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Change-point multivariable quantile regression to explore effect of 
weather variables on building energy consumption and estimate base 
temperature range

ABSTRACT: Mean regression analysis may not capture associations that occur primarily in the tails of the outcome distribution. 

In this study, we focused on building heating gas consumption related to multiple weather factors to find the extent to which they 

impact gas consumption at higher quantile levels. We used change-point multivariable quantile regression models to investigate 

distributional effects and heterogeneity in the gas consumption-related responses to weather factors. Subsequently, we analyzed 

quantile regression coefficients that corresponded to absolute differences in specific quantiles of gas consumption associated with 

a one-unit increase in weather factors. We found that the association of weather factors and gas consumption varied across 19 

quantiles of gas consumption distribution. The heterogeneity of the case-study buildings was different: right tails of gas 

consumption for the community (CL) and educational (ED) buildings were more susceptible to weather factors than those of the 

health care (HL) building. The base temperature of the CL building across quantiles of gas consumption indicated a flat trend, but 

the uncertainty ranges were relatively large compared with those for the CL and ED buildings. This study could reveal which 

factors are most important and the extent to which they affect gas consumption at specific quantile levels.

Keywords: base temperature; building energy consumption; quantile regression; residual temperature; solar 

insolation. 
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1. Introduction

Urban energy consumption accounts for about 75% of global resource consumption. With urbanization accelerating in 

developing countries, the International Energy Agency predicts that by 2030, the share of urban energy demand will increase to 

73% and CO2 emissions will increase to 76% [1]. Such rapid development of global industrialization, urbanization, and 

modernization has clearly increased the demand for energy. Reducing energy consumption and improving energy efficiency have 

become urgent concerns for urban sustainable development. Buildings, in particular, are among the world's largest energy 

consumers [2]. Building energy accounts for 35-40% of society’s total energy consumption, which implies that there may be large 

energy-saving potential in buildings. For example, energy-saving measures in buildings in the United Kingdom have reduced 

carbon dioxide emissions and saved up to 35% of energy. Therefore, energy-saving appliances and technologies should be 

developed and used more widely. It is therefore desirable to reduce non-renewable energy requirements and the energy footprint 

of the built environment by developing new energy-saving technologies that are low cost and high reward. Diverse, innovative 

technologies can also save additional energy. To meet requirements like thermal comfort, buildings are designed to deliver 

modulated amounts of energy to interior spaces. Both internal and external factors have effects on buildings. In addition to human 

activities, weather conditions influence building energy use. More sustainable building protocols are needed to deal with climate 

change, which will depend on the innovation and development of energy-saving technologies. Weather parameters can be used 

to predict indoor environmental conditions and establish sufficiently accurate prediction models. Building energy consumption 

performance can be quickly and accurately simulated using computer technology and prediction models [3]. Quantitative 

representation of the relationship between energy consumption and weather conditions can provide necessary information for the 

development of new energy-saving technology. This relationship is also important for the short-term prediction of building energy, 

and can help reduce building energy use before and after construction and /or retrofits.

A better understanding of the impacts of weather conditions on building energy use is needed to improve modeling and 

prediction. Broadly speaking, forecasting can be classified into statistical, machine learning and physical methods [1]. In most 

prediction methods, the degree-day method, as an engineering mode, is based on one factor, i.e. temperature, providing an 

inexpensive tool for building operators and managers. Climatic severity can be concisely characterized in terms of degree-days. 

According to Ref [2], the degree-day method is the simplest energy analysis method. The degree-day method can be used for 

predicting building energy consumption [3], building design and regulations [4], as well as energy management [5]. Heating 

degree-day (HDD) is a versatile degree-day measure of cold weather duration and severity, allowing for weather-based analysis 

of fuel consumption from sources such as natural gas or coal. In terms of degree-day, base or reference temperature is a key 

parameter. This is because base temperature influences the accuracy of HDD and corresponding energy consumption predictions. 
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Appropriate base temperatures are used to derive realistic representations of building energy consumption and efficiency, while 

inappropriate choices can produce misleading results [6]. Furthermore, heating base temperature is temporal and dynamic change 

within a range rather than one point even if for a specific building [7].

The base temperature is generally determined by the energy signature method or the performance line method, the former 

method needs denser data sampling frequency (such as daily energy consumption readouts) than the latter method (often needs 

monthly measurements). Currently, detail utility bills are easy to come by, and historic weather data are ubiquitous. Thus, the 

energy signature method is convenient to use. Much previous work has been done on the determination of base temperature using 

the two approaches as well as on the practical issues with analyzing energy use data [8, 9, 10, 11, 12]. Other methods for estimation 

of base temperature were reported in Ref [13, 14] 

Change-point model (CP) [15] has been further developed into estimating the change of patterns in a CP regression model 

which has had widespread use as baseline models for measuring energy savings. Due to simplicity, change-point (CP) model is 

proved to be the most appropriate model in terms of accuracy vs. effort spent for verification of whole building energy 

consumption, and estimating building parameters [16]. One of model, best-fit change-point model, from American Society of 

Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Inverse Modeling Toolkit (IMT) [17] is used to derive 

regression models of building energy use.

Building energy consumption is weather-dependent [18]. As an engineering method, HDD is a versatile climatic indicator 

that encapsulates the severity and duration of cold weather. The existing methodologies only account for the effects of temperature 

and ignore other potential climatic factors such a humidity, wind speed, and solar radiation. Because buildings are exposed to the 

environment, however, additional weather variables should be considered along with ambient temperature when determining base 

temperature using a regression method. Although much research has been conducted on degree-days and determining base 

temperature, most studies [19, 20] have focused on one parameter (e.g. temperature) and only limited studies have incorporated 

more than one into the approach. Sonderegger [21] derived a baseline model for utility bill analysis considering weather and 

non-weather- (i.e., occupancy) related variables. Guan [22] incorporated residual temperature (the temperature difference 

between the current and the previous day’s temperature) and specific humidity to predict weather-dependent electricity 

consumption in the warm season. In Ref. [23] a new concept (infiltration degree-days (IDD)) was proposed, which added a 

weighting factor calculated from relative infiltration. Huang [24] correlated residential building heating and cooling loads with 

different climatic parameters based on hourly simulated data. Stronger correlations were obtained using two parameter daily 

degree-days at a constant base temperature of 18.3°C , which implied that more climatic parameters should be used to 

determine base temperature for building energy prediction when using the degree-days method. In Ref [25], the potential 
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effects of multiple climatic factors on the degree-days method were considered, such as temperature, humidity, and solar 

radiation.

Building technologies are often examined by a mean regression approach. However, research questions can often go beyond 

what can be answered in a standard regression framework. Previous studies have shown evidence of multi-variable dependency 

and heterogeneity in the relationship between the energy consumption distribution and different weather factors. Common 

analytic approaches to examine energy consumption dependency on weather (especially ambient temperature) and further 

estimate base temperature include energy signature and performance line methods [3], which made improvements over classical 

methods, such as quantile-quantile plots [13] and Bayesian estimation [14]. However, these approaches are all based on one 

parameter, such as temperature, as well as ordinary least squares (OLS) mean regression. Accordingly, they have not provided 

sufficient understanding of how weather factors change the distribution of energy consumption. In particular, if larger energy 

consumption were seen among buildings at the adverse end of such distributions, such findings would have important energy 

conservation implications and be helpful for energy use impact assessments and building performance analysis. Investigating 

variations in energy consumption effects based on the outcome of interest has received less attention but would address the issue 

of fully understanding the reasons for changes in the distribution of actual energy use.

Quantile regression, introduced by Koenker and Bassett, provides “a systematic strategy for examining how covariates 

influence the location, scale, and shape of the entire response distribution” [26], which is different from the classical least-squares 

regression only on the conditional mean. Quantile regression offers, on a systematic level, a more comprehensive distribution 

picture of the relationship between the variables than ordinary regression does [27]. In terms of HDD-based building energy 

predictions, the advantages of quantile regression mainly are in following aspects. First, QR approach could provide with a wealth 

of information across buildings energy use and weather, and can identify energy use anomalies in system behavior (for example, 

due to control failure or unrelated-weather occupant behavior) and poor-quality data. Second, quantile regression also has 

flexibility in detecting more subtle relationships between energy use and ambient temperature, dealing with non-normally 

distributed errors, robustness against outliers, and the ability to detect heterogeneity (e.g., the distribution of gas consumption). 

Finally, current studies on base temperature mostly focus on average using the conditional mean function. Unlike classical 

statistical regression methods, the outcomes of quantile regression are not only point estimates, but a full picture of base 

temperature.

Obviously, the use of quantile regression (QR) allows for the examination of questions of differential relations or importance 

while avoiding the problems associated with assuring a normal distribution or filtering skewness points. The main attraction of 

QR is that different measures of central tendency and statistical dispersion are available to make the analysis more comprehensive. 
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While until now research efforts on QR in building energy use is nascent, some limited implementation examples provide early 

evidence of its potential. For instance, to determine the control limit on energy end use, QR with principal components analysis 

was applied [28], and Kaza adopted QR analysis to tease out the effects of various factors over the energy consumption spectrum 

[29]. However, this approach has been frequently deployed in other fields, such as economics, social science, and environmental 

science [27, 30, 31]. The obstacle for application of the approach to energy conservation may be how to transfer QR results to 

useful tools for building energy management. In [32], distributional degree-day temperatures were obtained using change point 

quantile regression where single outdoor environmental factor, i.e., ambient temperature, was considered. 

In conclusion, from the literature it can be learned that, 1) the above studies all suggest that base temperature is highly 

dependent on building characteristics and operating conditions (by only using measured data from operating days). Although we 

know that base temperature is characterized by multi-variable dependency and spatial and temporal distributions, few 

comprehensive studies have evaluated it. 2) Current studies on base temperature mostly focus on average using the conditional 

mean function. To the best of the author’s knowledge, except [32], the analysis on the relationship between degree-day base 

temperatures and building consumption using quantile regression has not yet been investigated systematically. 

Unlike classical statistical regression methods, the outcomes of quantile regression are not only point estimates, but a full 

picture of base temperature. Multivariable change-point quantile regression method energy analysis could examine some key 

consumption drivers (in particular, e.g., solar simulation) and be further helpful to the development of predictive algorithms to 

estimate energy consumption and savings. Furthermore, in addition to knowing the relationship between mean energy 

consumption and weather factors, we need more details, such as which part of the energy consumption is more susceptible to 

which weather factors, which cannot be achieved by OLS mean regression method.

The data for building information, weather (including weather derivatives such as residual temperature, the difference 

between the current and the previous day’s temperature), and energy use (gas consumption) and the methodology are first 

described in detail. Using a change-point multivariable quantile regression (CP-MQR) approach, we subsequently discuss the 

association of daily average weather factors with 5th to 95th quantiles of the gas consumption distribution for three case-study 

buildings. Finally, we compare results of QR from the three buildings to evaluate our conclusions.

2.  Methodology
2.1 Data

2.1.1 Energy consumption
To evaluate the proposed method, we selected three non-residential buildings in Cardiff, South Glamorgan County, UK. The 

selected buildings represent diverse building sectors: community center (CL), educational (ED) building, and health care (HL) 
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building. The maximum distance between the weather station providing the meteorological data (Bute Park, Cardiff) and buildings 

is less than 3.0 km. The detailed characteristics of the case-study buildings are listed in Table 1.

TABLE I
CASE-STUDY BUILDINGS CHARACTERISTICS

Building code CL ED HL

Photos

Building sectors1 Community, arts and leisure Education Health

Sub-sectors1 Clubs and community centres Primary school Nursing and care homes

Floor area (m2) 772 2437 317

Occupancy number (-) N/A2 387 33

Floor number (-) 1 2 2

Year built (-) Post 1976 Pre 1919 Post 1976

Occupancy schedule
09:30-21:30 (weekdays)
10:30-17:30 (Saturday)
11:00-15:30 (Sunday)

09:00-17:00 (weekdays 24h (weekdays and weekend)

Display Energy Certificate D C N/A

Note: 1 Buildings are categorized according to the Building Energy Efficiency Survey (BEES) [33], 2 N/A means that the variable is not available
Energy data for this research were gleaned from the City of Cardiff Council1, which monitors the gas and electricity 

consumption of over 330 non-residential buildings and facilities they own and manage, as part of their sustainable development 

strategy. Energy consumption is measured every half-hour and sent to a central server. Some of these data are also publicly 

available in Carbon Culture,2 a community platform for promoting the efficient use of resources. The raw data include energy 

utility bills for both electricity and gas for periods with different starting and ending dates. As an example of building energy 

consumption, we selected the gas consumption of three buildings covering 4 years from April 1, 2012, to March 31, 2016. 

The raw half-hourly gas consumption data were directly converted to daily equivalents for further analysis. Carpet plots were 

prepared for various time frames, allowing us to identify patterns easily by visual inspection. Fig.1 illustrates carpet plots of gas 

consumption for the three buildings. Gas consumption had seasonal and diurnal patterns of dependency on the variation of ambient 

temperature. Due to different functions and occupancy schedules, the diurnal patterns of three buildings had different 

characteristics. As an example, Fig.1b reveals that the peak heating demand fell within the time period of late October to early 

April and from 7:00 to 17:00. In the daytime, the peak heating demand centered around 8:00, and lower heating demand was seen 

1 The governing body for Cardiff, which is the capital of Wales. https://www.cardiff.gov.uk 
2 https://platform.carbonculture.net/communities/car
diff-council/19/ 
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before 7:00 and after 15:00. In most unoccupied periods (weekends and holidays), there was almost no energy use. Furthermore, 

compared with the CL (Fig.1a) and ED (Fig.1b) buildings, the HL building (Fig.1c) had a relatively distinct heating system starting 

and ending cycle, which reflected a relatively stricter building operation management.

FIGURE 1.  The carpet plot of gas consumption for three selected case buildings corresponding to three building types. a. Community 
Hall (Community, arts and leisure, CL). b. Primary school (Education, ED). c. Nursing and home care (Health, HL).

While the process is illustrated here using gas consumption, other energy end uses, such as heating, air-conditioning plug loads, 

mechanical systems (fans and pumps), lighting, and even photovoltaic power generation, can be analyzed using our approach. 

2.1.2 Weather

Three candidate weather stations were available for South Glamorgan: Bute Park, Rhoose, and St. Athan, located in the CF1, 

CF6, and CF64 Cardiff postal codes, respectively. Bute Park (latitude 51.4878 and longitude -3.18728, assigned World 

Meteorological Organization [34] number 037170 and marked with a black solid circle in Fig.1) was chosen as the source station, 

as it is located within 1 km of the Cardiff city center. The average distance between the selected buildings and Bute Park weather 

station is around 1.83 km (See in Fig.2). Bute Park is an automatic weather station that logs and reports weather parameters hourly. 

The remaining two stations, Rhoose and St. Athan (World Meteorological Organization numbers 037150 and 037160, 

respectively, not shown in Fig.2), are located at nearby airports far from the city and have landscape characteristics different than 

those at the selected buildings, in terms of surroundings, built up areas, and exposure. 
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FIGURE 2.  Maps of three case-study buildings and weather stations (Bute Park, Cardiff).

Hourly weather data from Cardiff were obtained from the Centre for Environmental Data Analysis [35], which archives data 

from the UK Met Office’s network of weather stations as part of the Met Office Integrated Data Archive System, Land and Marine 

Stations dataset. The raw hourly data downloaded from the Centre often have duplicate and missing data. Therefore, pre-

processing for duplicates and missing observations was conducted on the downloaded data to acquire complete and accurate data. 

The carpet plots of post-processed hourly weather data, that is, air temperature, solar insolation, and residual temperature, are 

shown in Fig.3 for the study period. Residual temperature can be expressed as:

∆𝑡𝑖,𝑗 = 𝑡𝑖 ‒ 𝑗 ‒ 𝑡𝑖 (1)

Where  is the residual temperature in the th day resulting from the ( )th day.∆𝑡𝑖,𝑗 𝑖 𝑖 ‒ 𝑗

As seen from Fig.3, the ambient temperature and solar insolation show seasonal and diurnal variation, while the variation of 

residual temperature looks more random. As an example of ambient temperature, the range of hourly ambient temperatures over 

4 years was between -5°C and 30°C. The lowest ambient temperature occurred mainly around a time of day of 5:00 between 

November and March. Meanwhile, the highest temperature occurred at around 15:00. All of the weather parameters were tabulated 

on an hourly basis, to maintain consistency with well-known terms of heating degree-days, although we converted the climatic 

parameters to daily equivalents when correlating building energy consumption and weather parameters.
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FIGURE 3.  The carpet plot of gas consumption for three selected case buildings corresponding to three building types. a. Community 
Hall (Community, arts and leisure, CL). b. Primary school (Education, ED). c. Nursing and home care (Health, HL).

2.2 Statistical approach

2.2.1 Change-point model for heating

The functional form of a best-fit three-parameter change-point model for heating is given as

𝑌h = 𝛼1 + 𝛽1(𝑡b ‒ 𝑋1) + , (2)

where  is energy use (gas consumption in kilowatt-hours); is ambient dry bulb temperature (in degrees Celsius);  is 𝑌h 𝑋1 𝛼1

baseline energy consumption or base load, the part of energy use that is independent of weather conditions;  is the physically 𝛽1

meaningful slope of the total heat loss coefficient; and  is the reference or base temperature (in degrees Celsius). The  𝑡b ( + )

notation indicates that the value of the parenthetical term is set to zero when it is negative. Using the three parameters, heating 

regression analysis can identify the breakpoint, that is, change-point (e.g., the blue point P shown in Fig.4a).

FIGURE 4.  Schematics featuring the regression models of (a) 3PH change-point regression, (b) multi-variable 3PH change-point quantile 
regression (two independent variables).

In addition to ambient temperature, other climatic factors need to be considered when correlating building energy consumption 

dependency on weather for the improvement of estimation accuracy. Accordingly, multi-variable regression models are employed. 

Although an ordinary multi-variable regression model can capture the effects of multiple independent variables, it cannot model 

energy use that varies at ambient temperature change points and balance points. The combination of change-point and multi-

variable regression models is capable of modeling energy use with temperature change points and balance points while retaining 
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the effects of additional independent variables. Consequently, as in [17], we used the following three-parameter CP-MQR model 

for heating:

𝑌h = 𝛼1 + 𝛽1(𝑡b ‒ 𝑋1) + + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4, (3)
where  is ambient temperature and  is one or more optional independent variables.𝑋1 𝑋𝑖 (𝑖 = 2, 3, 4)

The OLS model can estimate how, on average, these independent variables affect the energy use. While the OLS model can 

address the question, for example, “is solar insolation important?” it cannot answer important questions such as “Does solar 

insolation influence energy use differently at low consumption than it does for average or high consumption?” Fortunately, a more 

comprehensive picture of the effects of independent variables on the dependent variable can be obtained by using QR.

2.2.2 Quantile regression model: the preliminaries

Quantile regression, introduced by Koenker and Bassett [26], is different from OLS regression only with respect to the 

conditional mean. Quantile regression offers, on a systematic level, a more comprehensive distribution picture of the relationship 

between the variables than ordinary regression does [27]. This approach can be applied to each quantile of the distribution function 

separately, and therefore, it is more robust in handling outliers and applicable to asymmetrical distributions [36]. An interesting 

feature of this method is that no assumption is required about the probability distribution of the measurements as the function 

parameters are estimated by a non-parametric technique that consists of minimizing asymmetrically weighted absolute residuals 

as the following linear equation:

min
𝛽

𝑛

∑
𝑖 = 1

 𝜌𝜏(𝑦𝑖 ‒ 𝑿𝑇
𝑖 𝛽), (4)

where  is a scalar-dependent variable,  is the  vector of explanatory variables,  is the coefficient vector,  is the 𝑦 𝑿𝑇
𝑖 𝑘 × 1 𝛽 𝜏

conditional quantile of interest, and , is the QR loss function [27] as shown schematically in  𝜌𝜏(𝑣) = 𝑣(𝜏 ‒ 𝐼(𝑣 < 0)), 0 < 𝜏 < 1

Fig.5. Here,  denotes the indicator function. 𝐼( ∙ )

FIGURE 5.  Loss function for quantile regression  𝝆𝝉( ∙ )

Quantile regression models the relation between a set of predictor variables and specific quantiles of the response variable. For 

example, a median regression of building energy use with changing weather factors specifies the changes in the median energy 
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use as a function of the predictors. The effect of one predictor on median energy use can be compared with its effect on other 

quantiles of energy use. In linear regression, the regression coefficient represents the increase in the dependent variable produced 

by a one-unit increase in the independent variable associated with that coefficient. In QR regression, the QR regression coefficient 

estimates the change in a specified quantile of the dependent variable produced by a one-unit change in the independent variable. 

For example, this allows analysis of how some quantiles of energy use may be affected by some weather factors more than others. 

This is reflected in the change in the size of the regression coefficient. Hence, the use of QR over the entire range of an outcome 

(building energy consumption) produces estimates that can be used to detect potential heterogeneity in weather–outcome 

associations according to outcome levels. Another advantage of QR is that it does not require assumptions about the distribution 

of the outcome (or the model residuals) and can, therefore, be deployed to estimate associations between weather and building 

energy consumption that are not normally distributed.

2.2.3 Change-point multivariable quantile regression: the extensions

The detailed theory of linear QR can be found in Refs. [26, 27]. From the above discussion of the energy signature model, we 

know that linear QR lacks the ability to describe the relationship between energy use and ambient temperature and infer base 

temperature, while segmented linear QR may be preferable. Using the piecewise linear regression method, a more accurate range 

of base temperatures for a specific building can be obtained, unlike a single estimated point obtained by the OLS method. 

Following previous studies on bent line QR [27, 37, 38, 39], we extensively developed the CP-MQR method.

Given a probability  strictly between 0 and 1, we consider a three-parameter CP-MQR model derived from (2) (shown in 𝜏
Figure 4b).

𝑌𝑖 = 𝛼1 + 𝛽1(𝑡b ‒ 𝑋𝑖) + + 𝒛 ⊺
𝑖 𝜸 + 𝑒𝑖  , (5)

where  is the -th response,  is the scalar covariate whose slope changes at the change-point ,  is a -dimensional vector 𝑌𝑖 𝑖 𝑋𝑖 𝑡b 𝒛𝒊 𝑞

of linear covariates with constant slopes,  is the error term whose -th quantile is zero conditional on ( ),  is the effect of 𝑒𝑖 𝜏 𝑋𝑖, 𝒛𝑖 𝜸

,  is an unknown variable to be estimated, and . The (+) notation indicates that the values of the parenthetic term is 𝒛𝑖 𝑡𝑏 𝑖 = 1,⋯,𝑛

set to zero when it is negative. Let . Given , the -th quantile of  given  and ,  is 𝛈 = (𝛼1,𝛽1,𝛄 ⊺ ) ⊺ 𝑡𝑏 𝜏 𝑌𝑖 𝑋𝑖 𝒛𝒊 𝑄(𝑋𝑖,𝒛𝒊;𝜼)

.𝑄(𝑋𝑖,𝒛𝒊;𝜼) = 𝛼1 + 𝛽1(𝑡b ‒ 𝑋𝑖) + + 𝒛 ⊺
𝑖 𝜸 (6)

As  is known in (6), then, conditional on this known , the best estimate  of  is𝑡𝑏 𝑡𝑏 𝜼 𝜼

𝜼(𝜏) = argmin𝜼 ∈ ℝ2 + 𝑞

𝑛

∑
𝑖 = 1

 𝜌𝜏[𝑌𝑖 ‒ 𝑄(𝑋𝑖,𝒛𝑖;𝜼)]. (7)

Letting , the quantile conditional on  is linear in form, that is,𝑢𝑖 = max(0,𝑡𝑏 ‒ 𝑋𝑖) 𝑡b
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𝑄𝑖 = 𝑄(𝑋𝑖,𝒛𝑖;𝜼) = 𝛼1 + 𝛽1𝑢𝑖 + 𝒛 ⊺
𝑖 𝜸 . (8)

As (7) is equivalent to (6), (7) can be rewritten as

𝜼 = argmin𝜂 ∈ ℝ2 + 𝑞

𝑛

∑
𝑖 = 1

 𝜌𝜏(𝑌𝑖 ‒ 𝐰 ⊺
𝑖,𝑡𝑏𝜼), (9)

where . Now we can estimate  conditional on .𝐰𝑖,𝑡b = (1,𝑢𝑖,𝒛 ⊺
𝑖 ) ⊺ 𝜼 𝑡b

As in [37], we adopted  (a function of ) as the following equation:S(𝜼|𝑡b) 𝑡b

S(𝜼│𝑡b) =
𝑛

∑
𝑖 = 1

 𝜌𝜏(𝑌𝑖 ‒ 𝐰 ⊺
𝒊,𝑡b𝜼). (10)

Finally, we can obtain all values of  corresponding to all values of  in the range of . The estimated change-point S(𝜼|𝑡𝑏) 𝑡𝑏 𝑋'
𝑖s

value , the  value at which the minimum value of  is realized, is calculated through the following equation:𝑡b 𝑡b S(𝜼|𝑡𝑏) 

𝑡𝑏 =  argmin
𝑡b

S(𝜼|𝑡𝑏). (11)

Both asymptotic and bootstrapping methods provide robust results for standard errors and confidence limits for regression 

coefficient estimates [40]. We used the bootstrap technique for deriving confidence intervals (CIs) of the derivative of a QR model 

as more practical [41]. The  triplets of variables ( , and ) with replacement from { |} were resampled, 𝑛 𝛼1,  𝑡𝑏 𝛽1 𝑌𝑖,  𝑋𝑖, 𝒛𝒊)|𝑖 = 1, ⋯, 𝑛

and these bootstrap samples were then used to re-estimate , and . We calculated the 95% CIs for parameters , and 𝛼1,  𝑡𝑏 𝛽1 𝛼1,  𝑡b

 using the bootstrap method [42]. Data were resampled and replaced 200 times.𝛽1

These quantile models are useful when the response variable is affected by more than one factor, when not all factors are 

measured, when factors vary in their effect on the response, or when multiple limiting factors interact [43]. Hence, similar to (3), 

a three-parameter CP-MQR model could be derived from (5) (see Fig.2b for an example with two independent variables).

𝑌𝑖 = 𝛼1 + 𝛽1(𝑡b ‒ 𝑋1𝑖) + + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝑧 ⊺
𝑖 𝛾 + 𝑒𝑖,   (12)

where  is the scalar covariate whose slope changes at the change-point ,  is one or more optional 𝑋1𝑖 𝑡𝑏  𝑋𝑗𝑖 (𝑗 = 2, 3, 4)

independent variables, and .𝑖 = 1,⋯,𝑛

3 Results and discussion

3.1 Descriptive statistics
Cardiff has an essentially temperate oceanic climate with direct influences from the ocean, and the weather there is mild and 

often cloudy, wet, and windy. Winters tend to be fairly wet, but rainfall is rarely excessive, and the temperature usually stays 
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above freezing3. Fig.6 illustrates the relationships between gas consumption and weather factors, that is, daily mean dry-bulb 

temperature, daily solar insolation, and residual temperature, for the case-study buildings. The number of measurements for all 

variables is 1,461. The gas consumption data contain some anomalies (such as the skewness points enclosed by red dashed circles 

in Fig.6, panels a1, b1, and c1) which may have resulted from data collection errors (sensor faults), control faults (wide control 

dead bands or lack of weather-related controls), or operational factors. In addition, we observed that the negative effects of 

temperature on gas consumption appeared to be stronger in the higher gas consumption measured for the ED building (Fig.6, 

panel b1).

FIGURE 6.  Weather factors vs gas consumption for three case-study buildings

Spearman correlations between weather factors and gas consumption for the three case-study buildings during the study period 

are presented in Table 2. Temperature was positively correlated with solar insolation ( ). We found no statistically 𝜌 = 0.53

significant correlation between the other weather factors. Consistent with the results shown in Table 2, gas consumption for all 

case-study buildings was significantly negatively correlated (  ≈ 0.80) with temperature. In contrast, the associations with solar 𝜌

insolation were relatively weaker, and those with residual temperature revealed no statistically significant correlation. 

TABLE II
SPEARMAN CORRELATIONS ( ) FOR THE WEATHER FACTORS AND GAS CONSUMPTION𝜌

GcVariable At Si Rt
CL ED HL

At 1 0.534 -0.175 -0.813 -0.788 -0.874

Si 1 0.006 -0.526 -0.490 -0.529

Rt 1 0.005 -0.036 0.072

Gc 1 1 1
At = Ambient temperature, Si = Solar insolation, Rt = Residual temperature, Gc = Gas consumption.

3.2  Quantile regression results 

3 https://en.wikipedia.org/wiki/Cardiff#Climate 

https://en.wikipedia.org/wiki/Cardiff#Climate
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The CP-MQR models were estimated for the 5th to 95th quantiles in increments (τ) of 5 to test for heteroscedasticity across the 

entire distribution of the quantiles for the three case-study buildings. Also, OLS regressions with the same variables were 

calculated for comparing potential differences with the CP-MQR distribution from the lower to upper tails.

For the CL building (Fig.7), our results showed that the association between gas consumption and the three weather factors was 

not generally homogenous across quantiles. Fig.7 suggests increased gas consumption in response to decreases in temperature, 

solar insolation, and residual temperature. We observed that the negative association between all three weather factors and gas 

consumption was stronger in the higher quantiles of the gas consumption. For instance, a one-unit increase in temperature was 

associated with a 15.1 kWh decrease (95% CI: 14.1, 16.0) in the 10th quantile of gas consumption, and was significant in the 90th 

quantile (50.0 kWh/°C, 95% CI: 48.0, 52.3) (Fig.7b). Although the association between residual temperature and gas consumption 

became stronger with increasing quantile up to the 85th quantile, above the 85th quantile, the association became weaker (the 

absolute value of  was lower, Fig.7d). Base building load  was positively correlated across all quantiles of gas consumption 𝛽3 𝛼1

(Fig.7a). Additionally, it is worth noting that the pattern of changes in the estimated  (  denotes quantile) mirror those for 𝛼1(𝜏) 𝜏

other coefficients (especially for  in Fig.7c). Except for the extreme 5th quantile, which is always influenced by outliers, base 𝛽3

temperature  slowly increased from the 10th to 95th quantiles of the outcome, over a range from 13.6°C to 16.1°C (Fig.7e). 𝑡b

FIGURE 7.  Estimated coefficients from multivariable change-point quantile regression and OLS regression for CL building. The point-
wise 95% confidence bounds are shown in grey areas. Each solid red line is coefficient from an OLS regression and the dashed red lines 
delineate the 95% point-wise confidence band based on bootstrap quantiles about this coefficient. Note:  denotes base load.  𝜶𝟏 𝜷𝐢 𝒊 = 𝟏, 𝟐, 𝟑
denotes slope coefficients, indicating the association between gas consumption and  ambient temperature, solar insolation and residual 
temperature, respectively.

For the ED building (Fig.8), although weather factors were not significantly associated with the lower quantiles of gas 

consumption, we observed that they were generally related to gas consumption over the whole distribution and the association 



15

became stronger with increasing quantile. For instance, we saw little negative solar insolation–gas consumption association 

(namely, almost null associations for the 5th to 40th quantiles; see coefficient  in Fig.8c). However, results suggested stronger 𝛽2

negative effects of solar insolation at higher gas consumption quantiles (above the 60th quantile) that were relatively flat over the 

distribution, in contrast with  estimates. The magnitude of  (Fig.8d) increased monotonously from the 5th quantile 𝛽3 𝛽3

(0.0°C/kWh, 95% CI: 0, 0) to the 95th quantile (-55.8°C/kWh, 95% CI: -72.6, -39.2). Also, ambient temperature had relatively 

little relation to lower gas consumption quantiles (<40th quantile, with a magnitude of around 50°C/kWh); nevertheless, the 

association rapidly became stronger above the 45th quantile and increased to an absolute value of around 150°C/kWh (Fig.8b). 

Note that the pattern of changes in  mirror those for  (Fig.8c and 8a). As a result, base temperatures (Fig.8e) showed 𝛽2(𝜏) 𝛼1(𝜏)

random variations across all quantiles (12.3–15.8°C across the 10th to 90th quantiles).

FIGURE 8.  Estimated coefficients from multivariable change-point quantile regression and OLS regression for ED building. The point-
wise 95% confidence bounds are shown in grey areas. Each solid red line is coefficient from an OLS regression and the dashed red lines 
delineate the 95% point-wise confidence band based on bootstrap quantiles about this coefficient. 

Different from the CL and ED buildings, for the HL building (Fig.9), we found no obvious distributional distortions on the 

slope coefficients , which is consistent with our analysis that found no evidence against homogeneous associations over the gas 𝛽

consumption distribution. For example, Fig.9c shows that the solar insolation–gas consumption association was fairly 

homogenous (i.e., no clear monotonic patterns across quantiles of gas consumption, excluding both distribution tails). Moreover, 

except for the lowest quantile,  and  (Fig.9b and Fig.9c) had no clear relative variations across all quantiles, and the base 𝛽1 𝛽2

temperature estimates (Fig.9e) also indicated a similar trend (14.0–13.4°C across the 10th to 90th quantiles). On the contrary, base 

load  (Fig.9a) showed monotonically increasing variation across all quantiles.𝛼1



16

FIGURE 9.  Estimated coefficients from multivariable change-point quantile regression and OLS regression for HL building. The point-
wise 95% confidence bounds are shown in grey areas. Each solid red line is coefficient from an OLS regression and the dashed red lines 
delineate the 95% point-wise confidence band based on bootstrap quantiles about this coefficient. 

Overall, consistent with the theory, we observed that all associations between weather factors and gas consumption were 

negative for the three buildings. In addition, we noted that the QR coefficients tend to have greater variance when estimated at the 

tails of the distributions, which may be due to fewer observations at the tails (compared with the center) employed in the QR. 

3.3  Discussions
Our findings show heterogeneous associations across all quantiles of the gas consumption distribution for different building 

types and further suggest potentially different impacts of weather factors on gas consumption at different quantile levels. Therefore, 

the heterogeneity extents for different buildings are different, indicating consistency with the gas consumption distribution shown 

in Fig.10. The results of QR for the CL and ED buildings revealed strong heterogeneity in the weather–gas consumption 

association. For instance, the right tail of the gas consumption distributions became longer with increases in the three weather 

factors for the CL building, again indicating that quantiles with higher gas consumption are impacted more. Compared with the 

CL and ED buildings, the HL building presented different quantile results, and the corresponding association seemed to have little 

heterogeneity. However, the CIs for all the HL building coefficients were fairly large, which implies that there are other variables 

that affect gas consumption.
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FIGURE 10.  Histogram of gas consumption distribution for three buildings: (a) CL, (b) ED, and (c) CL. The number of measurements is 
totally 1461. The best fits by a nonparametric kernel-smoothing distribution are shown in red.

The QR coefficients estimate the change in a specific quantile produced by a one-unit change in the response variable. That is, 

how some quantiles of gas consumption may be more affected by certain weather factors than other quantiles is reflected in the 

change in the size of the regression coefficient. What follows is a comparative analysis of the QR coefficients base load, ambient 

temperature, solar insolation, residual temperature, and base temperature for the three buildings. Magnitudes of the coefficients 

from different buildings are not directly comparable due to different building characteristics, such as floor area. Hence, the 

comparisons of coefficients are limited to those for the same building, although the speed of trend change can be compared 

between different buildings. 

As mentioned above, the base load  increased with increasing quantiles for all buildings, which is in line with theory. 𝛼1

Generally, all three buildings had temperature–gas consumption associations for decreasing temperatures. For CL and HL 

buildings, base temperatures over the quantile range except the lowest pone (i.e. 0.05, which is always influenced by outliers) 

show a clear trend or almost unchanging trend, which may be attributed to the absence of holidays. While for the ED building, 

ambient temperature was associated with gas consumption only at the highest quantiles (above the 50th) of the distribution of gas 

consumption, suggesting that there may be unoccupied periods (for example weekend and holidays) with lower gas consumption 

(see Fig.6, panel b1). Therefore, its base temperature has no fluent changes. It is precisely because of the influence of high and 

low energy consumption in non-vacation and vacation that figure 8b and e appear: there is a trend of change from the same 

quantile.

Base loads is the load independent of outdoor environment variables, therefore they showed monotonically increasing variation 

across all quantiles for all three case buildings. The quantile analysis for the ED building revealed some associations between 

solar insolation and the upper tail of the gas consumption distribution, but no association between solar insolation and the lower 

tail of the distribution (  in Fig.8c). The solar insolation effect on gas consumption was also associated with higher quantiles of 𝛽2
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gas consumption, which implies that some measures should be taken to utilize more solar energy for both the CL and ED buildings 

to save energy. Additionally, we found no obvious distributional distortions for , which is consistent with Fig.10c, which shows 𝛽2

no evidence against homogeneous associations over the gas consumption distribution. The coefficient  had different trends for 𝛽3

the three buildings. The quickly decreasing variation of  for the ED building revealed that residual temperature was significantly 𝛽3

statistically related to higher gas consumption. Although  for the CL building, except at the extreme right tail, had a variation 𝛽3

trend similar to that of the ED building, its change in variation was relatively lower. Additionally, at the higher end of its 

distribution,  for the ED building decreased, while it increased for the CL and HL buildings. This result suggests that the residual 𝛽3

temperature effect on highest the energy use becomes weaker for the CL and HL buildings. From an overall look at  for the HL 𝛽3

building, the variation of  was flat, which implies that residual temperature has a similar effect on all quantiles of gas 𝛽3

consumption.

We found that base temperature estimates differed across quantiles, since the variance in gas consumption changed as a function 

of all weather factors. Overall, the variation of this parameter did not significantly change for the CL and HL buildings across all 

quantiles, except for the lowest. Especially for the HL building, the base temperature results (Fig.9e) of the quantile comparisons 

suggested that the estimated coefficients at the 25th, 50th, 75th, and 95th quantiles were not significantly different from one 

another, confirming that the base temperature was stable across the distribution due to better energy control. Moreover, the change-

point of base temperature for the ED building gives some informative indication to disaggregate the occupied and unoccupied 

periods of the building, which is consistent with the conclusions from  and . 𝛽1 𝛽2

The heterogeneous distribution characteristics of gas consumption indicate that OLS potentially will give incomplete and even 

incorrect results. Our findings using the CP-MQR model are not very consistent with mean regression analyses using a change-

point model. For instance, the Spearman correlation coefficients between residual temperature and gas consumption in Table 2 

indicated that, for a conditional mean, the residual temperature–gas consumption association for the HL building was two times 

stronger than that for the ED building. However, our quantile results implied that the ED building is more sensitive to residual 

temperature. Furthermore, the OLS regression model probably overestimates or underestimates the effect at higher quantiles. For 

instance, the magnitude of the mean estimated  for the CL building was larger compared with the estimates at higher quantiles, 𝛽2

indicating that the mean effect was driven by the higher quantiles of the distribution, while the corresponding  for the CL 𝛽1

building underestimated the effect in the right tail. The violation of the normality assumption could explain some of the 

inconsistencies between the two approaches (QR and OLS). Additionally, the results from mean regression might be influenced 

by skewness and consequently are incorrect, while QR is robust and free of outliers, and therefore its results are more reliable. In 
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short, the results demonstrate that in the presence of heterogeneity effects across the distribution of an outcome, it is not adequate 

to report the mean estimate because it summarizes these effects, which differ across the range of the distribution.

We observed that the base temperature of the CL building across the quantiles of gas consumption indicated a flat trend, but 

the uncertainty ranges were relatively large compared with those for the HL and ED buildings, which implies the probable 

existence of some unmeasured variables that affect the gas consumption. Also note that the CIs at the tails were always wider than 

those at other quantiles, which is in line with the skewed sampling distribution of the estimates for smaller measurements and 

more extreme quantiles. Additionally, R2 for the CL building was 0.67 using mean regression. Thus, while the models may have 

a good fit with existing data, they may be suspect as predictive models because model coefficients and predictions show large 

standard errors and uncertainty bands, which leads to unstable predictions. Plus, in models with collinear regressors, the regression 

coefficients are no longer proper indicators of relative physical phenomena.

Overall, our findings provide further details for the effects of weather factors on building energy consumption and provide a 

more comprehensive picture. We found evidence that the association coefficients are not merely a constant in the distribution of 

the gas consumption, but they change across the quantiles of the distribution. Our study identified heterogeneity in the association 

between weather factors and gas consumption by means of QR, while previous studies may have overlooked this aspect when 

applying standard regression techniques (e.g., OLS). For example, the association between ambient temperature and gas 

consumption was almost unchanged for quantiles higher than the 50th for the ED building. Also, the association between ambient 

temperature and gas consumption for the CL building was fairly heterogeneous and the association between solar insolation and 

gas consumption was fairly homogeneous for the HL building. 

3.4 Results comparison analysis
In this study, associations with energy consumption were estimated for different weather factors at different quantiles of the 

energy consumption distribution using QR. The goal of this technique is to quantify the associations between weather factors and 

specific quantiles of energy consumption, thereby allowing one to identify whether certain outcome levels are more or less affected 

by each weather factor. Thus, measures for saving energy could be derived from the QR results. 

As mentioned in the section Introduction, to the best of the author’s knowledge, most of the existing studies on the relationship 

between outdoor environment and building energy consumption are from the overall average point of view, rather than from the 

quantile point of view. In this paper, multi-variable quantile regression is first used to study the influence of outdoor environment 

on building energy consumption in different quantiles. The right medicines can be prescribed. For example, if high energy 

consumption for a specific building is more susceptible to solar radiation by means of quantile regression proposed, specific 

measures should be taken to reduce the impact of radiation, such as shading and adjustable envelope structure. 
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4 Other issues
4.1 Method strengths and limitations

Quantile regression extends OLS regression to conditional quantiles of the response variables. Unlike mean regression analysis, 

the statistical approach using QR is distribution-free and more robust; thus, no transformation of the outcome (gas consumption) 

is necessary. In contrast, the standard method using mean regression requires assumptions about the distribution of the outcome 

or residuals. Moreover, the QR method may capture associations that occur only at the tails of the distribution and might be 

otherwise missed by OLS. That is, considerations of the mean effect on an outcome that is likely to differ according to the quantile 

could be misleading and may miss what is happening in some quantiles of the outcome. Another advantage of the QR is that it 

captures distributional distortion. In the presence of heterogeneity, reporting the weather factor–energy consumption association 

along the entire outcome distribution could also add some precision to estimates used for importance comparison of predictor 

variables. Finally, using QR, we could get the distributional base temperatures that correspond to full quantiles (from lower to 

higher) of gas consumption distribution, indicating different base temperatures for different weekdays, although there is no clear 

line to differentiate them.

Quantile regression is not a panacea for investigating relationships between variables, and quantile plots can provide some 

useful descriptive information but not final results. Researchers should look beyond the surface of concise helpful results to the 

deeper complicated information of quantile regression. Therefore, it is even more crucial for the investigator to clearly articulate 

what is important in the process being studied and why. Theoretically, when answering a question by investigating possible 

quantiles on many models with combinations of variables with strong nonzero effects, QR is no more likely to provide helpful 

scientific generalizations than is OLS [43]. Thus, QR is a double-edged sword, and the method should be used cautiously in some 

disciplines.

One limitation of our study is that the results may not be generalizable to other building types because we looked at only three 

buildings in Cardiff. In addition, other weather factors (e.g., relative humidity and wind speed) and non-weather factors (e.g., 

occupancy) should be incorporated to evaluate the robustness of QR for other variables. 

Despite these limitations, the present study demonstrates that using CP-MQR to analyze building energy can reveal important 

weather effects that are missed by OLS. Complicated forms of heterogeneous response distributions are expected in observational 

research where OLS is not able to capture or adequately measure all key covariates. This means that CP-MQR can present the 

weather–gas consumption association more completely. Understanding these full relationships could have inherent benefits for 

building retrofit and energy management.

4.2 Implications for building retrofit and energy management
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The power and versatility of QR make it more a powerful tool than mean regression for building energy analysis. Quantile 

regression allows us to qualitatively elaborate effects that shift the overall shape, rather than the location, of the outcome 

distribution. In this study, the quantile analysis revealed some heterogeneous associations between weather factors and the overall 

gas consumption distribution of a building, demonstrating the added value of the QR approach. For instance, heterogeneous 

associations between three weather factors and gas consumption across the quantiles of gas consumption distribution were seen 

for the CL and ED buildings, and weak heterogeneous associations were seen for the CL building. The heterogeneity could 

indicate the identity and magnitude of weather factors that affect gas consumption at specific quantile levels and further provide 

stakeholders with potential measures for saving energy. The main implications of this research are twofold. 

First, our findings from QR might provide stakeholders with additional retrofit suggestions for building energy conservation. 

For instance, our results (Fig.8) suggest that temperature has unchanging effects on gas consumption beyond the median; however, 

solar insolation and residual temperature effects on gas consumption increased with increasing quantile level. For the CL building 

(Fig.7), its gas consumption variations in quantiles resulted from all three weather factors, while the gas consumption variations 

of the HL building (Fig.9) mainly resulted only from temperature. These clues imply that operators of the CL and ED buildings 

should pursue retrofit measures that use solar radiation to reduce energy use at higher quantiles, rather than adding thermal 

insulation. Compared with the CL and HL buildings, the ED building was more sensitive to residual temperature. This information 

suggests that the ED building has a relatively small thermal inertia and that operators should improve the building insulation. 

Different climate conditions create different requirements for building construction. Thus, different measures in building retrofit 

projects should be taken according to their weather–energy use association from quantile analysis because different buildings 

have different physical characteristics and functions (see Table 1). 

Second, using QR produces a range of base temperatures rather than a single value across all quantiles of gas consumption. 

The range implies that base temperature is characterized by time dependency, which is consistent with the conclusion in [24]. 

Also, while previous research indicated that base temperature variations between building types are likely to exist [7], the scale 

of the variation was not known prior to this research. The selection of an appropriate base temperature according to a more accurate 

range reduces the gap between measured and predicted energy performance of buildings and might increase the effectiveness of 

building energy management with the heating-degree-days approach.

5 Conclusions

Quantile regression may capture associations that are only in the tails of the distribution that other methods might miss. In our 

study, this approach for estimating associations over the outcome distribution also allowed us to elaborate distributional building 
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energy consumption changes associated with weather and obtain a range of base temperatures for each building. The estimation 

of base temperature range must account for the type and characteristics of the building. Moreover, through quantile regression, 

which weather variable has a great influence on the high energy consumption (high quantile) of a particular building can be 

obtained. On this basis, corresponding measures can be taken to circumvent and shed the influence of such weather variables. In 

short, our findings showed the effects of weather factors on building energy consumption more comprehensively and with more 

detail. This makes it a valuable tool for building energy analytics and for developing information beneficial for building retrofit 

(e.g., passive building design) and energy management. 

This research applied QR to energy use for only three buildings that are representative of the UK building stock and conditions. 

Next, further evaluation of the QR results should be pursued, for example, by investigating whether these findings generalize to 

these building types outside the UK. Although the QR approach has been less frequently adopted in studies of building energy 

and the built environment than in studies in other fields (e.g., economics and social science), we believe that our results are 

promising for leveraging the inherent flexibility provided by energy use and that benefits will emerge from future research.
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Nomenclature

CP-MQR change-point multivariable quantile regression

HDD     heating degree-days (°C. day)

OLS     ordinary least squares

QR       quantile regression

           the error term whose -th quantile is zero conditional on ( )𝑒𝑖 𝜏 𝑋𝑖, 𝒛𝑖



            temperature in the th day (°C)𝑡𝑖 𝑖

            base temperature (°C)𝑡b

            The estimated change-point value (°C)𝑡𝑏

          the scalar covariate whose slope changes at the change-point  (°C)𝑋𝑖 𝑡b

          one or more optional independent variables, and .𝑋𝑗𝑖 (𝑗 = 2, 3, 4) 𝑖 = 1,⋯,𝑛

             daily gas consumption (kWh)𝑌h

             the i-th response (-)𝑌i

              a -dimensional vector of linear covariates with constant slopes (-)𝒛𝒊 𝑞

             baseline energy consumption or base load (kWh)𝛼1

             slope or total heat loss coefficient𝛽𝑖

             the effect of 𝜸 𝒛𝑖

             loss function for quantile regression (-) 𝜌𝜏( ∙ )

             the conditional quantile of interest (-)𝜏

              residual temperature in the th day resulting from the ( )th day (°C)∆𝑡𝑖,𝑗 𝑖 𝑖 ‒ 𝑗
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