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Abstract

The aim of this work was to investigate radiomic analysis of contrast and non-contrast

enhanced planning CT images of oesophageal cancer (OC) patients in terms of stability,

dimensionality and contrast agent dependency. The prognostic significance of CT-based

radiomic features was also evaluated. Different 2D and 3D radiomic features were extracted

from contrast and non-contrast enhanced CT images of 213 patients from the multi-centre

SCOPE1 randomised controlled trial (RCT) in OC. Feature stability was evaluated by ran-

domly dividing patients into three groups and identifying textures with similar distributions

among groups with a Kruskal-Wallis analysis. A paired two-sided Wilcoxon signed rank test

was used to assess for significant differences in the remaining corresponding 2D and 3D

stable features. A prognostic model was constructed using clinical characteristics and

remaining filtered features. The discriminative ability of significant variables was tested

using Kaplan-Meier analysis. A total of 238 2D and 3D radiomic features were computed

from oesophageal CT images. More than 75 features were stable if extracted from homoge-

neous cohort (contrast or non-contrast enhanced CT images) and inhomogeneous cohort

(contrast and non-contrast enhanced CT images). Among the remaining corresponding sta-

ble features computed from both cohorts, only 4 features did not show a statistically signifi-

cant difference if obtained in 2D or in 3D (p-value < 0.05). A Cox regression model

constructed using 5 clinical variables (age, sex, tumour, node and metastasis (TNM) stage,

WHO performance status and contrast administration) and 4 radiomic variables (inverse

varianceGLCM, large distance emphasisGLDZM, zone distance non uniformity normGLDZM,

zone distance varianceGLDZM), identified one radiomic feature (zone distance varian-

ceGLDZM) that was significantly associated with overall survival (p-value = 0.032, HR = 1.25,

95% CI = 1.02–1.52). A significant difference in overall survival between groups was found

when considering a threshold of zone distance varianceGLDZM equals to 1.70 (X2 = 7.692,

df = 1, p-value = 0.006). Zone distance varianceGLDZM was identified as the only stable CT

radiomic feature statistically correlated with overall survival, independent of dimensionality

and contrast administration. This feature was able to identify high-risk patients and if
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validated, could be the subject of a future clinical trial aiming to improve clinical decision

making and personalise OC treatment.

1. Introduction

Oesophageal cancer (OC) is the eighth most common malignancy worldwide with a 5-year

overall survival rate between 15% and 25% [1]. If patients are deemed to have potentially cur-

able disease, a combination of chemotherapy, radiotherapy and surgery is used, depending on

their tumour, node and metastasis (TNM) stage, physiological fitness and personal choice[2,

3]. Despite these treatment options, many patients still have a poor prognosis, suggesting that

current treatment efficacy is suboptimal and clinical decision making can be improved to bet-

ter select which treatment to use for each patient.

Radiological staging largely informs the likely patient prognosis [4], so techniques that

identify prognostic imaging biomarkers from staging investigations may therefore improve

subsequent clinical treatment decisions. A non-invasive approach could assist the risk-stratifi-

cation of patients with OC, by identifying groups of patients that may respond to treatment, or

those that are likely to suffer side-effects but with little benefit to prognosis.

Radiomics is a new field that has gained increasing attention in recent years [5]. A large

number of quantitative features can be extracted from medical images, including parameters

not appreciated by simple visual analysis, which could improve the prediction of patient out-

comes [6]. Radiomics have been investigated in OC [7, 8]and could be used to inform future

decision support systems [9].

Several studies have focussed on evaluating sensitivity, repeatability and reproducibility of

radiomics features from different imaging modalities and anatomical regions [10, 11, 12, 13].

The prognostic and predictive value of CT-based radiomics have previously been evaluated in

OC. In the work of Ganeshan et al. [14], the prognostic value of texture analysis was assessed

in non-contrast enhanced CT images, whereas contrast enhanced CT images were used to pre-

dict response to chemoradiotherapy (CRT) in Hou et al. [15] and Nakajo et al. [16]. However,

common limitations of currently published works are the often small sample sizes used to per-

form radiomic analyses and the lack of stability testing of image features across heterogenous

datasets.

A common example of variation in a radiological dataset is the presence or absence of intra-

venous (I.V.) contrast in CT examinations. Ideally, staging CT examinations should be per-

formed with I.V. contrast to improve detection of the tumour, lymph nodes and metastases,

and to aid treatment planning. However, some patients are unable to have I.V. contrast due to

poor renal function or allergy [17]. Administration of I.V. contrast is often desired in clinical

trials although not a pre-requisite for inclusion. Radiomic features that are stable across con-

trast versus non-contrast enhanced CT images and 2-dimensional (2D) versus 3-dimensional

(3D) images would overcome this limitation and increase their application across multiple

datasets.

Accordingly, the first aim of this study was to evaluate the stability, dimensionality and con-

trast agent dependency of radiomic features extracted from contrasted and non-contrast CT

examinations of patients with OC, acquired during the multi-centre SCOPE1 randomised con-

trolled trial (RCT). The second aim of the work was to evaluate the prognostic significance of

discovered stable radiomic features as potential future imaging biomarkers in personalised OC

staging.
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2. Materials and methods

2.1. Population and CT imaging

This study retrospectively included a cohort of 213 patients (with radiotherapy planning CT)

recruited into the SCOPE1 trial [18], a National Cancer Research Institute and Cancer Research

UK funded Phase II/III two arm clinical trial investigating definitive CRT with and without cetux-

imab in OC. The SCOPE1 trial (EUDRACT 2006-002241-37; ISRCTN 4771849) was ethically

approved by the Research Ethics Committee for Wales on 17/04/2007. The trial was performed in

accordance with the study protocol and monitored by the trial management group. All patients

recruited to SCOPE1 provided written informed consent prior to randomisation and treatment

initiation. Patients included in the trial were also informed of the strict confidentiality of their

data and the possible review and use by authorised individuals other than their treating physician

[19]. Detailed baseline characteristics of subjects enrolled in this study are presented in Table 1.

Patients underwent CT scan examination in different hospitals in UK. Oesophageal con-

trast-enhanced and non-contrast enhanced CT data were obtained using different scanners

(Siemens, GE medical systems, Philips) and the following acquisition parameters: 120 kV; 20–

641 mAs; reconstruction diameter, 361–700; matrix, 512 × 512; pixel spacing, 0.71–1.37 mm;

slice thickness, 2.5–5 mm; time between injection and CT, 35-40s.

On each 2D axial CT image, the gross tumour volume (GTV) was manually outlined fol-

lowing the SCOPE1 protocol by an expert oncologist. The CERR software package [20] was

used to process and import the CT images and radiotherapy volumes. The cohort was stratified

into groups of patients with contrasted (n = 138) and non-contrasted CT (n = 75).

2.2. Radiomic features extraction

Using an in-house developed data analytics software [21], radiomic features were automati-

cally calculated in compliance with the Image Biomarker Standardisation Initiative (IBSI) [22],

Table 1. Baseline characteristics of the clinical cohort.

Frequency (%)

Median age 73 (range 42–90)

Gender (M:F) 119 (55.9) : 94 (44.1)

Histology Adenocarcinoma 53 (24.9)

Squamous cell carcinoma 156 (73.2)

Undifferentiated carcinoma 4 (1.9)

Tumour location Upper third 23 (10.8)

Middle third 98 (46.0)

Lower third 92 (43.2)

Contrast agent Yes 138 (64.8)

No 75 (35.2)

WHO performance status 0 110 (51.6)

1 103 (48.4)

Stage group I 8 (3.8)

II 41 (19.2)

III 129 (60.6)

IV 35 (16.4)

Treatment Control arm (CRT) 108 (50.7)

Research arm. (CRT + cetuximab) 105 (49.3)

Overall survival Alive 128 (60.1)

Dead 85 (39.9)

https://doi.org/10.1371/journal.pone.0225550.t001
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an international collaboration aiming to standardise radiomic information extracted from

medical images in order to perform high-throughput quantitative image analysis. Before

extracting the features, CT images were isotropically resampled to 2 mm resolution in all three

directions using linear interpolation. The list of extracted second-order and high-order texture

features included: grey level co-occurrence matrix (GLCM), grey level run length matrix

(GLRL), grey level size zone matrix (GLSZM), grey level distance zone matrix (GLDZM),

neighbourhood grey tone difference matrix (NGTDM). Second-order and high-order features

were obtained considering one segment layer at a time (2D) or considering the whole tumour

volume (3D). Furthermore, GLCM and GLRLM values were calculated by considering two

types of aggregation methods. Texture features were obtained “without merging” when con-

sidering each 2D directional matrix and averaging over 2D directions and slices, or when con-

sidering each 3D directional matrix and averaging over the 3D directions. Features were

calculated “with merging” when the radiomic value was calculated from a single matrix after

merging all 2D directional matrices or when considering a single matrix after merging all 3D

directional matrices. The list of radiomic features extracted for each oesophageal tumour is

summarized in Table 2.

2.3. Radiomic features selection and stability comparison

To investigate the possible impact of contrast agents on texture-based features extracted from

CT images of OC, three different groups of patients were analysed: “mixed group” with con-

trast and non-contrast enhanced CT scans (n = 213), “contrast group” cohort with CT images

acquired with I.V. contrast (n = 138) and “non-contrast group” with CT images acquired with-

out I.V. contrast (n = 75). Each group was used as input in the workflow depicted in Fig 1.

Three sub-groups were created by randomly dividing the clinical cohort of patients using the

function “randi” of Matlab (Matlab 2017b; Mathworks, Natick, MA, USA) that generates uni-

formly distributed random integers in a specified interval. From each sub-group, features were

extracted in 2D, in 3D, with and without merging. Features with similar distributions among

sets were identified as stable using the Kruskal-Wallis test. Features with different distributions

were identified as unstable and excluded from further analysis. The remaining corresponding

2D and 3D stable features within each group were compared to assess for significant differ-

ences with the paired two-sided Wilcoxon signed rank test. Kruskal-Wallis and paired two-

sided Wilcoxon signed rank test were performed using Matlab. For both tests, a p-value

of<0.05 was considered statistically significant.

For each group, stable features that showed no difference if obtained considering one seg-

ment layer at a time in 2D or the whole tumour layers in 3D were grouped and evaluated with

intraclass correlation coefficient (ICC). Features resembling each other (ICC > 0.90) were

removed.

Remaining radiomic features were further investigated to evaluate their potential prognos-

tic value. A Cox regression model was constructed using 5 clinical variables (age, sex, TNM

Table 2. Radiomic features extracted from contrast and non-contrast enhanced CT images. GLCM, grey level co-occurrence matrix; GLRLM, grey level run length

matrix; GLSZM, grey level size zone matrix; GLDZM, grey level distance zone matrix; NGTDM, neighbourhood grey tone difference matrix.

Texture type Dimension Summarising features Feature computed

GLCM 2D/3D with/without merging 100

GLRLM 2D/3D with/without merging 64

GLSZM 2D/3D - 32

GLDZM 2D/3D - 32

NGTDM 2D/3D - 10

https://doi.org/10.1371/journal.pone.0225550.t002
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stage, WHO performance status and contrast administration) and stable radiomic features.

The Cox regression was computed with a backward conditional method, which has previously

been recommended [23] and used in published studies [8]. Survival comparison was per-

formed with the Kaplan-Meier life-table method. In particular, the independent cohort of

patients enrolled in this study was divided into three groups equally populated by using prog-

nostic variables obtained from the Cox regression model. A log-rank test evaluated significant

differences in overall survival (OS). Differences with a p value of< 0.05 were considered statis-

tically significant. Survival analysis was performed using SPSS Statistics version 23.0 (IBM,

Chicago, IL, USA).

Fig 1. Workflow used for selecting stable radiomic features. The workflow was repeated three times using three different groups (a “mixed group” with contrast and

non-contrast enhanced CT images, a “contrast group” with contrast enhanced CT images and a “non-contrast group” with non-contrast enhanced CT images) as input

data. The input group was divided in three sub-groups (n = 71 for the mixed group, n = 46 for the contrast group and n = 25 for the non-contrast group) and processed

to extract the features. Stable features, identified as the ones with similar distributions among the sub- groups, were further analysed. Feature with different distributions

among sub-group (identified as unstable) were not further investigated.

https://doi.org/10.1371/journal.pone.0225550.g001
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3. Results

A total of 238 2D and 3D radiomic features were extracted from the CT images of the oesopha-

gus. Fig 2 shows both stable and unstable radiomic features extracted from the three groups.

The majority of the features were stable in the three sub- groups. Conversely, unstable features

were identified with the Kruskal-Wallis test in the mixed group (n = 82), contrast group

(n = 3) and non-contrast group (n = 6), respectively, and excluded from further analysis.

As shown in Fig 3, 2D features proved to be more stable then 3D features on contrast-

enhanced and non-contrast enhanced CT images of patients with OC.

Table 3 summarizes the results obtained after comparing the corresponding 2D and 3D sta-

ble features with the paired two-sided Wilcoxon signed rank test. Among the 76 remaining

corresponding stable features in the mixed group, only 6 features did not show a statistically

significant difference if obtained in 2D or in 3D. For the contrast group, 15 stable features

were not statistically different if extracted in 2D or 3D. The greatest number of stable features

(n = 17) that were independent if computed slice-by-slice or from a volume was found in the

non-contrast group. Four independent features (inverse varianceGLCM, large distance empha-

sisGLDZM, zone distance non uniformity normGLDZM, zone distance varianceGLDZM) were sta-

ble across dimensionality and contrast administration in the three groups considered. Among

them, inverse varianceGLCM was the only feature that also showed to be independent from the

type of aggregation methods used. Comparison of the inverse varianceGLCM obtained with

merging and without merging showed a high correlation (ICC > 0.98). Due to this result, the

two features were clustered and inverse varianceGLCM obtained without merging was used as

leader of the set in the following analysis.

The Cox regression model was constructed using 5 clinical variables (age, sex, TNM stage,

WHO performance status and contrast) and 4 radiomic variables (inverse varianceGLCM, large

distance emphasisGLDZM, zone distance non uniformity normGLDZM, zone distance varian-

ceGLDZM). At the final step of the prognostic model, two variables were found significantly

associated with overall survival: TNM stage (p-value = 0.017, HR = 1.48, 95% CI = 1.07–2.05)

and zone distance varianceGLDZM (p-value = 0.032, HR = 1.25, 95% CI = 1.02–1.52). Since

TNM stage is already known as a prognostic marker in oesophageal cancer8, only the prognos-

tic significance of zone distance varianceGLDZM was explored further.

Zone distance varianceGLDZM was found to be correlated with an increased chance of mor-

tality and was used as a prognostic score to separate patients into three groups each populated

with 71 subjects. The score ranges used for separating the cohort were the following: for group

1, labelled as low-risk group, from 0.15 to 0.85, for group 2, labelled as intermediate-risk

group, from 0.86 to 1.69 and for group 3, labelled as high-risk group, from 1.70 to 6.2. The

median OS of each low, intermediate and high-risk group was 688 days (95% CI 597.4–773.4),

554 days (95% CI 532.9–700.9), 436.5 days (95% CI 427–580.9), respectively. The log-rank test

determined a significant difference (X2 = 7.767, df = 2, p-value = 0.021) as shown in Fig 4A.

The significant difference (X2 = 7.692, df = 1, p-value = 0.006) also persisted when merging

the low and the intermediate groups. Fig 4B shows the risk stratification when dividing the

cohort of patients in two groups by considering a threshold of zone distance varianceGLDZM

equal to 1.70.

4. Discussion

In this study, we evaluated the potential additional value derived from radiomic features

extracted from contrast and non-contrast enhanced CT images of a RCT in the development

of a new prognostic model in OC. In particular, we investigated: 1) the relationship between

CT textures and the administration of I.V. contrast; 2) stability of CT features analysis when

Stable and prognostic CT-based radiomic features in oesophageal cancer
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computed in 2D or from a 3D volume in homogeneous and inhomogeneous OC cohorts; and

3) the prognostic value of stable CT features in current OC staging systems. To the best of our

knowledge, this is the first study to develop a prognostic model with stable and dimensional-

ity-independent features using clinical RCT trial data of contrast and non-contrast enhanced

CT images of OC patients.

Our analysis showed a statistical dependency of radiomics features extracted from CT scans

on I.V. contrast medium. As expected, radiomic features are more stable if extracted from

homogeneous cohorts. Furthermore, our study showed that most of the stable features

extracted from CT images acquired after the administration of I.V. contrast are also stable

when obtained from cohort of patients scanned without I.V. contrast. This is in line with the

recent work of Badic et al. [24], in which the link between features extracted from contrast

enhanced and non-contrast enhanced CT images of primary colorectal cancer of 61 patients

was investigated. However, a comparison with our findings was not possible because even

though a large number of metrics were computed (first-order, second-order and third-order),

no GLDZM-based texture analysis was performed.

We also further investigated differences when radiomic features are extracted in 2D or in

3D. In line with the work of Shen et al. [25], our results have shown that 2D features performed

slightly better than the corresponding 3D ones in the three cohorts considered. In particular,

no 2D features were unstable when CT images were acquired with I.V. contrast and only one

was found unstable in the non-contrast group. In general, the number of unstable 3D features

was slightly higher than the number of unstable 2D features. This could be explained by differ-

ent voxel sizes of the CT images acquired in this multi-centre study (axial resolution range:

0.71–1.37 mm; slice thickness range: 2.5–5 mm). The dependency of radiomic features on CT

voxel size has already been investigated in several studies [26, 27]. However, the production of

scans reconstructed to different voxel resolution is frequent in multi-centre trials and even the

implementation of an image resampling method before radiomic feature extraction may not

warrant the complete removal of voxel size dependency. In fact, Mackin et al. [28] showed that

Fig 2. Stable and unstable radiomic features extracted from the three groups. GLCM, grey level co-occurrence

matrix; GLRLM, grey level run length matrix; GLSZM, grey level size zone matrix; GLDZM, grey level distance zone

matrix; NGTDM, neighbourhood grey tone difference matrix; �, feature computed with merging.

https://doi.org/10.1371/journal.pone.0225550.g002

Fig 3. Stability of the radiomic features for the three groups assessed. Features were divided in 2D or in 3D.

https://doi.org/10.1371/journal.pone.0225550.g003
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Table 3. List of stable radiomic features not statistically different if extracted using one segment layer at a time or considering the whole tumour volume in CT

images of the oesophagus. In bold, common features among three cohorts considered that showed to be stable and dimensionality and contrast agent independent.

GLCM, grey level co-occurrence matrix; GLRLM, grey level run length matrix; GLSZM, grey level size zone matrix; GLDZM, grey level distance zone matrix; NGTDM,

neighbourhood grey tone difference matrix; �, feature computed with merging.

Texture type Feature Mixed group Contrast group Non-contrast group

GLCM contrast yes

Inverse variance yes yes yes

Inverse variance� yes yes yes

GLRL High GL run emp yes yes

Long run low GL emp yes yes

RL non uniformity norm yes yes

Run percentage yes yes

RL variance yes yes

High GL run emp� yes yes

Long run low GL emp� yes yes

Run percentage� yes yes

RL variance� yes yes

GLSZM Small zone emphasis yes yes

GLDZM Small distance emphasis yes yes

Large distance emphasis yes yes yes

Zone distance non uniformity norm yes yes yes

Zone distance variance yes yes yes

https://doi.org/10.1371/journal.pone.0225550.t003

Fig 4. Kaplan-Meier survival curves of the cohort used in this work. Patients divided in a) low-risk group (zone distance varianceGLDZM from 0.15 to 0.85),

intermediate-risk group (zone distance varianceGLDZM from 0.86 to 1.69) and high-risk group (zone distance varianceGLDZM from 1.70 to 6.2) based on the

prognostic score and b) group 1 (zone distance varianceGLDZM< 1.70) and group 2 (zone distance varianceGLDZM => 1.70) considering a threshold of zone

distance varianceGLDZM. There was a significant difference in OS when dividing in low, intermediate and high-risk group (X2 = 7.37, df = 1, p-value = 0.007) or when

using a threshold of zone distance varianceGLDZM (X2 = 7.692, df = 1, p-value = 0.006).

https://doi.org/10.1371/journal.pone.0225550.g004
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image resampling alone tends to increase the variability of radiomics features extracted from

CT images of lung cancer patients. They also suggested that the variability can be reduced with

a harmonization the pixel size based on scan resampling in the time domain and a Butterworth

low-pass filtering in the frequency domain.

In general, 2D features extracted from CT images of OC patients performed slightly better

than 3D ones when evaluated in terms of stability, dimensionality and I.V. contrast depen-

dency. Although, 3D features might carry more information and allow to perform a whole

tumour analysis [29], they are affected by the slice thickness of the imaging data [30] that is

typically higher than the in-plane resolution [31]. However, based on the results of this study

we cannot recommend 2D over 3D features for clinical research and radiomics studies. Future

investigations should consider including the stable features identified in this work. The list of

stable features is reported in S1 Table.

Analysis of dimensionality and contrast-independent stable features with the Cox regres-

sion method identified zone distance varianceGLDZM as the only radiomic feature statistically

correlated with OS. GLDZM evaluates the relation between grey levels and location by count-

ing the number of groups (or zones) of voxels with a specific discretised grey level value and

the same distance to the edge of the ROI considered. In particular, zone distance varian-

ceGLDZM estimates the variance in zone counts for the different zone distances which provides

a quantitative characterization of tumour heterogeneity. This is known to correlate with poor

prognosis [32]. In agreement with the model, zone distance varianceGLDZM is significantly

associated with overall survival. Patients with increased zone distance varianceGLDZM have a

higher hazard ratio and a therefore shorter life expectancy. In particular, we have identified a

high-risk group above a threshold 1.7 for zone distance varianceGLDZM. This result confirms

the potential prognostic value of textural features measuring tumour heterogeneity as already

shown by different radiomic studies in esophageal [33], lungs [34], head and neck cancer [35].

This imaging biomarker needs to be tested in a validation dataset to prove its prognostic value.

This study has some limitations. Although the great strength of the study is that the data

was obtained from multiple centres in the context of a randomised control trial, validation of

the model constructed using stable features was not performed. According to the TRIPOD

scheme, this study can be classified as a type 1 study in which the development of a prediction

model and the predictive performance are evaluated using the same data. The dataset used in

this work was not split in training and validation set to power the prognostic model appropri-

ately by reducing as much as possible the rate of false positives (type-I error) and by improving

the ability to detect a true difference between groups (type-II error) [36]. This ensure a high

stability of the model and its transferability and applicability to a wider oesophageal cancer

population independent to contrast administration. Second, the robustness of the extracted

radiomic features in terms of reproducibility and repeatability in contrast and non-contrast

enhanced CT images of OC patients could not be investigated because of the design of the

RCT. Future work will address these limitations by externally validating the prognostic model

and by evaluating the robustness of radiomic features obtained from CT images in different

multi-centre datasets.

5. Conclusion

We investigated the stability, dimensionality and contrast agent dependency of radiomic fea-

tures extracted from contrasted and non-contrast CT examinations of patients with OC,

acquired during the multi-centre SCOPE1 RCT. Zone distance varianceGLDZM was identified

as the only stable CT radiomic feature statistically correlated with overall survival, independent

of dimensionality and contrast administration. This feature was able to identify high-risk
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patients and if validated, could be the subject of a future clinical trial aiming to improve clinical

decision making and personalise OC treatment.
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S1 Table. List of 2D and 3D radiomic features that showed to be stable when extracted
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ture computed with merging.
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