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Abstract

The hybnd Foute Element (FE)} - Statistical Energy Analysis (SEA) method
developed for mud-frequency vibration of complex bwlt-up systems needs to compute
the total dynammc flexibility mainx at every frequency, whach 15 very time consuming.
This paper presents an improved hybnd FE-SEA method to overcome this problem. In
the present method, first, dynamic condensation 15 miroduced to reduce the order of the
determimistic FE component, which results in sigmificant reduction of the total dynamic
stiffness matnx. Then noting that the dynamuc shffness matnx of the determumstic
component 15 established by using the FE method, a fast mverse algonthm is employed
to caleculate the dynamme flexibility maimx of the slave degrees of freedom of the
determimstic compenent generated in the condensahon process. These two steps avoid
the direct mverse computation of a large mammx at each frequency pomnt of interest,
resulting in sigmficant time saving. A mumencal example illustrates the efficiency and

convergence of the proposed method.

Kevwords: Mid-frequency; Complex buwlt-up systems; Hybnd FE-5EA method:

Dyvnamic condensation approach; Dynamic flexabality



1 Introduction

In general, dynamic analysis methods for mechamical systems may be divided mnto
two types: determumistic analysis methods for low-frequency wibration and statistical
methods for lugh-frequency vibration. The first type, such as the Fimte Element (FE)
method [1] and Boundary Element (BE) method [2], 15 swifable for the so-called
determumstic system whose nommmal geomefnic and matenial parameters are clearly
known and which has only a few low-order modes (of long wavelength deformation) m
the frequency range of interest. The second type, such as Stahstical Energy Analysis
(SEA) [3], 15 switable for the so-called stahstical system whose nominal geometnic and
material parameters may not be clearly known and whoch has many high-order modes
{of short wavelength deformation) in the frequency range of mterest.

A complex bult-up system, however, may be composed of many components
which have sigmficantly different dynamuc behawviors at hugh frequencies due to the
different properties of geometries and materials. Some components may be subjected to
long wavelength deformation and have lower modal density, while other components
may be subjected to short wavelength deformafion and have higher modal density. Such
mixed dynamic behavior is the so-called mud-frequency wibration of complex bult-up
systems [4, 3]. In this case, a determumistic method, such as the FE method, requires
many degrees of freedom to model the system and the response may be very sensitive to

small imperfections m the system [4, 5]. A stahstcal method such as SEA, whach 13



developed based on the assumphon of lugh meodal density, may generate an
unacceptable error due to the lugh modal densities of some components [4, 5]. Hence,
the complex bult-up system may not be well modelled using a single determimistic or
statistical method To solve the above problems, many improved methods have been
developed with the amm of extending the effective frequency range of determumistic
methods [6-13] and addressing the applicability of the assumphons of statishcal
methods [14-20]. In addition. a widely studied hybnd approach [21-27] combines the
deternunishic and stahistical methoeds to establish a hybnd model which can descnbe the
response of the complex bwlt-up system more efficiently.

Considenng the different vibrahon behaviors of the components of the complex
bwlt-up system, the hybnd approach employs a determumstc method fo model the
components which are subjected to long wavelength deformation (that 15, the so-called
deterministic subsystem) and a statistical method to model the components which are
subjected to short wavelength deformation (that 13, the so-called stafistical subsystem).
It establishes a non-iterative relationslip between the determumistic and statishcal
subsystems by using the diffuse-field reciprocity [28]) Among all the hybnd
approaches, one of the most representative 15 the hybnd FE-SEA method [22-2329].
Based on the framework of the hybnd FE-SEA method, many other hybnd formats [24-
27] for specific problems were developed to improve computational efficiency through

modelling the determumstic subsystem using other determumstic methods mstead of FE.



It 15 important to pomnt out, however, that thanks to the strong applicability of FE. n the
hybnd FE-SEA method the stuctural mamees of the determumishc subsystem (1.e. the
mass, shffness and damping matnices) are frequency-independent, and the total dynamc
stffness matnx 15 sparse and symmetnc and can be solved easily. Furthermore, for
determimistic subsystems with complex shapes or boundanes, the hybnd FE-SEA
method 15 almost nreplaceable.

It should be noted that the hybnd FE-SEA method needs to compute the mverse of
the total dynamic shffness mainx at every frequency, which 15 very time consummng.
Although the mverse matnx may be obtamed analytically, solving large linear systems
with multiple nght-hand sides 15 very difficult and time expensive. In addihon, the
governing equation employed m the hybnd FE-SEA method 15 established based on the
hybnd model. not a pure FE model, so the condensahon approach and fast mverse
algonthms developed based on the pure FE model cannot be used directly mn the hybnd
FE-SEA method.

In this paper, the order of the deternmnistic subsystem is first reduced by using
traditional condensation, and so the size of the total dynamue sbffness matnx 15
mdirectly reduced. Then, although another mverse matmx (the dynamuc flexability
matnx of the slave degrees of freedom of the determumstic subsystem) needs to be
calculated m the dynamic condensation process, because the defernumistic subsystem 1s

modelled using a pure FE model, not a hybnd medel, a fast algonithm proposed by



Leung [30] can be miroduced here to obtam this mverse matnx Avoiding the direct
mversion of a large matnx at each frequency, the present method, of course, greatly
mproves the caleulabon efficiency and reduces the computaton fime Secton 2
outlines the basic pnnciples of the hybnd FE-5EA method and gives some discussion
about its efficiency. Section 3 shows the application of the dynamic condensation
approach to the hybnd FE-5EA method, followed by formmlatons of the fast mverse
algorithm for the dynamic flexibility matnx of the slave degrees of freedom of the
determimistic subsystem. In section 4, a numencal example illustrates the efficiency and

the convergence of the present method. Conchusions are given m section 3.

2 Basic principles of the hvbrid method

According to the hybnd FE-SEA method [22], a complex bult-up system can be
dnnded mmto two parts: the determimistic and statistical subsystems. The response of the
stabistical subsystem 15 viewed as the superposition of the direct and reverberant fields,
which respectively generate the direct field dynamic shffness matnx and the blocked
reverberant force [22, 28]. In the hybnd FE-SEA method, considening the effect of the
direct shffness matmx and the blocked reverberant force, the governing equation of the
determumistic subsystem can firstly be established. Then the power balance equation for
the stahstical subsystem can be found by considenng the conservation of energy.

Fmally, the goverming and power balance equations are connected by the diffnse-field



reciprocity relationship [28]. The above three steps establish a non-iterative hybnd
method for the mud-frequency vibration of complex built-up systems.
2.1 Governing equation of the deterministic subsvstem

The deterministic component is subjected to the forces fif) and il respectively
generated from the direct and reverberant fields of the jth statistical component. The

governing equation for the determumstic compoenent can be written as [22
Dag = forr + Zf]%' - Zfﬁﬂ- (1)
i I

where q represents the degrees of freedom of the determuimistic component, fepr 15 the
vector of generalized forces acting on the determumstic component. Dy represents the

dynamnue stffness matnx of the determimistic component and can be expressed as
Dy =- w My +iwCy + Ky (2)

where Ky, My and Cy respectively represent the shffness. mass and damping matnces
of the determumistic component. w and i are the angular frequency and imagmary umt,
respectively.

Considenng the equbibmum of the direct field forces of the jth statstical

component, il can be expressed in terms of the direct field dynamic stiffness matrix

Dﬁﬂ and the vector of degrees of fieedom q as [22]



fat = Diflq (3)

Inserting Eq. (3) mnto Eq. (1), the goverming equation of the determumistic subsystem can

be written as [22
Diorq = For + Zf&l ()
7
where

Doy =Dy + ZD&H- ()

represents the total dynamic stiffness matnx.
2.2 Power balance equation of the statistical subsvstems

Assuming that the stabistical subsystem has sufficient uncertamty, the blocked
reverberant force equals zero [22]. Rewnting Eq. (4) in cross-spectral form and

averaging over a random ensemble of stahistical subsystems gives

— et r
Sqq =53 + 543 (6

where Sg, 15 the cross-spectral mamx of the displacement vector q. and

S = DRisFEDL (7
S = DiSED L (8)



where S%F = (ffSL) and ST = EJ{fM} are the cross-spectral matrices of the
external and blocked reverberant forces, respectively. #% is the complex Hermitian
transpose of #, #- is the complex Hermitian transpose of the inverse of # and (#)
represents the ensemble average. According to the diffuse-field reciprocity [28]. ST

can be expressed i terms of the energy of the statishical subsystem

s = ) e im{D@) ©
i
where
AE;
aj=— (10)

and n; and E; are the modal density and ensemble average emergy of the jth

statistical subsystem. For the sake of stmplicity, Eq. (2) can be rewntten as

ST = ‘ :r}-‘l'ﬁf;} (11)
where
Y4 = Diiim{DE]D (1

The statishcal subsystems are modelled usmg SEA. Considenng the energy

conservation of the statistical subsystems, the power balance equations of all statishical



subsystems can be wrnitten as [3]

LN~ lE = p5& 4+ pir (13)

where L 15 the nfluence matrix of the modal energy, N 15 a diagonal matnx with the

modal densities on main diagonal and E represents the tme and ensemble average

energy of the statistical subsystems. PSS and P9 are the time and ensemble average
mput power to the statishcal subsystems due to the presence of the external force and
determimistic subsystem. Ref. [22] mves a detailed denivation of Eq. (13).

The energy of each statishcal subsystem can be obtamed by sclving the power
balance equation (13). Then, the cross-spectral response of the determimishic subsystem
can be obtained by mserting the energy mto Eqs. (6)-(8).

2.3 Discussion of computational efficiency

As can be seen from Eqs. (7) and (12}, the hybnd FE-SEA method requres
computation of the mverse of the total dynamic shffness matnx at every frequency.
Although such a mamx can be obtamed analyically, 1t 15 very difficult and time
consuming to selve large limear systems with multple nght-hand sides, and it gets
worse as the mumber of the degrees of freedom mereases. In addibion, since the direct
field dynamic shffness matnx 15 generally caleulated using the BE method [28], the
matnx coefficients m BE method are frequency dependent. As a result, the extrachon of

the natural frequencies of the direct field cannot be realized by an algebraic elgenvalue

10



problem Since the total dynamuc stffness matnx 15 the sum of the dynamuc stiffness
matnces of the determimstic compeonent and the direct field, the extrachion of the natural
frequencies of the determumistic subsystem also cannot be realized by an algebraic
elgenvalues problem. Hence, fast mverse algonthms [30] developed based on the pure
FE methed cammot be used directly to calculate the inverse of the total dynamme stiffness
matmx.

In order to solve the above problem and improve the computational efficiency of
the hybnd FE-SEA method, this paper presents an mmproved solution strategy. The
proposed method employs the dynamuc condensahon approach to reduce the degrees of
freedom of the determmmistic component. As a result, the order of the total dynamuc
shffness matnx can be mdirectly, but sigmficantly, reduced without loss of accuracy. It
should be noted that another imverse matnix, 1e. the mverse matnx of the dynanuec
stffness matnx of the slave degrees of freedom of the deternumistic component, needs
to be calculated m the condensation process. Smnce the deternumistic component 1s
modelled using the FE metheod, this mamx can be obtained by using a fast inverse
algorithm [30], by which the inverse of the dynamic stiffness matnx of a pure FE model
can be calculated, usimg only matnx mmltplicabon or addibon between the frequency-
mdependent structural matnces (the shffness, mass and damping matnices), without any
matnx mversion operations. Although the fast mverse algonthm will miroduce some

small emors, the computational efficiency can be mmproved sigmificantly with an

11



acceptable accuracy.

3 Application of the dyvnamic condensation approach to the
hybrid FE-SEA model
3.1 Dvnamic condensation of the statistical component

According to the basic pnnciple of the dynamic condensation approach [30], all the
degrees of freedom of the determumistic component can be divided into two fypes, 1e.
master and slave degrees of freedom. The degrees of freedom located at the pumchon
and the area of the external excitabon are defined as the master degrees of freedom,
while the degrees of freedom located elsewhere are defined as slave degrees of freedom.

Ordenng the displacement vector according to the master and slave degrees of freedom
gives q =T'q. where T represents a permutation matrix with TT7 =1 and #T is the

transpose of #. Then the displacement vector q can be wrntten as
m
q=Tq= T{‘}f ] 19

where superscnipts m and s respectively represent the master and slave degrees of

freedom Inserting Eq. (14) mnto Eq. (4) and pre-multiplymg by it gIves
Duoed = Fue + ) EL: 1s)
J
where

12



N . N DJIII:H. ms

Dm:TTan:l[,% El (16)
: . fa
fer= T e = [fz] an
o )
F0) — TTE%:{E?}?] (18)

Smce the master degrees of freedom lie on the junction and the area of the external
excitation, it is clear that £.5:=0, fiif =0, DY= =0, DV =0, DU =0.

As a result, using Eqs. (15)-(1%), a relationship between the master and slave degrees of

freedom can be wnitten as
q°=Tq" (19)
where
T=-D% 'DP (20)
Hence, Eq. (13) can be reduced to
D™ = fax + Zf{&m (21)
]

where

13



D =D+ ) DUME™ + DT 2
i

Comparmg with the onginal governing Eq. (4), the reduced govemung Eq. (21) has
a simlar form but fewer degrees of freedom and hugher efficiency. As menhoned m
section 2.3, theoretically there 15 no loss of accuracy from Eq. (4) to Eq. (21).

The displacement cross-spectrum of the master degrees of freedom, ST, can be

obtained by using an analogous analysis to that in Eqs. (6)-(13). Furthermore, by using

Egs. (14) and (19). the cross-spectrum matnx of the onginal displacement, S.;. can be

written as
Sqg =TS ' = T[SS%E o | T 3)
g Sag
where
S5 =TS5 T, Sg5 =STIT, Sff =TSGy Q4

3.2 Fast inverse algorithm for dynamic stiffness calculation

It can be seen from Eq. (20) that another imverse matrix needs to be calculated m

the condensafion process. The fewer master degrees of freedom are selected, the larger

the order of the mainx Df. In fact, the dynanuc condensation approach fransfers the

expensive computabon from one mversion operabion to another. The latter, however,

can be realized by using the fast mverse algonthm.

14



AsmEq. (2), DY can be wntten as
DY = @ M + iwCF + KI (23)

where K. MY and CY respectively represent the ordered stffness, mass and
damping matnces of the slave degrees of freedom of the deternumishc component.
Depending on the existence of the dampmg matnx the fast mverse algonthm [30] for
the dynamic flexibility matrix 75 =D% ' may be mtroduced for two cases, as
follows.

Firstly, for the case of €5 = 0, Eq. (25) can be rewritten as D = — ™M + K.
Performing generalized eigenvalue decomposition for K and MY, one can obtain the

fixed interface modal mamx <€ and a diagonal matrix 02, with
FMES =1 (26)
+'Ki¢ = 0’ @7

Pre- and post-multiplying Eq. (25) by €T and <, respectively, and noting that €3 =

0, gives
#TD54 = (02 _ ) (28)

Performing the mversion operation on Eq. (28) gives

15



#- p3le-T=(n?_of) 7t (29)

where #-T represents the transpose of the inverse of #. Using Eq. (29), Z¥ can be

easily obtained and wnitten as
75 =D5 "= (n?- o) CeT (30)

Because (07 - o’l) isa diagonal matnx, 1ts inverse can be easily calculated. It should
be noted that there 15 a loss of accuracy m Eq. (30) resulting from mode tnncation, and

as Ref [30] pomted out, Eq. (30) has a very slow convergence rate. However,

accelerated convergence can be achieved nsang the followmg formmla.

(0% -0l) =0 t+ein 4+ ¥ 20U+ Y0 Y0l a1)
- 1|-2-|'"

The above formmla i1s exact for any posiive integer j. Generally, taking j=2 can

obtain a good convergence rate. Inserting Eq. (31) mto Eq. (30) mves (for j=2)
75 = K5 '+ olKS T IMEKS T+ wten 40l - o) e (32

The loss of accuracy i Eq. (32) also comes from mode tnuncation. Comparmg to Eq.
(30), however, Eq. (32) has a faster convergence rate.

Secondly, for the case of C¥+ 0, Eq. (25) can be rewnitten as DF(A) = A2M7F
+ ACH +KY, by setting A=—iw Performing complex generalized eigenvalue

decomposifion, one can obtam the fixed mnterface complex modal matnx W and a

16



diagonal matnx A. Employing the Taylor senes expansion of Z3(A) about A=0, ZF

(A) can be expressed as [30]
Z35(A) = Z5(0) + AZF (0) + %.132?"[0] +%,1325}f"'[n;. +AtveA-YAT (33)

where superscnpt pnmes stand for denvatives with respect to A. Simmlar to Eq. (32), the
loss of acouracy m Eq. (33) comes from complex mode fmuncation Performing

successive differentiation to DEZF =1 yields

75 DF + Z5DF =0 (34)
75 DS + 225 D% + Z5DF =0 (35)
75 DF + 375 DY + 375DE +75D% =0 (36)

The denvatives of Z% with respect to A can thus be calculated from Eqs. (34)-(36).

Inserting A =0 mto those denvatives yields

IF(0) =K% : (37)
T (0) = -K¥CFRE Y (38)
75 (0) = 2( w5 (cawE ") -xF M ) @39)

17



7% (0)

=-6

1 13 1 1 1 1 1 (40
(K5 H(cFwE ™) - KE T CERE T MERT - KE T MIRT T CER

Insering Eqs. (37)-(40) mmto Eq. (33), Z¥ can be obtammed without direct mversion

operations. Moreover, 1t can be seen from Eqs. (37)-(40) that Eq. (33) reduces to Eq.

@B if CF=0.

4 Numerical example

A wvahdation example from Bef [29], as shown m Fig. 1, 15 meluded here to
Uhistrate the efficiency and convergence of the proposed method. This complex bult-up
system consists of four thin panels and a beam framework. Each panel 1s bolted to the
beam framework at four pomnts with an offset of 1 7mm fo the neufral axis of the beams.
All panels are made of aluminium (density p; = 2700 kg/m’, Young's modulus E =71
GPa, Poisson’s mto v =033, loss factor n=10.01) and they each have dimensions
0.6m=1 lm=1mm. The beams that make up the framework are also made of alumunim
and they form the edges of a cube. Each beam 15 0.7m long, with a square hollow
section whose external side width and wall thickness are 254mm and 3 2mm,
respectively. All plamn cylindnical bolts used to comnect the panels and framework have
a radins of 5mm. and the distance between two successive bolts on a same beam 13
02m. A unit pomt force 15 appled in the vertical direction on one of the bottom beams

at 0.25m from the comer, as shown m Fig_ 1 (#1). The frequency range considered here

18



15 from 50Hz to 300Hz with a frequency step of 1Hz. The excitation point, #1, 15
selected as the first observahion point. The second observahon point, #2, 15 on one of the

top beams at 0.23m from the comer, and the honzontal direction 15 selected as shown m

Fig. 1.

Fig. 1 A framework-panel system.

The reference results are obtamned using the previous hybnd FE-SEA method
which employs the same hybnd FE-SEA model as the proposed method The partition
of the system can be obtaned based on the free propagating wavelengths across the
given frequency band. In the panels, the shear and extensional wavelengths are both
greater than 15m at 300Hz, indicating that the in-plane motion should be modelled

using FE, while the bending wavelength 15 0.31m and 0.18m at 100Hz and 300Hz,

19



respectively, suggesting that the out-plane mofion should be modelled using SEA.
Performing smular analysis to the beams that make up the framework, it 15 inferred that

the framework should be modelled using FE [29].

1
e
P‘h v

WA’
Fig. 2 Fite element mesh of the determumstic subsystem of a framework-panel

gystem.

The FE model used m the two methods 15 shown m Fig. 2. It consists of 332
CBEAM [31] elements and 652 CTRIA3 [31] elements, with a total of 2852 degrees of
freedom The degrees of freedom comesponding to the determumistic component,
excitation and observation points are selected to be the master degrees of freedom,
llstrating that the reduced model employed mn the proposed method has only 12 master
degrees of freedom.

In order to venfy the validity and efficiency of the proposed method, the responses

of the system were calculated by employing the previous hybnd FE-SEA method and

20



the proposed method under 150 included modes. Figs. 3-6 show the energies of the four
panels obtamned by the two methods, wlile Figs. 7-8 show the wvelocity squared
frequency response at observation pomnts #1 and #2. A good agreement between the two
methods can be seen from Figs. 3-8. It should be pointed out that the results obtained
using the proposed method with only the dynamic condensation approach, but without
the fast mverse algonthm are m theory exactly the same as those obtamed using the

previous hybnd FE-SEA method.

103 - . . .
— Hybnd FE-SEA method
il Present method
s
i * +
e
F10°H ‘/
107} ]
1‘}-3-_ 1 1 1 1 1 1 1 1 1
50 100 130 200 250 300

Frequency (Hz)
Fig.3 Enpergyin panel 1.

21



107 . .

Hybrid FE-SEA method
wil Present method |
1
- | ]
S10° b1 Af f :
Z | V
ok
I‘_=" lﬂ-é 4
lﬂ-T 4
lﬂ-ﬁ_ 1 1 1 |_ 1 1 N 1 1
50 100 150 200 250 300
Frequency (Hz)
Fiz. 4 Energy inpanel 2.
].D-j ! I o - ! I ' I
- Hybrid FE-SEA method
*  Present method i
10—1 i 1 ¥
tod :
4
=107 11 11 f i
L V]
20l
= 10 |
1
107
1D'$ 1 1 1 |_
50 100 150 200 250 300
Frequency (Hz)

Fiz.5 Energy i panel 3.

22



107

— Hybrid FE-SEA method
*  Present method
10—1 T ﬂ 4
f ot
{
z +
£ A
= 1 t
=2 1 1 1 1 |
= v VA %
)
\ |
lﬂ'g 1 1 1 1 1 1 1 1 1
50 100 150 200 250 300
Frequency (Hz)
Fig. & Energy mpanel 4.
1072 3

._.
<
Aad
.

o |

B
_ 10 \ ]
= :
' -1 4
=10¢ ]

Hybnd FE-SEA method
= Present method

1‘}-9'_ 1 1 1 1 ]
50 100 150 200 230 300

Frequency (Hz)
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Fig. 8 Modulus squared velocity response at observation point #2.

To venfy the efficiency of the proposed method, Table 1 gives the mumbers of
degrees of freedom and the computation time for the models established by the previous
hybnd FE-SEA method and the proposed method, respectively. As given m Table 1, a
significant reduction in the computation time can be obtammed by using the proposed
method. In addihon, the computation time increases slowly as the number of meluded
modes mereases. It is noted that the implementations were performed by the Julia (v
1.0.1) platform in OS Windows 10 (64 bit) with an Intel Xeon E3-1226, 3.3GHz CPU

and 32 GB memeory.

Table 1 Meodel details and the computation time for two methods

Amnalysis model Number of DOFs | Computation time (seconds)

62.3 (100 modes)
Present method 18
sent me (Reduced) 68.1 (150 modes)

24



71.9 (200 modes)

79 4 (250 modes)
Present method without the fast
inverse algorithm 18 (Reduced) 10181
Previous hybrid FE-SEA method 2852 75347

To illustrate the accuracy and convergence of the proposed method, the velocity
squared frequency responses at the observation point #2 were calculated under different
mumbers of tnincated modes. Selecting the results obtamed using the previeus hybnd
FE-SEA method as a reference and setting the numbers of the truncated modes to 100,
150, 200 and 250, the absclute relative emors are shown m Fig. 9. As can be seen, the
absolute relative emors become smaller as the mmber of timcated modes mcreases,
Ulstrating the convergence of the proposed method. In addition, an acceptable accuracy

(better than 1%) can be cbtained for most frequency points by using 150 tnuncated

modes.
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Fig. 9 Absolute relative error of the results obtamed under different numbers of

tnincated modes compared with the reference results.
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Fig. 10 Convergence of the results obtained by the proposed method.

In order to further study the convergence of the proposed method a convergence
analysis of the modulus squared velocity response at the second observation point #2 13
performed. Selecting the frequency as 220Hz, the vanation of the absclute relative emor
and the computation time under different numbers of mcluded modes can be obtained,
as shown m Fig. 10. As can be seen, as the mmber of tuncated modes mereases, the
time cost of the proposed method increases slowly, while the accuracy increases rapidly,

which indicates the proposed method has high efficiency and good convergence.
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5 Conclusions

The hybnd FE-SEA method requires computation of the total dynamuc flexibility
matnx at each frequency pomt, which 15 very time expensive. This paper presents a
strategy to improve the efficency of the previous hybnd FE-SEA method In the
present method, first, the expensive computation from the mversion of the total dynamc
stffness matnx 15 ransferred to the mversion of the dynamic stffness matnx of the
slave degrees of freedom of the deternumistic component generated i the condensation
process. Noting that the determumstic component 15 modelled using the FE method, thas
mversion 15 performed using a fast mverse algonthm developed for a pure FE model.
The above two steps avold the direct mverse computahon of a large matnx at each
frequency, resulting in signuficant fime saving. Compared to the previous hybnd FE-
SEA method. the proposed method has higher efficiency and good convergence.
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