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Abstract

In this paper we propose a novel method for learning how algorithms perform. Classically, algorithms are
compared on a finite number of existing (or newly simulated) benchmark datasets based on some fixed metrics.
The algorithm(s) with the smallest value of this metric are chosen to be the ‘best performing’. We offer a new
approach to flip this paradigm. We instead aim to gain a richer picture of the performance of an algorithm by
generating artificial data through genetic evolution, the purpose of which is to create populations of datasets
for which a particular algorithm performs well on a given metric. These datasets can be studied so as to learn
what attributes lead to a particular progression of a given algorithm. Following a detailed description of the
algorithm as well as a brief description of an open source implementation, a case study in clustering is presented.
This case study demonstrates the performance and nuances of the method which we call Evolutionary Dataset
Optimisation. In this study, a number of known properties about preferable datasets for the clustering algorithms
known as k-means and DBSCAN are realised in the generated datasets.

1 Introduction

This work presents a novel approach to learning the quality and performance of an algorithm through the use of

evolution. When an algorithm is developed to solve a given problem, the designer is presented with questions

about the performance of their proposed method and its relative performance against existing methods. This is an

inherently difficult task. However, under the current paradigm, the standard response to this situation is to use a

known fixed set of datasets - or simulate new datasets themselves - and a common metric amongst the proposed

method and its competitors. The collated algorithms are then assessed based on this metric with often minimal

consideration for the appropriateness or reliability of the datasets being used, and the robustness of the method(s)

in question [1, 13, 19].

This process is not so readily observed when travelling in the opposite direction but methods to do so exist.

Suppose that the object of interest was not an algorithm but rather a dataset. In this case, the objective is to

determine a preferable algorithm to complete some task on the data. There exist a number of methods employed

across disciplines to complete this task that take into account the characteristics of the data and the context of

the research problem. These methods are often equivalent to asking questions of the data, and include the use of

1



diagnostic tests. For instance, in the case of clustering, if the data displayed an indeterminate number of non-convex

blobs, then one could recommend that an appropriate clustering algorithm would be DBSCAN [11]. Otherwise,

for scalability, k-means may be chosen [37, 38].

The approach presented in this work aims to flip the paradigm described here by allowing the data itself to

be unfixed. This fluidity in the data is achieved by generating data for which the algorithm performs well (or

better than some other) through the use of an evolutionary algorithm. The purpose of doing so is not to simply

create a bank of useful datasets but rather to allow for the subsequent studying of these datasets. In doing so, the

attributes and characteristics which lead to the success (or failure) of the algorithm may be described, giving a

broader understanding of the algorithm on the whole. Our framework is described in Figure 1.

Data

Algorithms

?

? ?
Asking questions

of the data

? ?

‘Good’ data

Benchmarks

Evolutionary
dataset

optimisation

Figure 1: On the right: the current path for selecting some algorithm(s) based on their validity and performance for
a given dataset. On the left: the proposed flip to better understand the space in which ‘good’ datasets exist for an
algorithm.

This proposed flip has a number of motivations, and below is a non-exhaustive list of some of the problems that

are presented by the established evaluation paradigm:

1. How are these benchmark examples selected? There is no true measure of their reliability other than their

frequent use. In some domains and disciplines there are well-established benchmarks so those found through

literature may well be reliable, but in others less so [5, 8, 36].

2. Sometimes, when there is a lack of benchmark examples, a ‘new’ dataset is simulated to assess the algo-

rithm [26]. This begs the question as to how and why that simulation is created. Not only this, but the origins

of existing benchmarks is often a matter of convenience rather than their merit.

3. In disciplines where there are established benchmarks, there may still be underlying problems around the

true performance of an algorithm:

(i) As an example, work by Torralba and Efros [34] showed that image classifiers trained and evaluated
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on a particular dataset, or datasets, did not perform reliably when evaluated using other benchmark

datasets that were determined to be similar. Thus leading to a model which lacks robustness.

(ii) The amount of learning one can gain as to the characteristics of data which lead to good (or bad)

performance of an algorithm is constrained to the finite set of attributes present in the benchmark data

chosen in the first place.

This work presents just one method from this new paradigm, and that method is built around the concept of

evolution. Evolutionary algorithms (EAs) have been applied successfully to solve a wide array of problems -

particularly where the complexity of the problem or its domain are significant. These methods are highly adaptive

and their population-based construction (displayed in Figure 2) allows for the efficient solving of problems that are

otherwise beyond the scope of traditional search and optimisation methods. EAs have been chosen here as they are

simple in design yet their capabilities encompass the difficulties of the flipped paradigm set out above.

Start

Generate initial population

Calculate fitness

Stopping condition met?

End

Select parents by fitness

Crossover to produce offspring

Mutate small number of offspring

Calculate fitness

yes

no

old population

new population

Figure 2: A general schematic for an evolutionary algorithm.

The use of EAs to generate artificial data is not a new concept, however. Its applications in data generation

have included developing methods for the automated testing of software [16, 23, 29] and the synthesis of existing

or confidential data [6]. Such methods also have a long history in the parameter optimisation of algorithms, and

recently in the automated design of convolutional neural network (CNN) architecture [31, 32].
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Other methods for the generation or synthesis of artificial data are numerous and range from simple con-

cepts such as simulated annealing [21] to swarm-based learning techniques [2] or generative adversarial networks

(GANs) [12]. The unconstrained learning style of methods such as CNNs and GANs aligns with that proposed

in this work. By allowing the EA to explore and learn about the search space in an organic way, less-prejudiced

insight can be established that is not necessarily reliant on any particular framework or agenda.

Note that the proposed methodology is not simply to use an EA to optimise an algorithm over a search space

with fixed dimension or data type such as those set out in [6]. The shape of a dataset is considered a part of the

sample space itself that can be traversed through the evolutionary algorithm.

The remainder of the paper is structured as follows:

• Section 2 describes the structure of the proposed method including its parameters and operators.

• Section 3 contains a case study where the success and failure of k-means clustering is examined using the

proposed method. Included also is a comparison between k-means and another clustering algorithm DB-

SCAN.

• Section 4 concludes this paper.

2 The evolutionary algorithm

In this section, the details of an algorithm that generates data for which a given function, or (equivalently) algorithm,

is well-suited is described. This algorithm is to be referred to as “Evolutionary Dataset Optimisation” (EDO).

The EDO method is built as an evolutionary algorithm which follows a traditional (generic) schema with some

additional features that keep the objective of artificial data generation in mind. With that, there are a number of

parameters that are passed to EDO; the typical parameters of an evolutionary algorithm are a fitness function,

f , which maps from an individual to a real number, as well as a population size, N, a maximum number of

iterations, M, a selection parameter, b, and a mutation probability, pm. In addition to these, EDO takes the following

parameters:

• A set of probability distribution families, P . Each family in this set has some parameter limits which form a

part of the overall search space. For instance, the family of normal distributions, denoted by N(µ,σ2), would

have limits on values for the mean, µ , and the standard deviation, σ .

• A maximum number of “subtypes” for each family in P . A subtype is an independent copy of the family

that progresses separate from the others. These are the actual distribution objects which are traversed in the

optimisation.

• A probability vector to sample distributions from P , w =
(
w1, . . . ,w|P|

)
.

• Limits on the number of rows an individual dataset can have,

R ∈
{
(rmin,rmax) ∈ N2 | rmin ≤ rmax

}
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• Limits on the number of columns a dataset can have,

C :=
(
C1, . . . ,C|P|

)
where C j ∈

{
(cmin,cmax) ∈ (N∪{∞})2 | cmin ≤ cmax

}
for each j = 1, . . . , |P|. That is, C defines the minimum and maximum number of columns a dataset may

have from each distribution in P .

• A second selection parameter, l ∈ [0,1], to allow for a small proportion of ‘lucky’ individuals to be carried

forward.

• A shrink factor, s ∈ [0,1], defining the relative size of a component of the search space to be retained after

adjustment.

The concepts discussed in this section form the mechanisms of the evolutionary dataset optimisation algorithm.

To use the algorithm practically, these components have been implemented in Python as a library built on the

scientific Python stack [22, 25]. The library is fully tested and documented (at https://edo.readthedocs.io)

and is freely available online under the MIT license [33]. The EDO implementation was developed to be consistent

with the current best practices of open source software development [15].

Algorithm 1: The Evolutionary Dataset Optimisation algorithm
Input: f ,N,R,C,P,w,M,b, l, pm,s
Output: A full history of the populations and their fitnesses.
begin

create initial population of individuals
find fitness of each individual
record population and its fitness
while current iteration less than the maximum and stopping condition not met do

select parents based on fitness and selection proportions
use parents to create new population through crossover and mutation
find fitness of each individual
update population and fitness histories
if adjusting the mutation probability then

update mutation probability
end
if using a shrink factor then

shrink the mutation space based on parents
end

end
end

The statement of the EDO algorithm is presented here to lay out its general structure from a high level perspec-

tive. Lower level discussion is provided below where additional algorithms for the individual creation, evolutionary

operator and shrinkage processes are given along with diagrams (where appropriate). Note that there are no defined

processes for how to stop the algorithm or adjust the mutation probability, pm. This is down to their relevance to a

particular use case. Some examples include:
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Algorithm 2: Creating a new population
Input: parents, N,R,C,P,w, pm

Output: A new population of size N
begin

add parents to the new population
while the size of the new population is less than N do

sample two parents at random
create an offspring by crossing over the two parents
mutate the offspring according to the mutation probability
add the mutated offspring to the population

end
end

• Regular decreasing in mutation probability across the available attributes [17].

• Stopping when no improvement in the best fitness is found within some K consecutive iterations [18].

• Utilising global behaviours in fitness to indicate a stopping point [20].

2.1 Individuals

Evolutionary algorithms operate in an iterative process on populations of individuals that each represent a solution

to the problem in question. In a genetic algorithm, an individual is a solution encoded as a bit string of, typically,

fixed length and treated as a chromosome-like object to be manipulated. In EDO, as the objective is to generate

datasets and explore the space in which datasets exist, there is no encoding. As such the distinction is made that

EDO is an evolutionary algorithm.

As is seen in Figure 3, an individual’s creation is defined by the generation of its columns. A set of instructions

on how to sample new values (in mutation, for instance, Section 2.4) for that column are recorded in the form of a

probability distribution. These distributions are sampled and created from the families passed in P . In EDO, the

produced datasets and their metadata are manipulated directly so that the biological operators can be designed and

be interpreted in a more meaningful way as will be seen later in this section.

However, one should not assume that the columns are a reliable representative of the distribution associated

with them, or vice versa. This is particularly true of ‘shorter’ datasets with a small number of rows, whereas

confidence in the pair could be given more liberally for ‘longer’ datasets with a larger number of rows. In any case,

appropriate methods for analysis should be employed before formal conclusions are made.

2.2 Selection

The selection operator describes the process by which individuals are chosen from the current population to gen-

erate the next. Almost always, the likelihood of an individual being selected is determined by their fitness. This is

because the purpose of selection is to preserve favourable qualities and encourage some homogeneity within future

generations [4].
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the dataset

N(µ, σ2) U(α, β)

Po(λ)
Families of
distributions

N(0.25, 1) U(1.2, 3.2) N(−3.7, 0)
Column
information

Sample or create a
distribution subtype
and sample parameters

Sample values
from distribution

Figure 3: An example of how an individual is first created.

Algorithm 3: Creating an individual
Input: R,C,P,w
Output: An individual defined by a dataset and some metadata
begin

sample a number of rows and columns
create an empty dataset
for each column in the dataset do

sample a distribution from P
create an instance of the distribution
fill in the column by sampling from this instance
record the instance in the metadata

end
end
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Old population

New population

Best individuals Lucky individuals

Parents

Figure 4: The selection process with the inclusion of some lucky individuals.

Algorithm 4: The selection process
Input: population, population fitness, b, l
Output: A set of parent individuals
begin

calculate nb and nl
sort the population by the fitness of its individuals
take the first nb individuals and make them parents
if there are any individuals left then

take the next nl individuals and make them parents
end

end
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In EDO, a modified truncation selection method is used [14], as can be seen in Figure 4. Truncation selection

takes a fixed number, nb = dbNe, of the fittest individuals in a population and makes them the ‘parents’ of the next.

It has been observed that, despite its efficiency as a selection operator, truncation selection can lead to premature

convergence at local optima [14, 24]. The modification for EDO is an optional stage after the best individuals have

been chosen: with some small l, a number, nl = dlNe, of the remaining individuals can be selected at random to be

carried forward. Hence, allowing for a small number of randomly selected individuals may encourage diversity and

further exploration throughout the run of the algorithm. It should be noted that regardless of this step, an individual

could potentially be present throughout the entirety of the algorithm.

After the parents have been selected, there are two adjustments made to the current search space. The first is

that the subtypes for each family in P are updated to only those present in the parents. The second adjustment is

a process which acts on the distribution parameter limits for each subtype in P . This adjustment gives the ability

to ‘shrink’ the search space about the region observed in a given population. This method is based on a power law

described in [3] that relies on a shrink factor, s. At each iteration, t, every distribution subtype which is present in

the parents has its parameter’s limits, (lt ,ut), adjusted. This adjustment is such that the new limits, (lt+1,ut+1) are

centred about the mean observed value, µ , for that parameter:

lt+1 = max
{

lt , µ− 1
2
(ut − lt)st

}
(1)

ut+1 = min
{

ut , µ +
1
2
(ut − lt)st

}
(2)

The shrinking process is given explicitly in Algorithm 5. Note that the behaviour of this process can produce

reductive results for some use cases and is optional.

Algorithm 5: Shrinking the mutation space
Input: parents, current iteration, P,M,s
Output: A new mutation space focussed around the parents
begin

for each distribution subtype in P do
for each parameter of the distribution do

get the current values for parameter over all parent columns
find the mean of the current values
find the new lower (1) and upper (2) bounds around the mean
set the parameter limits

end
end

end

2.3 Crossover

Crossover is the operation of combining two individuals in order to create at least one offspring. In genetic algo-

rithms, the term ‘crossover’ can be taken literally: two bit strings are crossed at a point to create two new bit strings.
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Another popular method is uniform crossover, which has been favoured for its efficiency and efficacy in combining

individuals in both bit string and matrix representations [7, 28]. For EDO, this method is adapted to support dataset

manipulation: a new individual is created by uniformly sampling each of its components (dimensions and then

columns) from a set of two ‘parent’ individuals, as shown in Figure 5.

N(0, 1) Po(3.6)

First parent

U(3, 5) N(2, 2) Po(2.5)

Second parent

Parent
dimensions

Parent columns
(and their metadata)

Pool columns
Pool dimensions

N(0, 1) Po(2.5) U(3, 5)

A new individual

1. Sample number of
rows and columns

2. Sample columns and
fill/trim values as needed

Figure 5: The crossover process between two individuals with different dimensions.

Observe that there is no requirement on the dimensions of the parents to be of similar or equal shapes. This

is because the driving aim of the proposed method is to explore the space of all possible datasets. In the case

where there is incongruence in the lengths of the two parents, missing values may appear in a shorter column that

is sampled. To resolve this, values are sampled from the probability distribution associated with that column to fill

in these gaps.

2.4 Mutation

Mutation is used in evolutionary algorithms to encourage a broader exploration of the search space at each gen-

eration. Under this framework, the mutation process manipulates the phenotype of an individual where numerous

things need to be modified including an individual’s dimensions, column metadata and the entries themselves. This

process is described in Figure 6.

As shown in Figure 6, each of the potential mutations occur with the same probability, pm. However, the way

in which columns are maintained assure that (assuming appropriate choices for f and P) many mutations in the

metadata and the dataset itself will only result in some incremental change in the individual’s fitness relative to,

say, a completely new individual.
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An individual

Add a row
with probability pm

U(1.1, 3.2) Po(1.2) N(0.5, 1.2)

+

Sample from
metadata

Remove a row
with probability pm

U(1.1, 3.2) Po(1.2) N(0.5, 1.2)

Chosen at random
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with probability pm

Families of
distributions

U(1.1, 3.2) Po(1.2) N(0.5, 1.2)+

+

Po(9.3)

Sample distribution
and its parameters

Sample values
from distribution

Remove a column
with probability pm

U(1.1, 3.2) Po(1.2) N(0.5, 1.2)

Chosen at random

Resample each parameter
from the corresponding limits

with probability pm

U(1.1,2.6) Po(1.2) N(0.2, 2.3)

Resample each value from
the corresponding distribution

with probability pm

U(1.1, 3.2) Po(1.2) N(0.5, 1.2)

A mutated
individual

Figure 6: The stages of the mutation process.
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Algorithm 6: The crossover process
Input: Two parents
Output: An offspring made from the parents ready for mutation
begin

collate the columns and metadata from each parent in a pool
sample each dimension from between the parents uniformly
form an empty dataset with these dimensions
for each column in the dataset do

sample a column (and its corresponding metadata) from the pool
if this column is longer than required then

randomly select entries and delete them as needed
end
if this column is shorter than required then

sample new values from the metadata and append them to the column as needed
end
add this column to the dataset and record its metadata

end
end

3 A case study in clustering

3.1 k-means clustering

The following examples act as a form of validation for EDO, and also highlight some of the nuances in its use. The

objective of these examples is to use the proposed method to reproduce some known results about the clustering

of data in the absence of any external forces, and to examine how clustering algorithms are typically evaluated. In

particular, the focus will be on the well-known k-means (Lloyd’s) algorithm. Clustering was chosen as it is a well-

understood problem that is easily accessible - especially when restricted to two dimensions. The k-means algorithm

is an iterative, centroid-based method that aims to minimise the ‘inertia’ of the current partition, Z = {Z1, . . . ,Zk},
of some dataset X :

I(Z,X) :=
1
|X |

k

∑
j=1

∑
x∈Z j

d(x,z j)
2 (3)

A full statement of the algorithm to minimise (3) is given in A.1.

This inertia function is taken as the objective of the k-means algorithm, and is used for evaluating the final

clustering. This is particularly true when the algorithm is not being considered an unsupervised classifier where

accuracy may be used [13]. With that, the first example will use this inertia as the fitness function in EDO. That is,

to find datasets which minimise I.

For the purposes of visualisation, EDO is restricted to the space containing only two-dimensional datasets, i.e.

C = ((2,2)). In addition to this, all columns are formed from uniform distributions where the bounds are sampled

from the unit interval. Thus, the only family in P is:

U := {U(a,b) | a,b ∈ [0,1]} (4)
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Algorithm 7: The mutation process
Input: An individual, pm, R, C, P , w
Output: A mutated individual
begin

sample a random number r ∈ [0,1]
if r < pm and adding a row would not violate R then

sample a value from each distribution in the metadata
append these values as a row to the end of the dataset

end
sample a new r ∈ [0,1]
if r < pm and removing a row would not violate R then

remove a row at random from the dataset
end
sample a new r ∈ [0,1]
if r < pm and adding a new column would not violate C then

create a new column using P and w
append this column to the end of the dataset

end
sample a new r ∈ [0,1]
if r < pm and removing a column would not violate C then

remove a column (and its associated metadata) at random from the dataset
end
for each distribution in the metadata do

for each parameter of the distribution do
sample a random number r ∈ [0,1]
if r < pm then

sample a new value from within the distribution parameter limits
update the parameter value with this new value

end
end

end
for each entry in the dataset do

sample a random number r ∈ [0,1]
if r < pm then

sample a new value from the associated column distribution
update the entry with this new value

end
end

end
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The remaining parameters are as follows: N = 100, R = (3,100), M = 1000, b = 0.2, l = 0, pm = 0.01,

and shrinkage is excluded. Figure 7a shows an example of the fitness (above) and dimension (below) progression

of the evolutionary algorithm under these conditions up until the 50th epoch.

There is a steep learning curve here; within the first 50 generations an individual is found with a fitness of

roughly 10−10 which could not be improved on for a further 900 epochs. The same quick convergence is seen

in the number of rows. This behaviour is quickly recognised as preferable and was dominant across all the trials

conducted in this work. This preference for datasets with fewer rows is expected given that I is the sum of the mean

error from each cluster centre. With that, when k is fixed a priori, reducing the number of points in each cluster

(i.e. the terms of the second summation) quickly reduces the mean error of that cluster and thus the value of I.
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Figure 7a: Progressions for final inertia and dimension across the first 50 epochs with R = (3,100).

However, something that may be seen as unwanted is a compaction of the cluster centres. Referring to Fig-

ure 8a, the best and median individuals show two clusters that are essentially the same point whereas the worst is a

random cloud across the whole of U which was found in the initial population. The kind of behaviour exhibited by

the best performing individuals here occurs in part because it is allowed. There are two immediate ways in which

this allowed: first, that a near-trivial case is included in R and, secondly, that the fitness function does nothing to

penalise the proximity of the inter-cluster means, as well as aiming to reduce the intra-cluster means. This kind of

unwanted behaviour highlights a subtlety in how EDO should be used; that experimentation and rigour are required
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Figure 7b: Progressions for final inertia and dimension across the first 50 epochs with R = (50,100).
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to properly understand an algorithm’s quality.
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Figure 8: Representative individuals based on inertia with: (a) R = (3,100); (b) R = (50,100). Centroids
displayed as crosses.

Hence, consider Figure 8b where the individuals have been generated with the same parameters as previously

except with adjusted row limits, R = (50,100), so as to exclude this trivial case. In these trials, the results are

equivalent: the worst performing individuals are without structure whilst the best-performing individuals display

clusters that are dense about a single point despite the minimum number of rows being increased. Supposing

this was not already a known result, we can see mounting evidence in favour of this compaction being ‘optimal’

behaviour in a dataset for k-means clustering.

However, the fitness function may be addressed still, and more extensive studying may be done. Indeed, the

final inertia could be considered a flawed or fragile fitness function if it is supposed to evaluate the efficacy of the

k-means algorithm. Incorporating the inter-cluster spread to the fitness of an individual dataset would reduce this

observed compaction. For instance, the silhouette coefficient is a metric used to evaluate the appropriateness of a

clustering to a dataset and does precisely that. The silhouette coefficient of a clustering of a dataset is given by the
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mean of the silhouette value, S(x), of each point x ∈ Z j in each cluster:

A(x) :=
1

|Z j|−1 ∑
y∈Z j\{x}

d(x,y),

B(x) := min
k 6= j

1
|Zk| ∑

w∈Zk

d(x,w),

S(x) :=


B(x)−A(x)

max{A(x),B(x)} if |Z j|> 1

0 otherwise

(5)

The optimisation of the silhouette coefficient is analogous to finding a dataset which increases both the intra-

cluster cohesion (the inverse of A) and inter-cluster separation (B). Hence, the objective of minimising inertia is

addressed by maximising cohesion. Meanwhile, the additional desire to spread out the clusters is considered by

maximising separation.

Repeating the trials with the same parameters as with inertia, the silhouette fitness function yields the results

summarised in Figures 9a and 9b. Irrespective of row limits, the datasets produced show increased separation from

one another whilst maintaining low values in the final inertia of the clustering as shown in Figure 10. Again, the

form of the individual clusters is much the same. The low values of inertia correspond to tight clusters, and the

tightest clusters are those with a minimal number of points, i.e. a single point. As with the previous example, albeit

at a much slower rate, the preferable individuals are those leading toward this case. That this gradual reduction

in the dimension of the individuals occurs despite adjusting the fitness function and considering the space which

excludes the trivial case bolsters the claim that the base case is also optimal.

At this point, it should be noted that, due to the nature of the implementation, any individual from any generation

may be retrieved and studied should the final results be too concentrated on any given case. The summary provided

here is one particular way of studying the body of datasets generated with this method and this transparency in the

history and progression of the proposed method is something that sets it apart from other methods such as GANs

which have a reputation of providing so-called ‘black box’ solutions.

3.2 Comparison with DBSCAN

The extent of the capabilities EDO holds as a tool to better understand an algorithm are especially apparent when

comparing an algorithm against another (or set of others) simultaneously. This is done by utilising the freedom of

choice in a fitness function for EDO. Consider two algorithms, A and B, and some common metric between them,

g. Then their similarities and contrasts can be explored by considering the differences in this metric on the two

algorithms. In terms of EDO, this means using f = gA−gB, f = gB−gA or f = |gB−gA| as the fitness function. By

doing so, pitfalls, edge cases or fundamental conditions for the method may be highlighted. Overall, this process

allows the researcher to more deeply learn about the method of interest beyond the traditional method of literature

comparison on a particular example.

Consider the following use case with another clustering algorithm of a different form, Density Based Spatial

Clustering of Applications with Noise (DBSCAN). In this particular case, the objective is to find datasets for
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Figure 9a: Progressions for silhouette and dimension across 1000 epochs at 100 epoch intervals with R = (3,100).
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Figure 9b: Progressions for silhouette and dimension across 1000 epochs at 100 epoch intervals with R = (50,100).
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Figure 10: Representative individuals based on silhouette with: (a) R = (3,100); (b) R = (50,100). Centroids
displayed as crosses.
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which the method of interest, k-means, outperforms its alternative, DBSCAN. Here there is no concept of inertia as

DBSCAN is density-based and is able to identify outliers [11]. As such, a valid metric must be chosen. One such

metric is the silhouette score as defined in (5).

In this case, however, an adjustment to the fitness function must be made so as to accommodate for the condition

of the silhouette coefficient that there must be more than one cluster present. Let Sk(X) and SD(X) denote the

silhouette coefficients of the clustering found by k-means and DBSCAN respectively. Then the fitness function is

defined to be:

f (X) =


SD(X)−Sk(X),

if DBSCAN identifies two or

more clusters (inc. noise)

∞ otherwise.

(6)

There are several remarks to be made here. First, note the order of the subtraction here as EDO minimises

fitness functions by default. Also, f takes values in the range [−2,2] where −2 is the best, i.e. SD(X) = −1 and

Sk(X) = 1. Likewise, 2 is the worst score. Finally, the silhouette coefficient requires at least two clusters to be

present and so if DBSCAN identifies a single cluster then that individual will be penalised heavily under this

fitness function when, in fact, that clustering may be of high quality. As such, this fitness function may require

adjustment.

It must also be acknowledged that k-means and DBSCAN share no common parameters and so direct com-

parison is more difficult. For the purposes of this example, only one set of parameters is used but a thorough

investigation should include a parameter sweep in similar, real-world use cases. The parameters being used are

k = 3 for k-means, and ε = 0.1, MinPoints = 5 for DBSCAN. This set was chosen following informal ex-

perimentation using the Python library Scikit-learn [27] to find comparable parameters in the given search space

defined by the EDO parameters used previously with R = (50,100).

Figure 11 shows a summary of the progression of EDO for this use case. As with the previous examples where

R = (50,100), the variation in the population fitness is unstable but there is a clear trend of improvement in the

best individual over the course of the run. There is also a convergence seen in the number of rows a dataset has.

The resting dimension varied across the trials conducted in this work but none exhibited a dramatic shift toward

the lower limit of 50 rows as with previous examples. This is suggestive of a more competitive environment for

individuals where slight changes to an individual can drastically alter their fitness.

The effect of such changes can be seen in Figure 12 where representative individuals are shown for this example.

Here, the best performing individual, when clustered by k-means, shows three clear and nicely separated clusters.

Note that they are not so tightly packed; again, this suggests that the route to an optimal individual is less clearly

defined. In contrast, when the same dataset is clustered by DBSCAN a single cluster is found with a single noise

point held within the convex hull of the cluster, i.e. there are overlapping clusters (since noise points form a single

cluster). Hence, along with the fact that the larger cluster is widely spread, it follows that the clustering has a

relatively small, negative silhouette coefficient.

Another point of interest here is the convexity of the clusters. A known condition for the success of k-means

is that the presented clusters are of roughly equal size and are convex. This is due to the overall objective being

to approximate the centroidal Voronoi tessellation [9]. Without this condition, up to the correct choice of k, the

algorithm will fail to produce adequate results for either inertia or silhouette. DBSCAN, on the other hand, does not
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Figure 11: Progressions for difference in silhouette (k-means-preferable) and dimension across 1000 epochs at 100
epoch intervals.
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Figure 12: Representative individuals from a k-means-preferable run with clustering by: (a) k-means; (b) DB-
SCAN. Concave and convex hulls illustrated by shading and outline respectively.
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have this condition and is able to detect non-convex clusters so long as they are dense enough. Figure 12 shows the

clustering found by each method and the respective convex and concave hulls of the clusters found. The ‘concave

hull’ of a cluster is taken to be the α-shape of the cluster’s data points [10] where α is determined to be the smallest

value such that all the points in the cluster are contained in a single polygon. The convexity of cluster Z j, denoted

C j, is then determined to be the ratio of the area of its concave hull, Hc, to the area of its convex hull, Hv [30]:

C j :=
area(Hc)

area(Hv)
(7)

With this definition, it should be clear that a perfectly convex cluster, such as a single point or line, would have

C j = 1.

It can be seen that the convexity of the clustering found by k-means appears to be higher than that by DBSCAN.

This was apparent across all trials conducted in this work and indicates that the condition for convex clusters is

being sought out during the optimisation process. Meanwhile, however, it is not clear whether the performance of

DBSCAN falls owing to its parameters or the method itself. This is a point where parameter sweeping would prove

most useful so as to determine a crossing point for these two driving forces.

Now, to add to the discussion above, the inverse optimisation should be considered. That is, using the same

parameters, the datasets for which DBSCAN outperforms k-means with respect to the silhouette coefficient are to

be investigated. This is equivalent to using − f as the fitness function except with the same penalty of ∞ for the

case set out in (6).

Figures 13 and 14 show the same summary as above with the revised fitness function. Inspecting the former,

it is seen that the best fitness found is worse than with the previous example. This, in part, is due to the fact that

k-means cannot find a clustering with negative values as no clusters may overlap. It can, however, produce results

with small silhouette scores where the clusters are tightly packed. Hence, the best fitness score is now −1 whereas

the worst is 2, still.

Note in the first two frames of Figure 14a how k-means is forced to split what is evidently a single cluster in two

whereas DBSCAN is able to identify the single cluster and the outlying noise (Figure 14b). The proximity of these

clusters has then dragged the silhouette score down for k-means. Referring to Figure 14b, this kind of behaviour is

certainly preferable for DBSCAN under these parameters: the beginning individuals are likely random clouds (as

seen in the rightmost two frames of the figure) and the simplest step toward a fit dataset is one that maintains that

vaguely dense body with minimal noise points far from it.

As has already been stated, the software implementation of the EDO method has been produced in line with the

best practices of open source software development and reproducible research. In aid of this, all of the source code

used in these examples (including to create the figures) has been archived under the DOI 10.5281/zenodo.3492236.

Likewise, all of the data produced to support this case study have been archived under the DOI 10.5281/zen-

odo.3492228.
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Figure 13: Progressions for difference in silhouette (DBSCAN-preferable) and dimension across 1000 epochs at
100 epoch intervals.
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Figure 14: Representative individuals from a DBSCAN-preferable run with clustering by: (a) k-means; (b) DB-
SCAN. Concave and convex hulls illustrated by shading and outline respectively.
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4 Conclusion

In this paper we have introduced a novel approach to understanding the quality of an algorithm by exploring the

space in which their well-performing datasets exist. Following a detailed explanation of its internal mechanisms,

a case study in k-means clustering was offered as validation for the proposed method. The method was able to

reveal some known results without prior knowledge when investigating k-means in several scenarios, and again

when comparing k-means and another leading clustering method, DBSCAN.

The method itself utilises biological operators to traverse a potentially broad region of the space of all possible

datasets. This is done in an organic way with a minimal external framework attached. The generative nature of the

proposed method also provides transparency and richness to the solution when compared to other contemporary

techniques for artificial data generation as the entire history of individuals is preserved. While other search and

optimisation methods exist, the decision to use an EA here was down to this transparency and the ease with which

to implement biological operators that are both meaningful and easily understood.

The Evolutionary Dataset Optimisation method is dependent on a number of parameters set out in this work

one of which is the choice of distribution families, P; these families go on to define the general statistical shape

of the columns of the datasets that are produced and also control the present data types. The relationship between

columns and their associated distribution is not causal and appropriate methods should be employed to understand

the structure and characteristics of the data produced before formal conclusions are made as set out in the case

study provided.

It is known that EAs might terminate at a local optimum and may not be able to traverse the entire sample

space [35], or even a sufficient part of it. This would be even more problematic in the case presented in this work

where the sample space is not even of a fixed size or data type. In all experiments carried out for this work, this

theoretic limitation has not arisen. Figure 15 shows an exploration of the sample space and it is evident that the

EDO method was able to explore a large proportion of it. In the early stages, it is also clear here how the EA got

stuck in small parts of the search space before later moving toward a subregion of the unit square.

Although this does provide evidence to say that the EA’s current design can sufficiently explore its given search

space, it does not provide any guarantee that this will happen, even in expectation. Proving this theoretically is an

area for further investigation.

Something that does stand against EAs is their tendancy to find the ‘easy’ way out. That is, reducing down to

the simplest solution which solves the given problem. In most cases, that is not a problem and is often, in fact,

favourable. Throughout the case study provided, this is seen to happen. Figure 15 shows this behaviour again by

the strong diagonal region in later generations. In that particular example, the easiest solution for the EA (i.e. for

k-means to outperform DBSCAN) was to collapse one dimension of the search space to make the problem one-

dimensional. This kind of behaviour is not necessarily a bad thing as trivial, basic and simple cases are of great

importance when understanding an algorithm’s quality.

However, should that be a problem, then the objective function could be adjusted accordingly. In the case

study, several iterations of fitness functions were examined but each was adjusted by hand according to what

was apparent at the time. Due to the architecture of the implementation of this method, this could be done in

practicality. For instance, a similar strategy could be employed automatically by a more sophisticated fitness

function that retains some information about the datasets generated from previous runs of EDO on a particular
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(or at least similar) parameter set. In this way, the currently completely unsupervised learning conducted by the

EA could be ushered away from less helpful solutions (via some penalty, say) and toward previously unexplored

behaviours. This automatic, iterative application of the proposed method would likely reveal more sophisticated

insights into a particular algorithm.

In essence, the proposed method is merely a tool that demonstrates the benefit of the flipped paradigm set out

in this work. The concept of where ‘good’ datasets exist is not something that is well-documented in literature and

the hope of this work is that Evolutionary Dataset Optimisation acts as a starting point for further works to come.
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A Appendix

A.1 Lloyd’s algorithm

Algorithm 8: k-means (Lloyd’s)
Input: a dataset X , a number of centroids k, a distance metric d

Output: a partition of X into k parts, Z

begin
select k initial centroids, z1, . . . ,zk ∈ X

while any point changes cluster or some stopping criterion is not met do
assign each point, x ∈ X , to cluster Z j∗ where:

j∗ = argmin
j=1,...,k

{
d (x,z j)

2
}

recalculate all centroids by taking the intra-cluster mean:

z j =
1
|Z j| ∑

x∈Z j

x

end
end

A.2 Implementation example

Below is an example of how the Python implementation was used to complete the first example, including the

definition of the fitness function.

import edo

from edo.pdfs import Uniform

from sklearn.cluster import KMeans

def fitness(dataframe , seed):

""" Return the final inertia of 2-means on the ‘dataframe ‘

for the given ‘seed ‘. """

km = KMeans(n_clusters =2, random_state=seed).fit(dataframe)

return km.inertia_

Uniform.param_limits["bounds"] = [0, 1]

pop_history , fit_history = edo.run_algorithm(

fitness , size =100, row_limits =[3, 100], col_limits =[2, 2],

families =[ Uniform], max_iter =1000, best_prop =0.2,

mutation_prob =0.01 , seed=0, root="out",

fitness_kwargs ={"seed": 0},

)
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