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Abstract 

Background: Treatment of bronchopulmonary dysplasia (BPD) in preterm infants is 

challenging due to its multifactorial origin. In rodent models of neonatal lung injury, selective 

inhibition of PDE4 has been shown to exert anti-inflammatory properties in the lung. We 

hypothesized that GSK256066, a highly selective, inhalable PDE4 inhibitor, would have 

beneficial effects on lung injury and inflammation in a triple hit lamb model of Ureaplasma 

parvum (UP)-induced chorioamnionitis, prematurity and mechanical ventilation.  

Methods: 21 preterm lambs were surgically delivered preterm at 129d after 7d intrauterine 

exposure to UP. 16 animals were subsequently ventilated for 24 hours and received 

endotracheal surfactant and intravenous caffeine citrate. 10 animals were randomized to 

receive twice a high (10 µg/kg) or low dose (1 µg/kg) of nebulized PDE4 inhibitor. 

Results: Nebulization of high, but not low doses of PDE4 inhibitor led to a significant decrease 

in pulmonary PDE activity, and was associated with lung injury and vasculitis, influx of 

neutrophils and increased pro-inflammatory cytokine mRNA levels. 

Conclusions: Contrary to our hypothesis, we found in our model a dose-dependent pro-

inflammatory effect of an inhaled highly selective PDE4 inhibitor in the lung. Our findings 

indicate the narrow therapeutic range of inhaled PDE4 inhibitors in the preterm population. 

 

Key words: lung injury, PDE4 inhibitors, bronchopulmonary dysplasia, mechanical ventilation 

of neonates, prematurity 
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Introduction  

Bronchopulmonary dysplasia (BPD) continues to be the major morbidity in infants born 

prematurely.1, 2 Amongst others, BPD has been linked to an early inflammatory reaction in the 

developing lung associated with chorioamnionitis.1, 3 Exposure to chorioamnionitis has also 

been shown to increase the risk of BPD development derived from mechanical ventilation,4 

another yet important factor originally linked to the pathophysiology of BPD.1 In consequence 

of the multifactorial origin of BPD, targeted prevention and therapies are scarce.5 Currently, 

anti-inflammatory therapies are used in BPD prevention and therapy, especially postnatal 

glucocorticosteroids.6 However, concerns about adverse effects such as impaired 

neurodevelopmental outcome after systemic use of glucocorticosteroids,7 have raised the 

demand to develop new anti-inflammatory therapies.5 

Potential candidates for targeting neonatal lung inflammation are phosphodiesterase (PDE) 

inhibitors, such as methylxanthines and their derivates.8 Caffeine, a methylxanthine widely 

used in the treatment of apnea in preterm infants, has been shown to decrease the incidence 

of BPD.9 Although the mechanism is still discussed, caffeine’s property as a weak, non-specific 

PDE inhibitor might contribute to its beneficial effect on BPD.10 Another methylxanthine, 

Pentoxifylline (PTXF), has been shown to decrease the incidence of BPD when nebulized to 

very low birth weight preterm infants in a clinical trial,11 possibly due to its anti-inflammatory 

effect on neonatal monocytes.12 A more specific inhibition of PDE isoenzymes might therefore 

increase the therapeutic benefit.  

Of the reported isoforms, PDE4 is the main enzyme in lung and inflammatory cells, which 

reduces cleavage of cAMP.13 Therefore, in recent years PDE4 inhibitors have been developed 

to target different adult lung diseases like asthma and COPD.14 In the context of BPD, selective 
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inhibition of PDE4 has been tested in different rodent models. In these studies, anti-

inflammatory effects of PDE inhibition were identified as a possible mechanism to protect the 

lung from hyperoxia-induced BPD phenotype 15-18 and from lipopolysaccharide (LPS) induced 

lung inflammation.19-22 

We therefore hypothesized that a new highly selective PDE4 inhibitor optimized for inhaled 

delivery (GSK256066) 20, 21 would exert anti-inflammatory properties in the lungs of preterm 

lambs exposed to chorioamnionitis and subsequent mechanical ventilation. 

Materials and methods 

Preparation of iPDE4 

A stock solution of GSK256066 (Selleckchem, Munich, Germany) was made according to the 

manufacturer’s guidelines by dissolving 2.5 mg GSK256066 in 1 ml DMSO 20%. Two working 

solutions were prepared with a concentration of 50 µg/mL and 5 µg/mL GSK 256066 in DMSO 

2%, and frozen at -20°C. Immediately before administration, the working solution was thawed, 

and an amount of 0.2mL/kg body weight was mixed with the same amount of NaCl 0.9%, 

before filling a vibrating membrane nebulizer (eFlow® Neonatal Nebulizer System, PARI 

Pharma, Munich, Germany). The lower dose of 1 µg/kg was based on ED50 value of 1.1 µg/kg 

identified in a rat model of LPS-induced lung inflammation 20 and resembles the adult dose of 

87.5 µg used in clinical trials on COPD.23 The higher dose of 10 µg/kg was based on previous 

rodent studies describing anti-inflammatory effects after LPS inhalation.21 

Animal study 

The study design and the experimental protocol were in line with the institutional guidelines 

for animal experiments and were approved by the institutional Animal Ethics Research 
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Committee of Maastricht University, and the Dutch Central Animal Research Commission 

(CCD).  

Seven days before delivery, 21 date-mated ewes underwent ultrasound-guided intraamniotic 

injection of Ureaplasma parvum (strain HPA 5), 5x105 color changing units (CCU). One day 

before caesarean section, ewes were injected intramuscularly with βmethasone (12 mg, 

Celestone®, Schering-Plough, North Ryde, NSW, Australia). Before delivery, lambs were 

randomly assigned to four different treatment groups: non-ventilated controls which were 

sacrificed immediately (NOVENT), animals ventilated for 24h without iPDE4 treatment 

(Control) and two groups of ventilated animals which received 1 µg/kg GSK256066 (iPDE1) or 

10 µg/kg GSK256066 (iPDE10), respectively, at 30 min and 12 h postnatal age (Fig. 1).  

Lambs were surgically delivered at a gestational age of 129 days (term ~150 d), equipped with 

umbilical artery and vein catheters and intubated orally before clamping the cord and 

weighing.24 Animals in the ventilation groups were transferred to an infant radiator bed 

(IW930 Series CosyCot™ Infant Warmer, Fisher & Paykel, Auckland, New Zealand) and 

connected to an infant ventilator (Fabian HFO®, Acutronic, Hirzel, Switzerland) with the 

following initial settings: SIMV, PIP 30 cmH2O, PEEP 8 cmH2O, ventilation rate 50/min, FiO2 

0.40. Subsequently, animals received an endotracheal dose of 200 mg/kg body weight 

Poractant alpha (Curosurf®, Chiesi Pharmaceuticals, Parma, Italy) and a single loading dose of 

caffeine citrate IV (20mg/kg, Peyona®, Chiesi Pharmaceuticals). The nebulizer was prepared 

as described above and placed between the tube and the connection to the ventilator circuit.25 

Ventilation was adjusted to blood gas analysis to maintain pO2 between 60 - 90 mmHg and 

pCO2 between 45 - 70 mmHg (iStat device, Point of Care Inc., Abbott Park, IL). During the 

experimental period of 24 hours, lambs were continuously sedated with midazolam (Actavis, 
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Hafnarfjordur, Iceland) and ketamine (Alfasan B.V., Woerden, The Netherlands), and 

parenterally fed with a 1:1 mix of glucose 20% and Ringer’s solution (B. Braun Medical B.V. 

Oss, The Netherlands). 

Necropsy 

At the end of the experiment, lambs were euthanized by an intravenous injection of 10 mL 

pentobarbital. The thorax was opened and the lungs were removed, divided into lobes and 

weighed. The right upper lobe (RUL) was inflation-fixed in 10% buffered paraformaldehyde for 

24 h. Lung tissue from the right middle lobe (RML) was snap frozen. Paraffin-embedded RUL 

sections (4 μm) were stained with hematoxylin and eosin prior to semi-quantitative scoring of 

lung injury, based on the composite score published by Hillman et al. .26 

Immunohistochemistry  

Paraffin-embedded RUL lung sections (4 μm) were stained for CD3 (DAKO A0452, 

Dakocytomation, Glostrup, Denmark) and MPO (DAKO A039829, Dakocytomation). Briefly, 

the sections were deparaffinized in an ethanol series. Endogenous peroxidase-activity was 

blocked by incubation with 0.3% H2O2 in 1 × phosphate buffered saline (PBS, pH 7.4). Antigen 

retrieval was performed by heating the sections in heated citrate buffer (10 mM, pH 6.0) for 

10 min. To block nonspecific binding, the slides were incubated with 5% bovine serum albumin 

in PBS (for CD3) or 20% normal goat serum (NGS) in PBS (for MPO). For CD3, sections were 

incubated overnight at 4°C with the diluted primary antibody (1:200, DAKO A0452, 

Dakocytomation). After incubation with a swine-anti-rabbit biotin-labeled secondary antibody 

(DAKO E0353, Dakocytomation), immunostaining was enhanced with Vectastain ABC 

Peroxidase Elite kit (PK-6200, Vector Laboratories, Burlingame, CA) and stained with nickel 

sulfate-diaminobenzidine (NiDAB). Subsequently, the sections were rinsed in Tris/Saline and 
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incubated with Tris/Cobalt. Counterstaining was performed with 0.1% Nuclear Fast Red. For 

MPO, sections were incubated for 1 hour with the 1:500 diluted primary antibody 

(Myeloperoxidase, Dako A0398). After incubation with the 1:200 diluted secondary antibody 

(Peroxidase Goat Anti-Rabbit IgG, Jackson ImmunoResearch, 111-035-045), slides were 

incubated with 0.02% 3-amino-9-Ethylcarbazole (Sigma A5754) dissolved in Sodium Acetate 

C2H3NaO2 (0.05M, pH4.9) and a total of 0.01% H2O2 (Sigma H1009). After washing, background 

staining was performed with hematoxylin. For analysis, slides were scanned (Ventana iScan 

HT, Roche Diagnostics, Basel, Switzerland) and pictures were taken at 200x magnification with 

the Ventana Imageviewer (Roche Diagnostics). MPO- and CD3-positive cells were counted in 

five representative high-power fields by a blinded observer and averaged per animal.  

PDE activity 

PDE activity was calculated from cAMP concentration as described before.22 Frozen lung tissue 

was homogenized in a buffer consisting of 30 mM HEPES and 0,1% Triton X-100 (a total volume 

of 4 μl per mg lung). After 10 min centrifugation at 13.000 xg, 10µl lung homogenate was 

mixed with 190µl PDE-assay buffer (137 mM NaCl; 2,7 mM KCL; 8,8 mM Na2HPO4; 1,5 mM 

KH2PO4 1mM CaCl2; and 1 mM MgCl2), and adding 1 μM cAMP started the reaction (incubated 

at 10 min at 37°C) and reaction stopped by boiling for 3 min. After centrifugation at 12.000 xg 

for 30 min, the cAMP concentrations in the supernatants were measured using an ELISA 

according to the manufacture’s protocol (Enzo Life Sciences, USA). PDE activity was calculated 

reciprocally in all but one animal where cAMP was outside the threshold of detection. 

RNA extraction and real time PCR 

Total RNA was isolated from the RML using NucleoSpin® RNA Kit (Macherey-Nagel, Dueren, 

Germany) according to the manufacturer’s protocol. For quantification of total RNA, a Qubit® 
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2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA) was used as recommended by the 

manufacturer. Total RNA was eluted in 60 µL nuclease-free H2O (Sigma-Aldrich) and stored at 

-80 °C until reverse transcription. For RT-PCR, 1 µg of total RNA was reverse transcribed using 

High Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) according to the 

manufacturer’s instructions. First strand cDNA was diluted 1:10 with deionized, nuclease-free 

H2O (Sigma-Aldrich) and stored at -20 °C until required for further analysis. 

Quantitative real time RT-PCR (qPCR) 

For quantitative detection of mRNA, 10 µL of diluted first strand cDNA were analyzed in 

duplicates of 25 µL reactions using 12.5 µL iTaq™ Universal SYBR® Green Supermix (Bio-Rad 

Laboratories, Hercules, CA), 0.5 µL deionized H2O, and 1 µL of a 10 µM solution of forward and 

reverse primers (Sigma-Aldrich). Levels of mRNA were measured for inflammatory cytokines 

interleukin (IL)-1, IL-6, and IL-8, for tumor necrosis factor (TNF) alpha, and for tissue inhibitor 

of metalloproteinase 1 (TIMP1). TIMP1 has been described as a predictive biomarker for 

mesenteric vasculopathy induced by PDE4 inhibition.27 Primers were ovIL1Bfwd 5’-

CCTGTCATCTTCGAAACATCC-3’, ovIL1Brev 5’-GCAGAACACCACTTCTCGG-3’, ovIL-6fwd 5’-

CTCTCATTAAGCACATCGT-3’, ovIL-6rev 5’-GATCAAGCAAATCGCCTG-3’, ovIL-8fwd 5’-

AAACACATTCCACACCTTTCC-3’, ovIL-8rev 5’-GGATCTTGCTTCTCAGCTCTC-3’, ovTNFafwd 5’-

ACACTCAGGTCATCTTCTC-3’, ovTNFarev 5’-GGTTGTCTTTCAGCTCCA-3’, ovTIMP1fwd 5’-

ACTCCGAAGTCGTCATCAG-3’, ovTIMP1rev 5’-GAAGTATCCGCAGACGCTC-3’, ovACTBfwd 5’-

ATCTGTCGTCAGCAGGTC-3’, ovACTBrev 5’-CCAACGGTACTGAGAGGA-3’. PCRs were performed 

on an Applied Biosystems® 7500 Real-Time PCR System (Thermo Fisher Scientific) using a 2-

step PCR protocol after an initial denaturation at 95 °C for 10 min with 40 cycles of 95 °C for 

15 s and 60 °C for 1 min. A melt curve analysis was performed at the end of every run to verify 
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single PCR products. Levels of mRNAs were normalized to those of β Actin. Mean fold changes 

in mRNA expression were calculated by the ΔΔCT method by Livak and Schmittgen.28 

Statistics 

Data were expressed as mean and standard error of means (SEM), and statistical analysis was 

performed using One-way ANOVA with Bonferroni post-hoc testing with IBM® SPSS version 

20. Graphs were drawn with GraphPad Prism® v5.0. Significance was accepted at p<0.05. 

Results 

Baseline characteristics 

Animals in different groups did not differ significantly in sex, birth weight and relative weight 

loss during the experiment (table 1). Blood gas analysis during ventilation showed stable 

results during the experimental period, with a mean pCO2 slightly above the target range at 

24h in the iPDE1 group (Fig. 2). One animal died at 12 hours due to tension pneumothorax. 

PDE Activity 

At sacrifice, PDE activity was highest in ventilated control animals. In the high dose group, but 

not in the low dose group, PDE activity was significantly decreased by approximately 80% 

compared to unventilated and ventilated controls 12 hours after the second dose (Fig. 3).  

MPO and CD3 

The number of MPO positive cells per high power field indicating neutrophils was low in 

unventilated and ventilated controls (Fig. 4 a), and significantly increased in the iPDE10, but 

not the iPDE1 group. CD3 positive cells indicating lymphocytes (Fig 4 b) were found in the 

lungs of all animals irrespective of ventilation or PDE4 inhibitor treatment.  
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Cytokines RNA 

Levels of pro-inflammatory cytokines’ RNA for IL-1β, IL-6, IL-8 and of TNF alpha were lowest 

in unventilated controls. Higher levels were found in all ventilated groups, however only 

animals receiving a high dose of PDE inhibitor showed a significant increase of IL-1β, IL-8 and 

TNF alpha levels (p<0.05 compared to NOVENT, Control, iPDE1, Fig 5 a,c,d). Cytokine mRNA 

levels in the low-dose group were comparable to or lower than levels in ventilated controls, 

but this effect was not statistically significant when comparing all groups. For TIMP-1, increase 

in mRNA levels in ventilated animals was significant only in the iPDE10 group (p<0.05 

compared to NOVENT, p=0.054 vs. Control, Fig 5 f). 

Lung injury score 

The composite injury score in unventilated control animals was low, and ventilation alone did 

not lead to a significant increase of the score (Fig. 6 a-c). Animals in the iPDE10 group showed 

a significantly higher score for lung injury compared to unventilated and ventilated control 

animals, with thickened airway walls and parenchymal haemorrhage (Fig. 6 e). In this group, 

infiltration of inflammatory cells could additionally be found in perivascular tissue, indicating 

vasculitis (Fig. 6 f). Lung injury scores in the iPDE1 group were not significantly increased 

(p=0.091 vs. NOVENT, Fig. 6 d). 

Discussion 

Contrary to our hypothesis, we found pro-inflammatory effects and increased injury scores in 

the lungs of preterm lambs nebulized with 10 µg/kg per dose of a selective PDE4 inhibitor. The 

pro-inflammatory phenotype in our study was associated with histological signs of vasculitis 

and an increase in pulmonary mRNA levels of TIMP-1, a potential biomarker of intestinal 

vasculopathy induced by PDE4 inhibitors.27 Mesenteric and intestinal vasculitis after oral 
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application of PDE4 inhibitors have been described in various animal studies and have been 

identified as dose-limiting adverse effect.29, 30 

In our study, both PDE inhibition and associated pro-inflammatory effects were dose-

dependent. PDE was not significantly inhibited at sacrifice in animals receiving the lower dose 

of PDE4 inhibitor. Of note, this was 12 hours after the second dose, so we cannot rule out a 

time-dependent PDE inhibition also after the low dose. However, we found no significant anti-

inflammatory effect in the iPDE1 group with levels of pro-inflammatory cytokine mRNA 

comparable to levels in ventilated controls. 

In the iPDE10 group, we observed a strong PDE inhibition 12 hours after the second dose, 

indicating a total blocking of PDE after administration, possibly resulting from a supra-

therapeutic dose. This dose was however chosen based on previous works in rodents, where 

doses of 10 µg/kg GSK256066 were administered intratracheally to rats challenged with LPS 

inhalations. In that study, this dose had anti-inflammatory effects in the lungs and was well 

tolerated.21 Our contrary findings might therefore arise from differences in the experimental 

setup, including choice of pro-inflammatory stimuli, route of administration, and species.  

Studies showing anti-inflammatory effects of PDE4 inhibition often used rodent models and 

in vitro testing with lipopolysaccharide (LPS) as very strong pro-inflammatory stimulus,19-22 

and found augmented inflammation after exposure to both LPS and PDE4 inhibitor via 

different routes. Of the above mentioned, only one study reported higher neutrophil counts 

in bronchoalveolar lavage and high levels of lung keratinocyte-derived chemokine (KC, a 

mouse homologue of the IL-8 family) when PDE4 inhibitor treatment was administered 

subcutaneously without prior LPS exposure.19 In our study, we chose a different yet clinically 

relevant approach to induce preterm lung injury and inflammation. Intrauterine UP exposure 
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has been shown to induce chorioamnionitis and to generate fetal pulmonary and systemic 

inflammation.31, 32 Although pulmonary inflammation by UP is described as mild, it has been 

associated with BPD in several studies.33 Acute UP infection of fetal baboons increased 

ventilation-associated lung injury and postnatal lung inflammation.34 However, our data 

indicated that the phenotype of a more subacute pulmonary inflammation might react 

differently on PDE4 inhibition than on acute LPS exposure.  

Previous studies also explored different routes of PDE4 inhibitor administration. In the 

hyperoxia-rodent model of neonatal lung-injury and BPD,15-18 where lung inflammation and 

injury is induced by ongoing oxidative stress postnatally, anti-inflammatory effects of PDE4 

inhibition have been reported after subcutaneous or intraperitoneal application of different 

PDE4 inhibitors. Systemic PDE4 inhibitor treatment has however been associated with adverse 

treatment effects, e.g. reduced weight gain.15, 17 In rats treated orally for two weeks with 

supra-therapeutic doses of the PDE4 inhibitor rolipram, histological signs of organ damage 

where found in the heart, vasculature, stomach and salivary glands, but interestingly not in 

the lungs of treated animals.35 In order to decrease systemic side effects, we chose for 

nebulization to target the lung directly, using GSK256066 as PDE4 inhibitor which is suitable 

for inhalation.20 Choosing this approach, we observed inflammatory changes in the lung, 

indicating that the primary site of PDE4 inhibitor exposure implicates the site of major adverse 

effects. 

Our study is limited by the fact that we used Dimethyl sulfoxide (DMSO) as a solvent for the 

PDE4 inhibitor. DMSO has been used in various preclinical models due to its high solubilization 

capacity and a very low toxicity.36 For endotracheal use, data is conflicting: in mice, repeated 

endotracheal exposure against 2% DMSO for five days resulted an increase in 
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myeloperoxidase activity in bronchoalveolar lavage fluid, while only small number of 

neutrophils were recruited to the lung.36 Endotracheal DMSO further ameliorated neutrophil 

influx in a hamster model of acute lung injury.37 Based on these findings and in accordance 

with good animal experimental practice, we decided that the low risk of significant effects of 

inhalation with 1% DMSO in our model did not justify a separate control group receiving DMSO 

only. 

Finally, translation of findings to other species and the human situation is difficult. Rats are 

thought to be very susceptible in terms of PDE4-inhibitor induced toxicity.38 To our knowledge, 

no data from ovine models exists. The preterm lamb model has been chosen due to its 

similarity to human lung development, and we therefore regard our model to be suitable for 

preclinical testing of pulmonary drug delivery in the context of preterm lung injury and 

inflammation. However, it becomes clear that doses from adult humans and rodents cannot 

be easily translated into preterm settings. Our findings show that dose dependent toxicity and 

pulmonary inflammation narrows the therapeutic drug concentration of PDE4 inhibitors 

dramatically. These findings require thorough investigation of this group of substances before 

clinical use in preterm infants. 
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Tables 

Table 1: Animal characteristics 

 NOVENT Control iPDE1 iPDE10 

N 5 6 5 5 

male : female 1:4 2:4 2:3 1:4 

Birth weight (kg) 2.8±0.2 3.1±0.2 2.8±0.2 3.4±0.3 

Relative weight loss 

during experiment 
n.a. -0,5% -2,4% -4,8% 

 

  



18 
 

Figure legends 

Experimental groups (Fig. 1) 

After initiation of ventilation, animals received 1 dose of Curosurf 200 mg/kg intratracheally 

and 20 mg/kg caffeine intravenously (arrow). Animals in the treatment groups received 

1µg/kg (thin dotted arrows) or 10 µg/kg PDE4 inhibitor (thick dotted arrows) via nebulization 

at 0.5 h and 12 h. 

Blood gas analysis (Fig. 2). 

During ventilation, animals in the control (square), iPDE1 (diamond) and iPDE10 group 

(triangle) showed stable results for A) pH, B) pO2 and C) pCO2, with a pCO2 slightly above the 

target range (thin dotted lines) at 24 h in the iPDE1 group (data as mean ± SEM, *p<0.05 vs. 

control).  

PDE Activity (Fig. 3) 

In lung tissue, PDE activity calculated from cAMP concentration was significantly decreased 

in the iPDE10 group compared to unventilated and ventilated controls (p<0.05 * vs. 

NOVENT, # vs. control). 

MPO and CD3 (Fig. 4) 

a) MPO positive cells indicating neutrophils, but not b) CD3 positive cells indicating 

lymphocytes were significantly increased in the iPDE10 group compared to NOVENT and 

control animals (p<0.05 * vs. NOVENT, # vs. control).  

Cytokines mRNA (Fig. 5) 

Pro-inflammatory cytokines mRNA levels of IL1β, IL-6, IL-8 and TNF-alpha increased in 

ventilated animals and were significantly higher for IL1β, IL-8 and TNF-alpha in the iPDE10 



19 
 

group (p<0.05 * vs. NOVENT, # vs. control, § vs. iPDE1, Fig. 5 A, C, D). A comparable pattern of 

increase was shown for TIMP-1 (E). 

Lung injury score (Fig. 6) 

Semiquantitative lung injury score was significantly higher for iPDE10 group animals 

compared to not-ventilated and ventilated control animals (p<0.05 * vs NOVENT, # vs. 

control, 6 A). Representative lung slides of B) NOVENT, C) Control, D) iPDE1 and E) iPDE10 

group. In the iPDE10 group, neutrophil recruitment into vessel walls indicates vasculitis 

(arrowheads, 6 F). 
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