large 40% yield of formic acid was 

observed, which corresponded to a high degree of polymerisation. The carbon 

balance was very low at 29%, but the desired result was achieved: large, black, 

insoluble flakes of humins were found in the post-reaction solution.  

Table 12. Reaction with phosphotungstic acid in order to obtain humins. Reaction 

conditions: α glucoside 620mg, phosphotungstic acid 80mg, MeOH 8 g,temp. = 180 
oC, 5b N2, 1hr 

Catalyst 
Conversion, 

% 
ML yield, % 

Formic acid yield, 

% 

Phosphotungstic 

acid 
97 23 40 

 

The resulting polymer was subject to analysis under IR and UV light. Due to the 

expected complexity of the polymer, limited analysis could be carried out. However, 

the test also confirmed that strong acids facilitate the polymerisation. Figure 32 

shows the IR spectrum of the polymer. Several important bands were identified. The 

broad stretch at approximately 3400 cm-1 comes from the O-H alcohol bonds. The 
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two stretches which have been circled in the figure correspond to C=O bonds at 1700 

cm-1 and conjugated C=C bonds at 1600 cm-1 are indicative of the furan base 

structure in the polymer. At 1075 cm-1 a C-O stretch can be observed, and at 970 cm-

1 features a stretch for a di-substituted C=C bond. The presence of all these stretches 

complies with the idea that humins are highly conjugated polymers of furanic 

structures.9  

 

Figure 32. IR spectrum of humins obtained from phosphotungstic acid reaction. 

Figure 33 shows the UV spectrum of the humins. Although limited analysis can be 

carried out with UV in this particular case, the spectrum does show that the humins 

are a large, highly conjugated polymer, rather than a collection of smaller oligomers. 

The spectrum resembles that of a different polymer with similar features: repeating 

5-member heterocyclic rings with highly conjugated structures.61 The IR and UV 

spectra combined strongly suggests that humins are a large, furanic polymer, 

however the exact structure has not been confirmed. 
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Figure 33. UV spectrum of humins obtained from phosphotungstic acid reaction. 

Gas analysis of was carried out on post-reaction atmosphere to assess whether any 

additional products were made during the reaction, and to account for any missing 

carbon balance. Once the reaction has cooled down, the gas was extracted through a 

vent into a gas bag and injected into a GC equipped with a methanizer. The results 

can be found in Table 13.  Majority of the gaseous mixture (nearly 82%) consisted 

of methyl formate and methanol (17%) with small amounts of CO and CO2 (less than 

2% combined). The CO and CO2 likely came from decomposition of methyl formate 

or formic acid. Methyl formate was one of the major products from this reaction; 

with a low boiling point and high vapour pressure, it was expected to be found in the 

gas phase. Using the ideal gas law (Parameters used: p = 5000 Pa, V = 0.00005 m3, 

R = 8.31 J K-1 mol-1, T = 298 K) to calculate the number of molecules in the gas 

phase returned a value of 0.001 moles. The final pressure value was estimated based 

on the fact that pre-reaction, the reactor was charged with 5 bar of nitrogen. Post 

reaction, at the same temperature, the reactor was found to be at approximately 5.5 

bar on a consistent basis. Therefore, a value of 0.5 bar (5000 Pa) was used to 

calculate the actual amount from the reaction mixture, omitting nitrogen. The 
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reaction input was the substrate (0.0032 moles) and methanol (0.31 moles, solvent) 

The main component of the gas phase was methyl formate, which requires one 

molecule of methanol and one molecule of formic acid to be produced. In a standard 

reaction with SO4-ZrO2, 54% of the substrate converted into products, of which 31% 

was formic acid. This gives a value of 0.00054 moles of formic acid in the reaction 

mixture. At 81.7% composition of 0.001 moles in the gas phase results in 0.00082 

moles of methyl formate, requiring equimolar amounts of MeOH and formic acid. 

This suggest that bulk of the formic acid produced is actually found in the gas phase; 

the total amount of formate species at the end of the reaction was approximately 

0.0014 moles, increasing the yield from 31% to 44%. This would potentially account 

for up to 8% additional carbon balance, assuming that every molecule of substrate 

produces an expected amount of formic acid. It’s possible that the substrate could be 

oxidised and form oligomers, or that not all reacted substrate goes on to follow the 

expected mechanistic pathway, due to complexity of the reaction. As such, it is not 

straightforward to state the relative impact of the gas phase compounds on carbon 

balance. 

Table 13. GC analysis of a standard post reaction gas mixture. Catalyst tested is SO4-

ZrO2. Temp. 180°C, time 1 hr, 5 bar nitrogen, 0.62 g glucose, 0.08 g catalyst, 8 g 

methanol, 600 rpm stirring 

Gas Composition, % 

CO 0.7 

CO2 1.0 

Methyl formate 81.7 

Methanol 16.6 

 

It can be said with certainty that the results discussed up to this point were 

correct at the time of writing; peer reviewed; repeated multiple times for accuracy. 

Still, certain issues with solvent, reactor and carbon balance were discovered quite 

late on into the research cycle. An experiment was carried out with the aim of finding 
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out whether methyl levulinate is absorbed by the humin polymer; methyl levulinate 

was put into the reactor alongside pre-prepared humins (obtained from the reaction 

with phosphotungstic acid) in methanol, heated to 100 °C and stirred for 1 hour. At 

the end of the reaction, it was found that the concentration of ML has increased 

compared to baseline by approximately 20%. The humins were thoroughly washed 

before the reaction to make sure no residual small molecules were left on the surface, 

so the additional ML did not come off the polymer. It was also noted that the solvent 

level decreased by approximately 20% at the same time. The reactor was sealed and 

leak checked – the solvent did not escape the reactor. It was determined that some of 

the solvent was trapped in the gas inlets, outlets, under the liner, and in the pressure 

measuring apparatus of the reactor. Most likely due to differences in volatility, the 

methanol separated from the rest of the reaction mixture and therefore the mixture 

was not of uniform concentration across the entire reactor. As such, carbon balance 

is not listed in most tables, even though it was calculated for every reaction. This is 

because while the conversion and yield values were consistent between reactions, 

and can be qualitatively assessed (in the least), the difference to carbon balance was 

large and difficult to assess retroactively. Typical carbon balance for these reactions 

would be in the order of 50-80%, depending on conditions. The solvent trapped in 

the reactor did not affect any consecutive reactions because the reactor was 

thoroughly cleaned in between each experiment. As a side note, very few papers 

reported their carbon balance values and fewer still used an internal standard for 

analysis. 

In consideration of the factors related to humin formation discussed in this 

section and the issues above, a new, better methodology was proposed. Reactions 

with the best performing materials, sulfated zirconia and zeolite β (38) were carried 

out. Mesitylene was added to these reactions as an internal standard, due to its non-

volatile and unreactive (under the reaction conditions) nature. The results obtained 
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with these materials can be found in Table 14. A reduction in conversion and yield 

values was observed. This stemmed exclusively from the use of an internal standard, 

as the loss of methanol in previous reactions simply inflated these values on a 

consistent basis. Due to the inclusion of an internal standard, carbon balance values 

were able to be calculated. 

Table 14. Reactions with best catalysts under new conditions. Each experiment was 

repeated three times to obtain error margins. Temp. 180°C, time 1 hr, 5 bar nitrogen, 

0.2 g alpha methyl glucoside, 0.1g mesitylene, 0.08 g catalyst, 8 g methanol 

Catalyst Conversion, % ML yield, %, Formic acid 

yield, % 

Carbon bal., 

% + 5% 

Zeolite β (38)  18 + 1 7 + 1 3 + 1 89 

SO4-ZrO2 33 + 3 7 + 2 4 + 2 74 

 

In order to obtain better understanding of the reaction pathways, a mechanism was 

proposed, found in Figure 34. The mechanism explores possible steps from the 

substrate to the desired product, methyl levulinate. There is a general agreement in 

literature that in water solvent, 5-HMF is the required intermediate for the production 

of levulinic acid.62,63 It is not uncommon to see glucose isomerisation to fructose as 

part of the mechanism.64,65 The mechanism in other solvents like methanol has been 

largely unexplored in literature, or an assumption is made that an identical 

mechanism to water takes place. While an HMF-like compound was detected in the 

post reaction mixtures, no evidence was found for the formation of fructose. The 

pathway in methanol is likely similar, but the involvement of methyl ester groups 

changed some of the chemistry and a new mechanism had to be proposed. Note that 

no labelling experiments were carried out, and the pathway was constructed solely 

on the observation of products in the post-reaction mixture. The mechanism is laid 

out with Brønsted acidity as the catalyst, though clearly the pathway can be catalysed 

(at least part way) with Lewis acidity as well, as evidenced by formation of 5-MMF 
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in Table 2. The proposed mechanism is not exhaustive, and does not account for 

formation of any by-products. 

The first step in the mechanism is the first dehydration resulting in intramolecular 

rearrangement of MeGlc to a 5-member heterocycle. This leaves the previously 

anomeric methoxy group open to nucleophilic attack. In theory, the methoxy could 

be attacked by methanol or water to relieve the positive charge. They are both present 

in abundance in this reaction, and it can be speculated that depending on the 

nucleophile, the reaction can take different routes. The mechanism remains the same, 

however the resulting reaction intermediate, labelled “B” on the diagram, could 

likely be less reactive than intermediate “A” due to the nature of methoxy groups, 

and therefore not lead to methyl levulinate. At the same time, it is possible that this 

intermediate can follow the same pathway as intermediate “A”; they could also be 

reversibly connected if proton exchange takes place. Intermediates “A” and “B” are 

also likely to be the 5-MMF-like molecule detected in some of the experiments and 

identified by NMR. Without an isolated sample, no further analysis was carried out.  

The next step in the mechanism is also likely the most important step in this pathway; 

it appears to determine whether methyl levulinate can be produced, or an 

intermediate which does not lead to the product. The distinction stems from the angle 

at which the nucleophile attacks this molecule. If the attack is from the di-substituted 

side, the mechanism reasonably allows for formation of ML. However, if the attack 

is carried out from the mono-substituted side, there does not appear to be a feasible 

way to continue the pathway. This is also likely where a portion of the divergence 

between conversion of substrate and yield of ML comes from, as the selectivities to 

ML reported in this chapter are approximately in the order of 30-50%. The pathway 

to ML requires attack from the di-substituted side, which is slightly more sterically 

hindered. The probability to continue on this pathway is therefore likely to be 50% 

or less.  
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The following steps lead to a ring opening of the heterocycle and formation of the 

desired product, methyl levulinate. The mechanism is distinctly different to the one 

in water solvent in that no fructose is produced; while furan-based compounds are 

key, 5-HMF is not produced; additionally, it could predict some of the methylated 

products from this reaction, assisting in future identification of unknown products. 

 

Figure 34. Suggested mechanism for the conversion of methyl glucoside to methyl 

levulinate 
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As a way to corroborate the mechanism, a series of experiments with furfural and 

furfural alcohol were carried out. The aim of these was to confirm the assumption 

from the proposed mechanism that the pathway to methyl levulinate depends on the 

angle of nucleophilic attack on intermediate “A”. This was achieved by 

approximating the two sides of the molecule to two common compounds: furfural 

alcohol was used to simulate the mono-substituted side; furfural was used to simulate 

the di-substituted side. If the assumption is correct, only furfural alcohol should have 

produced methyl levulinate. Unfortunately, the scope of these experiments was 

limited. Safety concerns arose with the use of furan compounds in the autoclave 

reactors because of lack of fume hoods above them. As a result, the reactions were 

carried out in a 50 mL glass Colaver reactor pressurised with N2. Unlike an 

autoclave, the glass reactors were not airtight; as such, a moderate temperature had 

to be used to minimise solvent loss, alongside a 60-minute reaction time. The results 

can be seen in Table 15. Only one configuration yielded measurable amounts of 

methyl levulinate – ZSM-5 (23) with furfural alcohol. While this complies with the 

mechanistic assumption, Zeolite β (38) did not facilitate production of ML despite 

being a strongly acidic catalyst. This could be because of the low temperature. 

Experiments with furfural resulted in large amount of humins formed (as evidenced 

by the low carbon balances) but no ML was observed.  This complies with the 

mechanism proposed in Figure 34, specifically the nucleophilic attack on 

intermediate A. Only the mono-substituted side of the molecule will yield levulinate 

species, and in these experiments only furfural alcohol has produced ML. These 

findings are also in line with findings reported in literature. Generally, literature 

yields of ML from furfural alcohol are significantly higher (ranging from 20% and 

as high as 98%) due to use of higher temperatures (above 100 °C).66–70 At the time 

of writing, no reports of furfural aldehyde to methyl levulinate could be found. 
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Table 15. Reactions with furfural-based substrates. Reaction conditions: 0.01 mol 

substrate, 80 mg catalyst, 0.1 g Mesitylene, 10 mL MeOH, 40 ⁰C, 1.5 bar N2, 60 

minutes 

Catalyst Substrate ML yield, % Carbon balance + 5% 

ZSM-5 (23) Furfural alcohol 1.5 + 0.3 95 

ZSM-5 (23) Furfural 0 51 

Zeolite β (38) Furfural alcohol 0 93 

Zeolite β (38) Furfural 0 25 

 

3.2.5. Conclusions 

Solid-acid catalysed dehydration of methyl glucoside was investigated. This 

chapter was divided into four individual parts, each tackling a different aspect of the 

reaction. 

The first section focused on the methylation of glucose into methyl 

glucoside. Different reaction conditions were tested: initially various amounts of 

mineral acid were utilised, alongside varying reaction times. It was found that a 1:10 

ratio of mineral acid to glucose was sufficient for the methylation to take place. 

Initial testing used 16 h reaction time, however it was determined that the reaction 

progressed significantly even after the first 2 hours. Indeed, the methylation 

happened readily at temperatures far lower (100 °C lower) than glucose dehydration 

reactions discussed further in the chapter. Finally, Amberlyst-15 (w) was evaluated 

as a commercial solid acid catalyst. The solid acid performed slightly worse than the 

mineral acid, which was expected – there was an additional factor of substrate 

diffusion into the catalyst before a reaction could take place, which was not a 

significant obstacle when a mineral acid was used due to its homogenous nature. 

This part of the overall reaction was deemed to be the easiest to overcome, and not 

a limiting step in any way. Therefore, it was not explored further. 
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The second section explored the use of solid acid catalysts for the 

dehydration of MeGlc. Several metal oxides were evaluated alongside their acidified 

equivalents. All the materials tested, apart from P25, were synthesised in-house. It 

was found that superacid SO4-ZrO2 was the best performing catalyst, closely 

followed by SO4-TiO2. The acidity of both catalysts was explored. The total surface 

acidity of SO4-ZrO2 was measured at 0.76 mmol/g, over twice that of SO4-TiO2 at 

0.33 mmol/g. When compared to SO4-TiO2, SO4-ZrO2 was found to be more stable 

at high temperatures; have much higher surface area; possess a higher concentration 

of acidic sulfur groups on the surface, despite identical sulfation process. The 

Brønsted and Lewis acid sites on sulfated zirconia proved to be relatively strong with 

pyridine DRIFTS. Various catalyst loadings were also explored, and a linear 

correlation between conversion and amount of catalyst used was found, indicating 

that the reaction was under a kinetic regime. This enabled the use of a lower amount 

of catalyst, mainly to limit the polymerisation side reactions but also for economic 

reasons. 

The following section focused on a specific subset of solid acid materials, 

zeolites. A range of zeolites of various acidities were tested, alongside some Lewis-

acidic zeolite materials. Only the Brønsted-acidic zeolites produced methyl 

levulinate. Additionally, zeolite β was significantly more active than ZSM-5. This 

was most likely due to the difference in pore sizes; zeolite β has slightly larger pores, 

which allowed the relatively big methyl glucoside molecule to diffuse through into 

the catalyst, where a reaction could take place. ZSM-5 features smaller pores, which 

are likely too small for the substrate to diffuse into. As a result, the reaction could 

take place on the external surface of the catalyst only, greatly limiting the reaction 

rate – as evidenced by the very low yields of approximately 0.5%. While the pore 

size limits large molecules from entering the catalyst, chemistry can still take place 

on the external surface, for example polymerisation reactions. Zeolite β was subject 
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to a silylation procedure so that the external surface acid sites would be covered with 

silica, but the internal acid sites would remain intact. This was done in hopes of 

limiting polymerisation side reactions. However, it was found that while the 

procedure did limit polymerisation, it also slowed the rate of reaction and reduced 

conversion. After closer investigation, silylation did give any real improvements to 

the material. Therefore, zeolite β (38) was established as the best performing zeolite, 

alongside the metal oxide based SO4-ZrO2. The zeolite material was tested for re-

usability. Yield of methyl levulinate reduced with subsequent uses, likely due to 

humins covering surface of the catalyst, essentially poisoning it. 

Finally, the last section of this chapter tackled the production of humins, 

optimisations to the reaction and the mechanistic pathway to methyl levulinate. A 

comparison was made between methanol and water as solvents for the reaction, 

concluding that despite similar yields of methyl levulinate, the reaction in water 

produced a great amount more of humins then in methanol. The concentration of 

substrate was also found to have a significant impact on the amount of 

polymerisation without affecting conversion or yield, due to the psudo-first order 

reaction kinetics. Humins were synthesised by carrying out a reaction with 

phosphotungstic acid, and analysed with IR and UV. Interpretation of the spectra 

reveals that humins were large, highly conjugated polymers primarly consisting of 

C=C, C=O and C-O bonds. This fits the idea that they are made up of furan rings 

joined in chains. Reactor issues were discussed which meant that conversion and 

yield values reported in this chapter were inflated, however this was discovered at 

such a late stage in research that no reasonable corrections could have been made. 

The pathway to methyl levulinate was proposed, and mechanistic steps discussed. 

The proposed mechanism differs to the one which is commonly accepted in water 

solvent, and complies with the reaction results presented in this chapter. Initial work 

on confirming the mechanism was carried out by testing furfural alcohol and furfural 
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as starting materials for methyl levulinate. Only furfural alcohol converted into the 

desired product, in compliance with the proposed mechanism. 
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Chapter 4 

 

Conversion of levulinic acid to γ-valerolactone using Cu-ZrO2 

catalysts 

All references are self-contained to within this chapter, and do not refer to any other 

chapters. 

4.1 Introduction 

Levulinic acid (LA) is one of the many chemicals derived from 

lignocellulose, and has been identified by the US Department of Energy as one of 

the top ten high-value target molecules derived from biomass.1 LA can be further 

transformed into a range of useful chemicals such as γ-valerolactone (GVL)2 or 2-

methyl-tetrahydrofuran (2-MTHF)3; it is also one of the main products of glucose 

dehydration,4,5 which makes LA a great starting material for further studies. GVL 

itself has many possible applications – it can be used as a biomass-derived monomer 

for polymerisation;6 a “green solvent” to assist sugar dehydration;7 however, the 

most promising aspect of GVL is its use as a fuel additive to compete with bio-

ethanol. Currently, nearly all bio-ethanol is produced by fermentation of sugars 

sourced from corn or sugar cane. Whilst the process itself is generally accepted as 

environmentally friendly, the sustainability of it is a subject of debate due to the fact 

that bio-ethanol is a first generation biofuel, meaning it competes for arable land with 

food crops.8,9 The technology to produce ethanol from cellulose does exist, but it is 

a relatively expensive process that accounts for a fraction of global bio-ethanol 

production.10 GVL possesses many attractive properties that make it a potential 

replacement for bio-ethanol – lower vapour pressure, high energy density, high 
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boiling point and lack of azeotrope with water (for easy separation), to name a 

few.11,12 It is also possible to produce liquid alkenes (C8-C16 chains) for conventional 

fuel uses from GVL.13 Finding a cheap, efficient catalyst for the production of GVL 

is crucial if these applications are to be realised on an industrial scale. 

In this chapter, we demonstrate a novel catalyst synthesis method based on  

previous work with Cu-ZrO2 by the Hutchings group.14,15 Previously prepared 

catalysts contain a large amount of copper within the ZrO2 lattice, as well as CuO 

and Cu species on the surface. The aim of using the new method is to reduce the 

amount of copper in the catalyst (particularly the Cu species in the bulk lattice of 

ZrO2) while retaining activity, and therefore increasing the efficiency and reducing 

the cost of Cu-ZrO2 for hydrogenation of LA to GVL, making it more competitive 

against ruthenium-based catalysts. This work explores new catalyst preparation 

methodology, effect of pre-treatment on activity of the new material, reaction 

kinetics and characterisation to explain the activity trends.  

4.2. Results and discussion 

4.2.1. Manual preparation 

Catalysts synthesised with the new pH gradient method were tested for the 

hydrogenation of LA to GVL. All of the reactions were selective to GVL and no side 

products were formed. Carbon mass balance was within 95-100% in all of the 

reactions. The novel catalyst preparation method was developed on the basis of the 

difference in the initial precipitation point for copper and zirconia. In testing, it was 

found that zirconia precipitates started appearing when pH of the solution reached 3-

4. Copper precipitates did not start appearing until slightly higher pH of 4-5 was 

reached, and they did not fully precipitate until strongly alkaline pH (above 9) was 

reached.16 Therefore, by ramping the pH slowly over time, we could in theory create 

nanoparticles with a compositional gradient, where the core was predominately 

zirconia, and surface consisted mainly of copper-rich species. It was found that a 
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mixed phase Cu-Zr interface promoted higher activity of Cu-ZrO2 catalysts.15 

Development of the pH gradient method is a way to minimise the amount of those 

mixed metal phases in the bulk lattice, where they cannot be involved in the reaction, 

and ensure that they are closer to the surface.  

Initially, the materials were prepared manually, by dropping base from a burette 

into a stirred solution of copper and zirconia nitrates in a beaker. Aging time was 

monitored with a stopwatch. The first catalyst that was prepared was 50% Cu-ZrO2, 

and it was tested for hydrogenation of LA to GVL after calcination (Figure 35). The 

catalyst offered modest activity, especially when contrasted with 50% Cu-ZrO2 

prepared without pH ramping, which produced approximately 77% GVL yield.14 

Batch 1 gave a slightly higher GVL yield of 35% after two hours reaction compared 

to 25% and 28% for batches 2 and 3, respectively.  

 

Figure 35. Catalytic activity of calcined 50% Cu-ZrO2 catalyst prepared manually. 

Reaction conditions: 200 °C, H2 27 barg, 2 h, Substrate 5 wt.% LA/H2O (10 g), 

catalyst (0.05 g). 

 In order to understand the small, but non-negligible difference in activity 

between batch 1 and batches 2 and 3 presented in Figure 35, TPR was obtained for 

each catalyst (Figure 36). In the case of batch 2 and batch 3, two maxima can be 

observed – one at 210 °C and the second, more intense peak at about 240 °C. These 
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peaks are generally accepted to represent different species of copper (II) oxide; 

small, well-dispersed nanoparticles on the surface are most easily reduced and they 

showed up at 210 °C. The species of relatively larger copper nanoparticles with 

strong metal-support interactions are harder to reduce, and therefore undergo 

reduction at a slightly higher temperature of 240 °C.17,18 However, the slightly more 

active batch 1 featured a third reduction event at approximately 220 °C. This 

suggests that, while batch 1 contained the well-dispersed surface nanoparticles and 

the large particles with strong metal-support interactions, it also contained an 

intermediate species; perhaps nanoparticles which were close to the surface, but that 

were not labile, and interacted with the support meaningfully. This raises the 

possibility of the intermediate species being responsible for the increased activity, 

which will be studied in more detail in section 4.2.3. There was a small reduction 

event recorded at roughly 550 °C, which can be attributed to hydrogen spillover from 

copper onto the zirconia support.19. Hydrogen spillover onto zirconia is a well-

documented phenomenon,20–22 and it is very likely that it was conducive to the 

hydrogenation reaction. Hydrogen adsorbs and dissociates on the surface of copper, 

whereas LA adsorbs on zirconia; as the hydrogenation of LA happens on the 

interface between copper and zirconia, it is therefore important that dissociated 

hydrogen is within close proximity to the adsorbed LA on zirconia sites. Hydrogen 

spillover guarantees that there will be hydrogen atoms on the zirconia surface, 

facilitating the hydrogenation reaction. 
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Figure 36. TPR for calcined 50% Cu-ZrO2 catalysts. Reduction treatment carried 

out under 10%  H2/Ar (25 mL min-1), ramp rate 10 °C min. 

 BET surface areas of the 50% Cu catalysts were also measured (Table 16). 

There was minimal variation between them. Although the slightly more active batch 

1 featured the lowest BET surface area, the inherent error in the BET measurement 

(estimated to be around + 5% on average) discounts the small variability in BET 

surface area between the batches.23  

Table 16. BET surface areas of 50% Cu-ZrO2 catalysts prepared manually. 

Measurements were obtained using a 5-point analysis. 

Catalyst BET Surface area (m2g-1) 

50% Cu-ZrO2 batch 1 95 

50% Cu-ZrO2 batch 2 97 

50% Cu-ZrO2 batch 3 104 

 

 In order to accurately assess activity of these catalysts, further copper 

loadings were tested. The next series of catalysts featured 40 mol% loading of 
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copper. Despite a lower copper content, 40% Cu-ZrO2 performed significantly better 

than 50% Cu-ZrO2 (Figure 37).  

 

Figure 37. Catalytic activity of calcined 40% Cu-ZrO2 catalyst prepared manually. 

Reaction conditions: 200 °C, H2 27 barg, 2 h, Substrate 5 wt.% LA/H2O (10 g), 

catalyst (0.05 g). 

BET surface area of 40% Cu-ZrO2 catalysts was measured. The surface area was 

slightly higher than 50% Cu-ZrO2 material, however it did not correspond to a linear 

correlation between activity and BET surface area. 40% Cu catalysts gave over twice 

the yield of GVL at two hours than 50% Cu catalysts, however the corresponding 

increase in BET surface area was only 13% on average. This means that the total 

surface area of the material was not a significant factor in determining activity. 

Table 17. BET surface areas of 40% Cu-ZrO2 catalysts prepared manually. 

Measurements were obtained using a 5-point analysis. 

Catalyst BET Surface area (m2g-1) 

40% Cu-ZrO2 batch 1 115 

40% Cu-ZrO2 batch 2 108 

40% Cu-ZrO2 batch 3 112 

 

 There was a difference in copper oxide reflection size between 50% and 40% 

Cu catalysts in XRD, which could mean two things: either copper oxide crystallite 
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size was smaller in the 40% Cu catalyst (and therefore had smaller particles), or the 

40% Cu copper oxide was more amorphous; it is not clear which was the case, 

however both can account for the differences in activity, shown in Figure 37 and 

Figure 38, respectively. 50% Cu-ZrO2 shows clear CuO reflections at 36° and 39°, 

whereas 40% Cu-ZrO2 are largely amorphous materials. However, 40% Cu-ZrO2 

batch two shows some very small CuO reflections. This inconsistency is likely due 

to the difficulty in perfect reproducibility of the catalyst synthesis stage. The manual 

preparation was subject to a myriad of uncontrolled (or poorly controlled) variables, 

such as temperature of the mixture, base addition speed, and differences in solution 

agitation stemming from variance in beaker and stirrer bar size; for example beaker 

size varied at times between 500 mL and 1000 mL, and stirrer bar size varied 

between medium and large. This could have affected the rate of agitation of the metal 

nitrate mixture. All care was taken to make the method as reproducible as possible, 

however because of the nature of laboratory working space, use of the same reaction 

vessel every time was not always possible. Additionally, temperature of the mixture 

was not controlled externally through the use of a water or oil bath, so the mixture 

itself was susceptible to temperature changes in the laboratory itself; the “room 

temperature” can vary by as much as 10 °C depending on whether its summer or 

winter. Nonetheless, both the 50% and 40% Cu-ZrO2 catalysts produced consistent 

hydrogenation results despite the small differences in XRD. 
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Figure 38. XRD patterns for 50% Cu-ZrO2 calcined catalysts prepared 

manually. • CuO 

 

Figure 39. XRD patterns for 40% Cu-ZrO2 calcined catalysts prepared manually 

Material synthesis and testing was continued with 30% Cu-ZrO2 catalysts. Figure 40 

shows GVL yield after two hour runs for 5 batches of the 30% Cu-ZrO2 catalyst. 

GVL yield of batch 1 was slightly lower than 40% Cu catalysts, likely due to the 

lower amount of copper in the catalyst. However, with further testing, the activity 

has decreased over subsequent batches. This lack of reproducibility underlines the 

major downside to manual preparation with the pH gradient method – despite careful 
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preparation, results varied across different batches. Batches 1 to 4 were prepared 

using the same conditions. As a result of the high variability these results, it was 

thought that a slower, more controlled addition of base to metal nitrate solution 

would improve consistency of synthesis. Therefore, batch 5 was prepared with very 

slow changes in pH, so that it took approximately 30 minutes to increment the pH 

value by one point. This had the side effect of increasing the total aging time by 2 

hours, which could have potentially affected activity of this batch. Batch 5 was the 

worst performing batch so far. 

 

Figure 40. Catalytic activity of calcined 30% Cu-ZrO2 catalyst prepared manually. 

Reaction conditions: 200 °C, H2 27 barg, 2 h, Substrate 5 wt.% LA/H2O (10 g), 

catalyst (0.05 g). 

In light of these results, an attempt was made to prepare the 30% and 40% Cu-ZrO2 

catalysts with an autotitrator. An autotitrator is a piece of equipment which can be 

used to automate the material synthesis process. It controlled pH value with high 

accuracy, controlled temperature, stirring rate and timings. Several batches were 

preparen, seen in Figure 41, and the batch-to-batch variation was much lower than 
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with manually prepared materials. 30% Cu-ZrO2 has retained the activity shown by 

batch 1, however activity of 40% Cu-ZrO2 has decreased when compared to manual 

preparation. This has made the 30% and 40% Cu directly comparable in activity. The 

drop in activity could have been caused by the fact that an autotitrator was capable 

of much more specific pH control, which possibly resulted in more thorough mixing 

of the metal precursors. This in turn could have caused more copper to be found in 

the bulk lattice where it remains inactive. Regardless of the effect on activity an 

autotitrator preparation had on these catalysts, the automatic synthesis proved more 

consistent and reproducible, and as such it was chosen as the main way to prepare 

these catalysts. No further materials were prepared manually, and therefore the 10% 

and 20% copper-content catalysts were only explored as prepared automatically. 

 

Figure 41.Catalytic activity of calcined 30% and 40% Cu-ZrO2 catalysts prepared 

with an autotitrator. Reaction conditions: 200 °C, H2 27 barg, 2 h, Substrate 5 wt.% 

LA/H2O (10 g), catalyst (0.05 g). 

 

 

 



101 
 

4.2.2. Automated preparation 

As a conclusion of findings from section 4.2.1, all further material synthesis was 

carried out with the use of an autotitrator. Activity testing was carried out with 

calcined catalyst materials and a range of copper loadings was explored (Figure 42). 

The yield of GVL increased rapidly when the copper loading was increased from 

10% to 30%. Material with 40% Cu provided yield slightly higher than 30% Cu 

catalyst, whereas 50% Cu loading showed a notable decrease in catalytic activity of 

45% when compared to 40% Cu results.  

 

Figure 42. Catalytic activity of various catalysts prepared by variation of Cu loading. 

Reaction conditions: 200 °C, H2 27 barg, 2 h, Substrate 5 wt.% LA/H2O (10 g), 

catalyst (0.05 g). 

BET Surface area of all of the materials prepared by variation of Cu loading 

followed a similar pattern, however it was not linear. There was a steady increase in 

surface area as the copper content increased from 10% to 30%, where a plateau is 

reached (see Table 18). The surface area and activity for catalyst with 40% Cu was 

within experimental error of 30% Cu-ZrO2, indicating that activity and surface area 

are closely related. This is a trend we observed in our previous work with similar 

Cu-ZrO2 catalysts.14 There was a sharp decrease in yield when 50% Cu-ZrO2 was 
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used, accompanied by a small decrease in surface area. However, as the activity of 

50% Cu-ZrO2 decreased below that of 20% Cu-ZrO2, only a small decrease in 

surface area was observed.  

Table 18. BET surface areas for calcined Cu-ZrO2 catalysts prepared by variation of 

Cu content. 

Catalyst BET surface area, m2g-1 

10% Cu-ZrO2 48 

20% Cu-ZrO2 84 

30% Cu-ZrO2 107 

40% Cu-ZrO2 108 

50% Cu-ZrO2 92 

 

Powder XRD patterns for the calcined catalysts are shown in Figure 43. Lower 

copper content materials (10-30% Cu) appeared to be amorphous and no distinct 

reflections were observed because the size of copper crystallites was below the 5 nm 

detection limit. At 40% Cu loading, three CuO (ICDD = 01-089-2529) reflections 

faintly emerged at 2θ values of 36°, 39° and 49°, indicating crystallite size growth 

most likely caused by the increased concentration of copper atoms in solution during 

synthesis.24 At 50% Cu loading, several new CuO reflections appeared prominently 

at 2θ values of 59°, 62°, 67°, 68°, and 75°. Furthermore, a small tetragonal zirconia 

(t-ZrO2, ICDD = 01-080-3783) reflection appeared at 31⁰. 
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 Analysis of the surface elemental composition with XPS (Table 19) revealed 

information about the surface composition of these materials. The amount of Cu 

atoms on the surface steadily increased with rising Cu loading on the catalyst, 

whereas the amount of Zr atoms on the surface decreased marginally between 10-

40% Cu, and showed a large decrease in the 50% Cu catalyst. However, by 

calculating Cu/Zr ratio on the surface, it is evident that the surface species very 

closely corresponded to the theoretical molar ratios of copper and zirconia. The 

initial rationale in preparing the materials with pH gradient method was that the 

surface of the catalyst would become more copper-rich, and copper would not be 

precipitated in the bulk, where it does not participate in the reaction. While it is still 

likely that there has been less copper incorporation into the bulk lattice, XPS data 

suggests that the catalysts contain well-mixed phases on the surface. We have found 

Cu/ZrO2 catalysts prepared by deposition-precipitation (DP) to have very poor 

activity for the hydrogenation of LA, achieving yield of 2.26 + 0.52. In DP catalysts, 

there was a clear separation between two metal phases and surface consisted of 

Figure 43. XRD patterns for various Cu loadings of calcined 

catalysts. • CuO; ♦ t-ZrO2 
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almost entirely copper. Therefore, it appears that a certain degree of mixing of CuO 

and ZrO2 phases is beneficial to the reaction and desirable in a good catalyst. An 

appreciable quantity of carbon was also detected on the surfaces, which means there 

may have been some left over K2CO3 from catalyst preparation on the surface. 

Presence of oxygen was expected, as the materials themselves are oxides. 

Table 19. Surface atom coverage derived from XPS for various Cu loadings on 

calcined catalysts. 

 Surface elemental concentrations, atom %  

Cu loading, 

mol. % 

Cu 2p O 1s C 1s Zr 3d 

Cu/Cu+Zr 

ratio 

10% 2.32 50.57 24.15 22.97 0.09 

20% 5.47 53.02 18.27 23.24 0.19 

30% 9.21 54.58 14.17 22.04 0.29 

40% 12.93 54.88 11.80 20.39 0.39 

50% 19.74 51.65 12.69 15.91 0.55 

In consideration of the relatively low copper content and high activity, 30% 

Cu-ZrO2 was chosen as the material for all further testing due to the compromise 

between low copper loading and high activity. The catalyst was subject to time-on-

line testing, shown in Figure 44. No significant induction period was observed. In 

fact, when the catalyst was subject to in-situ reduction with no substrate present, the 

catalyst was reduced (observed in XRD, SEM and visual inspection) even after a 5 

minute reduction period, indicating that the reduction process was rapid and not a 

limiting process in the reaction. The GVL yield scaled with time almost linearly up 

to two hours, at which point it started to plateau off. . This behaviour is expected, as 

a lot of catalysts will give lower reaction rates once most of the substrate has been 

reacted, in accordance with collision theory. There are less substrate particles 

available for reaction, and therefore the probability of catalyst-substrate interaction 

decreases – as such, the rate of reaction decreases as well. Hence, two hour reaction 
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time was selected as a fair measure of catalytic activity. Leaching studies (MPAES) 

were carried out for each reaction time, and less than 0.3% of copper was found in 

the post-reaction solution. Therefore, the catalyst were stable and the reaction was 

catalysed heterogeneously. 

 

Figure 44. Time on line testing of 30% Cu-ZrO2 catalyst (calcined). Reaction 

conditions: 200 °C, H2 27 barg, Substrate 5 wt.% LA/H2O (10 g), catalyst (0.05 g). 

 

The same catalyst was subject to several cycles of reactions in order to test 

its reusability (Figure 45). There was no loss in activity upon first reuse, and only a 

small decrease in yield after second and third uses. 
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Figure 45. Reuse testing. Reaction conditions: 200 °C, H2 27 barg, 2 h, Substrate 5 

wt.% LA/H2O (10 g), catalyst (0.05 g). 

Due to high temperature and pressure of pure H2 in the reactor, the catalysts 

were reduced in-situ after the first use, and copper remained in metallic form 

throughout the following uses (Figure 46). It is worth noting that a small Cu2O 

reflection was observed in all post-use samples, with a large reflection visible in the 

sample used thrice. This is due to the fact that the instrument used for these 

measurements suffered significant downtime for maintenance, which has caused the 

samples to oxidise in air a bit. From previous work on Cu-ZrO2 catalysts by the 

Hutchings group,15 it is known that reduction of copper catalysts can significantly 

improve their hydrogenation activity. When a fresh pH gradient catalyst was subject 

to in-situ reduction with no substrate present, whether the reduction time was fifteen 

minutes or two hours (200 °C, 27 barg H2, 10 g H2O), a moderate increase in activity 

from 55% to 66% GVL yield was observed when tested. However, any in-situ 

treatment of the material resulted in copper agglomeration (observed by SEM), 

increased crystallite size (from XRD), and various degrees of phase separation 

between copper and zirconia, all of which had a negative effect on catalyst activity. 

Therefore, there are two major effects responsible for no loss in activity on first 

reuse: the in-situ reduction of the catalyst which generally increases activity of Cu-
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ZrO2, and agglomeration of copper into relatively large crystallites (Table 20) which 

makes the catalyst less active. These two effects effectively cancelled each other out, 

so that the conversion stayed the same. Upon second and third reuse, approximately 

10% yield was lost. 

 

Figure 46. XRD patterns of re-used 30% Cu-ZrO2 catalyst. • metallic Cu ♦ Cu2O 

Table 20. Copper crystallite size for reused catalysts calculated from Cu reflection 

at 2θ = 35°. 

Catalyst 

Metallic Cu particle size (Scherrer 

equation), nm 

30% Cu used once 63 

30% Cu used twice 74 

30% Cu used three times 92 

 

The decreased activity after second reuse can be related to the morphological 

changes in the catalyst (Figure 47). There was a significant amount of phase 

separation between Cu and ZrO2. A solid block of ZrO2 was observed, with large 

clumps of copper agglomerating on the surface of the particle. However, no real 
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change in activity or morphology was observed between second and third uses, 

indicating that the material has reached a stable state. The agglomeration of copper 

crystallites is unavoidable at the temperature this reaction has been carried out at, 

due to the low Hüttig temperature of the metal (approximately 179 °C) – that is, the 

temperature at which surface atoms become significantly mobile. Another likely 

factor in morphological changes is how the H2 gas was introduced to the reactor. As 

the internal reactor temperature reached 200 °C, 27 barg of H2 was vented into the 

chamber, exposing the catalyst to extreme conditions over a short amount of time. 

Internal testing has shown that CuO on the calcined catalyst was fully reduced within 

minutes of introduction of H2 to the reactor. This is in contrast to a typically utilised 

furnace reduction, where not only the concentration of H2 was much lower, the flow 

of gas, ramp rate, and time were all controllable variables. These relatively harsh 

conditions likely promote particle agglomeration and growth in an uncontrollable 

manner.  

 

Figure 47. SEM images of a) fresh (calcined) 30% Cu-ZrO2 catalyst b) the same 

catalyst after 1 use c) after 2 uses d) after 3 uses. 
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4.2.3.  Acid wash of the catalyst 

 In order to determine the active species on the catalyst, they were subject to 

acid treatment with 0.5M HNO3. The acid treatment stripped the surface of any labile 

copper species, and exposed the underlying copper with strong metal-support 

interactions. To confirm that all the labile species have been washed off, some of the 

acid-treated catalysts were subjected to a second acid wash, after which negligible 

amount of Cu was found in solution. Following the acid treatment, the catalysts were 

tested for hydrogenation of LA to GVL under standard conditions (Figure 48). It was 

found that the catalysts retained their activity completely. The amount of copper 

metal washed off the catalyst was calculated from MPAES analysis of the post-acid 

wash solutions. As much as 77% of copper originally loaded on the 50% Cu-ZrO2 

was washed off, demonstrating that a large amount of metal acted as spectator 

species. The lowest metal loading of 10% Cu leached only 1.3% of metal, with the 

20% Cu catalyst leaching significantly more at 28.2%. This shows that during 

catalyst synthesis, copper species first saturate the bulk lattice before precipitating 

on the surface. The point of lattice saturation appeared to be roughly around 10% Cu 

loading. Approximately the first 15-20% of the loaded copper appears to have strong 

metal-support interactions (Table 21). As the surface copper was not involved in the 

reaction, it was therefore the metal with strong metal-support interactions that was 

the active species. The resilience of the active species towards acid treatment 

underlines stability of the catalyst, which was further underlined by the negligible 

leaching of the zirconia support. 
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Figure 48. Activity of calcined Cu-ZrO2 catalysts in relation to acid washing. Grey: 

before acid wash; Orange: after acid wash. Reaction conditions: 200 °C, 50 mg 

catalyst, 5% LA/H2O, 27 barg H2, 2 hours 

Table 21. Calculated amounts of metallic copper and zirconia lost upon acid washing 

the catalysts. Percentages calculated from MPAES data. 

Powdered XRD patterns for the acid washed catalysts can be seen in Figure 49. The 

pattern for 30% CuZrO2 did not change drastically due to the acid treatment, as the 

material appeared amorphous in XRD when freshly calcined. However, a large 

change was observed in the pattern for 50% CuZrO2. All the crystalline CuO 

reflections observed before have disappeared (2θ values of 59°, 62°, 67°, 68°, and 

75°), in agreement with the 77% loss of copper from MPAES. Despite the large loss 

Catalyst 

Copper lost 

upon acid 

treatment, 

% 

Zirconia lost 

upon acid 

treatment, % 

Cu loading before 

treatment, % 

Cu loading 

after 

treatment, 

% 

10% Cu-ZrO2 1.3 0.2 10 9.9 

20% Cu-ZrO2 28.2 0.4 20 14.4 

30% Cu-ZrO2 28.9 0.3 30 21.3 

40% Cu-ZrO2 48.4 0.6 40 20.6 

50% Cu-ZrO2 76.6 0.4 50 11.7 
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of copper and disappearance of copper oxide reflections from XRD, acid washed 

50% CuZrO2 remained active for the hydrogenation of LA. This suggests that it is 

the metal with strong metal-support interactions which were highly important for 

this reaction.   

 

Figure 49. XRD patterns for acid-treated catalysts compared to untreated catalysts. 

• CuO; ♦ t-ZrO2 

However, the testing carried out in Figure 48 was carried out with 50 mg of catalyst, 

which means that the data is not directly comparable with pre-acid wash results; that 

is, if 50 mg of fresh catalyst were acid washed, there would be less than 50 mg of 

material left at the end of the process. Therefore a certain amount of catalyst was 

acid washed so that there was 50 mg of acid-washed catalyst available for reaction. 

As the acid wash removed any large copper particles and spectator species from the 

surface, it would leave behind mostly active sites. Therefore, 50 mg of acid washed 

catalyst had more active sites than 50 mg of fresh catalyst. To rationalise this data, 

dependence of catalyst TOF on moles of copper on the catalyst was plotted (Figure 

50). It was found that the acid washed catalysts had higher TOFs than their fresh 

counterparts. This confirmed the idea that the leached copper acted purely as 
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spectator species. It was found that the acid-washed catalysts with the same amount 

of copper had near identical activities, and their TOFs overlapped. Two such groups 

were identified, 30% and 40% Cu-ZrO2, and 20% and 50% Cu-ZrO2 (labelling based 

on pre-acid wash quantities). This means that activity of the catalysts was very 

closely related to the amount of copper which had strong metal-support interactions 

(and therefore did not leach during the acid-wash). 

 

Figure 50. Catalyst TOF dependence on moles of Cu present in the reactor. 

Comparison between fresh and acid washed materials. 

SEM images of the materials were also obtained (Figure 51). A significant difference 

was observed for all the catalysts. At all loadings, the biggest and most copper-rich 

particles from the surface were washed off. At 40% and 50% Cu, significant holes 

started to form due to the high loadings of metal. The holes appeared to be relatively 

uniform in size and distribution, and are remnants of where the most copper-rich 

particles were located. Interestingly, despite the fact that large holes were formed on 

50% Cu material, the activity did not decrease, and TOF improved drastically, from 

12.85 molGVL molCu
-1 h-1, to 68.64 molGVL molCu

-1 h-1. This shows that there was 
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excess copper-rich spectator species on the surface of 50% Cu catalyst which 

covered, or obscured, the strong metal-support interaction active sites. 

 

Figure 51. SEM images of a) fresh (calcined) 10% Cu-ZrO2 catalyst b) 10% Cu-

ZrO2  after acid wash  c) fresh (calcined) 50% Cu-ZrO2 catalyst d) 50% Cu-ZrO2  

after acid wash 

4.2.4.  Effect of reduction treatment on catalyst activity 

Reducibility of the calcined materials prepared by autotitrator was measured 

by TPR. It was found that the copper was fully reduced at around 150 °C (Figure 

52). This is in contrast to the TPR data presented in section 4.2.1 (Figure 36), where 

the reduction event was still happening up to about 280 °C. The main reason for this 

difference is the refinement in methodology of how the TPR was carried out. Spectra 

shown in Figure 36, were ran with a ramp rate of 10 °C min-1, whereas the spectra in 

Figure 52 were ran with a ramp rate of 1 °C min-1. The lower ramp rate allowed not 

only for a more detailed spectra due to essentially a higher resolution, but also it 

showed the true reduction event of copper (II) oxide. This is because at high ramp 

rates, the oven would have rapidly continued heating whilst the material was still 
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being reduced, often overshooting the true reduction event – therefore the reported 

reduction temperature was inflated by the ramp rate. Two reduction profiles were 

present, indicating two species of copper in the catalysts. The lower temperature 

profile is typically attributed to well-dispersed surface CuO, whereas larger, bulk 

particles of CuO are responsible for the higher temperature profile.25,26 The 

proximity of these peaks, and their relatively low temperature indicates that a large 

portion of the copper in the catalyst was either on the surface, or close to the surface. 

 

Figure 52. TPR for calcined 30% Cu-ZrO2 catalysts. Reduction treatment carried 

out under 10%  H2/Ar (25 mL min-1), ramp rate 1 °C min. 

Reduction treatment was carried out on calcined 30% Cu-ZrO2 catalysts at 

various temperatures, and the materials were then tested for the hydrogenation of LA 

to GVL (Figure 53). All of the reactions were selective to GVL and no side products 

were formed. Carbon mass balance was within 95-100% in all of the reactions.  It 

was found that the lowest reduction temperature, 150 °C, produced the highest yield 

of GVL. Activity of the catalyst decreased when higher reduction temperatures were 

used. The lowest GVL yield was obtained with catalyst reduced at 500 °C (higher 

reduction temperatures were not tested).  
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Figure 53. Catalytic activity of 30% Cu-ZrO2 catalyst as a function of reduction 

temperature. Reaction conditions: 200 °C, H2 27 barg, 2 h, Substrate 5 wt.% LA/H2O 

(10 g), catalyst (0.05 g). n.b. the error margins at 400 °C and 500 °C are small enough 

that are obscured by the average. 

 The trend in activity can be explained by looking at particle size trends. XRD 

(Figure 55) showed rapid growth in metallic Cu crystallite size with increasing 

reduction temperatures (Table 22). Catalyst with the smallest Cu crystallites 

produced the highest GVL yield, however the yield did not scale linearly with 

particle size differences. As evidenced by calcined XPS data, well-mixed copper and 

zirconia phase in a catalyst promotes hydrogenation of LA to GVL. Indeed, EDX 

analysis of the reduced materials showed almost homogeneous mixing of metal 

phases at low reduction temperatures; catalyst reduced at 500 °C displayed a 

noticeable degree of phase separation as well as particle growth (Figure 55). Due to 

the fact that small crystallite size and good mixing of phases resulted in better LA 

hydrogenation yields, it can be concluded that it is the interface between copper and 

zirconia where the reaction takes place. In fact, such interactions have been 

suggested before in literature.27,28 Zirconia atoms at the edges where metal particle 

and support meet create Zr4+/Zr3+ sites with incomplete coordination, which have 
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oxophilic properties.29 Levulinic acid binds to those sites with its carboxylic acid 

group. Additionally, zirconia possesses amphoteric properties – levulinic acid can 

bind to the weak base sites on the support.30 On the copper side of this interaction, 

hydrogen is adsorbed and dissociated.27,31,32 Dissociated hydrogen and levulinic acid 

are able to meet at the copper-zirconia interface, and thus a hydrogenation reaction 

is able to take place. One can consider different copper species for this reaction: 

surface copper, copper with access to the surface but interacting with the zirconia 

support, and copper embedded under the surface. Surface copper can adsorb and 

dissociate hydrogen, however it needs LA to proceed; as LA adsorbs on zirconia 

defect sites, the easily reducible surface copper species will not participate in the 

reaction because they are mainly surrounded by other copper atoms. The copper 

which interacts with zirconia will be the optimal type for hydrogenation of LA, as it 

has many interface sites where adsorbed LA and H2 can meet for the reaction to 

proceed. The last type of copper, which is embedded under the surface, cannot 

interact with any substrates and therefore does not participate in the reaction – in fact 

this type of copper was the basis of developing the pH gradient catalyst synthesis 

method, as one of the goals was to reduce the amount of sub-surface copper which 

does not contribute towards activity. 

 

Figure 54. EDX data superimposed on SEM images of 30% Cu-ZrO2 catalysts a) 

reduced at 150 °C, b) reduced at 500 °C. Red is copper, green is zirconium. 
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 XRD patterns for the reduced catalysts are shown in Figure 55. All of the 

reduced catalyst featured metallic copper phase with peaks at 2θ = 43°, 51° and 74° 

(ICDD = 01-070-3038). The copper crystallites increased in size at higher reduction 

temperatures (Table 22). No zirconia peaks were observed at temperatures below 

500 °C due to the amorphous nature of the oxide. At 500 °C, tetragonal zirconia was 

observed with reflections appearing at 2θ = 31°, 35°, 60°, and 63° (t-ZrO2, ICDD = 

01-080-3783). The phase change of zirconia from amorphous to crystalline 

tetragonal contributed to the phase separation observed in EDX (Figure 54). As 

zirconia crystallised in the bulk, it pushed out majority of copper towards the surface 

where it agglomerated. 

 

Figure 55. XRD patterns of reduced 30% Cu-ZrO2 catalyst. • metallic Cu ♦ 

tetragonal Zirconia 
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Table 22. Cu crystallite size for 30% Cu-ZrO2 catalysts reduced at various 

temperatures 

Reduction temperature, °C 

Cu crystallite size (Scherrer 

equation, 2θ = 43°), nm 

150 4.5 

200 6 

300 25 

400 75 

500 87 

BET surface areas of the reduced materials were obtained, displayed in Table 23. 

Catalysts with relatively large particles had smaller surface areas. However, just like 

the trend in crystallite size, GVL yield did not scale linearly with BET surface area, 

and no trend was observed when yield was normalised to it. However, there was a 

correlation between higher surface area and higher GVL yield.  

Table 23. 5-point BET surface areas for reduced Cu-ZrO2 catalysts prepared by 

variation of reduction temperature 

 

Reduction temperature, °C BET surface area, m2g-1 

150 62 

200 50 

300 28 

400 9 

500 11 
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Copper surface area (Cu SA) of the reduced catalysts was obtained by N2O titration 

for catalysts reduced at different temperatures (Table 24). Copper surface area did 

not reflect the large differences in activity. The most active catalyst, reduced at 150 

°C, had marginally more copper surface area than the least active one, reduced at 

500 °C. Despite the fact that clear differences between these materials could have 

been observed in SEM: phase mixing, particle size, and dispersion, no significant 

variance can be observed between the Cu SAs. If the assumption made earlier in this 

section is correct, that the interface sites catalyse this reaction, one would assume 

that the most active catalysts had the highest Cu SA. This is because a higher Cu SA 

allows for more Cu-Zr interface sites, and therefore higher activity. However, the 

apparent lack of correlation between Cu SA and activity can be explained with 

results from the acid-washed catalysts in section 4.2.3. In terms of the 30% Cu 

catalyst, at least 28% of the original copper content was washed off without affecting 

the activity adversely. This means that at least 28% of the copper on the catalysts 

acts as spectator species. Therefore, a large percentage of the measured copper 

surface area in presented in Table 24 did not participate in the reaction. It can be 

inferred that the catalysts reduced at lower temperatures would have higher “usable” 

copper surface area (that is, copper with strong metal-support interactions) than the 

catalysts reduced at high temperatures. 

Table 24. Copper surface areas for 30% Cu-ZrO2 catalyst as a variation of reduction 

temperature. 

Material Copper surface area, m2 g-1 GVL yield, % 

30% Cu-ZrO2 150 °C 6.2 95 

30% Cu-ZrO2 300 °C 5.3 65 

30% Cu-ZrO2 500 °C 5.1 20 
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4.2.5. Kinetic analysis of 30% Cu-ZrO2 

Kinetic analysis was carried out on the 30% Cu-ZrO2 catalyst reduced at 200 °C in 

order to determine reaction orders. Note that the pressure of hydrogen was 

normalised to the actual partial pressure of hydrogen present in the autoclave, as the 

reaction reached an autogenous pressure of about 8 bar before any hydrogen was 

introduced to the system. The autogenous pressure was subtracted from the total 

pressure to calculate the actual pressure of hydrogen. Reaction order with respect to 

levulinic acid was found to be approximately zero, and an order of approximately 1 

was found with respect to hydrogen pressure. This means that there is essentially an 

excess of levulinic acid available, and surface of the catalyst was saturated with 

substrate – there was no shortage of levulinic acid at any point in the reaction. 

However, yield of GVL was directly related to the pressure of hydrogen present in 

the reactor. The generally accepted mechanism for conversion of LA to GVL is the 

hydrogenation of LA into 4-hydroxypentanoic acid (4-HPA), followed by a 

subsequent cyclisation to GVL.33 The hydrogenation of LA to 4-HPA is therefore 

the limiting step in this reaction.  
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There was a linear increase in GVL yield with hydrogen pressure, with an order of 

approximately 1. The gradient of the line never became flat, or approached zero, 

indicating that the diffusion limit of hydrogen was not reached even at 54 barg 

pressure.  

 

Figure 56. Effect of hydrogen concentration (top) and levulinic acid concentration 

(bottom) on activity of 200 °C reduced 30% Cu-ZrO2. Reaction conditions: 200 °C, 

H2 7 – 54 barg, 15 min, Substrate 1 - 5 wt.% LA/H2O (10 g), catalyst (0.05 g). 



122 
 

4.2.6. Mechanistic studies 

A recent paper by the Li group suggested that water is involved in the mechanism of 

hydrogenating levulinic acid to γ-valerolactone.34 However, ruthenium-based 

catalysts are known to be much more active for this reaction. In order to explore 

whether Cu-ZrO2 catalysts follow the same hydrogenation mechanism, deuteration 

studies were carried out using 5% Ru/Al2O3, 50% Cu-ZrO2 and 1% Mn/Cu-ZrO2. 

Ruthenium catalyst was used as a control, and to reproduce results published by the 

Li group. The 50% Cu-ZrO2 and 1% Mn/Cu-ZrO2 were prepared by the oxalate gel 

method, and not the pH gradient method. This is because the work was carried out 

to supplement a paper regarding doping oxalate-gel prepared materials. However, it 

has been observed that both the pH gradient and oxalate gel materials follow similar 

kinetic orders. Therefore, these catalysts can be compared in terms of their activity 

and mechanistic behaviours despite different preparation methods. Doping studies 

were carried out with the first row of transition metals, using 1 wt. % loadings on 

50% Cu-ZrO2. Manganese was found to be the best performing dopant, and so 1 wt. 

% Mn/Cu-ZrO2 was selected for further testing. Discussion of dopant effect, their 

characterisation and activity data is contained within the paper by Jun et al., whereas 

this section focuses deuteration studies. 
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Figure 57. Testing of first row transition metals as 1 wt. % dopants to 50% Cu-ZrO2. 

Reaction conditions: 200 °C, H2 27 barg, 30 min, Substrate 5 wt.% LA/H2O (10 g), 

catalyst (0.05 g). Figure adapted from a Hutchings group paper in submission (with 

permission). 

Initial testing was focused on reproducing the activity data from Li and Hutchings 

groups. For this purpose, 5% Ru/Al2O3 was used as a readily available catalyst from 

within the research group. It featured slightly higher Ru loading than the ones 

reported in the paper (0.5 – 2 wt. %), which may have enhanced activity of the 

material, but for the purposes of a mechanistic studies it was an appropriate loading. 

50% Cu-ZrO2 and 1% Mn/Cu-ZrO2 were re-synthesised and re-tested. Figure 58 

shows the GVL yields obtained with these catalysts. Doping Cu-ZrO2 with Mn 

enhanced the activity of the catalyst as expected, increasing GVL yield from 50% to 

66%. 5% Ru/Al2O3 was the most active catalyst, producing 95% GVL yield. 

However, the testing conditions for Ru and Cu-based catalysts were different, due to 

the fact that Ru-based materials are much more active for this reaction than Cu 

materials. As such, testing conditions for 5% Ru/Al2O3 were reproduced from 

literature, whereas 50% Cu-ZrO2 and 1% Mn/Cu-ZrO2 were tested under standard 

experimental conditions used so far in this thesis. To account for different reaction 

conditions, moles of substrate converted can be compared. Ruthenium catalyst has 

GVL Yield at 30 min/%
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converted approximately fifteen times more levulinic acid, with a tenfold reduction 

in metal loading.  

 

Figure 58. Conversion of LA to GVL using various catalysts. Reaction conditions: 

Ru/Al2O3: 0.1 g catalyst, temp. 130 °C, time 30 min, 40 bar H2, 5 g levulinic acid, 

10 g H2O. Cu catalysts: 0.05 g catalyst, temp 200 °C, time 30 min, 27 barg H2, 10 g 

5% LA/H2O. 

All three materials presented above have been subject to reactions in both H2O and 

D2O. It was found that when 5% Ru/Al2O3 was used, deuteration only affected one 

proton, located at position G4 in the spectra below. This proton was gained in the 

hydrogenation process from levulinic acid. This effect can be visible by comparing 

13C NMR in Figure 59. Peak integrals have been normalized to the carbonyl signal 

at 181ppm (G1); the carbon at that position is unique within the GVL molecule, and 

has no protons attached to it. Its signal size will therefore remain constant in relation 

to the other peaks. Integral of that peak was calibrated to 100. The signal 

corresponding to G4 at 80ppm decreases in size from 278 to 145, with all the other 

signals remaining unchanged. Due to the fact that signals in 13C NMR are directly 

affected by neighbouring protons, deuteration effects manifest themselves in 

reduction of the size of the carbon signal to which the affected proton is attached to. 

The presence of deuterium in that position can signify two things: either the proton 
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came directly from the D2O solvent, and therefore water is involved in the 

hydrogenation reaction; or the proton was added after GVL was formed, through an 

exchange mechanism. However, when GVL was subject to reaction conditions under 

D2O (temp 200 °C, time 30 min, 27 barg H2, 10 g 5% LA/H2O, 0.05 g Cu-ZrO2, or 

no catalyst), no deuteration products were observed in NMR. This means that GVL 

did not exchange protons with the solvent, and that water must be part of the 

hydrogenation reaction.  
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Figure 59. 13C NMR of post reaction mixture from LA to GVL hydrogenation 

reaction catalysed by 5% Ru/Al2O3. The reaction was conducted using top) H2O and 

bottom) D2O as the solvent. Carbon numbers include G for GVL. For top) 13C NMR 

(500 MHz, D2O) δ 181.9, 80.1, 37.7, 29.6, 28.8, 27.8, 20.5 

For bottom) 13C NMR (500 MHz, D2O) δ 181.6, 79.8, 29.4, 28. 19.9 
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The proposed mechanism involving water can be seen in Figure 60. The process 

begins with a hydrogen molecule dissociating on the surface of the catalyst. It is 

known that hydrogen dissociation can happen on Cu-ZrO2, because hydrogen 

spillover has been observed to happen from Cu to Zr.19 Following the dissociation, 

a nearby water molecule (with the proton of interest circled) can exchange a 

hydrogen atom with the catalyst surface. Hydrogen diffusion across the surface of 

the catalyst can be mediated by this mechanism, called “proton hopping”. Water-

mediated proton hopping can lower the energy barrier for hydrogen diffusion.35 The 

exchanged hydrogen species (very likely in the hydride form) can then attack the 

ketone carbonyl in levulinic acid, adsorbed on a nearby Zr-site, and carry out the 

concerted hydrogenation reaction. As a result, hydrogen atom from solvent water 

can end up on the GVL product. It is important to note that the exchange can happen, 

but does not have to; the hydrogenation reaction can easily happen before the 

exchange reaction takes place. 

 

Figure 60. Proposed mechanism for the involvement of water into the final product. 
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The post-reaction solutions were injected into GC-MS to confirm the deuteration 

effect. The results can be seen in Figure 61. A standard reaction in H2O as solvent 

resulted in the heaviest fragment m/z = 100, corresponding to a GVL molecule. 

When a deuterated solvent was used, the heaviest fragment m/z was observed to be 

101, corresponding to a GVL molecule with one hydrogen atom substituted for a 

deuterium atom. Therefore, together with NMR data, it was conclusively shown that 

water can be involved in the hydrogenation reaction.  

 

 

Figure 61. GC-MS of post-reaction solutions in H2O (top) and D2O (bottom). 

Testing carried out with 5% Ru/Al2O3. The fragment analysis was carried out on 

GVL only. 

Following the ruthenium testing, 1% Mn/Cu-ZrO2 was subject to deuteration 

experiments. When deuterated solvent was used, identical effect was observed as 

with the ruthenium catalyst. In 13C NMR spectra (Figure 62), the G4 signal at 80ppm 

reduced in size from 310 to 194. Again, the integrals were normalized to G1 signal. 

Therefore, 1% Mn/Cu-ZrO2 follows the same or very similar mechanistic pathway 

as the ruthenium catalyst – water seems to play an important role in the 

hydrogenation process; perhaps it enables the diffusion of hydrogen from copper-

rich sites to Cu-Zr interfaces with the previously mentioned water-hopping 

mechanism.  
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Figure 62. 13C NMR of post reaction mixture from LA to GVL hydrogenation 

reaction catalysed by MnCu-ZrO2. The reaction was conducted using top) H2O and 

bottom) D2O as the solvent. Carbon numbers include letters L for levulinic acid and 

G for GVL.  

For top) 13C NMR (500 MHz, D2O) δ 213.7, 182.2, 177.6, 79.9, 37.7, 29.1, 28.8, 

27.8, 21.7, 19.9 

For bottom) 13C NMR (500 MHz, D2O) δ 182.4, 79.8, 29.1 – 27.9 (m due to 

deutration), 19.9 – 18.7 (m due to deuteration). Carbons 1L-5L not observable due 

to high conversion and deuteration of the substrate.  
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Conversely, the G4 signal was not the only one which decreased in size. Despite 

incomplete conversion, levulinic acid all but disappeared from the spectrum. 

Furthermore, GVL carbons 3G and 5G greatly reduced in size, indicating that they 

were deuterated. 2G has retained its integral size. Deuteration of –CH2 and –CH3 

groups is unusual, and so 1H NMR analysis was carried out in order to confirm these 

findings. Proton NMR has shown the same effect, with many protons decreasing in 

integral size and losing their multiplicity, a sure sign of deuteration.  

 

 

 

 

 

 

 

 

 



131 
 

 

 

Figure 63. 1H NMR of post reaction mixture from LA to GVL hydrogenation 

reaction catalysed by Mn/Cu-ZrO2. The reaction was conducted using top) H2O and 

bottom) D2O as the solvent. In both cases, spectra were referenced against a 

tetramethylsilane (TMS) insert (δ 0). Note proton 8 would be expected to give a peak 

around 4 ppm, but this region of the spectrum is dominated by resonances from 

water.  

For top) 1H NMR (500 MHz, D2O) δ 2.94 – 2.91 (t, J = 12.7 Hz, 6.4 Hz, 2H), 2.72 

– 2.67 (m, 2H), 2.67 – 2.63 (t, J = 12.7 Hz, 6.3 Hz, 2H), 2.52 – 2.43 (m, 1H), 2.28 

(s, 3H), 1.99 – 1.91 (m, 1H), 1.45 – 1.44 (d, J = 6.4 Hz, 3H), 0.00 (s, 12H) 

For bottom) 1H NMR (500 MHz, D2O) δ 2.90 (s, 2H), 2.74 – 2.62 (m, 4H), 2.50 – 

2.40 (m, 1H), 2.25 (s, 3H), 1.98 – 1.91 (m, 1H), 1.46 – 1.40 (m, 3H), 0.00 (s, 12H) 
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The list of NMR signals and their integrals can be found in Table 25. Extent of 

deuteration was calculated by comparing sizes of the normalised integrals. For 

majority of the protons, the deuteration exchange rate was above 90%, showing that 

it was a very favourable process that happened readily.  

Table 25. List of integrals normalized to the TMS peak at δ 0.00 from Figure 63. 

Corresponding peaks from both spectra are matched the extent of deuteration 

compared. 

C 

atom 

Proton 

position 

Corresponding 

peaks δ 
Normalised integrals Extent of 

deuteration 
  H2O D2O  H2O D2O  

3 LA 2 2.94 – 

2.91 
2.90 6.38 0.60 91% 

2 

GVL 

7 2.72 – 

2.67 2.74 – 

2.62 

8.30 

14.26 5% 
2 LA 3 2.67 – 

2.63 
6.76 

3 

GVL 

5 2.52 – 

2.43 

2.50 – 

2.40 
5.06 1.27 75% 

5 LA 1 2.28 2.25 9.71 0.95 90% 

3 

GVL 

6 1.99 – 

1.91 

1.98 – 

1.91 
4.51 0.39 91% 

5 

GVL 

4 1.45 – 

1.44 

1.46 – 

1.40 
13.59 1.27 91% 

  
0.00 0.00 

1.00 

(TMS) 

1.00 

(TMS) 
- 

 

GC-MS studies (Figure 64) agree with these findings. When the GVL signal was 

inspected, several heavy fragments were seen which can only be attributed to 

deuterated species. In water, the heaviest fragment observed had m/z = 100, which 

correlates to GVL. In deuterated water, the heaviest fragment had m/z = 106, 

corresponding to GVL molecule with six hydrogen atoms substituted for deuterium 

atoms. Since GVL does not exchange with D2O at all, the deuteration must have 
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taken place before GVL was formed. This implies a possibility of a different reaction 

mechanism to the ruthenium catalyst. 

 

 

Figure 64. GC-MS of post-reaction solutions in H2O (top) and D2O (bottom). 

Testing carried out with MnCu-ZrO2. The fragment analysis was carried out on GVL 

only. 

In order to determine the stage of reaction in which levulinic acid is deuterated, three 

control experiments were carried out: levulinic acid in H2O with no catalyst, 

levulinic acid in D2O with no catalyst, and levulinic acid in D2O with MnCu-ZrO2 

in inert atmosphere (N2). Expectedly, when no catalyst was used in H2O, levulinic 

acid did not react in any way, as evidenced by Figure 65 and confirmed by GC. The 

heaviest observed fragment in GC-MS had m/z = 116, which was unaltered LA. 

However, when a reaction was carried out with no catalyst, LA in D2O, the heaviest 

fragment observed in GC-MS had m/z = 122. This increase of 6 in the fragment size 

was identical to the increase in fragment size in GVL. The same result was obtained 

when MnCu-ZrO2 was used in an inert atmosphere. This means that the deuteration 

occurred spontaneously, and was not a mechanistic pathway into GVL.  
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Figure 65. (Top) 10 g 5% LA in H2O with no catalyst. Temp 200 °C, time 30 min, 

27 barg H2; (Middle) 10 mL 5% LA in D2O with no catalyst. Temp 200 °C, time 30 

min, 27 barg H2;  (Bottom) 10 mL 5%  LA in D2O with 0.05 g MnCu-ZrO2. Temp 

200 °C, time 30 min, 27 barg N2. 
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Figure 66. 1H NMR of LA following treatment under reaction conditions but without 

catalyst present as a blank reaction test. The reaction was conducted using top) H2O 

and bottom) D2O as the solvent. In both cases, the spectra were referenced against a 

tetramethylsilane (TMS) insert (δ 0).  

For top) 1H NMR (500 MHz, D2O) δ 2.95 – 2.91 (t, J = 12.3 Hz, 5.9 Hz, 2H), 2.68 

– 2.64 (t, J = 12.3 Hz, 5.9 Hz, 2H), 2.29 (s, 3H), 0.00 (s, 12H) 

For bottom) 1H NMR (500 MHz, D2O) δ 2.89 (s, 2H), 2.64 (s, 2H), 2.50 (s, 3H) 0.00 

(s, 12H) 
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Since the deuteration of LA was a spontaneous event, the most likely reason for why 

it was not observed when 5% Ru/Al2O3 was tested, was that the proton exchange on 

levulinic acid had a high energy barrier, which was not reached at 130 °C (reaction 

temperature for Ru-catalyst), but 200 °C provided enough thermal energy for the 

process to occur. To confirm this, 5% Ru/Al2O3 was tested under the same conditions 

as MnCu-ZrO2, with the catalyst mass reduced from 50 mg to 17.5 mg in order to 

bring the conversion values in line (as Ru is much more active than the MnCu 

catalyst). Data from those experiments is shown in Figure 67. 

 

Figure 67. Conversion of LA to GVL in D2O. Reaction conditions: temp 200 °C, 

time 30 min, 27 barg H2, 10 mL 5% LA/D2O, 0.05 g Mn/Cu-ZrO2 or 0.0175 g 

Ru/Al2O3 

Post reaction solution was analysed by 13C NMR (Figure 68). As with MnCu-ZrO2, 

there was a significant reduction in peak size of 5G. Levulinic acid peaks have also 

reduced in size. This demonstrates that deuterium exchange with levulinic acid was 

a spontaneous event, and happened as soon as the thermal energy barrier has been 

reached. 
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Figure 68. 13C NMR of post reaction mixture from LA to GVL hydrogenation 

reaction catalysed by Ru/Al2O3. The reaction was conducted using D2O as the 

solvent. Carbon numbers include letters L for levulinic acid and G for GVL.  

13C NMR (500 MHz, D2O) δ 214.1, 182.4, 177.4, 79.9, 37.6, 29.9, 28.8, 27.7, 19.7 

The most likely mechanism for this exchange is through an enol formation of 

levulinic acid, shown in Figure 69. The process was self-catalysed by the substrate, 

and no catalyst was necessary for the exchange to take place. Hydrogen atoms at 

positions 1 and 3 can undergo alpha-deprotonation. The reverse process takes up 

protons from solvent in order to reform levulinic acid, and so deuteration of the 

substrate happened. At the same time, exchange of protons on position 4 was 

mechanistically impossible, as the enolate could not have formed there. This was 

confirmed by all NMR experiments, as the signal of that carbon in 13C NMR or 

proton in 1H NMR has always retained its integral size, regardless of the test carried 

out. 
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Figure 69. Proposed mechanism for the self-catalysed deuteration of levulinic acid, 

proceeding through an enolate. 

4.3. Conclusions 

This chapter has explored a novel catalyst synthesis method of copper 

zirconia materials, and characterisation thereof. This body of work resulted in 

publication of results in two papers.36,37 

 Two distinct methods of preparation were investigated, manual and 

automatic. Manual preparation proved to be an inconsistent method, most likely due 

to the difficulty in precise, yet quick addition of base into the metal solution with the 

use of a burette. As such, automatic preparation was used. 

 A range of Cu-ZrO2 catalysts with different copper contents were 

synthesised. Their activity was related to the amount of copper found in the material 

and the degree to which the Cu and Zr phases were mixed. Catalysts with better 

phase mixing performed better, indicating that Cu/Zr interface sites were the active 

sites for this reaction. In order to confirm this, the catalysts were acid washed and 

again tested for the hydrogenation of LA. All of the acid-washed catalysts had higher 

TOFs, and showed a very strong dependence on the amount of copper left on the 

catalyst. Acid treatment has washed off any labile species off the surface and left 
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behind copper with strong metal-support interactions, proving that the Cu/Zr 

interface sites were the active sites. 

 The effect of reduction treatment on the 30% Cu-ZrO2 was investigated. 

TPR analysis was carried out and it was found that the catalyst was fully reduced at 

150°C. The activity of reduced catalysts had a direct relationship with the reduction 

temperature. Activity decreased as the temperature increased, with the highest 

activity catalyst reduced at 150°C, in agreement with TPR data. Inspection of the 

catalyst surface with SEM and EDX showed that the most active reduced catalyst 

featured almost homogeneously mixed Cu/Zr phases, and the least active catalyst 

had phase separated.  

 Mechanistic and kinetic aspects of the system were explored. The reduced 

30% Cu-ZrO2 catalyst showed first reaction order with respect to hydrogen, and 

zeroth reaction order with respect to levulinic acid. This was in agreement with 

literature data on similar systems. Mechanistically, it was found that water plays a 

role in the hydrogenation process, possibly facilitating it by providing an alternate 

pathway for the hydrogen to travel. This was confirmed by deuteration studies 

analysed with 13C and 1H NMR alongside GC-MS, and deuterium was observed in 

the GVL product. 

 The findings in this chapter provide an insight into use of non-critical metals 

as a replacement for the widely used noble metals for the hydrogenation of LA to 

GVL. The main issue with these catalysts remains the high content of copper, which 

is likely less economically feasible than the low loadings required for noble metals. 

Still, the work represents a step forward in the direction of cheaper catalysis of 

renewable fuel sources. 
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Chapter 5 

All references are self-contained to within this chapter, and do not refer to any other 

chapters. 

 

Conclusions and future work 

 This thesis has explored the reaction pathway from glucose to γ-

valerolactone using a range of materials. The entire body of work presented in this 

thesis was part of the international NOVACAM project, tasked with finding cheap, 

novel ways of converting biomass to useful chemicals.  This chapter re-evaluates 

conclusions drawn from the work done and discusses additional research which 

would complement the findings. 

The work in this thesis contributed towards two publications: 

o “The hydrogenation of levulinic acid to γ-valerolactone over Cu–ZrO2 

catalysts prepared by a pH-gradient methodology”1 

o “The Effects of Dopants on the Cu–ZrO2 Catalyzed Hydrogenation of 

Levulinic Acid”2 

“Green catalysis by design” school and conference were attended on the 22nd and 

23rd of February 2017 in Padova, Italy, as a final meeting of the NOVACAM 

consortium. 
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5.1. Conversion of methyl glucoside to methyl levulinate using solid acid 

catalysts 

 In this chapter, a range of metal oxide-based materials was prepared and 

tested for the dehydration of methyl glucoside to methyl levulinate. Initially, the 

esterification of glucose to methyl glucoside was investigated. It was found that the 

esterification reached 100% yield after 16 hours with mineral acid, and conversion 

of 77% was obtained after 2 hours. At the relatively mild temperature of 80 °C, the 

only products were the two anomers of methyl glucoside, α (the thermodynamic 

product) and β (the kinetic product). As the esterification step was found to readily 

take place at much lower temperatures than the temperature planned for the overall 

reaction (180 °C), further research was focused on conversion of methyl glucoside 

to methyl levulinate. It was found that SO4-ZrO2 was the best performing material 

(yielding 24% ML after one hour) and the sulfation process was crucial to adding 

desired catalyst functionality. ZrO2 on its own did not produce any methyl levulinate. 

Only two other materials were found to yield ML, SO4-TiO2 (15% yield after one 

hour, and 35% yield after two hours) and WO3-ZrO2 (1.5% yield). Other metal 

oxides, such as CeO2 and P25 were acidified, however they did not yield any ML 

despite converting some of the substrate. This was speculated to be due to lack of 

amphoteric effect of these oxides.  Acidity profiles of SO4-ZrO2 and SO4-TiO2 were 

measured using NH3 TPD. Sulfated zirconia was found to be over twice as acidic as 

sulfated titania, at 0.77 mmol g-1 and 0.33 mmol g-1, respectively. This likely 

correlated with the increased BET surface area of SO4-ZrO2 at 157 m2g-1 compared 

to 80 m2g-1 for SO4-TiO2, and increased sulfur content on the surface (measured with 

XPS), indicating higher sulfation rate – and therefore higher number of acid groups. 

Pyridine DRIFTS was used to further elucidate the effects of sulfation procedure on 

ZrO2. The untreated metal oxide only contained weak Lewis acid sites, unstable 

above approximately 350 °C. However, the sulfation treatment resulted in a material 
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with both Lewis, and strong Brønsted-type acid sites. The Brønsted sites were stable 

at 550 °C, near the instruments’ maximum temperature range of 575 °C. 

 The next section of the chapter focused on testing of zeolites for dehydration 

of methyl glucoside. Zeolite β (38) was found to be the best performing zeolite 

material, yielding 12% ML after one hour. Despite higher acidity, zeolite β (25) did 

not produce more ML, but it did result in a higher number of side-reactions, and as 

such, a lower carbon balance. ZSM-5 produced negligible amounts of ML due to its 

smaller pore size when compared to the β-material.3 In an effort to reduce the 

polymerisation side-reactions, a silylation procedure was carried out on Zeolite β 

(38), covering the surface acid sites; the assumption was made that the 

polymerisation takes place on the surface of the catalyst rather than the pores due to 

size of the polymer and available space on the surface. The procedure slowed the 

reaction rate down to approximately 75% rather than limiting the polymerisation 

reactions. 

 The analysis of humins in this chapter has led to a new set of experimental 

conditions focused on reducing the polymerisation. During the process of polymer 

analysis, it became apparent that there were solvent issues causing the reported 

values to be slightly inflated. This was rectified with the addition of an internal 

standard into the reaction mixture before the reaction takes place. This has resulted 

in a drop in reported conversion and yield values; however, the new set of conditions 

also proved to minimise humin formation. 

 A reaction mechanism was proposed at the end of the chapter, stemming 

from the known product profile and corroborated with a short section of mechanistic 

studies of furfural and furfural alcohol. The results of these experiments agreed with 

the proposed mechanism; however, the conditions utilised were very mild when 

compared to the conditions used in the dehydration reaction. This was due to safety 

concerns surrounding use of furans at high temperatures in an unventilated area, 
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where the autoclave reactors were located. A set of further experiments with furfural 

and furfural alcohol at standard reaction conditions would complement the results 

greatly, but literature reports were in agreement with the findings in this chapter.4–8 

5.2. Conversion of levulinic acid to γ-valerolactone using Cu-ZrO2 catalysts 

 Chapter 4 centred on the conversion of levulinic acid to γ-valerolactone 

using copper-zirconia catalysts. This chapter builds on the findings from the previous 

one, by taking the levulinic acid product and hydrogenating it to a potential fuel 

additive. The link is not direct, i.e. in chapter 3 methyl levulinate in methanol was 

the product whereas in chapter 4 it is levulinic acid in water is used; this is because 

the research is a continuation of previous work established within the Hutchings 

group on Cu-ZrO2 materials.9,10 The focus of this chapter was on developing a novel 

catalyst synthesis method. The aim was to prepare a novel Cu-ZrO2 material with 

lower Cu loading than previous catalysts developed within the group, while retaining 

high activity. 

 Initially, the catalysts were prepared manually with a hand-controlled 

burette dropping base into the metal mixture. This methodology was soon replaced 

by an automatic preparation using an autotitrator, due to inconsistencies between 

different batches. A range of materials with different copper loadings (10% - 50% 

mol.) were prepared and tested for the hydrogenation reaction. It was found that the 

best performing catalysts were those with well-mixed Cu – Zr phases (strong metal-

support interactions), and small, well-dispersed particles. This was achieved with a 

30% Cu-ZrO2 catalyst reduced at 150 °C. Images obtained with SEM and EDX of 

catalysts reduced at a range of temperatures from 150 °C to 500 °C showed as the 

reduction temperature increased, so did the separation of copper and zirconia phases. 

The copper crystallite size also increased drastically, from approximately 4.5 nm at 

150 °C to approximately 87 nm at 500 °C. The phase separation and increase in Cu 

crystallite size was the likely cause of decreased activity. 
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 The catalysts were then subject to an acid wash procedure. This was done to 

remove any labile species of copper from the surface and expose the particles with 

strong metal-support interactions. It was found that a significant amount (up to 77% 

for 50% Cu-ZrO2) of the original copper was washed off in the process. However, it 

was found that the acid washed catalysts had notably higher TOF values than the 

non-treated catalysts. This suggests that the active species on this catalyst was indeed 

the copper that had strong metal-support interactions.  

 Mechanistic studies were carried out to assert if water is involved in the 

hydrogenation mechanism when a copper catalyst is present, as reported by Tan et 

al. when ruthenium-catalyst was used.11 Hydrogenation of LA to GVL using 5% 

Ru/Al2O3, 50% Cu-ZrO2 and 1% Mn/Cu-ZrO2 was investigated using GC-MS, 13C 

and 1H NMR. The experimental results were in agreement with literature – 

deuterated protons from the solvent were found to be incorporated into GVL at the 

position where hydrogenation takes place. However, with copper catalysts the 

deuteration took place in several other sites on the molecule when compared to 

ruthenium catalyst. Ultimately, this was found to be the result of high temperature 

utilised (200 °C). LA self-catalysed the formation of LA enolate at high 

temperatures, an event which did not occur at temperatures used with the ruthenium 

catalyst (130 °C). When ruthenium was used at 200 °C, an identical effect was found. 

In summary, water was involved in the hydrogenation mechanism. 

5.3. Future work 

5.3.1. Conversion of methyl glucoside to methyl levulinate using solid acid 

catalysts 

The scope of materials tested for the conversion of MeGlc to ML could be 

expanded. Several materials were tested, and an attempt was made to acidify them. 

Reactions were carried out with the goal of yielding ML. If a material did not produce 
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any, it was not investigated further. However, it is possible that all the materials were 

acidified successfully – perhaps the strength of the acid was too weak to facilitate 

the reaction. Likewise, the acidification procedure could have failed. For example, 

phosphated zirconia was not active at all, however literature reports production of 

levulinic acid with this material.12 Ammonia TPD and pyridine DRIFTS studies were 

carried out on selected materials only, however in order to fully understand the 

pattern of activity, the analysis should be carried out on all the tested catalysts. 

Interestingly, WO3-ZrO2 was also found to produce ML. Tungsten has been known 

to display acidic behaviour.13–15 Zhang et al. reported synthesis of a tungsten-

tellurium oxide catalyst capable of producing 8.5% yield LA from cellulose after 2 

hours at 175 °C in water solvent.16 Liu et al. reported 21% yield of levulinic acid 

from glucose at 180 °C in a 60 minute reaction with WO3-Ta2O5.17 Despite the 

catalyst’s ability to complete the reaction pathway, tungsten was not investigated 

further because of additional costs associated with use of tungsten and the guidelines 

outlined at the start of the NOVACAM project. However, further investigation into 

preparation procedures and metal support variation could have resulted in a well-

performing catalyst. Similar, other potentially active metals were not investigated 

due to assertions made at the beginning of the project. Niobium, reported to be 

effective for the conversion of methyl glucoside to methyl levulinate by Ding et al.in 

the form of niobium phosphate solid acid catalyst.18 Chromium which was found not 

only facilitating the dehydration of glucose to 5-HMF as a CrCl2 salt paired with 

N,N-dimethylacetamide solvent (81% yield)19, or directly to LA in water as 

CrCl2.6H2O,20 it was also effective for the hydrogenation of LA to GVL as Cr-Cu 

oxide.21 Like tungsten, these materials were outside of the scope of NOVACAM. 

However, exploration of these metals could potentially lead to more effective 

catalysts.  
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A limited variety of acidification techniques was tested. There is potential 

in using more varied acid sources apart from H2SO4. For example, Sun et al. reported 

a solid heteropoly-acid based material functionalised with lysine, Ly0.5H2.5PW 

(based on phosphotungstic acid, H3PW12O40).22 They obtained 53% yield of LA after 

30 minutes at temperature of 130 °C. One of the key points in their work is the use 

of choline chloride (ChCl) as a solvent – in conjunction with glucose, ChCl formed 

a deep eutectic solvent, that is a mixture of a solid salt (ChCl) and a hydrogen-bond 

donor (in this case glucose) in specific ratios.23 The reasoning for the use ChCl as 

solvent was two-fold: it is a cheap, abundantly available molecule, and reportedly it 

limited the formation of HMF while not hindering formation of LA. This highlights 

another area of future interest: testing of different solvents. While the NOVACAM 

project focused on water and methanol-based systems, a multitude of solvent 

systems can potentially be effective for this reaction. Ionic liquids can be 

functionalised with acidic groups,24 and have been reported as effective catalysts and 

solvents for the conversion of glucose to LA. Komal et al. reported 47% yield of LA 

from glucose using 1-(4-Sulfonic acid)butyl-3-methylimidazolium chloride (IL-

SO3H) after 5 hours at 155 °C.25 The ionic liquid formed in situ HCl, which then 

catalysed the reaction. Amin et al. reported 68% yield by weight using 1-sulfonic 

acid-3-methylimidazoliumtetrachloroferrate ([SMIM][FeCl4]) after 4 hours at 150 

°C.26 Apart from ionic liquids, GVL has been investigated as a solvent. Dumesic et 

al. reported 66% yield of LA from corn stover using 0.2M H2SO4 and 80% GVL 

solvent.27 Horvath reported 52% yield of LA from glucose in GVL solvent using 5M 

H2SO4.28 There is therefore precedent to explore different solvents, especially if they 

could potentially solubilise humins. 

Additional work could also be carried out on zeolites. Zeolite Y was not 

tested, even though it is known to be comparable in activity to zeolite β for this 

reaction.29 This was the case because of supply issues. Secondly, all the zeolites 
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should have their acidity assessed and quantified with ammonia TPD and pyridine 

DRIFTS. This would help paint a complete picture of how acidity impacts activity. 

The silylation procedure was not explored in enough depth. There was room to 

explore various silylating agents in different loadings. The silylated materials 

structure was also not quantitatively or qualitatively assessed. Perhaps a surface 

acidity measurement would give an indication of the change in structure. If the 

assumption that humins are largely formed on the surface of the catalyst rather than 

the pores is correct, developing the silylation procedure has potential to have 

significant impact on catalyst re-usabilty, yields, and limiting polymerisation. 

Chapter 3 would also benefit from more detailed reaction mixture analysis. 

There were only several identified peaks in HPLC or GC spectra, with many side-

products and intermediates not identified. This would not only help with accounting 

for much of the missing carbon balance, but also assist in a better understanding of 

the reaction mechanism. This could be achieved with LC-MS or GC-MS equipment, 

paired with 2D-NMR experiments. 1D-NMR was attempted on the post-reaction 

mixture, however due to the abundance of overlapping peaks, only major products 

were able to be identified. 

5.3.2. Conversion of levulinic acid to γ-valerolactone using Cu-ZrO2 catalysts 

Chapter 4 outlined a novel catalyst synthesis method. However, only one 

methodology of catalyst preparation was evaluated; the preparation method relies 

heavily on accurate control of pH of the metal mixture over time. Perhaps a slower, 

more gradual addition of the precipitant would have resulted in a more active catalyst 

due to better mixing of Cu – Zr phases. Secondly, the catalysts were only tested for 

the hydrogenation of levulinic acid in water. Other solvents such as methanol could 

be explored. This would not only tie in with chapter 3, providing a better 

understanding of possible yields from a theoretical one-pot system; but also help 

elucidate the mechanism, as it was reported that water plays an important role in the 
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hydrogenation reaction.2 The reaction is known to proceed in methanol, but with 

reduced yields and a different pathway utilising levulinate esters.30 

The copper catalysts were acid washed, and it was found that a large portion 

of the copper only plays a spectator role, and it is the small, well-dispersed copper 

particles with strong metal-support interactions which catalyse the hydrogenation of 

LA. An experiment that would further help explain this phenomenon would be the 

measurement of BET and Cu-surface areas of the materials. It would reveal a trend 

(if any exist) between surface area, dispersion of particles and activity. 

With the knowledge that it is possible to limit the amount of copper in the 

catalyst while retaining activity, doping the pH-gradient prepared materials would 

be a promising avenue to explore. Hutchings group has previously reported that 

mixing copper-zirconia with other metals such as nickel31 or manganese can enhance 

the catalyst’s activity for hydrogenation of LA.2 Preparation of such mixed and 

doped materials by the pH-gradient method could not only reduce the amount of 

metal necessary (and therefore reducing cost) but also provide greater control over 

structure of the material. Perhaps a Cu-ZrO2 material could be prepared by pH 

gradient method, acid washed to remove the spectator species, and then subsequently 

doped. Such materials could potentially be very effective for the hydrogenation of 

LA. 
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