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Cognitive Control and Automatic Interference in Mind and Brain:
A Unified Model of Saccadic Inhibition and Countermanding

Aline Bompas, Anne Eileen Campbell, and Petroc Sumner
Cardiff University

Countermanding behavior has long been seen as a cornerstone of executive control—the human ability
to selectively inhibit undesirable responses and change plans. However, scattered evidence implies that
stopping behavior is entangled with simpler automatic stimulus-response mechanisms. Here we opera-
tionalize this idea by merging the latest conceptualization of saccadic countermanding with a neural
network model of visuo-oculomotor behavior that integrates bottom-up and top-down drives. This model
accounts for all fundamental qualitative and quantitative features of saccadic countermanding, including
neuronal activity. Importantly, it does so by using the same architecture and parameters as basic visually
guided behavior and automatic stimulus-driven interference. Using simulations and new data, we
compare the temporal dynamics of saccade countermanding with that of saccadic inhibition (SI), a
hallmark effect thought to reflect automatic competition within saccade planning areas. We demonstrate
how SI accounts for a large proportion of the saccade countermanding process when using visual signals.
We conclude that top-down inhibition acts later, piggy-backing on the quicker automatic inhibition. This
conceptualization fully accounts for the known effects of signal features and response modalities
traditionally used across the countermanding literature. Moreover, it casts different light on the concept
of top-down inhibition, its timing and neural underpinning, as well as the interpretation of stop-signal
reaction time (RT), the main behavioral measure in the countermanding literature.
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There is a long tradition in psychology and neuroscience of
drawing a conceptual distinction between “top-down” volitional
processes and “bottom-up” automatic responses. However, this
does not mean there is a clear distinction in the brain. Nor is it

likely that any behavior produced by any elaborate animal is
entirely bottom-up or top-down in nature. Rather, one can envisage
an enmeshed relationship whereby increasingly selective or “vol-
untary” systems have grown out of, and remain entwined with,
phylogenetically older automatic mechanisms (see Harrison, Free-
man, & Sumner, 2014; McBride, Boy, Husain, & Sumner, 2012;
Sumner & Husain, 2008; Verbruggen, Best, Bowditch, Stevens, &
McLaren, 2014; Verbruggen & Logan, 2008; Wessel & Aron,
2017). Conceptually, several fields are moving away from the idea
of an “executive controller,” and working toward characterizing
the “army of idiots” that allow successful action control (Monsell
& Driver, 2000; Verbruggen, McLaren, & Chambers, 2014).

Here we address a long-standing topic in top-down control: the
ability to withhold action. Just as music is about the spaces as well
as the notes, behavior is about the actions we do not make as well
as the actions we do make (Logan, Yamaguchi, Schall, & Palmeri,
2015; Noorani & Carpenter, 2017; Schall, Palmeri, & Logan,
2017). Clearly, humans are able to control their motor systems and
refrain from always acting reflexively, habitually, or impulsively.
We have the flexibility to halt and change action plans in rapidly
changing situations, such as sport, social interactions, or driving a
car. The precise mechanisms that might enable us to do this have
been a major focus of psychology and cognitive neuroscience.
Although stopping behavior has always been broadly conceptual-
ized as top-down control, a range of stimulus-driven or habitual
influences were envisaged early on (Hanes & Schall, 1995; Logan
& Cowan, 1984; Schall & Thompson, 1999), before being further
discussed and demonstrated (Schmidt & Berke, 2017; Verbruggen,
Best, et al., 2014; Verbruggen, McLaren, et al., 2014; Wessel &
Aron, 2017).
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Here we build on this nuanced background and make three
further contributions. Focusing on the ability to withhold eye-
movements, we identify the critical first phase of stopping with a
known but previously unconnected automatic interference mech-
anism. Second, we argue that the ability to withhold action can be
best understood through models that clearly delineate two types of
signal with different origins and dynamics, the first being a tran-
sient automatic drive triggered by any change in the visual envi-
ronment. These automatic signals interfere with ongoing action
plans, temporarily delaying their execution, buying time for slower
and more selective drives to cancel or change the plan. Third,
understanding the neural underpinnings of decision then shifts
from mainly focusing on move neurons to including sensorimotor
neurons, given that the successful model is an implementation of
the latter.

Animal brains are full of inhibitory connections (see Noorani &
Carpenter, 2017 for a review), many of which can be considered
very basic and automatic properties of neural maps or local net-
works. We believe these low-level mechanisms critically shape
behaviors traditionally ascribed to top-down control and, in some
conditions, even form the main basis for well-known hallmarks of
“control” behavior. Even though they may be rather indiscriminate
and simple, the potential advantage of stimulus-driven inhibitory
circuits would be their speed—a quick interruption allowing
slower more complex processes time to update action plans (e.g.,
Schmidt & Berke, 2017). If we can understand how automatic,
rapid, and indiscriminate mechanisms work within tasks associated
with top-down control, it should help us unify literatures on control
and distraction (e.g., Wessel & Aron, 2017) and also better inte-
grate the functional consequences of basic sensorimotor processes
with concepts of higher cognitive functions.

Computational models are important tools to develop and test
our understanding of these mechanisms. In recent years, their
number and complexity have increased, with models becoming
more biologically grounded, attempting to capture not only behav-
ioral data, but also neuronal recordings (Bompas, Hedge, & Sum-
ner, 2017; Bompas & Sumner, 2011; Boucher, Palmeri, Logan, &
Schall, 2007; Cutsuridis, Smyrnis, Evdokimidis, & Perantonis,
2007; Kopecz, 1995; Lo, Boucher, Paré, Schall, & Wang, 2009;
Logan et al., 2015; Meeter, Van der Stigchel, & Theeuwes, 2010;
Purcell et al., 2010; Ramakrishnan, Sureshbabu, & Murthy, 2012;
Shadlen, Britten, Newsome, & Movshon, 1996; Trappenberg, Dor-
ris, Munoz, & Klein, 2001; Wiecki & Frank, 2013). However, the
focus on different tasks, animal models, and anatomical subsys-
tems has led to partly segregated subfields in the literature, and
sometimes to the parallel development of distinct models attempt-
ing to capture different instantiations of similar cognitive func-
tions. As a result, most current psychological models have been
designed and constrained to capture mainly one task, and the
generalizability to new tasks is not often tested. Although this
limitation is inevitable in the early days of biologically inspired
computational models of action decision, a desirable perspective
for the field would be to move away from modeling tasks and start
modeling the biological system trying to perform it. To achieve
this, a first step is to draw modeling attempts together and develop
more general models, ultimately able to predict human or animal
behavior in new experimental conditions.

Stopping

A prevalent paradigm of top-down inhibition used widely within
the psychological, psychiatric and neurophysiological literatures is
“countermanding,” epitomized by the stop signal task (Logan &
Cowan, 1984; Noorani & Carpenter, 2017). Participants make
simple responses to the presentation of a target and, on a minority
of trials, are required to cancel (“countermand”) their response
following the onset of a stop-signal (Figure 1A). Hence, this task
is designed to assess the volitional ability to rapidly inhibit re-
sponses that are already being planned.

The process of such top-down inhibition has long been concep-
tualized as a race between competing “go” and “stop” mechanisms
within the independent horse-race model (Logan & Cowan, 1984).
If the countermand activity can overtake the go activity, then the
response is not executed; whereas if the go activity reaches its
threshold before the stop-response activity overtakes it, then the
response is executed (known as a failed stop). Failed stops tend to
have short latencies with respect to the stop signal, consistent with
the idea that top-down inhibition did not have sufficient time to
act.

Countermanding tasks have used a variety of response modali-
ties and stimulus designs, but the basic principles of design and of

Figure 1. Typical design (above) and results (below) in the saccadic
stop-signal task (SST, panel A) and saccadic inhibition (SI, panel B)
paradigms. Both paradigms involve a stimulus jump from center to pe-
riphery, sometimes followed by the onset of a central signal (right sub-
panels above, black lines below), sometimes not (left subpanels, gray
lines). The signal onset time is indicated by vertical green lines and the
delay between the target jump and the signal is referred to as the stimulus
onset asynchrony (SOA). The two tasks differ in the instruction associated
with the signal onset: withhold the saccade in the SST, ignore the signal
and perform the saccade in the SI. A. Instructions to stop remove slower
responses from the RT distribution, but fast responses escape (“failed
stops”). B. The same visual events associated with an ignore instruction
typically produce a dip in the latency distribution, where saccades are
delayed and subsequently recover, so that the total number of saccades are
about the same between signal present and no-signal distributions. We
propose that on trials where participants are told to stop their saccade in
response to the signal onset (A), the initial reduction in saccade probability
has the same automatic source and therefore will happen at the same time
as the dip in the ignore condition (B), but the recovery from the dip will be
diminished or absent due to later top-down inhibition. See the online article
for the color version of this figure.
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behavioral outcomes are shared. The saccade (eye movement)
countermanding task (Hanes & Schall, 1995) has been the domi-
nant modality for monkey experiments, and has allowed the bridg-
ing of psychology and neurophysiology through the development
of biologically inspired computational models. The conceptual
race between go and stop processes was then mapped onto more
complex models capturing the neural architecture of the saccadic
control network (Boucher, Palmeri, et al., 2007; Lo et al., 2009;
Ramakrishnan et al., 2012; Schall et al., 2017; Wong-Lin, Eckhoff,
Holmes, & Cohen, 2010), implementing an antagonistic relation-
ship between fixation and movement processes (Hanes, Patterson,
& Schall, 1998; Munoz & Wurtz, 1993a, 1993b). This develop-
ment allowed models to take a more nuanced approached to
“top-down” signals, wherein the stop signal becomes partly a
visual drive to fixation neurons (Lo et al., 2009; Logan et al., 2015;
Wong-Lin et al., 2010). Indeed, this dual effect captures preexist-
ing discussions that saccade countermanding using a central visual
stop-signal might reflect a combination of automatic visual as well
as top-down volitional inhibition, possibly due to stimulus-
invoked activity of fixation cells of the superior colliculus (SC;
Cabel, Armstrong, Reingold, & Munoz, 2000; Morein-Zamir &
Kingstone, 2006; Schall & Thompson, 1999).

At the same time, behavioral evidence has accumulated that
low-level visual effects modulate most visuo-oculomotor behavior,
even stopping behavior. After Hanes and Schall (1995) noted in
discussion that the intensity of the stop-signal can influence stop-
ping ability, alterations to the stimuli were seen to affect the main
outcome measure—the stop signal reaction time (SSRT)—across
all types of countermanding tasks. For example a central visual
signal provides a shorter SSRT than an auditory signal or a
peripheral visual signal (Armstrong & Munoz, 2003; Asrress &
Carpenter, 2001; Boucher, Stuphorn, Logan, Schall, & Palmeri,
2007; Cabel, Armstrong, Reingold, & Munoz, 2000; Hanes &
Carpenter, 1999; Hanes et al., 1998; Hanes & Schall, 1995; Ito,
Stuphorn, Brown, & Schall, 2003; Morein-Zamir & Kingstone,
2006; Paré & Hanes, 2003; Stuphorn, Taylor, & Schall, 2000). In
addition, introducing a 200-ms gap between fixation offset and
target onset can reduce both RT and SSRT (Stevenson, Elsley, &
Corneil, 2009). Last, in a related task requiring a change of saccade
direction rather than stopping, the “target step reaction time” was
influenced by the salience of the target change (Camalier et al.,
2007).

Below we take a step further, proposing that the most charac-
teristic part of rapid saccadic countermanding is initially entirely
automatic, with slower endogenous signals built on top of rapid
automatic disruption. We will argue that, in order to understand the
interplay of volition and automaticity within a task or behavior, it
is actually helpful to start with a model in which they are articu-
lated separately as distinct inputs.

Pausing and Carrying On

In oculomotor behavior, new stimuli produce a hallmark phe-
nomenon known as saccadic inhibition (SI; Bompas & Sumner,
2011; Buonocore & McIntosh, 2008, 2012; Buonocore, Puro-
kayastha, & McIntosh, 2017; Edelman & Xu, 2009; McIntosh &
Buonocore, 2014; Reingold & Stampe, 2002, 2004). SI was first
discovered in the context of reading (hence the name, to distin-
guish it from latency effects due to word processing). It happens

under most scenarios in which a flash or new stimulus occurs
while the system is planning a saccade, whether when reading text,
viewing a scene, in simple saccade experiments and even in
optokinetic and infantile nystagmus (Harrison et al., 2014). When
these irrelevant stimuli occur during saccade planning, a popula-
tion of would-be saccades is temporarily withheld, creating a dip
in the latency distribution time-locked to the onset of this distractor
signal (Figure 1B). This inhibition is thought to be a purely
automatic process where the distractor elicits competing activation
in saccade planning areas (such as the superior colliculus) that
limits the accumulating activity for the planned saccades (Bompas
& Sumner, 2011; Edelman & Xu, 2009; Reingold & Stampe,
2002). The evidence that it is automatic comes from its ubiquitous
appearance across all tasks and all participants tested, even when
participants have explicit instructions to ignore new stimuli, and
not doing so is detrimental to the task at hand.

SI is therefore identified by a characteristic latency distribution
with three phases following the distractor signal (Figure 1B): First,
70–100 ms saccades entirely escape influence and are executed as
usual (the distribution of saccades with or without signal exactly
overlap); then there is a dip—a reduction in the number of sac-
cades produced compared with baseline conditions (with no sig-
nal); lastly there is a recovery phase where the disrupted saccades
are produced later in the distribution.

Volitional countermanding and automatic saccadic inhibition
have so far been discussed in separate literatures and have
different computational models associated with them. However,
the only important difference between the two paradigms is the
instruction associated with the signal: ignore in SI and stop in
countermanding (Figure 2A). And indeed, we note that the first
part of the latency distributions typical of both phenomena
show a similar pattern: Failed stops executed shortly after the
signal escape inhibition and then, at some delay following the
signal, there is a rapid reduction of response probability. In our
hypothesis, this is the very same automatic dip as seen in SI.
More selective control could then evolve later to inhibit the
recovery phase, piggy-backing on the process begun by the
automatic mechanism.

This kind of hypothesis has been proposed before, but never
formally tested (Akerfelt, Colonius, & Diederich, 2006; E.
Salinas & Stanford, 2018). It shares conceptual similarity with
the pause-then-cancel theory (Schmidt & Berke, 2017) derived
from studying basal ganglia in rats (although the specific con-
cepts and implementations are different as explained further in
Discussion section). We also consider it belongs in a growing
family of proposals attempting to integrate processes tradition-
ally categorized as either volitional or reflexive. For example,
Wessel and Aron (2017) propose that rapid stopping in humans
entails the same fronto-basal-ganglia network that disrupts mo-
tor plans following unexpected events, potentially unifying
literatures on countermanding with post-error slowing and at-
tentional distraction in humans. Although Wessel and Aron’s
(2017) theory is at the cognitive level, while ours is a mecha-
nistic model of oculomotor planning, both carry the implication
that countermanding is built on top of—and during evolution
has grown out of—an indiscriminate response to novel visual
stimuli. Likewise in the domain of motor priming, Sumner and
Husain (2008) argued that automatic inhibition is one of the
building blocks for conscious voluntary planning and control,
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while others merged the concepts of reflex and volition in the
concept of conditional automaticity (see Kunde, Kiesel, &
Hoffmann, 2003 for a discussion). Back in the oculomotor
domain, Harrison, Freeman, and Sumner (2014) proposed that
voluntary saccade control shares mechanisms with, and proba-
bly emerged in evolution from the quick phases of stimulus-
driven nystagmus.

Contrasting and Merging Models

The computational models of countermanding and saccadic
inhibition, while currently separate, are both biologically grounded
and inspired by neuronal recordings. In fact, they share many
properties. This being said, they also rely on fundamentally dif-
ferent assumptions. It therefore appears desirable to contrasts these

Figure 2. Inputs to blocked input 2.0 and 200N-Dinasaur for each task condition, based on published versions (blue
shaded areas; Bompas & Sumner, 2011; Logan et al., 2015) or parsimonious generalizations to new conditions (red
shaded areas, using SOA � 83 ms as in the new experiments introduced below). A. Schematic task conditions (see
Figure 1 for description). B. Blocked input 2.0 was originally designed for the stop task encompassing the no-signal
and signal-stop conditions (blue shade). In the most parsimonious generalization to the ignore instructions (red shade),
the late “blocking” of move input does not occur (black line), just as in no-signal conditions, while the stimulus onset
reactivates fixation input (blue line) just as in the signal-stop condition. C. 200N-DINASAUR was shown to capture
saccadic inhibition (no-signal � prosaccade; signal-ignore � distractor condition; blue shade). Out of the 200 nodes,
here only the fixation and target nodes are shown. The model categorizes inputs as exogenous (stimulus-elicited and
transient, upper plots) or endogenous (instruction-related and sustained, lower plots). A straightforward generalization
to the stop instruction (red shade) is to assume the exogenous inputs are unchanged, while the endogenous input
switches from the target back to fixation, like in blocked input 2.0. Note that in blocked input 2.0, this switch is not
simultaneous: Fixation drive reappears before move drive is blocked to allow for the extra rapidity of a stimulus-
driven response. In DINASAUR, the exogenous input already accounts for the rapid stimulus-elicited activity, so
parsimoniously the endogenous switch can be simultaneous: The onset of endogenous fixation drive is given the same
delay as the offset of endogenous saccade drive. SOA � stimulus onset asynchrony. See the online article for the color
version of this figure.
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models and use both paradigms to constrain a common model, able
to capture both tasks. Below we outline how these differences may
affect the ability for models to generalize across tasks.

The latest model for countermanding is the blocked input 2.0
model (Logan et al., 2015). In this model (Figure 2B), the visual
onset of the “stop signal” is proposed to trigger two events: a quick
return of sustained excitatory input to fixation node, followed by a
blocking of the excitatory input to the movement node. While the
second element is clearly described as top-down in nature, the
short latency of the first event is strongly suggestive of a
bottom-up nature. More generally, in all recent models of saccadic
countermanding (Lo et al., 2009; Logan et al., 2015; Wong-Lin et
al., 2010), fixation and movement neurons receive inputs tightly
tied to the visual stimuli (targets and stop-signals), with onsets and
offsets leading to step changes some 35 to 50 ms later. These
changes typically precede inputs emanating from control neurons
whose role is to cancel the action plan. However, we would argue
that the early visually driven signals conceptually merge two types
of influences to decision: bottom-up and goal-driven inputs, as
explained below.

Other models, previously developed to capture visual interfer-
ences in saccadic decision, more explicitly model the bottom-up
signal as an automatic transient (i.e., they happen irrespective of
the task and rapidly decay; Bompas & Sumner, 2011; Kopecz,
1995; Kopecz & Schöner, 1995; Trappenberg et al., 2001). As
such, they mimic signals typically observed in anesthetized animal
(Schmolesky et al., 1998) or in response to task-irrelevant distrac-
tors (Dorris, Olivier, & Munoz, 2007). In contrast, endogenous
drives are captured as sustained inputs and depend on stimulus-
response mapping. Therefore, in these models, a visual onset that
is also task-relevant (such as the target onset) would trigger both a
fast, transient input and a slower sustained input. The model nodes
integrate these two pathways and therefore behave like visuo-
movement neurons. Recordings in visuomovement frontal eye
field (FEF) and SC neurons of monkeys performing a visuo-
oculomotor task under a speed or accuracy condition (Reppert,
Servant, Heitz, & Schall, 2018) show that the delay of the early
visual response is unaffected by strategic adjustments (see also
Heitz & Schall, 2012). Similarly, the amplitude of the early visual
response does not appear to vary in SC (Reppert et al., 2018),
although in some FEF and supplementary eye field (SEF) neurons
it does (Heitz & Schall, 2012; Reppert, Heitz, & Schall, 2019).
Target selection time, on the other hand, is modulated robustly by
instruction in all parts of the network. Therefore the parsimonious
expectation under this dual-route modeling framework would be
that the instruction to ignore or stop to the signal would mainly
modulate the slower sustained input, while the delay and amplitude
of the fast transient input would be the same or similar across
conditions.

In contrast, in all models of saccade countermanding, signals
conceived as visually driven change with onsets and offsets, like
automatic signals, but are sustained for the whole duration of a
stimulus, like goal-filtered signals in response to task-relevant
stimuli. As a result, bottom-up and top-down inputs are tied into
one stream and their modulations by visual events and instructions
cannot be directly disentangled. This conceptualization is aligned
with the assumption that decisions are most closely related to the
activity within movement neurons, rather than within visuomove-
ment neurons. Movement neurons in FEF and SC do delay the

onset of their response on trials following stop-signals compared
with trials following go-trials, consistent with strategic adjust-
ments leading to behavioral slowing between these two conditions
(Pouget et al., 2011). Similarly, under this conceptualization, the
early adjustments in response to the signal could reflect task-
related drives (or a mixture of automatic and task-related influ-
ences), and may therefore be different depending on whether the
instruction is to ignore or stop to the signal.

Here, we hypothesize that releasing the assumption that de-
cision is best captured by movement rather than visuomovement
neurons would allow a more general understanding of the
relationship between automatic and volitional influences in
decision and facilitate model generalization across tasks. We
propose to translate the insights gained from the countermand-
ing modeling literature into the modeling framework that has
been successful in accounting for saccadic inhibition (Bompas
& Sumner, 2011). In this model, visuo-oculomotor decision is
explicitly mapped onto the activity of visuomovement neurons,
receiving distinct influences of transient automatic and sus-
tained goal-directed inputs. This separation adds versatility at
the cost of mathematical elegance. However, perhaps counter-
intuitively, although this approach introduces more parameters,
it also allows a more constrained and conservative approach to
prediction and testing, because it clarifies which parameters
should not be allowed to change between different tasks, for
instance when only varying the stimuli or only the instructions.
Importantly, this model was not originally developed to capture
saccadic inhibition, but it readily did so when tested against the
relevant experimental conditions. It was designed to account for
other typical aspects of oculomotor control, including express
saccades, antisaccades, variation of target probability, and the
gap effect, using the basic characteristics of exogenous and
endogenous neural signals and lateral inhibition in the interme-
diate layers of the SC (Trappenberg et al., 2001). Although
originally based on superior colliculus, the model architecture
is also more general because similar behavioral phenomena and
model principles extend to manual responses (Bompas et al.,
2017).

In the Model exposition and predictions section, we first employ
the latest models applied respectively to the stop task and saccadic
inhibition and test the direct generalizability of each model to the
conditions to which it had not been previously applied, using
changes to inputs consistent with the internal logic of each model
and as inspired by the alternative model. We do this both to learn
how different implementations of bottom-up and top-down signals
map onto existing behavioral and neuronal data, and to derive
testable hypotheses.

From this initial exercise, we learn that separate transient and
sustained signals are important, and we make two key predic-
tions to test empirically. First, if decision dynamics are indeed
best captured by visuomotor neurons, the early interference
effects should be the same whether the instruction is to stop or
ignore the signal. More specifically, the time at which the two
distributions (in the presence and absence of signal) depart
should be aligned across tasks. To confirm this, we designed three
experiments combining saccade countermanding and saccadic in-
hibition paradigms using the same stimuli and participants but
varying the instruction (sections Empirical data – Methods and
Empirical data – Results).
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The second prediction is that, when using a model appropri-
ately distinguishing automatic and selective drives, stopping
behavior should be predictable from the parameters obtained
from basic oculomotor behavior: We should not need a new
top-down element for countermanding, and we should not need
to fit the model to the stopping behavior itself. To test this, we
extract the parameters from the conditions with simple saccades
and saccadic inhibition (or inherit them from previous work),
and we then test whether behavior in the stopping condition
naturally follows (section Modeling Results). It is worth em-
phasizing this point, because a generalizable model is bound to
have multiple parameters. Crucially we do not allow them to
vary when transferring across tasks.

Model Exposition and Predictions

In this section, we first describe the best current models for
saccadic countermanding and saccadic inhibition. Using pub-
lished parameters from two separate studies, we simulate RT
distributions from each model under the condition it has mod-
eled before, as well as the alternative condition. We are testing
whether each model qualitatively captures the shapes of the
distributions in each task, as shown in Figure 1 (because we are
inheriting parameters from different literatures, we do not use
quantitative measures at this stage). To illustrate the key prop-
erties allowing a model to capture both response distributions,
we then describe how the least generalizable model is improved
by inheriting a property from the most generalizable one, that
is, an explicit dissociation between transient automatic and
sustained goal-related inputs. We then present the simulated
firing rates from each model in the countermanding task, em-
phasizing their similarity with neuronal recordings inspiring
previous models of countermanding (Boucher, Palmeri et al.,
2007; Lo et al., 2009; Logan et al., 2015). Last, we derive two
empirical predictions to be tested in the following sections.

Blocked Input 2.0

This model was developed to capture the stop signal task and is
described in Logan, Yamaguchi, Schall, and Palmeri (2015). Al-
though this model provides a similar fit to behavioral data as the
simpler independent race model (or equally complex alternative
models, see Logan et al., 2015), it better reflects the pattern of
activity recorded in fixation and movement neurons within the
frontal eye field of monkeys performing the stop-signal task. Being
closer to the neuronal implementation of saccade planning opens
the door to an increased ability to generalize to new tasks in ways
that can be tested by both behavior and neurophysiology. Blocked
input 2.0 is a leaky accumulator with two nodes, representing the
fixation and movement options, which are mutually inhibitory
(Figure 2B). The go-signal is associated with a switch of input
from the fix to the move node, occurring shortly after target onset
(Dmove and Dfix both less than 50 ms, here grouped as a single
parameter D as they turned out to be numerically almost identical).
The stop signal triggers two additional events: The fixation node
quickly receives excitatory input again (following about the same
delay D), then the input to the move node is switched off
(“blocked”) by a stop module (some Dcontrol delay after the signal;
see Figure 2B right-hand blue panel). Node activity a directly

maps onto firing rate, and evolves over time according to the
following equation:

�
dai

dt � �ki · ai(t) � �i � �j · aj(t) � N(0, �)

with i being either fixation or move node and j being the other
node, k representing leakage, � the intensity of inputs projecting
from other areas, � the weight of inhibition from the other node,
and � the amplitude of normally distributed noise added indepen-
dently to each time step.

The most straightforward generalization of the model to the
ignore instruction is to assume that visual inputs should be the
same irrespective of the instruction, and only control inputs
would be allowed to change. Thus, the presence of the signal
requires fixation input to return identically as in the stop con-
dition, while the absence of the instruction to stop requires that
move input is not blocked (Figure 2B, red shaded panel). By
default, we will assume that visual delays are unaffected by
instruction, as we are not making quantitative latency compar-
isons in this section (we return to the question of visual delay
below).

200N-DINASAUR

This model was initially developed by Trappenberg, Dorris,
Munoz, and Klein (2001) to extract and simplify key features of
the SC based on both known neurophysiology and established
principles of leaky interactive accumulators (Usher & McClelland,
2001). Subsequently, Bompas and Sumner (2011, 2015) and Bom-
pas, Hedge, and Sumner (2017) showed that it predicted the
characteristic dips of saccadic inhibition (the model is conceptu-
ally similar to the explanation given for saccadic inhibition by
Reingold & Stampe, 2002), and in return these dips directly
specify the delay time for exogenous input.

200N-DINASAUR shares many features with blocked input as
both are noisy leaky competing accumulators. DINASAUR has
200 nodes representing the horizontal dimension of the visual
field, and the average spiking rate Ai of neuron i is a logistic
function of its internal state ui:

Ai(t) � 1 ⁄ (1 � e��ui(t))

while ui varies across time t depending on normally distributed
noise as well as the input received, either external to the map
(endogenous or exogenous) or internal via lateral connections:

�
dui

dt � �kui(t) � 1
n�j

	ijAj(t) � Ii
exo(t) � Ii

endo(t) � N(0, 
)

A key aspect of DINASAUR is that visual events can trigger
two types of inputs: exogenous inputs (transients tied to visual
changes) and endogenous signals (later, sustained and linked to the
instructions). Of course, this is still a gross simplification of the
many sensory pathways (exogenous) and other pathways (endog-
enous) that feed oculomotor planning. Endogenous inputs vary as
step functions (similar to inputs in the blocked input models),
while exogenous inputs are transient, reaching their maximal am-
plitude (aexo) at t � tonset � �vis, and then decreasing exponentially
as a function of time, according to the following equation:
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�on
dIi

exo

dt � �Ii
exo(t) � aexo.

Exogenous inputs are tied to visual stimuli (e.g., targets, dis-
tractors, or stop signals) and our key assumption is that their
properties (delay, strength, temporal profile) are not affected by
instructions. Exogenous inputs also allow the model to produce
express saccades (early mode at 70–110 ms on Figure 3B, D). All
inputs have Gaussian spatial profiles (with SD �). They are max-
imal at the targeted nodes but also affect nearby nodes. Lateral
connections show a Gaussian spatial profile that changes from
positive (excitation) at short distance to negative (inhibition) at
longer distance, described by the following equation:

	ij � (Act � Ihn) � exp��
Dij

2

2�2�� Inh

In 200-DINASAUR, the no-signal condition is characterized by
a single exogenous (visual) transient from target onset (occurring
�vis after target onset), shortly followed by a switch of endogenous
support from fixation to target (�endo after target onset). The

signal-ignore condition differs from the no-signal condition solely
by the presence of a second visual transient, triggered by the signal
appearing (the instruction being the same, no alteration of the
endogenous inputs is assumed).

To generalize the model to signal-stop conditions, we assume
that only the endogenous input should differ from the signal-
ignore condition, because the visual display is identical and
only the instructions differ. Following the logic of blocked
input 2.0, the endogenous input to the target is switched off
(blocked) �endo after the stop-signal, while the endogenous
input to the fixation is switched on again. This amendment is
fully consistent with the way endogenous signals are typically
switched on and off in the DINASAUR model. Although the
timings of these two events could in theory be free parameters
and differ between peripheral and central nodes, in this section
we use for parsimony a single �vis parameter inherited from the
signal-ignore condition, and a single �endo parameter for both
target and fixation nodes (with the delay between �vis and �endo

inherited from previous work). Importantly, there is no need for

T0 T0

Figure 3. Simulated RT distributions from 10,000 trials using blocked input 2.0 (A, C) and 200N-DINASAUR
(B, D) for signal onset (green line) at SOA 83 ms. Blue shaded areas indicate those instantiations of each models
as published. Red shaded areas indicate predictions for new conditions based on the assumptions described in
Figure 2. The DINASAUR model (with blocked input for stopping) captures well the typical pattern of results
obtained in both paradigms. Blocked input 2.0 (with automatic fixation activity for ignore conditions) is not able
to produce the sharp dips expected from the saccadic inhibition literature (but see blocked input 3.0 and Figures
4–5). Both models predict a perfect alignment across instructions of the time when the signal RT distribution
(black) departs from the no-signal RT distribution (gray), indicated by the blue dots (T0) and highlighted by blue
vertical bars. Note that the difference in mean and variance of the RT distributions between the models simply
reflects the parameters inherited from previous publications; they have never been fitted to the same behavioral
distributions. Relatedly, the position of T0 (blue dots) relative to the baseline distribution merely depends on
where that distribution lies relative to signal onset (the SOA). The important aspect here is generalization ability
of each model across instructions. See the online article for the color version of this figure.

7UNIFYING SACCADIC INHIBITION AND COUNTERMANDING



this fixation drive to come back early, because the early
stimulus-driven effect of any stimulus is already captured by
the exogenous signal.

Generalization to New Paradigms From Blocked Input
2.0 and 200N-DINASAUR

To test the generalization from both models to new tasks, we
inherit as many parameter values as possible from previous pub-
lications, and make changes only where dictated by stimulus
arrangement or the logic outlined above. For blocked input 2.0,
parameter values are given in Table 1 and come from Monkey C
in Logan et al. (2015) as its results were always shown first in their
article. Using parameters from Monkey A did not alter our con-
clusion in any respect. For DINASAUR, parameter values are
given in Table 2, and come from Bompas and Sumner (2011).

As expected, both models capture well the paradigm to which
they have been applied previously (blue shaded panels on Figure
3). When using the published parameters, the signal-ignore sce-
nario in blocked input 2.0 was not able to produce the character-
istic phenomenon of saccadic inhibition: dips in the distribution
(Figure 3A). Instead, the model predicts only a partial recovery
from the interference, leading to many saccades being inhibited
(51% for Monkey C, 78% for Monkey A), despite the instruction
to ignore. Clearly, the prolonged interference from the sustained
input triggered by the signal onset prevents the recovery of many
saccade plans. In contrast, integrating the main idea from blocked
input into the endogenous node within DINASAUR provides good
generalization between ignore and stop conditions (Figure 3B and
D). Despite these differences, we note that the time of early
interference (blue vertical line on Figure 3) is aligned across tasks
for both models. This directly derives from our assumption that
visual delay is not modulated by instruction and we will come back
to this in the Empirical prediction: universality of dip onsets
section.

Blocked Input 3.0

Although blocked input 2.0, like DINASAUR, contains both
visual and control inputs, it was unable to generalize to the ignore

instruction, at least not under the most straightforward assump-
tions. The main reason for this is the way visual signals are
conceived in the model. Currently, these are simply tied to the
presence of a stimulus in the neuron’s receptive field: They are on
shortly after the stimulus is on and remain on until shortly after the
stimulus goes off. As developed earlier, from the perspective of
DINASAUR, inputs like this resemble the sum of two separate
drives: fast transient inputs which would happen irrespective of the
task (exogenous), followed by sustained inputs related to the task
demands (endogenous). Here we hypothesize that the merging of
these two influences within one parameter stands in the way of the
generalization to the ignore condition, in which the same visual
events occur but are associated with a different instruction.

To illustrate this, we test a simple upgrade of the blocked input
2.0 model. Taking inspiration from DINASAUR’s ability to cap-
ture the saccadic inhibition paradigm, we introduce a similar split
between fast exogenous and slower selective signals into blocked
input, which now allows the amplitude of these two streams of
signal to vary independently as a function of the instruction. Figure
4 illustrates the relationship across all three models discussed in
the present article.

Table 3 presents the parameters specific to blocked input 3.0.
We first attempt to inherit all parameter values from blocked input
2.0, without adding any new free parameter. In order to leave the
no-signal distribution unchanged between blocked input 2.0 and
3.0, we set the duration of exogenous signals as the difference
between Dcontrol and D. Therefore, the inputs to the target node
following target onset are the same under both models (a step
function starting after delay D, Figure 5A–B). As can be seen on
the simulated RT distributions (Figure 5C), this variant improves
on blocked input 2.0 in that most saccades now recover from
distractor interference in the ignore condition, which is crucial to
observe dips, the hallmark of saccadic inhibition. The reason for
this improved recovery is that the bottom-up signal associated with
the return of fixation is now temporary (discontinued blue line on
Figure 5A), rather than sustained (compare with Figure 2B).

However, the simulated dip remains much shallower than in be-
havioral data. In blocked input 3.1, we therefore decoupled the am-
plitude of exogenous and endogenous signals, to allow the exogenous

Table 1
Model Parameters for Blocked Input 2.0 as Used in Figures 2 and 3

Name Description Stop Ignore

� Decay time constant (ms) 1
�move Inhibition from move node .004
�fix Inhibition from fix node .01
k Leakage .008
� Noise amplitude 1
�out Output time (ms) 10
�move Amplitude of inputs to move node .417
�fix Amplitude of inputs to fix node .331
D Delay of excitatory inputs to move and fix nodes (ms) 47
	 Decision threshold 28
Dcontrol Delay for blocking inputs in response to signal (ms) 90
�move-post Amplitude of inputs to move node after Dcontrol 0 �move

Note. Gray boxes indicate parameters that were inherited from Monkey C in Logan, Yamaguchi, Schall, and
Palmeri (2015), and correspond to the stop instruction. The only alteration is that, in the ignore condition, �move

remains up whether a signal appears or not (white box) but no new parameter is introduced.
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transient signals to be larger (continuous blue line on Figure 5A). For
instance, multiplying the exogenous signals by three creates much
larger dips, now comparable in amplitude to typical data observed in
saccadic inhibition. The stop condition would now also contain this

initial strong fixation signal, dropping back to the sustained level in
blocked input 2.0 after a short delay (Figure 5B). This slightly reduces
the number of failed stops (Figure 5F). This upgrade is reminiscent of
the boosted fixation model, also proposed (but less favored) in Logan

Table 2
Model Parameters for 200N-DINASAUR as Used in Figures 2 and 3

Name Description Ignore Stop

Eccdist Distractor eccentricity in SC (mm) 0
Ecctarg Target eccentricity in SC (mm) 1.76
� Steepness of spiking function .07
� Decay time constant (ms) 10
�on Transience of exo inputs 10
Act Short-range activation 40
Inh Long-range inhibition 55
� SD of spatial profile for lateral connections and

inputs in SC (mm)
.7

k Leakage 1

 Noise amplitude 50
Th Decision threshold .85
�out Output time (ms) 20
�vis Visual delay (ms) 50
�endo Endogenous delay (ms) 75
aexo Amplitude of exo inputs 80
aendo,target Amplitude of endo inputs to the target 14
aendo,fix Amplitude of endo inputs at fixation 10
aendo,target-post Amplitude of endo inputs to the target after SOA �

�endo in signal trials
aendo,target 0

aendo,fix-post Amplitude of endo inputs at fixation after SOA �
�endo in signal trials

0 aendo,fix

Note. SOA � stimulus onset asynchrony; SC � superior colliculus. Gray boxes indicate those parameters
unchanged from Bompas and Sumner (2011). The ignore condition is identical to previous work, except the distractor
is now central instead of opposite to the target. The stop condition differs from the ignore condition only in the
endogenous response to the signal onset (white boxes) but no new parameter is introduced.

Figure 4. Overview of models and their relationships. A. Blocked input 2.0 as in Logan et al. (2015). B.
Blocked input 3.0 integrates aspects of DINASAUR into blocked input 2.0 in an attempt to capture the
signal-ignore condition. Its inputs are split into two conceptually different streams: A fast and transient drive tied
to visual onsets (exogenous) and a slower sustained drive tied to instructions (endogenous). C.
200N-DINASAUR is a map of fully interconnected neurons representing part of the left, central, and right visual
fields, invented to capture simplified SC dynamics. The temporal dynamics of its exogenous signals (quick
growth and exponential decay) is a key factor for creating sharp dips and quick recovery. See the online article
for the color version of this figure.
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et al. (2015). However, contrary to boosted fixation, the extra fixation
drive here is only temporary.

Blocked input 3.1 confirms that splitting signals into distinct
transient exogenous and sustained endogenous drives is an
important property for allowing the model to capture new tasks.
Not only does this splitting allow us to decouple the amplitude
of both drives, but it also creates a straightforward relationship
between, on the one hand, visual events and exogenous signals,
and on the other hand, the instructions and endogenous signals.

Comparison to Recordings in FEF Neurons

One of the strengths of blocked input 2.0 was its ability to
capture not only monkey behavior but also that of fixation and
movement neurons recorded within the frontal eye field of these
monkeys, as previously published in Hanes, Patterson, and Schall
(1998) and Boucher, Palmeri, et al. (2007). As explained above,
DINASAUR appears better able to generalize across behavior in
different tasks than blocked input 2.0. The next critical question is

Table 3
Description and Values of New Parameters Introduced in Blocked Input 3.0 and 3.1

Name Description 3.0 3.1

�exo,move Amplitude of exo inputs to move node �move (from 2.0)
�exo,fix Amplitude of exo inputs to fix node �fix (from 2.0) �fix � 3
�endo,move Amplitude of endo inputs to move node �move (from 2.0)
�endo,fix Amplitude of endo inputs to fix node �fix (from 2.0)
D Delay of exogenous inputs (ms) D (from 2.0)
DControl Delay of endogenous inputs (excitatory and inhibitory, ms) DControl (from 2.0)

Note. Blocked input 3.0 assumes all parameter values are equal to published values from blocked input 2.0
(gray boxes), while blocked input 3.1 adds one free parameter: the amplitude of the exogenous input triggered
by signal onset (white box).

Figure 5. Inputs and simulations from blocked input 3.0 and 3.1. A–B. In the most straightforward general-
ization from blocked input 2.0, we assume in blocked input 3.0 that the transient visual signals associated with
signal onset are the same size as the original fixation inputs in blocked input 2.0 (discontinuous blue line).
Blocked input 3.1 assumes that the transient activity from the signal is larger (in this case three times higher)
than the baseline fixation amplitude (continuous blue line). C. Simulated RT for blocked input 3.0 shows some
dip, but this remains very shallow. D. The stop condition for blocked input 3.0 is the same as for blocked input
2.0. E–F. Simulated RTs for blocked input 3.1 now show a clear dip and recovery as expected in the
signal-ignore condition (E), while still capturing the signal-stop condition (F). See the online article for the color
version of this figure.
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how well DINASAUR approximates activity in fixation and
movement-related neurons. Figure 6 shows that firing rates from
DINASAUR and blocked input models are quite comparable (pan-
els A–C), and that DINASAUR accounts equally well for the
growth and decay rates from FEF neurons during successful inhi-
bition (panel D) highlighted in Logan et al. (2015). Figure 6 was
designed to match Figures 13 and 14 in Logan et al. (2015) and the
reader should refer to this work for a full justification.

Panels A–C on Figure 6 contrast the mean firing rates between
successful inhibition in SIGNAL trials and comparable no-signal
trials (i.e., no-signal trials leading to a saccade being executed after
the dip onset). In all models, target activity starts rising after a
delay following target onset, while fixation activity decreases
following fixation offset, irrespective of whether a signal is present
or absent. On no-signal trials, the fixation activity carries on
decreasing (light blue lines), while the move activity carries on
rising until it reaches a peak and then returns to baseline (gray
lines). In neuronal recordings, this return to baseline is presumably
related to triggering a saccade, and to mimic this effect in all our
simulations, we interrupted the visual input to the peripheral target
node each time a saccade was triggered in the model. This has of
course no effect on the simulated RT distribution.

On signal trials, following the signal (green solid lines), activity
rises again at fixation (dark blue lines), resulting in a decrease in
move activity (mediated by lateral inhibition), further emphasized
by the suppression of inputs to the move/target node. Panels A–C

also show the divergence time (green dashed lines); the time at
which this signal starts having an effect on the target node (the
separation of dark and light blue lines). In all models, this time is
equal to stimulus onset asynchrony (SOA) � �vis, and can be
inferred from the RT distribution as dip onset time (T0) � �out. All
trials where the threshold is reached before this divergence time
escapes all influence from the signal and will therefore result in a
failure to withhold the saccade (signal-respond trials). All trials
where the threshold has not been reached by this time will be
influenced by the signal to some extent. On some trials, the
interference will be sufficient for the saccade to be correctly
withheld (signal-inhibit category). On others, this interference may
not be strong enough and the saccade is produced with a delay.
This delay can be very short (as little as 1 ms if the firing rate was
very close to the threshold when the signal starts interfering), or
much longer (up to 200 ms; see Bompas & Sumner, 2015). This
variety means that recovery of saccades is already happening
throughout the behavioral dips, rather than being restricted to the
observed “recovery phase.” Although �vis is kept constant and thus
the interference starts at the same time on every trial, the dips in
the generated behavioral distribution are more spread, matching
those observed in empirical data.

The key difference between the models is that interference from
the signal (the return of fixation activity and consequent lateral
inhibition) increases in sharpness when going from blocked input
2.0 to blocked input 3.1 and to DINASAUR, illustrating the key

Figure 6. A–C. Mean firing rates from 1,000 simulated trials using each model under the stop condition, at the target
and fixation nodes. The solid green line indicates the signal onset, here chosen at stimulus onset asynchrony (SOA)
133, matching the experiments presented in the Empirical data - Results section. The dashed green line shows the
divergence time, that is, the time at which this signal starts having an effect on the neuronal map, while the black
vertical line indicates the stop signal reaction time (SSRT), estimated from the simulated RT from each model.
Activity was averaged across trials leading to successful inhibition (black and dark blue lines, signal-inhibit trials) and
compared with “latency matched” no-signal trials (gray and light blue lines; i.e., no-signal trials in which latency is
greater than SOA � non-decision time). On the y-axis for the target node, Th indicates the saccade initiation threshold
(although this is not directly relevant for average firing rates, see text). D. Mean growth and decay rates from frontal
eye field (FEF) neurons and simulations from each model (BI2 and BI3 refer to blocked input 2.0 and 3.1,
respectively), using the same format as Figure 14 in Logan et al. (2015). See the online article for the color version
of this figure.
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property that makes DINASAUR able to produce sharp dips. Note
that the downturn of target activity is already dramatic at the
divergence time in DINASAUR, caused by the exogenous signal
alone. In blocked input, the initial divergence is more subtle, and
relies on the blocking of endogenous input for activity to take a
severe downturn. Nevertheless, panel B confirms the intuition
from Logan et al. (2015) that a temporary boost of fixation
following the signal (blocked input 3.1) would indeed capture
neural dynamics.

While firing rates from blocked input 2.0 bear most resemblance
to those motor neurons recorded in Monkey A, firing rates from
DINASAUR resemble closely those visuomovement neurons re-
corded in Monkey C (Figure 5 in Logan et al., 2015). Although
there are important differences between the two neuronal popula-
tions (Ray, Pouget, & Schall, 2009), activity within both neuron
types modulate at about the same time and show similar growth
and decay rates, as stated in Logan et al. (2015). Figure 6D shows
that DINASAUR provides growth and decay rates very similar to
those in blocked input 2.0, accounting well for neuronal recordings
in both monkeys. To construct panel D, we digitized the FEF data
from Figure 14 in Logan et al. (2015), and ran simulations from
each model following the same procedure as they used (see their
Appendix C). Briefly, we simulated the models using the same
SOAs and trial numbers as those from the FEF recordings (SOA
ranging from 68 to 184 ms, and trial numbers varying from 61 to
130). For each SOA and monkey, the firing rate was averaged
across the trials and divided by the initiation threshold. Minimum
(M) and peak (P) mean firing rates were extracted, as well as the
difference between these (D � P � M). The growth and decay
rates were calculated for two sections of the curve, where the
growth and decay are almost linear (i.e., the portion increasing
from 25% to 75% of D (M � D � 0.25 to M � D � 0.75) for the
growth rate, and the portion decreasing from 75% to 25% of D for
the decay rate). It is clear that estimates from each model were
within the range of estimates from neurons, similarly so across
models.

The figure also shows the SSRT estimated from the simulated
behavior for comparison (black vertical lines), using the integra-
tion method (Verbruggen, Chambers, & Logan, 2013). We can see
that the SSRT follows the divergence time and the delay between
the two has been referred to before as the cancel time (Boucher,
Palmeri et al., 2007; Lo et al., 2009; Logan et al., 2015). We will
come back to the relationship between these two measures and T0

in Discussion section.
Lastly, note that, when averaged over a large number of trials,

mean node activity in DINASAUR never reaches the initiation
threshold, contrary to blocked input models. However, whether
and when the mean activity reaches threshold is not directly
relevant: In either class of model, the RT on each trial is deter-
mined by when the noisy activity reaches the threshold, and—due
to the noise—this happens most of the time before the average
trace reaches the threshold. Therefore, this apparent difference
across models merely reflects the temporal profiles of accumula-
tion (affected by the balance of self-excitation and leakage).

Empirical Prediction: Universality of Dip Onsets

Irrespective of how well each model performs overall, a crucial
observation in all our model simulations is that the time point

when latency distributions diverge is exactly the same under both
instructions (blue dots and lines on Figures 3 and 5). This is a basic
prediction as soon as the initial neuronal response to the stop signal
is conceptualized as automatic, that is, non-decision time is not
modulated by context. In our previous work on saccadic inhibition,
we have referred to this divergence point as dip onset or T0 and,
using DINASAUR, we have shown that T0 � SOA directly re-
flects non-decision time (Bompas et al., 2017; Bompas & Sumner,
2011, 2015). Below we explain why the relationship between T0

and non-decision time should hold overall irrespective of the
model, and why we expect T0 to remain unchanged across instruc-
tions.

Dip onset reflects non-decision time. The conceptual ap-
proach that dip-onset is a direct reflection of the sum of the sensory
delay and the motor output delay (non-decision time) was vali-
dated by varying the luminance contrast and color of distractors
(Bompas & Sumner, 2011), using dips as behavioral electrodes for
precisely determining sensory delay. This relationship is not ex-
pected to be model-specific, because it depends simply on the logic
of what non-decision time is—the portion of the RT that is not
influenced by decision/selection processes (i.e., not influenced by
a distractor signal). Neither should T0 theoretically depend on the
shape of what follows—a sharp or gradual divergence or a true
“dip” (which implies divergence and then recovery). However, it
should be noted that T0 is only directly observable in simulations
or data if the distractor signal SOA allows the dip to fall within the
main body of the RT distribution and if there are enough trials to
allow little or no smoothing (smoothing is known to anticipate dip
onsets). Its estimate could therefore slightly vary across models
depending on the shape of the distributions. In Figure 3, simula-
tions from blocked input 2.0 and DINASAUR were smoothed
using the same procedure as previous real data and produce T0

respectively at 138 ms and 143 ms at SOA 83, irrespective of the
instruction; that is respectively 55 and 60 ms following the dis-
tractor, while their respective non-decision times are 60 and 70 ms.
Note that the differences in non-decision time across models are
not relevant here as these result from fitting model parameters over
completely different data sets and have never been contrasted
before. What matters for now is that T0 offers a good estimate of
non-decision times for any model (but will often anticipate it by 5
to 10 ms depending on the RT distribution and smoothing).

Should T0 remain unchanged across contexts? Earlier we
described how mapping visuo-oculomotor decisions with the ac-
tivity within visuomovement neurons predicted that the early ef-
fects of the signal should temporally align between the ignore and
stop contexts, while focusing on movement neurons would predict
that they should differ. Below we outline the intuitive reasons for
expecting a difference and review the empirical evidence most
closely related. One could argue that non-decision time may well
differ under stop and ignore instructions, because of the associated
attentional or strategic proactive adjustments participants would
likely make. Indeed, previous work using selective stopping par-
adigms (Bissett & Logan, 2014) has shown that, under the stop
instruction, participants slow down to avoid making too many
errors, in a similar fashion as when adjusting their behavior under
accuracy versus speed instructions. It is therefore conceivable that
T0 would be longer under the stop condition compared with the
ignore condition if non-decision time was to contribute to the
overall slowing. On the other hand, the stop condition requiring
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more attention to be paid to the stop signal, it is also conceivable
that this would lead to improved sensory processing of the signal
(Elchlepp, Lavric, Chambers, & Verbruggen, 2016) and therefore
possibly to a shortening of T0 compared with a condition where the
signal should be ignored.

However, previous research in the field of saccadic inhibition
has consistently shown that T0, and, therefore non-decision time, is
mostly insensitive to proactive slowing. For instance, (Reingold &
Stampe, 2002) showed that dip timing was on average 4 ms later
during prosaccade blocks than during antisaccade blocks, despite
RTs being 100 ms faster. This being said, this difference was
significant, which could suggest small but genuine modulations of
non-decision time by instructions or “task-set.” In any case, these
remain negligible compared with the modulations in decision time.

Although the SSRT has long been conceived as the delay
required to inhibit action, it is now clear that a large proportion of
this time is devoted to non-decision time, while the inhibitory
component is rapid and late (Boucher, Palmeri, et al., 2007; Lo et
al., 2009; Wong-Lin et al., 2010). SSRT is sensitive to the salience
of the stop signal and insensitive to fixation offsets (Camalier et
al., 2007; Morein-Zamir & Kingstone, 2006), just like T0 in a
saccadic inhibition paradigm (Bompas & Sumner, 2011; Reingold
& Stampe, 2002). These findings suggest that SSRT likely behaves
like T0, and therefore we expect the early part of the interference
from stop-signals and distractors should be very similar in saccadic
inhibition and countermanding. This leads to the strong prediction
that T0 should remain the same across contexts (within a few ms),
providing the same stimuli are used and only the instructions differ. In
sections “Empirical data – Methods” and “Empirical data - Results”,
we test this empirical prediction, which constitutes the first step for
our approach of unifying paradigms and models by regarding the
first “inhibitory” signal as fully automatic and therefore fully
independent of instructions (note that this is actually an overly
stringent definition of automatic; we will return in Discussion
section to the concept of conditional automaticity, whereby cas-
cades of neuronal activation considered automatic are nevertheless
modulated by context).

Modeling Prediction: “One Top-Down Fits All”

A second key consequence from the Model exposition and
predictions section is that stopping does not necessarily need a
specific cancel mechanism (with a specific strength and delay), but
may be predicted from the combination of automatic interference
and a switch of endogenous support from periphery to fixation.
Crucially, once endogenous and exogenous signals are explicitly
separated, like in DINASAUR and blocked input 3, they can be
constrained from the no-signal and the ignore conditions, and the
generalization to the stop condition should naturally follow. Al-
though they could conceivably vary, a parsimonious hypothesis is
that endogenous delays may all be captured by one variable, which
constrains the latency of four events: (a) endogenous support for
the target following target onset, (b) the removal of endogenous
support for fixation following target onset, (c) the removal of
endogenous support for the target following the signal under the
stop instruction, and (d) endogenous support returning to fixation
following the stop instruction. This makes strong predictions when
directly contrasting behaviors across conditions and paradigms, as

this single parameter will now directly influence the no-signal,
signal-ignore, and signal-stop distributions across all SOAs.

Furthermore, this single endogenous delay is not even a free
parameter in DINASAUR, but is defined as exogenous delay � a
fixed delay of 25 ms. The assumption that �endo directly depends
on �vis reflects the idea that both exogenous and endogenous
delays in sensorimotor decision tasks are linked to sensory signals,
but endogenous signals are filtered by task relevance (Bompas &
Sumner, 2011). This filtering, imposed by the stimulus-response
mapping, incurs an extra delay compared with raw visual signals
(such as an onset at some location in the visual field) but the time
at which these selective signals can be made available remains
dependent on how fast the raw signals can reach these higher-level
areas, that is, the exogenous delay. Therefore, stronger signals will
travel quicker within the brain, both straight to the decision area
(�vis), and via the filtering process for task relevance (�endo). This
25-ms difference would in principle vary depending on the exact
task and participants without changing the spirit of DINASAUR.
The original model, inspired from the activity in SC neurons of
monkeys, actually used a 50-ms difference (with �vis of 70,
Trappenberg et al., 2001). Here the 25 ms is simply inherited from
our previous modeling of saccades in humans (Bompas & Sumner,
2011).

In the Modeling Results section, we test whether DINASAUR
can, under these strict assumptions and with the stopping behavior
inspired from blocked input, capture all aspects of our data. We
show that this is the case, as long as we allow two minor refine-
ments to the model. Ultimately, our aim is not to pitch one model
against another, but rather highlight key properties that inputs may
have in order to reproduce the fine dynamics of visuo-oculomotor
behaviors across a range of tasks. To a large extent, these consid-
erations are independent of the peculiarities of each model’s ar-
chitecture. From this perspective, it makes sense to test the pre-
dictions above using DINASAUR, as it has been used to model
several other standard visuomotor phenomena and its spatial extent
lends itself to more hypothesis testing (see Empirical Predictions
and Future Directions section in Discussion), rather than upgrading
blocked input further, which has been designed specifically to
account for the countermanding task and had not been used for any
other tasks until now. Therefore, in the remaining sections of the
article, we use DINASAUR as the base model and inherit the spirit
of blocked input for the behavior of endogenous signals during
countermanding. This merger already captures the iconic behavior
of the two paradigms as shown in Figure 3.

Empirical Data—Methods

Rationale

The behavior of humans and monkeys during the saccadic stop
task or saccadic inhibition has been described many times, forging
strong expectations for what empirical distributions will look like
in each paradigm separately (see Figure 1) and justifying the
modeling endeavor from both fields (Figures 2–3). However, in
order to test the predictions laid out above, these paradigms must
be tested on the same participants with the same stimuli, and with
enough trials to support detailed distribution analyses and model-
ing. Ignore conditions have been used in stop paradigms, a para-
digm known as “stimulus selective stopping” (see Bissett & Lo-
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gan, 2014 for a review). This paradigm would typically introduce
two types of signals, one requiring a stop and the other indicating
the action should carry on (Verbruggen & Logan, 2009; Xu et al.,
2017). However, the nature of the analysis performed in these
previous studies was quite different to our present ambition.

As described above, our main aim for introducing new em-
pirical data was twofold. First, we aimed to test the prediction
that the initial disruption to RT distributions is the same irre-
spective of instruction, suggesting that it is driven by automatic,
rather than top-down inhibition (or a mixture of both). More
specifically, this can be assessed by directly comparing dip
onsets across instructions, as all models under this generaliza-
tion hypothesis predicted perfect temporal alignment of dip
onsets across conditions. Second, we aimed to test whether the
later effects of the signal under each instruction can be captured
within one single model with one set of parameters. This would
suggest that distributions of failed stops can be fully predicted
from the ignore condition by simply blocking the ability for
saccades to recover, ultimately linking both phenomena to
automatic interference from exogenous signals.

In order to answer these questions, we needed to directly com-
pare aspects of the RT distributions under each instruction. How-
ever, there is no simple way of doing this without introducing
additional complications. We therefore ran three experiments to
provide converging evidence. We report these in the order they
were implemented.

The easiest way to compare the two protocols using identical
stimuli is to have separate blocks of trial where the instruction is
to ignore the signal (pure saccadic inhibition design) and other
blocks where the instruction is to stop to the signal (pure counter-
manding design). However, identical baseline (no-signal) trials
produce slower responses when participants know they might have
to occasionally stop (as in a countermanding experiment) com-
pared with when they are always allowed to ignore stimuli that
come after the target (as in a saccadic inhibition experiment). This
context-dependency is known as “proactive slowing” (slowing of
responses as a preparatory precaution given the possibility of
having to stop; Verbruggen, Best, et al., 2014; Verbruggen &
Logan, 2009). For this reason, we must compare signal-ignore and
signal-stop trials to their own no-signal trials from the same block.
But further, too much distribution shift between conditions would
hamper direct comparison. When RTs are very quick, only short
SOAs produce detectable dips (as later ones only affect the very
tail of the distribution, where hardly any saccades occur). But very
short SOAs are not optimal to study stopping behavior, as only
very few fails would then be observed. To be able to compare
behavior using an identical set of SOAs, we needed to ensure that
the baseline distributions in the two contexts would overlap to a
considerable degree, even though some difference was inevitable.

In Experiment 1 we aimed to minimize the difference in proac-
tive slowing between our two contexts, but at the same time we
wished to compare ignore trials and stop trials that all had identical
stimuli. We took inspiration from the selective-stopping paradigm
and introduced two types of signal (white signals in 35% of trials
and dark signals in 5%), but crucially we compared paradigms
using the white signals only. The dark signals were present only to
reduce differences in proactive slowing between the blocks. In the
ignore context, participants were asked to ignore the white signal
but stop to the dark signal, therefore encouraging some proactive

slowing. In the stop context, participants were asked to stop to the
white signal but ignore the dark signal. Only responses to no-signal
and white-signal trials were included in further analyzes.

We then validated our findings in two independent experiments.
In Experiment 2, we simply removed the dark signal trials, creat-
ing a pure version of stop-task in half the blocks and a pure
saccadic inhibition design in the other half. This removed the
complication that participant had to remember two instructions
simultaneously, but it created the expected large shift between the
two baseline distributions, making the long SOAs inefficient in the
ignore context, and the short SOAs suboptimal in the stop context.
Nevertheless, data were sufficient to act as a convergent valida-
tion.

Experiment 3 was a standard selective stopping paradigm,
where each block contained the same proportions of white and
dark signals, one stimulus being associated with the ignore instruc-
tion and the other with the stop instruction. This mapping was
alternated across blocks and the order counterbalanced across
subjects (following Xu et al., 2017).

Participants

These experiments took a psychophysical approach in which
few participants provided thousands of trials (between 5,000 and
8,000 each) to generate RT distributions, akin to neurophysiology
studies that use non-human primates as subjects. The reason for
this approach is that dips are a very robust phenomenon, found in
every participant tested throughout the saccadic inhibition litera-
ture on humans and primates, while the critical aspect is the
accurate estimate of T0, which benefits from collecting a large
number of trials per condition. Thirteen participants (nine female)
with normal or corrected to normal vision took part (four in
Experiment 1; five in Experiment 2; and four in Experiment 3).
One participant in Experiment 2 was excluded because their ac-
curacy on the stop task was around 2%.

Materials

A Tobii TX300 eye tracker with a 300-Hz sampling rate was
used to collect saccade data. Participants were seated approxi-
mately 60 cm from the screen where exact position of the eye in
three-dimensional space was calculated through algorithms sup-
plied by the Tobii software for each time-point sampled. Eye
position was calibrated using a 9-point calibration array at the start
of every session and after every 600 trials (one block). A 23 in. (51
cm � 29 cm) LCD screen with a 60-Hz refresh rate was used to
present stimuli. The lights in the room were switched off but the
room was not in total darkness.

Stimuli and Procedure

The two main trial types are illustrated in Figure 1 and 2A.
Briefly, all trials began with a central fixation point, a white circle
0.4° visual angle in diameter (200 cd/m2), presented on a gray
background for 700 ms (58 cd/m2). This was immediately fol-
lowed by a target with the same properties as the fixation point but
either 12° visual angle to the left or right of the center of the screen
on the vertical midpoint. For no-signal trials (60% of trials), the
target appeared for 1,000 ms and no other stimuli were presented.
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Participants were instructed to fixate on the central fixation point
and then saccade as quickly as possible to the target that appeared
randomly on the left or right of fixation (in equal frequencies).

All experiments also contained trials in which the target was
followed by a larger stimulus (1° diameter), either white (120
cd/m2, Figure 2A) or dark (9 cd/m2, not illustrated), appearing in
the center of the screen after varying stimulus onset asynchronies
and until the end of the trial (i.e., until the peripheral go-signal
disappeared). The three experiments differed in the frequency of
these white and dark signal trials, the associated instructions and
the range of SOA covered, as detailed below.

In Experiment 1, 35% of trials contained a white signal and in
half the blocks the instruction was to ignore these stimuli (there-
after called ignore blocks), while in the other half of blocks the
instruction was to withhold the eye movement if these stimuli
appeared (stop blocks). The remaining 5% of trials were dark and
were associated with the alternative instruction (stop in the
ignore blocks and ignore in the stop blocks). These were not
analyzed and were added only to minimize the difference in
proactive slowing between blocks. Therefore, in the analyses be-
low, the signal-ignore and signal-stop trials contained the same
visual stimuli (peripheral white disks followed by central white
disks), while only the required responses varied. The SOA were
50, 83, and 133 ms (due to the 60-Hz refresh rate).

Experiment 2 was identical to Experiment 1, except the dark
stimuli (and any instruction about them) were absent, bringing the
number of trials with a white signal to 40%.

Experiment 3 was identical to Experiment 1 except for stimulus
frequency and additional SOA. White and dark signals occurred in
equal proportion (20% each). In half the blocks, participants were
instructed to ignore the white stimuli and stop to the dark one. In
the other half, the instruction was reversed. SOAs were 50, 83,
133, and 183 ms.

All participants were instructed to “respond as fast as possible
while minimizing errors.” At the end of each block participants
were given feedback on mean RT, percentage of failed stops, and
percentage successful ignores for the relevant stimuli. Each par-
ticipant completed a training session of 20 min. This was followed
by over 5,000 trials (8,640 in Experiment 1; 5,472 in Experiment
2; and 5,760 in Experiment 3), spread over four sessions. Each
session in Experiment 1 contained a run of three blocks under one
instruction followed by three blocks of the alternate instruction,
presented in a counterbalanced order both within sessions and
across participants. Each block was 15-min long, bringing each
session to around 90 min. The same procedure was used in
Experiments 2 and 3, except only four blocks (two runs under each
instruction) were run per session, bringing the session duration to
60 min.

Data Analysis

Response saccades were detected using a velocity criterion of
35°/s, an acceleration of 6,000°/s, and an amplitude of at least 6°
(halfway to the target). Trials were excluded if there was loss of
tracking, blinks, or small saccades (under 6°) in the period between
target onset and response saccade onset or during the 500 ms
following target onset in the absence of a response saccade. Each
trial was visually inspected to ensure correct saccade detection by
the algorithm and corrected where needed. Trials containing a

saccade to the location opposite the visual target were also ex-
cluded, but these were extremely rare (less than 0.1%). Overall,
this resulted in excluding on average 3% of trials (ranging from
0.3% to 5.3% of trials across all participants and experiments).
Saccade latencies were calculated as the difference between target
onset and saccade onset and then classified by trial type and
context. All following analyzes are collapsed across left and right
targets.

Next, saccade latency distributions were obtained for each par-
ticipant for no-signal and signal trials for each SOA collapsed
across all sessions, separated by instruction. Latency distributions
were obtained with a bin size of 3.33 ms (the refresh rate of the eye
tracker was 300 Hz). Given the difference in trial numbers between
signal and no-signal trial-types, all distributions were scaled ac-
cording to the number of trials still present within that condition
after the exclusions listed above. Distributions of correct responses
were then lightly smoothed using a Gaussian kernel with 7-ms
window size and 3-ms standard deviation and interpolated to
obtain 1-ms precision, in line with Bompas et al. (2017) using
similar trial numbers. Distributions using pooled data across ob-
servers and/or SOA used less smoothing (window � 5, SD � 1),
in line with Bompas and Sumner (2011) using larger data sets.
Note that for noisy distributions, smoothing is necessary to ro-
bustly extract dip onset, but also anticipates dip onset. When more
trials are available, smoothing becomes less necessary and less
desirable for this reason.

In order to determine the onset and peak amplitude of the dip in
saccade latency distributions, a distraction ratio was calculated for
each time-bin of the latency distributions where at least one trial
was present in the no-signal condition (e.g., Bompas & Sumner,
2011; Reingold & Stampe, 2002). This distraction ratio is the
proportional change in the number of saccades made in the signal-
present distribution relative to the number in the no-signal distri-
bution. This is calculated for each time bin as:

Distraction ratio � N(no signal distribution) � N(signal distribution)
N(no signal distribution) .

The peak dip amplitude was calculated as the first time point of
the maximum of the distraction ratio where the difference in the
two distributions was greater than two saccades and the ratio was
greater than 20%. Onsets of dips were defined as the point at which
the distraction ratio fell below 2% working backward in time from
the dip peak.

In Experiments 1 and 2, the analyzed ignore and stop trials
(white signals only) were collected in different blocks. Baseline
distributions (no-signal trials) were therefore analyzed separately
for ignore and stop blocks. In Experiment 3, there were four signal
trial types to analyze: white-ignore, dark-ignore, white-stop, dark-
stop. Analyses were first performed separately for white and dark
stimuli but no statistical difference was observed (two-way re-
peated measures ANOVA was performed on dip onset times, with
instruction and contrast as factors, revealing no effect of contrast:
F(1, 3) � 0.16, p � .7; the effect of instruction is reported below,
along with the other two experiments). This allowed us to pool
across dark and light signals, leaving us with the same conditions
as in Experiments 1 and 2: signal-ignore and signal-stop. However,
in Experiment 3, the same go trials serve as baseline for both signal
conditions, as these trials were interleaved.
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For the essential question of whether dip onsets were aligned
across tasks, we used bootstrapping to estimate the stability of any
difference in estimated dip onset times within each observer and its
mean at the group level (considering that our number of partici-
pants is small but our number of trials per participant is very high).
The extraction of dip onset time was performed on the signal-to-
respond latencies locked on signal onset, pooled across SOAs (i.e.,
the distributions in Figure 8D–F). For each participant, we gener-
ated 1,000 surrogate distributions for each condition from the
observed distributions (no-signal and signal at each SOA, each
under both ignore and stop instructions), by randomly sampling the
same number of trials from each original distribution with replace-
ment. On each iteration, we applied the same dip onset extraction
procedure as for observed data, subtracted the dip onset time under
the surrogate ignore instruction (T0p-ignore) from that in the surro-
gate stop condition (T0p-stop), and calculated the 95% (uncorrected
percentile) confidence intervals over these 1,000 bootstrapped
differences. Then, for each experiment, we averaged the bootstrap
estimates across participant, producing 1,000 estimates of the
difference in mean T0p on each group. Each difference was con-
sidered insignificant when the 95% confidence interval included
zero, under similar assumptions as those used to calculate a p
value.

Empirical Data–Results

Latency Distributions

Figure 7A shows the saccade latency distributions for a
typical participant (P1 in Experiment 1) in each context and
each SOA. Figures A1-A3 in Appendix A shows all individual
distributions. As expected, the ignore context is characterized
by dips in the distribution following signal onsets, comparable
with those in previous studies of saccade inhibition (Bompas &
Sumner, 2011; Buonocore & McIntosh, 2008, 2012, 2013;
Edelman & Xu, 2009; Reingold & Stampe, 2002, 2004). The
distributions of failed inhibitions in the stop context also show
dips, but these are followed by little or no recovery, indicating
mostly successful stops in the latter part of each distribution.
Although one can start to appreciate the temporal alignment of
T0 across contexts, this is more clearly illustrated by pooling
across SOAs (section Temporal Alignment of Dip Onsets
Across Contexts).

Temporal Alignment of Dip Onsets Across Contexts

Figure 8A–C shows the expected strong linear relationship
between dip onset and the timing of the signal. This locking of T0

on distractor onset justifies pooling across SOAs based on time-
since-distractor in order to improve the estimates of T0 by using all
the available data, a standard practice in many studies on saccadic
inhibition (see section Data Analysis and Reingold & Stampe,
2002). Figure 8D–F shows these signal-to-response latency distri-
butions for each participant and illustrates the temporal proximity
of dip onsets across instructions.

Table 4 presents the key summary statistics across all three
experiments (see Appendices A-D for more). Across all three
experiments, dip onsets were on average 5, 4 and 1 ms earlier
under the ignore compared with the stop instruction, but the

95% confidence intervals all included zero (this was also the
case for each individual participant). We therefore concluded
that there was no significant difference in T0p across instruc-
tions. Dip onsets in the present studies are around 98 ms on
average under the ignore instruction (102 under stop), slightly
later than reported previously, but it is known that stimulus
properties affect dip onset (see, e.g., Figure 6 in Bompas &
Sumner, 2011), and the precise timing of its detection is af-
fected by trial numbers and smoothing (Bompas et al., 2017).
Dip maxima (red symbols) also occur at similar times in each
context, though the exact timing of dip maximum is affected by
the properties of the recovery, and thus less directly interpre-
table than dip onset.

As expected, strategic adjustments across tasks existed in Ex-
periments 1 and 2, and were large in Experiment 2 (where the two
contexts were kept fully separated). Because the baseline distribu-
tions differed depending on context, but the timing of the dips
(relative to the signal) is similar across contexts, the dip is there-
fore earlier relative to the main mode of the distribution in the stop
context, and thus the height of the predip distribution was normally
smaller in the stop context. This is just a consequence of the
baseline distributions. The critical question here was whether the
leading edges of the dips are coincident. The large differences in
baseline distributions in Experiment 2 meant the visual signal
often arrived too late to have much effect in the ignore condition,
especially for the fastest participants (P1 and P4), consistent with
previous work (Bompas & Sumner, 2011). Nevertheless, when
dips were observed in both contexts, these were temporally
aligned, like in Experiment 1 and 3.

Inhibition Function, SSRT, and Dip Recovery

We now focus on the typical metrics reported within the stop-
task literature. The inhibition function (Figure 9A and Table 4)
showed the expected increase in the proportion of failed-stops with
SOA. At the shortest SOA under the stop instruction, our partic-
ipants produced on average 13% errors. This number was higher in
Experiments 1 and 3 (18%), where participants were required to
switch between instructions, compared with Experiment 2 (7%),
where instruction were kept separate across blocks as in the
standard stop task. Figures 7 and A1-A3 show that the latency
distribution of failed stops is often bimodal. Indeed, for all partic-
ipants in Experiments 1 and 3, and P3 in Experiment 2, there is a
partial recovery from the dip even in the stop context. This failure
to inhibit the saccade on some trials well after the time when a
participant is usually able to do so has been reported before
(Akerfelt et al., 2006; Hanes & Carpenter, 1999). In our modeling,
we will suggest it may indicate occasional failure to trigger the
inhibition command (Salinas & Stanford, 2013; Skippen et al.,
2019), possibly fueled by temporary confusion about which in-
struction applied (see section Generalization to signal-ignore and
signal-stop trials).

Table 4 and Figure 9B also show the SSRT estimates, ob-
tained using the integration method (Verbruggen et al., 2013).
These were comparable with previous reports for saccade coun-
termanding in human (on average 134 ms, Hanes & Carpenter,
1999), that is, about 32 ms after dip onset and 30 ms longer than
in rhesus monkeys (Hanes et al., 1998; Hanes & Schall, 1995;
Paré & Hanes, 2003). These showed a clear dependency on
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SOA (Figure 9B), as previously reported in the manual (Band,
van der Molen, & Logan, 2003; de Jong, Coles, Logan, &
Gratton, 1990; Logan & Burkell, 1986; Logan & Cowan, 1984;
Matzke, Love, & Heathcote, 2017) and saccadic (Hanes &
Schall, 1995) domains. As our modeling will suggest, this may
also be entirely related to the partial recovery from dips in the
stop task, and therefore down to the reliability with which the
stop instruction is being applied.

We also plotted the cumulative distributions of RT (Figure 9C).
Contrary to the custom in the stop-signal task literature, we did not
normalize these on the number of saccades executed, which, in our

eyes, would have masked the main feature of interest here: the
exquisite overlap in the signal and no-signal distributions until the
departure point (T0) and the dependency of this point on the SOA,
both hallmarks of dips in the saccadic inhibition literature. Rather,
cumulative distributions were normalized to the number of trials
available in each condition.

Modeling Results

This section aims to test our prediction that a general model
ought not to need specific parameters for countermanding, that

T0

T0

T0

Figure 7. A. Latency distributions for Participant 1 in Experiment 1 across SOAs (rows) in the ignore and stop
contexts. Gray lines indicate distributions in which no signal was presented. Black lines indicate distributions of
trials in which a signal occurred. Blue dots indicate the dip onset (i.e., where the two distributions first diverge);
red dots show dip maximum. B. Green indicate the only data used for fitting the DINASAUR model: dip onsets
from the ignore condition after pooling across all SOAs, no-signal distributions from the ignore and stop
contexts, and the proportion of failed stops at SOA 50. Red lines show the fitted no-signal distributions for this
participant (see the “Modeling Results” section for modeling details). C. Simulated RT distributions across all
conditions for this participant. D. Observed (points) versus simulated (red lines) key measures at each SOA: dip
onset in the ignore and stop conditions, proportion of failed stops and SSRT, all in ms (see Figures A4–A7 for
all individual data). See the online article for the color version of this figure.
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is, ought to be able to predict stopping behavior from parame-
ters derived from basic behavior in baseline and ignore trials.
To do this, we individually adjust three of the parameters in the
DINASAUR model: the visual delay; the strength of endoge-
nous signals during fixation; and the strength of endogenous
signals in response to the target. To further improve the fits to
the no-signal distribution, we add two refinements to the model.
The first is a holding period to account for strategic slowing
down in the stop task. The second is a failure parameter,
allowing a proportion of trials in the stop task to be effectively
treated as ignore trials. These adjustments are illustrated in
Figure 7, summarized in Table 5, and explained fully below.

Visual Delay

In previous work, we have explained why and illustrated how
sensory conduction times for visual signals can be directly esti-
mated from dip onset time (Bompas et al., 2017; Bompas &
Sumner, 2011). Providing �vis and �out are constant across trials
and a large number of trials are available, T0 � SOA � �vis � �out.
This is because the earliest effect a visual stimulus can have on a
saccade RT distribution represents the case where a distractor
signal arrives (SOA � �vis after target onset) at the selection
system just before the decision threshold is reached by the target
activity (�out before the response would have occurred). Using 20

T0
T0

Figure 8. A–C. Dip onset times (T0) for each participant in the ignore (open circles) and stop (stars) contexts
of each experiment, along with regression lines across SOAs on each condition. As predicted, dip onsets are
locked on signal onset and are temporally aligned between the ignore and stop contexts, consistently across
experiments. D–F. Overlap of dip timing between the ignore and stop contexts in each experiment, highlighted
by blue vertical bars. Distributions show saccade latency locked on signal onset, allowing pooling of trials across
the SOAs to best visualize the timing of dip onset (blue dots) and maximum (red). See the online article for the
color version of this figure.
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ms for output time (consistent with previous work) and a similar
smoothing as in observed data (which anticipates dips by 5 ms), we
set �vis for each individual to T0p � 15 ms. In the data presented
in section Empirical data – Results, we observed that T0 hardly
changes across contexts and experiments, despite the large differ-
ences in mean RT observed across blocks. This confirms that �vis

does not contribute to proactive slowing, consistent with the au-
tomatic nature of exogenous signals in DINASAUR, and consis-
tent with the behavior from visuomovement neurons. We therefore
based all our modeling on the T0p from the ignore condition only
(e.g., Figure 7B top panel). For simplicity, we assume that �vis is
equal for targets and distractors (this is a simplification as they
have different eccentricity and sizes).

Baseline Parameters From No-Signal Trials

The next step was to adjust as few parameters as possible to fit
the model to the baseline conditions (Figure 7B, red lines). When
ignore and stop instructions are delivered in different blocks, such
as in Experiment 2, participants adjust their behavior overall,
leading to slower RT in the stop block irrespective of signal
presence (see the Rationale section openning the Empirical data –
Methods section). This proactive slowing is present to a smaller
degree in Experiment 1 when stop trials were always present but
differed in frequency between blocks. In Experiment 3, the base-
line RTs were the same in the two instructions and also suggested
proactive slowing (the mean RT were close to the stop blocks in
Experiments 1 and 2). To allow a fair test of the model’s ability to
generalize from distraction to countermanding, it is essential to fit
the different latency distributions of the baseline conditions. Crit-
ically, we adjusted the model parameters solely based on no-signal
trials.

It is common to assume that proactive slowing would be best
captured by an increase in initiation threshold (Bogacz, Wagen-

makers, Forstmann, & Nieuwenhuis, 2010; Forstmann et al., 2010;
Ratcliff & McKoon, 2008). This is indeed what simple models
such as the independent race model would suggest (Heitz & Schall,
2012; Verbruggen & Logan, 2009). However, this assumption is
not confirmed by electrophysiological recordings from monkeys
(Heitz & Schall, 2012; Pouget et al., 2011; Reppert et al., 2018).
Specifically, in SC neurons, firing rates 0–20 ms prior to saccade
initiation (i.e., the threshold) were the same under a speed and
accuracy conditions (Reppert et al., 2018). Similarly, no change in
threshold was observed after stop-signal trials, another way in
which proactive slowing has been investigated (Pouget et al.,
2011). In FEF neurons, firing rates prior to saccades were actually
lower in the accuracy condition compared with the speed condi-
tion, in direct contradiction to the increase in threshold suggested
by the fit from the independent race model on concurrent behav-
ioral data from these monkeys (Heitz & Schall, 2012). In contrast,
both SC and FEF visuomotor neurons consistently showed mod-
ulation in baseline firing rate (before target onset), as well as
delayed target selection time (Reppert et al., 2018), that is, the time
at which the activity diverges depending on whether the receptive
field of the neuron contains a task-relevant or task-irrelevant
stimulus. Last, in SC visuomotor neurons, changes from fast to
accurate instructions were not accompanied by a modulation in
visual gain (Reppert et al., 2018; i.e., the intensity of the visual
response to stimulus onset that would be identical for targets and
distractors).

In the DINASAUR model, baseline firing is directly related to
the strength of endogenous fixation drive during the fixation
period (aendo_fix), while delayed target selection can be produced
by increasing the delay (�endo) or reducing the strength (aendo_targ)
of the endogenous drive to the target. Indeed, stronger fixation
drive in the stop task would, via lateral inhibition, reduce baseline
firing rate in all peripheral nodes, making it more difficult to

Table 4
Summary of Empirical Measures (in ms) for Individual Participants and Average (A) From Each Experiment

E P

Ignore Stop Diff

RTNo SDNo T0p RTNo SDNo T0p % Error RTerr SSRT T0p

1 1 207 29 90 [64, 107] 241 36 105 [90, 107] 13–26–69 245 139 15 [�4, 39]
2 210 42 96 [62, 102] 239 58 99 [96, 102] 15–31–62 218 124 3 [�4, 37]
3 196 40 111 [79, 117] 242 64 112 [95, 116] 27–46–86 232 141 1 [�17, 34]
4 231 27 91 [81, 99] 261 34 98 [94, 100] 17–25–49 292 155 7 [�2, 17]
A 211 37 97 [83, 102] 245 51 103 [98, 105] 18–32–62 247 140 5 [�1, 21]

2 1 170 34 108 [102, 135] 288 71 109 [102, 120] 6–17–44 239 140 1 [�30, 12]
2 195 40 96 [84, 103] 280 60 98 [85, 113] 3–4–22 223 120 2 [�14, 19]
3 178 29 86 [76, 106] 290 68 101 [95, 105] 12–12–40 264 141 15 [�7, 25]
4 132 20 NA 289 60 95 [89, 108] 6–8–17 180 114 NA
A 169 39 97 [85, 108] 287 65 101 [96, 107] 7–10–31 227 129 4 [�7, 18]

3 1 223 63 98 [88, 109] 223 63 95 [89, 110] 31–46–66–89 196 122 �3 [�16, 18]
2 247 74 102 [85, 105] 247 74 105 [92, 109] 23–40–57–85 227 134 3 [�8, 19]
3 293 38 97 [77, 108] 293 38 94 [89, 111] 7–11–19–72 306 153 �3 [�14, 29]
4 284 40 105 [101, 108] 284 40 112 [96, 117] 10–20–26–81 290 153 7 [�10, 13]
A 262 62 100 [93, 105] 262 62 101 [98, 109] 18–29–42–82 255 141 1 [�5, 12]

Note. RTNo and SDNo are the mean and standard deviation of RT in the no-signal condition. T0p is the dip onset estimated from pooled distribution across
all SOAs locked on signal onset (see Figure 8), except for Participant 1 in Experiment 2 for whom T0 at SOA 50 was used as this was the only SOA showing
a dip. Values within brackets indicate the bootstrap 95% confidence interval. The last column indicates the observed difference in T0p between the ignore
and stop instructions, along with the bootstrap 95% confidence interval on this difference. For the stop condition, the % of failed stops for each SOA and
the mean error RT and SSRT across SOAs are also provided. Note that, for Experiment 3, the ignore and stop conditions are interleaved, so there is only
one no-signal condition. See Appendices B–D for mean error RT, SD, and SSRT at each SOA.
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produce fast but possibly erroneous saccades to the target (in line
with Wong-Lin et al., 2010). Similarly, RT to the target largely
relies on endogenous drives, because exogenous drives are most of
the time insufficient to reach the threshold. Furthermore, visual

gain directly maps to the strength of visual signals (aexo), which
was therefore kept fixed across instructions (as was the delay of
exogenous signals, see section Visual delays), consistent with their
automatic nature. As for all the other parameters in the model, in
the absence of specific hypothesis for why they may differ (a)
across instructions or (b) compared with previous work, we re-
frained from altering these, providing the strictest test of our
model.

�endo was not originally conceived as a free parameter in
DINASAUR, as it is by default tied to �vis (see section Modeling
prediction: one top-down fits all). We therefore first varied aendo-

_fix and aendo_targ systematically to search for the most suitable pair
for each individual no-signal distribution. aendo_fix was varied from
five to 60 in steps of one, while aendo_targ was varied from 10 to 20
in steps of 0.5. In Experiments 1 and 2, this was done separately
for the ignore and stop contexts, as these were acquired in separate
blocks and were therefore open to strategic adjustments. In Exper-
iment 3, the two tasks were interleaved, producing only one
no-signal distribution per participant. Individual distributions were
each compared with 1,000 trials simulated using each parameter
combination, scaled to match the available trial number from each
participant (Figure 7 illustrates the outcome of this procedure on
one example participant). All fits were based on minimizing the 2

distance between observed and simulated no-signal RT distribu-
tions. To increase the sensitivity to the exact shape of the whole
RT distribution, we used a fixed bin size (3.33 ms, the same as for
the distributions throughout the article with the same smoothing)
rather than a small number of quantiles. This choice led us to use
the mean over two complementary estimates, data

2 and model
2 .

Within each bin, data
2 � (Ndata � Nmodel)

2/Ndata, with N denoting
the number of saccades for which RT fell within this bin, while
model

2 � (Ndata � Nmodel)
2/Nmodel. This mean estimate therefore

penalizes simulations producing saccades in bins where none are
observed, as well as simulations failing to produce saccades in bins
where some are observed. The overall 2 was the sum of the 2

over all the bins where Ndata (or Nmodel) was at least one. Although
this approach was the most intuitive to us, we note that using
alternative fitting approaches (data

2 , model
2 or model

2 on 10 quantiles)

Table 5
Parameters Adjusted in 200N-DINASAUR to Capture Data From Experiments 1, 2, and 3 (See Table 2 for Full List of Parameters)

Name Description
Bompas and

Sumner (2011)

Exp. 1 Exp. 2 Exp. 3

IGN Stop IGN Stop IGN Stop

EccDist Distractor eccentricity in SC (mm) �1.76 0
EccTarg Target eccentricity in SC (mm) 1.76 2.25
�vis Visual delay (ms) 50 Individual T0p-ignore – 15 fixed across ignore and stop (see

Table 4)
�endo Endogenous delay (ms) 75 �vis � 25
�holding Holding period after fixation offset 0 Fitted to individual no-signal RT

distributions, separately for ignore and
stop contexts (see Appendix E)

Fitted to
individual no-

signal RT
distributions (see

Appendix E)
aendo-fix Amplitude of endogenous inputs at fixation 10
aendo-targ Amplitude of endogenous inputs to target 14
F Failure rate 0 Individual stop error rate at SOA � 0 (see Table 4)

Note. Gray boxes indicate parameter values from Bompas and Sumner (2011) or those directly set by stimulus location or from another parameter. White
boxes indicate free parameters used to capture new data.

Figure 9. Traditional stop signal task measures from observed and simulated
data. A–B. Proportion of failed stops (A) and stop signal RT (SSRT, B) across
SOAs, from the pooled data across observers (black diamonds) and in
DINASAUR simulations (red lines) with and without failure (continuous and
dotted lines). The SSRT was calculated using the integration method (Ver-
bruggen et al., 2013). C. Cumulative distributions for observed no-signal (light
gray) and signal trials (black continuous, semidashed, dashed, and dotted for
SOA 50, 83, 133, and 183, respectively). D. Same as C for DINASAUR
simulation (with failure), also pooled across observers. See Figures A5–A7 in
Appendix A for individual data and Figure A9 for scaled cumulative distri-
butions. See the online article for the color version of this figure.
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actually made little difference to the fit and no difference to our
conclusion.

Although most fits were satisfying, four (out of 20) remained
poor and these were specifically misrepresenting distributions with
very long mean RT but comparatively small standard deviations, in
conditions subject to large proactive slowing (Experiment 3, or the
stop context of Experiments 1 and 2). Increasing aendo-fix mainly
prevents short responses, while decreasing aendo-targ increases
most RT, but to the cost of also increasing variability. Instead, the
pattern of data was suggestive of participants strategically waiting
before disengaging from fixation, presumably to avoid errors at
short SOAs. Such holding period has been proposed before as a
mechanism for proactive slowing, from the behavior and neuronal
activity of monkeys performing a saccadic stop task (Lo et al.,
2009). We therefore added this new parameter to DINASAUR and
reran the fits, allowing the fixation-holding period to vary from 0
to 50 ms in steps of 10, while aendo_fix and aendo_targ were varied
in steps of five and one, respectively. This improved the fit in the
four cases mentioned above (2 were now below 500) and pro-
duced marginal improvement in another three cases. The best set
of parameters across the two fitting procedures was then chosen
(see Appendix E). Note that the focus of this article is not on
modeling strategic proactive slowing, but to identify the common
automatic components between countermanding and SI. We there-
fore made no attempts to formally compare models and test
whether adding a free parameter to the model was worth it. Rather,
our purpose is limited to using neurophysiologically plausible
adjustments in order to provide a satisfying fit to our no-signal
distributions, so these parameters can be taken forward for testing
the generalization to the signal conditions.

Generalization to Signal-Ignore and Signal-Stop Trials

Crucially, once the adjustments to the no-signal trials were made
to account for proactive slowing, we could test the ability of the
model to generalize to the signal conditions for each SOA (note
that our parameters were never allowed to differ between SOAs).
The model was able to produce the expected dips from the ignore
condition across all SOAs, as illustrated for one example partici-
pant on Figure 7, and from pooled data across participants and
SOA on Figure 10 (see Appendix F for 2 distances between
observed and simulated data). Unsurprisingly, the generalization
from T0p (used to fit the visual delay) to each SOA was excellent
(Figure A4), confirming the validity of the approach. Simulated
dips were often sharper than observed one (the recovery was
quicker), but note that we did not attempt to fit the strength and
transience of the automatic input associated with the signal onset
(these were inherited from previous work using peripheral small
black distractors). These may well be different in the current
design (larger central white circles) but this was not the focus here.

The critical step was then to test how well behavior on signal-
stop trials could be predicted from our model under the following
assumptions: (a) the automatic exogenous activation should be
identical to the ignore context (in both amplitude and delay); and
(b) the endogenous response to the signal is not free, its timing is
fully constrained by the automatic signal delay (�endo � �vis � 25
ms) and its amplitude is inherited from previous work (aendo-fix-

post � 10). We assess the model against both the shape of the RT
distributions (Figures 7, 10, and Appendix F), as well as dip onset

times across SOAs (Figure A4) and typical measures related to the
stop-signal task (Figures 9 and A5–A7).

At first, we did not introduce any new parameter between the
ignore and stop contexts (dotted red lines on Figure 9A–B). Like
in Figure 3, this first attempt was able to produce the overall
pattern of the stop condition, producing very similar effects as the
state of the art model for saccadic countermanding, blocked input
2.0. However, similar to blocked input models (Figure 3C) but in
contrast to observed data, there were no “late” errors: The small
recovery from the dip observed in all the participants in Experi-
ment 1 and 3, and one participant in Experiment 2 was absent in

Figure 10. Distributions of RT locked on signal onset, pooled across all
SOAs and observers, along with simulations using 200N-DINASAUR
model pooled in the same way. Same conventions as Figure 8. See the
online article for the color version of this figure.
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the model. As a result, the inhibition function (the proportion of
failed stops as a function of SOA, dotted lines on Figure 9A) was
systematically underestimated. Second, again similar to blocked
input 2.0, DINASAUR predicted stop-signal RT (SSRT) to remain
constant across SOAs (dotted lines on Figure 9B), in contrast to
observed data showing a consistent decrease as a function of SOA
in both experiments (diamonds on Figure 9B).

Within the framework of the independent race model, a decrease
in measured SSRT can be explained by assuming the true SSRT
varies across trials, and that varying the SOA leads to differently
sampling this underlying distribution (Logan & Cowan, 1984).
Because at short SOAs most responses are successfully inhibited,
the estimated SSRT is close to the true mean of SSRT. However,
at long SOAs, only the shortest SSRT lead to successful inhibition,
therefore leading to a systematic underestimation of the mean
SSRT. This interpretation works mathematically, but from our
perspective, a simpler mechanistic interpretation seems to be in
terms of failure to trigger the stop instruction, which would occur
on some proportion of trials (Band et al., 2003; Salinas & Stanford,
2013).

In the framework of the DINASAUR model, the same idea
(variability of stop drive across trials) can be implemented in a
simple way by adding a “failure” (or inattention) parameter,
that is, a random proportion of trials where the stop instruction
is forgotten and in which the system behaves exactly as in
ignore trials. This refinement is conceptually similar to that
proposed in Hanes and Carpenter (1999), but is now explicitly
linked to the ignore condition, which the system defaults to
when the instruction to stop occasionally fails to be imple-
mented. It is also well in line with similar suggestions made in
the more cognitive domain and using manual responses (Band
et al., 2003; Matzke et al., 2017; Skippen et al., 2019). In
DINASAUR, top-down drives are either on or off while, real-
istically, their strength and delay probably vary across trials.
One could envisage that, on some trials, the blocking occurs but
is incomplete or occurs too late, leading to the saccade being
triggered anyway. These cases would be difficult to distinguish
from a complete failure to apply the instruction to stop, and are
therefore also captured by our failure parameter.

It is essential to note that this failure rate parameter does not
account for any unexplained differences between ignore and stop
behavior. Rather it accounts for more-than-expected similarity by
simply putting the model back into ignore mode for a proportion of
trials. This adjustment allowed late recovery from stop-signals,
which improved the match to the inhibition function (continuous
lines on Figure 9A), allowing more errors to be made by the
model, bringing it more in line with human participants. On these
occasions when the stop instruction is not applied, everything
happens as if the instruction was to ignore the signal. The saccade
recovers after a pause, creating a long tail just like in the standard
saccadic inhibition paradigm, only much reduced in size because
this failure affects only a minority of trials. This failure parameter
was set to be equal to the percentage of errors on signal-stop trials
at the shortest SOA (50 ms), which ranged from 3% to 31% across
individuals (see Table 4). The rationale is that, at such short SOA,
all trials should be inhibited successfully if the instruction were
applied correctly. Although these values may seem high, we note
that our participants were all novices on the stop task, in contrast
to monkeys or humans from labs where this task is intensely

investigated. Furthermore, this number is in line with estimates
from recent work, also involving novices, suggesting an average
value of 17%, though using a different set-up (Skippen et al.,
2019). Crucially, although this failure parameter is constant across
SOA (like all other parameters), the proportion of saccades eligible
for recovery decreases as SOA increases, and this now makes our
model successfully capture the dependency of SSRT on SOAs
(continuous lines on Figure 9B).

All model simulations on Figures 7, 10, A4, A5, A6 and A7 use
this failure parameter. Figure 10 illustrates the ability for the model
to capture all aspects of the stop data (see Appendix F for indi-
vidual 2 measures). Figures A4–A7 in Appendix A illustrate the
excellent prediction of T0-stop, error rate and SSRT at each SOA.
T0-stop generalized equally well as T0-ignore, as assessed by the sum
of the 2 distance between observed simulated values (23 for
ignore and 17 for stop, nonsignificantly different).

Discussion

How Do Brains Halt Action Plans? Intertwined
Influences of Automatic and Top-Down Processes

The thesis in the present article is that the functional outcome of
top-down control occurs initially via automatic indiscriminate
mechanisms, which are followed by goal directed processes in the
traditional view. When halting an action plan following new in-
formation in the world, the first process is a rapid automatic
interference from the new sensory signal itself—which occurs
regardless of the goal to halt. This indiscriminate interference has
dynamics arising from the transient nature of rapid visual signals
(such as the magnocellular pathway) and lateral inhibition in motor
decision areas. It results in slowing down the process that leads to
action, temporarily interrupting it. The endogenous command to
alter the ongoing action plan can then piggy-back on the already-
unfolding automatic interruption. This account offers a simple
interpretation for a wealth of data showing how “low-level” factors
affect our ability to stop (Armstrong & Munoz, 2003; Asrress &
Carpenter, 2001; Boucher, Stuphorn, et al., 2007; Cabel et al.,
2000; Hanes & Carpenter, 1999; Hanes et al., 1998; Hanes &
Schall, 1995; Ito et al., 2003; Morein-Zamir & Kingstone, 2006;
Paré & Hanes, 2003; Stuphorn et al., 2000). It also allows quan-
titative predictions for many other factors, which have been shown
to automatically interfere with speeded responses but may not have
been studied in the context of countermanding (see Empirical
Predictions and Future Directions section below).

This is not to say that rapid interference is entirely goalless in
the broader sense: Our brains may allow this interference to
happen because it is helpful on average. In other words, natural
selection seems to have preserved some apparently very basic—
and probably phylogenetically old—processes that allow new and
often irrelevant sensory information to rapidly travel to motor
decision areas and influence action choices within 100 ms. We
envisage this as one of the initial building blocks for how flexible
behavior becomes possible as brains develop additional pathways
that are more selective but slower. Further, while in simple visual
scenes (such as in these experiments) all new stimuli may provide
indiscriminate interference, in complex everyday scenes the degree
of rapid interruption is likely to be modulated by relevance to
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ongoing tasks (“attention” or “task-set”). It is known that spatial
attention modulates sensory signals from the earliest stages of
processing (as early as the lateral geniculate nucleus for visual
signals, O’Connor, Fukui, Pinsk, & Kastner, 2002). Similarly,
subconscious motor priming is highly conditional on task-set (cur-
rent task goals; i.e., whether the priming stimuli have a current
motor mapping or not), suggesting automatic flows of activity
through the brain show conditional automaticity (see Kunde et al.,
2003 for an in-depth discussion on this topic)—and hence are not
entirely goal-free. This dependency of automatic drives on task-set
is also illustrated in proactive control (Verbruggen, Best, et al.,
2014; Verbruggen, Stevens, & Chambers, 2014). Therefore, al-
though the present article develops the idea that top-down pro-
cesses piggy-back on automatic ones, we see it as complementary
to the literature showing that automatic processes often piggy-back
on top-down processes, pointing toward a close intertwining of
automatic and volitional drives (Boy, Husain, & Sumner, 2010;
Sumner & Husain, 2008).

Our conclusions are convergent with previous literature show-
ing how task goals, such as stopping, can be influenced by invis-
ible or task-irrelevant primes (see Verbruggen, Best, et al., 2014
for a review). Our viewpoint is also compatible with other recent
theories of countermanding. Here we investigated the effect of
visual stimuli on oculomotor control in humans, but our concep-
tualization is in line with other literatures describing animal be-
havior, such as freezing, as proposed in the pause and cancel
model in rodents (Schmidt & Berke, 2017). Our conclusions are
reminiscent of those from Bissett and Logan (2014) on selective
stopping paradigms, where participants are asked to stop to some
signals but ignore others within the same session. In this context,
it has been suggested that participants use a stop then discriminate
strategy, in which they stop indiscriminately whenever a signal
occurs and restart only if the signal is an ignore signal. However,
we portray the initial stage as slowing down rather than stopping,
and as an automatic process rather than a strategy.

Movement Versus Visuomovement Neurons

Once we clearly conceptualize the first process in halting as
transient automatic interference, we can clarify the alignment
between recent models of countermanding and low-level mecha-
nisms. The early process in previous countermanding models such
as blocked input 2.0 or in (Lo et al., 2009) was already concep-
tualized as stimulus driven with a short delay, although it was
implemented as a sustained signal. An important implementation
difference with DINASAUR relates to the distinction between
visuomovement and movement neurons. DINASAUR units are
simplified visuomovement SC neurons. As a result, they will show
an automatic transient visual response, followed by a buildup of
activity when the task requires it. In contrast, units in models such
as blocked input 2.0 are thought to reflect FEF movement neurons.
This means that they will not show the automatic visual response,
but only the task-related accumulation. It has been argued that only
movement (and not visuomovement) neurons reflect the accumu-
lation of evidence that leads to saccadic decision (Ray et al., 2009).
The fact that movement neurons (but not visuomovement neurons)
showed activity profiles that matched those expected of Go units in
a race model contributed to this assumption. Reciprocally, the

presence of neurons with activity resembling the hypothetical Go
units also contributed to legitimize the race model.

Counter to this prevailing view, it is precisely the visuomove-
ment nature of DINASAUR units (their automatic transient re-
sponse to visual stimuli as well as their strategic drives) that makes
DINASAUR capture tasks it was not originally designed for—the
saccadic inhibition and countermanding tasks—as well as several
hallmarks of visuo-oculomotor behavior such as the gap effect
(Bompas & Sumner, 2011, 2015; Trappenberg et al., 2001), and
visuomanual interference (Bompas et al., 2017). Similarly, our
upgrade of blocked input 2.0 to blocked input 3.1 consisted pre-
cisely in turning units from movement neurons into visuomove-
ment neurons. The fact that neurons exist that behave in a similar
way to units in our model is a necessary condition for this model
to be “biologically plausible” but surely does not prove the model
is right, nor that these neurons are precisely the ones “taking the
decision.” Although it is essential to simplify complex behaviors
and concepts into workable models, we keep in mind that this
simplification makes all computational models intrinsically wrong.
Ultimately, the proposed framework offers the opportunity to
generate precise quantitative predictions, which can then be tested
empirically (see Empirical Predictions and Future Directions sec-
tion below). The endeavor here is not to “validate” one particular
model or show it outperforms other models in specific tasks, but
rather to employ a precise framework to bridge gaps across para-
digms and literatures.

Converging Modeling Approaches

As developed above, the crucial difference between the models
lies in the transience and indiscriminate nature of the stimulus-
driven signal. Apart from this, the delay times and other aspects of
the model logic were similar. We inherited the logic of blocking
input for the endogenous signal from the most comprehensive
model of countermanding (Logan et al., 2015), but we inherited
nearly all actual parameters from saccadic inhibition (either pre-
vious work or the baseline and ignore conditions here). Counter-
manding behavior then drops out of the model. The model’s
activity dynamics are also consistent with monkey neurophysio-
logical data (Boucher, Palmeri, et al., 2007; Hanes et al.,
1998)—an important test-bed for previous models of counter-
manding (e.g., Logan et al., 2015).

To allow a match to every aspect of the data, we made two
additions: a strategic fixation-holding period and a failure param-
eter to capture the occasional late errors. The first parameter was
only introduced to improve the fit to the no-signal condition, in
line with previous behavioral and neurological work in monkeys
performing a saccadic countermanding task (Lo et al., 2009). The
second parameter is needed not because the model did not suffi-
ciently change its behavior between ignoring and countermanding,
but because human behavior actually remains more similar across
the conditions than the model predicts, as if they sometimes forget
to countermand. Both parameters are new to DINASAUR, but
their plausibility has been already well supported in the context
of the stop-task (Band et al., 2003; Lo et al., 2009; Matzke et al.,
2017; Skippen et al., 2019).

However, even without these post hoc additions, the model was
able to generate good predictions in a behavior it had never been
constrained for. It is worth emphasizing how rare it is for psycho-
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logical models to capture new behavior for which they were not
designed without being fit directly with plenty of free parameters.
This might have been even more challenging when crossing a
conceptual boundary—such as from bottom-up interference to
top-down control. However, our thesis is that this should not be
considered a conceptual boundary. Situations requiring top-down
control do not differ qualitatively from those that stimulate auto-
matic interference and most of the same brain mechanisms are
engaged in both situations. Moreover, although elegant parsimo-
nious mathematical models designed to capture specific tasks may
often struggle to generalize to other tasks (unless completely refit
or parameters are added that change the model characteristics),
generalization is more natural in more complex models conceived
to mimic a biological system. Of course, more parameters mean
more flexibility, should one allow all these parameters to vary
freely. That is why our approach is the opposite: We keep most
parameters fixed and only allow very few parameters to vary in a
highly constrained, hypothesis-driven manner. The ability of such
models to generalize to new behaviors, combined with a clear logic
for what should be allowed to differ and what should be fixed, are
great strengths, which, in our eyes, outweigh the loss in parsimony
and mathematical elegance.

Although our account bears conceptual resemblance to other
recently proposed models of stopping, there remain important
implementation differences. Specifically, the pause then cancel
model (Schmidt & Berke, 2017) relies on an unspecific increase in
the action initiation threshold following the stop signal event.
Similarly, in Wessel and Aron (2017), a temporary slowing can be
triggered in response to any unexpected events. Both accounts
suggest this indiscriminate response could be mediated by the
basal ganglia (BG), which has inhibitory connections with the SC.
In contrast, DINASAUR mimics topologic relations between the
visual field and the direction of saccades, as is commonly seen in
SC buildup neurons during visually driven saccades. This differ-
ence in implementation could arise from a focus on different
animal species and therefore on different types of action (ballistic
head movements in rodents and saccades in monkeys). However,
both BG and SC are involved in both actions in both species and
it is therefore likely that both should contribute to stopping behav-
iors, the former as a general freezing mechanism and the later as
a more spatially specific mechanism able to resolve competition
across multiple stimuli in the visual field. Although simplified and
limited, the spatial extent of the DINASAUR model allows us to
test future predictions related to the spatial specificity of stopping
behavior (see Empirical Predictions and Future Directions section
below). Future research investigating this spatial specificity could
cast light on the relative contribution of the BG (possibly less
spatially specific) and the SC into saccade countermanding.

Model Simplifications

Our approach to minimize the number of free parameters in the
model led to three main simplifying assumptions (beyond the fact
that all models are simpler than neuronal processes). First, most
parameters not of direct interest here were inherited from previous
work, including the spatial profile of excitation and inhibition, the
spatial extent of excitation from visual onsets, and the temporal
profile of exogenous signals. These parameters were based on
monkey neurophysiology (Trappenberg et al., 2001), and appear

sufficient for simulating currently existing human data sets (pres-
ent and past, see Bompas & Sumner, 2011).

Second, we assumed visual onsets triggered the same automatic
response (delay and amplitude), irrespective of their eccentricity.
Visual eccentricity is known to decrease sensitivity and acuity,
which could, in the model, mean weaker and functionally slower
signals. On the other hand, oculomotor behavior is, by definition,
designed to orient toward peripheral stimuli, which may therefore
be prioritized in oculomotor planning. To fully compare conduc-
tion delays (T0) across eccentricity is beyond the current data, but
a proxy can be obtained from the very quickest saccades that are
not guesses (i.e., the shortest-latency in which there are more
correct than error saccades). In our data, this latency was 106 ms,
and occurred in the condition expected to have lowest engagement
with fixation: the ignore condition of Experiment 2. This suggests
that T0 for these peripheral stimuli would have been approximately
100 ms, allowing for a minimum amount of decision time and a
slight pooling delay needed to detect above chance performance.
This proxy estimate is similar to our estimate for T0 at fixation (98
ms), and suggests our simplifying assumption of equal latency was
sufficiently sound.

Third, we assumed that, apart from the strategic holding period
adopted by some participants, all endogenous delays were equal,
including fixation release, saccade planning, and blocking. This
assumption followed from our endeavor to predict the pattern of
countermanding behavior from lower-level oculomotor behaviors
without separately fitting a special inhibitory or blocking mecha-
nism. It is off course possible that these delays may differ slightly,
in a way that relates interestingly to task-set or individual differ-
ences.

How Fast Are Top-Down Commands?

The traditional purpose of countermanding research is to under-
stand and measure how rapidly a top-down signal can overturn an
action plan, quantified by the SSRT. One of the implications of the
close relationship between bottom-up and top-down processes is
that the effective speed of top down signals depends on bottom-up
factors. This conclusion is actually consistent with a wealth of
research showing that SSRT depends on the exact experimental
condition, and we provide here a general framework for explaining
this. In this framework, all top-down drives, including stopping,
are about translating sensory information into task-related action
outcomes. Therefore, the speed of top-down drives will heavily
depend on non-decision time, that is, sensory conduction time and
motor output time, which will depend on the nature of sensory
information and action modalities under investigation.

This being said, within the context of one task, one can usefully
discuss the speed of top-down drives associated with a given
sensory signal, action domain, and instruction set. One key impli-
cation of conceptualizing the first phase of halting as automatic is
that the truly endogenous signal does not have to be so rapid. This
point echoes that of the pause and cancel theory of basal ganglia
mechanisms (Schmidt & Berke, 2017), where it is argued that a
fast pause mechanism is followed by a cancel process that extends
well beyond the traditional SSRT, and therefore we may have been
looking in the wrong temporal window for neural evidence of such
mechanisms.

24 BOMPAS, CAMPBELL, AND SUMNER



However, in our present results, the latency remains relatively
short for the top-down signals. SSRT is normally estimated as
between 100 and 150 ms in humans for saccades (Campbell,
Chambers, Allen, Hedge, & Sumner, 2017; Hanes & Carpenter,
1999). In our model there are two relevant input delays: visual and
endogenous delay. These are respectively 83 ms for the transient
automatic signal to start interfering with saccade build-up activity,
and 108 ms for endogenous support to switch back to fixation. For
comparison with SSRT, we need to add motor output time, in this
case 20 ms, because SSRT is a measure of the time needed
between a stop signal and when a response would otherwise have
occurred, not just the time before the inhibition signal reaches
motor maps. This gives us 103 and 128 ms. One could therefore
conclude that the new conceptualization overall supports previous
estimates for the window of inhibitory signals.

Importantly though, neither of these two delays in DINASAUR
can be interpreted as reflecting the timing of inhibition per se.
Indeed, the first is the delay of automatic excitatory signals. When
these automatic signals project to fixation neurons, they have an
inhibitory effect on the plan to move the eyes to the target, but only
indirectly, via lateral inhibition. The second only indexes the start
of the endogenous switch, while the inhibition disrupting the link
between the visual stimulus and the intention to saccade needs to
be sustained throughout a long period to prevent saccades from
recovering from the dip. Besides, the timing of this later drive is
not specific to stopping, but is shared with all top-down drives in
the model.

How stopping is conceptualized also impacts the conceptual
ordering of go and stop command speed. As previously envisaged
within the influential independent race model of countermanding,
the go signal always comes first and stop commands always have
to catch up to take effect. This would have misled many into
thinking that stop commands are on average faster than go
commands. In contrast, in blocked input 2.0, the stopping delay
(Dcontrol) is larger (62 and 90 ms for Monkey A and C) than the
delay for producing go saccades (Dmove, 44 and 47). In our model
the two delays facilitating stops (83 and 108 ms) are identical to
those producing go saccades to the target. How then is it possible
for stimuli occurring after the target to trigger a majority of stops
if the relevant delay parameters are equal to or longer than those
driving go saccades?

The answer is that in an interactive model a go saccade only
occurs after an accumulation process, which takes some amount of
time after the signals start getting integrated into this process.
However as soon as a new signal, or a change in signal (e.g., one
being turned off), reaches that process it can immediately change
the accumulation, potentially stopping activity that was about to
reach threshold doing so. In other words, go response latency
depends on both the input delays and the accumulation time (plus
output time), while inhibition speed depends mainly on the input
delays (plus output time for behavioral evidence of inhibition).
This distinction was of course known to previous researchers using
interactive models. However, it does not appear to be widely
discussed that stop processes can be successful and appear to
“overtake” go processes without there having to be neural mech-
anisms that are themselves more speedy for inhibition than for
initiation of responses.

Although Boucher, Palmeri, et al. (2007) stress that the stop
signal is “late and potent,” while we have referred to rapid tran-

sient inhibition, this difference of language merely occurs because
of different reference positions. This signal is rapid when com-
pared with human saccade latency distributions, or to the later
influences of top-down signals. But it is late in the sense that it
accounts for most of measured SSRT. It is potent in both models,
in the sense that as soon as the signals reach the neural maps,
lateral inhibition creates a strong impediment to saccade planning
and has an almost immediately measurable effect in the reduction
of saccade likelihood.

The Importance of Sensory Pathway Dynamics in
Motor Decision

Our findings confirm the suspicions of Cabel et al. (2000) and
Morein-Zamir and Kingstone (2006) that stimulus properties (such
as salience) often influence task performance by engaging both
automatic and top-down processes. This warns us not to assume
that well-known behavioral effects in tasks associated with higher-
level processes always measure mechanisms at that level. The
model framework we use provides a natural explanation for the
influence of stimulus properties, which dictates both the timing
and amplitude of the automatic dips (Bompas & Sumner, 2011;
Reingold & Stampe, 2002). Likewise there are known differences
between SSRT arising from visual and auditory stop signals (Arm-
strong & Munoz, 2003; Boucher, Stuphorn, et al., 2007; Cabel et
al., 2000; Morein-Zamir & Kingstone, 2006), which might tradi-
tionally be ascribed to the time needed to detect the stop signal
before issuing the countermand, but in the model would also be
captured by different dip size and delay. Auditory signals also
produce dips, which happen sooner than following visual stimuli,
although these have only been studied on microsaccades (Rolfs,
Kliegl, & Engbert, 2008).

Even changes to response modality—saccadic versus manual—
which might not intuitively be associated with different stimulus-
driven effects, in fact do affect the balance of drive from different
sensory pathways (Bompas & Sumner, 2008), and thus the delay
and amplitude of stimulus-driven activity (see Bompas et al., 2017
for discussion and demonstration of the presence of dips in the
manual modality). This could be part of the reason why SSRT
differs between modalities (Boucher, Stuphorn, et al., 2007) and
possibly also why saccadic and manual SSRT are differentially
susceptible to influences such as alcohol (Campbell et al., 2017).

Some task designs (e.g., manual responses with low-salience
stop signals) may entail a sufficiently small automatic effect that
explicitly including it in models would not alter conclusions in any
important way. Indeed, the standard horse-race model of counter-
manding has been applied successfully to very many studies.
However, we should not assume this will be the case for all manual
designs, and we advocate paying close attention to the nature of
stimuli and the nonlinear activity they produce. For instance, it is
possible for masked no-go or stop stimuli to slow down responses
and slightly increase the rate of missed responses (van Gaal,
Lamme, Fahrenfort, & Ridderinkhof, 2011), suggesting those in-
visible stimuli can partially prime activity, even if this would not
manifest obviously in latency distributions under ignore instruc-
tion (e.g., if there was no strong lateral inhibition at the stage this
priming reaches). Therefore top-down inhibition may partially
piggy-back on automatic processes even when it is difficult for us
to detect this behaviorally.
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Non-independence of Go and Stop Processes

The fact that mean RT for failed stops tends to be shorter than
mean RT for correct saccades has long been interpreted as evi-
dence that the go and stop processes are independent. This con-
cept, known as contextual independence, states that the finishing
time of the go process is unaffected by the presence of the stop
signal (see Bissett & Logan, 2014 for a recent explanation). The
(flawed) logic underlying this conclusion is that, if the stop signal
interferes with the action plan triggered initially by the go signal,
and therefore slows it down, we would expect the RT in stop trials
to be longer, not shorter, than in go trials. In our data though, we
see some instances where the mean error RT is longer than the
mean no-signal RT, particularly in those experiments involving
selective stopping (Experiments 1 and 3) and at short SOAs. In
light of recommendation within the recent “consensus guide to
capturing the ability to inhibit actions and impulsive behaviors in
the stop-signal task” (Verbruggen et al., 2019), such pattern may
appear at first worrying. However, it is entirely expected under the
interactive (non-independent) model when a significant proportion
of errors reflect trigger failures, which is likely to be the case at
short SOAs and under more complex instructions.

In an interactive model, longer RT would also be expected for
the fraction of trials for which the stop signal (a) reaches the
competition before the saccade plan has reached threshold and (b)
fails to prevent the saccade plan from reaching threshold. In our
interactive model, these saccades suffer from the automatic inter-
ference within the competitive decision process. However, the
bulk of the failed stop RT distribution is populated by trials where
the saccade plan was quick enough to escape all influence from the
stop signal (RT � T0), and therefore have short unaltered RTs. For
these trials, the stop and go signals did remain independent be-
cause the stop signal was still in sensory transmission. These failed
stops are well captured by the independent race model, which is
the context in which the recommendations in Verbruggen et al.
(2019) were made. On the other hand, when the stop signal does
reach the integration stage and interferes with the go process, a
large proportion of these slowed action plans never reach fruition;
they are successfully stopped. Therefore, they do not appear in the
calculation of mean latency, and do not provide evidence to
challenge the independent model.

In other words, the fact that mean RT for failed stops tends to be
shorter than mean RT for correct saccades should be interpreted to
mean that the majority of escaping saccades (failed stops) were
those for which non-decision time (the period of signal indepen-
dence) dominated their overall latency. It does not mean the entire
processes are independent. Indeed, Lo, Boucher, Paré, Schall, and
Wang’s (2009) model, blocked input, and DINASAUR all have in
common that they do not adhere to this independence concept
(fixation and move nodes are mutually inhibitory), and yet the
mean RT of simulated failed stops also tend to be shorter than the
mean no-signal RT. This demonstrates that this behavioral pattern
is not a strong test for contextual independence.

We stress that our understanding of these phenomena emerged
from direct comparisons between the shapes of full distributions of
no-signal and failed stop RT (or spatial properties), rather than
relying on summary statistics such as mean RT of failed stops and
accuracy, which can hide underlying patterns. Conceptually sim-
ilar difficulties for mean RT can occur in any paradigm in which

some portion of the RT distribution in one condition does not show
up in another condition (e.g., when errors occur, these trials
remove themselves from correct RT distributions, and the missing
correct RTs will often be biased to one end of the distribution).

Note that the same reasoning holds when comparing the landing
position or peak velocity of saccades between go and failed stop
trials, as attempted in Hanes and Schall (1995): Only a fraction of
failed-stops would be expected to be hypometric while all the
others will be identical, making any difference difficult to observe
unless one can be directed by a model to examine the latency bins
where hypometria is expected. The saccades most affected by the
interaction process are successfully stopped and removed from the
calculations.

Previous work using saccades with visual (Gulberti, Arndt, &
Colonius, 2014; Ozyurt, Colonius, & Arndt, 2003) and tactile
(Akerfelt et al., 2006) stop signals show violations of the indepen-
dent race predictions, suggesting interaction between go and stop
processes (Colonius & Diederich, 2018). In contrast, it has been
claimed that the idea of independence of the go and stop activity
had been validated in neuronal recordings in FEF (Hanes et al.,
1998) and SC (Paré & Hanes, 2003), because there was no differ-
ence in saccade-related activity in failed stops and correct trials
when RT � SSRT � SOA, and no peak velocity or eccentricity
difference in the saccades made (these would be behavioral con-
sequences of any difference in SC activity). However, we now
show that this way of selecting trials is very similar to RT � �vis �
SOA, when no influence from the signal is yet measurable (see Lo
et al., 2009 for a similar logic). Figure A8 in Appendix A offers a
clear demonstration of this. In all models, the stop and go signals
remain independent while the stop signal is in sensory transmis-
sion before it reaches the integration process. The proportion of
failed stops that occur during this time are expected to show
contextual independence.

What Does SSRT Reflect?

Simulations using published parameters for blocked input 2.0
produced T0 around 60 ms and this value maps well onto the sum
of excitatory input delay (47 ms) and output time (10 ms), just like
in DINASAUR. Using the standard integration calculation for
SSRT (but see Skippen et al., 2019), the same simulations produce
SSRT estimates of 73 ms for Monkey A and 93 ms for Monkey C
(similar to observed SSRT, 71 and 94 ms), irrespective of SOA.
These values map approximately onto the sum of Dcontrol � �out

for Monkey A (62 � 10), less clearly so for Monkey C (90 � 10).
However, the proximity may be coincidental, because SSRT is
also clearly influenced by other parameters in the model (Dmove

and Dfix), though not in straightforward ways.
Our SSRT estimates systematically decrease with increasing

SOA, as previously noted in the countermanding literature. One
explanation is that, as SOA increases, the mean SSRT is influ-
enced by biased sampling of the underlying distribution of true
SSRTs, as initially proposed by Logan and Cowan (1984, see
Section “Inhibition function, SSRT and dip recovery” for details).
An alternative explanation is that SSRT does not directly reflect
the timing of some unique underlying parameters of the sensori-
motor system (as already noted by Salinas & Stanford, 2013; using
a much simpler model). Linking saccade countermanding to sac-
cadic inhibition and modeling both tasks with DINASAUR offers
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a quantitative explanation for this. The SSRT measure ignores the
RT of failed inhibition, and therefore treats late errors equivalently
to early errors. Given that dips are never so sharp that the distri-
bution falls to zero straight after dip onset, there are always failed
stops beyond dip onset. Their number contributes to SSRT and is
influenced by nearly all parameters in the two models we consid-
ered. Therefore, SSRT is always higher than T0, and is a compound
measure of all parameters that contribute to the success, or not, of
stopping, rather than a reflection of inhibitory delay alone.

SSRT is typically interpreted as the time required for an action
plan to be cancelled. However, within our current framework, the
saccade plan is never truly cancelled. Rather, increased activity
within the fixation system and interrupted support to this saccade
plan may reduce movement activity sufficiently to make recovery
very unlikely. Yet, the probabilistic nature of this mechanism
means that it is possible that a saccade recovers. Relatedly, there is
no room in this framework for the concept of cancel time, which
has been proposed to index the efficiency of the cancelling process
(Boucher, Palmeri, et al., 2007; Lo et al., 2009; Logan et al., 2015).
The cancel time is defined as the difference between SSRT and the
time at which neuronal activity starts to diverge between failed-
stop trials and latency matched no-signal trials (diverging time on
Figure 6). In contrast, the diverging time itself is entirely related to
dip onset (in DINASAUR as well as blocked input and most other
models relying on an interactive accumulation to threshold), be-
cause it is equal to SOA � sensory delay, that is, T0 � motor
output time. Therefore, although the diverging time directly maps
onto one parameter in a range of models, the SSRT does not, and
therefore the difference between SSRT and diverging time doesn’t
either.

Many researchers use SSRT to measure individual differences
in stopping ability. In light of the above, individual differences in
SSRT could reflect variability within multiple aspects of visuo-
motor decisions (including properties of exogenous signals), rather
than a unique construct or even a compound construct mainly
indexing top-down control. For instance, if in some clinical con-
dition, the sensory conduction delay associated to the go signal
(e.g., a peripheral stimulus) was increased more than the delay
associated with the stop signal (e.g., a central stimulus), this would
be equivalent to effectively reducing the SOA, resulting in an
increase in SSRT, even though none of the endogenous aspects are
affected. Whether this multidependence of a key measure is prac-
tically beneficial or detrimental for researchers depends ultimately
on how correlated low-level and high-level aspects are within the
population, which we do not know for now (see section below for
future directions). We can only speculate that the answer will
presumably depend on the specific design chosen to investigate
these individual differences (stimuli, action modality and instruc-
tions), begging caution when drawing conclusions from experi-
ments using different set-ups. The model supplies a conceptually
useful distinction that is merged in SSRT: whether better “ability
to stop” translates into quicker/stronger application of top-down
control (a longer-lasting dip as top down control takes over from
the automatic inhibition) or more consistent blocking behavior
across trials (fewer late errors/failures). This is well in line with
very recent work, suggesting correcting SSRT estimates for trigger
failure improves correlation with impulsivity trait (Skippen et al.,
2019).

Empirical Predictions and Future Directions

To further test the model framework, one can use quantitative
predictions arising from changing the bottom-up parameters. Many
“low-level” factors, such as signal contrast, chromaticity, or posi-
tion in the visual field, have been shown to modulate the automatic
delaying of saccades. Using previous quantitative estimates for
how these factors precisely influence the delay and strength of
exogenous signals, quantitative predictions for stopping behavior
can be easily derived from DINASAUR. For instance, we have
previously described how increasing the signal’s contrast equates,
in DINASAUR, with increasing the strength and decreasing the
delay of exogenous signals (Bompas & Sumner, 2009, 2011).
Similarly, our modeling suggests that some chromatic signals
(“S-cone stimuli”) are delayed by 25 ms compared with achro-
matic signals (Bompas & Sumner, 2008, 2011). Previous research
has also shown that stimuli presented in the temporal hemifield
(such as left visual hemifield when viewed with the left eye),
interfere more with saccade latency compared with nasal stimuli
(right visual hemifield when viewed with the left eye; Walker,
Mannan, Maurer, Pambakian, & Kennard, 2000). From this we can
make quantitative predictions for how much harder it should be to
stop in response to low contrast, nasal, or chromatic stimuli,
compared with high contrast, temporal, or chromatic stimuli. Con-
versely, the present data show that dip onset, which we use to
constrain the delay of exogenous inputs, can also be estimated
from the stop signal task. This means that existing stop task data
sets with sufficient trials could be reanalyzed using the present
framework in order to investigate automatic inhibition.

The current DINASAUR model is only one dimensional and its
spatial aspects are still largely underconstrained (we have not
allowed them to vary; they were inspired by recordings in mon-
keys but were never systematically tested against human behav-
ior). Nevertheless, the fact that it possesses such spatial layout
contrasts with most decision models (which possess typically two
nodes), and offers the possibility to investigate the effect of spatial
attributes of signals and targets, such as size and location. For
instance, DINASAUR correctly accounts for the fact that interfer-
ence can be triggered by visual stimuli appearing at any location in
the visual field but it also predicts that the interference should be
modulated by where the stop signal specifically appears, in relation
to the fixation and the saccade target. Previous research has shown
that, in the stop task, signals appearing at the same location as the
target were less potent than contralateral signals (Ozyurt et al.,
2003). This is consistent with our previous work showing such
stimuli fail to induce any saccadic inhibition (Bompas & Sumner,
2011), possibly due to the existence of a refractory period prevent-
ing two bursts of visual activity to occur close in time at the same
location. It is therefore possible that these signals do not produce
any automatic interference and act purely via top-down signals,
providing an interesting design for isolating top-down factors.

Another prediction from our framework is that factors mainly
influencing top-down drives or the ability to apply these consis-
tently (such as task switching, dual tasking, workload, etc.) should
affect primarily the ability to stop saccades from recovering after
the dips, but not dip onsets. More generally, the influences of
clinical conditions, medications, or other individual differences
(age, personality traits, etc.) may well manifest as a combination of
automatic and top-down drives differences. Therefore, disentan-
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gling the early (automatic dip) and late (blocking) stages in sac-
cade countermanding, as the DINASAUR framework offers,
should help in revealing more specifically those higher-level fac-
tors researchers are often primarily interested in.

So far, we have assumed that the delay of endogenous drives,
including blocking, is fully determined by the delay of exogenous
drives, being simply 25 ms longer. This choice was driven by
parsimony and justified by the fact that all our signals are visual
and had similar properties. Endogenous signals are simply viewed
as further-processed versions of exogenous signals. However, it
would be interesting to validate this assumption empirically, by
measuring to what extent the exogenous delay (indexed by dip
onset time) correlates with the endogenous delay (further con-
strained by the shape of the go distribution), across participants or
across conditions. Within the context of individual differences, this
would also allow us to test whether the blocking has indeed the
same delay as the endogenous signals driving the saccade to the
target. Similarly, it could be tested whether endogenous timing is
indeed the largest source of variability across people, as is com-
monly assumed in the countermanding literature.

Conclusions

To conclude, the theoretical, simulation, and experimental work
presented here suggests that automatic stimulus-driven interfer-
ence accounts for much of the characteristic behavior in counter-
manding tasks, in contrast to the traditional and widespread idea
that these tasks primarily index higher level cognitive control. This
highlights the importance of stimulus-driven effects in paradigms
generally associated with higher cognition. More generally, we
hope to help shift the traditional separation of automatic and
voluntary processes toward a more integrated understanding of
how automatic and voluntary control work together, alongside
parallel endeavors to untangle the mysteriously intelligent control
homunculus into the emergent activity of an army of idiots.
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Appendix A

Additional Figures

Figure A1. Latency distributions for each participant (columns) and stimulus onset asynchrony (SOA; rows)
in the ignore and stop contexts of Experiment 1. Green lines indicate the signal onset. Gray lines indicate
distributions in which no signal was presented. Black lines indicate distributions of trials in which a signal
occurred. Blue dots indicate the dip onset (i.e., where the distributions diverge, not necessarily where one takes
a down-turn); red dots show dip maximum. See the online article for the color version of this figure.

(Appendices continue)

31UNIFYING SACCADIC INHIBITION AND COUNTERMANDING



Figure A2. Same as A2 for Experiment 2. As expected, strategic adjustments across conditions were partic-
ularly large in Experiment 2 (where the two contexts were kept fully separated) and meant the visual signal often
arrived too late to have much effect, especially for the fastest participants (P1 and P4). Nevertheless, when dips
were observed in both contexts, Experiment 2 confirmed the results from Experiment 1. SOA � stimulus onset
asynchrony. See the online article for the color version of this figure.
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Figure A3. Same as A1 for Experiment 3 after pooling data from white and dark signals. SOA � stimulus onset
asynchrony. See the online article for the color version of this figure.
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(Appendices continue)

Figure A4. Individual T0 at each SOA in the ignore (circles) and stop instruc-
tions (stars) along with simulated T0 using the ignore (dashed lines) and stop
(continuous line) parameters from Appendix E. Missing points and lines indicate
cases when the observed or simulated data did not show dips. Even though we only
use T0p from the ignore condition to constrain the model, note how well the model
generalizes to each stimulus onset asynchrony (SOA) and across instructions. See
the online article for the color version of this figure.

Figure A5. Observed data in the stop task (gray and black) along with
model simulations (red). A. Cumulative distribution of no-signal RT (gray
and dark red) and signal RT for SOAs 50, 83, and 133 (continuous,
semidashed, and dashed black lines, respectively, for observed data and
bright red lines for model). B–C. Inhibition function and stop signal
reaction time (SSRT) for observed (diamonds) and simulated (lines) stop-
signal data. RT � reaction time; SOA � stimulus onset asynchrony. See
the online article for the color version of this figure.

Figure A6. Same as A5 for Experiment 2. RT � reaction time; SSRT �
stop signal reaction time; SOA � stimulus onset asynchrony. See the
online article for the color version of this figure.

Figure A7. Same as A5 for Experiment 3. RT � reaction time; SSRT �
stop signal reaction time; SOA � stimulus onset asynchrony. See the
online article for the color version of this figure.
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Figure A8. DINASAUR accounts for patterns in neural activity previously taken to imply independence of go
and stop processes. A and C. Mean simulated activity during unsuccessful stop trials (signal-respond) and
latency matched no-signal trials at stimulus onset asynchrony (SOA) 83 ms, using the same convention as Figure
6 and matching Figure 4A and C in Boucher, Palmeri, et al. (2007). B. Same data as in A but locked on saccade
onset, following Figure 3F in Paré and Hanes (2003). D. Same data as in C but locked on saccade onset (not
shown in Paré & Hanes, 2003, shown here for completion). Green shades indicate those time windows chosen
in these two previous articles to illustrate the equality of neural activity between signal-respond and fast
no-signal trials. Clear differences are apparent outside these time windows. See the online article for the color
version of this figure.

(Appendices continue)
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Figure A9. Cumulative distributions of failed-stops, scaled to represent frequency rather than number of responses, for
no-signal (light gray) and signal trials (black continuous, semidashed and dashed for stimulus onset asynchrony (SOA) 50,
83, and 133, respectively; same conventions as Figure 9C–D). The expected “temporal ordering” of scaled distributions
(with the shortest SOA most on the left and the no-signal condition most on the right) is apparent in their early part.
However, the bimodality in failed-stops distributions, diagnostic of trigger failures, breaks this pattern, as error curves shift
to the right of the no-signal curve after the dip (see the Nonindependence of Go and Stop Processes section in Discussion
for the implications of such pattern). Scaled representations may be misleading because, for the least populated categories
(errors at short SOA), the fastest responses appear to occur earlier compared to fastest responses of the more populated
categories (longer SOA or no-signal). Nonscaled representations show this not to be the case.

(Appendices continue)
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Appendix B

Individual Mean Reaction Times (Standard Deviations) and SSRT in Milliseconds in Experiment 1

Exp. 1 RT - ignore RT - stop SSRT

SOA
No-

signal 50 83 133
No-

signal 50 83 133 50 83 133

P1 207 (29) 279 (67) 245 (67) 209 (40) 241 (36) 289 (67) 247 (65) 236 (49) 153 137 127
P2 210 (42) 302 (83) 262 (92) 226 (79) 239 (58) 268 (117) 215 (82) 207 (46) 133 120 120
P3 196 (40) 261 (95) 220 (80) 206 (70) 242 (64) 275 (89) 224 (76) 221 (47) 153 143 127
P4 231 (27) 272 (39) 275 (51) 254 (59) 261 (34) 299 (72) 295 (67) 287 (74) 180 157 127

Note. RT � reaction time; SOA � stimulus onset asynchrony; SSRT � stop signal reaction time.

Appendix C

Individual Mean Reaction Times (Standard Deviations) and SSRT in Milliseconds in Experiment 2

Exp. 2 Mean RT - ignore Mean RT - stop SSRT

SOA
No-

signal 50 83 133
No-

signal 50 83 133 50 83 133

P1 170 (34) 191 (72) 173 (41) 172 (40) 288 (71) 294 (122) 223 (84) 237 (69) 143 140 137
P2 195 (40) 281 (79) 235 (86) 200 (61) 280 (60) 273 (131) 187 (14) 224 (27) 140 113 107
P3 178 (29) 216 (57) 188 (48) 176 (26) 290 (68) 278 (60) 276 (62) 256 (63) 163 130 130
P4 132 (20) 139 (39) 131 (18) 133 (23) 289 (60) 152 (45) 164 (27) 196 (35) 126 110 107

Note. RT � reaction time; SOA � stimulus onset asynchrony; SSRT � stop signal reaction time. Mean RT appearing in gray should be treated with
caution as they were calculated on less than 50 trials.

Appendix D

Individual Mean Reaction Times (Standard Deviations) and SSRT in Milliseconds in Experiment 3

Exp. 3 Mean
RT No-
signal

Mean RT - ignore Mean RT - stop SSRT

SOA 50 83 133 183 50 83 133 183 50 83 133 183

P1 223 (63) 273 (89) 268 (105) 247 (98) 238 (85) 180 (68) 177 (54) 194 (52) 213 (59) 130 120 117 123
P2 247 (74) 351 (110) 317 (125) 277 (112) 253 (96) 296 (129) 209 (82) 213 (77) 226 (53) 140 130 113 153
P3 293 (38) 345 (50) 379 (47) 395 (71) 351 (108) 356 (58) 371 (56) 320 (88) 287 (47) 190 167 127 130
P4 284 (40) 346 (55) 358 (54) 356 (78) 300 (67) 349 (65) 330 (60) 283 (68) 276 (38) 186 167 127 133

Note. RT � reaction time; SOA � stimulus onset asynchrony; SSRT � stop signal reaction time. Mean RT appearing in gray should be treated with
caution as they were calculated on less than 50 trials.
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Appendix E

Parameter Estimates for Each Individual in Each No-Signal Condition and Goodness of Fit (�2 Distance Between
Observed and Fitted Data)

aendo-fix �holding aendo-targ 2

Condition P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

I1 26 15 15 25 0 0 0 20 16.5 14.5 19.5 17 98 103 198 108
S1 30 15 15 25 10 0 0 30 15 13 14 15 152 170 144 133
I2 10 15 20 5 0 0 0 0 19.5 16 19.5 20 205 94 41 638
S2 24 25 60 25 0 10 0 50 12.5 13 12.5 14 226 170 204 494
IS3 12 13 30 35 0 0 50 20 12.5 12.5 15 14 519 249 275 191

Note. aendo-fix and aendo-targ are the strength of endogenous inputs to the fixation and target nodes, respectively. �holding is the duration of the strategic
“holding period.” I1 and S1 correspond to no-signal trials during the ignore and stop blocks of Experiment 1. I2 and S2 correspond to no-signal trials during
the ignore and stop blocks of Experiment 2. IS3 corresponds to the no-signal trials of Experiment 3.

Appendix F

Accuracy of the Predicted RT Distribution for Each Signal Condition, as Measured by the �2 Between Predicted
and Observed Individual RT Distributions

P1 P2 P3 P4

Condition 50 83 133 183 50 83 133 183 50 83 133 183 50 83 133 183

I1 1,483 4,223 505 7,196 2,620 770 15,504 1,145 358 369 819 993
S1 195 697 1,000 328 855 239 1,246 359 430 111 267 846
I2 1,375 563 281 7,180 5,930 441 8,081 1,831 94 990 812 517
S2 66 486 477 44 81 124 124 206 792 120 160 254
I3 2,290 1,407 1,009 950 2,829 4,192 1,075 529 3,907 7,388 7,138 2,514 4,081 2,260 1,152 1,102
S3 1,498 753 471 857 459 871 295 518 86 180 431 795 211 484 283 580

Received October 16, 2018
Revision received November 1, 2019

Accepted November 5, 2019 �

38 BOMPAS, CAMPBELL, AND SUMNER


	Cognitive Control and Automatic Interference in Mind and Brain: A Unified Model of Saccadic Inhi ...
	Stopping
	Pausing and Carrying On
	Contrasting and Merging Models
	Model Exposition and Predictions
	Blocked Input 2.0
	200N-DINASAUR
	Generalization to New Paradigms From Blocked Input 2.0 and 200N-DINASAUR
	Blocked Input 3.0
	Comparison to Recordings in FEF Neurons
	Empirical Prediction: Universality of Dip Onsets
	Dip onset reflects non-decision time
	Should T0 remain unchanged across contexts?

	Modeling Prediction: “One Top-Down Fits All”

	Empirical Data—Methods
	Rationale
	Participants
	Materials
	Stimuli and Procedure
	Data Analysis

	Empirical Data–Results
	Latency Distributions
	Temporal Alignment of Dip Onsets Across Contexts
	Inhibition Function, SSRT, and Dip Recovery

	Modeling Results
	Visual Delay
	Baseline Parameters From No-Signal Trials
	Generalization to Signal-Ignore and Signal-Stop Trials

	Discussion
	How Do Brains Halt Action Plans? Intertwined Influences of Automatic and Top-Down Processes
	Movement Versus Visuomovement Neurons
	Converging Modeling Approaches
	Model Simplifications
	How Fast Are Top-Down Commands?
	The Importance of Sensory Pathway Dynamics in Motor Decision
	Non-independence of Go and Stop Processes
	What Does SSRT Reflect?
	Empirical Predictions and Future Directions

	Conclusions
	References
	Appendix A Additional Figures
	Appendix D Individual Mean Reaction Times (Standard Deviations) and SSRT in Milliseconds in Expe ...)
	Appendix E Parameter Estimates for Each Individual in Each No-Signal Condition and Goodness of F ...
	Appendix F Accuracy of the Predicted RT Distribution for Each Signal Condition, as Measured by t ...


