Monthly Notices

MNRAS 488, 2143-2157 (2019)
Advance Access publication 2019 July 5

doi:10.1093/mnras/stz1843

Observational properties of ultra-diffuse galaxies in low-density
environments: field UDGs are predominantly blue and star forming

D. J. Prole,"* R. F. J. van der Burg,> M. Hilker? and J. I. Davies'

School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF243AA, UK
2European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching bei Miinchen, Germany

Accepted 2019 July 2. Received 2019 July 1; in original form 2019 May 2

ABSTRACT

While we have learnt much about ultradiffuse galaxies (UDGs) in groups and clusters, relatively
little is known about them in less dense environments. More isolated UDGs are important for
our understanding of UDG formation scenarios because they form via secular mechanisms,
allowing us to determine the relative importance of environmentally driven formation in groups
and clusters. We have used the public Kilo-Degree Survey together with the Hyper Suprime-
Cam Subaru Strategic Program to constrain the abundance and properties of UDGs in the
field, targeting sources with low surface brightness (24.0 < fi., < 26.5) and large apparent
sizes (3.0 arcsec < 7., < 8.0arcsec). Accounting for several sources of interlopers in our
selection based on canonical scaling relations, and using an empirical UDG model based on
measurements from the literature, we show that a scenario in which cluster-like red-sequence
UDGs occupy a significant number of field galaxies is unlikely, with most field UDGs being
significantly bluer and showing signs of localized star formation. An immediate conclusion
is that UDGs are much more efficiently quenched in high-density environments. We estimate
an upper limit on the total field abundance of UDGs of 8 + 3 x 1073 cMpc— within our
selection range. We also compare the total field abundance of UDGs to a measurement of the
abundance of HI-rich UDGs from the literature, suggesting that they occupy at least one-fifth
of the overall UDG population. The mass formation efficiency of UDGs implied by this upper
limit is similar to what is measured in groups and clusters.
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1 INTRODUCTION

According to the hierarchical model of galaxy formation (White &
Rees 1978; Kauffmann, White & Guiderdoni 1993; Cole et al.
2000), dwarf galaxies (M, < ~10° Mg,) have constituted the most
numerous population of galaxies over cosmic time. Despite this,
their small physical sizes and relatively faint brightness can cause
them to be proportionally overlooked in observational studies due to
difficulties either in detecting them or in distinguishing them from
background sources (e.g. Disney 1976; Davies, Davies & Keenan
2016; Williams et al. 2016).

Low surface brightness (LSB) galaxies are typically dwarf
galaxies in terms of both their stellar and halo mass (e.g. Prole
et al. 2019), but have a much lower density of stars. Traditionally,
they have been defined by having surface brightnesses at least one
magnitude fainter than the night sky, around 22.5 mag arcsec™! in
the g band. However, galaxies with much lower surface brightness
than this are known to exist (e.g. McConnachie 2012; Mihos et al.
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2015). LSB galaxies were first proposed to exist (Disney 1976) and
identified several decades ago (Bothun et al. 1987; Impey, Bothun &
Malin 1988) and have been a subject of scientific discussion ever
since (e.g. Davies, Phillipps & Disney 1989; McGaugh et al. 1996;
Dalcanton et al. 1997; Conselice, Gallagher & Wyse 2003; Sabatini
et al. 2003; Roberts et al. 2007; Lelli, Fraternali & Sancisi 2010).
Recently, there has been a resurgence of interest in LSB galaxies
thanks to the deep imaging of the Dragonfly telephoto array
(Abraham & van Dokkum 2014), with which van Dokkum et al.
(2015) discovered a high abundance of large LSB galaxies in the
Coma Cluster. The authors coined the term ‘ultradiffuse galaxy’
or UDG for such objects, a name that has been widely adopted
throughout the literature. Specifically, UDGs are defined as objects
comparable in effective (half-light) radii to the Milky Way (., >
1.5kpc) but of much lower surface brightness (fi. , > 24, where 1
denotes a surface brightness in magnitude per square arcsecond and
e is the average surface brightness within the effective radius).
There has been much debate over the significance of UDGs and
as to whether they make up a different population (in terms of their
formation mechanism and thus intrinsic properties) to other, smaller
low surface brightness galaxies. There is a growing consensus
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that UDGs share a continuum of properties with less extreme
galaxies in terms of star formation rate (Leisman et al. 2017), size
and luminosity (Conselice 2018; Danieli & van Dokkum 2018),
metallicity (e.g. Fensch et al. 2019), and perhaps also mass-to-light
ratios (e.g. Prole et al. 2019); however, some UDGs may be genuine
outliers in the stellar mass—halo mass plane and are devoid of dark
matter (e.g. van Dokkum et al. 2018, 2019, but see also Trujillo
et al. 2019), perhaps suggesting separate formation mechanisms.

It is likely that the popularity of UDGs among the literature
is thanks in part to their large sizes; this makes them easier to
identify against background objects in groups and clusters. Indeed,
this property has been exploited by several authors in their studies
of UDGs in such environments (e.g. Koda et al. 2015; Muifioz et al.
2015; van der Burg, Muzzin & Hoekstra 2016; Yagi et al. 2016;
Janssens et al. 2017; van der Burg et al. 2017; Venhola et al. 2017;
Mancera Pifia et al. 2019; Zaritsky et al. 2019). This bias towards
studies in dense environments is exacerbated by the difficulty
of obtaining spectroscopic redshifts (and therefore distances) for
large samples of LSB galaxies. However, one recent development
suggests that it may be possible to estimate distances to such
galaxies by exploiting the ubiquity of the globular cluster luminosity
function (Romén et al. 2019).!

UDG:s in clusters are typically on the red sequence (Koda et al.
2015; van der Burg et al. 2016; RS et al. 2019) and show little
evidence for tidal interaction even close to the cluster centres
(Mowla et al. 2017), suggesting relatively high mass-to-light ratios.
There is tentative evidence that UDGs tend to be bluer towards the
outskirts of galaxy groups (Roméan & Trujillo 2017b; Alabi et al.
2018; Zaritsky et al. 2019) (and more generally in lower-density
environments; cf. Greco et al. 2018a,b), suggesting that interactions
with the environment during in-fall can diminish star formation in
UDGs. While this is not surprising if UDGs are quenched during
in-fall, a separate analysis by Roman & Trujillo (2017a) did not
show a significant trend between environmental density and colour.

One outstanding question regarding UDGs is whether they are
able to form more efficiently in dense environments like groups
and clusters, or whether density plays a detrimental role in UDG
formation/survival efficiency. van der Burg et al. (2017) find that
UDGs are relatively more common in higher-mass environments,
but this is in tension with other studies (Romédn & Trujillo 2017b;
Mancera Pina et al. 2018) that came to the opposite conclusion.

Whatever the role of the environment in UDG production, several
authors (e.g. van der Burg et al. 2016; Wittmann et al. 2017; Mancera
Pina et al. 2018) have observed a relative dearth in their number
density towards the centres of massive clusters. This suggests that
in very high density regions, UDGs are either destroyed quickly or
do not form as efficiently. One scenario suggested by Janssens et al.
(2017) is that UDGs dissolve in cluster cores, possibly depositing
ultracompact dwarf galaxies in the process.

UDGs can also be understood from a theoretical point of view.
UDG formation scenarios can be broadly classified as ‘in situ’
(i.e. secular formation in the absence of interactions with an
exterior body or bodies), or environmentally driven. Di Cintio
et al. (2017) showed through zoom-in cosmological simulations
that gas outflows caused by internal feedback processes can produce
UDGs within dwarf-sized haloes. Further, Amorisco & Loeb (2016)
argue that UDGs can form in sifu both in the field and in cluster
environments, and should be expected to do so as the high angular

! Although it is not currently clear whether the globular cluster luminosity
function is ubiquitous for UDGs (e.g. van Dokkum et al. 2018, 2019).
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momentum tail of the dwarf galaxy distribution. The importance of
high-spin haloes for UDG production was also noted by Rong et al.
(2017) in their simulations. Indeed, there is much observational
evidence suggesting UDGs reside in dwarf-sized haloes (e.g.
Beasley & Trujillo 2016; Amorisco et al. 2018; Lim et al. 2018;
Prole et al. 2019).

However, there are several other feasible formation mecha-
nisms that involve the transformation of normal dwarf galaxies
to UDGs though environmental effects. One example is tidal
heating, whereby galaxy—galaxy interactions cause an expansion
of the dwarfs (Collins et al. 2013; Carleton et al. 2018). There
are several pieces of observational evidence showing that some
UDGs are associated with tidal interactions (Wittmann et al. 2017,
Bennet et al. 2018). Continually, ram-pressure stripping from the
dense intracluster medium in groups and clusters is perhaps able to
produce UDGs by quenching early in-fall galaxies (Yozin & Bekki
2015). Jiang et al. (2019) argue that ram-pressure stripping is the
primary effect that causes UDGs to lose gas (and therefore shut
down star formation) in dense environments. This can account for
the red colours observed for UDGs in clusters.

While much is known about UDGs in dense environments,
relatively little is known about the field population,> expected
to form preferentially through secular mechanisms® (see e.g. the
work of Graham et al. 2017 and Janz et al. 2017 regarding the
evolution of early-type dwarf galaxies). This is mainly because of
the difficulties involved in measuring distances to large samples of
LSB galaxies without prior information such as cluster association.
Observational studies of groups and clusters alone have been unable
to disentangle the relative importance of in situ versus environment-
driven formation because of the need to perform a statistical
background subtraction of interloping (i.e. non-group or cluster)
UDG candidates. Some studies (Das 2013; Leisman et al. 2017;
Papastergis, Adams & Romanowsky 2017; Greco et al. 2018a;
Zaritsky et al. 2019) have shown that a field population of UDGs
does indeed exist, yet the global properties of these galaxies are
poorly understood.

Two particularly relevant pieces of work are those of Leisman
et al. (2017) and Jones et al. (2018), who have shown not only that
H1-bearing UDGs exist in the field (as theoretically predicted by Di
Cintio et al. 2017), but also that their number density is too high to be
explained by an extrapolation of the empirical relation between the
number of UDGs and M,,;, measured by van der Burg et al. (2017).
Further, their samples appear systematically bluer than anticipated
for UDGs in the field when compared with semi-analytic models
(Rong et al. 2017; Jones et al. 2018). However, this analysis was
limited to H I-rich field UDGs and it is unknown how this population
relates to the overall field UDG population.

In this work, we use deep wide-field imaging combined with an
empirical UDG model to statistically constrain the global properties
of UDGs in the field without knowing the distances to any of our
sources. This includes an analysis of their colours, number density,
and mass formation efficiency. The paper is structured as follows.
We describe our data in Section 2. We describe our sample of UDG
candidates in Section 3 and quantify our recovery efficiency. In
Section 4 we describe our empirical model of UDGs and potential

2We note that our working definition of the field is a representative piece of
the Universe in which galaxy groups and clusters are included, but massive
haloes naturally make up a relatively small fraction by mass.

3 Although for this study we cannot rule out all external processes such as
accretion from gas clouds.
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interlopers in our UDG candidate sample. Our results are presented
and discussed in Sections 5 and 6, respectively. We conclude in
Section 7. All magnitudes are quoted in the AB magnitude system.
Cosmological calculations are performed assuming lambda cold
dark matter (ACDM) cosmology with 2, =0.3, 2, =0.7, Hy =70
kms~! Mpc~!.

2 DATA

For source detection and structural parameter estimation, we use a
180 deg? subset of data from the Astrowise (McFarland et al. 2011)
reduction of the Kilo-Degree Survey (KiDS; de Jong et al. 2013;
Kuijken et al. 2019) that overlaps with the GAMA spectroscopic
survey (Driver et al. 2011) equatorial fields. We use the r band for
source detection because it is the deepest and has the best image
quality. This is the same data* used by van der Burg et al. (2017) in
their study of the UDG populations of galaxy groups and so we can
make direct comparisons with their findings. Despite the GAMA
overlap, redshift measurements are not available for most of our
sources because they are generally much fainter than the limiting
depth of GAMA at 19.8m,.

The pixel size of KiDS is 0.2 arcsec, small enough to properly
sample the point spread function (PSF) that has a typical full width
at half-maximum (FWHM) < larcsec. The sky background is
estimated in meshes of 20 arcsec that are median filtered over in
3 x 3 meshes.

While the KiDS 7 band is sufficient to reach a limiting surface
brightness of fi., ~ 26.5, we additionally use the first data release
of the overlapping Hyper-Suprime-Cam Subaru Strategic Program
(HSC-SSP; Aihara et al. 2018) to measure colours. The HSC-SSP
data is around 0.5m, deeper than KiDS (more so in the g band), but
has a smaller overlapping footprint by about a quarter compared
to the KiDS area we consider. This leaves us with ~39 deg? of
unmasked data from which we can measure HSC-SSP colours.

Compared to the 180deg? KiDS-GAMA overlap we use here,
the remaining footprint that we have HSC-SSP data for is fairly
limited. This may make us partially sensitive to cosmic variance.
However, we note that our footprint is spread uniformly over three
GAMA regions (G09, G12, and G15), each separated by at least 26
degrees. Additionally, we can account for local galaxy groups and
clusters using the GAMA group catalogue (Robotham et al. 2011;
see Section 6.3). In the future, our analysis can be easily upscaled
to larger footprints.

We note that we do not use the HSC-SSP for detection because
of its limited footprint and because its background subtraction is
more aggressive compared to KiDS (mesh grid of ~20 arcsec but
with no median filtering over meshes), meaning that it could restrict
the maximum angular size of sources we could measure accurately.
For the present analysis, we restrict ourselves to the g and r bands
but note that this can be expanded in future studies.

3 MEASUREMENTS

Since we do not know the distance to any of our sources (apart from
a small subset; cf. Appendix D), we must rely on selection criteria
defined in observable parameter space (i.e. that which we measure
as projected on the 2D surface of the sky). Specifically, we target the
LSBregime 24.0 < fi., < 26.5, where the lower limit is chosen for

4 Although they use the THELI (Erben et al. 2013) KiDS reduction, the depth
is essentially equivalent.
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consistency with the literature and the upper limit is defined by the
depth of KiDS. The upper selection limit on 7. is chosen to be much
smaller than the spatial scale of the KiDS background subtraction
and we set it as 8.0 arcsec in line with van der Burg et al. (2017).
The lower limit on 7. is more difficult to set; while technically we
are limited by the size of the PSF (FWHM ~0.6 arcsec), it is also
worth considering that the number of contaminant sources (i.e. non-
UDGs) that satisfy our selection criteria quickly increases as this
limitis lowered because of massive galaxies in the background. This
issue is compounded by the fact that we do not have the advantage
of a directly measurable background surface density compared to
similar studies on groups and clusters. Here, we use a lower limit
of 7. > 3 arcsec for our selection (e.g. Sabatini et al. 2003; Davies
et al. 2016). At a redshift of z = 0.2, 7, = 3 arcsec corresponds to
~10kpc. Our upper limit of 7. = 8 arcsec corresponds to 1.6 kpc at
z=0.01.

3.1 Source detection and measurement

We choose to improve upon the catalogue used in van der Burg
et al. (2017), who used SEXTRACTOR for source extraction, by
using software optimized for the detection of LSB sources; this
enables us to probe slightly deeper than their catalogue. We have
experimented with several different detection and segmentation al-
gorithms, including MTOBJECTS (Teeninga et al. 2016), PROFOUND
(Robotham et al. 2018),° and DEEPSCAN (Prole et al. 2018).°
After some consideration, we selected MTOBJECTS as the most
suitable for our analysis because it seemed to produce less spurious
detections around large, bright galaxies in our pipeline. We note that
during this work PROFOUND has been updated with an alternative
segmentation algorithm that improves its reliability around such
objects, but we have not tested this. We used default parameters from
MTOBJECTS: @ = 10~° and move_factor = 0.5, where « sets the
statistical significance level for the deblending and move_factor
determines the spread of large objects.

We used the KiDS weight images to mask out regions in the data
that have less than three exposures contributing to the imaging prior
to the MTOBJECTS run. This was done to ensure uniform sensitivity
over the full data set, as MTOBJECTS relies on a global estimate of
the background distribution.

3.1.1 Point spread function measurement

We took advantage of our decision to split the KiDS frames into
3 x 3 subframes by making one PSF model per subframe (i.e. nine
PSF models per square degree). This was accomplished by targeting
point sources in the R_e and mag plane (MTOBJECTS estimates of
the effective radius and total magnitude, respectively) based on our
MTOBIJECTS catalogues from each subframe. Point sources were
required to have an axis ratio as estimated by MTOBJECTS greater
than 0.9. We then fitted Moffat profiles to the individual point source
candidates using GALFIT (Peng et al. 2002). Our final PSF model
for each subframe was taken as the model corresponding to the
mean Moffat FWHM after a sigma-clipping algorithm was applied
to remove outliers. We measure a mean FWHM of 0.6 arcsec with
a standard deviation of 0.1 arcsec over the full KiDS area that we
use. We measure a median value of the Moffat g parameter of 2.2,
with a standard deviation of 0.1.

Shttps://github.com/asgr/ProFound
Ohttps://github.com/danjampro/DeepScan
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3.1.2 Source extraction pipeline

Following measurement of the PSF, our overall detection and
measurement consists of the following steps.

(1) Use MTOBJECTS to produce a segmentation image and pre-
liminary source catalogue for each subframe.

(i1) Apply a pre-selection to the preliminary catalogue to identify
candidates suitable for input to GALFIT. This is necessary to ensure
a practically feasible number of fits. Specifically, we required R90
> 1.5arcsec and mu_mean > 23.5 magarcsec 2, where R90 and
mu_mean are a proxy for the radius containing 90 per cent of the
galaxy light and the average surface brightness, respectively.

(iii) Use GALFIT to fit a combined Sérsic plus inclined sky
plane model to each pre-selected source, ignoring masked pixels
and additionally masking other segments from the MTOBJECTS
segmentation images. Parameter estimates from MTOBJECTS were
used as the initial guesses for GALFIT. The sky RMS is estimated
directly from pixels in the cut-out region that were unmarked in the
segmentation image. The Sérsic profile is defined as

1) = L exp {—b,, [(’) " 1} } (1
re

where I(r) is the galaxy’s intensity as a function of radius, /. is the
intensity at the effective (half-light) radius r., and b, is a constant
determined only by the index n, which in turn governs the profile
slope. We note that all conversions between Sérsic parameters are
performed using the prescriptions of Graham & Driver (2005).

(iv) Apply the selection criteria to the resulting GALFIT models
in order to produce a final catalogue of UDG candidates.

The PSF models were used as an input to GALFIT such that the
measurements correspond to deconvolved parameters. The GALFIT
cut-out size was 400 pixels, large enough to recover the intrinsic
Sérsic parameters properly over the full range of parameter space we
explore here, and was tested with the synthetic source injections (see
Section 3.2). We note that it was important to include the inclined
sky plane component in the GALFIT modelling in order to retrieve
unbiased measurements in the cases of high-7, or high-n profiles.

Following the full set of pre-selections, we are left with ~2 x 10°
sources that are input to GALFIT over the full 180 degree squared
KiDS area. Following the selection using GALFIT parameters (24.0
< fle, < 26.5,3.0arcsec < 7., < 8.0arcsec, n < 2.5), we are left
with 829 UDG candidates. After selecting sources also within the
HSC-SSP footprint, our final catalogue of UDG candidates consists
of 212 sources; some examples are shown in Appendix A. We note
that contrary to UDGs in clusters and groups, our sample comprises
sources that appear far more irregular, with features suggestive of
active star formation.

3.2 Recovery efficiency

We define the recovery efficiency € as the fraction of sources
with intrinsic observable parameters (i.e. without the effects of
measurement uncertainty) that have measurements that meet our
selection criteria. As such, sources that do not meet our selection
criteria in terms of their intrinsic observable parameters may be
selected (¢ > 0) because of measurement uncertainty. Anticorrelated
with € is therefore the selection purity, defined as the fraction of
detections with intrinsic observable parameters that do not meet
the selection criteria but have measured properties that do and thus
make it into the final catalogue of UDG candidates. This is different
compared to the purity of the UDG candidates, which is defined
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Table 1. Parameter ranges for the artificial galaxy injections. The parameter
realizations are drawn uniformly within the ranges, which are much wider
than our selection criteria for UDG candidates.

Parameter Lower limit Upper limit
fle (mag arcsec?) 22 30

e (arcsec) 1 25

q 0.1 1

n 0.2 2.5

as the fraction of sources in the UDG candidate catalogue that are
intrinsically UDGs as defined by their physical properties.

We have used synthetic source injections to quantify € as a
function of intrinsic Sérsic parameters, €(fie int, Fe.int)- 10 do this,
we create mock images by inserting artificial galaxy profiles (PSF-
convolved, one-component Sérsic) into each frame of the real KiDS
data and run them through the full detection and measurement
pipeline described in Section 3.1. The Sérsic parameters were drawn
uniformly from the ranges presented in Table 1, where ¢ is the
observed axis ratio. As noted by van der Burg et al. (2016), 7
(the circularized half-light radius) is robust against the intrinsic
distribution of axis ratios and fi. is a better indicator of a source’s
detectability than other parameters such as the central surface
brightness. Note that we do not include the Sérsic index n as a free
parameter in €(fle int, 7e.int) in order to simplify the analysis. This
does not severely impact our results because the intrinsic range in
n for UDGs is narrow (e.g. Koda et al. 2015 find a mean of n ~ 1
with a standard deviation of 0.34).

The sources were injected at a surface density low enough to
ensure that injected profiles were separated on average by 6.5 times
the maximum value of 7, given in Table 1. We repeated the process
several times in order to increase the number statistics for the
€(fle int» Te.int) Measurement, simulating ~735 000 sources overall.

We only considered unmasked sources for the estimate of
€(fle.ints Te.int), Which was measured with ~550 000 artificial galaxy
injections spread evenly over our full KiDS subset. We show our
ability to precisely measure the intrinsic parameters of our injected
sources in Fig. 1. Our fiducial measurement of €(fic int, 7e.int) 1S
shown in Fig. 2.

We note that we additionally tested IMFIT (Erwin 2015) in place
of GALFIT in the pipeline described in Section 3.1 and found that it
made no significant difference to our measurement of € (fic int, 7e,int)-

A criticism of the above method is that it relies on field galaxies
being well fitted by Sérsic profiles. While this is certainly justified
in dense environments where UDGs show little evidence of tidal
features (Mowla et al. 2017), it is not clear whether this is justified
for the field population. Since field galaxies are expected to be
relatively isolated, they are likely to show little evidence of tidal
disruption. This does not however rule out irregular morphologies
caused by bright star-forming regions and secular processes like
stellar feedback from e.g. supernovae.

In addition to the injections described above and in equal measure,
we inject nucleated profiles (Sérsic + Moffat PSF model) to the
data assuming that approximately 1 percent of the galaxy light is
contained within the nucleus. This allows us to quantify any system-
atic differences in our recovery efficiency that might be caused by
the presence of nuclei and adapt our selection criteria accordingly.
We note that we do not attempt to fit nucleated profiles for our
measurements because experiments with artificial galaxy profiles
showed that the fits were not reliable. We find that the presence
of a nucleus is sufficient to positively bias recovered values of the
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Figure 1. This figure shows how the measured GALFIT parameters compare with the intrinsic Sérsic parameters of the synthetic galaxies that we inject into
the data. The black 2D histograms show this data for our sample of recovered injections. The red dashed line is the one-to-one relation and is not a fit. Clearly
we are able to recover the intrinsic parameters with good accuracy and precision over the range of parameter space that we are interested in. However, our
precision diminishes slightly when recovering high-n (Sérsic index) sources, but we retain accuracy such that there is little bias in the recovered parameter
estimates. The units of the histogram are the percentage of sources with intrinsic parameters (given by the column) that occupy a particular bin in measured
parameter space. The colour map is capped at 20 per cent in order to increase the contrast for bins of lower completeness.
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Figure 2. The recovery efficiency of synthetic sources injected into the data
as a function of circularized effective radius and mean surface brightness
within the effective radius given our selection criteria. The red box indicates
our selection criteria, while the blue box is that used in van der Burg et al.
(2017).

Sérsic index by approximately 30 per cent at n = 1. Since almost all
recorded UDGs have Sérsic indices less than around 1.5 (there is
both observational and theoretical evidence for this; e.g. Koda et al.
2015; Di Cintio et al. 2017; Roméan & Trujillo 2017b; Venhola et al.
2017), our upper selection limit of n = 2.5 is justified. The effect of
the selection in n on our results is discussed further in Section 5.2.

In comparison to van der Burg et al. (2017), our selection criteria
allow us to probe ~0.5mag deeper in surface brightness. The
increased depth comes in part from the proficiency of MTOBJECTS
over SEXTRACTOR for detecting LSB sources. We also use a higher
cut in 7.; since we do not have the advantage of a measurable
background level, imposing a higher minimum cut in 7. allows
us to mitigate against an excessively contaminated sample of
UDG candidates. In Fig. 2, it can be seen that we expect some

contamination from (apparently) large, faint sources that do not
intrinsically meet our selection criteria (top right of the figure).
However, since the number of apparently large sources is very small
compared to the number of smaller ones, the decrease in purity from
such sources is negligible.

3.3 Colours

We exploit the overlap of the KiDS survey with the HSC-SSP
footprint in order to measure (g — r) colours for our UDG
candidates. We remind the reader that while HSC-SPP is ~0.5 mag
deeper than KiDS, the background subtraction in HSC-SPP is
slightly more aggressive.

We use an aperture-based strategy to measure (g — r) colours.
Specifically, all colours are measured within the 17 , ellipses from
our GALFIT measurements. We estimate the sky level along with its
uncertainty using a random aperture approach, whereby we place
100 equally shaped apertures in close vicinity to (but not touching)
the source. Before measuring the median background level and its
uncertainty, fluxes are sigma-clipped at 207 in order to lower the
potential for overestimating the background level because of nearby
sources. We do not perform additional aperture corrections because
our sources are much more extended than the PSF.

Due to the increased depth offered by HSC-SSP, we are able to
measure positive fluxes in the g and » bands for close to 100 per cent
of our sources. The typical measurement error in (g — r) due
to the background fluctuations is approximately 0.04 mag; this is
discussed further in Section 4.3. We show comparisons between
KiDS and HSC-SSP imaging in Fig. Al.

4 THE EMPIRICAL MODEL

Without knowing the distances to any of our sources, it is difficult
to tell how many are intrinsically UDGs and how many are

"The bias in the recovered standard deviation when sigma-clipping normally
distributed data at 20 is approximately 25 per cent; we therefore correct our
estimates by this factor.
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cosmologically dimmed background galaxies. In this section, we
describe an empirical model that can be used to generate a synthetic
population of UDGs in order to compare with observation. This
is supported by an additional model for massive galaxies that
allows us to estimate the number of non-UDG contaminants in
our observational sample.

4.1 Empirical UDG model

4.1.1 Empirical properties of UDGs

One of the simplest models can be created by assuming field
UDGs share similar empirical properties with UDGs in clusters.
Of importance for our analysis are prescriptions for fi i, (the
surface brightness corrected for cosmological projection effects),
Tephys (physical size), and (g — 7y, the rest-frame colour. As
discussed in Section 3.2, we assume that all UDGs occupy the
range of 0.2 to 2.5 in Sérsic index.

van der Burg et al. (2016) recorded that the distribution of average
surface brightness fi. is approximately uniform in group environ-
ments for UDGs. This has been complimented by the findings of
Danieli & van Dokkum (2018), who found that the distribution of
absolute magnitude at a fixed size is approximately uniform for
large, red galaxies in the Coma Cluster after accounting for the
newly discovered UDGs. These two observations are equivalent,
since at a given size the mean surface brightness is uniquely defined
by its magnitude (i.e. there is no dependence on Sérsic index).
However, the work of Danieli & van Dokkum (2018) showed that
this relation extends from the low surface brightness regime to
much brighter galaxies. We therefore adopt a uniform distribution
U;r:: (.X) for ﬂe,int:
fe,int ™~ Uzzz?:g(ﬂe,im) ()

The subsequent observational study of van der Burg et al. (2017)
(supported theoretically by Carleton et al. 2018) has shown that the
size distribution of UDGs in groups and clusters is well described
by a power law of slope —2.71 £ 0.33 in logarithmic size bins,
such that smaller UDGs are much more common than larger ones.

The intrinsic distribution of physical sizes in kpc is therefore
taken as

- =—2.71
re.phys [dex] ~ re,phyg’ (3)

where we assume the range of 7. pnys lies between 1.5 and 7.0 kpc,
consistent with van der Burg et al. (2017). We probe the effect of
varying the power-law slope on our result in Appendix B.

It has been noticed by several authors that UDGs in clusters tend
to lie on the red sequence (e.g. Koda et al. 2015; van der Burg et al.
2016) and this is also expected theoretically. There have been hints
that UDGs may tend to be much bluer in less dense environments
(Roméan & Trujillo 2017b; Jiang et al. 2019; Jones et al. 2018),
although this is not always clear from an observational perspective
(Romén & Trujillo 2017a). As such, colours of field UDGs remain
relatively poorly understood. We therefore leave the distribution
of (g — r)in as a variable of our model, and discuss it further in
Section 4.1.4.

4.1.2 Estimated number density of UDGs

We use the (almost linear) empirical relation between the number
of UDGs and the mass of their parent halo measured by van der
Burg et al. (2017) to estimate the formation efficiency of UDGs per
unit mass in clusters and groups. From this, we can calculate the
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total number of UDGs that should exist out to redshift z,,y, using
our cosmological model to estimate the total enclosed mass. We
calculate the total mass M, contained within the volume V probed
by solid angle w out to z,, using equation (4),

M = / Qm(z)pcrit(z)divdz dw (4)

0 dzdw

where €2, is the fractional contribution of matter to o, the critical
density of the Universe. We additionally assume that the UDGs
are spatially distributed smoothly according to the integrand of
equation (4), such that the redshift distribution of field UDGs
follows the mass.

Note that the adopted value of z,,x does not impact the result,
provided that the number of sources we predict to observe out to
z (given our recovery efficiency) has converged, i.e. has stopped
increasing, before z,,x. For our modelling we use zy,x = 1, which
meets this criterion (see Section 5.1).

If we assume that UDGs form with an average efficiency equiva-
lent to a 10" M, cluster according to equation (1) of van der Burg
et al. (2017), we derive a volume density of ~9 x 1073 cMpc 3.
This is a factor of 6 higher than the total number density of HI-
bearing UDGs measured by Jones et al. (2018), who measured a
value of 1.5 £ 0.6 x 1073 cMpc—3. Using a value different from
105 My, for the halo mass would not strongly modify the initial
number density estimate since the slope of the relation between
M1 and the number of UDGs hosted by the halo is approximately
1 (at least down to My, ~ 10> My; Romén & Trujillo 2017b;
van der Burg et al. 2017; Mancera Pifia et al. 2018). However, by
selecting a halo mass of 1015 Mg, we are essentially comparing the
field abundance with that in a 10'> M, cluster in our later analysis.
We estimate the impact that the uncertainty in the van der Burg et al.
(2017) relation has on our result in Appendix B.

4.1.3 Accounting for cosmological effects

We account for the cosmological distance modulus, angular diame-
ter distance d, (describing how physical sizes map to angular sizes
as a function of the redshift, z), and k-corrections [the filter and
spectral energy distribution (SED) dependent effect that modifies a
source’s apparent brightness with z, independently from the distance
modulus; Hogg et al. 2002]. In combination, these quantities allow
us to project the surface brightnesses and angular sizes of our mock
sources out to a certain redshift.

While d, is simple to account for, the exact k-correction de-
pends on the assumed SED for the UDGs. Quiescent UDGs
are thought to be old, metal-poor galaxies (e.g. Fensch et al.
2019; Ferré-Mateu et al. 2018; Ruiz-Lara et al. 2018). We adopt
the average UDG properties from Ferré-Mateu et al. (2018) to
estimate the k-corrections for such galaxies, namely an age of
6.7 Gyr and [Z/H] = —0.66. In the case of star-forming UDGs,
we assume the same age and metallicity as in the quiescent model,
but introduce star formation at a uniform rate until the time of
observation. While this is an idealized scenario, we probe the
significance on the assumed model for k-corrections in Appendix
B. All stellar population models and k-correction estimates are
calculated using the Flexible Stellar Population Synthesis (FSPS;
Conroy, Gunn & White 2009; Conroy & Gunn 2010) code. For
the KiDS r band, we assume SDSS-like filters for the k-correction
estimates. For the HSC-SSP colours, we use Subaru Suprime Cam
filters.

We construct mock catalogues by sampling intrinsic parameters
from the appropriate distributions. Following this, we convert the
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Figure 3. Our model colour distributions for the mock UDG catalogues.
The data we fit are from Venhola et al. (2018) and correspond to late-type
(small blue points) and early-type (small red points) dwarf galaxies in the
Fornax cluster. We fit simple linear models (uninterrupted coloured lines)
and their 1o uncertainties (dashed lines) after clipping outliers at 3o°. Under
the assumption that UDGs have similar colours to dwarf galaxies, we use
the late/early-type fits for our star-forming/quiescent mock UDG catalogues.
The vertical black lines span the approximate range of absolute magnitudes
occupied by UDGs (van der Burg et al. 2016). The bold points show the
red/blue UDGs of Roman & Trujillo (2017b) and Roman et al. (2019).

units into apparent observed quantities through the cosmological
distance modulus, angular diameter distance (for the angular sizes),
and band-specific k-corrections.

4.1.4 UDG colour models

The inclusion of colour into our analysis is critical because the
colour of a galaxy contains some information about its distance
thanks to the cosmological redshifting of spectroscopic features.
While we have assumed a stellar population model for the UDGs
in order to estimate the k-corrections, we cannot use these models
to assign colours to our mock catalogue because of the need to
include some intrinsic scatter. One alternative approach is to model
the colours using measurements from the literature.

Several authors have shown that UDGs occupy the red sequence
in clusters (e.g. Koda et al. 2015; van der Burg et al. 2016) and
this is also supported theoretically (Rong et al. 2017). However,
modelling the colour distribution of star-forming UDGs is slightly
harder because there is not as much available data for them. Since
UDGs have stellar populations similar to dwarf galaxies (e.g. Fensch
etal. 2019), one viable method is to assume that star-forming UDGs
have colours similar to late-type dwarf galaxies.

Venhola et al. (2018) have measured the (g — r) colours as a
function of absolute magnitude for such galaxies in the Fornax clus-
ter. Using these measurements, it is possible to fit the relationship
between colour and absolute magnitude with a simple linear model
separately to each of their early- and late-type samples. For the late-
type galaxies, we use a constant scatter term, while we interpolate
the standard deviation of the colours in bins of absolute magnitude
for the early-type galaxies (ETGs). We show the corresponding fits
in Fig. 3, where we have clipped outliers at 30. We note that our fit
to the early-type dwarf galaxies is consistent with the approximate
fit to the red-sequence UDGs in clusters from van der Burg et al.
(2016).

Ultradiffuse galaxies in the field 2149

In Fig. 3 we also compare with the UDGs discovered by Romén &
Trujillo (2017b),® which have been decomposed into red and blue
populations based on their (g — 7) colour. While their red population
is fairly consistent with our red-sequence model, the blue UDGs
seem to be systematically bluer than our colour model for blue
galaxies. This may be explained by the fact that our model is
based on measurements from the Fornax galaxy cluster where
environmental processes, for example ram-pressure stripping, may
cause reddening of the galaxies. In comparison, the UDGs of
Romdn & Trujillo (2017b) are found in isolated galaxy groups
where such effects are less prolific.

4.2 Empirical model for massive galaxies

Not all of the UDG candidates in our observational sample are
intrinsically UDGs. As large, bright galaxies are shifted towards
higher redshift, they become both fainter and smaller in terms of
their angular size and may eventually satisfy our selection criteria.
Equally, small foreground dwarf galaxies not meeting the UDG
criteria have the potential to contaminate the sample. Since we are
not able to directly measure the number of these interlopers (as can
easily be done when considering a group or cluster environment), we
are forced to use empirical relations from the literature to estimate
the level of contamination.

It is standard practice to broadly categorize galaxies as either
late type or early type based on their morphology and/or colour
(e.g. Bell et al. 2003; Baldry et al. 2004; Driver et al. 2006; Taylor
et al. 2015). Massive ETGs are typically quiescent and therefore
redder than late types. Additionally, massive ETGs generally have
higher Sérsic indices compared to late types. For ETGs, the Sérsic
index increases with total stellar mass (e.g. Caon, Capaccioli &
D’Onofrio 1993; Graham et al. 1996; Danieli & van Dokkum 2018).
While early-type dwarf galaxies exist with Sérsic indices around 1
(e.g. Prole et al. 2018), we are probing the field population and
therefore expect that the main contribution from ETG interlopers
will be from higher-mass galaxies with correspondingly higher
Sérsic indices. We discriminate against recovering such objects in
our UDG candidate sample through the upper-limit cut in Sérsic
index at n = 2.5. As such, we expect the dominant source of
contamination in terms of massive galaxies (M, > 10°Mg) to
be mainly constituted of massive late-type galaxies. By contrast
to massive ETGs, late-type galaxies are systematically bluer, with
Sérsic indices n < 2.5 (Vulcani et al. 2014).

4.2.1 Canonical empirical distributions

While relatively little is known about the population of field galaxies
with stellar masses lower than around 10° My, much is known about
objects at higher stellar masses. We can therefore produce mock
observational catalogues of high-stellar-mass galaxies and use them
to estimate the contamination level in our actual observed catalogue.
Such an estimate would be naturally conservative owing to the
truncation at 10° Mg that essentially excludes all dwarf galaxies,
including UDGs (e.g. Prole et al. 2019). The ingredients of our
model catalogues are:

(i) The stellar mass function (SMF). We have used measurements
from GAMA (Baldry et al. 2012) and COSMOS/UltraVISTA
(Muzzin et al. 2013) to model the galaxy SMF of field galaxies,

8Where the (¢ — r) colours have been kindly provided by Javier Roman.
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including its redshift dependence between z = 0 and z = 1. These
measurements are additionally decomposed into red and blue galaxy
populations and we have incorporated this into our mock catalogues.

(ii) The stellar mass to size relation. We used the measurements
of van der Wel et al. (2014) to assign effective circularized radii
to each of our random samples of stellar masses, as a function
of redshift. Again, we make use of their early/late-type colour
decomposition. We also include scatter in the sampling based on
their measurements.

(iii) We assign (g — r) colours to our sampled galaxies as a
function of their stellar mass by using empirical data gathered by
the GAMA survey® (Taylor et al. 2011). Specifically, we bin their (g
— r) measurements in stellar mass and assign intrinsic (i.e. observed
at z = 0) colours to our mock observations in each bin by randomly
sampling from the corresponding GAMA (g — r) measurements.

(iv) We calculate k-corrections in the same way as described in
Section 4.1.3, this time assuming an onset of star formation 8.9 Gyr
ago and [Z/H] = —0.38, with a uniform star formation rate. These
values are based on the high surface brightness, late-type sample
of Ferré-Mateu et al. (2018). The effects of modifying this are
discussed in Appendix B.

(v) As before, we assume the redshift distribution of our cata-
logue to be smoothly distributed with the mass in the Universe,
according to equation (4).

Clearly such an exercise is approximate in nature, and is designed
only to get a first-order estimate of the number of contaminants in
our UDG sample. A discussion regarding the contribution to our
observations from LSB galaxies smaller than the fiducial UDG
limit of 7. = 1.5 kpc can be found in Appendix C.

Many of the mock massive galaxies are brighter than m, = 19.8.
This means that it is possible to compare the redshift distribution of
our mock catalogue with that of the GAMA spectroscopic survey.
We show in Appendix D that our mock catalogues are consistent
with that observed by GAMA.

4.3 Measurement errors

Before the catalogues can be directly compared with our observa-
tions, it is important to consider the effect of measurement errors
on the predicted distributions of observed parameters. Of particular
importance is the uncertainty in 7., which increases for larger and
fainter galaxies. This is significant because there is typically a steep
gradient in the distribution of 7,, whereby there are far less large
objects than small ones, both in terms of physical and angular
size. Thus, including the measurement error in the mock catalogues
causes an increase in the predicted number of galaxies observed
with large angular sizes.

The measurement uncertainty on the Sérsic parameters is esti-
mated directly from the synthetic source injections described in
Section 3.2. Measurements of the injected sources are used to
estimate the recovery efficiency, defined in intrinsic observable
parameter space. Consequently, the effects of measurement error
(including any bias) as a function of intrinsic size and surface bright-
ness are already contained in the recovery efficiency estimate. We
can therefore account for the effect of the measurement uncertainty
in our mock catalogues by using the recovery efficiency to assign
probabilities of detection (see Section 5.1). The limitation of this

9Specifically, we use the public StellarMasses v19 catalogue avail-
able from http://www.gama-survey.org/dr3/.
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approach is that we cannot directly compare structural parameters
in our mock catalogues with the observations.

Also of importance is the measurement error in (g — r) colour.
Starting from our estimates of fluxes and their errors described in
Section 3.3, we perform Monte Carlo realizations of flux ratios in
order to estimate the distribution of uncertainties in the magnitude.
We fit a lognormal distribution to the result, and use it to randomly
sample uncertainties in colour; we then ‘jiggle’ (randomly perturb
within error) the colours in the mock catalogues according to the
result. The mean uncertainty in colour is ~0.04 mag.

5 RESULTS

5.1 Observations versus model predictions

We are now in a position to compare our mock catalogues with the
observations. We note that for this analysis, all absolute numbers
are normalized to an area of 180 square degrees. Each source in
our mock catalogues is assigned a probability of recovery using
the recovery efficiency discussed in Section 3.2, which are used
as weights in the analysis. We note that after using such weights,
the number of UDGs we predict to observe converges (i.e. does
not increase further) by z ~ 0.2 (see Fig. D1). Similarly, the mock
massive galaxy catalogue converges by z ~ 0.5. This is mainly
an effect of the lower limit angular size cut at 7. > 3 arcsec. We
probe the accuracy of our modelling with reference to the redshift
distribution of GAMA spectroscopic sources in Appendix D.

We compare the (¢ — r) histogram of our observed UDG
candidate catalogue with each of our mock catalogues (red UDGs,
blue UDGs, massive blue galaxies) in Fig. 4, the results of which
are fairly striking. Clearly either the assumption that all UDGs are
on the red sequence as they are in clusters is not correct (as made
clear by the significant offset between the peaks of the observed
and predicted distributions) or UDGs in general do not form in
the field with a mass efficiency anywhere near what they do in
clusters. However, since we already know that blue UDGs do exist
in abundance in the field (e.g. Leisman et al. 2017; Jones et al. 2018),
itis clear that we can rule the latter hypothesis out completely. From
this result we would expect isolated red UDGs, like the ones found
by Martinez-Delgado et al. (2016) and Romén et al. (2019), to be
relatively rare.

The discrepancy is further compounded if one considers the
estimates for the massive blue galaxy interlopers. We argue that
since the massive blue galaxies are the dominant source of con-
tamination in our UDG catalogue (see Section 4.2 and Appendix
C), we can obtain an observational sample that is representative of
the UDG population by statistically subtracting the massive blue
galaxy population from the observed catalogue of UDG candidates.
The result is displayed in the left-hand panel of Fig. 5, along with
our mock UDG catalogues.

It is clear that the mock blue UDG catalogue is in much better
agreement with the observed colour distribution than the red UDG
catalogue. However, the observations are ~0.05mag bluer than
our empirical models predict. This means that the colours may be
more consistent with the blue UDGs of Roméan & Trujillo (2017b)
(see Fig. 3). This is not particularly surprising; late-type galaxies
in clusters are typically redder than those in the field because of
environmental quenching from e.g. ram-pressure stripping.

By comparing our mock catalogues to the interloper-corrected
observations, it is possible to estimate the total field density of
UDG:s, along with a corresponding mass formation efficiency. This
is accomplished by comparing the predicted number of UDGs from
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Figure 4. Synthetic distributions of (g — r) colour for our mock red UDG, blue UDG, and massive blue galaxy catalogues, weighted by the probability of
observation, compared to the actual observed histogram. The absolute numbers are normalized to an area of 180 square degrees. The error bars show the
Poisson uncertainties in each bin. Colours are in the observed reference frame. We note that we include the effect of measurement error in our mock colours.
It is clear that the red UDG model is not consistent with the observations, being much more consistent with the blue model.
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Figure 5. The observed distribution of colour after subtracting the estimated contribution from massive blue galaxies (grey histogram). Left: comparison with
the empirical red and blue UDG models from this study. We show the mean and 1o dispersion of the observations with the vertical lines. Right: normalized
comparison with observations of HI-bearing field UDGs in the literature (Leisman et al. 2017) and predictions from the semi-analytical models (SAM) of
Rong et al. (2017) and Jones et al. (2018). Poisson error-bars are shown. See text for discussion.

our empirical model with the estimated number of observed UDGs.
From the appearance of Fig. 5 (left-hand panel), it is clear that
we have overestimated the number density (and therefore mass
formation efficiency) of UDGs in our model.

For the empirical model to predict the correct number of UDGs,
we would require a mass formation efficiency ~0.8 & 0.2 times
what it is in clusters, taking into account uncertainties dis-
cussed in Appendix B. This translates into a field density of
8 + 3 x 1073 cMpc~>. This is an upper limit on the true field
abundance of UDGs because the estimated number of observed
UDG:s is likely an overestimate; we have only considered massive
blue galaxies as contaminant sources. We note that these estimates
apply only to the range of physical parameters that we have probed
here, i.e. sizes in the range 1.5 < 7., [kpc] < 7.0 and intrinsic (i.e.
not cosmologically dimmed) surface brightnesses spanning 24.0 <

fer <26.5.1f we were to consider even fainter sources, this number
density would likely increase.

5.2 Dependence on Sérsic index

UDGs typically have Sérsic indices n < 1.5. The justification for
our cut at n = 2.5 is as follows.

(i) Our measurements are conflated by measurement error, which
gets worse as a function of surface brightness. In Fig. 1 we show that
we are never the less able to recover essentially all non-nucleated
profiles with n < 1.5 by imposing a cut at n ~ 2.

(i) Some UDGs are nucleated (e.g. Venhola et al. 2017). In this
analysis, we have only fitted single Sérsic profiles. The presence of
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a nucleus can bias our recovery of n by +30 per cent, so a higher
cut than n = 2 is justified to preserve completeness.

(iii) We do not explicitly include the Sérsic index distribution in
our empirical model for background interlopers,'? which is statisti-
cally subtracted from the observational sample in the analysis. It is
typical in the literature to take n = 2.5 as the dividing line between
‘early’ and ‘late’ type samples (e.g. van der Wel 2008; Vulcani et al.
2014; Vika et al. 2015). Since we do not want to oversubtract the
interloper population, it is important to use a consistent cut for the
sample selection.

(iv) In this analysis, we are striving to place upper limits on
quantities like the UDG field number density; this is motivated
by the fact that our interloper subtraction is likely incomplete.
Lowering our Sérsic index selection cut would reduce the size of the
observational sample and thus lower the inferred number density.
In the interests of upper limits, it is therefore prudent to keep a
relatively high cut in 7.

(v) Our results are closely compared with the work of van der
Burg et al. (2016), who used an even higher cut at n = 4.

In summary, while the cut at n = 2.5 might be relatively high
compared to the observed values of n for UDGs, we account for
the resulting contamination in our observational sample using the
empirical model. However, it is important to discuss the effects of
varying the index cut on our results. Recall that with the cut at
n = 2.5, the upper-limit mass formation efficiency is estimated to
be ~0.8 £ 0.2 times that in clusters. If we instead take the cut at
n = 2.0, this drops to ~50 per cent of the value for clusters. Here
we have likely increased the purity of UDGs in our sample, but for
the reasons given above it is difficult to quantify the effect on the
completeness. If instead we drop to n = 1.5, the formation efficiency
estimate drops to ~30 per cent of its value in clusters. However, it
is likely that this value suffers from significant completeness effects
and is an underestimate.

6 DISCUSSION

6.1 Comparison with H1-bearing UDGs

In this section, we compare our observed, contaminant-corrected (g
— 1) histogram to other measurements from the literature. We do
not consider values of (g — r) > 1 because they are almost certainly
not part of the UDG population. One catalogue that we can directly
compare with is that of Leisman et al. (2017),'! who measured the
colours of isolated H I-bearing UDGs using SDSS data. While these
measurements are conflated with measurement error because of the
limited depth of SDSS, we can perform a qualitative comparison
between the reported results (Fig. 5).

In Fig. 5, we show how the colour distribution of our corrected
observational sample of UDG candidates compares with that of
Leisman et al. (2017). The two PDFs are very similar, providing
an indication that UDGs in the field are predominantly blue
independently of the colour models we assumed in Section 4.1.4.
There are some differences between the two distributions: We
observe slightly more UDG candidates on the red side of the peak.
There are several possible explanations: They could be sources
that Leisman et al. (2017) were not sensitive to thanks to low

10 Although this could potentially be implemented in future studies.

'We note that we use the HUD-B sample, which contains 115 sources and
was selected using selection criteria consistent with those of van der Burg
et al. (2016).
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H1 content, or they are contaminant objects that we have not
properly accounted for in our UDG sample such as massive early-
type galaxies. Alternatively, since we are sensitive to UDGs out
to z ~ 0.2 comparing to their maximum distance of 120 Mpc (z
~ 0.03), it may be that k-corrections play a role. The Leisman
et al. (2017) catalogue also seems to have an excess of blue UDGs
compared to what we observe. This could be explained either by the
measurement error arising from the limited SDSS depth or perhaps
because blue UDGs are intrinsically brighter and we miss them in
our selection (Leisman et al. 2017 use a slightly brighter bright-end
selection cut).

Jones et al. (2018) used the Leisman et al. (2017) catalogue to
estimate the field density of HI-bearing UDGs, obtaining a value
of 1.5 & 0.6 x 1073 cMpc~2. This is approximately one-fifth of
our upper-limit estimate of the overall UDG field density. However,
comparing such field densities is difficult because the limited depth
of the SDSS imaging used by Leisman et al. (2017) to identify
UDGs creates significant measurement uncertainty, blurring their
selection boundaries and leading to an uncertainty of ~25 per cent
in their sample size. However, using the fact that our estimate of
the UDG density is an upper limit, we can estimate that H1-bearing
UDGs comprise at least one-fifth of the overall population.

6.2 Comparison with semi-analytic models

We also compare our results with the work of Jones et al. (2018),
who used the Santa Cruz semi-analytic model (SAM; Somerville,
Popping & Trager 2015) to generate a UDG sample in order to
compare with the observations of Leisman et al. (2017). Their results
are also displayed in Fig. 5. We note that we jiggle their (g — r)
colours to match our measurement error for the comparison. The
peak of their (g — r) distribution is in reasonable agreement with our
observations, yet it is slightly shifted towards the red and narrower.
This may be because our observed catalogue is not entirely made
from UDGs but also contains some contaminant sources, or perhaps
because the SAM does not reproduce the correct amount of scatter
for UDG colours. Alternatively, it may be a projection effect; our
observed colours are in the observed frame and therefore are subject
to k-corrections.

A similar comparison can be made with the work of Rong
et al. (2017), who used the Guo et al. (2013) SAM to obtain a
catalogue of simulated UDGs. We again jiggle their colours using
our measurement error for the comparison. The colour distribution
of their field UDGs is shifted towards the red compared to our
observations, as also noted by Jones et al. (2018). If we were
to include additional reddening of their colours because of k-
corrections (i.e. to make a fair comparison with our observations),
then this discrepancy would be exaggerated.

We calculate the total field density of UDGs in the Santa-Cruz
SAM by integrating the stellar mass function for UDGs (fig. 4 of
Jones et al. 2018). We obtain a value of 2 x 1072 cMpc~3, approx-
imately twice the upper-limit estimate from our measurements.

6.3 Impact of nearby galaxy groups

While our observed catalogue of UDG candidates is dominated by
field sources, it is important to consider the effects of nearby galaxy
groups on our result. After all, if such sources are predominantly
quiescent and exist in similar number to our field sample, we should
expect to find a population of red UDG candidates.

Fortunately, our KiDS/HSC-SSP footprint overlaps with the
GAMA spectroscopic survey (Driver et al. 2011) and thus the
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GAMA group catalogue (Robotham et al. 2011). We can therefore
make an estimate of the contribution of group/cluster UDGs to our
field sample using a similar method to van der Burg et al. (2017).
Working in our favour is the fact that we have applied a relatively
high cut in angular size (7. > 3 arcsec) and there are no massive
groups that are close enough to dominate our selection.

We select all GAMA groups from the group catalogue that satisfy
Nfof > 5 and 0.01 < Zfof < 0.2 (where Nfof and Zfof
are respectively the number of friends-of-friends sources and an
estimate of the group redshift). For each group, we count the number
of sources that are compatible with being UDGs at that redshift,
using our selection criteria and a physical radius range of 1.5 < 7,
[kpc] < 7.0. We also subtract a statistical background correction
based on the total number of sources across the entire footprint that
meet the same criteria. We estimate that up to 8 per cent of our UDG
candidate catalogue is associated with relatively massive groups (i.e.
the ones that have at least five friends-of-friends members), with the
uncertainty coming from the background count estimate. The colour
histogram of these sources is statistically indistinguishable from that
of the whole catalogue, and we conclude that their inclusion does
not significantly impact our results.

Using the empirical scaling relation between the group mass and
total r-band luminosity from Viola et al. (2015), we estimate that
~ 6percent of the available mass out to z = 0.2 is taken up by
the groups we consider here. This is very similar to the fraction of
observed UDG candidates associated with groups. Taken with the
fact that we expect all observed UDGs to be at z < 0.2, this provides
an independent indication that the mass formation efficiency of
UDG:s in the field is comparable to that in groups and clusters. It
also shows that the presence of the massive groups does not severely
impact our result.

7 CONCLUSIONS

In this paper we have used deep wide-area optical imaging from the
KiDS survey to detect sources with low surface brightness (24.0 <
fler <26.5) and large angular sizes (3.0 arcsec < 7, < 8.0 arcsec).
Following the detection and measurement of these sources with
MTOBIJECTS and GALFIT, we measured colours using the HSC-SSP
survey data. Our catalogue of UDG candidates consists of 212
sources over ~39 square degrees. Compared to UDGs in groups
and clusters, our sample consists of sources that appear to have
much more irregular morphologies and show hints of active star
formation.

These observations were compared to mock observations of
UDGs created by sampling empirical distributions of UDG prop-
erties from the literature. Our key assumptions were intrinsic
size, surface brightness, and colour distributions for the UDGs.
All the assumptions we made are justified based on the current
understanding of UDGs.

By comparing our mock catalogues with the observations, we
have shown that it is very unlikely for a significant population of
UDG:s that are as red in colour as they are in clusters to exist in the
field. It is much more likely that almost all UDGs in the field are
instead much bluer, with colours similar to late-type dwarf galaxies
in clusters. An immediate conclusion based on the predominantly
blue colours is that secular evolutionary processes are not producing
large numbers of cluster-like quenched (red) UDGs.

This finding means that isolated red UDGs, like the ones found
by Martinez-Delgado et al. (2016) and Roman et al. (2019), should
be quite rare. At first glance this contrasts with the work of RS
et al. (2019), who find a population of UDGs with low specific
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star formation rates (compared to the star-forming main sequence)
in the field. Taking the appearance of our detections in Fig. Al
into account, it is likely that UDGs in the field are forming stars
only at a few localized sites; this locality may result in relatively
low specific star formation rates that never the less make their
integrated colours bluer. As noted by RS et al. (2019) and Zaritsky
et al. (2019), their sample of field UDGs is still systematically
bluer than that observed for cluster UDGs. Assuming that UDGs
across different environments share similar metallicities, this is good
evidence that star formation in field UDGs can be quite tentative
and easily quenched in cluster environments.

We also created mock observations of massive blue galaxies,
thought to be the primary source of contamination in our UDG can-
didate sample, using canonical empirical relations. We statistically
subtracted these from our observations to acquire a contaminant-
corrected catalogue of UDGs. The normalized distribution of (g — r)
colour is very similar to that estimated for H I-bearing field UDGs
measured by Leisman et al. (2017). The observed distribution is
also similar to that predicted for UDGs in SAMs (Rong et al. 2017;
Jones et al. 2018), but slightly bluer. While our colour distribution
appears to have greater dispersion, this is likely due to systematic
shortcomings in comparing simulations with observations.

Using our mock catalogues as a reference, we estimate an upper
limit on the field density of UDGs as 8 &+ 3 x 1073 cMpc 3,
equivalent to a mass formation efficiency ~0.8 + 0.2 times that
in clusters. Perhaps surprisingly, this density actually implies that
UDGs form with a mass efficiency in the field that is quite close
to that in cluster environments. The field density applies for UDGs
with physical sizes 1.5 < 7., [kpc] < 7.0 and intrinsic (i.e. not
cosmologically dimmed) surface brightnesses 24.0 < fi., < 26.5.
This number density also suggests that current SAMs overpredict
the number of UDGs by at least a factor of 2. However, we note
that if UDGs exist in abundance at lower surface brightnesses than
we have probed here, the total number density of large LSB objects
could be much higher. Based on the field density measured by Jones
et al. (2018), H1-bearing UDGs comprise at least one-fifth of the
overall UDG population in the field. This is consistent with what is
predicted from the Santa-Cruz SAM.

We note that the analysis we have performed in this work has
been approximate in nature because of the absence of any distance
measurements. Acquiring large samples of spectroscopic redshifts
for LSB galaxies in the field is not currently feasible. In the near term
the second data release of the HSC-SSP will provide an opportunity
to follow up this work thanks to its expanded footprint; this analysis
can easily be expanded to larger areas. In the longer term, deep all-
sky imaging (perhaps combined with photometric redshifts) from
LSST may provide the ultimate data set for providing statistical
constraints on LSB galaxies in the field.
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APPENDIX A: EXAMPLES

Figure A1. Examples of large LSB sources in our UDG candidate sample. Each source in shown in the KiDS r band (left-hand panels) versus a colour image
made from the g, r, and i HSC-SSP bands according to Lupton et al. (2004) (right-hand panels). The cut-out size is 25 arcsec, much less than the 80 arcsec
regions that we use to fit the sources. The colour bar shows the surface brightness in units of magnitude per square arcsecond for the KiDS data. In comparison

to the regular morphologies of UDGs in groups and clusters, many of our sources are rather amorphous, with possible signs of discrete sites of active star

formation.
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APPENDIX B: MODEL UNCERTAINTIES

While our analysis here is first order in nature, it is still impor-
tant to quantify how uncertainties in the model ingredients may
impact our result. In particular, we have not discussed how the
uncertainties in the assumed UDG size distribution propagate.
van der Burg et al. (2017) have measured a power-law index of
—2.71 £ 0.33 for the distribution of circularized radii (equation
3). The results of varying the slope by lo are shown in Fig. Bl.
It is clear that lowering the index (more small UDGs) lowers
our estimate of the number of UDGs we expect to observe by
around 15 percent. Conversely, increasing the index (more large
sources) causes the predicted number to increase by around 25
per cent.

An additional source of uncertainty is that which arises from
our estimate of the mass formation efficiency. From the empirical
relation of van der Burg et al. (2017), we estimate a ~20 per cent
error. This uncertainty also propagates to our estimate of the field
density of UDGs.

A separate issue is how the assumed stellar population (i.e. that
which defines the k-corrections) affects our analysis. For the UDGs,
we have explored a red and blue colour model, using quiescent and
star-forming populations for the k-corrections, respectively. One of
the uncertainties for the star-forming population model is the star
formation history to assume; for this analysis we have assumed
a uniform star formation rate. As a means to test whether this
assumption impacts our result, we can also model the blue UDG
population using the quiescent model for k-corrections. The results
of this are shown in Fig. B2. From this figure, it appears that the
change is small, with a slight shift towards redder colours. The
impact on our analysis is negligible; this is not surprising as most
of our observed UDGs are expected to be at low redshift where
k-corrections are small.

We have repeated a similar process for our late-type interloper
model, replacing the stellar population model with that used for
star-forming UDGs. We also find that this makes no significant
difference to our results.
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Figure B1. Impact of changing model parameters within their errors. The
observed colour histogram is shown in back. The blue UDG model is
shown in dark blue. The mock catalogue with the size power-law index
lowered/raised by lo is shown in purple/orange. All error bars are Poisson
uncertainties.
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Figure B2. Comparison of the model colour distributions for blue UDGs
assuming a star-forming stellar population for the k-corrections (dark blue)
and a quiescent one (light blue). Overall, we find the difference to be
negligible for our analysis.

APPENDIX C: EXTENDING THE MODEL

One shortcoming of our analysis is that we do not account for
galaxies smaller than the fiducial UDG size limit of 1.5kpc, a
fairly arbitrary cut-off. One way to probe how the inclusion of such
galaxies may alter the results presented in Fig. 4 is to extrapolate the
empirical size distribution that we use in our UDG model (van der
Burgetal. 2017) to lower size limits. This exercise is approximate in
nature because it is not clear whether an extrapolation of this relation
is valid for smaller galaxies. There are two competing effects: While
smaller galaxies are more numerous because of the steep power law
(equation 3), their smaller size means that they are much less likely
to be observed given our selection criteria and the corresponding
recovery efficiency.
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Figure C1. Results of extending our empirical model. The observed colour
histogram is shown in back. The blue UDG model is shown in dark blue.
The mock catalogue with the reduced lower limit of 7. > 0.5 kpc is shown
in light blue. The mock catalogue that includes bright galaxies (jie > 22) is
shown in purple. All error-bars are Poisson uncertainties.
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We display the result of reducing the lower physical size limit
from 1.5 to 0.5 kpc in Fig. C1. The total number of sources we
generate is increased proportionally to equation (3). Despite the
increase in the number of sources (by a factor of ~20), there is only
a minor difference between the number of sources we would expect
to observe.

As a further extension to the model, we can consider what
happens when we decrease the lower limit in surface brightness at
fle = 24 to allow brighter sources into the selection. Since Danieli &
van Dokkum (2018) have shown that the distribution of intrinsic
size of large red galaxies is approximately uniform with absolute
magnitude (and therefore surface brightness), this extension can
be interpreted as including large red galaxies with Sérsic indices
meeting our selection criteria. As an example, we show in the
figure the effect of using a bright-end surface brightness cut of
fLe = 22, increasing the number of sources by 80 per cent according
to equation (2). As in the previous test, the difference with the
result in Fig. 4 is fairly insignificant. We are left to conclude that
our observational sample is indeed likely made up of large low
surface brightness galaxies.

APPENDIX D: COMPARISON WITH GAMA
REDSHIFTS

We can compare our measurements and mock catalogues against
measurements from the GAMA spectroscopic survey in order to
test how well our mock catalogues represent reality. For this test,
we use our best model: the combination of blue UDGs with massive
blue galaxy interlopers. We assume that UDGs form with a mass
efficiency as calculated in Section 5.1.

Using the public data release 3 data obtained from the GAMA
website,'* we crossmatched the SpecObj v27 catalogue (con-
taining spectroscopic redshifts) with the SersicCatSDSS v09
table (containing Sérsic profile fits to GAMA targets in SDSS data
from Kelvin et al. 2012). We imposed our selection criteria on the
Sérsic parameters and additionally required SURVEY_CLASS > 4
in order to select legitimate sources with m, < 19.8, leaving us
with 209 GAMA sources. We also applied the m, < 19.8 criterion
to our mock catalogue, retrieving 379 sources. The results of the
comparison are shown in the top panel of Fig. D1.

Despite the surface brightness limits of GAMA (e.g. Wright
et al. 2017), we find that 45 of our UDG candidates (over the
full unmasked KiDS area) have matches in the GAMA SpecObj
catalogue within 3 arcsec. This allows us to make the same compar-
ison as above, using our measurements in place of those of Kelvin
et al. (2012); the result is also shown in the top panel of Fig. D1.
Clearly the overall distribution of our mock catalogues is in good
agreement with the observations.

Bhttp://www.gama-survey.org/
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Figure D1. Top: comparison of the overall redshift distribution from
our mock catalogue (black histogram) with that of Kelvin et al. (2012)
(blue histogram) and a crossmatch between our observed UDG candidate
catalogue and the GAMA spectroscopic survey (red histogram). Middle:
decomposition of our mock catalogue into UDGs (orange) and interlopers
(blue) as a function of redshift. Bottom: the same as the middle panel, but
for our crossmatch with GAMA.

However, we can go one step further. We can now estimate the
intrinsic parameters of the matching sources because we know
their redshifts and apparent structural parameters. In doing so,
we can test whether the individual distributions for UDGs and
interlopers are approximately correct. For this test, we define a
UDG as having 7, > 1.5kpc and M, < 10° M. The stellar mass
is estimated assuming our blue UDG stellar population model
from Section 4.1.3 together with the GALFIT m, measurements.
We can then decompose the catalogues into UDG and non-UDG
populations.

The decomposition of the mock catalogue is shown in
the middle panel of Fig. D1. This compares with the de-
composed observed catalogue in the lower panel. Clearly
the distributions are similar; at low redshifts UDGs domi-
nate our sample, while at higher redshifts, massive interlopers
dominate.
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