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Abstract

The hybnd Fiute Element (FE)} - Stahstical Energy Analysis (SEA) method
developed for mud-frequency vibration of complex bult-up systems needs to compute
the total dynammc flexibility matnx at every frequency. which 13 very tme consummg.
This paper presents an improved hybnd FE-SEA method to overcome this problem. In
the present method, first, dynamic condensation 1s introduced to reduce the order of the
determumshic FE component. which results in sigmuficant reduction of the total dynamic
shiffness matrx. Then noting that the dynamme shffness matnx of the determumishe
component 15 established by using the FE methed. a fast mverse algonthm 15 employed
to calculate the dynamme flexibility mamx of the slave degrees of freedom of the
determinishc component generated in the condensation process. These two steps avoud
the direct mverse computation of a large mainx at each frequency point of inferest,
resulting n sigmificant tme saving. A mumencal example illustrates the efficiency and

convergence of the propesed method.

Kevwords: Mid-frequency; Complex bmlt-up systems: Hybnd FE-5EA method;

Drmamic condensation approach; Dhymamie flexabality



1 Introduction

In general. dynamic analysis methods for mechanical systems may be divided mto
two types: determumistc analysis methods for low-frequency wibration and statisheal
methods for lugh-frequency vibration. The first type, such as the Fimte Element (FE)
method [1] and Boundary Element (BE) method [2], 15 switable for the so-called
determimstic system whose nommal geometnic and matenal parameters are clearly
known and which has only a few low-order modes (of long wavelength deformation) m
the frequency range of mmterest. The second type. such as Statistical Energy Analysis
(SEA) [3]. 15 swtable for the so-called stahstical system whose nominal geomemc and
matenial parameters may not be clearly known and whoch has many high-order modes
{of short wavelength deformation) in the frequency range of mnterest.

A complex bult-up system. however, may be composed of many components
which have siomficantly different dynamic behaviors at high frequencies due fo the
different properties of geometries and matenials. Some components may be subjected to
long wavelength deformation and have lower modal density, while other components
may be subjected to short wavelength deformation and have higher modal density. Such
mixed dynamic behavior is the so-called mud-frequency wibration of complex bult-up
systems [4, 53]. In this case, a determumishe method such as the FE method requires
many degrees of freedom to model the system and the response may be very sensitive to

small imperfections m the system [4, 5]. A stahstcal method such as SEA, which 13



developed based on the assumphon of lhigh meodal density, may generate an
unacceptable error due to the high modal densities of some components [4. 5]. Hence,
the complex bwlt-up system may not be well modelled using a sngle determumistic or
statistical method To solve the above problems. many improved methods have been
developed with the amm of extending the effective frequency range of determumistic
methods [6-13] and addressing the applicability of the assumphons of statishcal
methods [14-20]. In addition. a widely studied hybnd approach [21-27] combines the
determinishic and statistical metheds to establish a bybnd model which can descnbe the
response of the complex bwlt-up system more efficiently.

Considenng the different vibrabon behaviors of the components of the complex
buwlt-up system, the hybnd approach employs a defermumisbc method to model the
components which are subjected to long wavelength deformation (that 15, the so-called
determuinistic subsystem} and a statishcal method to model the components which are
subjected to short wavelength deformation (that 15, the so-called stahstical subsystem).
It establishes a nom-iterative relabonship between the deternumistc and statishcal
subsystems by using the diffuse-field reciprocity [28] Among all the hybnd
approaches, one of the most representative 15 the hybnd FE-SEA method [22-23.29].
Based on the framework of the hybnd FE-SEA methed, many other hybnd formats [24-
27] for specific problems were developed to mprove computational efficiency through

modelling the determumstic subsystem using other determumstic methods mstead of FE.



It 15 important to point out, however, that thanks to the strong apphcability of FE. in the
hybnd FE-SEA method the structural matmces of the determimistic subsystem (1e. the
mass, shffness and damping matnices) are frequency-independent, and the total dynamic
shffness matnx 15 sparse and symmemc and can be solved easily. Furthermore, for
determimstic subsystems with complex shapes or boundanes. the hybnd FE-SEA
method 15 almost ureplaceable.

It should be noted that the hybnd FE-SEA method needs to compute the mverse of
the total dynamuc stffness mainx at every frequency, which 1s very time consuming
Although the mverse mainx may be obtaned analytically, solving large linear systems
with multiple nght-hand sides 15 very difficult and fime expensive. In addihon. the
governing equation employed m the hybnd FE-SEA method 15 established based on the
hybnd model. not a pure FE model so the condensaton approach and fast mverse
algonthms developed based on the pure FE model cannot be used directly in the hybnd
FE-SEA method.

In this paper, the order of the determumistic subsystem is first reduced by using
traditional condensation and so the size of the fotal dynamme shffness matnx 1s
mdirectly reduced Then, although another mverse mamx (the dynamuc flexibality
matnx of the slave degrees of freedom of the determumistic subsystem) needs to be
calculated m the dynamic condensation process, because the determumistic subsystem is

modelled using a pure FE model, not a hybnd model a fast algorithm proposed by



Leung [30] can be miroduced here to obtamn this mverse matnx Avoiding the direct
mversion of a large matnx at each frequency, the present method of course, greatly
mproves the caleulabon efficiency and reduces the computaton fime Section 2
outlines the basic pnnciples of the hybnd FE-SEA method and gives some discussion
about its efficiency. Section 3 shows the application of the dynamic condensation
approach to the hybnd FE-SEA method followed by formmlations of the fast mmverse
algonithm for the dynamic flexibility matnx of the slave degrees of freedom of the
determimistic subsystem In section 4, a numencal example illustrates the efficiency and

the convergence of the present method. Conchusions are given i section 3.

2 Basic principles of the hvbrid method

According to the hybrid FE-S5EA method [22], a complex bult-up system can be
divided mto two parts: the determimshc and stafistcal subsystems. The response of the
stahshical subsystem 13 viewed as the superpesinon of the direct and reverberant fields,
which respectively generate the direct field dynamuc shffness matnx and the blocked
reverberant force [22. 28]. In the hybnd FE-SEA method considening the effect of the
direct shffness mamx and the blocked reverberant force, the governing equation of the
deternumistic subsystem can firstly be established Then the power balance equation for
the stabstical subsystem can be found by considenns the conservation of energy.

Fmally, the poverming and power balance equatons are connected by the diffuse-held



reciprocity relatonship [28]. The above three steps estabhish a nom-iterative hybnd
method for the mud-frequency vibration of complex built-up systems.
2.1 Governing equation of the deterministic subsvstem

The deterministic component 15 subjected to the forces 3l and £l respectively
generated from the direct and reverberant fields of the jth statistical component The

governing eguation for the determimistic component can be wnitten as [22]

qu:£m+Ef,!.Q._ZEE} (1)
J -

where q represents the degrees of freedom of the determimistic component, feyr 15 the
vector of generalized forces acting on the determumstic component Dy represents the

dynamic stiffness matrix of the determunistic component and can be expressed as
Dy =— w My +iwCy + Ky (2)

where Ky Mg and Cg respectively represent the soffness, mass and damping matmces
of the deternumistic component. « and 1 are the angular frequency and magmary umt.
respectively.

Considenng the equlibmum of the drect field forces of the jth statstical
component, fi! can be expressed in terms of the direct field dymamoc stiffness matnx

DEEJ and the vector of degrees of fieedom q as [22]



fifl = Dflg (3

Inserting Eq. (3) mnto Eq. (1), the goverming equation of the determumistic subsystem can

be written as [22
Diorq = For + Zf&l ()
7
where

Doy =Dy + ZD&H- ()

represents the total dynamic stiffness matnx.
2.2 Power balance equation of the statistical subsvstems

Assuming that the stabistical subsystem has sufficient uncertamty, the blocked
reverberant force equals zero [22]. Rewnting Eq. (4) in cross-spectral form and

averaging over a random ensemble of stahistical subsystems gives

— et r
Sqq =53 + 543 (6

where Sg, 15 the cross-spectral mamx of the displacement vector q. and

S = DRisFEDL (7
S = DiSED L (8)



where S%§ = ([ f2) and 578 = EJ{E,%{I{IE.Q[} are the cross-spectral matrices of the
external and blocked reverberant forces, respectively. #% is the complex Hermitian
transpose of #, #-% is the complex Hermutian transpose of the inverse of # and (#)
represents the ensemble average. According to the diffuse-field reciprocity [28]. S7F

can be expressed m terms of the energy of the statishical subsystem
ST = Za}-lm{ngg] 9)
i

whete

(10}

and n; and E; are the modal density and ensemble average emergy of the jth

statistical subsystem For the sake of simphicity, Eq. (8) can be rewnitten as

S5 = ),o"8 (11)

i
where
Y4 = Diiim{DE]D &t (12)

The statistical subsystems are modelled usmg SEA Considenng the energy

conservation of the statistical subsystems, the power balance equahons of all statishical



subsystems can be wntten as [3]

LNl = p5& 4+ pir (13)

where L 15 the influence matnx of the modal energy, N 15 a diagonal matmx with the
modal densities on main diagonal and E represents the tme and ensemble average
energy of the statistical subsvstems. PSS and P4 are the ime and ensemble average
mput power to the staistical subsystems due to the presence of the external force and
determimistic subsystem. Ref [22] gives a detailed denivation of Eq. (13).

The energy of each statishical subsystem can be obtamed by sclving the power
balance equation (13). Then the cross-spectral response of the determimistic subsystem
can be obtained by mserting the energy mto Eqgs. (6)-(8).

2.3 Discussion of computational efficiency

As can be seen from Egs. (7) and (12), the hybnd FE-SEA method requires
computation of the mverse of the total dynamic shffness matmnx at every frequency.
Although such a matnx can be obtamed analyhcally, i 15 very difficult and time
consumung to solve large lmear systems with multiple nght-hand sides. and it gets
worse as the number of the degrees of freedom mncreases. In addibon, since the direct
field dynamic shffness matmnx 15 generally calculated using the BE method [28]. the
matnx coefficients m BE method are frequency dependent. As a result. the extrachon of

the natural frequencies of the direct field cannot be realized by an algebraic elgenvalue

10



problem. Since the total dynanme shffness matnx 15 the sum of the dynamuc shffness
matnces of the determumshe component and the direct field the extrachion of the natural
frequencies of the determumstic subsystem also camnot be realized by an algebraic
elgenvalues problem. Hence, fast mverse algonthms [30] developed based on the pure
FE methed cannot be used directly to calculate the inverse of the total dynamme shiffness
nmatnx.

In order to solve the above problem and mmprove the computabonal efficiency of
the hybnd FE-SEA method this paper presents an improved solubion strategy. The
proposed method employs the dynamic condensation approach to reduce the degrees of
freedom of the determumistic component. As a result, the order of the total dynamuc
stffness matrix can be mdirectly, but sigmficantly. reduced without loss of accuracy. It
should be nofed that another imverse matnx 1e. the inverse matnx of the dynanuc
siffness matnx of the slave degrees of freedom of the determumistic component, needs
to be calculated n the condensation process. Since the determunistic component is
modelled using the FE method, this mamx can be obtained by using a fast mverse
algorithm [30], by which the mverse of the dynamic stiffness matnx of a pure FE model
can be calculated, using only matnx mmltiplicahon or addibon between the frequency-
independent struchural matmces (the shifness. mass and damping matnces), without any
matnx mversion operabons. Although the fast mverse algonthm will miroduce some

small errors, the computatonal efficiency can be mmproved sigmficantly with an

11



acceptable accuracy.

3 Application of the dynamic condensation approach to the
hybrid FE-SEA model
3.1 Dyvnamic condensarion of the statistical component

According to the basic pnnciple of the dynamic condensation approach [30]. all the
degrees of freedom of the determumistic component can be divided into two fypes, 12
master and slave degrees of freedom. The degrees of freedom located at the junchon
and the area of the external excitabion are defined as the master degrees of freedom
wlile the degrees of freedom located elsewhere are defined as slave degrees of freedom
Ordenng the displacement vector according to the master and slave degrees of freedom

gives q =T q. where T represents a permutation matrix with TTT =1 and #T is the

"

transpose of #. Then the displacement vector q can be winitten as
q=Tf|=T{q ] (14)

where superscipts m and s respectively represent the master and slave degrees of

freedom. Inserting Eq. (14) into Eq. (4) and pre-multiplying by TT gives
Dot = bz + ) 1D 15)
wherte

12



N . N DJIII:H. ms

Dm:TTan:l[,% El (16)
: . fa
fer= T e = [fz] an
o )
F0) — TTE%:{E?}?] (18)

Smce the master degrees of freedom lie on the junction and the area of the external
excitation, it is clear that £.5:=0, fiif =0, DY= =0, DV =0, DU =0.

As a result, using Eqs. (15)-(1%), a relationship between the master and slave degrees of

freedom can be wnitten as
q°=Tq" (19)
where
T=-D% 'DP (20)
Hence, Eq. (13) can be reduced to
D™ = fax + Zf{&m (21)
]

where

13



szﬂuﬂu+2ﬂ'jlﬁ-m+ﬂ;ﬁ51' (27}
d

Comparmg with the onginal governing Eq. (4), the reduced goveming Eq. (21) has
a sumilar form but fewer degrees of freedom and hugher efficiency. As mentioned in
section 2.3, theoretically there 15 no loss of accuracy from Eq. (4) to Eq. (21).

The displacement cross-spectrum of the master degrees of freedom, S7F. can be
obtained by using an analogous analysis to that in Eqs. (6)-(13). Furthermore, by using

Egs. (14) and (19). the cross-spectrum matnx of the onginal displacement. 5., can be

written as
S, [5?5: a9 | =T
Sor=TS5:T =T T (23)
g qq g s
where
L T _ T K
S = IS, Spo= ST, S =TS (24)

3.2 Fast inverse algorithm for dynamic stiffness calculation

It can be seen from Eq. (20) that another inverse matnx needs to be calculated m

the condensafion process. The fewer master degrees of freedom are selected. the larger

the order of the mainx D In fact, the dynamic condensation approach ransfers the

expensive compufation from one inversion operation to amother, The latter, however,

can be realized by using the fast mverse algonthm.

14



Az Eqg. (2), DY can be writfen as
DF = w’MF + iwCF + KS (25)

where K. MY and Cj respectively represent the ordered stiffness, mass and
damping matnces of the slave degrees of freedom of the deternunishc component.
Depending on the existence of the damping matnx the fast mverse algonthm [30] for
the dynamuc flexibility matnx 75 =D% ' may be miroduced for two cases, as
follows.

Firstly, for the case of ¥ = 0, Eq. (25) can be rewritten as D = — ™M + K5
Performuing generalized eigenvalue decomposition for Kif and MF. one can obtam the

fixed interface modal mamx % and a diagonal matrx 02, with
+TMTE =1 26)
+'Kie = n? 27)

Pre- and post-multiplying Eq. (25) by €T and <, respectively, and noting that € =

0, gives
D5 % = (02 - 1) 28

Performing the mmversion operation on Eq. (28) zives

15



#-p3le-T=(p?_of) ™t (29)

where #-T represents the transpose of the inverse of #. Using Eq. (29). Z¥F can be

easily obtained and wnitten as
25 =D% = &(0l_ul) el (30)

Because (0% -w’1) isa diagonal matnx, ifs mverse can be easily calculated. It should
be noted that there 15 a loss of acouracy m Eq. (30) resulting from mode tnincation. and
as Ref [50] pomted out, Eq. (30) has a wvery slow comvergence rate. However,

accelerated convergence can be achieved using the following formmla.

(0%-al) =0 el t+ o+ ¥ 20U+ oln-Y(al_ (a1
e 1|-2|'"

The above formmla is exact for any posiive integer j. Generally, taking j=2 can

obtamm a good convergence rate. Inserhing Eq_ (31) mto Eq. (30) mives (for j=2}
75 = K3 '+ ok IMIKS T+ oten- 40t - o) leT (32)

The loss of accuracy i Eq. (32) also comes from mode truncation. Comparmg to Eq.
{30), however, Eq. (32) has a faster convergence rate.

Secondly, for the case of CF = 0. Eq. (25) can be rewTitten as DF(A) = A2MY
+ ACH +KY. by sethng A—iw. Performng complex generalized eigenvalue

decomposition, one can obtam the fixed interface complex modal mamx W and a

16



diagonal matnx A. Employing the Taylor senes expansion of Z3(A) about A=0, ZF

(A) can be expressed as [30]
Z35(A) = Z5(0) + AZF (0) + %.132?"[0] +%,1325}f"'[n;. +AtveA-YAT (33)

where superscnpt pnmes stand for denvatives with respect to A. Simmlar to Eq. (32), the
loss of acouracy m Eq. (33) comes from complex mode fmuncation Performing

successive differentiation to DEZF =1 yields

75 DF + Z5DF =0 (34)
75 DS + 225 D% + Z5DF =0 (35)
75 DF + 375 DY + 375DE +75D% =0 (36)

The denvatives of Z% with respect to A can thus be calculated from Eqs. (34)-(36).

Inserting A =0 mto those denvatives yields

IF(0) =K% : (37)
T (0) = -K¥CFRE Y (38)
75 (0) = 2( w5 (cawE ") -xF M ) @39)

17



z¥ (0)

== : . (40)

(K% (corE ™) - ¥ CTRE T MERT - KE T OMFRE CHK
Insering Eqs. (37)-(40) into Eq. (33), Z% can be obtained without direct mversion
operations. Moreover, it can be seen from Eqs. (37)-(40) that Eq. (33) reduces to Eq.

GBYif CF=0.

4 Numerical example

A vahidation example from Bef [29], as shown in Fig. 1. 15 included here to
Hhstrate the efficiency and convergence of the proposed method. This complex bult-up
system consists of four thin panels and a beam framework. Each panel is bolted to the
beam framework at four pomts with an offset of 1 7mm to the neufral axis of the beams.
All panels are made of aluminnm (density p; = 2700 kg'm’, Young's modulus E=7
GPa, Poisson’s mbo v =033, loss factor =001} and they each have dimensions
0.6m=1 1m=1lmm The beams that make up the framework are also made of almunim
and they form the edges of & cube. Each beam 15 0.Vm long. with a square hollow
secion whose external side width and wall thickness are 254mm and 3.2mm,
respectively. All plam cyhndnical bolts used to connect the panels and framework have
a radms of 5mm. and the distance between two successive bolts on a same beam 13
02m A unit pomt force 1s apphed in the vertical direction on one of the bottom beams

at 0.25m from the comer, as shown in Figz_ 1 (#1). The frequency range considered here

18



15 from 30Hz to 300Hz with a frequency step of 1Hz. The excifaton point, #1, 15
selected as the first observation point The second observabon point, #2, 15 on one of the
top beams at 0.23m from the comer. and the honzontal direction 15 selected as shown m

Fig 1.

Fig 1 A framework-pane] system

The reference results are obtamed using the previous hybnd FE-SEA method
which employs the same hybnd FE-SEA model as the proposed method The partition
of the system can be obtaned based on the free propagating wavelengths across the
miven frequency band. In the panels, the shear and extensional wavelengths are both
greater than 15m at 300Hz, mdicating that the mn-plane motion should be modelled

using FE, while the bending wavelength 15 0.31m and 0.18m at 100Hz and 300Hz,

19



respectively. suggesting that the out-plane motion should be modelled using SEA.
Performing sinmlar analysis to the beams that make up the framework. it 15 inferred that

the framework should be modelled using FE [29].

Fig 2 Finte element mesh of the determumistic subsystem of a framework-pane!

gystem.

The FE model used in the two methods 15 shown m Fig. 2. It consists of 332
CBEAM [31] elements and 652 CTRIA3 [31] elements, with a total of 2852 degrees of
freedom The degrees of freedom comresponding to the determimshe component
excitafion and observation points are selected to be the master degrees of freedom.
Uhstrating that the reduced model employed m the proposed method has only 18 master
degrees of freedom.

In order to venfy the validity and efficiency of the proposed method the responses

of the system were calculated by employing the previous hybnd FE-5EA method and

20



the proposed method mmder 150 inchuded modes. Figs. 3-6 show the energies of the four
panels obtamed by the two methods. while Figs. 7-8 show the welocity squared
frequency response at observation pomts #1 and #2. A pood agreement between the two
methods can be seen from Figs. 3-8. It should be pointed out that the results obtamed
using the proposed method with only the dynamic condensation approach but without
the fast inverse algonthm are m theory exactly the same as those obtamned usmg the

previous hybnd FE-SEA method

1073 . : ; :
— Hybnd FE-5EA method
104k Present method
S107 | +
| | f\f\! \JJJ ‘
o 4
S0t i Vv :
07k :
11}-3-_ 1 1 1 1 1 1 1 1 1
30 100 150 200 250 300
Frequency (Hz)
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Fig. 7 Modulus squared velocity response at cbservation pomnt #1.
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Fig. 8 Modulus squared velocity response at observabion point #2.

To venfy the efficiency of the proposed method Table 1 gives the mumbers of
degrees of freedom and the computation time for the models established by the previous
hybnd FE-SEA method and the proposed method, respectively. As given in Table 1. a
sigmificant reduction in the computabon time can be obtamed by using the proposed
method. In addinon, the computahon tme mereases slowly as the mumber of meluded
modes mereases. It is noted that the moplementations were performed by the Julia (v
1.0.1} platform m OS5 Windows 10 (64 bit) with an Intel Xeon E3-1226, 3 3GHz CPU

and 32 GB memory.

Table 1 Meodel details and the computation ime for two methods

Analysis model Number of DOFs | Computation time (seconds)
62.3 (100 modes)
Present method 18 (Reduced)
o 681 (150 modes)
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71.9 (200 modes)
794 (250 modes)
Present method without the fast
i dhmonhis 18 (Reduced) 10181
Previous hybrid FE-SEA method 2852 75347

To illustrate the accuracy and convergence of the proposed method, the velocity
squared frequency responses at the observation point #2 were calculated under different
numbers of tnmcated modes. Selecting the results obtamed using the previeus hybnd
FE-5EA method as a reference and seting the mumbers of the tuncated modes to 100,
150, 200 and 250, the absolute relative emors are shown m Fig. 9. As can be seen the
absolute relative emmors become smaller as the mmmber of truncated modes mcreases,
Ulstratmg the convergence of the proposed method In addition. an acceptable accuracy

(better than 1%) can be obtained for most frequency points by using 150 tmmcated

modes.
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Fig. & Absolute relative error of the results obtained under different numbers of

tmncated modes compared with the reference results.
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Fig 10 Convergence of the results obtained by the proposed method.

In order to further study the convergence of the proposed method, a convergence
analysis of the modulus squared velocity response at the second observation point #2 13

performed. Selecting the frequency as 220Hz, the vanation of the absclute relative emor
and the computation time under different numbers of included modes can be obtained,
as shown m Fig. 10. As can be seen as the mumber of truncated modes mcreases, the
time cost of the proposed methed mereases slowly, while the accuracy mereases rapidly,

which indicates the proposed method has hgh efficiency and good convergence.
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5 Conclusions

The hyvbnd FE-SEA method requires computation of the total dynamuc flexibibity
matnx at each frequency pomnt. which 15 very time expensive. This paper presents a
strategy to improve the efficency of the previous hybnd FE-SEA method In the
present method first, the expensive computation from the mversion of the total dynamic
stffness mamx i1s ransferred to the mversion of the dynamic stffness maimx of the
slave degrees of freedom of the deternumistic component generated i the condensation
process. Nofing that the deternumistic component 15 modelled using the FE method, ths
mversion 15 performed using a fast mverse algonthm developed for a pure FE model
The above two steps avold the direct mverse computahon of a large matnx at each
frequency. resulting m sigmficant ime saving Compared to the previous bybnd FE-
SEA method. the proposed methed has higher efficiency and good convergence.
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