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Abstract

The first part of this thesis proposed new, fully conservative and less oscillatory hyper-

bolic partial differential equation solvers. Based on the multi-moment method and the

Constrained Interpolation Profile Conservative Semi-Lagrangian (CIP-CSL) family of

schemes, a new scheme called CIP-CSL3U is introduced to combine with an existing

scheme, CIP-CSL3D. Two ENO-like indicators are proposed, which are used to se-

lect during runtime a stencil that can efficiently minimise numerical oscillation as well

as numerical diffusion. The proposed schemes (CIP-CSL3DU and CIP-CSL3ENO)

are validated using various benchmark problems. Discontinuities, as well as smooth

solutions, are captured simultaneously with almost no numerical oscillation for non-

smooth solutions. Benchmark tests also show that the results are fourth-order accurate

for smooth solutions, and can be applied to compressible and incompressible fluid flow

problems.

The second part of this work concerns the improvement of the two-phase incompress-

ible flow solver in OpenFOAM. A geometric Level Set method is implemented to

couple with a Volume-of-Fluid solver in OpenFOAM. An interface reconstruction al-

gorithm based on cell tetrahedralisation is implemented to work on 2D and 3D unstruc-

tured meshes, on serial as well as parallel.

The Coupled Level Set Volume-of-Fluid (CLSVOF) solver is validated against scalar

transport problems on various mesh types in 2D and 3D. Results indicate a signific-

ant improvement over the standard OpenFOAM solver interFoam and some advant-
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age over the newer OpenFOAM solver, interFlow. Mass conservation properties of the

VOF method are also retained. The CLSVOF solver is then used to simulate fluid flows

with surface tension effects, showing better agreement with experiments and reference

solutions compared to standard OpenFOAM solvers. Simulations indicated that CLS-

VOF could handle complex fluid flows with surface tension dominance as well as with

high density ratios. The calculation of curvature using the Level Set field contributed

to the improvement in simulations. A simulation of a liquid jet in a gaseous crossflow

also showed reasonable agreement with empirical models with some breakup details

captured.

Key words: level-set, volume-of-fluid, ENO, CIP-CSL, OpenFOAM
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Chapter 1

Introduction

Most problems in Computational Fluid Dynamics are governed by hyperbolic partial

differential equations (HPDE), so the solution of HPDEs lies as the basis of numer-

ical algorithms for solving fluid flow problems. However, to calculate the solution

numerically is not always straightforward; around discontinuities, one will obtain poor

numerical results using methods that otherwise work well in smooth regions [18]. The

numerical oscillations that occur around discontinuities (Fig. 1.1(b)) pollute the solu-

tion by producing non-physical extrema which might eventually cause the simulation

to collapse. One can suppress numerical oscillations by resorting to first-order meth-

ods which are strictly monotone but at the cost of smearing out the solution as in Fig.

1.1 (a). The development of numerical solvers that can handle discontinuities without

giving way to numerical diffusion is, therefore, a field of active interest for many re-

searchers in numerical methods and forms the first part of this thesis.

The second part of this thesis concerns the solving of two-phase incompressible fluids

flows. A two-phase flow is a system in which two different phases of fluids coexist.

These fluids can be gas and liquid, or liquid and liquid, where the former is more com-

mon. These flows are commonly observed in nature as well as in practical applications.

Some examples of naturally-occuring phenomena are falling raindrops, waterfalls, dew

on leaves, and wind-driven waves. They are also found in a wide range of industrial

applications; for example, the study of two-phase flows are central for understanding

phenomena such as droplet streams of inkjet printers [19], the aerosolisation of certain

medications [20], the steam-water interaction in nuclear reactors [21], and the design
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Figure 1.1: (a) Numerical diffusion over a square wave, and (b) numerical oscil-

lation near a discontinuity.

of fuel injectors [22].

Fuel injector design is an especially notorious problem; in 2016, Rolls Royce invested

£1.3 billion on research and development [23], including on the study of gas turbine

systems. Gas turbine fuel injection occurs in a highly turbulent swirling environment,

where large-scale mixing is induced by poorly understood aerodynamic phenomena

and two-phase fluid mechanics [24]. Furthermore, in order to reduce NOx pollution,

Rolls Royce has also invested in the RR CLEEN II Low NOx Combustor program

to improve combustor performance [25]. This also involves advanced fuel injection

capabilities and by extension, deep understanding of spray characteristics. However,

due to the challenging nature of the environments in which engine conditions operate,

experimental observation proves difficult. For diesel sprays, for example, the experi-

mental characterisation of the initial stage of jet formation and primary breakup under

realistic engine conditions occur in harsh settings and the process is highly transient
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in nature, with elevated velocities and microscopic scales. Ricardo, in collaboration

with Brighton University, employs advanced diagnostic techniques for use in model

validation, all towards furthering the understanding of air flows, sprays, and combus-

tion processes [26]. Understanding the effects of spray characteristics are critical for

the accurate prediction of combustion, and this is also vital to ensure future emissions

regulations are met.

With these examples in mind, it is clear that a robust and accurate solver to simu-

late two-phase flows would always prove useful for industrial applications as well as

research. Modelling two-phase flows, however, can be complex. The presence of inter-

facial surfaces introduces challenges in the physical and numerical formulation of the

problem [27]. Topological changes which commonly occur in such flows can be severe

(such as the case of a spray formed by a fuel injector in Fig. 1.2), requiring sophistic-

ated methods of interface tracking or interface capturing. Therefore, the development

of solvers that can handle complex interface deformation is one of the main areas of

interest where two-phase flow modelling is concerned.

1.1 Research aim and objectives

To address the issues outlined in the previous section, this work firstly aims to propose

a more accurate fluid advection solver that improves the way discontinuities in fluid

flow properties are handled during the discretisation process. Secondly, this work aims

to develop and implement a more accurate interface capturing scheme in order to make

improvements in the quality of two-phase flow simulations. It is intended that the

research findings contribute to the overall improvement of simulation tools to capture

complex interface deformation that occurs in many fluid phenomena found both in

nature and industry.

The above aims raise the following core objectives:
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(a)

(b)

Figure 1.2: (a) Spray formed by a diesel fuel injector and (b) the droplets formed

at the edge of the fuel spray. Pictures reproduced from Helsinki University of

Technology [1].

1. to develop a hyperbolic partial differential equation solver that is able to capture

discontinuities and smooth solutions simultaneously well with minimal numer-

ical oscillation and diffusion,

2. to improve the two-phase incompressible solver within the open-source CFD

code repository OpenFOAM R© by implementing an explicit interface capturing

scheme,

3. to implement an existing dynamic contact angle model into the improved two-

phase solver,

4. and to validate the two-phase incompressible flow solver against various bench-
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mark tests and complex fluid flow problems.

1.2 Thesis outline

This thesis is organised into two main parts. The first part concerns the develop-

ment of a multi-moment method to solve hyperbolic partial differential equations. The

second part describes the implementation and validation of an explicit interface cap-

turing scheme for two-phase flows and its possible applications in complex fluid flows.

The breakdown of the topics addressed in each chapter is as follows:

The literature review goes over the governing equations used in this work, and de-

scribes the fluid solvers and numerical models on which the work in this thesis are

based. A general overview is given to identify issues that are addressed in this work.

The subsequent chapter proposes a novel hyperbolic equation solver based on a multi-

moment method for better handling of sharp discontinuities in fluid properties. The

proposed method aims to minimise numerical oscillations near discontinuities whilst

maintaining a sharp profile.

The next chapter describes the proposed implementation of a fully 3D geometric Coupled

Level Set Volume of Fluid method on unstructured meshes using OpenFOAM. The

scheme is validated using scalar transport problems in 2D and 3D on structured and

unstructured meshes and compared with some existing solvers.

The following chapter then describes the implementation of a dynamic contact angle

for the proposed CLSVOF scheme. The implementation is validated against bench-

mark tests and some challenging applications in 2D and 3D, including the simulation

of binary droplet collisions and the simulation of a liquid jet in a gaseous crossflow.

The final chapter summarises the achievements presented in this work with some sug-

gestions for future improvements.
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Chapter 2

Literature Review

In this chapter, the development of two-phase incompressible fluid solvers are con-

sidered with emphasis on the following interface capturing schemes; the Volume of

Fluid method, the Level Set method, and the Coupled Level Set Volume of Fluid

method. The discretisation strategy employed in the open source CFD toolbox Open-

FOAM is discussed. This is followed by an introduction to the Constrained Interpola-

tion Profile Conservative Semi-Lagrangian family of hyperbolic equation solvers.

2.1 Governing equations

The governing equations of an incompressible, immiscible, isothermal flow can be

written in the form of conservation of mass;

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

and of the conservation of momentum;

∂ρu
∂t

+∇ · (ρuu) = −∇P +∇ · τs + ρg + Fσ, (2.2)

where ρ is density, u is velocity, P is the pressure, Fσ is the volumetric surface tension

force, and g is the gravitational acceleration. τs is the viscous stress tensor defined as

τs = 2µ(0.5[(∇u) + (∇u)T ]) where µ is the viscosity.

For incompressible fluids, the velocity divergence is zero;

∇ · u = 0. (2.3)
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2.2 Interface capturing schemes

The simulation of two-phase flows requires a technique to identify the boundary between

the two fluids, as this boundary is not known beforehand [28]. Among the phenomena

that need to be handled are topological changes of the interface, discontinuities, co-

alescence, and breakup. Several interface modelling techniques have been developed

to tackle complex fluid flows, and the numerical methods to accurately track or capture

the interface between two fluids can generally be split into two main categories, which

are Lagrangian and Eulerian.

In Lagrangian methods, the grid follows the fluid, whose interface is represented us-

ing marker-points. The Navier-Stokes equations are then solved on the grid. For ex-

ample, Brackbill, Kothe, and Ruppel proposed a particle-in-cell (PIC) method using

fully Lagrangian particles to eliminate convective transport [29]. Despite the prom-

ising accuracy, the non-automatic handling of topological change renders it very com-

plex to implement in 3D. Despite the difficulty, Johnson and Tezduyar successfully

[30] developed a tool for 3D simulations of fluid-particle interactions with fairly im-

pressive results. There are also pure Lagrangian schemes where no mesh is used and

the flowfield is evaluated at the Lagrangian points [31] [32]. However, true continuity

enforcement may be difficult [33].

Eulerian approaches are more commonly taken, where they can be further subdivided

into non-fixed and fixed grid methods. Some of the non-fixed grid Eulerian schemes

that have been developed include the boundary-fitted grid proposed by Ryskin and

Leal [34] where the grids are free to move with the interface motion and the Lattice

Boltzmann method which minimises the free energy functional to naturally capture

the interface [35] [36]. However, these methods are best suited for relatively simple

geometries only.
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This brings us to the most popular approach yet; Eulerian schemes with fixed grid.

Among these is the marker-and-cell (MAC) method where marker particles are used

to identify the fluids [37]. The Volume-of-Fluid method [38] uses a volume fraction

function to indicate the quantity of each fluid in each cell and is very popular among

researchers [39]. However, it may be difficult to maintain a sharp interface in MAC

and VOF schemes. The Level-Set method [40] which uses a signed distance function

address this issue by naturally representing the interface using the 0-contour field, but

at the cost of mass conservation [41].

To address the mass conservation issues of the Level Set method, some hybrid schemes

have been proposed. For example, Enright et al. proposed a method which is a hybrid

of the Level Set and Lagrangian particle schemes [42]. A more common hybridisation

is between the Level Set and Volume of Fluid methods [43], [44], [45], [46], which is

the main focus of this work. In the following sections, the methodologies of the LS,

VOF, and CLSVOF methods are reviewed.

2.2.1 Level set method

The level set formulation was first proposed by Osher and Sethian in 1988 [40] as a

relatively simple and versatile method for analysing the motion of an interface in two

or three dimensions. In 1994, Sussman, Smereka, and Osher [47] proposed a Level Set

approach for computing solutions of incompressible two-phase flows.

Typically the Level Set function is represented as a smooth field and denoted using the

signed distance φ, where

|∇φ| = 1 (2.4)

is satisfied. As the interface is represented implicitly by the iso-contour φ = 0, the

sign of the function represents different fluid phases and the scalar value represents the

normal distance from the interface. The usual convention is to set the negative value in

the less dense liquid, and the positive in the denser one (Fig. 2.1).
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Figure 2.1: Sketch of a Level Set field with φ = 0 at the fluid interface

A smoothed Heaviside function is generated in terms of φ;

H(φ) =


0 if φ < ε

1
2
[1 + φ

ε
+ 1

π
sin(πφ

ε
)] if |φ| ≤ ε

1 if φ > ε,

(2.5)

where ε is the thickness of the transition region between the liquid and gas phases. The

Heaviside function is used to define the physical properties density ρ and viscosity µ

of the fluid. The values ρ and µ are found as;

ρ = ρLH(φ) + ρG(1−H(φ)), (2.6)

µ = µLH(φ) + µG(1−H(φ)), (2.7)

where ρL and ρG are the densities of liquid and gas, and µL and µG are the viscosities

of liquid and gas. The main advantage of the level-set method is that the topological

changes of the evolving front are handled naturally, as it is simply the zero-contour of
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the level set field. This front is able to break and merge with the evolution of time.

Geometric quantities such as the normal vector n and curvature K can be easily ap-

proximated as

n =
∇φ
|∇φ|

and K = −∇ · ∇φ
|∇φ|

(2.8)

which is used to calculate the volumetric surface tension force Fσ;

Fσ = σK(φ)δ(φ)∇φ. (2.9)

δ is the Dirac function used to limit Fσ to a narrow band around the interface, defined

as

δ(φ) =

0 if |φ| > ε

1
2
(1 + cos(πφ

ε
)) if |φ| ≤ ε.

(2.10)

The following equation;

φt + (u · ∇)φ = 0, (2.11)

propagates the zero level-set of φ in time. However, solving Eq. (2.11) using low-order

convection schemes often leads to a smeared solution. It is also noted in [45] that φ

would not remain a true distance function after Eq. (2.11) is solved (i.e. |∇φ| 6= 1), so

there is a necessity to reinitialise φ so that it continues to be a distance function. This

is done as follows;
∂φ

∂τ
= S(φ0)(1− |∇φ|) (2.12)

where τ is an artificial time, and S(φ0) is the sign of the initial level set function S0,

usually taken to be

S0 =
φ√

φ2
0 + 10−5

(2.13)

for the purposes of stability, where φ0 is the LS value at the current time step before

reinitialisation. Here we define the |∇φ| in Eq. (2.12) as

|∇φ| = |∇φ|
2

|∇φ|
=
∇φ
|∇φ|

· ∇φ. (2.14)

Eq. (2.12) is solved until it reaches steady state, which does not require many steps if

the original level set field is already close to the distance function.
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Despite the ability of the LS method to capture the fluid interface smoothly (and hence

its robust calculation of interface normal vectors), it is known to be not conservative;

the total mass or volume confined by the interface may not be preserved.

2.2.2 Volume of fluid method

The Volume of Fluid (VOF) method was first introduced by Noh and Woodward in

1976 [48], and later employed by Hirt and Nichols [38]. A highly popular scheme, it is

available in commercial and open-source softwares such as OpenFOAM [49], ANSYS

Fluent [50], Gerris [51], and FLOW-3D [52]. A VOF function α is defined such that

it is unity at any point occupied by fluid, and zero otherwise. The average value of α

in a cell would then represent the fractional volume of that cell occupied by fluid, as

demonstrated in Fig. 2.2.

Figure 2.2: Schematic of a fluid distribution in a 2-D Cartesian grid with its ac-

companying indicator α values.

Cells with α values between 0 and 1 must therefore contain an interface. The following

equation is solved;

αt +∇ · (uα) = 0, (2.15)
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and the physical properties of the immiscible fluids are calculated as such;

ρ = ρLα + ρG(1− α), (2.16)

µ = µLα + µG(1− α). (2.17)

VOF methods have benefited from continuous improvement over decades due to its

popularity among researchers in the field of interface capturing. Some of the reasons

for their widespread usage include, as described in [39];

1. the mass is conserved naturally due to the development of an advection algorithm

based on a discrete representation of the conservation law (Eq.2.15),

2. extension from 2D to 3D is relatively straightforward,

3. domain decomposition for parallel implementation is relatively simple as the α

values in a cell only depends on the α values in its neighbouring cells.

Since only the volume fraction α is known, approximating the exact interface in each

cell may be difficult. The available VOF methods are generally divided into two cat-

egories; algebraic VOF methods and geometric VOF methods.

In algebraic VOF methods, explicit reconstruction of the interface in each cell is not

necessary. Some examples of this type of scheme is the one proposed by Nichols and

Hirt [53], Lafaurie et al. [54], and Ubbink and Issa [55]. Using these methods, the

interface is usually represented by a ’sharpening’, using modified convection schemes

or additional numerical terms. However, the interface is usually still smeared over

several cells.

The geometric VOF schemes, meanwhile, usually take an extra step to explicitly re-

construct the interface. Some of the earliest and simplest types of geometric VOF is

the Simple Line Interface Calculation (SLIC) (Fig. 2.3 (c), (d)) by Noh and Wood-

ward [48] and the SOLA-VOF by Hirt and Nichols [38]. These algorithms construct
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the interface in a multiphase cell by a segment aligned with the grid. However, these

reconstruction methods are at best first-order accurate and tend to generate a lot of

flotsam even for cases with simple velocity fields.

A more accurate geometric VOF interface recontruction technique is the Piecewise

Linear Interface Construction (PLIC) method (Fig. 2.3 (b)) such as those proposed by

Ashgriz and Poo [56], Youngs [57], Gueyffier et al. [58], and Pilliod and Puckett [59].

Typically, the surface is represented by a sequence of polygons in a 3D cell, with some

discontinuity in between. PLIC methods can be second-order accurate but are highly

cumbersome to implement on unstructured 3D meshes.

Figure 2.3: Comparison of VOF different techniques for predicting the fluid dis-

tribution.

In VOF methods, the volumetric surface tension force in the momentum equation is

commonly calculated using the Continuum Surface Force (CSF) model as proposed by
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Brackbill et al. [60], as

Fσ = σK(α)∇α (2.18)

where K(α) is the interface curvature calculated using α. The curvature is represented

as;

K = −∇ · n̂c. (2.19)

where n̂c indicates the unit interface normal, also calculated using the α field;

n̂c =
∇α
|∇α|

. (2.20)

In this work, two methods are considered for the solution of Eq. (2.15); the interface

is propagated using the algebraic interFoam solver (a compressive VOF method) and a

geometric technique implemented proposed by Roenby et al. [2], isoAdvector. These

methods are explained as follows.

2.2.2.1 interFoam

The open-source CFD package OpenFOAM [49] features an extensive range of fea-

tures, enabling it to solve various complex fluid flows such as flows with chemical

reactions, turbulence, heat transfer, and multiphase flows. Compared to the popular

commercial solver FLUENT, OpenFOAM has a significantly steeper learning curve

due to its lack of a graphical user interface (GUI) and its almost infinite options for

manipulation. At the same time, this flexibility makes it a very powerful tool for expert

users, as it can be freely modified to suit the user’s needs.

interFoam is a VOF-based two-phase incompressible, immiscible fluid solver avail-

able in OpenFOAM. In this implementation, the advection equation is reformulated

by Weller by adding a compressive term to retain conservation, convergence, and

boundedness [61];

αt +∇ · (uα) +∇ · (ucαβ) = 0, (2.21)

where β = 1 − α and uc = uL − uG, which is the relative velocity between the

liquid and gas or the compressive velocity [62], and L and G stand for Liquid and Gas.
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This compressive velocity is only considered in the region of the interface. To avoid

dispersion, it is defined only around the interface which is achieved by multiplying it

with∇α/|∇α|. A compression factor cα can also be used to increase compression;

uc = min
(
cα|u|,max (|u|)

) ∇α
|∇α|

, (2.22)

where max |u| is the maximum speed anywhere inside the domain. cα = 0 indicates

no compression, with cα = 2 as the maximum compression. In this work, the com-

pression factor is set as cα = 1 as recommended by Deshpande [63], as increasing it or

decreasing it exacerbates errors in interface curvature and smearing.

interFoam is a widely used two-phase incompressible flow solver in the research com-

munity and has been investigated by various parties. Deshpande et al. [63] performed

a comprehensive evaluation of the interFoam solver and found that while generally

robust, the curvatures computed by the solver may converge to a value different from

the analytical value. The disruptive effects of spurious currents produced by interFoam

was noted in this regard. Since the interface is only implicitly captured, the inter-

face location, normal, and curvature are also only known implicitly. Another noted

issue with interFoam is the difficulty to maintain a sharp and accurate interface com-

pared to methods that use explicit interface capturing, which prompts the discussion of

interF low in the next section.

2.2.2.2 interFlow

In 2016, Roenby, Bredmose, and Jasak [2] proposed a new method for interface cap-

turing in OpenFOAM called the isoAdvector method, motivated by coastal and marine

simulations involving violent breaking waves. In this scheme, an explicit ’isosurface’

is reconstructed for each interface cell for each time step ( Fig. 2.4(a)), which ensures

that it does not suffer from the same diffusive interface representation as interFoam.

Using this isosurface, the motion of the face-interface intersection line (the line cre-

ated as the fluid interface plane in a cell intersects the cell face) is modelled within a
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time step to obtain an accurate estimate for the volume of fluid transported across each

face. Fig. 2.4(b) demonstrates how an isosurface moves through a cell within a single

time-step. This will now be explained further.

Figure 2.4: (a) A surface cutting through a cell, with dots signifying cutting points

on cell face. The surface in the cell is the isoface. (b) The isoface being propagated

at three different intermediate times τ within a time step. Figure reproduced from

[2].

Consider a domain where resides a surface S. Since this work concerns two incom-

pressible and immiscible fluids (fluid L and fluid G), surface S denotes the separa-

tion between the two fluids. These fluids are advected in a continuous velocity field

u(x, t) defined throughout the domain. The full two-phase incompressible solver us-

ing isoAdvector for the interface advection is known as the interFlow method. Since

isoAdvector is focused on the advection of the interface, assume for now that u(x, t) is

known throughout the domain for all time t. The evolution of the interface S(t) is first

represented in terms of density ρ(x, t);

d

dt

∫
V

ρ(x, t) dV = −
∫
∂V

ρ(x, t) u(x, t) · dS (2.23)

where V is an arbitrary volume, ∂V is its boundary, and dS is the differential area

vector that points outwards of V . This equation represents, in words;

Instantaneous rate of change of total mass in V equals the instantaneous flux of mass

through boundary S.
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The solution does not depend on the values of ρL and ρG in a pure advection prob-

lem with a set velocity field, so a Heaviside function H(x, t) is used as a simplified

indicator, where

H(x, t) ≡ ρ(x, t)− ρG
ρL − ρG

. (2.24)

For cells fully occupied by fluid L, H is unity, and for cells fully occupied by fluid

G, H is zero. The computational domain is divided into cells hereafter denoted as Ci,

where i = 1, 2, ..., NV . Two cells next to each other will have a shared boundary (or

internal face). Faces are labelled j = 1, ..., N and the surface of face j is Fj . The

boundary of cell i can now be represented as a list Bi, which contains all the labels of

the faces that belong to its boundary δVi.

Substitute Eq. 2.24 into Eq. 2.23, where we integrate over the volume of cell i;

d

dt

∫
Ci

H(x, t)dV = −
∑
j∈Bi

si,j

∫
Fi

H(x, t)u(x, t) · dS. (2.25)

Face j has its own orientation to identify the direction of dS, so sij = +1 or −1 such

that sij points out of cell i for face j. The volume fraction of fluid L in cell i is defined

as

αi(t) ≡
1

Vi

∫
Ci

H(x, t)dV, (2.26)

where Vi is the volume of cell i. Inserting Eq. 2.26 into Eq. 2.25 gives

αi(t+ ∆t) = αi(t)−
1

Vi

∑
j∈Bi

sij

∫ t+∆t

t

∫
Fi

H(x, τ) u(x, τ) · dS dτ (2.27)

The time integral on the RHS is the total volume of fluid L transported across face j in

the interval [t, t+∆t], so it is a fundamental quantity to be estimated to advance in time

the quantity αi (and as a result, the interface S). This is now called ∆Vj(t, t + ∆t),

where;

∆Vj(t, t+ ∆t) ≡
∫ t+∆t

t

∫
Fi

H(x, τ)u(x, τ) · dS dτ. (2.28)

Substituting 2.28 into 2.27 gives

αi(t+ ∆t) = αi(t)−
1

Vi

∑
j∈Bi

sij∆Vj(t, t+ ∆t). (2.29)
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In finite volume methods, the velocity is represented as cell-averaged values (i.e. at the

cell centre);

ui(t) =
1

Vi

∫
Ci

u(x, t) dV. (2.30)

Another representation of the velocity field in OpenFOAM is the volumetric fluxes

across cell faces;

Fj(t) =

∫
Fi

u(x, t) · dS. (2.31)

Knowing the values αi, ui, and Fj , isoAdvection aims to estimate the fluid L volume

transport (∆Vj(t, t+∆t)) across a face in the time interval [t, t+∆t]. Two assumptions

are made in this work;

• the local radius of curvature is larger than the cell size i.e. the interface is well-

resolved,

• the velocity field is constant in time between [t, t+ ∆t], i.e. u(x, τ) ≈ u(x, t).

In Eq. 2.27, the u on face Fj dotted with differential face normal vector dS can be

approximated it terms of volumetric face flux Fj , as

u(x, t) · dS ≈ Fj(t)
|Sj|

dS for x ∈ Fj (2.32)

where dS ≡ d|S| and cell face normal is given as

Sj ≡
∫
Fj

dS (2.33)

With this in mind, Eq. 2.27 is solved by substituting in Eq. 2.33;

∆Vj(t, t+ ∆t) ≈ Fj(t)
|Sj|

∫ t+∆t

t

∫
Fi

H(x, τ) dS dτ (2.34)

where
∫
Fi
H(x, τ) dS is then the instantaneous area of face j submerged in fluid L i.e.

underneath the interface plane. This is referred to as Aj(τ). Now Eq. 2.34 is written

as

∆Vj(t, t+ ∆t) ≈ Fj(t)
|Sj|

∫ t+∆t

t

Aj(τ) dτ. (2.35)
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When velocity is constant in space and time, Eq. 2.35 becomes exact. If the mesh is

sufficiently fine compared to the velocity field gradients, and the time steps are small

enough compared to the temporal variations of velocity, the error from this approxim-

ation becomes immaterial.

The time integral of Aj(τ) in Eq. 2.35 is calculated analytically to obtain the estimate

of total volume of fluid L transported across face j in the interval [t, t+ ∆t].

Investigations by Roenby et al. show that the interFlow method has considerable ad-

vantage over interFoam for interface sharpness. However, since the conception of this

scheme is for the application of large ocean waves where surface tension effects are

negligible, the mean curvature estimation is not greatly improved compared to inter-

Foam.

2.2.2.3 Solution procedure

The procedure of the OpenFOAM VOF solver for two-phase incompressible flows is

summarised as follows;

1. Initialise the variable fields (α, P , u, ρ).

2. Solve the volume fraction advection equation Eq. (2.15).

3. Calculate the interface normal (Eq. 2.20) and curvature (Eq. 2.19).

4. Update the physical properties of the mixture, density (Eq. 2.16) and viscosity

(Eq. 2.17).

5. Perform the velocity-pressure correction loop (PISO) (details in Appendix 6.2).

6. Go to the next time step from Step 2.
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2.2.3 CLSVOF

Combining the previous two discussed schemes (VOF and LS) has been a popular field

of research in the past decade. This arises from the complementary nature of each of the

schemes (Fig. 2.5); by combining them, one gains the mass conservation properties of

VOF as well as the interface sharpness of the LS method. One of the earliest proposed

Coupled Level-Set Volume of Fluid method (CLSVOF) is by Sussman and Puckett

[45], followed by various other researchers [46] [43] [44] [64] [65].

Figure 2.5: Summary of VOF and LS properties

In this section we summarise the CLSVOF scheme as implemented by Sussman in [45]

for structured meshes in 2D. The fields are first initialised with the LS (φ0) as a signed

distance function from the fluid interface which is represented by its zero-contour. The

VOF field (α0) is initialised from φ0 using the Heaviside function as in Eq. (2.5).

The LS and VOF fields are transported as follows;

φt +∇ · (uφ) = 0, (2.36)

and

αt +∇ · (uα) = 0. (2.37)
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The LS fluxes are calculated using its values at cell centres and velocity values at

cell faces. The fluxes of the VOF function is calculated in terms of the reconstructed

piecewise linear equation of the LS function;

φRi,j(r, z) = Ai,j(r − ri) +Bi,j(z − zj) + Ci,j, (2.38)

which is unique for each cell. x, y represent the Cartesian coordinates, (i, j) indicate

the cell ID index. The coefficients A and B are constants that define the gradient of the

linear reconstruction equation, and C determines the position of the interface line from

the cell centre. The coefficients A, B, and C are found such that φRi,j(r, z) represents

the best fit line for the zero level set in that cell, which means C must be adjusted such

that the interface line cuts the cell to give the same volume as given by the VOF value

α in that cell.

After the new values φ∗ and α1 are obtained, the LS field must undergo a reinitialision

process to maintain its property as a signed distance function. Outside a certain thick-

ness region that defines a band around the interface, the volume fraction is truncated.

For a band of cells around the interface, their respective LS values are calculated geo-

metrically such that their exact distance to the zero-contour interface is found. For all

other cells outside this band, a set value is given for their LS value, with their sign

maintained as this reflects the fluid phase that occupies that cell. Thus the value φ1 is

found for the new time step.

There have been many variations of the CLSVOF implementation since its inception.

Son and Hur [44] proposed a geometric reconstruction of the interface using an addi-

tional geometrical parameter which is the furthest distance between cell corners that

are occupied by the liquid and interface. The interface position is then calculated using

this parameter. The liquid volume fraction in the interface cell is satisfied by recon-

structing the interface using the aforementioned parameter and the interface normal.

Menard et al. [43] implemented the CLSVOF method without using geometrical re-

construction, which is considered the major technical challenge in the implementation
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of CLSVOF. They proposed an analytical procedure to calculate the constants in Eq.

(2.38). The reinitialisation is then performed iteratively, as proposed by Sussman in an

earlier work [66].

Albadawi et al. [67] proposed S-CLSVOF (Simplified CLSVOF) as an improvement

of the OpenFOAM solver, interFoam. This is an extension of the Kunkelmann imple-

mentation [68]. In this proposal, only the VOF field is advected and the LS field is set

to the 0.5-contour of the VOF field. The curvature calculation is then calculated us-

ing the LS field, which yields some improvements in surface tension dominant cases.

However, this implementation is more focused on structured meshes which may limit

its applications to simpler geometries.

Dianat et al. [69] implemented the CLSVOF scheme into OpenFOAM as an exten-

sion of the interFoam solver. The interface is found iteratively using a ’clip and cap’

approach by Ahn and Shashkov [70] and the calculation of face flux in interFoam is

improved; instead of interpolating the α value to the cell face, the exact area of the

face that is occupied by the fluid is used instead to calculate flux. This implementation

shows good performance on non-orthogonal meshes.

Certainly the coupling of VOF with LS is not a novel idea; in the last few years, CLS-

VOF methods have started to appear as a good alternative to either LS or VOF alone as

the drawbacks of each scheme individually can be addressed by coupling them. While

CLSVOF does incur a computational cost compared to using LS or VOF individu-

ally, the increase in computational power in recent years as well as the availability of

high performance computing systems have softened this impact, making accurate but

computationally-intensive schemes such as the geometrical CLSVOF method more at-

tractive.
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2.3 Finite volume discretisation

To solve partial differential equations in fluid models computationally, a discretisation

process is required. Common discretisation methods are the Finite Difference method

(FD) [71] [72], the Finite Volume method (FV) [73] [74], and the Finite Elements

method (FE) [75]. For fluid dynamic problems, the Finite Volume method is a natural

choice owing to its conservative properties and was introduced in the early 1970s by

McDonald [76], and MacCormack and Paullay [77]. In this method, the governing

equations are discretised by dividing the continuum into a number of arbitrary, poly-

gonal control volumes. The integral formulation of conservation laws are discretised

directly in space, the advantage of which is that it enforces the conservation of quantit-

ies. There are two approaches of defining the shape and position of the control volume

with respect to the grid cells [78]:

• Cell-centered scheme, where the flow quantities are stored at the cell-centroid,

• Cell-vertex scheme, where the flow quantities are stored at grid points. The

control volume would either be all cells sharing this point (overlapping control

volumes), or some volume centered around the point (dual control volumes).

Our framework is based on the OpenFOAM R© open-source code, which is a cell-

centered FV formulation. In this section, the discretisation procedure as applied in

OpenFOAM is described. This includes the details of the solution domain, and the

spatial and temporal discretisation schemes used.

2.3.1 The solution domain

The computation domain denoted VM is divided into m control volumes (CV) of any

convex polygonal shape on the condition that these do not overlap each other. This

creates an arbitrary unstructured mesh that completely fills the entire domain, and all



2.3 Finite volume discretisation 24

Figure 2.6: Control volume VP with centroid P which is bounded by a set of flat

faces, with face f shared with neighbour VN with centroid N . Sf points out of

owner cell.

variables share the same CVs. An example of a CV is show in Fig. 2.6, with a point P

at the centroid of each CV such that it satisfies

VPxP =

∫
VMi

x dVM (2.39)

where x is the position of a point inside domain VM and xP is the location of the cell

centroid. The CV is bounded by a set of flat faces and each face is shared with one

neighbour CV, of cell centroidN . The cell faces are categorised as internal faces (those

that are shared between two control volumes) and boundary faces (those that coincide

with the domain boundaries). Sf , the face area vector is constructed for each of the cell

face such that it always points outwards of the CV with the lower label, is normal to the

cell face, and whose magnitude represents the cell face area. Hereafter we define the

cell with the lower label as the face ’owner’ – its label is stored in the ’owner’ array.

The label of the other cell is now the ’neighbour’, stored in the ’neighbour’ array. For

the boundary faces, their area vectors point toward the outside of the computational



2.3 Finite volume discretisation 25

domain and they are owned by the adjacent cells.

In Fig. 2.6, the owner cell centre is marked P and the neighbour cell centre marked N ,

as the face area vector Sf points outwards from the owner cell. All faces of the CV will

now be denoted as f , which also represents the face centroid. The unit vector n, which

is normal to the face, is simply defined as n = S
|S| and we have d which denotes the

vector between P and N i.e. d = xN − xP . A mesh is said to be orthogonal when d is

parallel to Sf . OpenFOAM has no restrictions regarding the number of faces bounding

each cell, but it is required that each cell be convex. This allows freedom in construct-

ing ’unstructured’ meshes which is useful when the spatial domain is complex.

Now consider the standard transport equation for a quantity γ,

∂ργ

∂t︸︷︷︸
time derivative

+ ∇ · (ρuγ)︸ ︷︷ ︸
convective term

= 0. (2.40)

The accuracy of its discretisation will depend on the variation of γ in space and time.

It assumed to be linear (Fig. 2.7) in both, as;

γ(x) = γP + (x− xP ).(∇γ)P , (2.41)

γ(t+ ∆t) = γt + ∆t
(∂γ
∂t

)t
, (2.42)

where γP = γ(xP ), and γt = γ(t). In the finite volume method, Eq.(2.40) needs to be

satisfied over the control volume VP around point P in the integral form;∫ t+∆t

t

[ ∂
∂t

∫
VP

ργ dV +

∫
VP

∇ · (ρuγ) dV
]
dt = 0 (2.43)

2.3.2 Spatial discretisation

To discretise the spatial terms, the following generalised Gauss’ theorem identities are

used; ∫
V

∇ · a dV =

∮
∂V

a · dS (2.44)
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Figure 2.7: Linear variation of γ between points P and N

∫
V

∇γ dV =

∮
∂V

dS γ (2.45)

where dV is the closed surface bounding volume V and dS is an infinitesimal surface

element with an outward pointing normal, and a is a generic vector. Recalling Eq.

(2.41), it follows that∫
VP

γ(x) dV ∼=
∫
VP

[
γP + (x− xP ) · ( ~∇γ)P

]
dV

= γP

∫
VP

dV +

∫
VP

[(x− xP ) dV ] · ( ~∇γ)P

= γPVP ,

(2.46)

as, from the definition of the centroid in Eq. (2.39),∫
VP

[(x− xP ) dV ] = 0. (2.47)

Since it is assumed the variation of the transported property γ is linear, this leads to

this expression for the face integral∫
f

a dS = af ·
∫
f

dS +
[ ∫

f

(x− xf ) dS
]

: (∇a)f

= af · Sf .
(2.48)

The terms with the divergence operator can be described in terms of the sum of integ-
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rals over faces using the identity in Eq. (2.44):∫
V

∇ · a dV =

∫
f

a · dS

(∇ · a)VP =
∑
j

∫
f

a · dS =
∑
j

(
af · Sf

)
j

∇ · a =
1

VP

∑
j

(
af · Sf

)
j

(2.49)

where af is the value of a at the face centroid and Sf is the face area vector for the same

face. Recalling from Fig. 2.6, Sf points outwards of the owner P and into neighbour

N . This needs to be taken into account in Eq. 2.49, so the sum over faces defined in

terms of owner and neighbour faces becomes∑
f

S · af =
∑
owner

Sf · af −
∑

neighbour

Sf · af (2.50)

The convective term in Eq. (2.40) can then be discretised as:∫
VP

∇ · (ρuφ) dV =
∑
f

S · (ρuφ)f

=
∑
f

S · (ρu)fφf

=
∑
f

Fφf

(2.51)

where F in Eq. 2.51 is the mass flux through the face

F = Sf · (ρu)f . (2.52)

Gradient terms in the momentum equation are discretised using Eq. (2.45) as∫
V

∇γ dV =

∮
∂V

dS γ =
∑
f

Sfγf . (2.53)

2.3.3 Time discretisation

In the previous section, the discretisation of the spatial terms have been described;

the surface and volume integrals are transformed into discrete sums and expressions
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containing the face values of variables as a function of cell values. Consider again Eq.

(2.43), which is the integral form of the transport equation;∫ t+∆t

t

[ ∂
∂t

∫
VP

ργ dV +

∫
VP

∇ · (ρuγ) dV
]
dt = 0

Assuming control volumes are constant in time, this can be written in its semi-discretised

form; ∫ t+∆t

t

[(∂ργ
∂t

)
P
VP +

∑
f

Fγf

]
dt = 0 (2.54)

With the variation of the function in time as in Eq. (2.42), the time integrals and

derivatives are found directly as follows;(∂ργ
∂t

)
P

=
ρnPγ

n
P − ρ0

Pγ
0
P

∆t
(2.55)

∫ t+∆t

t

γ(t) dt =
1

2
(γ0 + γn) ∆t (2.56)

where γn indicate the new time value, and γ0 the old time value.

The temporal terms, where applicable, are discretised using the Euler implicit scheme.

Although only first-order accurate, it is unconditionally stable.

2.4 Multi-moment methods for solving hyperbolic equa-

tions

The study of hyperbolic partial differential equations (PDE) are of substantial interest

due to their prevalence in conservation laws. The most commonly used example of a

hyperbolic PDE is the 1D advection (or transport) equation;

∂f

∂t
+ u

∂f

∂x
= 0 (2.57)

where f is a conserved scalar quantity and u is the velocity. Eq. (2.57) simply de-

scribes the time-dependent shift of f along x at velocity u. At any time t > t0, the
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Figure 2.8: Reproduced from Figure 1 in [3], demonstrating the concept of the

CIP method. The solid lines are the initial profile, with the dashed lines denoting

the exact solution of the profile after advected by −u∆t, where u is the advection

velocity and ∆t is the time step. The profile is lost if using linear interpolation as

in (a)-(c). Using the CIP method where the spatial derivative is also propagated,

the profile in the grid can be reconstructed to a higher order of accuracy.

solution can be represented as a function of the state at time t0;

f(x, t) = f(x− ut, 0). (2.58)

This is termed an ’initial value problem’, as the profile at any time t > t0 can be

determined uniquely if t = t0 is known.

The exact solution is therefore a simple translational profile. However, in any numer-

ical simulation, a discretisation process is inevitable. Since the grid resolution can only



2.4 Multi-moment methods for solving hyperbolic equations 30

be finite, some information regarding the profile will be lost in the discretisation pro-

cess; profile information can only be stored at the grid points, hence any information

between the grid points would be irretrievable as seen in Fig.2.8 (a)-(c) where a linear

interpolation scheme is used. However, indiscriminately using high-order interpolation

can cause oscillation where there exists discontinuities, even though they are desirable

in smooth regions.

A large number of schemes have been proposed by various researchers to maintain the

solution profile without causing numerical oscillation, such as the (Interpolated Dif-

ferential Operator) IDO scheme [79], the Essentially Non-Oscillatory (ENO) schemes

[80], a monotone cubic Hermite interpolation [81], and the Weighted Essentially Non-

Oscillatory (WENO) schemes [82] [83].

Takewaki et al. [84] proposed the Cubic-Interpolated Propagation (CIP) method which

is able to capture some sub-grid information by using cell gradient as well as cell

boundary data. The usage of two or more different types of constraints for approximat-

ing the solution is termed the multi-moment approach. With the profile gradient as an

additional constraint, the initial shape of the profile can be better maintained (Fig. 2.8

(d)-(f)) and an interpolation function of higher accuracy can be achieved with shorter

computational stencils. Compact stencils are generally more desirable for the treat-

ment of discontinuities as avoiding interpolating across discontinuities can help reduce

numerical oscillation.

An extension of the CIP scheme is proposed by Yabe et al. [3], called the Constrained

Interpolation Profile Conservative Semi-Lagrangian (CIP-CSL) family of methods [85]

[86] [87] [88]. In the CIP-CSL method, mass conservation is guaranteed unlike the CIP

method, as the spatial profile is constructed to satisfy an additional constraint: a cell-

integrated value. In order to explain the CIP-CSL family of methods, consider the

following one-dimensional conservation equation

∂f

∂t
+
∂(uf)

∂x
= 0 (2.59)

where f is the scalar property being transported. If the velocity u along x is constant,
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this simply produces a translational motion. For velocity u < 0, one can approximate

the profile inside the upwind cell as (if using a quadratic interpolation function);

Φn
i (x) = C2,i(x− xi)2 + C1,i(x− xi) + C0,i, (2.60)

where Cb,i, b = 0, 1, 2 are the coefficients unique for the specific type of interpolation.

To obtain the profile at time step n+1, the profile is shifted by−u∆t. Towards this end,

this interpolation function (Eq. 2.60) is built to best approximate the profile, using the

cell average value and also the cell boundary values. It also has the advantage of being

a compact high-order scheme, where a high-order polynomial can be constructed from

the information contained only within a single cell. The usage of the cell average value

as a constraint earns the CIP-CSL schemes conservative properties, which the CIP

schemes lack using only cell boundary values and cell gradient values as constraints.

The following subsections describe two CIP-CSL schemes on which the contribution

in this work is based; CIP-CSL2 [3] and CIP-CSL3 [89]. CIP-CSL2 and CIP-CSL3

differ in that different constraints are used to build the interpolation function Eq. (2.60).

2.4.1 CIP-CSL2

The CIP-CSL2 scheme involves three moments which are two cell boundary moments

(fi−1/2, fi+1/2) and a cell average value f i. These moments are used to construct a

second-order polynomial interpolation function

ΦCSL2
i (x) = CCSL2

2,i (x− xi− 1
2
)2 + CCSL2

1,i (x− xi− 1
2
) + fi− 1

2
(2.61)

for ui− 1
2
< 0 with the constraints being

fi+1/2 = ΦCSL2
i (xi+1/2), (2.62)

f̄i =

∫ xi−1/2

xi+1/2
ΦCSL2
i (x)dx

∆x
, (2.63)

Using Equations (2.62) and (2.63), we obtain the following coefficients for the poly-
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Figure 2.9: The moments used to build ΦCSL2
i (x): fi−1/2, fi+1/2, f i

nomial

CCSL2
1,i =

1

∆x
(6f̄i − 4fi−1/2 − 2fi+1/2), (2.64)

CCSL2
2,i =

1

∆x2
(−6f̄i + 3fi−1/2 + 3fi+1/2). (2.65)

Using the interpolation function ΦCSL2
i (x) with the coefficients (2.64) and (2.65), the

boundary value fi−1/2 and the cell average f̄i is updated by a third-order TVD Runge-

Kutta (RK) formulation [90, 91] which is based on the CSL formulation solving the

initial value problem as follows;

∂X

∂t
= −u(X, t), (2.66)

X0 = xi−1/2.

The third-order TVD Runge-Kutta method is as follows,

X1 = X0 − u(X0, t0)∆t, (2.67)

X2 =
3

4
X0 +

1

4
X1 −

1

4
u(X1, t1)∆t, (2.68)
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X3 =
1

3
X0 +

2

3
X2 −

2

3
u(X2, t2)∆t. (2.69)

Using the semi-Lagrangian scheme, fi−1/2 at each RK time step can be obtained as;

f<k>i−1/2 =

 ΦCSL2
i−1 (Xk) if Xk −X0 ≤ 0

ΦCSL2
i (Xk) if Xk −X0 > 0,

(2.70)

where k is the RK time step. The boundary value fi−1/2 is updated for the new time

step by solving the conservation equation in its differential form

∂f

∂t
+ u

∂f

∂x
= −f ∂u

∂x
, (2.71)

by

fn+1
i−1/2 = f<3>

i−1/2 −
f<0>
i−1/2 + f<1>

i−1/2 + 4f<2>
i−1/2

6

∂u

∂x
(X0)∆t. (2.72)

Meanwhile the cell average value f̄i is updated for the new time step using a finite

volume formulation as;

f̄n+1
i = f̄ni −

Fi+1/2 − Fi−1/2

∆x
, (2.73)

where

Fi−1/2 =
f<0>
i−1/2 + f<1>

i−1/2 + 4f<2>
i−1/2

6
u(X0). (2.74)

2.4.2 CIP-CSL3

The CIP-CSL3 scheme uses the same three constraints as CSL2 (f̄i, fi−1/2, fi+1/2),

with the addition of a slope (f ′i) at the cell centre of the upwind cell. This produces the

following third-order polynomial interpolation function for ui− 1
2
< 0

ΦCSL3
i (x) = CCSL3

3,i (x−xi− 1
2
)3+CCSL3

2,i (x−xi− 1
2
)2+CCSL3

1,i (x−xi− 1
2
)+fi− 1

2
. (2.75)

The coefficients are;

CCSL3
3,i =

1

∆x3
(−4fi−1/2 + 4fi+1/2 − 4f ′i∆x), (2.76)
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CCSL3
2,i =

1

∆x2
(9fi−1/2 − 6f̄i − 3fi+1/2 + 6f ′i∆x), (2.77)

CCSL3
1,i =

1

∆x
(−6fi−1/2 + 6f̄i − 2f ′i∆x). (2.78)

Figure 2.10: The moments used to build ΦCSL3
i (x); f̄i, fi−1/2, fi+1/2, f

′
i

Several formulations have been proposed to calculate the slope f ′i [89]. CSL3CW is

one such formulation which is less oscillatory, and here it is estimated as

f ′i =


min(|f̂i+1 − f̂i−1|, 2|f̂i+1 − f̂i|, 2|f̂i − f̂i−1|)∗ if (f̂i+1 − f̂i)(f̂i − f̂i−1) > 0

sgn(f̂i+1 − f̂i−1)/∆x

0 otherwise,
(2.79)

where

f̂i =
3

2
f̄i −

1

4
(fi+1/2 + fi−1/2). (2.80)

Another CSL3 formulation designated CSL3HYMAN [81] has f ′i estimated as

f ′i =
f̂i+2 + 8f̂i+1 − 8f̂i−1 − f̂i−2

12∆x
. (2.81)

CSL3HYMAN is 4th-order accurate for smooth solutions but suffers from oscillations

at discontinuities.
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2.5 Summary

The review was begun with a study of some existing interface capturing schemes; the

Volume of Fluid method and the Level-Set method. To overcome the drawbacks of

each of these methods, numerous researchers have proposed combining them, the fore-

most of which being the CLSVOF method. The open-source CFD code repository

OpenFOAM implemented a VOF-based interface capturing approach for two-phase

incompressible flows referred to as interFoam where the interface is not explicitly

tracked; instead an artificial compression term is used at the interface. The interFoam

scheme often exhibits interface smearing in simulations. In 2016, a contribution is

made for OpenFOAM called the interF low solver by Roenby et al. [2] where an ex-

plicit reconstruction is performed to represent the fluid interface. The fluid interface in

simulations obtained by interF low is very sharp and non-diffusive. However, given

that interF low is originally developed for the simulation of ocean waves, it does not

perform as well for surface tension dominant flows. This presents an opportunity that

is addressed in this work: could the robust interF low method of interface capture be

extended and coupled with a Level-Set method to harness interF low’s sharp inter-

face representation and the Level-Set method’s capability in handling surface tension

dominant flows? This is addressed in Chapters 4-5.

The second section of this review was concerning a family of hyperbolic equation

solver called the CIP-CSL method. Based on a multi-moment implementation, the

CIP-CSL schemes boast a high order of accuracy without resorting to large interpol-

ation stencils. The CIP-CSL2 method uses a quadratic polynomial to approximate

a profile with a cell average value used as one of the constraints, and the CIP-CSL3

method uses a cell gradient value in addition to cell average value to build a cubic poly-

nomial. However, CSL2 is not completely oscillationless near discontinuities. CSL3,

while oscillationless, is too smooth and cannot maintain the sharpness of the profile.

To capture a discontinuity perfectly, a scheme must be able to resolve the steep change
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in profile but without giving way to numerical oscillation. With this basis in mind, in

this work a new CIP-CSL scheme is proposed to address these issues, that is, how can

a CIP-CSL scheme be built such that sharp profiles can be preserved but numerical

oscillations can be suppressed? This is addressed in Chapter 3.
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Chapter 3

Hyperbolic Equation Solver based on

the Multi-Moment Method

In this chapter, a new hyperbolic equation solver from the family of CIP-CSL methods

is proposed. The CIP-CSL2 [3] and CIP-CSL3 [89] methods have been explained

in Section 2.4 where the former uses three moments in the upwind cell to build a

quadratic interpolation function, and the latter uses four moments to build a cubic

interpolation function. Using the more recent variant of the CIP-CSL3 method, CIP-

CSL3D [92], another complementary scheme is proposed, called CIP-CSL3U [93].

These two methods are then combined to achieve two new high-order schemes that do

not suffer from excessive oscillation near discontinuities.

3.1 CIP-CSL3D

The CIP-CSL3D [92] method uses three moments in the upwind cell (a cell average

moment f̄i and two cell boundary values fi− 1
2

and fi+ 1
2
) and one moment in the down-

wind cell centre (f̂i−1). f̂i−1 is interpolated from the downwind cell’s boundary values

and cell integrated average. These moments yield a cubic interpolation function as

shown below for ui− 1
2
< 0

ΦCSL3D
i (x) = CCSL3D

3,i (x− xi− 1
2
)3 + CCSL3D

2,i (x− xi− 1
2
)2 + CCSL3D

1,i (x− xi− 1
2
) + fi− 1

2
.(3.1)

The constraints are
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Figure 3.1: The moments used to build ΦCSL3D
i (x)

fi−1/2 = ΦCSL3D
i (xi−1/2), (3.2)

f̄i =

∫ xi+1/2

xi−1/2
ΦCSL3D
i (x)dx

∆x
, (3.3)

f̂i−1 = ΦCSL3D
i (xi−1), (3.4)

where f̂i−1 is calculated as;

f̂i−1 =
3

2
f̄i−1 −

1

4
(fi−3/2 + fi−1/2). (3.5)

The coefficients are then obtained as follows

CCSL3D
3,i =

1

3∆x3
(−4f̂i−1 + 15fi−1/2 − 18f̄i + 7fi+1/2), (3.6)

CCSL3D
2,i =

1

2∆x2
(−4f̂i−1 + 9fi−1/2 − 6f̄i + fi+1/2), (3.7)

CCSL3D
1,i = − 1

6∆x
(4f̂i−1 + 9fi−1/2 − 18f̄i + 5fi+1/2). (3.8)

Using the interpolation function ΦCSL3D
i (x), the boundary value fi−1/2, and cell av-

erage f̄i are updated using a third-order TVD Runge-Kutta formulation as detailed in

Section (2.4.1).



3.2 CIP-CSL3U 39

3.2 CIP-CSL3U

The CIP-CSL3U interpolation scheme is proposed, which is another variant of the CIP-

CSL3 method. It is complementary to CSL3D; while CSL3D uses three constraints in

the upwind cell and one constraint in the downwind cell, CSL3U has all four moments

in the upwind cell. For ui−1/2 < 0, the interpolation function is

ΦCSL3U
i (x) = CCSL3U

3,i (x−xi−1/2)3+CCSL3U
2,i (x−xi−1/2)2+CCSL3U

1,i (x−xi−1/2)+fi−1/2.

(3.9)

obtained using the following constraints

fi−1/2 = ΦCSL3U
i (xi−1/2) (3.10)

f̄i =

∫ xi+1/2

xi−1/2
ΦCSL3U
i (x)dx

∆x
, (3.11)

fi+1/2 = ΦCSL3U
i (xi+1/2), (3.12)

f̂i+1 = ΦCSL3U
i (xi+1). (3.13)

The coefficients are then

CCSL3U
3,i =

1

3∆x3
(−7fi−1/2 + 18f̄i − 15fi+1/2 + 4f̂i+1), (3.14)

CCSL3U
2,i =

1

2∆x2
(13fi−1/2 − 30f̄i + 21fi+1/2 − 4f̂i+1), (3.15)

CCSL3U
1,i =

1

6∆x
(−31fi−1/2 + 54f̄i − 27fi+1/2 + 4f̂i+1). (3.16)

For ui−1/2 ≥ 0, the interpolation function is then

ΦCSL3U
i−1 (x) = CCSL3U

3,i−1 (x−xi−1/2)3+CCSL3U
2,i−1 (x−xi−1/2)2+CCSL3U

1,i−1 (x−xi− 1
2
)+fi−1/2

(3.17)
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Figure 3.2: Moments used to build ΦCSL3U
i (x)

where the coefficients are

CCSL3U
3,i−1 = − 1

3∆x3
(−7fi−1/2 + 18f̄i−1 − 15fi−3/2 + 4f̂i−2), (3.18)

CCSL3U
2,i−1 =

1

2∆x2
(13fi−1/2 − 30f̄i−1 + 21fi−3/2 − 4f̂i−2), (3.19)

CCSL3U
1,i−1 = − 1

6∆x
(−31fi−1/2 + 54f̄i−1 − 27fi−3/2 + 4f̂i−2). (3.20)

As in CIP-CSL3D, the boundary value fi−1/2, and cell average f̄i are updated using a

third-order TVD Runge-Kutta formulation as detailed in Section (2.4.1).

3.3 Fourier analysis

Fourier analysis [79] is conducted for the proposed CSL3U scheme and compared

to the existing CSL3D. The results show the resolution of the spatial derivatives in

wavenumber space. The spatial profile of Φ(x) is defined over the domain [0, L] with

a uniform grid spacing of ∆x, and is decomposed into Fourier series as

Φ(x) =
∑
k

Φ(k) ejwx/∆x, (3.21)
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where j =
√
−1, and w = 2πk∆x/L is the scaled wavenumber. As an example, the

point value at xi−1/2 is decomposed as

Φi−1/2 =
∑
k

Φ(k) ejwxi−1/2/∆x. (3.22)

Using Eq.(3.22), we can then generalise for values xi−1/2+m

Φi−1/2+m = Φi−1/2 e
jwm. (3.23)

Using this, the cell average Φi is decomposed as

Φ̄i =
1

∆x

∫ ∆x

0

Φ(xi−1/2 + x) dx = Φi−1/2
ejw − 1

jw
(3.24)

which demonstrates the relationship between the point values and the cell average. In

this study, the spatial derivatives of each scheme are examined around three points; xi,

xi−1/2, and xi+1/2. For example, to obtain the spatial derivative of CSL3U at xi−1/2

in Fourier space, the boundary value fi−1/2 is decomposed as given by Eq. (3.23) and

the cell average value is decomposed as Eq. (3.24). The decomposed coefficients in

CCSL3U
1,i (Eq. (3.16)) then corresponds to the first derivative Φx(w) in Eq. (3.31).

The following equations are the formulations of Fourier analysis for CSL3U and CSL3D

around xi, xi−1/2, and xi+1/2.

3.3.0.1 The spatial derivatives of CSL3U at xi in Fourier space

Φx(w) =
1

12

(
cos(

3w

2
) + 23 cos(

w

2
)− 30

w
sin(

w

2
)− 6

w
sin(

3w

2
)

)
(3.25)

+

(
sin(

3w

2
) + 33 sin(

w

2
) +

6

w
cos(

3w

2
)− 6

w
cos(

w

2
)

)
j,

Φxx(w) =

(
12 cos(

w

2
)− 24

w
sin(

w

2
)

)
, (3.26)

Φxxx(w) =

(
− cos(

3w

2
)− 23 cos(

w

2
) +

30

w
sin(

w

2
) +

6

w
sin(

3w

2
)

)
(3.27)

−
(

sin(
3w

2
) + 9 sin(

w

2
) +

6

w
cos(

3w

2
)− 6

w
cos(

w

2
)

)
j.
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3.3.0.2 The spatial derivatives of CSL3D at xi in Fourier space

Φx(w) =
1

12

(
− cos(

3w

2
)− 23 cos(

w

2
) +

30

w
sin(

w

2
) +

6

w
sin(

3w

2
)

)
(3.28)

+

(
sin(

3w

2
) + 33 sin(

w

2
) +

6

w
cos(

3w

2
)− 6

w
cos(

w

2
)

)
j,

Φxx(w) =

(
12 cos(

w

2
)− 24

w
sin(

w

2
)

)
, (3.29)

Φxxx(w) =

(
cos(

3w

2
) + 23 cos(

w

2
)− 30

w
sin(

w

2
)− 6

w
sin(

3w

2
)

)
(3.30)

−
(

sin(
3w

2
) + 9 sin(

w

2
) +

6

w
cos(

3w

2
)− 6

w
cos(

w

2
)

)
j.

3.3.0.3 The spatial derivatives of CSL3U at xi−1/2 in Fourier space

Φx(w) =

(
− 31

6
− 14

3
cos(w) +

8

w
sin(w) +

1

w
sin(2w)− 1

6
cos(2w)

)
(3.31)

+

(
− 14

3
sin(w)− 8

w
cos(w) +

9

w
− 1

w
cos(2w)− 1

6
sin(2w)

)
j,

Φxx(w) =

(
13 + 22 cos(w)− 24

w
sin(w)− 6

w
sin(2w) + cos(2w)

)
(3.32)

+

(
22 sin(w)− 30

w
+

24

w
cos(w) +

6

w
cos(2w) + sin(2w)

)
j,

Φxxx(w) =

(
− 14− 32 cos(w) +

24

w
sin(w) +

12

w
sin(2w)− 2 cos(2w)

)
(3.33)

+

(
− 32 sin(w) +

36

w
− 24

w
cos(w)− 12

w
cos(2w)− 2 sin(2w)

)
j.

3.3.0.4 The spatial derivatives of CSL3D at xi−1/2 in Fourier space

Φx(w) =

(
−2

3
cos(w) +

2

w
sin(w)− 4

3

)
+

(
− sin(w) +

4

w
− 4

w
cos(w)

)
j,(3.34)
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Φxx(w) = −2 cos(w) +
12

w
sin(w)− 10, (3.35)

Φxxx(w) =

(
16 cos(w)− 48

w
sin(w) + 32

)
+

(
12 sin(w) +

24

w
cos(w)− 24

w

)
j.(3.36)

3.3.0.5 The spatial derivatives of CSL3U at xx+1/2 in Fourier space

Φx(w) = −
(
−2

3
cos(w) +

2

w
sin(w)− 4

3

)
+

(
− sin(w) +

4

w
− 4

w
cos(w)

)
j,(3.37)

Φxx(w) = −2 cos(w) +
12

w
sin(w)− 10, (3.38)

Φxxx(w) = −
(

16 cos(w)− 48

w
sin(w) + 32

)
+

(
12 sin(w) +

24

w
cos(w)− 24

w

)
j.(3.39)

3.3.0.6 The spatial derivatives of CSL3D at xx+1/2 in Fourier space

Φx(w) = −
(
− 31

6
− 14

3
cos(w) +

8

w
sin(w) +

1

w
sin(2w)− 1

6
cos(2w)

)
(3.40)

+

(
− 14

3
sin(w)− 8

w
cos(w) +

9

w
− 1

w
cos(2w)− 1

6
sin(2w)

)
j,

Φxx(w) =

(
13 + 22 cos(w)− 24

w
sin(w)− 6

w
sin(2w) + cos(2w)

)
(3.41)

−
(

22 sin(w)− 30

w
+

24

w
cos(w) +

6

w
cos(2w) + sin(2w)

)
j,

Φxxx(w) = −
(
− 14− 32 cos(w) +

24

w
sin(w) +

12

w
sin(2w)− 2 cos(2w)

)
(3.42)

+

(
− 32 sin(w) +

36

w
− 24

w
cos(w)− 12

w
cos(2w)− 2 sin(2w)

)
j.

Figures 3.3, 3.4 and 3.5 show the results of the imaginary components of Fourier ana-

lysis of CSL3U with those of CSL3D at xi, xi−1/2 and xi+1/2, respectively.
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(b) 2nd derivative

(c) 3rd derivative
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Figure 3.3: Spatial derivatives of CSL3D and CSL3U at the cell center xi. (a),

(b) and (c) show results of imaginary parts of first, second and third derivatives,

respectively.
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Figure 3.4: Spatial derivatives of CSL3D and CSL3U at a cell boundary xi−1/2.

(a), (b) and (c) show results of imaginary parts of first, second and third derivat-

ives, respectively.

Consider Fig. 3.4, which shows the imaginary components (corresponding to advec-

tion speed) of the spatial derivatives of CSL3D and CSL3U at the cell boundary xi−1/2.

For all three derivatives, it is shown that CSL3D is superior to CSL3U in that it approx-

imates the exact value more closely. This is due to the additional constraint for CSL3D

(f̂i−1) being closer to the point xi−1/2. However, the case is reversed when we exam-

ine their spatial derivatives at xi+1/2; in this situation CSL3U is shown to be the more

accurate. It should also be noted that the results at xi+1/2 and xi+1/2 are exactly sym-
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Figure 3.5: Spatial derivatives of CSL3D and CSL3U at a cell boundary xi+1/2.

(a), (b) and (c) show results of imaginary parts of first, second and third derivat-

ives, respectively.

metrical, as further proved by Figure 3.3 showing that the spatial derivatives of CSL3D

and CSL3U taken at the cell centre xi are exactly equal.

This analysis suggests that CSL3D and CSL3U are good candidates for an ENO-like

formulation due to their complementary nature. Where CSL3D produces more errors,

we can switch to using CSL3U, and vice versa.

3.4 CSL3DU formulation

A new ENO-based scheme called CSL3DU is proposed. The ENO (essentially non-

oscillatory) method was first introduced by Harten et al. [80] in 1987. It has been

improved upon by many researchers over the years [94, 95, 96, 97] and also brought

forth the WENO family of methods [83, 98, 99, 100, 101]. The keystone of ENO is the

real-time selection of stencils during simulations. In order to avoid interpolating over

discontinuities, the scheme selects an appropriate, locally smoother stencil over several

candidates. To be able to do so properly, one must be able to identify discontinuities

in the solution, which enables the correct stencil to be chosen. The following smooth-

ness indicator to select between CSL3D and CSL3U is proposed, which is a modified
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version of the indicator proposed by Zhang and Shu [102].

ICSL3D = 4

∫ x+ 1
8

x− 1
8

∆x
(δfCSL3D(x)

δx

)2

dx− 7

9

∫ x+ 1
8

x− 1
8

∆x3
(δ2fCSL3D(x)

δ2x

)2

dx (3.43)

ICSL3U = 4

∫ x+ 1
8

x− 1
8

∆x
(δfCSL3U(x)

δx

)2

dx− 7

9

∫ x+ 1
8

x− 1
8

∆x3
(δ2fCSL3U(x)

δ2x

)2

dx (3.44)

The smoothness indicator is used to calculate a combination of the first and second

derivatives of the CSL3D and CSL3U local interpolation. A lower indicator value

signals a smoother reconstruction, so the stencil with a lower indicator value is selected

(see Figure 3.7). Figure 3.6 shows CSL3D and CSL3U being used to individually

transport a square wave.
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Figure 3.6: Numerical results of square wave propagation at 500 time steps (1

cycle) using CFL = 0.4 for (a) CSL3D and (b) CSL3U.
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Figure 3.7: Distribution of the smoothness indicator as applied to CSL3D and

CSL3U on the square wave as in Fig. 3.6, zoomed in to the region −1 < x < 0.

The wave profile has been enlarged to f = 30 from f = 1 in order to better

juxtapose with the indicator values.

Figure 3.6 demonstrates that the region immediately before a discontinuity is better

approximated by CSL3U, whereas the region immediately after is better handled by

CSL3D. Figure 3.7 shows how the indicator is valued at critical locations; it can be

seen that the indicator for CSL3D has a lower value after a sharp jump, and CSL3U

has a lower value before a sharp jump.

3.5 CSL3ENO formulation

A second smoothness indicator is proposed [93] based on the ratios of successive gradi-

ents. Consider the situation for ui−1/2 < 0. The smoothness of the interpolation

functions of CSL3D and CSL3U are evaluated using the ratios of successive gradients

ri−1/2 and ri+1/2, where

ri−1/2 = sgn
( f̂i − fi−1/2

fi−1/2 − f̂i−1

)
max

( |f̂i − fi−1/2|
|fi−1/2 − f̂i|

,
|fi−1/2 − f̂i−1|
|f̂i − fi−1/2|

)
. (3.45)
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ri+1/2 = sgn
( f̂i+1 − fi+1/2

fi+1/2 − f̂i

)
max

( |f̂i+1 − fi+1/2|
|fi+1/2 − f̂i|

,
|fi+1/2 − f̂i|
|f̂i+1 − fi+1/2|

)
. (3.46)

For ui−1/2 > 0, the smoothness of CSL3D is evaluated by ri−1/2, and for CSL3U by

ri−3/2.

The stencil is selected using the following algorithm:

1. If ri−1/2 and ri+1/2 have the same signs, select the larger value.

2. If ri−1/2 and ri+1/2 have different signs, select the one with the negative sign.

A negative ri−1/2 or ri+1/2 value indicates slopes in opposite directions. The natural in-

stinct would be to avoid such stencils as gradients in opposite directions may indicate a

discontinuous profile. However, it is demonstrated that CSL3D and CSL3U are already

able to handle opposite slopes as demonstrated in Fig. 3.9. This may be a reason for

the effectiveness of the CSL3ENO formulation. Although the exact mechanism of this

selector is not well understood, results show that the CSL3ENO formulation worked

very well in benchmark tests.

3.6 Results

The proposed methods are validated using various benchmark tests and compared with

CIP-CSL3CW and CIP-CSL2, as well as CSL3D and CSL3U individually.

3.6.1 Sine wave propagation

The conservation equation is solved with the initial condition

f(x, 0) = sin(2πx) (3.47)
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with the computation domain [0 : 1] and velocity u(x, 0) = 1, with periodic boundary

conditions. Different grid sizes are used (N=50, 100, 200, 400, 800 ) and ∆t = 0.4∆x

with ∆x = 1/N . Errors are calculated as follows

L1 =
1

N

N∑
i=1

|fi − fexact,i|, (3.48)

L∞ = max(|fi − fexact,i|). (3.49)

and are shown in Table 3.1.

Test results indicate that CSL3D and CSL3U are both 4th order accurate, compared

to CSL2 which is 3rd order accurate and CSL3CW which is only around 2nd order

accurate due to the usage of a slope limiter. It is seen that CSL3DU and CSL3ENO

more or less maintained the 4th order accuracy of its constituents CSL3D and CSL3U.

Figure 3.8: Comparison of L1 error in the sine wave refinement test
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Table 3.1: Errors in sine wave propagation at t=1.

Method N L1 error L1 order L∞ error L∞ order

CSL2 50 5.02× 10−5 - 7.88× 10−5 -

100 6.28× 10−6 3.00 9.86× 10−6 3.00

200 7.85× 10−7 3.00 1.23× 10−6 3.00

400 9.82× 10−8 3.00 1.54× 10−7 3.00

800 1.23× 10−8 3.00 1.93× 10−8 3.00

CSL3CW 50 2.71× 10−3 - 1.53× 10−2 -

100 5.85× 10−4 2.21 5.04× 10−3 1.60

200 1.18× 10−4 2.31 1.80× 10−3 1.49

400 2.29× 10−5 2.36 6.27× 10−4 1.52

800 4.57× 10−6 2.33 2.14× 10−4 1.55

CSL3D 50 1.70× 10−6 - 2.68× 10−6 -

100 1.07× 10−7 3.99 1.68× 10−7 4.00

200 6.68× 10−9 4.00 1.05× 10−8 4.00

400 4.18× 10−10 4.00 6.56× 10−10 4.00

800 2.61× 10−11 4.00 4.10× 10−11 4.00

CSL3U 50 1.46× 10−6 - 2.29× 10−6 -

100 9.13× 10−8 4.00 1.43× 10−7 4.00

200 5.71× 10−9 4.00 8.97× 10−9 3.99

400 3.57× 10−10 4.00 5.60× 10−10 4.00

800 2.23× 10−11 4.00 3.50× 10−10 4.00

CSL3DU 50 3.35× 10−6 - 2.32× 10−5 -

100 2.26× 10−7 3.89 2.47× 10−6 3.23

200 1.54× 10−8 3.88 2.88× 10−7 3.10

400 1.01× 10−9 3.93 3.32× 10−8 3.12

800 6.70× 10−11 3.91 3.80× 10−9 3.13

CSL3ENO 50 3.35× 10−6 - 2.32× 10−5 -

100 2.26× 10−7 3.89 2.47× 10−6 3.23

200 1.54× 10−8 3.88 2.89× 10−7 3.10

400 1.01× 10−9 3.93 3.33× 10−8 3.13

800 6.70× 10−11 3.91 3.80× 10−9 3.13



3.6 Results 51

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 -0.5  0  0.5  1

f

x

CSL3D

Exact

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 -0.5  0  0.5  1

f

x

CSL3U

Exact

(b)

Figure 3.9: Numerical results of square wave propagation at t = 1 (500 time steps)

with CFL = 0.2.

3.6.2 Square wave propagation

CSL3D, CSL3U, and CSL3DU are tested using a square wave as in Subsection 3.4

but with different CFL numbers. Mesh size N = 200 is used where ∆x = 2/N with

domain [−1 : 1] and periodic boundary conditions. The initial condition is set as

f(x, 0) =

1 if − 0.4 6 x 6 0.4,

0 otherwise
(3.50)

and the test is run with CFL = 0.2 (∆t = 0.2∆x), CFL = 0.5 (∆t = 0.5∆x),

and CFL = 0.8 (∆t = 0.8∆x). Results indicate that at CFL = 0.2, CSL3D

performs better than CSL3U. At CFL = 0.8, CSL3U is seen to perform better, and at

CFL = 0.5, CSL3D and CSL3U has symmetrical results with oscillations occurring at

opposite sides of the discontinuity. The reason for this phenomenon is that at CFL =

0.2, the departure point is located closer to the additional moment of CSL3D (f̂i−1 in

Fig. 3.1). Meanwhile when using CFL = 0.8, the departure point would be closer to

the additional moment of CSL3U (f̂i−1 in Fig. 3.2). The numerical result of CSL3D

and CSL3U are symmetrical at CFL = 0.5 since the departure point in this case is

at equal distance to the additional moments in both cases. This finding confirms the

Fourier analysis done in Section 3.3.
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Figure 3.10: Numerical results of square wave propagation at t = 1 (500 time

steps) with CFL = 0.5.
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Figure 3.11: Numerical results of square wave propagation at t = 1 (500 time

steps) with CFL = 0.8.
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Figure 3.12: Numerical results of square wave propagation for CSL3DU and

CSL3ENO at t = 1 (500 time steps) with CFL = 0.2, CFL = 0.5, and CFL =

0.8.
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3.6.3 Complex wave

The proposed methodology is tested using the Jiang-Shu complex wave propagation

problem [82], which contains a combination of Gaussian, a square wave, a shard tri-

angle wave, and an ellipse. The velocity is set as u(x) = 1, grid size N = 200,

∆t = 0.4∆x, ∆x = 2/N , using periodic boundary conditions with computational

domain [-1:1]. The initial conditions are given as follows

f(x, 0) =



1
6

(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)) −0.8 6 x 6 −0.6,

1 −0.4 6 x 6 −0.2,

1− |10(x− 0.1)| 0.0 6 x 6 0.2,

1
6

(F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, a)) 0.4 6 x 6 0.6,

0 otherwise

(3.51)

where

G(x, β, z) = e−β(x−z)2 , (3.52)

F (x, α, a) =
√

max(1− α2(x− a)2, 0), (3.53)

here a = 0.5, z = −0.7, δ = 0.005, α = 10 and β = log(2)/(36δ2).

Results at 4000 time steps show that CSL3DU and CSL3ENO could capture all the

profiles well compared to CSL2 which, while capturing relatively well the Gaussian

wave, has oscillations around discontinuity. CSL3CW managed to suppress all oscil-

lations but overcompensated in this direction and therefore became diffusive. Results

at 40,000 time steps show that the profiles captured by CSL3DU and CSL3ENO are

still relatively well-preserved, with CSL3DU performing slightly better. At this point

CSL2 and CSL3CW has lost any semblance to the original profile.
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Table 3.2: Errors in the complex wave propagation at t=16 (after 4,000 time steps)

when N=200 is used.

L1 error L∞ error

CSL2 4.18× 10−2 4.21× 10−1

CSL3CW 5.87× 10−2 4.59× 10−1

CSL3D 3.19× 10−2 4.59× 10−1

CSL3U 3.72× 10−2 4.67× 10−1

CSL3DU 2.42× 10−2 3.65× 10−1

CSL3ENO 2.30× 10−2 3.86× 10−1

Table 3.3: Errors in the complex wave propagation at t=160 (after 40,000 time

steps) when N=200 is used.

L1 error L∞ error

CSL2 9.29× 10−2 4.58× 10−1

CSL3CW 1.47× 10−1 6.79× 10−1

CSL3D 6.32× 10−2 5.14× 10−1

CSL3U 6.61× 10−2 5.45× 10−1

CSL3DU 4.12× 10−2 4.14× 10−1

CSL3ENO 4.43× 10−2 4.31× 10−1
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Figure 3.13: Numerical results of complex wave propagation at 4000 time steps
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Figure 3.14: Numerical results of complex wave propagation at 40,000 time steps
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3.6.4 Extrema of various smoothness

The proposed scheme is verified against a test proposed by Harten et al. [80] called the

extrema of various smoothness capture test. The mesh size is N = 100, ∆x = 2/N ,

timestep ∆t = 0.4∆x, and velocity u = 1. Periodic boundary conditions are used for

the computational domain [-1.5:0.5]. The initial conditions are as follows

f(x+ 0.5, 0) =


−x sin(1.5πx2) for − 1 ≤ x < −1

3

| sin(2πx)| for |1
3
| ≥ x

2x− 1− sin(3πx)
6

otherwise .

(3.54)

The results of this test are consistent to Subsection 3.6.3. After four cycles, CSL2

managed to capture the profile relatively well while CSL3CW is again very diffusive.

CSL3DU and CSL3ENO reproduced the profile with neither the diffusion present in

CSL3CW nor the slight oscillations of CSL2.

Table 3.4: Errors in the extrema of various smoothness at t=8 when N=100 is used.

L1 error L∞ error

CSL2 6.41× 10−2 8.18× 10−1

CSL3CW 1.14× 10−1 9.15× 10−1

CSL3D 6.64× 10−2 8.09× 10−1

CSL3U 6.83× 10−2 7.88× 10−1

CSL3DU 4.01× 10−2 7.49× 10−1

CSL3ENO 4.13× 10−2 7.24× 10−1
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Figure 3.15: Numerical results of extrema of various smoothness test at 1000 time

steps (4 cycles).



3.6 Results 59

3.6.5 Non-uniform velocity test

A square wave is transported in the following non-uniform velocity field. The initial

conditions are as follows;

f(x, 0) =

 1 for 0.35 ≤ x < 0.65

−1 otherwise ,
(3.55)

u(x, 0) =
1

1 + 0.4 sin(2πx)
(3.56)

with mesh size N = 300, ∆x = 1/N , ∆t = 0.2∆x. Results show that CSL3DU

performs well even in a non-uniform velocity field. CSL2 produces oscillations on

both sides of the discontinuity and CSL3CW is too diffusive. CSL3D and CSL3U

shows oscillation occurring on opposite sides of discontinuities. CSL3DU captured the

profile with minimal oscillation and diffusion. CSL3ENO has very minor oscillation at

the discontinuity as can be seen in Fig. 3.16(f), but is slightly sharper than CSL3DU.



3.6 Results 60

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

f

x

CSL2

Exact

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

f

x

CSL3CW

Exact

(b)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

f

x

CSL3D

Exact

(c)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

f

x

CSL3U

Exact

(d)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

f

x

CSL3DU

Exact

(e)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

f

x

CSL3ENO

Exact

(f)

Figure 3.16: Numerical results of the density profile for the non-uniform velocity

test at t = (1.8/dt).
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3.6.6 Burgers equation

In this test by Qiu and Shu [103], the proposed scheme is evaluated by solving the

non-linear inviscid Burgers equation which appears in the studies of gas dynamics;

∂u

∂t
+ u

∂u

∂x
= 0 (3.57)

which, in its conservative form is

∂u

∂t
+
∂(u2/2)

∂x
= 0 (3.58)

Eq. (3.58) is solved with the smooth initial condition

u(x, 0) = 0.5 + 0.4 cos(2πx). (3.59)

A crucial phenomenon brought about by Burgers equation is the formation of shocks,

which are discontinuities that arise after an amount of time, later propagating in a

regular manner. The reference solution is created using the CSL3 method with N =

1000. It can be seen in this test that CSL2, CSL3D, and CSL3U have some oscillations

at the shock line, with CSL2 being the worst affected. CSL3CW managed to capture

the profile relatively well but has some diffusion. The same can be said about CSL3DU.

CSL3ENO captured the discontinuity very well, giving way to very minimal diffusion.



3.6 Results 62

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

u

x

CSL2

Exact

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

u

x

CSL3 CW

Exact

(b)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

u

x

CSL3 D

Exact

(c)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

u

x

CSL3 U

Exact

(d)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

u

x

CSL3DU

Exact

(e)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

u

x

CSL3ENO

Exact

(f)

Figure 3.17: Numerical results of Burger’s equation at t=1 using N=200
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3.6.7 Sod’s problem

From this point onwards, the schemes are tested for compressible flow problems us-

ing the third-order Runge-Kutta characteristic formulation [91], detailed in Appendix

(6.2). Sod’s problem [104] is a well-known benchmark for one-dimensional Euler

equations problems. It is based on a one-dimensional shock tube with a thin diaphragm

placed in the middle to separate a high pressure region and a lower pressure region as

in Fig. 3.18. At t = 0, the gas is at rest. Flow is generated when the diaphragm is

instantaneously removed. The initial conditions are;

if x ≤ 0.5:

ρ(x, 0) = 1; u(x, 0) = 0; p(x, 0) = 1 (3.60)

otherwise:

ρ(x, 0) = 0.125; u(x, 0) = 0; p(x, 0) = 0.1 (3.61)

using Dirichlet boundary conditions.

Figure 3.18: Initial condition of shock tube problem

Results from the Sod test indicate that CSL2 is oscillatory around discontinuities.

CSL3D and CSL3U exhibit oscillation on the upwind and downwind side of the discon-

tinuity, respectively. CSL3CW is diffusive. CSL3DU and CSL3ENO both managed to

capture the contact discontinuity as well as the shock wave with minimal diffusion and

oscillation.
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Figure 3.19: Numerical results the density profile for Sod’s problem at t = 0.16

with N = 200 with CFL = 0.2.
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3.6.8 Lax’s problem

Proposed by Lax in 1954 [71], this test is similar to the Sod’s test but contains a stronger

shock and contact discontinuity. The initial conditions are given as follows;

if x ≤ 0.5:

ρ(x, 0) = 0.445; u(x, 0) = 0.698; p(x, 0) = 3.528 (3.62)

otherwise:

ρ(x, 0) = 0.5; u(x, 0) = 0; p(x, 0) = 0.571 (3.63)

The Lax test has shown that CSL2 continues its oscillatory trend near discontinuities.

CSL3D and CSL3U are highly oscillatory at the upwind and downwind side of the

discontinuity, respectively. CSL3CW captured the general outline of the solution with

no oscillation, but is relatively diffusive compared to CSL3DU and CSL3ENO. Both of

the proposed methods managed to capture the profile with minimal diffusion. However,

some oscillation could be observed on either side of the discontinuity for CSLDU, and

to a lesser extent, along the top of the profile for CSL3ENO.
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Figure 3.20: Numerical results of density profile for Lax’s problem at t = 0.2 with

N = 100 with CFL = 0.2.
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3.7 Conclusion

A new variant of the CIP-CSL3 solver, called CIP-CSL3U, was proposed as a com-

plement to an existing scheme, CIP-CSL3D. The CSL3D scheme has an extra con-

straint in the downwind cell, and CSL3U has a constraint on the upwind side. As a

result, CSL3D produces numerical oscillation on the side that is upwind to the dis-

continuity, and vice versa for CSL3U. Due to the symmetrical nature of these two

schemes, an ENO-like approach is taken to automatically select the smoother sten-

cil during runtime. This requires a selector that can identify and select the smoother

stencil.

Two selectors are proposed in this work, each producing the two schemes CIP-CSL3DU

and CIP-CSL3ENO. The first selector (CSL3DU) chooses the smoother stencil as in-

dicated by the proposed smoothness indicator. The second selector (CSL3ENO) inten-

tionally selects the stencil that contains opposing slopes.

Benchmark tests indicate that CSL3DU and CSL3ENO retained a high-order of ac-

curacy of almost 4th order for sine wave tests. Tests with complex profiles show

that CSL3DU and CSL3ENO perform similarly, eliminating almost all oscillations

while retaining sharpness. Both the proposed schemes outperform the other schemes

compared in this work. Additional tests are carried out for compressible flow prob-

lems, which show CSL3DU and CSL3ENO outperforming the other schemes, with

CSL3ENO retaining a slight edge over CSL3DU. The success of the tests show that the

proposed ENO-formulation for CIP-CSL, of selecting between two inherently oscillat-

ory but complementary stencils, has potential for the application of incompressible and

compressible flow problems.
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Chapter 4

Interface Capturing with Geometrical

CLSVOF

In this chapter, the methodology and implementation of a new CLSVOF solver based

on the isoAdvector method in interFlow [2] for two-phase incompressible, immiscible

flows on the OpenFOAM platform is presented.

Firstly an overview of the algorithm is given. This is then detailed in a step-by-step

manner with particular focus on the interface reconstruction algorithm, which includes

algorithms for finding the volume of a general polyhedron cut by a plane. The ad-

aptation of the isoAdvector scheme is then detailed, followed by the reinitialisation

procedure for the LS field.

Finally the implementation is verified against several validation tests on structured and

unstructured meshes of various polyhedra types.

4.1 Implementation of CLSVOF on general meshes

An overview of the algorithm used in this implementation is given as in Fig. 4.1.

Firstly the domain is initialised with the VOF (α) and LS (φ) fields. The interface is

reconstructed inside each cell using the values of the LS field. In order to maintain

mass conservation, the position of the interface in the cell is adjusted to match exactly
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Initialise: Reconstruct interface plane

using initial φ , α (Section 4.1.1)

Advect α(t) (Section 4.1.2),

advect φ(t) (Section 4.1.3)

α(t + ∆t), φ∗

Reconstruct interface using φ∗

and α(t + ∆t) (Section 4.1.1)

Redistance φ∗ (Section 4.1.3)

φ(t + ∆t), α(t + ∆t)

Figure 4.1: CLSVOF interface capturing method overview

the volume in the cell as given by the VOF field. Both fields are advected with the ve-

locity field. The interface is reconstructed and adjusted again, after which the LS field

around the interface is redistanced. The following subsections will now go through the

procedure.
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Figure 4.2: A plane signifying the interface in a cell at time t, with normal n

4.1.1 Interface reconstruction algorithm for general polyhedra

A flat 2 D plane signifying the boundary between two fluids in an interface cell is to be

constructed. This plane is perpendicular to the normal vector of the liquid interface in

each cell (Fig. 4.2). The equation of the plane (and therefore its orientation) is found

using the LS field values of the cell in question as well as its neighbouring cells, and

the position of the plane is adjusted along the normal such that the volume of Fluid

L underneath the plane matches exactly with the volume prescribed by the VOF field.

This is the paramount feature of the geometric CLSVOF method that ensures mass-

conservation as well as a robust representation of the fluid interface.

A drawback of this procedure is that it is complex to code in a general unstructured

3D mesh, as the reconstructed plane could be oriented in any manner inside the cell,

making it difficult to calculate the volume of fluid under the plane. To handle this

issue, in this work, a tetrahedralisation process is applied to interface cells, to calculate

the volume of a general convex polyhedron intersected by a plane. In this method,

all convex polyhedra containing a fluid interface are reduced into tetrahedra, which

simplifies the volume calculation.
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4.1.1.1 Identifying interface cells

The interface is reconstructed only in cells that contain more than one fluid phase.

These cell are identified as follows, as per [105] [45] [46]:

Algorithm 4.1: Identifying interface cell

for all cell i do

if (φi φ′ < 0) then

if (0 < αi < 1) AND (φi (φi φ
′) < 0) then

cell i is an interface cell

end if

end if

end for

where φi and αi are the field values in the cell where the interface is being reconstruc-

ted, and φ′ is the LS value in the first layer of neighbouring cells.

4.1.1.2 Building an interface plane in each interface cell

The fluid interface plane in each interface cell i is represented by the linear function

φRi = Ai(x− xi) +Bi(y − yi) + Ci(z − zi) +Di. (4.1)

where (Ai, Bi, Ci) is the normal vector and Di is the Euclidean distance of the plane

to the interface cell centre. This is normalised by

nφ =


nx

ny

nz

 =


Ai/
√
A2
i +B2

i + C2
i

Bi/
√
A2
i +B2

i + C2
i

Ci/
√
A2
i +B2

i + C2
i

 (4.2)

where nφ is the unit normal of the plane. The coefficients Ai, Bi, Ci, Di need to be

found such that it represents the 0-contour plane of the LS field in that cell. In this
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work we perform a gradient-based reconstruction method, where nφ is approximated

by the gradient of the LS field;

nφ ∼
(∂φ
∂x
,
∂φ

∂y
,
∂φ

∂z

)
. (4.3)

In 3D unstructured meshes composed of general polyhedra, a Least-Squares approach

is the most convenient one to approximate the gradient [70], using the values in the set

of neighbour cells N . The following weighted error function is minimised

Ei =
∑
N

[w′(φ′ − Ai(x′ − x)−Bi(y
′ − y)− Ci(z′ − z)−Di)]

2 (4.4)

where w′ is a weight in the form of the inverse of the distance between the cell centres

of i and the neighbours [106], φ′ is the value of LS in the neighbour cells, and x′, y′, z′

are the cell centre coordinates of the neighbour cell. The minimisation of E results

in a solution for a system of algebraic equations for each cell which is solved for

Ai, Bi, Ci, Di, producing a second-order accurate gradient regardless of the arrange-

ment of the neighbour points.

4.1.1.3 Decomposing interface cells into constituent tetrahedra

Outline

If the cell is determined to contain a fluid interface, it is decomposed into tetrahedra

unless it is already one. This is to provide a convenient data structure to be used

later in the algorithm. Fig. 4.3 presents an overview of the resultant tetrahedra for

various types of cell. The ’Primary decomposition’ column shows the exploded view

of the decomposed cell. For clarity, pyramids are used to represent four individual

tetrahedron in the cube and prism decompositions. The decomposition is described

using more detail in the following sections.

Data structure
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Figure 4.3: Various cell shapes and their decomposition
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For each cell containing an interface, its constituent tetrahedra are stored in ’cellDe-

composedTetra’. Each of the tetrahedron is stored as a list of its vertices in ’tmpTetra’,

so ’cellDecomposedTetra’ is a collection of this list.

Decomposition

The decomposition takes place only if the cell is not already a tetrahedron. However,

tetrahedron cells are also taken into account in the algorithm in order to structure our

data consistently. In the situation where the cell is a tetrahedron, its original vertices

are stored in this ’tmpTetra’, and therefore into ’cellDecomposedTetra’.

However, if the cell is not a tetrahedron, it is decomposed into tetrahedra based on its

cell faces. As an example, consider the case of a cubic cell. Fig. 4.4(a) shows a cubic

cell decomposed into six pyramids based on its six faces. Each of these pyramids are

further decomposed into four tetrahedra with two common vertices amongst them: the

cell centroid of the main cell (point xC in Fig. 4.4(b)) and the face centroid of the

face around which they were decomposed (fC). As in Fig. 4.4(b), the four tetrahedra

obtained from the pyramid are [n, n+ 1, xC, fC], [n+ 1, n+ 2, xC, fC], [n+ 2, n+

3, xC, fC], and [n + 3, n, xC, fC], which are described in terms of their vertices.

These sets of vertices are kept in ’cellDecomposedTetra’. A similar process can be

performed on any other convex shapes, described in Algorithm 4.2.
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(a) (b)

Figure 4.4: (a) A hexahedral cell shown decomposed into 6 pyramids about each

face and (b) a magnified view of the first pyramid taken from the bottom face

decomposition, further decomposed into 4 tetrahedra.
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Algorithm 4.2: Implementation procedure for decomposing a general polyhedron

cell.

for all interface cells do

if cell vertex == 4 then

One tetrahedron in ’tmpTetra’ is stored in ’cellDecomposedTetra’.

else

Identify cell centroid xC, store in tmpTetra[0].

for all cell faces of cell do

if face vertices == 3 then

1) Populate list tmpTetra[1] , tmpTetra[2] , tmpTetra[3] (Fig. 4.4(a) )

with face vertices.

2) Append ’tmpTetra’ into cellDecomposedTetra.

else

1) Insert face centroid fC into tmpTetra[1].

for all face vertices do

1) Insert vertex 1 and vertex 2 into tmpTetra[2] , tmpTetra[3] (begin-

ning with n and n+ 1 as in Figure 4.4).

2) Append tmpTetra into cellDecomposedTetra.

end for

end if

end for

end if

end for
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4.1.1.4 Adjusting the interface to conserve mass

To ensure the conservation of mass, the fluid volume fraction in cell i as cut by the LS

plane is matched to the volume fraction given by the VOF field, αi. This is done by

shifting the interface along the normal nφ until the cell volume cut by the plane equals

the volume as given by the VOF field.

An iterative algorithm is used to approximate the value of D, that is the distance of

the interface to the cell centre that gives a matching cut volume to the provided VOF

volume fraction. The algorithm is detailed as in Algorithm 4.3. Firstly, all interface

cells would have a plane that signifies the fluid interface. The volume of the fluid under

this plane is calculated with the initial value of D, and the initial volume fraction as

given by the plane is αiter=0. The initial error E0 is calculated;

E0 = |αiter=0 − αi
αi

|. (4.5)

If E0 is greater than 1 × 10−4, the algorithm proceeds into a iteration loop where the

value of D is adjusted. With each adjustment of D, the plane is displaced along its

normal, which changes the volume under the plane in that cell and hence the volume

fraction. This volume fraction is denoted αiter. This work follows Maric [107] and

Ann and Shashkov [70] in that firstly the secant method is employed for the iterative

procedure. It is then switched to the bisection method if the secant method failed to

converge. The convergence criterion is EV < 1× 10−4, where

EV = |αiter − αi
αi

|, (4.6)

and αiter is the volume fraction obtained based on each adjustment of D, and αi is

the volume fraction of the cell as given by the VOF field. Recall that the definition

of volume fraction α is the volume of fluid L in the cell divided by the volume of the

mesh cell, so αiter=0 and αiter are found by finding the volume under the plane in that

cell, divided by the total cell volume.
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Algorithm 4.3: Volume matching iterator

for all interface cells do

1) Calculate the volume under the plane with current value of D.

2) Calculate the initial error EV = E0

if EV > (1× 10−4) then

Do secant method, update value of D.

Calculate EV from updated αiter.

if Secant method iteration > 20 and EV > (1× 10−4) then

Do bisection method, update value of D.

Calculate EV from updated αiter.

end if

end if

end for

Calculating the volume under the plane

To calculate αiter, the volume of the fluid under the plane has to be calculated at each

iteration as D changes. Calculating this volume is a non-trivial task due to the number

of possible configurations available for a plane intersecting a 3D polygon.

Six possible configurations have been identified. This is done by calculating the signed

distance of the tetrahedron vertices to the plane. The configuration is classified by

the combination of the number of ’submerged’ vertices, ’non-submerged’ vertices, and

vertices that are on the interface plane.

The vertices under the plane is stored as ’submerged points’ denoted with index neg

for negative. These indicate the portion of the cell occupied by fluid L. Inversely the

vertices above the plane is denoted with index pos for positive. If the tetrahedron

vertex is on the plane, it is denoted as zero. The six configurations for plane-tetrahedra

intersect are classified as follows, using a combination of the number of vertices above,

below, and on the plane.
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• Case 1: neg = 1, pos = 3, zero = 0.

• Case 2: neg = 2, pos = 2, zero = 0.

• Case 3: neg = 1, pos = 2, zero = 1.

• Case 4: neg = 3, pos = 1, zero = 0.

• Case 5: neg = 2, pos = 1, zero = 1.

• Case 6: neg = 1, pos = 1, zero = 2.

Figure 4.5: Cutting sequence of a Case 1 (neg = 1, pos = 3, zero = 0) tetrahedron

where the total submerged volume is denoted in red, the interface in green, and

the non-submerged volume in blue.

In Case 1, the plane cuts the tetrahedron in a straightforward manner, resulting in one

tetrahedron and one discarded polygon, depicted in Fig. 4.5. In the diagrams, the

’negative’ points are denoted using n0, n1, ..., ’positive’ points using p0, p1, ..., ’zero’

points using z0, z1, ..., and interface points using i0, i1, .. to identify the vertices. The

submerged tetrahedron is defined as a list of points [n0, i0, i1, i2], stored in the list

’submergedTetra’. In this particular situation, the volume of the submerged tetrahedron
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is simply calculated as

Volume of tetrahedron =
1

6
[(i1 − i0)× (i2 − i0) · (n0 − i0)]. (4.7)

Figure 4.6: Cutting sequence of a Case 2 (neg = 2, pos = 2, zero = 0) tetrahedron

where the total submerged area is denoted in red in (a). Its constituent sections

are denoted in magenta as in (b), (c), and (d).

For Case 2 as in Fig. 4.6, the cut results in the submerged volume [n0, n1, i0, i1, i2, i3].

This is decomposed further, resulting in three new tetrahedra: [n1, i1, i2, i3], [n1, i0, i1, i3],

and [n0, n1, i0, i1]. The volumes of these tetrahedra (stored in ’submergedTetra’) are

simply found similar to Eq. 4.7.
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Figure 4.7: Cutting sequence of a Case 3 (neg = 1, pos = 2, zero = 1) tetrahedron

where the total submerged area is denoted in red.

Case 3 has a plane cutting directly on a tetrahedron vertex. This directly results in the

submerged tetrahedron [n0, i0, i1, z0], as in Fig. 4.7.
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Figure 4.8: Cutting sequence of a Case 4 (neg = 3, pos = 1, zero = 0) tetrahedron

where the total submerged area is denoted in red in (a). Its constituent sections

are denoted in magenta as in (b), (c), and (d).

Case 4 (Fig. 4.8) results in the submerged section [i0, i1, i2, n0, n1, n2]. This is de-

composed into three smaller tetrahedra to store in ’submergedTetra’: [n0, i0, i1, i2],

[n0, n2, i1, i2], and [n0, n1, n2, i1].
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Figure 4.9: Cutting sequence of a Case 5 (neg = 2, pos = 1, zero = 1) tetrahedron

where the total submerged area is denoted in red in (a). Its constituent sections

are denoted in magenta as in (b) and (c).

Case 5 (Fig. 4.9) results in the submerged section [i0, i1, z0, n0, n1]. The submerged

section is broken down into two tetrahedra: [z0, n1, i0, i1] and [z0, n0, n1, i0].
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Figure 4.10: Cutting sequence of a Case 6 (neg = 1, pos = 1, zero = 2) tetrahed-

ron where the total submerged area is denoted in red.

Finally, Case 6 (Fig. 4.10) is relatively straightforward as it yields two tetrahedra, with

the submerged one being [z0, z1, i0, n0].

Example decomposition procedure

As an example for the entire decomposition and cutting procedure, a pyramid cell as

in Fig. 4.11 (a) is presented, defined in this section with vertices [A,B,C,D,E]. It

is decomposed into four tetrahedra using Algorithm 4.2 around two common points,

fC and E. These tetrahedra are ’cellDecomposedTetra’. The cell contains an interface

which is represented by the plane, with the plane-cell intersects being points [F,G,H]

(Fig. 4.11 (b) ).

For this example, consider one of the tetrahedra in ’cellDecomposedTetra’, [fC,B,C,E]

as in Fig. 4.11 (c). The plane-tetrahedra intersects for it are points [F,G, I] (Fig. 4.11

(d) ). Depending on the direction of the normal of the plane, the submerged section

of this particular tetrahedron is either [F,G, I, E,B, fC] or [F,G, I, C]. If the former

is the submerged section, it is further decomposed via Case 4 (Fig. 4.8 ). If the latter
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is the submerged section, it is decomposed via Case 1 (Fig. 4.5 ). This second de-

composition yields further tetrahedra ’submergedTetra’, and this procedure is repeated

for the one remaining tetrahedron in ’cellDecomposedTetra’ that is intersected by the

plane. To find the volume of the submerged section in this pyramid cell, the volumes

of ’submergedTetra’ is summed for each ’cellDecomposedTetra’. The tetrahedra in

’cellDecomposedTetra’ that are not intersected by the plane i.e. [A,B,E, fC] and

[A,D,E, fC] are included in the volume calculation if their vertices are all determ-

ined to be ’submerged’.

(a)                          (b)

(c)                          (d)

Figure 4.11: A tetrahedron cell is decomposed as in (a) and contains an interface

as in (b). The interface cuts across two decomposed tetrahedra, [fC,B,C,E] and

[fC,C,D,E] in (c), and the interface intersects the former tetrahedron as in (d),

producing three intersect points.
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4.1.2 Computing the advected liquid volume fraction from the re-

constructed interface

As the orientation and position of the interface that yields a cut volume equal to the

VOF fraction is known, the total volume of fluid L transported across face j in the time

interval [t, t+ ∆t] can now be calculated to update αi(t) to αi(t+ ∆t).

Recall from Section 2.2.2.2 the discretised integral form of the continuity equation:

d

dt

∫
Ci

H(x, t) dV = −
∑
j∈Bi

si,j

∫
Fj

H(x, t)u(x, t) · dS (4.8)

where H(x, t) is the indicator field, Ci is the discretised cell, Bi is the list of labels

belonging to the faces of Ci, Fj is the surface of face j, and si,j is either 1 of −1 such

that it points out of cell i for face j. The volume fraction αi is defined at the cell centre,

and the volume of fluid L in the cell is then

αiVi =

∫
Ci

H(x, t) dV, (4.9)

with Vi representing the cell volume. Therefore, Eq. (4.8) can be expressed as in

Chapter 2, Eq. 2.27;

αi(t+ ∆t) = αi(t)−
1

Vi

∑
j∈Bi

sij

∫ t+∆t

t

∫
Fi

H(x, τ) u(x, τ) · dS dτ,

to update the value of αi. Here the time integral on the RHS represents the total volume

of fluid L that is transported across face j between t and t+ ∆t. Since we are applying

the isoAdvector method [2], this is the fundamental quantity required to advance αi in

time and it is referred to as ∆Vj(t, t+ ∆t). The previous equation is now expressed as

αi(t+ ∆t) = αi(t)−
1

Vi

∑
j∈Bi

sij∆Vj(t, t+ ∆t). (4.10)

We recall the definition of u(t), which is defined at the cell centre

u(t) =
1

Vi

∫
Ci

u(x, t) dV, (4.11)
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and the volumetric flux across the cell faces,

Fj(t) =

∫
Fj

u(x, t) · dS. (4.12)

This work operates under the same assumptions as the isoAdvector method; the local

radius of curvature is larger than the cell size so the interface can be approximated by

a flat plane, and the velocity field is constant in time between [t, t + ∆t], at the inter-

mediate time step τ . Therefore we can write u(x, τ) ≈ u(x, t). Another assumption

following [2] is that the velocity u on face Fj can be approximated in terms of Fj(t),

u · dS ≈ Fj(t)

|Sj|
dS (4.13)

where dS ≡ d|S| and the face normal Sj =
∫
Fj
dS. Now ∆Vj(t, t + ∆t) can be

expressed as

∆Vj(t, t+ ∆t) ≈ Fj(t)

|Sj|

∫ t+∆t

t

∫
Fj

H(x, τ) dS dτ. (4.14)

The surface integral in Eq. (4.14) is the instantaneous area of face j that is submerged

by Fluid L, denoted as Aj(τ),

Aj(τ) ≡
∫
Fj

H(x, τ) dS. (4.15)

With this in mind, the isoAdvector advection method estimates directly the time evolu-

tion of the submerged area of a face within a time step , and this areaAj(τ) is integrated

in time.

Now the total volume of fluid L transported across face j can be rewritten as

∆Vj(t, t+ ∆t) ≈ Fj(t)
|Sj|

∫ t+∆t

t

Aj(τ) dτ. (4.16)

Aj(τ) is a function of the orientations of the face/interface intersect, and this is a func-

tion of the motion of the interface and the shape of the cell face.

In order to calculate Aj(τ) for face j, we start with the interface in the cell upwind of

face j at a given time; this cell would be the one to ’donate’ the fluid to face j. The
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motion of the interface during [t, t+ ∆t] can be estimated by using the velocity data of

the neighbouring cells. As the interface is known, the face-interface intersection line is

also known for face j in this time period. The time integral in Eq. 2.35,
∫ t+∆t

t
Aj(τ) dτ

can then be calculated analytically to obtain the total volume of fluid L transported

across face j during [t, t+ ∆t], which is ∆Vj(t, t+ ∆t).

The algorithm summarising the advection step is given ahead of the detailed descrip-

tion, which will be given in the Sub-subsections to follow.

Algorithm 4.4: Advancing αi(t) to αi(t+ ∆t) using the isoAdvector method

for all cells do

for all cell faces j do

Initialise ∆Vj as αupwind(j)Fj∆t, where αupwind(j) is the upwind cell volume

fraction.

end for

for all interface cell i do

1) Find the intersection of the interface plane and the cell face.

2) Estimate the interface motion in the interval [t, t+ ∆t] (Section 4.1.2.1).

for all downwind face j of cell i do

1) Calculate the motion of the cell face/liquid interface intersect between

[t, t+ ∆t] (Section 4.1.2.2).

2) Use the motion to calculate ∆Vj(t, t+ ∆t).

end for

end for

Calculate αi(t+ ∆t) for all cells using the ∆Vj values of its faces.

if αi(t+ ∆t) < 0 or αi(t+ ∆t) > 1 then

Adjust ∆Vj using the redistribution procedure in Section 4.1.2.4

end if

end for
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4.1.2.1 Estimating the interface motion during [t, t+ ∆t]

To estimate the interface motion, the first step is to find the geometric centre of the

interface, xs. This is described as follows;

Algorithm 4.5: Finding interface centroid, xs

for all interface cells do

1) Calculate the average point, xN between the plane-face intersect points.

2) Decompose the interface into N triangles, with xN as the common vertex,

similar to Algorithm 4.2.

3) Find areas and geometric centres of the N triangles.

4) xs is the area-weighted average of the N triangles.

end for

The velocity ui(t) is interpolated to xs using the OpenFOAM interpolationCellPoint

utility, where first, the cell is decomposed into tetrahedra. The tetrahedron containing

xs is identified and the velocity field is interpolated to its vertices. The velocity vector

Us at xs is found by linearly interpolating the velocity from the tetrahedron vertices

with inverse distance weights. The interface motion which is normal to itself is now

Us = US · nφ. The direction of US indicates whether the cell is filling up of fluid L, or

emptying out i.e. US > 0 indicates a cell filling up with fluid L.

4.1.2.2 Evolving the face-interface intersection line

The face-interface intersection line (FIIL) (see Fig. 4.12(a) ) is evolved by estimating

the times at which the interface reaches the vertices of face j, as it is translated along

its normal at velocity Us. The times at which the FIIL passes the vertices of face j (X1,

... , XN ) is

tk ≈ t+ (Xk − xs) ·
nφ
US

, for k = 1, ..., N (4.17)
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In this section, a quadrilateral section on a cell face swept by the movement of the FIIL

is denoted with vertices E,F,G,H . In Fig. 4.12, the grey quadrilateral E,F,G,H

is the area swept as the FIIL moves from t4 to t5. Therefore at the intermediate time

τ ∈ [t, t+ ∆t], the locations H̃(τ) and G̃(τ) can be represented as follows;

H̃(τ) = E +
τ − tk
tk+1 − tk

(H − E), G̃(τ) = F +
τ − tk
tk+1 − tk

(G− F ). (4.18)

Figure 4.12: (a) The FIIL as it passes each face vertex. Take for example the

trapezoid that resulted from the FIIL movement from t4 to t5, where it is denoted

as E,F,G,H in (b). The intermediate positions as it moves from from EF to GH

is denoted as H̃(τ) and G̃(τ). Graphics modified from Roenby et al. [2].

4.1.2.3 Time integral of submerged face area

Recall the instantaneous submerged area, Aj(τ) from Eq. 2.35. The times tk obtained

from the previous section are sorted and placed into a new list where t̃1, ..., t̃M , where

t̃1 = t and t̃M = t + ∆t, such that t < tk < t + ∆t. The time integral in Eq. 2.35 is

split as ∫ t+∆t

t

Aj(τ)dτ =
M−1∑
k=1

∫ t̃k+1

t̃k

Aj(τ)dτ, (4.19)
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where each k represents each quadrilateral interval as in Fig. 4.12 (b) . The submerged

area at intermediate time t̃k ≤ τ ≤ t̃k+1 can be expressed as

Aj(τ) = Aj(t̃k) +
1

2
sgn (US) |EG̃(τ)× FH̃(τ)|. (4.20)

From Eq. 4.18, this can be turned into the polynomial

Ajτ = Aj(t̃k) + Pk(τ)2 +Qkτ (4.21)

where Pk and Qk are coefficients found analytically from E,F, G̃, H̃ . Obtaining these

coefficients, the contribution to the time integral in Eq. 2.35 from the sub-interval

[t̃k, t̃k+1] is∫ t̃k+1

t̃k

Aj(τ)dτ =
1

3
Pk[t̃

3
k+1 − t̃3k] +

1

2
Qk[t̃

2
k+1 − t̃2k] + Aj(t̃k)[t̃k+1 − t̃k]. (4.22)

All these sub-contributions are added up as in Eq. 4.19. This is inserted into Eq. 4.16

to obtain ∆Vj(t, t + ∆t). This procedure is repeated for all downwind faces of the

interface cell to get

αi(t+ ∆t) = αi(t)−
1

Vi

∑
j∈Bi

sij∆Vj(t, t+ ∆t) (4.23)

which updates the volume fraction αi for the new time step in the cell. On non-

downwind faces, ∆Vj is simply set as

∆Vj = αupwindFj∆t. (4.24)

4.1.2.4 Bounding procedure

Roenby et al. cautioned that this method of advection may produce some boundedness

issues. Namely, it might cause the updated volume fractions to be slightly outside its

meaningful range of 0 ≤ αi ≤ 1. This is believed to occasionally happen when a cell

is being completely emptied or filled, and the algorithm may cause an over-filling or

over-emptying. Simply truncating the volume fractions such that

αi =

0, if αi < 0

1, if αi > 0

(4.25)
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will disrupt the volume conservation even if αi missed 0 or 1 by a very small amount.

Therefore, Roenby et al. addressed this issue by proposing a fluid redistribution pro-

cedure, which is also employed in this work.

For cells to exceed their maximum allowed volume fraction (αi > 1), it is likely they

are just upwind of the interface i.e. the interface is moving into fluid G. Therefore cells

upwind of it are likely to also be completely filled, and unable to receive any more fluid

L. Therefore any extra fluid in cell Ci can be passed on through its downwind faces.

This requires one to distribute the extra fluid amongst these downwind faces. If the

total extra fluid volume in cell Ci is denoted as Vextra, where

Vextra = (αi − 1)Vi (4.26)

where Vi is the volume of the mesh cell, and the cell has ND downwind faces, the fluid

is distributed for each of its downwind face j, as

Vj+ = Vextra
|Fj|∑ND

d=1 Fd

(4.27)

where Vj+ is the amount of extra fluid distributed through face j, and
∑ND

d FD is the

sum of the fluxes of all cell Ci’s downwind faces. The maximum amount of fluid L

passing through a face j is limited to a maximum of Fj∆t, so

Vj+ = min(Vj+,Fj∆t−∆Vj). (4.28)

A new value of ∆Vj(t, t + ∆t) is obtained, which gives a new value of αi(t + ∆t) in

Eq. (4.23). This new value of αi is then checked if it still exceeds 1, in which case the

distribution is repeated for the remaining downwind faces until all the surplus has been

redistributed.

If the cells have undershot their minimum volume fraction (αi < 0), the same proced-

ure as described above also applies, but from the perspective of fluid G whose volume

fraction is represented by βi = 1−αi. This gives βi > 1 when αi < 0. In this case, the

volume of fluid G transported across face j between [t, t+ ∆t] is ∆Ṽj ≡ FJ∆t−∆Vj .
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The redistribution procedure then corrects the ∆Ṽj values, and one can calculate the

new ∆Vj = Fj∆t−∆Ṽj , which is then used to update αi(t+ ∆t) in Eq. (4.23).

4.1.3 Advection and reinitialisation of the LS function

Subsection 4.1.2 has addressed the advection of the VOF field. The advection of the

LS field is much simpler; as in [108], a first order upwind method is used to solve

∂φ

∂t
+ u · ∇φ = 0. (4.29)

Advecting the LS field introduces disruption and no longer renders it a signed distance

function from the interface. This is a known issue of the LS method and is remedied

by reinitialising it after each time step. Firstly this requires that the plane equation

coefficients Ai, Bi, Ci, Di be found using the advected value of φ, which is φ∗, and

adjusted such that the volume cut by the plane matches the volume given by αi(t+∆t).

This procedure has been explained in Section 4.1.1.

Afterwards, for each neighbouring cell within up to five layers away from the interface

cell, their exact distance to the nearest interface is computed to obtain the value of φ at

the new time step. Some methods have been described in [105], [45], [44], [44], [109],

[46]. Most of these deal with simple configurations/uniform hexahedral meshes. Since

this work is in three dimensions, many complications arise, mainly from the fact that

the interface could be oriented in numerous ways, and the computation of the location

of a vertex for a fluid volume can prove difficult.

In this work, this issue has been pre-addressed by the usage of lists of plane/cell cutting

points as described in the cell decomposition section. Therefore, the fluid vertices in

interface cells (the intersect between plane and cell) is already available for use.

A further point to be found is the projection point of the neighbour cell centres onto the

interface, found as detailed by [110]. Using the available data, the exact distance from

neighbouring cell centres to the interface is calculated. This calculation is performed
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for five layers of neighbour cells i.e. if a cell containing an interface is cell i, the closest

signed distance is calculated for its immediate neighbours and the neighbours of these

immediate neighbours.

This reinitialisation procedure is summarised as follows;

1. The LS and VOF fields have been advected, giving the VOF values for the new

time step, and an intermediate value of LS, φ∗.

2. For interface cells, the plane is reconstructed so that the volume under the plane

matches the value of the advected VOF. The value of D from this plane equation

updates the LS values for the interface cells for the new time step.

3. To update the LS values in the local area of the interface, a list of neighbour

cells are identified, which is a layer of five cells around the interface cell i. If the

neighbour cell is also an interface cell, this cell is eliminated from the list as its

LS value has already been updated.

4. A large numeric value dtemp is instantiated for the LS field in this neighbour list

for all the interface cells, maintaining the sign of the LS value.

5. For all cells in the neighbour list of the first interface cell i, the following values

are calculated:

(a) The distances of the cell centre of the neighbour cell, to the fluid vertices

of the interface cell. The minimum value is stored as dv.

(b) The distance of the cell centre of the neighbour cell, to its projection point

on the interface plane in the interface cell i. This value is stored as dc, only

if the projection point lies within the boundaries of the interface cell i.

(c) The distances of the cell centre of the neighbour cell, to the face centroids

of the interface cell faces, if the sign of the LS function at that face centroid

is different to the sign of the neighbour cell. The minimum value is stored

as df .
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(d) The minimum of dtemp, dv, dc, and df is stored as the new dtemp.

6. The process is repeated for the neighbours of the next interface cell, and dtemp

value in the neighbour cell is updated if a new shorter distance to an interface

cell is found. When the process is performed for all the neighbour cells of all the

interface cells, the final dtemp in each neighbour cell is the updated value of LS

at the new time step.

4.2 Validation on structured and unstructured grids

This section presents some numerical verifications of the developed CLSVOF scheme

that was implemented into OpenFOAM-2.1.x, compared against interFoam which is

OpenFOAM’s native VOF-based two-phase incompressible solver, and interFlow, a

geometric VOF-based OpenFOAM solver using isoAdvector as its advection solver.

4.2.1 3D advection of a sphere

To validate 3D interface capturing capabilities, a sphere of radius r = 0.25 is transpor-

ted in a uniform flow across a rectangular domain of [4,1,1] m with a constant uniform

velocity of (1, 0, 0) ms−1. The sphere is initially centred at (0.5, 0.5, 0.5) as in Fig.

4.13 and the simulation is run to T = 3. The exact solution of the final position of the

sphere centre is (3.5, 0, 0). The test is performed under six different mesh conditions,

detailed in Table 4.1.
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Table 4.1: Mesh parameters of the 3D advection test

Mesh N ∆t

Structured hexahedral

16384 4× 10−3

131072 2× 10−3

1048576 1× 10−3

Unstructured tetrahedral

10082 1× 10−3

32725 5× 10−4

138090 2.5× 10−4

Figure 4.13: Initial position of the sphere in the 3D advection test (a) and its

expected final position (b).

The L1 errors are calculated as

L1 =

∑
N |αexact − αi(t)|

N
(4.30)

where αexact is the exact solution, αi(t) is the calculated solution, and N is the number

of mesh cells.

CLSVOF consistently produces the smallest L1 errors in all the test parameters, as

seen in Table 4.2 and Table 4.3 . The results using CLSVOF display the least amount

of distortion in the final shape, and this difference could be seen even in the fine mesh
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  CLSVOF                 interFlow                interFoam

Figure 4.14: Position of advected 3D sphere using hexahedral mesh (N=131072)

at t = 3. Grey sphere is the VOF=0.5 contour and blue sphere is exact solution.

test as in Fig. 4.14, where the final position of the sphere is compared to the exact

solution (denoted in blue in the coloured version). In Fig. 4.15, it is again seen that

CLSVOF is the least distorted, especially visible when compared to interFoam. Figures

4.16, 4.17 show that error naturally decreases as mesh is refined.

 CLSVOF                  interFlow                interFoam

Figure 4.15: Position of advected 3D sphere using tetrahedral mesh (N=138090)

at t = 3. Grey sphere is the VOF=0.5 contour and blue sphere is exact solution.

The volume conservation properties of each method is measured using the volume

deviation, which is the relative change in the total volume of fluid L in the domain
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compared to its initial volume;

δV =

∑
i αi(t)Vi −

∑
i αi(0)Vi∑

i αi(0)Vi
× 100, (4.31)

where
∑

i αi(0)Vi is the total volume of fluid L at t = 0. Tables 4.4 and 4.5 show

the volume deviation errors for the hexahedral mesh test. It can be seen that CLSVOF

and interFlow has comparable volume preservation, with both being in the sufficiently

small range of 2×10−9% and CLSVOF having a slight edge. However, in this regard it

is found that interFoam performs better than either CLSVOF or interFlow for volume

conservation.
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Figure 4.16: L1 error for the advected 3D sphere on successively refined hexahed-

ral mesh, where N is the mesh number.
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Figure 4.17: L1 error for the advected 3D sphere on successively refined tetrahed-

ral mesh, where N is the mesh number.

Table 4.2: L1 errors in 3D advection test using structured mesh

N CLSVOF interFlow interFoam

16,384 8.79× 10−4 1.27× 10−3 2.53× 10−3

131,072 2.01× 10−4 3.82× 10−4 9.89× 10−4

1,048,576 5.14× 10−5 1.26× 10−4 4.33× 10−4
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Table 4.3: L1 errors in 3D advection test using unstructured mesh

N CLSVOF interFlow interFoam

10,082 3.57× 10−3 4.95× 10−3 6.54× 10−3

32,725 1.43× 10−4 1.88× 10−4 4.32× 10−3

138,090 5.60× 10−4 7.73× 10−4 3.12× 10−3

Table 4.4: Percentage volume deviation δV errors in 3D advection test using struc-

tured mesh.

N CLSVOF interFlow interFoam

16,384 −1.7× 10−9 −2.0× 10−9 −3× 10−12

131,072 −1.9× 10−9 −2.3× 10−9 −4.8× 10−12

1,048,576 −1.8× 10−9 −1.9× 10−9 −2.1× 10−12

Table 4.5: Percentage volume deviation δV errors in 3D advection test using un-

structured mesh.

N CLSVOF interFlow interFoam

10,082 −1.6× 10−7 −1.3× 10−7 −7.6× 10−12

32,725 −1.2× 10−7 −1.1× 10−7 −5.0× 10−11

138,090 −8.3× 10−8 −8.4× 10−8 −2.7× 10−11

In this test the simulations are performed on an Intel Core i7-4790K machine, with 4 x

4.00GHz CPUs in parallel. The time taken for each simulation is listed as follows;
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Table 4.6: Simulation time for the 3D advection test for CLSVOF, interFlow, and

interFoam.
Simulation time (s)

Mesh N CLSVOF interFlow interFoam

Structured

16384 11 4 9

131072 213 74 139

1048576 2040 790 1440

Unstructured

10082 13 7 9

32725 124 42 54

138,090 1211 313 611

Table 4.6 shows that interFlow is the fastest scheme, taking the least amount of time

for all three methods tested. CLSVOF takes about twice the time it takes for the inter-

Foam method. The speed penalty taken by the CLSVOF method is possibly due to the

complex cell manipulation as well as the iteration for finding the correct plane.

4.2.2 Rotation of Zalesak’s disc

The developed scheme is tested with a two dimensional solid body rotation as proposed

by Zalesak [111], later used by Rudman [112] and many other researchers. A slotted

disk as indicated in Figure 4.18 is rotated in a constant vorticity field given by the

stream function

ψ(x, y) = −ω
2

[(x− xO)2 − (y − yO)2] (4.32)
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Figure 4.18: Schematic representation of the Zalesak problem at t = 0, where the

disk is centred at (0.0, 0.25), H = 0.25, and W = 0.05.

where O = (xO, yO) is the centre of rotation and ω is the constant angular velocity.

After a revolution 2π the disk returns to its initial position. The test is performed on a

100× 100 grid and 200× 200 grid. The results are presented using the 0.5-contour of

the α field.

Results from this test show that interFlow and CLSVOF have smaller L1 errors than

interFoam for both structured and unstructured meshes in both resolutions. InterFoam

results display a distorted interface, to a considerably worse degree in the coarser un-

structured mesh case. However, the results obtained by interFlow and CLSVOF are

almost similar, with interFlow having a slightly smaller error in this case.

Table 4.7: L1 errors in structured 2D Zalesak test.

N CLSVOF interFlow interFoam

10000 4.15× 10−3 3.88× 10−3 7.46× 10−3

40000 1.81× 10−3 1.80× 10−3 3.69× 10−2
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    CLSVOF                     interFlow                   interFoam

 N = 100

 N = 200

Figure 4.19: Results of the Zalesak test on structured quadrilateral mesh after 1

rotation.

Table 4.8: L1 errors in unstructured 2D Zalesak test.

N CLSVOF interFlow interFoam

10472 4.65× 10−3 4.15× 10−3 7.59× 10−3

39362 2.40× 10−3 2.30× 10−3 3.99× 10−2

4.2.3 Vortex deformation transport test in 2D

As per Rider and Kothe [113] as well as Menard [43], we assess the proposed scheme

with a non-uniform vorticity field using the initial setup in Fig. 4.21. The time-

dependent velocity field of the problem is given by the stream function

Ψ(x, y, t) =
1

π
sin2(πx) sin3(πy) cos(

πt

T
). (4.33)

The velocity field (4.33) stretches the initial circle into a filament spiralling towards

the centre of the domain. This stretching may cause the material to tear if the mesh
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  CLSVOF                     interFlow                   interFoam

N=100

N=200

Figure 4.20: Results of the Zalesak test on unstructured triangle mesh after 1

rotation.

Figure 4.21: Initial setup of the Rider-Kothe vortex deformation test

resolution is insufficient or the interface tracking method is not truly robust. The exact

solution should see it restored to its initial shape upon reaching t = T . This test is

a reasonable challenge for interface capturing methods as the liquid ligament will be

stretched relatively thin compared to the grid size. At t = T/2 the velocity field is
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reversed such that at t = T the circular shape and its initial location is restored.

(a)                     (b)                   (c)

(d)                    (e)

Figure 4.22: Meshes used for the 2D vortex deformation test, where (a) structured

quadrilateral, (b) structured triangular, (c) unstructured triangular, (d) unstruc-

tured quadrilateral, and (e) unstructured polygonal .

Table 4.9: Mesh conditions for the 2D vortex deformation test

Mesh type N CFL number

Structured quadrilateral 10000 0.1

Structured triangular 10484 0.05

Unstructured triangular 26548 0.05

Unstructured quadrilateral 14961 0.1

Unstructured polygonal 5377 0.1

The test is done using a long cycle (T1) and a short cycle (T2). The velocity field is

reversed at T=4 and T=2 respectively, so the T1 test is expected to be more challenging

as the deformation will be more severe. We compare against interFoam and interFlow
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on five different types of meshes as shown in Fig. 4.22, which is a combination of

structured and unstructured meshes of various types of polyhedra.

Fig. 4.23 for hexahedral meshes which shows the simulation as it stretches to its max-

imum at T = 4, demonstrates how CLSVOF produced the least surface breakup at

the tail end of the filament. interFlow follows behind, and interFoam displays a very

diffusive interface region with tail breakup starting at the 7 o’clock position; far more

extensive breakup than either interFlow or CLSVOF. The same can said for T = 6.

Fig. 4.23 also shows that at T = 8 where the solution returns to its initial position,

CLSVOF has maintained the best circularity, followed by interFlow and interFoam.

This trend continues for results obtained for structured and unstructured triangular

meshes in Figures 4.24, 4.25, and unstructured quadrilateral mesh in Fig. 4.26 . inter-

Foam performed particularly poorly on unstructured triangular meshes as can be seen

in Fig. 4.25, showing a large amount of interface breakup during maximum stretch and

failing to recover the initial shape at T = 8. On the unstructured polygonal mesh in

Fig. 4.27, all three schemes produced solutions that trail on the left-hand side, with

interFoam displaying it to a severe degree.

It can be seen that CLSVOF is consistently able to resolve the thin filaments with

minimal tail-breakup at maximum stretch, which occurs to a higher degree in interFlow

as in Figures (4.23, 4.24). interFoam proves to be diffusive across all mesh parameters

and performs poorly on unstructured meshes as seen in Figures (4.25, 4.27). The errors

are calculated as follows;

EL1 =
|αinit − αfinal|

N
(4.34)

where αinit is the initial field values of the VOF field, αfinal is the field values at time

T , and N is the mesh size. The results are displayed in Table 4.10 and shows that

CLSVOF has the least errors in all test parameters.
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CLSVOF interFlow interFoam

T=0

T=4

T=6

T=8

Figure 4.23: 2D vortex deformation test results for CLSVOF, interFlow, and in-

terFoam on a structured quadrilateral mesh, at times T=4, 6, 8.
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CLSVOF interFlow interFoam

T=0

T=4

T=6

T=8

Figure 4.24: 2D vortex deformation test results for CLSVOF, interFlow, and in-

terFoam on a structured triangular mesh, at times T=4, 6, 8.
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CLSVOF interFlow interFoam

T=0

T=4

T=6

T=8

Figure 4.25: 2D vortex deformation test results for CLSVOF, interFlow, and in-

terFoam on an unstructured triangular mesh, at times T=4, 6, 8.
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CLSVOF interFlow interFoam

T=0

T=4

T=6

T=8

Figure 4.26: 2D vortex deformation test results for CLSVOF, interFlow, and in-

terFoam on an unstructured quadrilateral mesh, at times T=4, 6, 8.
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CLSVOF interFlow interFoam

T=0

T=4

T=6

T=8

Figure 4.27: 2D vortex deformation test results for CLSVOF, interFlow, and in-

terFoam on an unstructured polygonal mesh, at times T=4, 6, 8.
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Table 4.10: L1 errors in 2D Rider-Kothe test for T1

Mesh CLSVOF interFlow interFoam

Structured quadrilateral 3.84× 10−3 5.74× 10−3 1.23× 10−2

Structured triangular 5.36× 10−3 6.57× 10−3 1.26× 10−2

Unstructured triangular 2.91× 10−3 3.25× 10−3 3.06× 10−2

Unstructured quadrilateral 4.29× 10−3 5.66× 10−3 1.20× 10−2

Unstructured polygonal 1.11× 10−2 1.18× 10−2 3.99× 10−2

For the T2 variant of the test, a uniform quadrilateral mesh (N=10,000) and an unstruc-

tured triangular mesh (N=26,548) are used. Again CLSVOF is seen to perform the best

both qualitatively (Figures 4.28 & 4.29) and quantitatively (Table 4.11), with slight im-

provements over interFlow and major improvements over interFlow in structured and

unstructured meshes for interface capturing tests.
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CLSVOF interFlow interFoam

T=0

T=2

T=4

Figure 4.28: 2D vortex deformation test results for CLSVOF, interFlow, and in-

terFoam on a structured hexahedral mesh, at times T=2, 4.
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CLSVOF interFlow interFoam

T=0

T=2

T=4

Figure 4.29: 2D vortex deformation test results for CLSVOF, interFlow, and in-

terFoam on an unstructured tetrahedral mesh, at times T=2, 4.

Table 4.11: L1 errors in 2D Rider-Kothe test for T2

Mesh CLSVOF interFlow interFoam

Structured quadrilateral 1.36× 10−3 1.51× 10−3 5.17× 10−2

Unstructured triangular 1.32× 10−3 1.46× 10−3 5.48× 10−2
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4.3 Conclusion

A new CLSVOF interface capturing scheme utilising the isoAdvector VOF-advector

from interFlow was implemented in OpenFOAM-2.1.x. Detailed methodology for

decomposing general convex polyhedra and reconstructing an interface in each mul-

tiphase cell are given.

The proposed CLSVOF scheme was validated for various structured and unstructured

mesh types in 2D and 3D and was found to work well in the validation tests. It was

compared against interFlow and interFoam. The CLSVOF scheme is found to con-

sistently perform better than interFoam in all tests. In the Zalesak’s rotation test, both

the interFlow and CLSVOF schemes outperformed interFoam, with CLSVOF and in-

terFlow displaying visually similar results. The CLSVOF scheme has retained the

good mass conservation property of interFlow, with a volume deviation of only around

1× 10−9% for structured meshes and 1× 10−8% for unstructured meshes.
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Chapter 5

Validation and Application of

CLSVOF Solver with Surface Tension

Implementation

Two-phase flow problems involving surface tension forces arise in many applications.

A robust calculation for local curvature is essential for an accurate treatment of surface

tension. In this chapter, the surface tension formulation used is described along with the

implementation of the Yokoi dynamic contact angle model [7]. The proposed CLSVOF

solver is validated across a range of tests, ranging from the simple static droplet test

to the more intricate cases of droplet splashing and collision as well a liquid jet in a

gaseous crossflow.

5.1 Surface tension formulation

The Navier-Stokes equation for two-phase flows is as follows;

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · (2µD) + Fσ + ρg (5.1)

where ρ is the density, u is the velocity vector, µ is the dynamic viscosity, D is the rate

of deformation tensor, g is the gravity vector, and Fσ is the surface tension force as a

body force. Unlike single phase flows, ρ and µ are discontinuous due to the presence
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of a fluid interface. In this work, these are described as follows;

ρ = ρLα + ρG(1− α), (5.2)

µ = µLα + µG(1− α), (5.3)

with L and G subscripts denoting the two phases Liquid and Gas respectively. This

ensures the mean momentum of the contents of the cell are used in the interface cell,

while cells away from the interface retain the correct liquid and gas properties.

The surface tension force Fσ in Eq. (5.1) is calculated based on the Continuum Surface

Force (CSF) model as proposed by Brackbill et al. [60],

Fσ = σK∇α, (5.4)

where σ is the surface tension coefficient of the liquid in gas andK is the mean interface

curvature. The usage of the gradient of the α field in this equation ensures the surface

tension is limited to the region of the interface. The calculation of curvature K in the

interFoam solver is found as follows

K = −∇ · ∇α
|∇α|

. (5.5)

In this implementation of CLSVOF, the curvature is found using the smoother LS field,

K = −∇ · ∇φ
|∇φ|

. (5.6)

which should lead to a more accurate estimate of the surface tension force.

5.2 Dynamic contact angle formulation

The contact angle of a fluid is the angle where the liquid-vapour interface meets a

solid surface. This contact angle is unique for a system of solid, liquid, and vapour

at a certain temperature and pressure. A higher contact angle signifies a less-wettable
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 Hydrophobic                Hydrophilic

Figure 5.1: Different contact angles on a surface

fluid, and vice versa for a lower contact angle. Specifically, if the liquid contact angle is

greater than 90 deg it is considered hydrophobic. If it is less than 90 deg it is considered

hydrophilic [114].

OpenFOAM enforces the contact angle between the liquid/gas interface and the wall

by correcting the local interface normal vector on a face f on a wall boundary. Let the

current normal vector of the fluid interface at the wall be n̂φ,0. The normal vector to

the wall is denoted nwall. The current contact angle between n̂φ,0 and nwall is θ0 and is

calculated as

cos θ0 = n̂φ,0 · nwall. (5.7)

The interface normal at the wall needs to be corrected to the target normal nφ using the

target contact angle θ, which is a set parameter for each simulation. This target normal

must fulfil the two following criteria;

The angle between nφ and nwall must fulfil

cos θ = n̂φ · nwall, (5.8)

and nφ must lie in the plane spanned by n̂φ,0 and nwall, such that

nφ = Acan̂φ +Bcanwall. (5.9)
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Combining Eq. (5.7) to (5.9) gives the coefficients Aca and Bca as

Aca =
cos θ − cos θ0 cos(θ0 − θ)

1− cos2 θ0

, (5.10)

Bca =
cos(θ0 − θ)− cos θ0 cos θ

1− cos2 θ0

. (5.11)

After Aca and Bca are found for each face on the wall boundary, the target normal

vector nφ can be found and replaces the previous normal vector n̂φ,0. Recall that the

curvature is calculated asK = −∇·n i.e the divergence of the interface normal vector.

Any difference between nφ and n̂φ,0 leads to a local surface tension force, which then

adjusts the local interface shape until the correct contact angle θ is enforced [115].

5.2.1 Yokoi dynamic contact angle formulation

In this work, the dynamic contact angle model proposed by Yokoi et al. [7] is imple-

mented into the OpenFOAM solver. The dynamic contact angle θd is found as follows;

θd =

min
(
θe + (µucl

σka
)
1
3 , θa

)
if ucl ≥ 0

max
(
θe + (µucl

σkr
)
1
3 , θr

)
if ucl < 0,

(5.12)

where θr is the receding contact angle (measured experimentally during the recoil stage

of the droplet impact), θa is the advancing contact angle (measured during the spread-

ing stage of the droplet impact), θe is the equilibrium contact angle, ucl is the contact

line velocity and ka and kr are material related parameters to be adjusted to fit experi-

mental results.

This model is based on Tanner’s law [116]

Ca = km(θd − θe)3, (5.13)

for low Ca numbers where Ca is the capillary number Ca = µucl/σ and km is an

empirically-found material constant.
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5.3 Validation

The CLSVOF implementation is validated using a number of tests, ranging from simple

surface tension benchmarks such as the static droplet test to the more difficult droplet

splashing test. In some sections in this chapter, two different CLSVOF solutions are

shown, with CLSVOF-p using the LS field to calculate the curvature K(φ) for the

surface tension force, and CLSVOF-a using the VOF field to calculate K(α). This

allows us to compare the performance of the same interface reconstruction scheme, but

with different approaches to the calculation of curvature. The curvature for interFoam

and interFlow are calculated using K(α).

5.3.1 Static droplet at equilibrium

A circular droplet at equilibrium is placed in a zero gravity field to assess the strength of

spurious currents at the interface [67]. In this case, the momentum equation is reduced

to

0 = −∇P + Fσ, (5.14)

where Fσ = σK∇α. The curl of Eq. (5.14) should have the curvature satisfied as

∇K ×∇α = 0. (5.15)

As described in [117], spurious currents develop when this condition is not fulfilled.

In this test case with a circular droplet, the surface should have a constant curvature

and the flow is curl-free if the calculated curvature is constant. Therefore, this test

compares the effect of curvature calculation methods on the generation of spurious

currents between CLSVOF-p and CLSVOF-a, as well as with interFlow and interFoam.

The initial conditions are as follows; for the set-up as shown in Fig. 5.2. The validation

is tested with a 50 x 50 mesh and 100 x 100 mesh, for t = 0.01. The analytical solution
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Table 5.1: Material properties for the static droplet test

ρl (kg/m3) ρg (kg/m3) µl ( kg
ms

) µg ( kg
ms

) g (m/s2) σ (N/m)

1000 1 1× 10−3 1× 10−5 0 0.01

Figure 5.2: Numerical setup for the Laplace pressure test

for pressure jump can be obtained using the Laplace pressure theorem,

∆p = σ
( 1

R

)
(5.16)

and the numerical pressure

∆p = pin0 − pout∞ (5.17)

where pin0 is the pressure inside the droplet and pout∞ is the pressure outside of the

droplet. Eq. (5.16) gives ∆p = 2 for this case. Fig. 5.3 show the pressure difference

results taken across the x-axis at y = 0.025.

Results in Fig. 5.3(a) show that for the coarser mesh, CLSVOF-p, CLSVOF-a, and

interFlow all produce a pressure differential closer to the exact solution than interFoam.
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Figure 5.3: Pressure difference for the static droplet test for (a) 50x50 mesh, (b)

100x100 mesh.

On the finer mesh in Fig.5.3(b), it can be seen that CLSVOF-p produces results closest

to the exact solution than the other three methods.

It can also be seen from Fig. 5.4 and Table 5.2 that CLSVOF-p has the smallest mag-

nitude of spurious currents. This confirms that calculating curvature K using φ does

indeed improve the results due to the smoother nature of the LS field. Refining the

mesh to 100 x 100 has also shown to reduce the spurious currents, as in Fig. 5.5 and

Table 5.3.
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Table 5.2: Spurious currents in the static droplet test in 50 x 50 mesh, in

|U |(ms−1).

Method min |U | max |U |

CLSVOF-p 1.19× 10−8 8.12× 10−4

CLSVOF-a 9.61× 10−8 1.63× 10−3

interFlow 1.47× 10−7 1.17× 10−3

interFoam 4.92× 10−7 2.71× 10−3

(a)CLSVOF-p               (b)CLSVOF-a

(c)interFlow             (d)interFoam

Figure 5.4: Spurious currents for static droplet test for 50 x 50 mesh
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Table 5.3: Spurious currents in the static droplet test in 100 x 100 mesh, in

|U |(ms−1).

Method min |U | max |U |

CLSVOF-p 5.69× 10−12 6.19× 10−4

CLSVOF-a 5.99× 10−12 7.04× 10−4

interFlow 8.02× 10−12 8.32× 10−4

interFoam 9.27× 10−12 2.40× 10−3

(a)CLSVOF-p               (b)CLSVOF-a

(c)interFlow             (d)interFoam

Figure 5.5: Spurious currents for static droplet test for 100 x 100 mesh
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5.3.2 2D dam break

The scheme is tested using the classical dam break case in 2 dimensions, which is a

common qualitative benchmark for free-surface flows. A static column of water under

the influence of gravity is initialised on the left side of the tank. At time t = 0 of

the simulation, the water column collapses, impacting an obstacle at the bottom of the

tank. This case is considered to be sufficiently complicated, as it exhibits jet formation,

breaking of waves, gas entrapment, and surface breakup. The set-up of the test case is

shown in 5.6.

The simulations are compared to experimental data provided by Koshizuka and Oka

[4], where a tank containing a column of water 0.25 m wide and 0.5 m high are held in

place by a restraint, which is then removed to begin the simulation. The fluid properties

are ρL = 1000 kg/m3, µL = 1.0× 10−3 kg/ms, and σ = 0.072 kg/s2 for water in air

and ρG = 1 kg/m3 and µG = 1.7 × 10−5 kg/ms for air. Gravity is set to 9.8 m/s2.

No-slip boundary condition is applied to all walls, with the top of the tank being set as

atmosphere.

Figure 5.6: Schematic of the dam break set-up at T = 0 showing the liquid column

on the left hand side.
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As the interface deformation in this test case is more reliant on inertial forces rather

than surface tension forces, results show that all methods produced good agreement

with experimental findings. The finger-like projection is captured at T = 4.043 by

all four schemes. While all four schemes result in the same profile, it is demonstrated

that CLSVOF-p, CLSVOF-a, and interFlow can maintain the sharpness of the fluid

interface, and interFoam shows diffusion in Figures (5.7(e),(j)). With this encouraging

validation results, we may proceed to more difficult tests.

5.3.3 2D rising bubble

In 2009 Hysing et al [5] published a numerical benchmark for two test cases of a 2

dimensional rising bubble. The bubble is initially centred at (x, y) = (0.5, 0.5) with an

initial radius of r = 0.25.

Table 5.4: Material properties for 2D rising bubble test cases 1 and 2

Case
ρL

(kg/m3)

ρG

(kg/m3)

µL

(kg/ms)

µG

(kg/ms)

g

(m/s2)

σ

(kg/s2)
Eo

1 1000 1 10 0.1 -0.98 1.96 124.5

2 1000 100 10 1 -0.98 24.5 9



5.3 Validation 127

Experiment

CLSVOF-p

CLSVOF-a

interFlow

interFoam

T = 3.234              T = 4.043
(a)                   (f)

(b)                   (g)

(c)                   (h)

(d)                   (i)

(e)                   (j) 

Figure 5.7: Dam-break simulation results at T=3.234 and T=4.043 compared to

experimental results by [4].
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Figure 5.8: Numerical setup for the Hysing rising bubble test, figure reproduced

from [5] .

The Eötvös (Eo) number is a dimensionless quantity given by

Eo =
∆ρgL2

σ
(5.18)

where ∆ρ is the difference in density between the two phases (kg/m3), g is gravita-

tional acceleration (m/s2), L is characteristic length (m), and σ is the surface tension

coefficient (N/m). It measures the importance of gravitational forces compared to

surface tension forces; a lower Eötvös value indicates that the case is surface-tension

dominant. Therefore Case 2 should be more affected by surface tension forces than

Case 1, meaning that the effect of the curvature calculation should be more pronounced

in Case 2. Case 1 however, has a larger density ratio between the fluid and gas which

is also difficult to simulate.

The results obtained in this work are compared against those presented by Hysing et al.
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(a)CLSVOF-p        (b)CLSVOF-a       (c)interFlow      (d)interFoam

Figure 5.9: Case 1: Final position of bubble at T=3 depicted with contour α = 0.5

using a 50 x 100 mesh.

(a)CLSVOF-p        (b)CLSVOF-a       (c)interFlow      (d)interFoam

Figure 5.10: Case 1: Final position of bubble at T=3 depicted with contour α = 0.5

using a 100 x 200 mesh.

[5]. The simulations are performed using two mesh sizes; 50× 100 with ∆t = 0.0025

s, and 100× 200 with ∆t = 0.00125 s.

Case 1

Figures (5.9) and (5.10) show the results of test Case 1 for 50x100 and 100x200 meshes
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t=0.6 t=1.2 t=2.2 t=3.0

Figure 5.11: Benchmark results of the rising bubble test Case 1, reproduced from

Hysing et al [5].
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Figure 5.12: Case 1: Position of mass centre of bubble against time using a 50 x

100 mesh compared to a reference solution by Hysing et al. [5] .
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Figure 5.13: Case 1: Position of mass centre of bubble against time using a 100 x

200 mesh compared to a reference solution by Hysing et al. [5] .

respectively. This test case is less surface-tension dominant and all four schemes have

managed to produce a solution. This test however, is more buoyancy-dominant due

to the higher density ratio between the two fluids. The bubble will accelerate from its

initial position, and this causes a greater pressure gradient on the lower surface of the

bubble compared to its top surface. A vortex sheet develops and causes a jet of water

to push the bubble from its lower surface. The circulation current under the bubble

causes the bubble skirt to fold in, and eventually detaches, as seen in Hysing et al. [5]

In Fig. 5.11, over time it can be seen that the initially circular bubble evolved into a

’jellyfish’ shape, with a bubble skirt forming around T=2.2. The solution by CLSVOF-

p results in detached bubbles resulting from the bubble skirt pinching off. CLSVOF-a

produces detached bubbles in the coarser mesh, but the bubble skirt remained intact in

the finer mesh. interFlow produces solution with detached bubbles but with the bubble

skirt still discernible. Finally, interFoam produces no detached bubbles in both mesh

resolutions.
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  (a)CLSVOF-p        (b)CLSVOF-a       (c)interFoam

Figure 5.14: Case 2: Final position of the bubble at t = 3 depicted with contour

α = 0.5 using a 50 x 100 mesh.

Upon mesh refinement, the shape changes for all solutions. While CLSVOF-p shows

the closest agreement in shape to the Hysing reference, Hysing also mentioned that

there is no agreement on the final shape of the bubble even among the schemes tested

in their work.

The position of the mass centre of the bubble (Fig. 5.12) is tracked for Case 1 and

CLSVOF-p is found to produce the closest agreement to Hysing, with interFlow being

the least in agreement. Refining the mesh to 100x200 (Fig. 5.13) is shown to improve

agreement for all four schemes, again with the CLSVOF-p result showing the closest

agreement with the reference solution.
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(a)CLSVOF-p        (b)CLSVOF-a       (c)interFoam

Figure 5.15: Case 2: Final position of the bubble at t = 3 depicted with contour

α = 0.5 using a 100 x 200 mesh .
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Figure 5.16: Case 2: Position of mass centre of bubble against time using a 50 x

100 mesh compared with reference solution by Hysing et al. [5] .
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Figure 5.17: Case 2: Position of mass centre of bubble against time using a 100 x

200 mesh compared with reference solution by Hysing et al. [5] .

Case 2

As can be seen in the Fig. 5.14, CLSVOF-a, CLSVOF-p, and interFoam managed to

achieve a similar final bubble shape at T=3 using a 50x100 mesh for Case 2 which is

more surface tension dominant. The final form of the bubble does not deform as much

as Case 1 as the surface tension force dominates over buoyancy in this test. In this test

case, interFlow has failed to produce a solution. Seeing as interFlow is a geometric

VOF method, the interface may be locally discontinuous, which may potentially cause

an inaccurate estimate of surface tension force.

The mass centre of the bubble as it moves upwards in the y-direction is tracked for

all simulations and is plotted as in Fig. 5.16. The reference solution is taken from

Hysing et al. As can be seen, CLSVOF-p agrees most closely to the reference solution,

followed by CLSVOF-a and finally interFoam.

Upon mesh refinement to 100x200, there is still no major difference in the final bubble
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shape across all schemes (Fig. 5.15). However, the position of the mass centre as

plotted in Fig. 5.17 shows that CLSVOF-p agrees very well with the reference solution

with considerable improvement compared to the coarser mesh.

Overall, the two test cases in this test have shown that CLSVOF-p shows the best

potential out of all four methods compared in simulating surface-tension dominant

flows as well as high density-ratio flows.

5.3.4 Rayleigh-Taylor instability

In 1878, Rayleigh [118] investigated a hydrostatic instability phenomenon that occurs

when two fluids mix together when the heavier of the two fluids are placed above the

lighter one. The perturbation that develops along the interface is now referred to as the

Rayleigh-Taylor instability. The problem is set with an initial perturbation,

y(x) = 2 + 0.1 cos(2πx/d) (5.19)

where the instability is expected to progress into a mushroom-like structure as the

heavier fluid on the top part moves downwards due to gravity. The domain is given as

[0,1]x[0,4] (or [0, d]× [0, 4d] with a mesh of 112× 448. The densities are ρ1 = 3 and

ρ2 = 1 giving a density ratio of 3. The viscosities are µ1 = µ2 = 0.0031316, gravity

g = −9.81, and surface tension coefficient is set to σ = 0.01. The Reynolds number

in this case is defined as

Re =
ρ1d

3/2g1/2

µ1

= 3000, (5.20)

and the Atwood number, which is a dimensionless number describing the density ratio

of fluids, is defined as

A =
ρ1 − ρ2

ρ1 + ρ2

= 0.5. (5.21)

In Rayleigh-Taylor instability, the penetration distance of the heavy fluid bubbles into

the light fluid can be expressed as a function of Agt2 [119]. For A closer to 0, the

resulting flows tend to form symmetric ’fingers’ of fluid, whereas forA closer to 1, the

lighter fluid (usually placed ’below’ the heavier fluid) forms larger plumes [120].
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In order to validate the results, we compare against the works of Tryggvason [121] and

Guermond [122] as previously done by Hosseini [123].

  (a)     (b)     (c)     (d)

Figure 5.18: Comparison at t = 1.66 between (a) CLSVOF-p, (b) CLSVOF-a, (c)

interFlow, and (d) interFoam .

Fig. 5.18 shows the progress of the instability at t=1.66 where a mushroom-like struc-

ture begins to develop. CLSVOF-p, CLSVOF-a, and interFoam show similar profiles,

with the interFoam solution being more diffusive across the fluid interface. The solu-

tion obtained by interFlow shows extra finger-like projections which is not observed in

the other solutions, nor in the reference solution provided by [122].
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Figure 5.19: The y-coordinate of the tip of the (a) rising and (b) falling fluid

against time.

The y-coordinate of the tip of the rising and falling fluid is plotted against time in Fig.

5.19 to quantitatively compare with Tryggvason and Guermond. Note that the ref-

erence provided by Tryggvason neglected the effects of surface tension force while

Guermond had the surface tension force accounted for. The solution obtained by

CLSVOF-p, CLSVOF-a, and interFoam agree well with Guermond’s reference res-
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ults for the rising tip of the fluid, while the interFlow solution deviates slightly from it

and is closer to Tryggvason’s reference.

Fig. 5.19(b) shows the comparison of the tip of the falling fluid. Again, it is shown

that CLSVOF-p, CLSVOF-a, and interFoam agree well with Guermond’s reference.

The result obtained by interFlow again shows deviation away from both Guermond

and Tryggvason.

(a)                              (b)

Figure 5.20: Zoomed in view of the Rayleigh-Taylor instability at t = 3.32τ ob-

tained using (a) interFoam and (b) CLSVOF-p.

Fig. 5.20 demonstrates the sharpness of the fluid interface obtained by CLSVOF-p,

compared to the more diffusive solution by interFoam. The fluid interface obtained by

interFoam can be seen spreading over two mesh cells.
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5.3.5 Droplet splash on dry surface

The proposed method is validated for a droplet impact phenomenon. Understanding the

phenomena of impacting droplets is vital for many industrial processes such as painting

and the cooling of hot surfaces [124]. In these processes, the liquid is required to spread

in an even manner, to cover as large an area as possible. While high impact velocities

promote droplet spreading and greater area coverage, they also cause splashing which

is undesirable as the satellite droplets that form during splashing bounce off and do not

ultimately deposit on the surface.

This phenomenon is a complex one as the resulting splash behaviour is a result of a

complex interaction among physical effects such as inertia, viscosity, surface tension,

gravity, contact angle, and surface roughness [125]. Therefore, the ability of a fluid

solver to accurately simulate phenomena such as droplet splashing would mean it has

great potential to be used for complex multiphase flow problems.

In this test, the proposed method is validated against an experiment by Tsai et al.

[6] where a distilled water droplet impacts a super-hydrophobic substrate. The fluid

properties are ρliquid = 1000kg/m3, ρair = 1.25kg/m3, µliquid = 1.0 × 10−3Pa · s,

µair = 1.82 × 10−2Pa · s, σ = 7.2 × 10−2N/m, g = 9.8m/s2. The initial droplet

diameter is D = 1.86 mm with impact speed 2.98 m/s. An constant contact angle of

163
◦ is used since the dynamic contact angle was not measured in the experiment. The

mesh used is D = 75h.
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(a)Experiment    (b)CLSVOF-p    (c)CLSVOF-a     (d)interFoam

Figure 5.22: Comparison between (a) Experiment from Tsai et al [6] (b)

CLSVOF-p (c) CLSVOF-a (d) interFoam for a droplet impacting a dry surface

with static contact angle 163
◦ .

Fig. 5.22 shows the results of the water droplet impact for CLSVOF-p, CLSVOF-

a, and interFoam compared against the experimental findings of [6]. The interFlow

solver did not manage to produce a physical solution for this test. The simulation

produced by the proposed CLSVOF-p solver produces good qualitative agreement with

the experimental findings. Photographs from the experiment shows that on impact, a

thin axisymmetric sheet of the droplet fluid spreads radially outward over the surface

as a reaction to a sudden increase in pressure. Azimuthal undulations emerge around

the leading edge of the radial spreading of the droplet. The perturbations grow larger

and form finger-like structures protruding from the spreading droplet. CLSVOF-p has

captured the perturbed leading edge (seen very clearly at T = 1.0 ms in Fig. 5.22) and

agrees closely with the experiment snapshots.

interFoam and CLSVOF-a, both of which use the VOF field to calculate the local mean

curvature, has failed to capture the undulations though interFoam performs slightly

better than CLSVOF-a in this respect. These results show that calculation of mean

curvature K plays a big role in ensuring the accuracy of simulations; using K(φ) as
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opposed to K(α) have improved the quality of the simulation significantly when com-

pared to the experiment. They also demonstrate that the proposed method is capable

of simulating droplet impact phenomena accurately at least at a qualitative level.

A similar simulation is run using the same parameters as the previously described

droplet test, but using the Yokoi dynamic contact angle model implemented in this

work. The advancing contact angle θA is set to 160
◦ , and the receding contact angle θR

is 30
◦ , with an equilibrium contact angle θe of 40

◦ .

Results in Fig. 5.23 again show that only CLSVOF-p managed to capture the form-

ation of the finger structures at the leading edge of the droplet. Results obtained by

CLSVOF-a show the beginning of finger-like structures but not as clearly resolved as

in CLSVOF-p. Results obtained by interFoam show a halo-like structure around the

leading edge of the droplet, with no finger structures on the main body of the droplet.

With the results obtained so far, CLSVOF-p shows the greatest promise among the

three schemes tested for simulating droplet splashing problems.
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(a)CLSVOF-p

(b)CLSVOF-a

(c)interFoam

Figure 5.23: Droplet splashing using a dynamic contact angle model at T = 0.0004

s.
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5.3.6 Droplet impact on a hydrophobic surface

To further validate the implementation of the dynamic contact angle model, the pro-

posed method is compared against the experiment by Yokoi et al. [7], which tested

the behaviour of a droplet impacting a dry surface. A spherical water droplet of

D = 2.28mm is impacted at 1 m/s onto a silicon wafer grafted with hydrophobic

silane, giving a very smooth surface. The fluid properties are ρL = 1000 kg/m3, µL =

0.001 Pa.s, σ = 0.072N/m for water, and ρG = 1.25 kg/m3, µG = 1.82×10−5 Pa.s.

The mesh sized used is 80×64×80. The contact angle parameters are set as θa = 114,

θr = 52, and θs = 90, with the constants ka = 9× 10−9 and kr = 9× 10−8.

Using these test parameters, the droplet does not exhibit splashing behaviours as in

Section 5.3.5; instead, at the given low impact velocity, the droplet firstly spreads radi-

ally across the surface. As seen in Fig. 5.25, the maximum contact diameter (the dia-

meter of the cross-section of the droplet that is in contact with the surface) is achieved

at around T = 4 ms. This is captured qualitatively and quantitatively by CLSVOF-

p, CLSVOF-a, and interFoam; interFlow did not succeed in producing a solution for

this test. Afterwards the droplet starts contracting, and this is where the discrepancy

between each simulation result and the experiment begins. The experimental finding

shows that the minimum contact diameter of about 2 mm is achieved at around T = 2

ms. However, the simulation results obtained by CLSVOF-p and CLSVOF-a show an

overestimation of the minimum contact diameter (with both showing a minimum of

around 2.4 mm). The simulation obtained using the interFoam scheme has greatly un-

derestimated the rate of contraction of the droplet as can be seen between T = 1 ms

and T = 1.5 ms in Fig. 5.25. The minimum contact diameter is also not achieved by

interFoam. At T = 1.8 ms, the droplet is expected to experience a second spreading

period which should see the contact diameter achieve a second maximum of 3.2 mm

at T = 2.2 ms. This second spreading is not captured well by any of the schemes,

but CLSVOF-p agrees most closely to experiment. Afterwards the droplet is shown

to head towards a steady state where the contact diameter starts to level-off at 3 mm.
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(a)Experiment      (b)CLSVOF-p       (c)CLSVOF-a      (d)interFoam    

Figure 5.24: (a) Experiment from Yokoi et al [7] and simulations using (b)

CLSVOF-p (c) CLSVOF-a (d) interFoam with an 80× 64× 80 grid.

Again, CLSVOF-p shows the most reasonable agreement to experiment out of the three

schemes tested.

5.3.7 Droplet splashing on fluid

The proposed method is validated against a droplet splashing phenomenon. The most

interesting characteristic of a splashing droplet is the crown formation, which has been

investigated by many researchers [8] [126] [127]. The instability mechanism that un-
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Figure 5.25: Comparison of droplet diameter against experimental data [7]

derlies the formation of the crown is still an active topic of study among researchers in

the recent years [128] [129].

We validate the proposed method against the classical single droplet impingement test,

where a droplet is made to impact a still liquid film. This test is expected to demonstrate

the capability of a simulation to capture the structures of a liquid crown formation i.e.

jets and droplets (Fig. 5.26 (a)). A droplet of diameter D = 3.82 mm with speed U =

3.56 ms−1 is made to impact a still liquid film of the same fluid of thickness 2.3 mm in

a container of 0.01 m ×0.01 m ×0.01 m with mesh 80× 80× 80. The fluid properties

in this test are ρL = 1000 kg/m3, µL = 0.001 Pa.s, σ = 0.072 N/m for water, and

ρG = 1.25 kg/m3, µG = 1.82× 10−5 Pa.s. This setting corresponds to We = 670 and

is run to T= 0.01 s.

The same setting is used to validate the interFoam solver by Deshpande et al. [63],

which shows qualitative agreement for the interFoam solver results.
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(a)Experiment             (b)CLSVOF-p

(c)CLSVOF-a               (d)interFoam            

Figure 5.26: (a) Experiment from Cossali et al. [8] (b) CLSVOF-p (c) CLSVOF-a

(d) interFoam.

The results obtained using CLSVOF-p shows the best qualitative agreement with the

experiment results. The liquid crown is clearly formed, with the jet structures clearly

resolved. The pinching phenomenon that leads to the formation of secondary droplets

are also captured by CLSVOF-p alone. Neither CLSVOF-a nor interFoam managed to

capture the crown formation in this test, and interFlow did not manage to produce a

meaningful solution.
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5.3.8 Binary droplet collision

Droplet collisions are very commonly observed in nature and have held the interest of

researchers for a long time. The earliest investigation of droplet collisions date back

to Rayleigh’s [130] observation that droplets of rain bounce upon impact on a pool of

water instead of going straight in. Gunn in 1965 [131] investigated the characteristics

of freely falling water droplets and found that the collisions of two water droplets

(binary collisions) can result in four outcomes, which are ’bouncing’, ’coalescence’,

’disruption after coalescence’, and ’drop spatter’.

Droplet collision can be considered as a part of the process of liquid atomisation, which

is a field of huge interest in engineering. As the bulk liquid is atomised into droplets,

the way these droplets collide with each other will affect the final droplet size in the

spray.

In 1989, Ashgriz and Poo [9] produced extensive experimental data for the binary col-

lision of water drops, of Weber numbers ranging between 1 to 100. Their publication

identified one coalescence regime and two different droplet separation regimes occur-

ring at around the same range of We numbers, but at different impact parameters. These

regimes are the reflexive separation regime and the stretching separation regime (Fig.

5.27). The former is expected to occur for near head-on collisions, and the latter for

larger offset impacts.

In this section, the proposed method is tested and compared against the experimental

results from [9] for the separation regimes. The material properties used are as follows;

Table 5.5: Material properties for the droplet collision tests
ρL

(kg/m3)

ρG

(kg/m3)

µL

(kg/ms)

µG

(kg/ms)

g

(m/s2)

σ

(kg/s2)

1000 1.25 0.001 1× 10−6 -9.81 0.072

where Fluid L is the test fluid (water), and Fluid G is the surrounding gas. The test is
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Figure 5.27: Collision regimes identified by Ashgriz & Poo [9] for binary water

droplet collision of equal size.

run for a range of Weber numbers and impact parameters X , each defined as

We =
ρU2Ds

σ
, (5.22)

X =
2B

D1 +D2

, (5.23)

where U is the impact velocity, Ds is the diameter of the smaller drop, B is the offset

between the cell centres of the two droplets, and D1 and D2 are the diameters of each

impacting droplet. The ratio between the two impacting droplets is defined as ∆ =

D1/D2. Experiment configurations for this test can be found in detail in [9]. In this

work, the following cases are tested;
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Test We X ∆

1 23 0.05 1

2 40 0.1 1

3 40 0.0 1

4 53 0.38 1

5 56 0.5 0.5

Table 5.6: Binary droplet collision parameters

The two colliding droplets are initialised just far enough from each other so as to not

let them be in contact at T = 0. Each droplet is given a velocity such that their relative

velocity is U . The initial velocity field is set to encompass the droplet plus a slight ex-

tension over the radius of the droplet to represent a fully developed air velocity around

the droplets. The resolution shown for each test case denotes the lowest resolution with

which CLSVOF-p can achieve results closest to the experiment.

Test 1: We=23, X=0.05

Binary droplet collision at this parameter (almost head-on collision) is indicated to be

right at the boundary between coalescence and separation regimes by [9]. This test is a

good indicator of the robustness of a scheme as less-accurate schemes may not be able

to resolve the separation of the two droplets. At a relatively low We number, surface

tension forces dominate so any shortcomings in the surface tension force estimation

will be revealed in this test. CLSVOF-p and CLSVOF-a manage to capture the separa-

tion well using a resolution of only d = 13, which is 13 mesh cells across the diameter

of one droplet.

Results in Fig. 5.29 show that CLSVOF-p produced the closest agreement to experi-

mental results among the three schemes tested. The two hemispheres produced imme-

diately after impact is captured best by CLSVOF-p. This result also seems the most
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symmetrical of the three schemes which agrees with the experiment. A toroid is formed

before the fluid mass reflexively separates away; this stage is again best captured by

CLSVOF-p, with the interFoam result showing the least agreement. The final result

of this collision is a complete reflexive separation with no satellite droplets formed.

CLSVOF-p and CLSVOF-a both captured this end result, with CLSVOF-p having an

advantage for the final shapes of the two droplets.

Fig. 5.28 show the schematic of the reflexive separation of two droplets which is

reflected in the simulation results in Fig. 5.29.

<--

Figure 5.28: Schematic of reflexive separation for the collision of two equal-sized

drops [9].
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(a)

(b)

(c)

(d)

Figure 5.29: Test 1: Comparison between experimental result showing reflexive

separation ((a) Fig.5 in Ashgriz and Poo 1990), numerical result using CLSVOF-

p (b), CLSVOF-a (c), and using interFoam (d) at We=23 and x=0.05 using mesh

d = 13. Note that the time evolution is from right to left.

Test 2: We=40, X=0.1

At a slightly higher We number and still a relatively low collision offset, this test is
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expected to result in reflexive separation. Experiments by [9] show that a disc res-

ults after the collision, to form a four-lobed fluid mass as in Fig. 5.30. This mass is

stretched as the two droplets try to separate, forming a liquid bridge between the two

droplets. At this stage before the liquid bridge is formed, it can be seen that interFoam

has produced some unphysical results, where a small oscillation appeared.

The liquid bridge is captured perfectly by CLSVOF-p, with CLSVOF-a trailing closely

behind. interFoam has failed to approximate this liquid bridge. The final separation is

also most accurately approximated by CLSVOF-p, with CLSVOF-a performing also

reasonably well.

Test 3: We=40, X=0.0

The test parameters in this case is the same as in Test 2, but with no droplet offset i.e.

this is a pure head-on collision. In this case it can be seen in Fig. 5.31 that CLSVOF-p

has managed to simulate the end result of a reflexive separation with a resultant satellite

droplet, most accurately compared to the experiment. The liquid bridge formed as the

droplets separate is also captured by both CLSVOF-p and CLSVOF-a.

Test 4: We=53, X=0.38

This test parameter demonstrates a stretching separation that tends to occur at higher

We numbers and higher offset X values. The end result of two separated droplets

is captured by all three schemes, but only CLSVOF-p has managed to capture very

accurately the stretched formation of the liquid mass before separation (Fig. 5.32).

Test 5: We=56, X=0.0

The binary collision between two unequal sized droplets is tested. A mesh of D =

13 across the diameter of the smaller droplet is used. In this case, CLSVOF-p and

CLSVOF-a are shown to agree well with the experiment, with CLSVOF-p capturing

the ’club’ shape of the reflexive separation most accurately. Possibly due to issues

in the calculation of curvature, interFoam managed to resolve the droplet separation,
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but with the addition of a spurious satellite drop that resulted from the liquid column

retracting improperly.

(a)

(b)

(c)

(d)

Figure 5.30: Test 2: Comparison between experimental result showing reflexive

separation ((a) Fig.10 in Ashgriz and Poo 1990), numerical result using CLSVOF-

p (b), CLSVOF-a (c), and using interFoam (d) at We=40 and x=0.1 using mesh

d = 24. Note that the time evolution is from right to left.
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(a)

(b)

(c)

(d)

Figure 5.31: Test 3: Comparison between experimental result showing reflexive

separation ((a) Fig.6 in Ashgriz and Poo 1990), numerical result using CLSVOF-

p (b), CLSVOF-a (c), and using interFoam (d) at We=40 and x=0.0 using mesh

d = 24. Note that the time evolution is from right to left.
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(a)

(b)

(c)

(d)

Figure 5.32: Test 4: Comparison between (a) experimental result showing stretch-

ing separation (Fig.12 in Ashgriz and Poo 1990), numerical result using (b)

CLSVOF-p, (c) CLSVOF-a, and (d) using interFoam (bottom) at We=53 and

x=0.38 using mesh d=24h. Note that the time evolution is from right to left.
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(a)

(b)

(c)

(d)

<--

Figure 5.33: Test 5: Comparison between (a) experimental result showing re-

flexive separation (Fig.20 in Ashgriz and Poo 1990) of unequal sized drops at

∆ = 0.5, numerical result using (b) CLSVOF-p, (c) CLSVOF-a, and (d) inter-

Foam at We=56 and x=0 using mesh d1 = 13. Note that the time evolution is from

right to left.
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5.3.9 Liquid jet in gaseous crossflow

The study of liquid jets in a cross-flow or transverse jets is one of great interest as

injecting liquids into a fast-moving gaseous cross-flow is a common method to atomise

the liquid. This has many applications within industry wherever a liquid surface-area

to volume ratio is desirable; in fuel sprays, this will ensure optimal mixing with air to

ensure an even combustion [132].

Figure 5.34: Schematic of a jet penetrating into a crossflow displaying the struc-

tures in a jet breakup. Reprinted from Wang et al. [10] .

Fig. 5.34 shows the liquid jet exiting the nozzle as a column, which starts to ’ruffle’

from axial instability, and then breaks into ligaments and droplets [133]. As liquid

is stripped away from the surface of the jet and surface breakup gains dominance,

the penetration height of the liquid decreases [15]. As the fragments of the liquid jet

undergo secondary breakup which produces smaller droplets, a spray is formed.

There are various characteristics used to describe the behaviour of a liquid jet in cross-

flow. Among these are the breakup regimes of the jet, the trajectory and penetration of

the liquid, the formation of droplets, the minimum size of droplets, and breakup length.

The parameters used to control the study of jet in cross-flow are often dimensionless.
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The most commonly used ones are the cross-flow Weber number WeG, the jet Weber

number WeL, the velocity of the jet uL, jet diameter djet and the momentum flux ratio

q;

WeG =
ρGu

2
Ldjet
σ

, (5.24)

WeL =
ρLu

2
Ldjet
σ

, (5.25)

q =
ρLu

2
L

ρGu2
G

. (5.26)

However, numerous other parameters have also been used to investigate this phe-

nomenon, such as ambient pressure, the jet/cross-flow viscosity ration, and nozzle

geometry. This wide array of variables render the phenomenon extremely complex

and time-consuming to study.

The simulation of liquid jets in cross-flow is also numerically challenging. The com-

plex interfacial structures that is expected during liquid breakup require a robust two-

phase solver that is able to retain the fine structures that occur during breakup [134].

Access to high-performance computing facilities is also fundamental to produce mean-

ingful simulations that are able to capture the finer structures of the breakup.

In this work, a liquid jet in a gaseous cross-flow of WeG = 40 is simulated to show

the viability of the proposed CLSVOF-p for highly complex simulations. Following

the success of the CLSVOF-p method in simulating the phenomena of binary droplet

collision in Section (5.3.8), which is a phenomenon fundamental for the study of jet

atomisation, the proposed method can now be tested on a larger scale.

The parameters used in this simulation are taken from [135]. The liquid jet in injected

into a fully-developed cross-flow of pressure 100, 000 Pa in the domain illustrated in

Fig. 5.35(a), where the jet inlet is located 0.002 m downstream from the cross-flow
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inlet boundary at x = 0. A no-slip boundary condition is imposed on the y = 0 plane.

Outflow boundary conditions are imposed on the rest of the boundary planes.

The simulation time-step criterion is a variant of that presented in [135], based on the

CFL criterion;

∆t <
1

2

h

|uG|
, (5.27)

where h = min(∆x,∆y,∆z) of the smallest mesh in the domain. Fig. 5.35(b) shows

the mesh refinement region to ensure the only the region where the jet is expected to

penetrate into is refined. The refinement is performed using five levels of refinement

from the largest unrefined cell, with three specific refinement regions M1 = 5× 10−5

m , M2 = 10× 10−5 m, and M3 = 20× 10−5 m. The mesh (Fig. 5.9) is composed of

99% hexahedra and 1% polyhedra of various types, generated using the OpenFOAM

utility snappyHexMesh. The jet reaches full penetration at t = 0.02s. The simulation

is carried out on the High Performance Computing Wales system on 2 x Intel R© Xeon R©

Gold 6148 CPU (2.40 GHz) on a total of 40 cores, taking 15 days to complete.

Table 5.7: Material properties for the liquid jet in cross-flow simulation
ρL

(kg/m3)

ρG

(kg/m3)

µL

(kg/ms)

µG

(kg/ms)

g

(m/s2)

σ

(kg/s2)

997 1.18 8.94× 10−4 1.86× 10−5 -9.81 0.0708

Table 5.8: Parameters of the liquid jet in cross-flow simulation

WeL WeG UL(ms−1) UG(ms−1) q ReG

3471 40 17.7 54.8 88.2 2781
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(a)

(b)

Figure 5.35: Computational domain of jet in cross-flow test showing (a) the do-

main setup and (b) the staggered mesh refinement regions M1, M2, and M3.
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Table 5.10: WeG breakup transitions of round liquid jets in crossflows obtained

by Mazallon [16] and Sallam [17].
Source Mazallon et al. Sallam et al.

Column/bag

breakup transition
WeG =5 WeG =4

Bag/multimode

breakup transition
WeG =60 WeG =30

Multimode/shear

breakup transition
WeG =110 WeG =110

Table 5.9: Mesh details of the jet in cross-flow simulation showing the number of

cells of each type.

Hexahedra
Polyhedra Minimum

cell volume

Maximum

cell volume6 faces 9 faces 12 faces 15 faces 18 faces

19,502,725 7538 166,783 3446 942 65 1.76× 10−13 7.23× 10−10

Mazallon et al. [16] and Sallam et al. [17] suggested that for round non-turbulent liquid

jets in a cross-flow, three breakup regimes can be classified according to the crossflow

Weber number WeG (Table 5.10). A liquid jet in a cross-flow with the parameters

in this work at WeG = 40 is expected to undergo multimode breakup, which is a

complex mixture of bag and shear breakup regimes. The results of the simulation at

full penetration are shown in Figs. (5.36 - 5.39). Fig. 5.36 shows the profile view of

the liquid jet with secondary droplets visible up to the point where the mesh is refined.

Fig.(5.37) shows ligaments forming off the edge of the jet column as a result of shear-

ing. The ligaments then fragment into droplets. These droplets then continue on down-

stream to interact with the cross-flow, mixing with the gaseous phase. A considerable

amount of detail is captured as can be seen in Fig. 5.38 considering the size of the mesh.

Ligaments or fluid parcels can be seen to form in the early stages of the breakup; as
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Figure 5.36: Jet in gaseous cross-flow at full penetration, profile view

they move further downstream in the crossflow direction, the ligaments then undergo

secondary breakup into droplets. Liquid jets in a crossflow using the parameters in

this work is in the multimode breakup regime where ’bags’ (liquid membranes of the

concave structures immediately before breakup) are expected to form. However, this

structure is not captured in this simulation due to the mesh resolution used. The same

issue is also faced by [135] where a mesh size of h = 5.68 × 10−7 m is used for the

liquid region.

The velocity magnitude profile is shown Fig. 5.40 demonstrates the vortices that appear
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(a)                 (b)

Figure 5.37: Multimode breakup regime from experiment by Ashgriz [11] com-

pared with the simulation in this work.

downstream of the crossflow which is important to ensure optimal mixing of the fluid

and gaseous phases. The wake region is shown to go upwards with the motion of the

jet. Higher velocities are observed in the lower region behind the wake due to the

acceleration of the flow.

Cross-sections along the y−axis are taken to demonstrate instantaneous velocity mag-

nitude and pressure in Figs. (5.41 - 5.43). The crossections showing the pressure at

various heights along the y − axis in Figs. (5.41(b), 5.42(b), 5.43(b)) demonstrate a

high-pressure zone forming on the upwind side of the jet (with respect to the crossflow)

and a low pressure wake region on the downwind side due to the aerodynamic blocking

of the jet column.

The crossections showing velocity magnitude in Figs. 5.41(a), 5.42(a), 5.43(a) show

that the liquid jet column causes a shear layer to grow from it. As it moves downstream

of the jet, the shear layer grows in size as the progression shown from the jet inlet at

Fig. 5.41(a) to the downstream section of the jet at Fig. 5.43(a). The beginning of a
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Figure 5.38: Close-up view of the breakup region of the liquid jet

Karman vortex street can also be detected originating from the jet which acts as a blunt

body, but due to the low mesh refinement level downstream of the crossflow, this is not

fully resolved.

The trajectory and penetration of the liquid jet are important parameters in a typical

liquid jet in a crossflow study [136] [137]. The flowfield is usually divided into two

regions; the region of the jet with little to no deflection of the column, and the wake

region where the jet is almost parallel to the crossflow [133]. The trajectory of the jet

determines how quickly the jet deflects and reaches an almost parallel flow with the

crossflow. Many power law correlations have been produced for the evolution of the

jet trajectory, commonly in the form of

y

djet
= c1q

p1
( x

djet

)p2
(5.28)

where c1 is a constant, p1 and p2 are power exponents, and q is the momentum flux
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(a)                             (b)

Figure 5.39: Jet in gaseous cross-flow at full penetration from (a) front view and

(b) top view.

ratio. In all correlations the height of the jet and the length of the jet are normalised

by the jet diameter as y/djet and x/djet respectively. The momentum flux ratio is

considered a main influencer of the trajectory as it is considered in all of these cor-

relations obtained for various liquids under various temperatures and pressures; [138],

[15], [139], [140], [141]. [142], [143], [12], [14], [144], [145], [146], [147], [13]. A

comprehensive summary of the different correlations and the range of test conditions

under which they were drawn from can be found in [133].

The trajectory of the liquid jet obtained in this work is compared with the correlations

produced under similar conditions. Where a liquid other than water is used, the viscos-

ity ratio is accounted for to ensure a comprehensive correlation, except in the case of



5.3 Validation 167

Figure 5.40: Velocity magnitude shown in profile view

Bolszo [15].

Table 5.11: Liquid jet trajectory references for a subsonic gaseous crossflow at

standard temperatures and pressures test conditions.
Reference q WeG x/djet

Iyogun [12] 8-726 9-159 0-64

Farvardin [13] 10-135 28-82 0-50

Birouk [14] 8-726 9-159 0-40

Bolszo [15] 38,136 17,145 0-70

Iyogun:

y

djet
= 1.997q0.444

( x

djet

)0.444

(5.29)
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(a)

(b)

Figure 5.41: (a) Velocity magnitude and (b) pressure, both at t = 0.02 s and plane

y = 0.0017 .

Farvardin:

y

djet
= 3.688q0.43

( x

djet

)0.384

We−0.085
G

(µjet
µW

)−0.222

(5.30)
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where µW is the viscosity of water taken to be 8.943× 10−4 kg m−1s−1 .

Birouk:

y

djet
= 1.627q0.47

( x

djet

)0.46(µjet
µW

)−0.0.079

(5.31)

Bolszo:

y

djet
= 1.48q0.43

( x

djet

)0.43

(5.32)

Fig. 5.44 shows a similar trend between the profile obtained by the simulation at full

penetration with Farvardin’s empirical model at the beginning of the deflection. How-

ever as the flow develops, the simulation moves closer to the models given by Iyogun

and Birouk. The correlation by Bolszo underpredicts the trend for all segments of the

flow; while the momentum flux ratio is indeed accounted for as well as the range of

valid WeG values, the model is built on water-in-oil emulsion jets. Since the model

by Bolszo did not include liquid viscosity in their expression, this accounts for the dis-

crepancy and confirms that the trajectory of a liquid jet in a crossflow is dependent on

more than just the two most-often used parameters WeG and q.

5.4 Conclusion

The proposed solver is verified against fluid flows with surface tension. Two methods

of calculating mean curvature is implemented for CLSVOF, where CLSVOF-p uses

the LS field to calculate curvature, and CLSVOF-a uses the VOF field. The perform-

ance of these two implementations are compared against that of interFoam and where

applicable, interFlow. Results indicate that CLSVOF-p generates the least amount

of spurious currents. In tests with reference solutions (2D rising bubble, Rayleigh-

Taylor instability, droplet impact with dynamic contact angle), CLSVOF-p appears to
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be quantitatively the most accurate out of all the compared schemes. In a test where

surface tension does not dominate (2D dam break), all tested schemes perform sim-

ilarly with CLSVOF-p, CLSVOF-a, and interFlow showing sharper interfaces than

interFoam.

In more complicated tests such as the droplet splashing on a dry surface and on fluid,

CLSVOF-p shows the greatest qualitative agreement to experiment images, where

structures such as finger-like projections are captured successfully. Finally, the phe-

nomena of a liquid jet in a cross-flow and the binary collision of droplets under stand-

ard temperatures and pressures are simulated. The results obtained using CLSVOF-p

for the binary collision investigation agree well with experimental findings even with

relatively low mesh resolution and are better compared to interFoam. In the simulation

of a liquid jet in a gaseous crossflow, the result obtained by CLSVOF-p demonstrated

a fair agreement for the evolution of the jet column to several empirical models. Jet

breakup structures such as surface breakup, liquid ligaments, and droplets are captured

by the simulation.

The findings from this chapter successfully demonstrated the capability of the proposed

CLSVOF solver in solving two-phase fluid flow cases with complicated flow structures

and surface tension effects.



5.4 Conclusion 171

(a)

(b)

Figure 5.42: (a) Velocity magnitude and (b) pressure, both at t = 0.02 s and plane

y = 0.0086 .
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(a)

(b)

Figure 5.43: (a) Velocity magnitude and (b) pressure, both at t = 0.02 s and plane

y = 0.01 .
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Figure 5.44: Jet profile at full penetration compared against empirical correla-

tions by [12], [13], [14], [15].



174

Chapter 6

Conclusion and Outlook

The work accomplished in this thesis was divided into two parts; the development

and implementation of a hyperbolic equation solver to handle discontinuous solutions,

and the development and implementation of the CLSVOF scheme in OpenFOAM for

two-phase incompressible flows followed by validation and numerical simulation of

complex fluid flows phenomena including phenomena related to jet atomisation.

6.1 Conclusion

The first part of this work proposed a new hyperbolic partial differential equation solver

based on multi-moment methods, of the CIP-CSL family. This addressed the first ob-

jective as outlined in Chapter 1, which is to develop a hyperbolic partial differential

equation solver that is able to capture discontinuities and smooth solutions simultan-

eously well with minimal numerical oscillation and diffusion.

A scheme called CIP-CSL3U was proposed to be used together with an existing scheme,

CIP-CSL3D. Using an ENO-like formulation, CIP-CSL3U and CIP-CSL3D are com-

bined into CSL3DU and CSL3ENO; while they both use the same constituent stencils,

the way the stencils are selected during runtime differs. Two smoothness indicator

for the stencils were proposed, one each for CLS3DU and CSL3ENO. Both of the

proposed schemes work well on benchmark tests, outperforming CIP-CSL3CW, CIP-

CSL2, and CIP-CSL3D and CIP-CSL3U individually. It was found that CSL3DU and
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CSL3ENO are both high-order accurate (4th order), with most numerical oscillation

being successfully suppressed without giving way to numerical diffusion.

The second part of this work focused on the improvement of the two-phase incom-

pressible flow solver in OpenFOAM, addressing the second, third, and fourth object-

ives outlined in Chapter 1.

The contributions from this part of the work are the major modifications and exten-

sions upon existing open source code in order to make improvements to the interface

reconstruction implementation. This was done by implementing a fully 3D geometric

level set (LS) method to couple with the most recent volume of fluid (VOF) addition to

OpenFOAM, interFlow. This is a novel combination where an explicit geometric in-

terface reconstruction using the Level Set method is coupled with an advection scheme

that tracks the interface within a single time-step.

An interface reconstruction algorithm based on cell tetrahedralisation was implemen-

ted to calculate the exact volume of fluid residing under a plane in a general convex

polyhedral cell. This procedure was then described in great detail to improve the ac-

cessibility of this work.

The proposed scheme was then validated using structured and unstructured meshes in

2D and 3D. For scalar transport problems, CLSVOF was shown to outperform inter-

Foam in all tests and interFlow in most tests. Where the effects of surface tension are

negligible such as in the dam-break test (Section 5.3.2), all schemes produced visually

similar results. However, for other fluid flow simulations, CLSVOF consistently out-

performed interFoam and interFlow, highlighting the importance of a good estimation

of the surface tension force to ensure the robustness of a two-phase incompressible

flow solver.

Fluid structure detail such as crown formation in droplet splashing that was not cap-

tured by interFoam and interFlow was captured by CLSVOF, as seen in Section 5.3.7.

This is due to the improved curvature calculation in CLSVOF leading to a better es-
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timation of the surface tension force. Quantitatively, this improvement in curvature

calculation was captured in the static droplet at equilibrium test in Section 5.3.1, where

it is shown that results obtained using CLSVOF-p (where the curvature is calculated

using the Level-Set field) yielded the least amount of spurious currents at the interface.

The implementation of the Yokoi Dynamic Contact Angle model enabled the simula-

tions carried out in Section 5.3.5 and Section 5.3.6. The results obtained from these

simulations show that qualitatively, CLSVOF-p showed the greatest agreement with

experimental findings compared to CLSVOF-a and interFoam and also showed greater

detail in the form of finger-like projections around the spreading edge of the droplet.

It is also worthwhile to note that in many of the surface tension dominant flows simu-

lated in this work, the interFlow solver did not manage to produce a physical solution.

This is due to the fact that the interFlow solver had been conceived for use in marine

science and engineering, where the effects of surface tension can usually be considered

irrelevant.

CLSVOF was also shown to predict the outcomes of various binary droplet collisions

accurately, as seen in Section 5.3.8. CLSVOF-p was shown to generally produce the

best agreement when compared to images obtained experimentally. Finally, the simu-

lation of a liquid jet in a gaseous crossflow using CLSVOF-p in Section 5.3.9 showed

some surface breakup detail and the jet trajectory displayed reasonable agreement with

empirical models.

It is therefore concluded that the proposed implementation of combining an explicit in-

terface capturing method on the VOF solvers in OpenFOAM with the Level Set method

yielded a marked improvement over the ’stock’ two-phase incompressible flow solver

available in OpenFOAM. Its success in various benchmark tests and in some complex

fluid flow applications indicate that the proposed method has potential to work well in

various other incompressible two-phase flow applications.
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6.2 Outlook

The proposed CIP-CSL3DU and CIP-CSL3ENO methods have been shown to sup-

press oscillation whilst maintaining profile sharpness at discontinuities. However, the

numerical oscillations have not been completely eliminated. A possible improvement

might be achieved by including another stencil in the selection, one that suppresses os-

cillations completely. A different smoothness indicator might be implemented, along

with a different selection mechanism.

For the CLSVOF implementation, some of the possible room for improvement may

include a more efficient polyhedra tetrahedralisation process that require fewer steps

to achieve the required level of decomposition. This may help reduce the calculation

costs. To increase the possible applications of this scheme, a heat transfer model may

also be implemented, as well as a provision for the handling of dynamic mesh refine-

ment. This may be particularly useful for cases such as liquid jet atomisation where

computational costs are high. Moreover, the current implementation of the dynamic

contact angle model requires specific parameters for specific cases; a more generalised

contact angle model may be implemented to work on a wider range of cases without

needing experimental data. Furthermore, the current improvement was implemented

in OpenFOAM 2.1.x. It may be of interest to implement it on newer versions to see if

any further improvements can be made.
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Appendix

Pressure-Velocity Coupling

For incompressible fluid flows, there are no equations to evolve the pressure. The

pressure and velocity at the new time step are found by solving the pressure-velocity

coupling, using the Pressure Implicit with Splitting Operators (PISO) solver, as pro-

posed by Issa [148]. Let the momentum equation be denoted in the form of

aPuP = H(u)−∇p. (1)

The operator H accounts for the advection and source terms, and can be written as

H = −
∑
f

aNuN +
u0

∆t
, (2)

recalling that P denotes the owner cell and N the neighbour cell. ∇p is written as∑
f S(p0)f , summed over the cell faces f .

With these in mind, the PISO procedure is summarised as follows;

1. Get the velocity field approximation by solving the momentum equation. To

calculate the pressure gradient, the value of pressure from the previous step is

used. For the advection terms, use previous values of flux.

aPuP =
∑
f

S(p0)f . (3)

2. The face flux approximation is assembled for use in the pressure equation

F̃f =
(H(u)

aP

)
f
· Sf . (4)
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3. Using the approximate velocity values, the pressure equation is solved (the pres-

sure solution step) ∑
f

[( 1

aP

)
f
(∇p)f

]
· Sf =

∑
f

F̃f . (5)

4. The final flux is found, correcting the approximated flux found by the pressure

effect

F = F̃f −
[( 1

aP

)
f
(∇p)f

]
· Sf . (6)

5. The cell-centre velocity is corrected using the new values of pressure (the explicit

velocity correction step)

.uP =
H(u)

aP
− 1

aP
∇p (7)

6. Return to Step 2 nCorrector amount of times, of end.

The implementation in detail is available in [149].
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Appendix

Semi-Lagrangian characteristic

formulation for Euler equations

Euler’s equations of inviscid gas dynamics are given as

∂

∂t


ρ

ρv

E

+
∂

∂x


ρv

ρv2 + p

v(E + p)

 = 0 (8)

where ρ is density, u is velocity, e is total energy, and p is pressure. U is a vector

containing the conservative variables and F is a vector of the inviscid fluxes.

U =


ρ

ρv

E

 ,F =


ρv

ρv2 + p

v(E + p)

 (9)

Pressure p can be obtained from the equation of state for the perfect gas

p = (γ − 1)(E − 1

2
ρv2) (10)

where γ = 1.4. Following the steps of semi-Lagrangian characteristic formulation as

detailed by Ii and Xiao [91], the linearised version of the Euler equations about the

primitive variables W are obtained by freezing the Jacobian matrix A,

∂W

∂t
+ A

∂W

∂x
= 0, (11)
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where

W =


ρ

u

p

 ,A =


u ρ 0

0 u 1
ρ

0 ρc2 u

 (12)

where c =
√
γp/ρ is the speed of sound. A is diagonalised as

A = RΛL. (13)

Λ is the diagonal matrix of the eigenvalues where the non-zero elements are the char-

acteristic speeds

λ1 = u; λ2 = u+ c; λ3 = u− c (14)

and L = R−1. The characteristic form of (11) is then

L
∂W

∂t
+ ΛL

∂W

∂x
= 0, (15)

with

Λ =


u 0 0

0 u+ c 0

0 0 u− c

 ,L =


1 0 − 1

c2

0 1 1
ρc

0 1c2 − 1
ρc
.

 (16)

Using (16), the decoupled system for the characteristic variables are, for C1(X0), λ1:

dρ− 1

c2
dp = 0, (17)

for C2(X0), λ2:

du+
1

ρc
dp = 0, (18)

and for C3(X0), λ3:

du− 1

ρc
dp = 0. (19)

The primitive variables at X0 can then be found.

ρ(X0)− ρ(X(C1))− 1

c2
[p(X0)− p(X(C1))] = 0, (20)

u(X0)− u(X(C2)) +
1

ρc
[p(X0)− p(X(C2))] = 0, (21)
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u(X0)− u(X(C3))− 1

ρc
[p(X0)− p(X(C2))] = 0, (22)

where X(C1), X(C2), X(C3) are the points on the characteristic curves C1, C2, C3.

For solving the Euler equations, the value of moments at step n+1(t = tn+1 = tn+∆t)

are updated using a Runge-Kutta method. The following initial value is solved

∂X

∂t
= −λm(X, t), X0 = xi−1/2, (23)

for the cell boundary point xi−1/2, where m = 1, 2, 3. The third-order TVD Runge-

Kutta method has the following steps for solving (23),

X1(Cm) = X0 − λm(X0, t0)∆t, (24)

X2(Cm) =
3

4
X0 +

1

4
X1 −

1

4
uλm(X1, t1)∆t, (25)

X3(Cm) =
1

3
X0 +

2

3
X2 −

2

3
λm(X2, t2)∆t. (26)

Solving (20)-(22) for ρ, u, p along characteristic curves, we find the point values of the

variables at each R-K substep as follows,

pp
<l>
i−1/2 =

1

2

{
P(Xl(C2)) + P(Xl(C3)) + pρ

<l−1>
i−1/2

pc
<l−1>
i−1/2 {U(Xl(C2))− U(Xl(C3))}

}
,

(27)

pu
<l>
i−1/2 =

1

2

{
U(Xl(C2)) + U(Xl(C3)) +

1

pp
<l−1>
i−1/2

pc
<l−1>
i−1/2

{P(Xl(C2))−P(Xl(C3))}
}
,

(28)

pρ
<l>
i−1/2 = R(Xl(C1)) +

1

(pc
<l−1>
i−1/2 )2

{pp<l−1>
i−1/2 − P(Xl(C1))}, (29)

where R(x), U(x), and P(x) represent the CIP-CSL reconstructions of ρ, u, and p

respectively. R(Xl(Cm), U(Xl(Cm), and P(Xl(Cm) then denote the semi-Lagrangian

solutions along the trajectories carved by the characteristic curves Cm for each R-K

substep l = 1, 2, 3.
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Recalling that the characteristic velocities λm(X0, tl) are a function of primitive vari-

able u and the speed of sound c as in Eq. 14, and recalling that c =
√

γp
ρ

, (27) - (29)

are used to calculate λm at each R-K substep (l = 0, 1, 2).

The point values of the primitives at xi−1/2 are updated to n+ 1 by

pp
n+1
i−1/2 = pp

<3>
i−1/2, (30)

pu
n+1
i−1/2 = pu

<3>
i−1/2, (31)

pρ
n+1
i−1/2 = pρ

<3>
i−1/2. (32)

The cell average values of the conservative variables U at cell i are updated as

V U
n+1

i−1/2 = V U
n

i−1/2 −
∆t

∆xi
(F̂i+1/2 − F̂i−1/2). (33)

The numerical fluxes are found using the point values of the primitives at each R-K

substep;

F̂i−1/2 =
F<0>
i−1/2(PW

<0>

i−1/2) + F<1>
i−1/2(PW

<1>

i−1/2) + 4F<2>
i−1/2(PW

<2>

i−1/2)

6
. (34)

The following relations of continuous physical variables are assumed for point values

and cell averages

V u =
V ρu
V ρ

; V p = (V e−
V ρu

2

2
)(γ − 1); (35)
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