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Abstract

Solar air-conditioning is an important approach to satisfy the high demand for
cooling given the global energy situation. The application of phase-change materials
(PCMs) in a thermal storage system is a way to address temporary power problems of
solar air-conditioning systems. This paper reviews the selection, strengthening, and
application of PCMs and containers in latent thermal storage system for solar
air-conditioning systems. The optimization of PCM container geometry is
summarized and analyzed. The hybrid enhancement methods for PCMs and
containers, and the cost assessment of latent thermal storage system are discussed.
The more effective heat transfer enhancement using PCMs was found to mainly
involve micro-nano additives. Combinations of fins and nanoadditives, nanoparticles
and metal foam are the main hybrid strengthening method. However, the thermal
storage effect of hybrid strengthening is not necessarily better than single
strengthening. At the same time, the latent thermal storage unit has less application in
the field of solar air-conditioning systems, especially regarding heat recovery, because
of its cost and thermal storage time. The integration of latent thermal storage units and
solar air-conditioning components, economic analysis of improvement technology,
and quantitative studies on hybrid improvement are potential research directions in the
future.
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1. Introduction

The global energy situation is an important problem, and a global solution is
needed to solve this problem. The combination of a highly stressed environment with
a shortage of fossil fuel and climate change suggests a rapid transition towards a more
sustainable energy infrastructure. Several countries, including the United States [1],
Indonesia [2], and China [3] encourage the use of renewable energy and energy
conservation methods. Financial subsidies are [4-7] offered to encourage both
corporations and end-users to choose renewable energy options. Figure 1 shows that
the installed renewable energy capacity in China [8] has increased, mainly owing to
new public policies. The installed solar energy capacity grew fastest from 2009 to
2016. In 2016, the installed solar-power capacity was 76.31 million kW, 81% higher
than the previous year. Solar energy has a great long-term potential among renewable
energy resources.

Place Figure 1 here

For the cooling applications, the development of solar energy as a renewable
energy has recently received unprecedented attention [9-11]. Solar cooling has great
potential because of the high global need, environmental and energy saving benefits,
and typically high availability of sunlight when cooling is needed. In essence, solar
air-conditioning systems (SACSs) use solar energy instead of conventional energy to
supply heat for a conventional cooling cycle. The key technology of SACS is not solar
energy but the air-conditioning system itself. Air-conditioning systems capable of
utilizing low-grade heat energy such as absorption, adsorption, and ejection systems
have been known before the 1930s [12]. However, these cooling systems were of
limited practical use because of their high cost and low efficiency when
electricity-driven steam compression refrigeration systems became available [13].
After the 1970s, the energy crisis facilitated the development of SACS, especially the
absorption refrigeration technology [14]. Current techniques that use solar energy for
cooling are illustrated in Figure 2. SACSs are typically based on photoelectric
conversion or photothermal conversion. Air-conditioning, refrigeration and other
cooling demands can be performed using different SACS types, such adsorption,
absorption, and ejection. Today, solar absorption cooling technology has reached the
stage of large-scale industrial production. It is the best-developed form of SACS,
followed by adsorption cooling [15]. Asia became the largest market for thermally
driven chillers, thanks to the installation of large-scale solar-energy-driven cooling
systems in India and China [16]. Solar thermal-cooling systems are already used by
thousands of residential and commercial users.

Place Figure 2 here

Although solar air-conditioning has become an established industry, the
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intermittent nature of solar energy still restricts its performance and reliability [17].
The energy-storage system, perhaps the most important component in a SACS, helps
mitigate the temporal or local differences between solar energy supply and demand.
Therefore, theoretical and experimental studies on energy storage have a great impact
on the development of SACSs. Energy storage for SACS has two purposes: (1) Heat
storage - storing the excess heat absorbed from solar collectors and recovered heat
losses from other systems. (2) Cold storage - accumulate the extra cooling capacity
stored by chillers (cold storage use). Most energy storage systems usually use water as
the storage medium, i.e., these devices are large and heavy, making them unsuitable
for many applications. Phase-change materials (PCMs) can help break though the
current limitations of SACS, because of their high storage capacity and an almost
constant operating temperature. Therefore, PCMs are widely used in solar energy
storage system, especially in the shell of solar buildings [18-20], solar water collector
[21, 22], and HVAC systems [23].

Studies on latent thermal-energy storage mainly focus on the mining and
preparation of PCMs with excellent storage and improved heat transfer properties
[24-26]. Some comprehensive reviews are available on the application of PCMs for
heating, ventilation, and air-conditioning systems. Abduljalil et al. [27] reviewed the
use of PCMs in air-conditioning systems. The article systematically summarized the
applicable PCM in air conditioning system. The influence of the internal structure of
PCM container on the heat storage efficiency was summarized. The influence of the
geometric parameters of the PCM container was neglected. Li et al. [28] summarized
the available cold storage materials for air conditioning and focused on the use of
phase-change slurry. Zhai et al. [29] discussed PCMs for cold storage in
air-conditioning systems, especially composite PCMs. Pintaldi et al. [30] reviewed
appropriate PCMs and design schemes for use in SACSs. The paper focused on
LTESSs in the high temperature (>100 °C) cooling systems. Khan et al. [31] reported
latent thermal storage methods for solar absorption air-conditioning systems and
concentrated mainly on the PCMs used in single-effect absorption air-conditioning
systems. Omara and Abelnour [32] introduced different methods for integrating PCMs
into air-conditioning systems. In addition, the application of PCMs in improving
energy saving of air-conditioning systems is discussed. The review focuses more on
the effect and improvement of the PCM side on the latent thermal storage
performance of air-conditioning systems and less on the PCM container side.
However, the abovementioned studies are neither systematic nor sufficiently
comprehensive, and include overlaps. These reviews do not simultaneously
summarize the studies on cold and heat storage in SACSs, which is needed to discuss
the diversity of latent thermal energy storage system (LTESS) designs for different
application scenarios. Moreover, most studies emphasized the role of PCM in the
latent thermal storage unit, but ignored the PCM container.

This paper aims to review the enhancement methods and current status of
available PCMs and their containers from the heat (including thermal power and heat
recovery storage) and cold applications of LTESSs in SACSs. The aspects
emphasized in this review are described as follows:
 Material selection and performance optimization of PCM and its container



4

 Economic evaluation of enhanced technology and LTESSs. 
The outline of this paper is as follows:
1. Section 1 briefly summarizes the contributions and limitations of other

reviews on LTESSs in SACSs. 
2. Section 2 presents applicable PCMs, and their selection methods and

improvement strategies.
3. Section 3 describes the categories, key design considerations, and

enhancement strategies of latent thermal storage containers.
4. Section 4 discusses the use of LTESSs in SACSs with respect to heat and cold

storage.
5. Section 5 discusses the hybrid enhancement of PCM and its containers, and

the economic evaluation of LTESSs in SACSs.
6. Finally, Section 6 reports the main findings of this paper and suggestions for

future research.

2. PCMs for solar air-conditioning systems

PCMs used in SACSs have the potential to store energy during off-peak periods
and reuse the energy during the peak times, thus reducing and transferring peak loads
[33]. PCMs have been used for thermal storage since the 1880s [34]. Since then, most
studies focused on finding PCMs with improved properties [35]. In this chapter, the
selection method and improvement for PCMs in SACS are reviewed.

2.1 Applicable PCMs in LTESSs of SACSs

Solid–liquid PCMs are widely used in SACS owing to their low phase transition
temperature and small volume change. Solid–liquid PCMs can be further divided into
organic, inorganic, and eutectic PCMs, as shown in Figure 3. Their properties are
shown in Table 1. The ideal PCMs for SACS should have the properties shown in
Table 2. Unfortunately, very few PCMs satisfy all the requirements. Therefore, it is
necessary to find the best suitable PCMs considering the requirements of the specific
system. This selection process forms the core of effective LTESS design. In general,
the PCM is mainly selected based on the required melting temperature range. Table 3
shows the suitable temperatures for cold and heat storage levels in SACSs. However,
it is not sufficient to determine the PCM only based on the melting temperature.
Thermal conductivity and specific heat are considered to ensure a high storage density
and high efficiency of the system [27]. The volume change rate of PCM should also
be considered to optimize the system design [28, 31]. Table 4 shows the PCMs
considered for use in the LTESS field in SACSs.

Place Figure 3 here
Place Table 1 here
Place Table 2 here
Place Table 3 here
Place Table 4 here

2.2 Selection methods
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The traditional selection method involves the use of charts to compare and select
the thermophysical data obtained from a literature search. However, this method has
many disadvantages. Because a large number of PCMs are available or under
development for SACSs, it is difficult to find the best suitable PCM. Because of the
lack of suitable and complete thermophysical data, manual selection makes the
process time-consuming, difficult, and error-prone. In contrast, the selection can be
more comprehensive, user-friendly, faster, and accurate by using a database [58]. A
database also makes it easier to find and evaluate materials with similar properties that
can also be considered for the task.

Material databases can be divided into offline and online databases. In the 1970s
and 1980s [59], storage media mainly consisted of CD-ROMs when computers were
used. Hence, numerical offline databases such as Mat. DB and CMS systems were
common at that time [60]. With the availability of internet, modern databases are
mostly accessed online. The more famous commercial databases are MatWeb and
NIMS. Refs [61] and [62] summarized a large number of databases that can be used to
select PCMs.

However, dozens of potential materials may still be available for a given
scenario. Therefore, it is necessary to rank and analyze the candidates using a
consistent evaluation system. Because each candidate has several measurable
indicators, this type of selection problem is more suitable for multicriteria
decision-making (MCDM). MCDM is divided into multiobjective decision making
(MODM) and multiattribute decision making (MADM) [62]. A popular MODM tool
is the Ashby method [63]. Because of the limitation of the used principle, the Ashby
method is mainly used for the preselection of PCMs [62]. Commonly used MADM
methods for PCM selection include both the hierarchical analysis method (AHP) and
ranking performance technique (TOPSIS) [63-67]. Xu et al. [68] found the most
suitable PCM for a solar lithium bromide absorption refrigeration system using
MADM in combination with AHP and TOPSIS by targeting a specific temperature
range and considering the volume constraints for PCM. Yang et al. [69] introduced a
comprehensive evaluation index model that uses both AHP and the entropy
information method. The group also used TOPSIS to select the optimal PCM for a
ground source heat pump system. The model considers the individual design and is
very flexible. MCDM is an economical and convenient alternative technology to sort
and filter PCMs. 

Although electronic PCM material selection represents an important step
forward, there is still room for improvement. First, the organization responsible for
the database should update and supplement all the material data sufficiently and
frequently. Second, the software should also provide information about possible
material handling methods, defects, previous uses (examples), and possible future
uses, in addition to basic physical properties. However, the complete collection of data
depends on the software developer.

2.3 Selection of PCM strengthening methods
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Most of the PCMs discussed above have some disadvantages that limit their use
in SACSs, such as a low thermal conductivity and supercooling. These problems
directly affect the storage and release efficiency of PCMs, thus limiting the long-term
operation of the system. Therefore, a PCM should be optimized to achieve good heat
storage performance. Table 5 shows some of the problems associated with PCMs and
the corresponding solutions. Table 6 shows the PCM enhancement methods applied to
LTESSs in SACSs. Table 6 reviews the control variables, evaluation indicators,
recommended parameters, and promotion effects of the improvement methods
reported in the studies.

Place Table 5 here
Place Table 6 here

To improve the thermal performance of LTESSs, extensive studies have been
conducted on the thermal performance enhancement technology of PCMs in the past
decades [28-31]. As shown in Table 6, the heat transfer enhancement method used in
PCMs is used mainly to reduce the thermal resistance of PCMs by adding high
thermal conductivity materials to the PCM, such as expandable graphite [72, 93, 94],
nano-scale metal [75] and metal oxide [91].

Metals are considered to be good additives in the medium-temperature PCMs
owing to their high thermal conductivity. However, metals easily react with PCMs.
For example, nickel is incompatible with paraffin [95]. The thermal conductivity of
expanded graphite and carbon fiber exceeds most metals. At the same time, they have
excellent corrosion resistance and chemical stability. Therefore, the addition of
graphite and carbon fiber additives in corrosive inorganic PCMs can play a two-fold
role [93]. Oya et al. [72] compared the thermal properties of erythritol with expanded
graphite, spherical graphite, and nickel particles. The theoretical effective thermal
conductivity of 15 wt% expanded graphite and spherical graphite increased by about
640% and 210%, respectively. The strengthening effect of 15 wt% nickel particles is
close to that of spherical graphite of the same concentration. The results show that
graphite additives have a higher enhancement effect on the thermal performance of
PCM than metal additives. However, the manufacturing technology of graphite
additives is more complex than metal particles [73]. Nanoparticles have the potential
to greatly improve the thermal conductivity of PCMs. This is because the addition of
solid particles enhances the thermal conductivity of PCMs. In addition, the small-size
effect of nanoparticles causes microconvection between the particles and liquid.
However, a high concentration (0.05 wt%) of nanoparticles will hinder the convection
heat transfer in the late melting stage of PCMs [92].

In summary, in quantitative studies of high thermal conductivity additives, there
is a common question worth discussing—what is the appropriate quantity? For
example, the addition of a metal powder can double the thermal conductivity of PCM.
However, the density of metal is large, and the more the components, the more
obvious the weight gain of the container, imposing a burden on the installation of the
system. At the same time, the increase in additives will also increase the cost of
system. Therefore, considering the size of the system, balancing the cost and benefit
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of thermal storage performance brought by high thermal conductivity additives can be
more effective for engineering applications of LTESSs. This study [96] demonstrated
an economic analysis of improvement technologies. The author measured the cost of
expanded graphite in the latent heat storage unit. The results show that the use of
expanded graphite can save steel and reduce the initial investment cost by more than
20%. Future studies can measure the long-term operating benefits of PCMs with
strengthening strategies based on cost.

3. PCM storage containers for SACS

Unlike conventional heat exchangers, PCM storage containers have both fluid
pipes and PCMs inside, enabling thermal transfer and storage concurrently. The
successful application of PCMs also depends on the development of containers.
Achieving the high thermal storage efficiency on the premise of meeting the cold or
heat demand is the goal of LTESS design. The thermal storage efficiency of an
LTESS is related to the melting and solidification characteristics of PCM that are
mainly affected by the heat transfer mechanism (conduction and/or convection) [97].
The geometrical structure and gravity effect of a PCM container will affect the heat
transfer mechanism of PCM, which can be quantified from the melting time and the
motion of solid–liquid interface during the phase change. Therefore, the design of a
properly structured PCM container is critical for improving the thermal storage
efficiency of LTESS. In addition, the thermal conductivity of material of PCM
container also affects the thermal conduction of phase change. And the corrosiveness
and thermal stress of the material also affect whether the conduction can operate
normally at a suitable temperature. This chapter mainly introduces the classification of
PCM containers, selection suggestions for their materials and geometric structures,
and the thermal transfer enhancement on the container side.

3.1 Classification of containers

The type of PCM storage containers varies with the operating temperature range
[98, 99]. For low- and medium-temperature solar energy utilization, PCM storage
containers for SACS can be divided into bulk storage and (small volume)
encapsulation storage. Bulk storage is similar to heat exchangers with respect to the
structure. It can be further divided into the following: plate, multitube, concentric
tube, shell-and-tube, spiral tube [100]. The aim of structural diversification is to
increase the heat transfer efficiency by increasing the heat transfer area. It should also
be considered that the volume change of a PCM for bulk storage causes thermal
stress, causing the deformation of equipment. Encapsulation storage refers to the
arrangement of encapsulated PCMs in a tank in a particular way. The PCMs are
encapsulated using hydrophilic polymer capsules as shell-covered core [101].
Encapsulated PCMs are generally used for microencapsulation and nanoencapsulation
with diameters smaller than 1 cm and 1 mm, respectively [102]. The methods to form
encapsulated PCMs vary depending on the material wrapped. Emulsion, in-situ
polymerization, interfacial polymerization, electroplating, sol–gel processing, and
mechanical packaging methods can be used for both inorganic and organic PCMs
[103]. In addition, organic PCMs are suitable for the encapsulation of suspension



8

polymerization, dispersion, coacervation, supercritical CO, spray drying, electrostatic
encapsulation, and the one-step method [104]. Encapsulation storage can also enhance
the thermal performance of PCMs. It can produce a larger heat transfer surface and
solve the volume–stress problem of PCMs; however, it is expensive [102].

3.2 Container design considerations

3.2.1 Materials

Similar to the ideal properties of PCM, PCM storage containers have been
suggested to have the following desirable properties [105]: 1) compatibility with the
PCM in bulk, 2) high stability, 3) high strength, 4) high-temperature resistance, 5)
sufficient flexibility to resist thermal stress caused by volume expansion, and 6) low
cost. 

In practice, it is difficult to find materials that can fully satisfy all the
requirements. Moreover, container materials are typically selected after the PCM is
selected. Only a small number of containers are usually compatible with a specific
PCM. The selection of final container material should be considered in both system
requirements and costs. The typical selection process relies on the experience of
experts and opinions about past applications, making the process very subjective.

For bulk storage, metal is the most common container material. Research groups
led by Cabeza [106], Farrell [107], and Moreno [108] investigated the compatibility of
PCMs with steel, stainless steel, aluminum, brass, and copper in the short to long
term. Current studies indicate that stainless steel is suitable and recommended for all
studied PCMs [109]. Regular steel shows good compatibility only for specific salt
mixtures such as NaCl-NaNO3 [109]. Steel shows varying degrees of corrosion when
exposed to other salt mixtures such as ZN(NO3)2·6(H2O), LiCl-LiNO3-NaNO3, and

KCl-LiCl [110]. Therefore, regular steel is generally not recommended as a PCM
container material [82]. Covering hydrated salts with aluminum can cause severe
corrosion. Although aluminum soaked in fatty acids shows signs of corrosion, it does
not destroy the sealing structure [111]. Therefore, aluminum can be a suitable
container for PCMs. Copper and brass are suitable container materials for paraffin
wax, but the encapsulation of fatty acids and hydrates requires anticorrosive treatment
[107, 111]. In addition, nonmetallic materials have been developed; they are not
corrosive but flexible. These materials are mainly plastics [112] such as acrylic and
high-density polyethylene [113, 114].

The most commonly used capsule materials for microencapsulation and
nanoencapsulation are organic polymers such as melamine–formaldehyde resins [115,
116], urea formaldehyde resin [117], phenolic resin [118], polystyrene [119], and
arabic gum [120]. The mechanical strength of organic shell increases the structural
stability of microcapsule system. However, its low thermal conductivity, toxicity, and
flammability lead to a hysteresis for the thermal response and heat transfer. This limits
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the use of microcapsules with organic shells [121]. Inorganic materials for capsule
walls include CaCO3 [122, 123], SiO2 [1124, 125], TiO2 [126, 127], and ZnO [128].
Silicon is often used for the inorganic shell of microcapsules. However, because of the
diffusion and decomposition of PCMs at high temperatures, the poor mechanical
strength of silicon shell often leads to the cracking of microcapsule [125]. Therefore,
inorganic materials with a high mechanical strength, a high thermal conductivity, and
low cost are typically used for capsules. Examples include CaCO3 and SiO2-TiO2
[129]. Because of the complementary advantages of inorganic materials and organic
macromolecules, a suitable combination of organic and inorganic materials could be
the future trend for encapsulation. 

3.2.2 Geometric parameters

(1) Bulk storage

Both size and shape, i.e., geometric parameters, of latent thermal storage
containers (LTSCs) considerably affect the heat transfer mechanism and melting
behavior of PCMs [130, 131]. Current commonly used PCM container shapes are
rectangular enclosures [132, 133], circular cylinders [134], and annular cavities [135,
136]. Zivkovic and Fujii [137] proposed a computational model for analyzing the
isothermal phase transformation of PCMs encapsulated in a single container. The
model neglects the conduction inside the PCM in the direction of heat transfer fluid
(HTF) flow, thermal resistance of container wall, and effect of convection. They also
compared the heat transfer properties of rectangular and cylindrical LTSCs through
the model. The results show that the melting time of a PCM in a rectangular vessel is
almost half of that in a cylindrical vessel, given both have the same initial volume and
heat transfer area, i.e., a rectangular container is more beneficial for achieving a high
thermal storage efficiency of LTESS. However, this conclusion only applies to the
case where the system uses a flat thin-walled container. However, because a
rectangular container has a melting dead angle in the late stage of PCM melting, it has
been proposed to transform the rectangular shape into a wedge shape. Through
enthalpy–porosity model simulation, the wedge scheme can effectively improve the
vertical temperature distribution and enhance the convective heat transfer in the
container in the late melting stage of PCM, reflected in the increase of instantaneous
Nusselt number [138]. The heat storage time is shortened by more than 20%
compared to the rectangular unit with the same heat source area. Hou et al. [139]
experimentally analyzed the thermal storage performance of cylindrical and annular
containers. When filled with the same mass of sodium acetate trihydrate, the thermal
storage time of the annular type is 61.8% shorter than that of the cylindrical type. This
is because the annular container has a larger surface area and faster heat transfer rate
than the cylindrical container. To make the convective heat transfer dominant in the
late stage of melting, an inverted cone scheme is used for the modification of
cylindrical units. In the melting stage, the inverted cone unit can accumulate a large
amount of PCM liquid at the top, thus forming a stronger natural convection than the
cylindrical unit. This accelerates the melting rate and thus also accelerates the energy
storage of the system. The experimental study by Seddegh et al. [140] found that the



10

inverted cone unit can store 10% more energy during charging than the cylinder unit. 

PCM melting in a finite closed container involves contact with the heat source at
the initial melting stage and is generally dominated by heat conduction. In the later
stage, with the melting proceeding, the amount of liquid phase gradually increases,
and the difference in solid–liquid density enhances the liquid buoyancy lift, thus
increasing the effect of natural convection. Therefore, many dimensionless numbers
such as Nusselt number (Nu), Grashof number (Gr), Rayleigh number (Ra), and
Prandtl Number (Pr) related to natural convection have been introduced to study the
PCM melting characteristics in containers of different structures and geometries. For
rectangular containers with a single-sided fixed heat source area, a lower aspect ratio
(ratio of fixed width to variable height) has a positive effect on the heat storage
efficiency of system. This is because on one hand, the amount of PCM present in the
device decreases as the aspect ratio decreases, and the heat storage time is naturally
shortened. On the other hand, the average Nusselt number in the container increases
with the decrease in aspect ratio, and the natural convection is strengthened,
accelerating the melting rate of solid phase [138]. However, the contribution of
reducing the aspect ratio to the heat storage efficiency of system is limited. Hu et al.
[141] calculated the limit of aspect ratio of a rectangular container filled with
n-octadecane to be 1/8 from the enthalpy model. When the value is lower than the
limit, the heat storage time remains fixed. For the wedge unit, the geometric factor
that mainly affects the heat storage efficiency is the ratio of upper and lower sides.
Because of the sharp angle of wedge shape, an excess large ratio of the upper and
lower sides will form a more severe melting dead zone. Therefore, an optimum ratio
exists for the upper and lower sides of wedge unit. Hu et al. [142] simulated the
melting of octadecane in a wedge container through enthalpy–porosity method. The
results confirmed that the optimum ratio of side length is between 5 and 6; therefore,
5.5 is recommended as the design reference for the aspect ratio of wedge unit. The
melting of PCM in a cylindrical container is similar to that in a rectangular container.
Similarly, the geometric factor affecting the heat storage efficiency of a cylindrical
phase change unit is the ratio of the bottom diameter to the cylinder height. For the
same reason, reducing the aspect ratio of a cylinder is beneficial for increasing the
melting rate and decreasing the charging time [131, 143, 144]. In the annular unit,
eccentricity is an important geometric factor. Because of eccentric setting, the upper
space of unit increases, allowing more PCM to be located in the area where natural
convection can work, and the natural convection is stronger. Therefore, this has a
positive effect on improving the melting rate and reducing the related charging time.
Because of natural convection, the melting rate of PCMs in an eccentric annular
vessel is faster than that in a concentric annular vessel [136,145-147]. Hu et al. [148]
studied the heat transfer of lauric acid in an eccentric annular unit with a characteristic
size of 20 mm. The range of studied eccentricity varied from 3 mm to 8.5 mm. The
group found that 7–8 mm is the optimal eccentricity.

(2) Encapsulation storage for a small volume

Apart from the well-known spherical shape, capsules can be cylindrical, tubes, or
plates [149]. A sphere can form strong natural convection and heat storage and release
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efficiency owing to its simple structure and large ratio of volume to surface area
[150]. Therefore, a spherical shape is the common shape for encapsulation [151].
However, parameters such as particle size, core–shell ratio, and shell thickness
directly affect the durability and thermal performance of capsules [101, 152, 153].
Hence, they are important design factors for capsules. A general valid guideline is that
the smaller the particle size of microcapsules, the better the structural stability and
thermal performance of a heat storage system. This is because the melt fraction in a
small capsule is high, resulting in a smaller thickness of melt layer near the capsule
wall. This leads to a smaller thermal resistance in the capsule. On the other hand, it
also provides a larger surface area of contact between the PCM and capsule wall.
Because of a short heat transfer path, when the capsule radius is small, the energy is
charged at a higher rate [154]. Wei et al. [151] studied the thermal properties of
stainless steel–paraffin microcapsules with four different diameters (2.0, 3.0, 4.0, and
5.0 mm). The results show that the exothermic time decreases with decreasing particle
size. Alvarado et al. [155] recommended that the diameter of microcapsule PCM
(mPCM) should be 2–10 μm to ensure durability and high mechanical strength.
However, the diameter of mPCM should not be too small, as this can cause
supercooling [156, 157]. In addition, with the buildup of smaller-diameter capsules in
the tank, the flow resistance increases substantially. Consequently, the turbulence and
momentum transfer are suppressed, resulting in reduced heat transfer efficiency.
Based on these results, it becomes clear that smaller-diameter sizes are preferred.
However, it is necessary to add nucleating agents or to optimize both the shell
composition and structure of mPCMs to avoid supercooling. Refs [104, 158] provide
more detailed reviews of design parameter studies on encapsulated PCMs.

In summary, a rectangular container is still the preferred container for bulk
storage because of its high efficiency and simple manufacturing process. Some of the
improved schemes involving rectangular and cylindrical containers such as wedge and
conical units have improved the heat storage efficiency by more than 10%. However,
economic analysis of these schemes is lacking, and it is difficult to determine the size
of an appropriate system for these schemes. Furthermore, the datasets of container
materials should be collected and organized similar to the PCM database because of
the large number of container materials and related design parameters. The
recommended container materials should be provided directly on the PCM selection
page. PCMs and their container materials can be thoroughly evaluated using a
specialized software, benefitting the design optimization for LTESSs of SACSs.
According to the literatures mentioned above, it is clear that environmental
friendliness is rarely considered in studies of container material selection, which is a
different process than PCM selection. Eco-friendly PCMs from natural sources such
as coconut oil are rarely used and developed for SACSs. PCMs or containers derived
from bio-originated materials still have a high potential for improvement and new
discoveries.

In addition, it is concluded from the abovementioned studies that the
optimization of geometric factors and container shapes involves improving the heat
transfer mechanism of PCMs (heat conduction in the early stage of melting and
convective heat transfer in the later melting stage). Therefore, enhancing natural
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convection or contact area is a key breakthrough point in developing new
configurations and designing the geometric parameters of containers. Furthermore, the
heat transfer mechanism within the container can be described by flow-related
dimensionless numbers such as Nu and Ra; the geometry of container can be
optimized for enhancing the heat transfer mechanism. Therefore, in the future studies
on PCM container optimization, the dimensionless number related to the heat transfer
mechanism can be used to establish the relationship between the structure and
geometrical factors of container to achieve the design and selection of PCM
containers, instead of a large number of simulation work.

3.2.3 Effect of container design considerations on the performance of PCM integrated
solar air conditioning system

From the above descriptions in Sections 3.2.1 and 3.2.2, it can be seen that most
studies have contributed to the promotion of heat storage efficiency by design
optimization of PCM containers. And these studies mainly focus on experimental and
simulation studies of the thermal characteristics of single thermal storage unit.
Relatively speaking, there are few studies on the system performance evaluation of
LTESSs of SACSs by geometrical optimization of PCM containers. In the field of
simulation research, Noro et al. [159] used TRNSYS software to simulate the annual
energy performance of solar single-effect absorption refrigeration systems with latent
cold and heat storage (heating season: November 1st - April 15th; cooling season:
June 1st - September 15th). The system was located in a three-story building of 230
m2 in Rome. The study evaluated energy efficiency of the whole SACS for different
container capacities (500-1000, 1000-2000, 2000-3000 L). And fossil primary energy
consumption (FPEC), primary energy saving (PES) and solar ratio (SR) were used as
the evaluation index of the system. Obviously, the whole system is expected to
consume the lowest fossil energy and be able to store more solar energy to satisfy the
demands of heat storage and cold storage. Therefore, in order to obtain the PCM
container capacity with the optimal system energy efficiency, the lowest FPEC, the
highest PES, and the highest SR are expected. In the simulation results, the PCM
container capacity of the 2000-3000 L was the best; it shows that increasing container
capacity has a positive effect. The study found that the design of the PCM container
plays an important role in system performance, but only simply compared the
difference of energy benefits brought by storage capacity. Pintaldi et al. [160]
simulated the annual system performance of a solar three-effect absorption
refrigeration system with consideration of geometric parameters in the container and
collector design. The collector area (1-4 m2/ kW) and heat storage time (30 minutes,
1, 3, and 5 h) were considered as the representational parameters. Heat storage time
was used to calculate the diameter and height of the PCM container, and the number,
diameter and length of inner tube. Basically, the smaller the storage time represents
the smaller the container size. The pros and cons of the system are mainly evaluated
based on SR, heat loss and energy storage efficiency. The results show that short
storage time (0.5 h) can lead to a high storage efficiency (more than 98%) because of
the low heat loss. But at this time, the storage efficiency hardly changed with the
increase of the collector area. At a high storage time (5 h), the storage efficiency was
increased by nearly 1% with the increase of the collector area. All combinations of
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collector area and storage time can enable the system to achieve a SR of more than
0.5. And with the increase of collector area and storage time, the SR also increased,
the highest value was nearly 0.94 when the collector area and heat storage time were 4
m2/ kW and 5 h.

In addition, a few scholars tested the performance of thermal storage equipment
by setting up an experimental platform of SACSs. In a series of studies by Zhai et al.,
[26, 161] a mathematical model of the charge/discharge process of the cold-storage
capsule unit was established, and the system performance with the appropriate cold
storage unit parameters was evaluated by the experimental platform of a solar
adsorption air-conditioning system. At first, the authors established the equation for
the phase change heat transfer process of the cold-storage capsule unit by the enthalpy
method. The influence of the capsule wall material, thickness, and diameter of a cold
storage unit on the cold storage capacity and the cold storage rate was theoretically
analyzed by the equation. The results show that the cold storage capacity and cold
storage time increase with the increase of the capsule diameter. A capsule wall
material with a thermal conductivity higher than or closer to the PCM was suitable for
engineering applications. In addition, under the same thermal conductivity of capsule
wall, the cold storage time increased linearly with the increase of the wall thickness.
Based on theoretical calculations results, the cold storage capsule with polyethylene
shell, a wall thickness of 2.5 mm, and an outer diameter of 35 mm and 70 mm were
combined and arranged in a cylindrical bulk container. The day test was conducted
during the summer in Shanghai. It is worth noting that the main concerns of the
experiment were the charge/discharge capacity and the thermal comfort of the user
side during the discharge process. The experimental results show that the charge
capacity was 1016.1 kJ, the discharge capacity was 942.8 kJ, and the cold loss was
7.11%. In addition, the average indoor temperature during the system discharge
process was 26.2 °C.

In summary, it can be seen that only the optimal container parameters in the
theoretical analysis can be verified in the experimental study, because of the long test
cycle and high cost. Compared to experimental studies, simulation studies are worthy
of advocacy. Because it can reliably compare the whole system operation and energy
performance through geometric parameters and internal layout in the early stage of
container design. However, most of the simulation studies in the field of SACS have
mainly used PCM capacity instead of complex container parameters to analyze its
impact on system energy efficiency. It cannot show the relative importance of the
wide range of container design parameters to system performance. In addition, the
comprehensive evaluation through SR and energy storage efficiency can select the
appropriate single factor domain in the PCM container design, but it is difficult to
obtain the optimal value under multiple design factors. From this perspective, we
propose to introduce genetic algorithm, particle swarm optimization and other
multi-objective optimization methods in the PCM container design of SACSs. These
algorithms have not been fully developed yet in the field of LTESSs of SACSs, but
they have been successfully applied in the PCM container design of solar household
hot water systems [22, 162, 163] and industrial water waste heat recovery systems
[164].
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3.3 Selection of enhancement methods for containers

Each container has a unique structure and requires a different optimization
method. Table 7 shows the corresponding strengthening techniques and specific
selection criteria for different containers in reported studies.

Place Table 7 here

3.3.1 Adding fins on the container side

To enhance the heat transfer for bulk storage, fins can be added to increase the
heat transfer area. The use of fins in thermal storage device design is very common
[184, 185]. This is probably because the technology needed to configure fins is simple
and easy to implement. Common types of fins are longitudinal/rectangular [186],
circular/annular [187], and plate fins [188]. Among these fins, rectangular fins are
used the most owing to easy fabrication and efficient heat transfer. Agyenim et al.
[189] compared the thermal performance of horizontal concentric tube storage devices
with three different structures (finless, circular fins, and longitudinal fins). The results
show that storage efficiency of total amount charged of longitudinal fins was 70.9%,
9-20% higher than the other two structures. Thus, longitudinal fins perform the best.
Zhai et al. [190] developed a refrigeration unit for high-temperature solar cooling
systems. The effects of structural parameters such as spacing and the number and
height of rectangular and circular fins on the cold storage performance were studied
experimentally and numerically. The results show that compared with the finless unit,
the phase transition time for a rectangular fin unit is reduced by 58.2%, 2 times higher
than that for an annular fin unit. With respect to fin design, three structural parameters
are important: width, spacing, and thickness [191]. Increasing fin thickness and width
or decreasing fin spacing significantly shortens the phase transition time [192]. In
addition, fins should be made of highly conductive metals to ensure good heat
transfer.

3.3.2. Improving the internal structure

LTSCs could gain more thermal performance benefits than fins by improving the
internal structure [193]; for example, the internal structure of LTSCs can be enhanced
via the flow direction and arrangement of PCMs and inner tubes. In multitube LTSCs,
increasing the number of inner tubes can effectively increase the efficiency of heat
storage. Mehdi et al. [194] studied the influence of number of inner tubes on the
melting and solidification rate of RT35. A higher number of internal tubes shortens
the phase transition time. The melting time of LTESS with four internal tubes was
41% shorter than that for one internal tube. In addition, the right arrangement of inner
tubes can also facilitate heat transfer, even with a few inner tubes. Pourakabar and
Darzi [195] studied the influence of inner tube arrangement on the phase change rate
of LTESSs. The results show that the melting and solidification rates for vertical
two-tube arrangement in the ellipse container are similar to those for four-tube
diamond arrangement. In LTSC, the flow direction of working fluid is divided into
parallel flow, crossflow, and counterflow. Generally, the use of counterflow devices
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can produce a better heat transfer. Belusko et al. [193] compared the thermal
performance of parallel flow and counterflow in LTSCs. They found that the heat
transfer was better for a countercurrent device. The volume of redundant PCMs in
LTSCs with a parallel flow device is almost four times that with a countercurrent
device. This significantly affects the cost of thermal storage system.

The layout of PCMs in containers is also a common method to improve heat
transfer. Lafri et al. [196] experimentally optimized the position of PCMs in a tank.
They designed two different structures for their study. Structure A integrated paraffin
wax directly into the side of the tank, whereas structure B had paraffin wax in the
center of the tank. It was found that the melting time of PCM with structure A was
almost twice as long as that for structure B. Similarly, when the capsule was placed in
a cylindrical container tank, the number of layers and the number of capsules per layer
severely affect the heat transfer [29]. Heat transfer can also be enhanced using a
combination of different PCMs with different melting points. Yang et al. [183]
designed a LTESS containing a spherical capsule packed bed with three types of
PCMs. They conducted a numerical study on the thermal storage performance and
compared the results with traditional single-type LTESSs. The results indicate that the
designed system has a 65% exergy efficiency, which can be higher than that of
single-type in theory.

3.3.3 Modification of capsule material

The capsule material can also be modified to improve the heat transfer. All
capsule materials suffer from a low thermal conductivity, especially organic capsule
materials. To solve this problem, some researchers added metal coatings [197],
expanded graphite [198, 199], graphene oxide [200, 201], and nanotubes [182] to the
capsules. Compared to ordinary mPCM with the same concentration, the heat transfer
coefficient of mPCM slurry with a metal coating increased by more than 10 % [170].
Moreover, the thermal conductivity increased with increasing metal coating coverage
until the capsule was fully covered [179]. Wang et al. [180] added 10% and 20%
expanded graphite to the shell of a melamine–formaldehyde resin; the thermal
conductivity of microcapsules increased 10 times and 22 times, respectively. Wang et
al. [181] also increased the thermal conductivity of microcapsules by adding graphene
oxide to the silica shell. The experimental results express that the thermal conductivity
of microcapsules with 1wt% graphene increased by 193%, compared with the
ordinary silica shell.

4 Thermal storage technologies for solar air-conditioning 

4.1. Thermal storage use

4.1.1 Thermal power applications

In solar absorption and jet air-conditioning systems, LTESSs provide the heat
source to heat a medium water driving regenerator and steam ejector. Poshtiri and
Jafari [202] reported a PCM unit in a solar adsorption system that stores energy in the
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daytime to drive the adsorption cooler at night. The PCM unit stores 409 kg of fatty
acid to drive the charging of 10:00-16:00 in the day and the discharging of 22:00-8:00
in the night. The study simulated 24-h solar adsorption cooling in a room of 8.0  8.0
 3.125 m3. The results show that the application of PCM reduces the nighttime
auxiliary energy consumption by 31% compared to systems without PCM. However,
even with the application of PCM, the entire solar adsorption system consumes 3.28
times more energy than a conventional split-type air-conditioning system.

In solar desiccant air-conditioning systems, LTESSs represent a heat source of
regenerated air at a low solar intensity. A schematic diagram of such a system is
shown in Figure 4. A PCM heat storage tank is mostly an independent unit connected
with a collector system. Generally, the PCM unit serves two purposes: (1) preheating
of the regenerated air before it enters the solar collector. (2) The PCM is heated by hot
air that is discharged from a desiccant wheel or a solar air collector. Kabeel et al.
[203] compared the energy saving performance of desiccant air-conditioning driven
by pure electric heating (A type), electric heating + solar heating (B type), and electric
heating + PCM + solar heating (C type). In particular, C type had the design of two
serpentine loops (see Figure 4 (b)) in a paraffin-filled heat storage tank to transport the
regenerated air. The PCM unit was designed to store energy from 10:00 to 17:00 the
day before the workday and release energy from 10:00 to 22:00 the second day. The
results show that compared to purely electrically driven type, the energy saving rate of
C type is up to 75.82%, almost four times that of B type. In addition, an economic
analysis of the three systems was also carried out. According to the price of Egyptian
energy market, the C type has the highest total fixed cost, twice that of A type, but the
total annual operating cost of C type is 626 LE, which is about a quarter of A type.
This shows that the application of an PCM unit in the system can provide great energy
saving potential for long-term operation. To minimize the use of municipal electricity,
Ren et al. [204] integrated a solar air collector and photovoltaic collector to drive a
desiccant cooling system and an auxiliary heating equipment. They also designed a
PCM TES unit to satisfy the thermal demand of regenerated air, consisting of several
parallel PCM boards. The group designed a bypass in the PCM unit to avoid the
overheating of regenerated air (see Figure 4 (c)). The new design applied for a 66 m2
solar-powered room was simulated with the experimental data provided by Lopez et al
[205]. At regenerative temperatures of 60 °C, 65 °C, and 70 °C, the system achieved a
humidity satisfaction rate of over 80%. When the regeneration temperature was 60 °C,
the regeneration coefficient reached 100%. This proves the feasibility of this new
system without municipal power supply. Table 8 shows the possible options for power
solar air-conditioning. Table 8 also shows the operation effect of the system
mentioned in the literature.

Place Figure 4 here
Place Table 8 here

Among the PCM heat storage applications, we found that most PCM tanks are
connected behind solar collectors as separate units. In fact, the design principle of
SACSs is to facilitate the use of simple and compact equipment to produce an
economic system [209]. Therefore, PCM TES units, which can be integrated with
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collectors as well as adsorption units or regenerators, are valuable for both research
and commercialization. Although this integrated design has attracted the attention of
some researchers, it has failed to enter large-scale production. Mohammadreza et al.
[206] designed an integrated component consisting of an adsorption element, a
collector, a PCM regenerator, and a combined condenser/evaporator under a
vacuum-containing glass case. The adsorption element is a thermochemical storage
device, which achieves desorption and adsorption through a LiCl-H2O solution. The
PCM regenerator is mainly used to provide instantaneous cold and heat sources for the
adsorption module. The results of both experiment and simulation indicate that this
new solar adsorption air-conditioning system is feasible, and the average coefficient of
performance (COP) of the system can reach 0.36 (cooling) and 0.42 (heating).

4.1.2 Heat recovery applications

An air-conditioning system produces condensed heat far greater than its cooling
capacity [210]. This heat is emitted directly into the environment, thus wasting energy
and producing local thermal pollution [211]. Hence, separating the heat of condenser
from the refrigeration cycle of conventional air-conditioning system can extend the
heat rejection of condenser to compressor downtime, thus increasing the heat transfer
for the condenser and providing a lower condensation temperature [212-215]. PCMs
are integrated with evaporators in solar absorption systems. This enables the use of
dry cooling systems in place of a wet cooling tower. Additionally, it reduces the water
consumption, decreases cleaning needs and the risk of bacterial growth, and
minimizes the requirements for a cooling system. Helm et al. [39] designed a solar
absorption system with a PCM unit combined with a dry cooler instead of a wet
cooler. During the refrigeration operation, a portion of the waste heat of the cooler
was buffered, so that the cooler works under the peak load and the coolant
temperature is lowered. At lower ambient temperatures such as nighttime or nonpeak
loads, the stored waste heat is discharged. At this time, the auxiliary energy source is
applied during the nonpeak operation, and thus electricity is consumed. However,
because of the policy of ladder-type electricity prices, the overall cost of municipal
electricity is balanced, and the load distribution is more uniform. At runtime, the PCM
unit stores 50% of the daily waste heat under hot ambient condition (32 °C) and
releases heat from PCM units below 20 °C. In addition, the PCM unit has 10 times
volume storage density, thus reducing the cost and size of the entire system compared
to the water system.

In addition, the waste heat obtained from the high-concentration photovoltaic
(HCPV) module was significant, and the heat flux increased. Therefore, effective
cooling is needed to ensure that the module has the right temperature needed for a
normal operation of the photovoltaic power generation system. In the absence of a
PCM unit heat recovery system, the waste heat generated by the photovoltaic system
can only be discharged into the environment. PCMs can be combined with a
photovoltaic heat recovery system to increase the energy efficiency of system and save
municipal electricity. Zhang et al. [216] designed a PCM unit to absorb the wasted
heat generated by the photovoltaic module to drive an adsorption air-conditioning unit
or a hot water system. Circulating water stores the waste tropical to PCM heat



18

recovery units during the day. When the photovoltaic module stops working at night,
the circulating water heated from the PCM unit is transported to the adsorption
air-conditioning module or the hot water system. When the waste heat generated by
the photovoltaic module is insufficient for heat storage, the heated circulating water is
sent to the PCM unit for heat storage. The author developed a theoretical COP
calculation method for the system. In theory, the COP is significantly improved
compared to a photovoltaic air conditioning system without PCM units.
Unfortunately, the authors did not make a quantitative comparison between the two.
Table 9 shows the possibilities for heat recovery.

Place Table 9 here

In summary, the application of heat recovery is relatively less compared to
thermal power applications in LTESSs of SACSs. This is probably because the
residual heat in SACS is relatively small, and the use of water as a heat storage
medium is more cost-effective than PCM. At the same time, it is difficult for the
solid–liquid PCM unit to extract waste heat directly, generally through water or other
heat transfer medium. Therefore, the layer-by-layer heat transfer between waste heat,
water, and PCM results in heat loss. In addition, solid–liquid PCM units are limited in
cost and heat storage time; they are more suitable for day-based and unstable waste
heat commonly found in small independent SACSs. For large-scale SACSs that
require long-term heat recovery, the application of latent heat storage systems is
limited. Therefore, the economic analysis of latent heat recovery systems and the
quantification of system COP enhancement should be strengthened to identify suitable
application objects.

4.2 Cold storage applications

Latent cold storage enables high energy density, facilitating continuous cooling
and reducing the volume of cold storage equipment. These advantages stimulated
research in this field. Diaconu et al. [220] proposed a mathematical model for a solar
ejector cooling system with a PCM cold storage unit. The energy consumption of an
office building was simulated. The results show that the COP of the system with PCM
refrigeration unit is 80% higher than that without PCM unit. Chen et al. [221]
conducted an experimental study on the thermal performance of a solar ejector
cooling system that uses a cylindrical PCM tank. Any remaining energy was stored in
the PCM unit and used to maintain the normal operation of the system when the
ejector was not running. The results indicate that a PCM cold storage can help
maintain a constant COP. They also suggested that the use of PCM cold storage in a
solar ejector cooling system is promising. Allouche et al. [25] used TRNSYS to
develop a dynamic simulation model for an ejector cooling system that was integrated
with a PCM unit. The group strongly recommends the use of latent cold storage for
ejector solar cooling. The maximum COP in the simulation is 0.193, and the monthly
average COP is more stable and almost double than the system without a PCM unit.
However, only relatively small PCM thermal storage tanks should be used for sun-rich
areas. A large thermal storage capacity can add thermal inertia and initial system cost.
Zheng et al. [222] studied the effect of microcapsule PCM on the daytime operation of
a solar compression air-conditioning system in a laboratory scale. The PCM unit was
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connected to the refrigeration unit for storing cold. In the hourly energy consumption
record from 8 a.m. to 17 p.m., the system with a PCM unit saved more than 20%
energy compared with the electrically driven air-conditioning system. The maximum
energy saving of a system with a PCM unit could save 30.5% at 13:00. Table 10
shows the possibilities for cold storage.

Place Table 10 here

5. Discussion

From the abovementioned literatures, it can be concluded that the development
of LTESSs in SACSs (not including the system control and management) involves
four stages: First, a feasibility study of PCM is carried out in a solar air-conditioning
system. Second, a large number of studies were carried out to find a suitable PCM and
its heat transfer mechanism. Scholars have sought to find suitable PCMs with the goal
of improving thermal conductivity and proposed improvement methods. The research
field has gradually expanded to material and geometry configuration optimization of
PCM containers. Third, the energy saving and cost of PCM unit are considered for a
solar air-conditioning system compared with a sensible unit. Some new system
structures have been proposed to save cost and power. However, up to now, the
current stage has not systematically studied the cost and operation problems caused by
introducing enhanced measures to LTESSs. Fourth, studies are conducted on the
integration of latent thermal storage units with some components in solar
air-conditioning systems such as collectors, photovoltaics, or condensers. These stages
do not stagnate with each other but develop together. However, many key issues still
need further discussion.

5.1 Hybrid strengthening of PCM and its container

In Chapters 2 and 3, the enhancement strategies for PCM and its containers are
introduced. Some of the findings are summarized here. First, many PCMs are
available in the temperature range of heat recovery, thermal power, and cold storage
of SACSs. Studies concluded that the PCMs used in SACSs are mainly concentrated
in paraffin, CaCl2.6H2O, and other commercial materials. Many enhancements are
also based on such materials. More suitable PCMs and strengthening methods are still
waiting to be explored. In addition, the strengthening strategies mainly focused on
improving the heat transfer mechanism of PCM in the container, such as to strengthen
the heat conductivity of the PCM itself and to enhance the convective heat transfer in
the container in the late melting stage. From the literature review, it can be concluded
that the most effective way to improve the heat conductivity of PCM is by adding
micro-nano additives (carbon nanotubes [73], and carbon fibers [89]) and graphite
additives (expanded graphite [72]). Regarding the shape of containers, conical and
wedge-shaped containers have been developed to enhance the convective heat transfer
in the late stage of melting. In the geometric optimization of containers, the following
methods such as increasing the specific surface area of a spherical capsule to enhance
heat conduction, adjusting the ratio of upper and lower sides of wedge unit, and the
eccentricity of ring are used to enhance the heat transfer effect by allowing more
liquid phase of PCM to be located in the area where natural convection can occur. The
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shell-and-tube design is mostly used in the structure of containers. The structures that
can enhance the heat transfer area such as the serpentine tube was also used in recent
systematic studies [203]. Among all the studies on strengthening strategies, the study
on increasing fins is the most because of its high cost performance (easy to
manufacture and low cost). 

In addition, the enhancement of PCM has reached the stage of hybrid
enhancement compared to single enhancement in the past. The strengthening of
organic materials mainly focused on solving the comprehensive problem of poor
thermal stability, flammability, and thermal conductivity. By combining metal foam
and nanoparticles, a combination of graphite and nanoparticles doubled the thermal
conductivity. The strengthening of inorganic materials mainly focused on solving the
problems of supercooling and heat conduction, which are strengthened by a
combination of nucleating agents/thickeners, nanoparticles, and metal foams. Notably,
some methods have solved the problems of supercooling, phase separation, etc., but
they have caused changes in thermal characteristics. For example, the addition of
bentonite in CH3COONa·3H2O has led to a decrease in latent heat [77]. At the same
time, the combination of various strengthening methods has resulted in more complex
changes in the thermal characteristics of PCM. For example, a low-porosity metal
foam is more beneficial for increasing the heat storage time [92]. However, when
nanoparticles and metal foams are used in combination to strengthen a PCM, the
addition of nanoparticles reduces the effect of natural convection during PCM
melting. A high-porosity metal foam is selected to ensure that the PCM volume is
minimized to promote the positive contribution of natural convection [92]. Therefore,
when selecting a strengthening method for PCM, the thermal conductivity and heat
storage time should be balanced according to the application conditions to correctly
select the amount of additive.

In addition to hybrid strengthening for PCM defects, hybrid strengthening
measures for PCM and PCM containers have also been studied to increase the thermal
storage efficiency of PCM unit. In the field of LTESSs of SACSs, this type of hybrid
strengthening studies mainly uses the method of adding nanoparticles to PCM and
changing the geometric parameters of fins in the container. A series of studies [173,
185, 225] have been conducted to investigate the effect of adding different
concentrations of Al2O3 nanoparticles and changing the size and quantity of fins.
According to the analysis of melting process of PCM R82 in a triplex-tube heat
exchanger, the melting time of fin group, nanoparticle group, and fin + nanoparticle
group saved 59%, 17%, and 44% at the most compared to the nonenhanced group.
During the solidification, the solidification time of fin group, nanoparticle group, and
fin + nanoparticle group saved 55%, 8%, and 30% at the most. Notably, although the
number of improvement methods has increased, the best thermal storage effect has not
been achieved. Second, structural strengthening will provide better thermal storage
performance improvement than PCM additives. From the perspective of heat transfer
mechanism, both fin and nanoparticles can provide advantages in heat conduction in
the early stage of melting, but fins can also enhance the convection in liquid PCM. In
the late stage of melting, the existence of fins will suppress the buoyancy effect and
thus weaken the convective heat transfer. The convection of liquid PCM is also
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limited by the viscosity of nanoparticles. Eventually, the hybrid strengthening effect of
nanoparticles and fins is weaker than that of individual fins. Therefore, it would be
biased to consider only the advantages of increasing conduction or convection in the
future studies of hybrid strengthening. Instead, the strengthening methods should be
selected reasonably, and the ratios and parameters used in the methods should be
adjusted to balance the benefits of heat conduction and heat convection during phase
change. This will help researchers to achieve an effective hybrid improvement
scheme. At the same time, hybrid strengthening methods that can be applied to the
field of LTESSs in SACSs have not been fully studied. For example, it is not clear
whether a single high-performance additive (such as carbon nanotubes and carbon
nanofibers) or a special structure (such as the PCM slabs and cascaded PCMs) can
achieve better heat storage performance than a combination of traditional and cheaper
strengthening methods.

5.2 Design and economic evaluation of LTESSs in SACSs

From the discussion in Sections 2.3 and 5.1, we can extend a problem worthy of
discussion. A simple optimization of PCM materials and containers can solve the
problem of local heat conductivity, but it often causes larger problems in the system,
such as cost control. For example, increasing the number of fins will reduce the PCM
volume. Therefore, to satisfy the energy storage capacity of the system, it is necessary
to increase the size of the system; thus, the initial investment cost and space naturally
increases accordingly. However, the use of fins can significantly increase the heat
storage efficiency of the system, saving electricity during the operation period. At this
time, it is more important to measure the economic impact of adding a technology on
the system than to measure the heat conductivity of PCM on the successful application
of technology. In the LTESSs, the following costs should be considered: PCM costs,
container costs, enhanced technology costs, auxiliary electricity costs during
operation, and other ancillary costs. The importance of these cost assessments lies in
measuring the cost and benefit of design factors such as adding improvement
strategies, changing operation methods, and updating system structure. On the other
hand, it is expected that cost control will bring limitations and optimization to design.
According to the literature review, most studies related to strengthening technology
and container optimization only discussed the effect of improving system efficiency,
and fewer studies theoretically calculated the economic impact of the optimal scheme
on the overall system. Economic research on the application of LTESSs in SACSs is
also rare. We can learn the economic evaluation methods from studies of LTESS in
the field of solar energy application to generate positive thinking on the cost analysis
of LTESS in SACS. Table 11 shows the economic evaluation methods for LTESS of
solar thermal utilization. As shown in Table 11, for solar power systems, levelized
cost of energy (LOCE) is the main economic analysis method. For small solar thermal
utilization systems, such as HVAC systems and solar still systems, the main economic
analysis methods are payback period and cost calculation. The separate use of these
methods enables comparison of system cost under different design parameters of the
LTESS. Thus, the design parameters with the best economy can be obtained. But the
optimal system is expected to be both energy efficient and economical. Therefore,
exergy economic analysis, payback period and cost calculation can be combined in the
economic analysis of the LTESSs in SACSs. Limited exergy efficiency and cost can
help to determine the upper and lower limits of the design parameters, and payback
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period can help to determine the optimal value of the design parameters. This is more
beneficial for determining the specific range of feasible design parameters. At the
same time, the ratio of operating energy saving benefits to the initial investment costs
of strengthening technology applied to LTESS in SACS can be considered as a simple
evaluation index, which will be beneficial for the economic selection of strengthening
technology.

Place Table 11 here

6. Conclusions and suggestions for future research

Latent thermal storage technology can effectively enhance the stability of solar
air-conditioning systems and compensate possible power interruptions. In this paper,
PCM selection methods, thermal storage container design, and the use of LTESSs in
SACSs are reviewed. First, this paper summarizes the available PCMs with a suitable
phase transition temperature in the field of SACSs and introduces the database and
evaluation methods commonly used in the selection of PCMs. Aiming at the
disadvantages of PCMs, the improved methods are summarized. Second, the effect of
material and geometry of PCM container is introduced. The heat transfer enhancement
methods on the container side are summarized, such as fins, capsule modifications,
flow direction of working fluid, PCM layouts, and other structural optimizations.
Third, this paper introduced and evaluated the application of LTESSs in SACSs.
Then, the hybrid enhancement methods and the cost estimation method of LTESSs in
SACSs are discussed. The following conclusions are drawn:

(1) Although many PCMs are available at present, only some commercial materials
(paraffin R series, erythritol, etc.) are used in the research work. More new materials
and their enhancement methods are worth exploring. 

(2) The enhanced heat transfer strategy and configuration optimization of PCM and its
container mainly involve improving the heat transfer mechanism of PCM in the
container. The more effective heat transfer enhancement method on a PCM is to add
micro-nano additives such as carbon nanotubes and carbon nanofibers. For a
container, the fins are both economical and effective. The development of new
container configurations can improve the convection in the late melting stage of PCM
to strengthen the heat transfer. Therefore, in the future research of PCM container
optimization, the dimensionless number related to the heat transfer mechanism can be
used to establish the relationship between the structure and geometrical factors of the
container to achieve the design and selection of a PCM container instead of a large
number of simulation studies. 

(3) The strengthening of PCM and its containers has developed from the improvement
of a single factor to hybrid enhancement. However, the heat storage effect of hybrid
strengthening method is not always better than that of single-factor strengthening
method. When selecting a hybrid strengthening strategy, the effect of strengthening
strategy on the heat transfer mechanism of PCM should be considered to adjust the
proportion of the method applied. 

(4) The application of LTESSs in SACSs is often limited because of their low-cost
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performance ratio, especially in the field of heat recovery. Moreover, there is a lack of
quantitative economic analysis for solar latent thermal storage air-conditioning
systems. Therefore, for the cost assessment of LTESSs in SACSs, we suggest that the
exergy analysis, payback period and cost calculation can be combined to analyze the
economy of system. This will be more beneficial for determining the specific range of
feasible design parameters. At the same time, the cost evaluation of enhanced
technology is relatively lacking. We suggest that the ratio of energy saving benefits to
the initial investment cost can be used as a simple evaluation index to economically
select the strengthening technology, which has a high potential for research. 
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Tables

Table 1

The characteristics of different types of PCMs

Properties Organic Inorganic Eutectic

Phase change enthalpy per
unit Low Higher than organic PCMs

The higher the proportion of high
melting entropy components, the
higher the Phase change enthalpy of
eutectic PCMs.

Supercooling Low or no Yes Yes
Toxic No Low or no Low or no
Corrosives No Yes Yes

Cost Low

The cost of salt hydrates is low;
the costs of molten salts and
metallic alloys are higher than
organic PCMs.

The cost of eutectic PCM is related to
its composition.

Application in LTESSs of
SACSs Widely used Extensively used Frequently used in cold storage

applications

Table 2
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Ideal properties of PCMs applied in solar air conditioning system

Classifications Properties Measure Indexes

Thermal Properties

Phase change temperature matched with heat and
cold storage conditions

Melting temperature/ Solidification
temperature [°C]

High latent heat Enthalpy of fusion/ solidification [kJ/kg]
Excellent thermal conductivity Thermal conductivity [W/(m·K)]

Physical Properties

High density Density [kg/m³]
High specific heat capacity Specific heat capacity [kJ/(kg·K)]
Small change of volume in phase transition Volume expansion rate [%]
Minimum super-cooling Degree of super-cooling [°C]

Chemical
Properties

Non-toxic
Non-corrosiveness
Long-term stability of chemical properties

Economics Low-cost
Abundant resource

Table 3

The appropriate melting temperature range in the application field of different solar energy storage
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Application The melting temperature range of PCMs References
°C

Heat storage in SACSs Above 25 [29]
Solar energy absorption (single effect) system 60-120 [36]
Solar energy absorption (dual effect) system 140-200 [37]

Driving solar ejector cooling system 120-150 [38]
Heat recovery of solar absorption cooling system 25-30 [39]

Heat recovery of condenser applied in the compression
system 40-50 [40]

Cold storage in SACSs Up to 20 [41]
Solar energy absorption (single effect) system applied in

the field of freezing -10-15 [31]

Compression cooling system 5-10 [29]
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Table 4

The PCMs considered for use in the LTESS field in SACSs

Materials Types of
materials

Melting
temperature

Heat of
fusion

Thermal
conductivity

Specific
heat
capacity

Applicable scenarios in Reference Reference

� � °C kJ/kg W/(m·K) kJ/(kg·K) � �

Parafol 14 (tetradecane 97 %) Organic 4-8.0 220 � � Cold storage for an ejector cooling system [38]

Parafol 14/16
(13 vol.-% of Parafol 14)

Eutectic 6-13.0 170 � � Cold storage for an ejector cooling system [38]

RT 10 Organic 8.7-11.7 176 � � Cold storage for an ejector cooling system [38]

Na2SO4·10H2O Eutectic 12.8 � � � Cold storage for an absorption cooling system [42]

Capric-Lauric acid eutectic and
10% Oleic acid

Eutectic 13 90.9 0.207 2.196 Cold storage for a solar cooling system [43]

RT15 Organic 13.2-15.8 40.81 � 6-20.0 Cold storage for an ejector cooling system [25, 44]
Capric-Lauric acid eutectic and 6%
Oleic acid

Eutectic 14.5 109.7 0.208 2.214 Cold storage for a solar cooling system [43]

Parafol 16/18
(67 vol.-% of Parafol 16)

Eutectic 15-19.5 170 � � Cold storage for an ejector cooling system [38]

S15 Inorganic 15 142 0.43 0.67 Cold storage for an ejector cooling system [45]

capric and lauric acid Eutectic 16.91 115.1 0.572 1.825 Cold storage for an adsorption cooling system [26]

Capric-Lauric acid eutectic and 2%
Oleic acid

Eutectic 17 127.2 0.213 2.232 Cold storage for a solar cooling system [43]

RT 20 Organic 17.2-24.2 142 � � Cold storage for an ejector cooling system [38]
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� �

Parafol 16 (hexadecane 97 %) Organic 17.4-20.7 249 � � Cold storage for an ejector cooling system [38]

Heptadecane Organic 19.9-22.7 168 � � Cold storage for an ejector cooling system [38]

CaCl2·6H2O Inorganic 27-29 150-240 � � Heat storage in heat recovery system of an absorption
cooling system

[39, 46,
47]

RT44 Organic 39.1-42.5 256.9 0.2 2 Store the waste heat of the photovoltaic module to drive an
adsorption air conditioning

[48]

RT55 Organic 51-57 170 0.2 2 Heat storage for driving a desiccant cooling system [49]

Paraffin (85.1%) Organic 55 179 0.2 � Heat storage for driving a desiccant cooling system [50]

RT60 Organic 55-61 160 0.2 2 Heat storage for driving a desiccant cooling system [49]

RT65 Organic 57-68 150 0.2 2 Heat storage for driving a desiccant cooling system [49]

Stearic acid Organic 69 202.5 0.172 2.2 Heat storage for driving an adsorption cooling system [51]

RT70HC Organic 69-71 260 0.2 2 Heat storage for driving a desiccant cooling system [49]

RT42 Organic 38-43 174 0.2 2 Heat storage for driving a desiccant cooling system [52]

RT82 Organic 81-85 176 0.2 2 Heat storage for driving a liquid desiccant cooling system [53]

S83 Inorganic 83 141 0.62 2.31 Heat storage for driving an adsorption cooling system [54]

S89 Inorganic 89 151 0.67 2.48 Heat storage for driving an adsorption cooling system [54]

RT100 Organic 99 168 0.2 2.4 Heat storage for driving an LiBr/H2O adsorption cooling
system

[55]

MgCl2 ·6H2O. Inorganic 116.7 168.6 0.7 2.6 Heat storage for driving an LiBr/H2O adsorption cooling
system

[55]
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Erythritol Organic 117.7 339.8 0.326 2.76 Heat storage for driving a single effect LiBr/H2O
absorption cooling system

[56]

Polyethylene PE-HD [GHR 8110] Organic 122-133 150-200 � � Heat storage for driving an ejector cooling system [38]

Polyethylene PE-UHM [GUR4120] Organic 124-134 150-200 � � Heat storage for driving an ejector cooling system [38]

Polyethylene Licocene PE 4201 Organic 125-130 246 � � Heat storage for driving an ejector cooling system [38]

KNO3-NaNO2-NaNO3 (53-40-7) Eutectic 142 80 � � Heat storage for driving an ejector cooling system [38]

Palatinitol (Isomalt) Organic 145 170 � � Heat storage for driving an ejector cooling system [38]

Mannitol Organic 167 325 � � Heat storage for driving an ejector cooling system [38]

Hydroquinone Organic 172.5 225 � � Heat storage for driving an adsorption cooling system [57]
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Table 5

The defects of PCMs and corresponding solutions
Defect of material Approaches to strengthen the heat transfer Details References

Low thermal
conductivity

Adding a material with large thermal
conductivity

Adding aluminum powder, expanded
graphite, carbon fiber and carbon
nanotubes

[70-74]

Adding Nano-Particles [75]

Leakage of PCM

Encapsulation of the PCM Encapsulating in spherical capsules or
microcapsules [28]

Forming CPCMs
Metal foams, porous carbon materials,
such as expanded graphite, carbon
nanotubes, graphite foams.

[71]

High flammability Addition of flame retardants
Forming nano-composite PCMs [76]
Adding metals, such as iron, magnesium,
aluminum, and zinc [77]

Phase separation Adding gelling or thickening agent

The addition of starch
The addition of cellulose derivatives,
such as methyl cellulose and
hydroxyethyl methyl cellulose

[28]

The addition of diatomite [78]
The addition of bentonite [79]

Super-cooling Encapsulating PCMs [28]

Adding nucleating agents Carbon nanofibers, copper, titanium
oxide, potassium sulfate, and borax [28]

Cold finger [80]
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Preparing porous surfaces [81]

Corrosive

Addition of additives to improve chemical
stability Adding NaCl [28]

Selection of a container with excellent
corrosion resistance

Stainless steel is more resistant to salt
hydrates than carbon steel, aluminum
alloy and copper.

[82]

Polypropylene and polyolefins could be
used as container materials to resist most
PCMs.

[83]
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Table 6

The PCM enhancement methods applied to LTESSs in SACSs.
PCM Additives Control Variables Key observation Evaluation index Recommended

parameters Improvement effect Remarks Reference

P a r a f f i n
wax Aluminum

Aluminum mass
fraction was 0, 0.1
wt%,0.3wt%, 0.4wt%
and 0.5wt%,
respectively.

T e m p e r a t u r e
distribution; the
position of the
phase change
interface

C h a r g i n g
process: the
average heat
t r a n s f e r
c o e f f i c i e n t
D i s c h a r g i n g
process: The
mean daily
efficiency

T h e
recommended
mass fraction
of aluminum is
0.5.

The average daily heat storage
efficiency of composite PCM
was increased by 82%-94%.

[70]

Erythritol

S p h e r i c a l
g r a p h i t e /
e x p a n d e d
graphite/ nickel
particle

The range of each filler
content was 1-44 vol %.

T h e r m a l
conductivity

T h e o r e t i c a l
effective thermal
conductivity base
on the Nielsen's
model

The thermal conductivity
increases with the increase of
additive content. Compared
with the pure PCM, the thermal
conductivity of PCM with 15
vol% expanded graphite
increased by 640%; the thermal
conductivity of PCM with 17
vol% spherical graphite
increased by 290%.

The enhancement
effect of expanded
graphite was
greater than that of
spherical graphite;
the enhancement
effect of nickel
particles was the
worst among the
three.

[72]

Erythritol

M o d i f i e d
m u l t i - w a l l e d
carbon nanotubes
with average
diameter and
length of 10 nm
and 50 μm,
respectively.

(1).The pretreatment
methods of multi-walled
carbon nanotubes are
different: ball milling,
mechanochemistry and
acid oxidation；(2). the
content of modified
multi-walled carbon
nanotube is 0.5, 1, 2, 3,
4 and 5 wt%,
respectively.

M e l t i n g
e n t h a l p y ;
melting point;
s o l i d i f i ca t ion
e n t h a l p y ;
s o l i d i f i ca t ion
point

Acid oxidation
treatment is
recommended.

The addition of 1% modified
multi-walled carbon nanotubes
increased the thermal
conductivity of PCM from
0.1956 W/ (m.K) to 0.9779 W/
(m.K).

[73]
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P a r a f f i n
wax

Iron/ magnesium/
aluminum/ zinc
(75-150 µm in
diameter)

The quantity of each
filler content was
0 %，1 %，3 %，5 %
parts per hundred
paraffin, respectively.

Volat i l izat ion
intensity of
carbon dioxide
and ammonia;
the maximum
heat release
capacity; the
heat release rate;
phase transition
t e m p e r a t u r e ;
latent Heat

Metal (iron, magnesium,
aluminum, and zinc) can
enhance flame retardancy and
thermal stability of the paraffin.

The latent heat of
PCM decreased by
about 20 kJ/kg
after adding metal.

[77]

CH3COO
Na·3H2O

20wt% simple
wheat flour/
30wt% methyl
hydroxyethyl-cell
ulose/ 30wt%
methyl-cellulose/
50wt% bentonite

(1). Different kinds of
thickeners: starch,
cellulose and bentonite;
(2). Different kinds of
cellulose with the same
content: 30 wt% methyl
hydroxyethyl-cellulose
and 30 wt%
methyl-cellulose.

M e l t i n g
t e m p e r a t u r e ;
m e a s u r e d
enthalpy

30wt%methylh
ydroxyethyl-ce
llulose and
methyl-cellulo
se are
recommended.

All three materials possess the
properties of thickening, but the
PCM with bentonite had a
supercooling temperature of 10
°C.

The addition of
starch suspected to
change the melting
point and freezing
point of PCM.

[79]

CH3COO
Na·3H2O Ag anode

(1).The direct-current
voltage range was
0.8-2.0 V;(2).The
degrees of supercooling
was 48 °C, 38 °C,
28 °C, and 18 °C,
r e s p e c t i v e l y ; ( 3 ) .
Operational cycle
numbers were 0, 1000,
2000, 5000, and
10,000; (4). The surface
roughness of the Ag
electrode was
0.05-2µm.

Induction time
of the electrical
nucleation; the
retention time of
the supercooled
solution

(1). Voltage
over 1.4-1.8 is
required; (2).
The optimal
range of
s u r f a c e
roughness of
the Ag
electrode is
0.6-1.0 µm

The electronucleation system
mentioned in this paper can be
supplied by 1.5V dry batteries
and obtain 100% nucleation.
The electronucleation method
has reliability and repeatability.

(1). The
experiment was
carried out on a
heat storage system
with a 5 L PCM
container at most;
(2). The electro
nucleation system
with the optimal
p a r a m e t e r s
mentioned in this
paper can be used
for more than 10
years when only
one to two
operations per day
are performed.

[84]
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CH3COO
Na·3H2O

Nucleating agent:
Na4P2O7·10H2O
; thickening agent:
polyacrylamide

(1). The content of
polyacrylamide was
1.0 wt%, 1.5 wt% and
2.0 wt%, respectively;
(2). The concentration
range of sodium acetate
was 96-98 wt%.

S u p e r c o o l i n g
degree; distinct
p h a s e
s t rat i f ica t ion ;
m e l t i n g
temperature

(1).1.5% mass
ratio of the
polyacrylamid
e is required to
avoid phase
stratification;
( 2 ) .
CH3COONa·3
H2O with
1.5 wt% of
Na4P2O7·10H

2O can
achieve the
l o w e s t
supercooling
degree.

The addition of 1.5 wt%
Na4p2o710H2O can reduce the
supercooling of PCM to 4K.

[85]

CH3COO
Na·3H2O

Silicon carbide
and bentonite

The mass  fractions
of bentonite：1-50 wt
%；the mass fraction of
silicon carbide：0.5-15
wt%

The melting
temperatures and
p e a k
temp era tu res ;
s u p e r c o o l i n g
degree; heat
storage time;
heat release time

(1). The mass
fraction of
bentonite over
26 wt.% is
needed for
i n f i l t r a t i o n
avoidance; (2).
When the
content of
silicon carbide
is more than
10wt%, PCM
have almost no
supercooling.

The addition of silicon carbide
and bentonite improves the
leakage, thermal stability,
supercooling and thermal
conductivity of PCMs. The
addition of 26 wt% bentonite
and 10 wt% reduced the heat
storage and release time of
PCM by 25.44% and 78.5%,
respectively.

The addition of
bentonite and SC
lead to a decrease
in latent heat.

[86]

CH3COO
Na·3H2O

D i s o d i u m
h y d r o g e n
p h o s p h a t e
dodecahydrate/
sodium carbonate
d e c a h y d r a t e /
sodium silicate
n o n a h y d r a t e /

The amount of each
additive is 2, 4, 6, 8
wt%, respectively; the
porosity of copper foam
is 98%, 88%.

S u b c o o l i n g
degree; latent
heat; phase
c h a n g e
t e m p e r a t u r e ;
phase change
time

T h e o r e t i c a l
effective thermal
conductivity base
on the
B h a t t a c h a r y a
model

(1).2 wt%
carboxymethyl
cellulose and 2
wt% disodium
h y d r o g e n
p h o s p h a t e
dodecahydrate
i s

The supercooling of PCM with
2 wt% carboxymethyl cellulose
and 2 wt% disodium hydrogen
phosphate dodecahydrate was
reduced to 4.6K.

[87]
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b o r a x
decahydrate/ quart
sand/ the
ca rbo xymet hyl
cellulose/ copper
foams

recommended;
(2). the 88%
porosity of
copper foam is
recommended.

Erythritol Porous nickel Pore sizes of 100, 300,
and 500 μm

T h e o r e t i c a l
effective thermal
conductivity

The 15 vol%
porous nickel
with a pore
size of 500 μm
i s
recommended.

The thermal conductivity of
erythritol increased to 11.6W/
(m.K) by adding 15 vol%
porous nickel with a pore
diameter of 500 um, which was
two orders of magnitude higher
than that of pure erythritol.

The pore size has
no effect on
melting point and
latent heat.

[88]

Erythritol
Short carbon fiber
with diameter of
about 9 μm

(1). The aspect ratio of
SCF is 5 and 25; (2).
the mass fraction  of 1,
2, 4 , 7  and 10 wt％

Graphitization
m o r p h o l o g y ;
heat storage
time; thermal
conductivity

The aspect
ratio of 25 is
recommended.

The addition of 10 wt% short
carbon fiber with an aspect ratio
of 25 led to an increase in the
thermal conductivity of PCM
by 407.8%.

T h e r m a l
conductivity of
PCM changes after
cycling. After one
cycle, the thermal
conductivity of
PCM with 10 wt%
short carbon fiber
(aspect ratio of 25)
was reduced by
21.1%.

[89]

Erythritol E x p a n d e d
graphite

The amount of 1, 2, 3
and 4wt％

Melting time;
t h e r m a l
conductivity

From the point
of view of
t h e r m a l
conductivity,
the addition of
4 wt%
e x p a n d e d
graphite is the
b e s t .
Con s ider ing
the melting
time, 3 wt%
e x p a n d e d
graphite is

The thermal conductivity of
PCM with 4wt% expanded
graphite increased about 2.5
times, and the composite phase
change material had a 16.7%
lower melting time than pure
erythritol.

[90]
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recommended.

P a r a f f i n
wax

TiO2
The range of content
was 0-7 wt%.

T h e r m a l
c o n d u c t i v i t y ;
phase transition
t e m p e r a t u r e ;
latent heat
capacity

T h e o r e t i c a l
effective thermal
conductivity

0.7wt％ TiO2
i s
recommended.

The addition of 0.7 wt% TiO2
improved the thermal
conductivity of paraffin wax by
20.1J/g. Composite PCM has
lower latent heat capacity than
paraffin when the content of
TiO2 was more than 2wt%.

[91]

RT82

A l 2 O 3
nanoparticles and
porous copper
foam

(1). The content of
Al2O3 nanoparticles is
0, 0.01, 0.03, and 0.05,
respectively; (2). the
porosity of copper foam
is 95% and 98%.

Liquid fraction;
isotherm at
different melting
times; melting
time

Low volume
fraction of
A l 2 O 3
nanopart icle
and high
p o r o s i t y
copper foam
a r e
recommended.

The addition of Al2O3
nanoparticles and porous
copper foam resulted in a
7-90% savings in heat storage
time.

[92]
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Table 7

The heat transfer enhancement technologies for different thermal storage containers

The types of
thermal
storage

container

Approaches to strengthen the heat transfer Details Referen
ces

Shell and tube Changing the direction of the heat
exchanger

The horizontal type has a better heat
transfer performance compared to the
vertical type.

[165]

Changing the geometric shape of the shell
The time of the solidification of PCM
is shorter in the cylindrical shell
compared to the rectangular shell.

[166]

The use of
fin

The change of fin materials

 It was observed that copper,
aluminium and aluminium 6063 had
considerably better thermal
performance with paraffin as
compared to steel AISI 4340.

[167]

The change of fin length

The melting time reduced by 57.32%
as the length of the fin is increased
from 12.7 mm to 38.10 mm.

[167]

The stored energy increases with
increasing fin radius. [168]

The change of fin thickness The thermal storage capacity of the
system is decreased by 5.7% as the
fins’ thickness is increased from 1 mm

[167]
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to 5 mm.
The change of fin space The stored energy increases with

decreasing fin space.
[168]

Sleeve tube

Adjusting the arrangement of heat transfer
tube bundles

The melting time of PCM is shortest
when the heat transfer tube was
arranged in a concentric circle,
compared with the staggered square
pitch, in-line square pitch and in-line
triangle pitch. 

[169]

The use of
fin

The change of angles
between neighbor fins

The angle between the neighbor
full-scale fins set to 60-90°, and the
thermal performance of the system is
best.

[170]

The change of fin thickness
The influence of fin thickness is very
small compared with that of the angle
between neighbor fins.

[170]

Multi-tube
Changing the quantity of the inner tube The four-tube type reduced the

melting time of the PCM by 29%. [171]

The use of
fin The position of added fins

The heat transfer capability of adding
internal and external fins is stronger
than that of adding internal fins and
external fins respectively.

[172,
173]

The change of the geometric
shape of the fin

The use of direct and T shaped fins
can be used to further enhance heat
transfer.

[174]

The change of the quantity
of the fins

The more the fins, the shorter the
melting time of PCMs.

[172,
173]
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The change of fin length The melting time decreased as the fin
length increases.

[172,
173]

The change of fin thickness The influence of the fin thickness
could be ignored.

[172,
173]

Cylindrical
type

The use of
fin The change of fin angles

When the temperature of HTF is low
(50 °C), the fin with an angle can
slightly shorten the melting time. But
when the temperature of the HTF is
high (60 °C), the influence of the
angle fin could be ignored. 

[175]

Flat plate

Changing the direction of plate
With the horizontal arrangement of
PCM capsules arrangement, the heat
transfer rates increase up to twofold.

[176]

The change of plate thickness

The decrease of PCM thickness makes
the heat transfer rate increase by five
times.

[176]

The function correlation developed
can be used for simplified design
procedures to calculate the maximum
plate thickness that can be used to
optimize thermal performance.

[177]

Plate-fin The use of
fin

The change of fin length The impact of increasing the fin
length can be ignored. [178]

The change of fin space The smaller the fin space, the shorter
the melting/ solidification time. [178]

Capsule Modification
of Capsule
Material

The addition of metal
coating

The heat transfer coefficient of
mPCM slurry with metal coating can
be increased by over 10%, compared

[179]
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with the non-metal coating type.

The addition of expanded
graphite

Adding 10% expanded graphite to the
shell can increase thermal
conductivity of the mPCM by 10
times.

[180]

graphene oxide
1 wt% of graphene dosing already
results in a notable increase of the
thermal conductivity.

[181]

nanotubes The thermal conductivity sees a nearly
double increase by adding 0.15g of
nanotubes results in shell. 

[182]

Multiple PCMs The average energy and exergy
collection efficiency of the system are
increased significantly.

[183]
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Table 8

The latent application for driving solar air conditioning
Types of
solar
collector

Types of
system

Types of
materials Materials Storage

containers
Research
method Application evaluation References

Flat plate Adsorption Organic Stearic acid Shell and tube
Theoretica
l
simulation

Compared with the system without PCM, the use of PCM reduced
the auxiliary energy consumption at night by about 31%. But even
with the application of PCM, the whole system still consumed
3.28 times more energy than the ordinary split air conditioning
system.

[202]

Air
collector Desiccant Organic Paraffin

Rectangular
container with
serpentine tube
inside

Theoretica
l
simulation

This study compared the energy-saving performance of desiccant
air conditioning driven by pure electric heating (A type), electric
heating + solar heating (B type), electric heating + PCM + solar
heating (C type).The results show that compared to the purely
electric drive type, the energy saving rate of C-type was up to
75.82% which was nearly four times that of the B type. In
addition, the C-type had the highest total fixed cost, twice that of
the A-type, but the total annual operating cost of C-type was 626
LE, which was about a quarter of the A-type.

[203]

　 Desiccant Organic RT65

The PCM TES
unit consists of
multiple PCM
layers arranged
in parallel

Theoretica
l
simulation

At regenerative temperatures of 60 °C, 65 °C and 70 °C, the
system could achieve a humidity satisfaction rate of over 80%. At
the temperature of 60 °C, the regeneration coefficient could reach
100%. This study proved the technical feasibility of using mixed
PVT-SAH and LTESS to drive the desiccant wheel regeneration.

[204]

Evacuated
tube
collector

Ejector Organic Polyethylene Buffer tanks
Theoretica
l
simulation

The PCM unit of 800 kg polyethylene could produce 62.5 kg of
steam. Under rated operating conditions, the solar ejector cooling
system operated at full load for more than 15 minutes.

[38]

　

LiCl-H2O
sorption
module

Organic
RT11(cold
storage)/RT27(h
eat storage)

Tubular double
jacket heat
exchanger

Theoretica
l
simulation
and
experimen
tal study

The results of both experiment and simulation indicated that this
new solar adsorption air-conditioning system is feasible, and the
average COP can reach 0.36 (cooling) and 0.42 (heating).

[206]
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Single effect
LiBr/H2O
absorption

Organic Erythritol Shell and tube
Theoretica
l
simulation

The energy stored in a 20 kg PCM could be released by 70.9%
within 200 minutes. [207]

Parabolic
trough
collector

Adsorption Inorganic S89/S83 Cylindrical
storage

Theoretica
l
simulation

LTESS could only be applied when the collector area is higher
than 0.9 m2. When LTESS was applied, the number of daily
refrigeration cycles increased from 25 to 37, and the daily
refrigerating capacity increased by 785 kJ/kg. The continuous
cooling time was extended to 26.28 h.

[208]
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Table 9

The latent application for heat recovery
Types of
system

Installation
position

Types of
materials Materials Storage

containers
Research
method Application evaluation References

Absorption
The PCM unit is
integrated in the
dry cooler

Inorganic
CaCl2·6H2
O

Capillary tubes Experimental
study

At runtime, the PCM unit stored approximately 50% of the daily
waste heat under hot ambient condition (32 °C) and released heat
from PCM units below 20 °C. In addition, the PCM unit has 10
times volume storage density compared to the water system,
which reduces the cost and size of the entire system.

[39]

　
The PCM unit is
integrated in the
dry cooler

Inorganic Hydrated
salts

Well-mixed
tank

Theoretical
simulation
and
experimental
study

During the experiment, the PCM unit could store 65.22 kWh in
12 hours. The integrated system of PCM unit and dry cooler was
not suitable for areas with high ambient temperature, such as
Serbia.  The overall efficiency of the whole system was improved
by 50% and the COP increased by 1 unit, compared to the system
with wet cooler.

[217]

　

The PCM with dry
re-cooled sorption
chiller in the heat
rejection loops

Inorganic
CaCl2·6H2
O

Capillary tubes Experimental
study

The application of PCM unit raised efficiency of the whole
system up to 64% compared to a system with only dry re- cooling. [218]

Absorption
cooling
system
driven by
photovoltai
c waste heat

Composite phase
change material
(CPCM) and
PCM（auxiliary
） regenerative
system are
integrated in the
heat exhaust
system to recover
the residual heat
of photovoltaic

　

CPCM:
Acetamide
with 20
wt%
expanded
graphite；P
CM: RT44

Rectangular
container

Theoretical
simulation

The authors designed a PCM unit to absorb the wasted heat
generated by the photovoltaic module to drive an adsorption air
conditioning unit or a hot water system. They presented a
theoretical COP calculation method of the system. PCM unit can
improve COP of whole system significantly in theory, compared
to the systems without PCM units. But unfortunately, the author
did not make a quantitative comparison between the two.

[219]
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Table 10

The latent application for cold storage
Types of
system

Installation
position

Types of
materials Materials Storage

containers
Research
method Application evaluation References

Absorption

Connection
with the
refrigeration
unit

Eutectic Na2SO4·10H2O Shell and tube Theoretical
study

It is feasible for the design system to store energy during the
daytime and supply single effect absorption air conditioning
at night.

[223]

Adsorption

Connection
with the solar
adsorption
chiller

Eutectic Capric and lauric
acid

Spherical
capsule
packed bed

Experimental
study

In the stable state, the charging and discharging period could
be 230 and 220 minutes respectively. [26]

Ejector In chilled water
networks Organic

30 wt.
%paraffin/water
dispersion

Buffer tank
(phase change
slurry)

Theoretical
simulation

The PCM unit can diminish the scale of the total system and
fulfill the demand for refrigeration. [38]

　
Between Air
handler and
Evaporator

Organic RT15

Horizontal
tank with
tube-bundle
heat exchanger

Experimental
study

The maximum COP of the ejector cooling system with PCM
was 0.193, and the monthly average COP was almost no
change and nearly twice that of the system without PCM unit.

[25, 224]

　

The PCM cold
storage
charging unit
integrates with
the evaporator
vessel

Inorganic S15
Finned
straight tube
PCM tank

Experimental
study

The COP of injection systems cooling system without PCM
unit was reduced from 0.315 to 0.216. The cop of the system
with PCM unit could keep constant value of 0.31.

[222]
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Table 11

Economic evaluation for LTESS of solar thermal utilization.
System System size Economic evaluations Optimized

objects Details References

Solar absorption
system with
LTESS

Total system load of
45.4kW Payback period 　

In this paper, solar absorption chiller without latent
heat storage system is optimized by exergy economy
analysis and genetic algorithms. The payback period of
the optimal solar absorption chiller with the latent heat
storage unit was calculated. The results show that using
latent storage system was caused payback period
increase from 0.61 years to 1.13 years in optimum
point.

[226]

Solar single-stage
absorption
cooling system
with LTESS

The system is installed in a
three-storey building with
cooling demand of 35kWh·
m -2 ·y -1 and heating
demand of 63 kWh· m -2 ·y
-1.

Maximum net present value; minimum
discount payback period 　

The economic analysis of sensible heat storage, latent
cold storage and latent heat storage was carried out in
this paper. The sensible heat storage has an economic
competitive advantage. The cost of latent storage unit is
acceptable only if the price of natural gas is high or the
cost of pcm is low.

[227]

Integration of
ejector cooling
system and
Photovoltaic/
Thermal system
with LTESS

The thermal output of the
Photovoltaic/ Thermal
system is 28,816 kW.

Payback period 　

The payback period of photovoltaic thermal ejector
cooling systems with PCM units is 3.405 years. The
payback period is very sensitive to cooling costs. When
the cooling cost is below $26 per ton, the payback
period is less than 4 years.

[228]

Solar still with
LTESS

Daily water production
capacity of 2-4L/m2

Total cost (including operating cost,
maintenance cost and fixed cost) PCMs

This paper compared the economic competitiveness of
composite materials (mixture of paraffin and black
gravel) and phase change materials (paraffin) through
cost analysis. The cost of a solar still system with
composite material is 0.0014$ / Lm2, which is 27%
lower than that with paraffin.

[229]
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Concentrating
solar power
applications with
LTESS

The demand thermal
storage power of
3000MWth

Capital cost 　

The system cost for different pipe lengths, HTF
capacity and PCMs calculated in this paper is between
17.745$/kWhth and 23.744$/kWhth. It is proved that
the shell-and tube type LHTES is economically
competitive compared to the two-tank molten salt
indirect thermal storage system.

[230]

Solar power
plants with
LTESS

The annual capacity of
100MWe

Levelized Cost of Energy (LCOE); total
cost; uncertainty analysis 　

This paper compared the economic competitiveness of
sensible heat storage, latent heat storage and
thermochemical energy storage in solar power system.
The cost of the thermal storage system is determined
primarily by LCOE. Based on the optimal capacity
configuration, the total investment cost of solar power
plants with different heat storage technologies is
calculated. The uncertainty analysis is used to evaluate
the cost controllable range of each system. The LCOE
of the phase change thermal storage system is 19
cents/kWh; because of the wide pricing range of
commercial PCM, the LCOE of commercial PCM is 6
to 43 cents/kWh; the overall system cost is 507 million.
The cost of the latent heat storage system is lower than
the cost of thermochemical energy storage, higher than
that of the sensible heat storage system.

[231]

Concentrating
solar power
plants with

LTESS

The annual capacity of 200
MWe

System Cost Limitation(< $87.95
million); LCOE (< 6 cents/kWh); exergy

economy analysis (＞95%)

Tank radius,
tank height,

HTF channel
width/length

and
longitudinal

spacing
between heat

pipes of
LTESS

In this paper, the geometric parameters of phase change
heat storage unit were designed by means of economic
analysis. The results show that the cost of the thermal
storage unit is a monotonic increasing function of the

capsule radius, the tank radius and the channel
width/length. It is also a monotonic decreasing function

of the longitudinal spacing of the heat pipes. Three
evaluation methods can help determine the range of

design parameters.

[232]



Figure captions
Figure 1. The installed capacity of renewable energy power generation in China

Figure 2. Technical classification of solar air conditioning systems

Figure 3. The thermal storage technology and the classification of PCMs

Figure 4. The schematic diagram of solar desiccant air conditioning system
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(a) Year-on-year Growth Rate of Renewable Energy Installation Capacity in China
from 2014 to 2016

(b) China's Renewable Energy Installation Capacity by the end of 2016
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