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We optimize radiotherapy administration strategies
for treating low-grade gliomas. Specifically, we
consider different tumour growth laws, both with
and without spatial effects. In each scenario we find
the optimal treatment in the sense of maximizing the
overall survival time of a virtual low-grade glioma
patient, whose tumour progresses according to the
examined growth laws. We discover that an extreme
protraction therapeutic strategy, which amounts to
substantially extending the time interval between
radiotherapy sessions, may lead to better tumour
control. The clinical implications of our results are also
presented.
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1 Introduction

Diffuse WHO grade 1l gliomas, commonly referred to as low-grade gliomas (LGGs), are
a histologically and genetically heterogeneous subgroup of primary central nervous system
tumours. They encompass approximately 5-10% of all primary brain tumours in adults and have
a moderate incidence rate (about 1/100,000 person-year). Compared with high-grade gliomas
(WHO grades Il and 1V), they occur mostly in patients between ages 35 to 44 years and have a
median survival time of approximately 13 years after diagnosis using aggressive treatments [1].
LGGs also account for the majority of pediatric central nervous system tumours [2]. The 2016
WHO classification [3] redefines grade Il gliomas with respect to morphological and molecular
tumor alterations, the latter ones displaying a higher correlation with prognosis and therapy
response [4]. Although primary brain tumours very rarely metastasize, approximately 70% of
LGGs eventually progress towards a more malignant type such as anaplastic astrocytoma (WHO
grade Ill) and secondary glioblastoma (WHO grade IV glioma), thus becoming fatal. This is
specifically observed in those of astrocytic origin (oligodendrocytic being the other origin).
Therefore, different therapeutic modalities are required at a certain point, which usually involve
neurosurgery, radiotherapy, chemotherapy, or a combination of these [1].

Management of LGGs is controversial because they very often remain indolent during a
significant fraction of their natural history. This is due to a relatively slow proliferation coupled
with a mild diffusively infiltrative pattern, and so, owing to the brain’s plasticity, functionalities
affected by the presence of the tumour may partially be relocated to healthy regions, thus causing
subtle neurological symptoms, whose severity does not manifest until tumour cell density
exceeds some threshold. When this last process occurs a malignant transformation is triggered,
whose median time after diagnosis ranges from 2.7 to 5.4 years [5]. Recent evidence supports
that the early use of surgery results in a better outcome than the traditionally followed ‘watch
and wait’ approach [6]. Equally, although treatment administration is usually aimed at the total
elimination of tumour cells, most LGGs are rarely completely curable. Thus, current treatment
focuses on increasing the patient’s survival time, diminishing symptoms and reducing harmful
side effects that affect a patient’s quality of life.

It is now well known that immediate radiotherapy (RT) after surgery increases the duration
of response (progression-free survival), but does not seem to improve overall survival [1]. The
standard RT treatment involves administration of a total dose of 54 Gy distributed over the
course of six weeks (typically 1.8 Gy daily doses, five days per week). Toxicity associated with
RT constitutes an important constraint. The most frequent side effects include fatigue, weakness,
skin disorders, inflammation of the irradiated area, immunodeficiency, nausea, drowsiness and
dizziness [7,8]. In addition, in the medium and long term, cognitive impairment eventually occurs
due to damage of the normal brain parenchyma tissue. Although, in clinical practice, radiation
beams are intensity modulated and distributed in such a way as to be primarily focused onto the
tumour area, healthy tissue cells are also affected to some extent. The toxicity of, and tolerance to,
RT on healthy tissue has been reviewed in detail [9], and those of the central nervous system entail
severe risks for health when reaching certain dose levels. Specifically, for the brain, a maximum
dose below 60 Gy implies a probability of 3% necrosis [10]. This is the reason why in clinical
practice this maximum total dose is not normally exceeded.

Mathematical modelling has the potential to help in identifying LGG patients who may
benefit from RT and in developing specific optimal fractionation schemes for selected patient
subgroups. Most of the mathematical research on gliomas has been focused on the study of
high-grade gliomas, with special emphasis on glioblastoma [11-24]. Models specifically devoted
to LGG growth have also been proposed [25-29]. The theoretical approaches have resorted to
either ordinary or partial (reaction-diffusion-type) differential equations. The role of RT alone
or with chemotherapy on gliomas has also been studied, both in low- and high-grade gliomas
[15,30-39]. In LGGs, response to different therapeutic modalities is often described in terms
of a number of undetermined parameters that can be fitted to individual patient data, with
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good qualitative agreement [33]. More recently, in [37], a simple spatial model was developed
to describe the known phenomenology of the response of LGGs to RT including the clinical
observations from [40]. An alternative explanation to the phenomenon has been put forward
in [35] using a model that included tumor an oedema compartments.

As mentioned above, the total maximum dose with which the brain can be irradiated is not
administered in a single session, but is fractionated into several (typically 30) smaller doses. One
particular dose strategy, known as extended (or protracted) therapy, consists of increasing the
time between doses. Extended therapy is especially suitable for LGGs. This is due to the fact
that it allows the healthy tissue to recover in the time that elapses between doses, since this
time is considerably longer than the time between doses of a standard scheme. In addition, some
studies have shown that in LGGs, at any time, most tumour cells are not proliferating [41], and
therefore they would be considerably less sensitive to RT. This fact suggests that a greater spacing
between doses would achieve greater efficacy of the treatment. We seek to address the veracity
of this hypothesis through in silico modelling. Specifically, in [38] the authors proposed that an
“extreme protraction” therapeutic strategy (i.e. substantially enlarging the time interval between
RT fractions), could lead to better tumour control. They based their dose scheduling assuming a
logistic tumour growth law (without including any spatial dependence). One of the objectives of
the present article is to generalize this strategy to other growth laws and to also incorporate the
role of space.

Our plan in this paper is as follows. First, in Section 2, we establish the Material and Methods.
Thus, we formulate the mathematical model and we establish the optimization problem for
different tumour growth laws (exponential, Gompertz, logistic, Skellam and Fisher-Kolmogorov
equation). In Section 3 we solve the previous problems, finding the optimal therapeutical
protocols and discuss the expected gain as a function of the parameters for each equation.
Explicit formulae are found providing the spacing between doses as a function of the biological
parameters of the tumour. Moreover, we suggest a sub-optimal protocol that could be easily
applied in the clinical practice as it does not depend on the values of the parameters or the growth
law. Finally, in Section 5, we discuss the biological implications of our results and summarize our
conclusions.

2 Material and methods

(@) Formulation of the mathematical model

Tumour growth modelling can be tackled at various levels. One first, very simple, approach is
to focus on the temporal evolution of the tumour volume (or its total mass) and, thus, one could
employ well-known ordinary differential equations (ODEs) that essentially incorporate the role
of proliferation and competition for resources, as reviewed in [42,43]. For LGGs this is a possible
path to follow to partially circumvent the complexities associated with their spatial heterogeneity
(which is, nonetheless, much lower than in high-grade gliomas). In the present work we are
interested in maintaining the approach sufficiently simple but, at the same time, to capture one
key physiopathological aspect of LGG, their cellular density, as this plays a prominent role in their
malignant progression. To this end, we begin by considering a non-negative function u = u(t) that
represents a cell density at time t=0 that has been spatially averaged over a sufficiently large
domain that includes the tumour region. The dynamics of u(t) is governed by the following ODE

du_p =

where p and K denote the proliferation rate and the tissue carrying capacity, respectively,and a 1

0 is a parameter that accounts for the crowding effect strength, with respect to K (the maximum
cell density). The explicit solution of Eq. (2.1) can be found in Appendix A.
Critically, the solution of (2.1) takes specific forms under certain limits. Specifically, these are:
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(i) Exponential growth:

K - oo  [Cudl) = upe, (2.2)
(i) Gompertz growth:
o0 [l =eooue ™ 2.3)
(iii) Logistic growth:
o-1 [Cu= Ui (2.4)

up+e Pt(l—uy)’

See Figure 1 for a comparison of the growth curve forms.
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Figure 1. Comparing the considered growth curves, see legend for details. The values of the parameters are p = 0.007
and u; =0.1.

To further include spatial effects during LGG progression we define a n-dimensional spatial
domain, B, with boundary 0B and we will use diffusive-proliferative models, such as the
Skellam model and the Fisher-Kolmogorov equations (see [11,13,27,37,44-47]), which are given,
respectively, by

ut=DAuU+pu, u(x,0)=up(x), x [B]

(2.5)
n- [0=0, x[JdB,

and
ut =DAuU +pu(l —u), u(x,0)=up(x), x [B]

(2.6)
n- U0, x[JdB,

where D and p are the diffusion and proliferation coefficients, respectively, and n is the unit
normal vector to the boundary, 0B. Namely, in each case, the domain has zero-flux boundary
conditions, meaning that no tumour cells are able to leave the domain in accordance with the fact
that gliomas very rarely metastatize. Notice that u still represents a tumour cell density, albeit
with no spatial averaging.

The explicit solution of Eq. (2.5) is shown in Appendix A, whereas, for the Fisher-Kolmogorov
model (2.6), we resort to numerical methods to calculate the solution, although, for a 1D
spatial scenario, it would alternatively be possible to apply the effective particle method to this
equation, as described in [27]. The biological and clinical parameters used through this paper are
summarized in Table 1.
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Variable Description Values References
p Proliferation rate 0.003 — 0.01 day ™ * [26]
D Diffusion coefficient 0.0025 — 0.02 mmzlday [48]
d Dose per fraction 1.8 Gy [49]
N Total number of doses 30 [41]
S Survival fraction 0.8—0.9 [37]
up Initial cell density 0.01—-0.3 Estimated
ur Critical cell density 0.3—0.6 Estimated

Table 1. Values of the biological and clinical parameters used in this article. The cell densities are expressed in units of
the carrying capacity K.

(b) Optimization problem

Damage to both cancer and normal tissues caused by ionizing radiation can be estimated using
the standard linear-quadratic (LQ) model [50],

S(dj) =e NPy, @7)

where dj is the radiation dose given at time tj and the parameters a; and i, (i =t,n) are,
respectively, the linear and quadratic coefficients for tumour (i =t) and normal (i =n) cell
damage. Thus, S(dj) corresponds to the survival fraction of cells that are not damaged by
radiotherapy.

In our specific investigation into LGG, our goal is to optimize the treatment strategy in order
to delay the malignant transformation of tumour into a high-grade glioma, whilst controlling the
disease symptoms. Thus, we design the therapy to maintain the tumour density, given by Egs.
(2.2)-(2.6), below a critical level u —for the longest time possible, i.e., to find the time, Tmt, as large
as possible, such that

u®) =urg 0@, Tmil, (2.8)
for Egs. (2.2)-(2.4) and
rxntaé(ju(x, =<ua OO Tmd, (2.9)

for Eq. (2.5) and (2.6). We call Tmt¢ the “time to malignant transformation”. This general approach
was previously considered in [38].

We solve this optimization problem for the number of doses N, irradiation times {t; }JNZJ.
and doses {d; }JNzl. Specifically, we fix the number of radiation doses to N =30 and doses per
fraction to dj = 1.8 Gy, which are typical values for most extended radiotherapy protocols for
these tumours. Thus, our only optimization parameter will be the time spacing between doses.
Henceforth, we will consider only the case when doses are equispaced,

Aztj+1—tj.

In Fig. 2 we present the situation where there is an uniform schedule of fractionated irradiation,
i.e., the first fraction is given on day zero, the second fraction on day A, the third on day 2A and
so on, with the N™ fraction being given on day (N — 1)A. Define ug, U, ..., uy to denote the
tumour cell density immediately before the administration of radiotherapy and ufu5! ..., uﬁ
the tumour cell density immediately after radiotherapy, i.e.

ult™y =sui(t™), i=1,2,... (2.10)

where S is the survival fraction for each of the given doses, and t~ (and t*) denotes the time
just before (just after) the irradiation that takes place at time t. Fig. 2 illustrates these facts.
Finally, we define the improvement in time to malignant transformation as the time to malignant
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Figure 2. Different scenarios for the response of the tumor to radiotherapy. (a) The therapy provides a net decrease
of the tumour amplitude between doses and the maximum is reached after the treatment is completed. (b) The tumour
continues growing during the therapy.

transformation for the spacing optimal between doses Agpt, Tmt(Aopt), Minus the time to
malignant transformation for the “standard” choice A =1, T (1):

ATmt =Tmt(Dopt) = T(1) (2.11)

See Figs. 3, 4, 5, 6 and 7 for a better understanding of these concepts.

3 Results

Here, we simply state the final formulas, which we use and illustrate. Full derivation details
can be found in Appendix B.

(a) Results for proliferative models

i Exponential model

We start our results with the simplest case: the exponential growth model. Solving explicitly
Eg. (2.2) and using the recursion formula (2.10), we get a recursive equation providing the tumour

density after every dose (see Fig. 3(a)). Thus, the time to malignant transformation is given by
1 1 1
Tmt(@)=(N — 1A+ ~log ', (3.1)
p uN
with ul given by Eq. (A 6) with j =N.
It is straightforward to check that, except for an interval of measure zero,
dA
Thus, for the exponential model, the change in temporal spacing between doses does not

represent any gain in time to malignant transformation with respect to standard therapy (see
Fig. 3(a)).

0, [A=0.

i Gompertz model

Solving Eq. (2.3) and using the recursion formula, as in the previous case, we get a recursive
equation providing the tumour density after every dose dj (see Fig. 3(b)). The time to malignant
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Figure 3. Tmt given for (a) exponential growth with p = 0.005 , (b) Gompertz growth with p = 0.003756, and (c) logistic
growth with p = 0.004. Global parameters for all scenarios are u; = 0.3, ur= 0.5 and S = 0.85. These behaviours
correspond to Egs. (2.2)-(2.4), respectively. Red dashed lines indicate Tmt gain for optimal spacing versus unit spacing.

In particular, upper and lower red dashed lines in the figures corresponds to Tmt(Qopt) and T (1), respectively, (see
Eq. (2.11)

transformation is, thus,

"oy

og(urys (3.2)

Tmt(A) = (N — 1)A + % log
with uy given by Eq. (A 11) when j = N.

As in the previous case, it is straightforward, but tedious, to derive dTmt(A)/dA (see
Eq. (A 14)). However, we note that dTmt(A)/dA is positive for the values of the parameters
considered in the present work, which means that the optimum value for A within this interval
is reached exactly on its border (see Fig. 3(b)), where the border is defined as the largest value of
A for which the therapy is completed before the tumour reaches the critical value u—Hence, we
derive

1 I
Aopt =—=log 09

p logSur— (33)

Eq. (3.3) provides a simple solution to the Gompertz model optimization problem, which is quite
accurate in the range of parameters of interest.

i Logistic model

As previously mentioned, the optimization for the logistic model was studied in [38]. Here,
we briefly discuss this result to make our study self-contained (see Fig. 3(c)). In the range of
parameters of interest (0 <ui <ur=<S <1)and for N [Liflis possible to find an approximation
Of Aopt:

(3.4)

Details can be found in Appendix Biii.

(b) Results for Skellam model

We now consider two different initial conditions for Eq. (2.5): (i) Dirac delta; and (ii) Gaussian
initial conditions. Full derivations can be found in Appendix B(a).
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| D (mm?/day) | Aopt (days) | Gain in terms of Tme (days) |

0.0025 53 L1065

0.0035 55 [ 675
0.005 44 3w
0.01 38 2a1

Table 2. Summary of Tm¢t gain for the Skellam model in one dimension with an initial Dirac delta condition. Proliferation
rate is fixed (p = 0.007 day—1). Only the diffusion coefficient is allowed to vary.

i Dirac delta initial condition

Intuitively, and as shown in Appendix Bi, it can be seen that the maximum density for each
instant of time is obtained at the origin, x =0 and, therefore, we get the following expression:

_ uz pt
®= @npuy/2°
from the complete solution, equation (A 20).

Using this formula iteratively as in Appendix B we can construct a uniform schedule of
fractionated irradiation. Equally, we wish to find the best choice of A providing the maximum
Tmt given by Eq. (2.8). Further, we are interested in the range of values of A for which the therapy
can be completed before the tumour density reaches u—{Choosing A above (and perhaps below)
this range leads to a suboptimal use of therapy and to smaller values of the objective function,
Tmt.

The time to malignant transformation Tm¢ is given by

—1 —1

Tme=(N-DA— S w =120 £ (35)
2ndDu P

where W is the Lambert function [51]. Critically, we are not able to analytically solve for the
optimum value for A as derived from dTmt(A)/dA =0, instead we have to resort to numerical
methods to calculate the value of Agpt.

Fig. 4 shows an example computed directly from Eqg. (2.5) in one dimension with doses given
at equispaced times (according to Eq. (A 21)) showing the existence of a single global maximum
Tmt given by Eqg. (2.8). An interesting aspect that allows us to analyze the Skellam model is
the influence of the diffusion coefficient on the Tmt curve versus the A spacing; that is, this
model gives us information on how the optimal therapy is influenced by the tumour’s infiltrative
characteristics. Fig. 4 illustrates this variability by presenting different Tmt curves, which can
be simulated from the Skellam model in one dimension and considering the initial Dirac delta
condition. In these curves all the parameters have been fixed except for the diffusion coefficient,
D, which takes values between 0.0025 and 0.1 mm2/day. The differences between these graphs
are notable for two reasons and can be explained from the analytical expression of time to the
malignant transformation, equation (A 30).

First, for n =1, the higher the diffusion coefficient, the greater the value of the time until
the malignant transformation associated with the spacing of the standard therapy. Explicitly, the
standard therapy has unit time spacing (A = 1 day). According to Eq. (A 31) and given that we
are only varying the value of the diffusion coefficient, this difference is due exclusively to the
different values that the argument of the Lambert function, W, takes (see Fig. 4).

Second, there is a significant difference in the gain in Tmt of the optimal spacing compared to
the standard, this gain being greater for smaller values of D (see Table 2). From a biological point
of view, the model predicts that, for a fixed proliferation rate, low grade tumours with small
diffusion rates (low cell infiltration into the healthy brain parenchyma) benefit most (in terms of
survival) from the optimized therapy.
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Figure 4. Prediction of the time to malignant transformation given by the Skellam model in one dimension with a Dirac
delta initial condition, for different spacing between doses. The values of the parameters used are p = 0.007 day ™!,
S =0.85,u; =0.1and u—=r 0.3. The values of the diffusion coefficient employed in the simulations are indicated under

each figure. Upper and lower red dashed lines in the figures corresponds to Tmt(Qopt) and T (1), respectively, (see
Eq. (2.11)

In order to analyze the influence of the proliferation rate on the Tm¢t curve and on the optimum
spacing, Aopt all the parameters have now been fixed, except the proliferation rate, taking this
values between 0.0045 day_1 and 0.01 day_l. A remarkable behaviour, observed in Fig. 5, is
that the optimal spacing is lower in tumours with higher proliferation rate. This seems a logical
result since the faster the tumour grows, the more likely it is for the tumour to undergo malignant
transformation before the end of therapy (see Fig. 2(b)).

It is observed that Tmt(A =1) is very sensitive to the rate of proliferation. Namely, the greater
p is, the smaller Tmt(A = 1) is. An explanation for this fact is that the time of regrowth in Eq.
(A 30) is shorter for higher proliferation rates (see Table 3).

il Gaussian initial condition
Here, we will consider an initial Gaussian condition,
—x?/c
u(x, 0) = uo(x) =uze : (3-6)

instead of a Dirac delta initial condition. This condition implies that the tumour initially follows a
Gaussian profile, whose width is controlled by the parameter o. This scenario is more realistic
than the Dirac delta-type condition since the detection of a macroscopic tumour with these
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Figure 5. Prediction of time to malignant transformation given by the Skellam model in one dimension with an initial
Dirac delta condition, for different spacing between doses. The values of the parameters used are D = 0.007 mm?2/day,
S =0.85, u; = 0.1 and u—=r 0.3. The values of the proliferation rate are given below each figure. Upper and lower red
dashed lines in the figures corresponds to Tmt(Aopt) and T (1), respectively, (see Eq. (2.11))

| p(1/day) | Aopt(days) | Gain in terms of Tme(days) |

0.0045 59
0.007 40
0.009 33
0.01 31 241

Table 3. Summary of results for the Skellam model in a dimension with the initial Dirac delta condition, considering
different proliferation rates and with the fixed diffusion coefficient (D = 0.007 mmZ2/day).

characteristics is possible. The solution of Eq. (2.5) with the initial condition given by (3.6) is
presented in Appendix Bii. In the same way as was done for the initial Dirac delta condition, we
consider only the density at x = 0. Critically, Tmt once again cannot be calculated analytically and
we have to resort to numerical methods to obtain it (see Fig. 6).

In this case we are most interested in how space dimensions influence the information
provided by the model. Fundamentally, the gain in Tm¢ is greater in three-dimensions when
compared to two dimensions and, analogously, Tmt is greater in two-dimensions when compared
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Figure 6. Tmt for the Skellam model in (a) 1D, (b) 2D and (c) 3D, with initial Gaussian condition. The values of the
parameters are D = 0.0025 mm?2/day, p = 0.007 day— !, 0 =4 mm?2, S =0.85, u; = 0.1 and u= 0.3. Upper and
lower red dashed lines in the figures corresponds to Tmt(Aopt) and T (1), respectively, (see Eq. (2.11))

Spatial dimension | Aqpt (days) | Gain in terms of Tme(days) |

1D 33 8d
2D 41 [ 2218
3D 55 [ 556

Table 4. Summary of results for the Skellam model with the initial Gaussian condition for 1D, 2D, and 3D.

to one dimension (see table 4 and Fig. 6). In addition, an important variation in the optimal
spacing is observed depending on the spatial dimension considered.

(c) Results for Fisher-Kolmogorov equation

Finally, we consider the Fisher-Kolmogorov equation, which constitutes a generalization of the
logistic equation. When diffusive effects are small, both models provide similar results. Thus, we
seek to illuminate the influence of diffusion on optimal therapy times.

Fig. 7(a) shows the results of the time to malignant transformation Tmt for the Fisher-
Kolmogorov equation in one dimension for different spacing between doses. This result is similar
to that obtained with the logistic equation (Eq. (2.4)). Fig. 7(b) illustrates how Tmt depends on
the diffusion coefficients. It is observed that, despite there being a variation of up to an order
of magnitude in the diffusion coefficient, the curves remain similar. This is particularly true in
the monotonically increasing region, which is the pertinent region for determining an optimal
therapy. In view of this, it can be stated that the Fisher-Kolmogorov equation suggests that the
infiltrative character of the tumour can be neglected, at least for the range of values of the diffusion
coefficient characteristic of low grade gliomas.

4 Applications to clinical practice

As shown in the previous sections, it seems that by allowing a spacing between doses of greater
than one day is beneficial for patients, as a gain is obtained in terms of time to the malignant
transformation.

However, fundamentally, which tumour growth law is correct remains controversial. Further,
as illustrated in the analysis and shown in Figs. 3 - 7, optimising the exact dose spacing is delicate
because slightly increasing the dose separation beyond optimal results in a worse prognosis
compared to the standard treatment. For these reasons, the application of the optimal protocol
for each patient could be difficult to implement in the clinical practice. Thus, we suggest that
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Figure 7. (a) Prediction of the time to the malignant transformation given by the Fisher-Kolmogorov equation in one
dimension for different spacing between doses for D = 0.0025 mm?2/day. (b) Prediction of the time to malignant
transformation given by the Fisher-Kolmogorov equation in one dimension for different spacing between doses and
different values of the diffusion coefficient. For all the simulations, the values of the parameters used were S = 0.85,
u; =0.3, ur= 0.5, p=0.005 day ! and 0 = 10 mm?. Upper and lower red dashed lines in the figures corresponds
to Tmt(Aopt) and T (1), respectively, (see Eq. (2.11))

although the dose spacing should be increased beyond one day, which is the standard routine,
the chosen protocol should not pushed towards complete optimality, for conservative reasons.

One difficulty, which can be overcome, is that, in clinical practice, the values of some
parameters are not easy to be calculated. Critically, choosing optimal conditions are heavily
dependent on these values, specifically, the critical tumour density, urjHowever, this can be
conservatively estimated since tumour volume is (roughly) related to average cell density and,
so, the critical tumour density will be linked to a critical tumour volume, VThus, the initial
tumour volume, Vi, can be estimated using magnetic resonance imaging techniques. Crucially,
even if the exact value of Vs not known, it is clear that V= V1. We can make a conservative
choice by establishing V= V1, even if sometimes this value could be far from the real one, errors
produced by overestimating V —are avoided.

Further, with periodic control, it is possible to monitor the tumour growth evolution. For
example, after the first radiotherapy dose and accompanying tumour volume reduction another
radiotherapy dose would be administered when the tumour volume is close to Vi, thereby
defining A. A basic scheme can be seen in Fig. 8(a). This protocol is easily modifiable, since it can
occur that after some doses of radiotherapy tumour cells develop radiotherapy resistance and,
thus, the tumour does not respond uniformly to the treatment over time. In this case the critical
value, V-would be reached before the time A. With a periodic control, a new time between doses
A< A can be recalculated and the treatment can be adapted, as in Fig. 8(b).

To demonstrate this idea, simulations were performed and illustrated in Fig. 9. Specifically, we
compared four protocols assuming a fixed law growth and fixed values for the parameters. The
four simulations we compare are:

= Standard protocol, A =1.

= Optimal protocol for a wrong ur.e. uwrong Where U cwrong = 1.05uaA = A!}F‘)t.
= Sub-optimal protocol, A = Ag,p.gpt < Aopt-

= Optimal protocol A = Agpt.

In Fig. 9 it is possible to see two examples of these different protocols. In Fig. 9(a) Gompertz
growth is assumed. In this case, the worst scenario in terms of survival is the standard protocol,
as the time to malignant transformation is 1.6 years. Of course, the best protocol is the optimal
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Figure 8. (a) Basic treatment schedule. (b) Treatment adaptation if radiotherapy resistance, or faster growth, occurs.
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Figure 9. (a) Gompertz growth, with p = 0.003756 day ', S = 0.85, u; = 0.3 and u—= 0.5. (b) Logistic growth, with
p=0.004 day~ !, S =0.85, u; = 0.3 and u = 0.5. Units for Tmt and A are years and days, respectively. Blue curve
corresponds to the standard protocol, purple curve corresponds to the optimal protocol for a wrong U ,-yellow curve
corresponds to sub-optimal protocol and red curve corresponds to optimal protocol. Black horizontal line represents U

one, with a time to malignant transformation equal to 4.6 years. However, with an overestimation
of only 5% of the critical tumour density, the resulting time to malignant transformation would
have been 1.8 years, which is better than the standard protocol but worse than the sub-optimal
protocol, which provides a time to malignant transformation of 3.2 years.

Similar results are seen in Fig. 9(b), with the additional note that, in this case, the 5% critical
tumour over-estimation simulation is worse than the standard protocol, as the time to malignant
transformation is 3.9 versus 4.2 years, respectively. The sub-optimal protocol also gives a benefit
compared to the standard one (5.2 years) and, even if it is not the optimal dose spacing (6.2 years),
it provides a close approximation.

5 Discussion and Conclusions

(@) Medical applications

The primary aim of this work was to improve the efficacy of radiotherapy for the management
of LGG using different mathematical models. Thus, the results of Section 3 provide a theoretical
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support for extremely protracted therapies for LGG. Notably the results have a clear biological
meaning. Since tumour regrowth is known to be faster for small tumour densities, which is called
the accelerated repopulation phenomenon, it is preferable to leave the tumour density grow, while
keeping its damage to the surrounding healthy brain parenchyma under control (particularly if
eloquent areas are affected). Our mathematical models (except the exponential model) capture
this phenomenon.

Our results can further be extended to include the knowledge that radiation treatment is most
effective on proliferating cell populations. Thus, if we were able to time the dosage with reference
to the cell cycle our treatments would be more effective. Although not presently accounted for in
our model, such effects may be incorporated by including a quiescent population along with any
of the models of proliferative cells studied in this article.

Critically, taking the time spacing A above the optimal value in any of our models, leads to
a sharp drop of the gain in time to the malignant transformation and even a worse outcome
than the choice of A=1 day. This is why we suggest a sub-optimal protocol that could be
applied in clinical practice. The result of mis-estimating the parameters values, or the growth law,
when calculating the optimal time spacing between doses can be avoided using the sub-optimal
protocol that it is proposed in this paper, which is not dependent on parameters values or growth
laws. The time spacing between doses depends on just the tumour volume that is a measure that
can be quantified with the current imaging techniques.

Protracted therapies are, of course, quite a radical suggestion, thus, there is little research
done to support out predictions. However, the Mathematical Oncology Laboratory, MGLAB, is
working, in collaboration with various Spanish hospitals, on a phase Il clinical trial to determine
whether protracted RT doses may exhibit a significant benefit on both progression free survival
and overall survival in newly diagnosed low-grade glioma adult patients. Since the natural course
of this malignancy expands through several years, at this time we do not have any conclusive
information. Moreover, we expect that, inspired by the present manuscript, more sophisticated
mathematical models will be needed to account for the observed results in low-grade glioma
patients.

(b) Conclusions and future works

In this article, we compared a number of model equations (exponential, Gompertz, logistic,
Skellam and Fisher-Kolmogorov equations), which are widely used when quantifying the kinetics
of LGGs. Specifically, we have investigated optimal dose interspacing in radiotherapy protocols
for LGGs, under the assumptions of equal doses per fraction and fixed spacing between doses. As
each model uses a different functional form and captures specific characteristics of the growth of
LGG, the results based on each of the models share certain behaviours, but at the same time they
present several differences.

Some of these particularities even point to some disagreement. Specifically, a given model
can suggest guidelines for action in clinical practice, while another model suggests a totally
different set of guidelines. For example, in the case of the exponential model, there is no benefit
in increasing the temporal spacing between doses greater than 1 day. However, this result differs
radically from those provided by the other models considered in this study. Indeed, the logistic
model indicates a certain gain in Tmt is made by taking a time spacing, A > 1. Namely, an optimal
therapy requires approximately 60 days to pass between consecutive doses. The Gompertz
model yields qualitatively similar results to those of the logistic model. However, quantitatively
there are significant differences, the main one being a greater gain in time until the malignant
transformation of the optimal spacing compared to the unit spacing. Still, it should be pointed
out that the use of extremely protracted schemes would be of special interest for pediatric LGG
patients, since one of the complications associated with radiotherapy toxicity is the manifestation
of cognitive disability later in life. Employing longer time spacings between doses is expected to
significantly reduce the occurrence of such secondary effects.
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One limitation of our work is that we are, currently, restricted to equispaced doses. However,
one could take a much more granular view of, at one extreme, varying the specific days of the
week at which dosage occurs. The question then becomes a much larger optimisation problem.
Although we expect the problem to be analytically intractable accompanying simulations should
be quite forthcoming and will be considered as part of our future work. However, it should be
noted that we do not foresee that subweekly variations would have a large impact on our results,
which often suggest multiple weeks are missed between doses.

The diffusive-proliferative models are a way of introducing another relevant characteristic of
low-grade gliomas: their infiltrative character. After using an initial condition given by a highly-
localized tumour applied to the Skellam model, we conclude that the variation in the diffusion
coefficient, D, decisively influences both the gain of the optimized therapy versus the standard
one, as well as the time to malignant transformation associated with unit spacing. On the other
hand, the observed dependence of the optimal spacing with the diffusion coefficient, although if
it exists, is not relevant. Thus, therapy optimization does not depend strongly on the diffusion
coefficient, even though therapy gain does. In addition to the influence of the diffusion coefficient
on Tmt, the role of the proliferation rate has also been analyzed. From this last analysis it can be
concluded that the value of the proliferation rate does have a decisive influence on the value of
the optimal spacing and that, in contrast to variations of the diffusion coefficient, there are no
significant differences in the gain in Tmt when the proliferation rate is varied.

Another interesting result obtained in this work is provided by the Skellam model with
Gaussian initial condition. Namely, with fixed values for diffusion and proliferation rate, the
model shows a marked effect of dimensionality. Specifically, gain in Tmt is highest in the
three-dimensional case. Similarly, the Fisher-Kolmogorov equation yields a revealing result.
Specifically, the time to malignant transformation depends weakly on the diffusion coefficient.
Our conclusion is that, to a good approximation, the problem can be studied without taking into
account the effects of diffusion, at least for the diffusion coefficient values pertinent to LGGs.
Of course, it could be argued that if the diffusion coefficient changes (increases) as the LGG
progresses into a high-grade glioma, such an approximation may be questionable.

Finally, as a future extension of this work, by adding a healthy tissue population one could
increase the number of doses and run the treatment for longer times. This is motivated by our
previous work [52], where estimates of the retreatment radiation tolerances of the spinal cord
at different times after initial treatment where proposed. In the present work, healthy tissue has
only been considered through the limitation of the total dose administered. A possible avenue
to explore consists of taking into account the healthy brain tissue through the evolution of the
fraction of survival of healthy cells and their recovery when the doses are sufficiently spaced
over time. It should be noted that since the recovery of healthy tissue is considerably smaller
compared to that of tumour tissue, it is only necessary to regard the healthy tissue recovery in
protracted therapies such as those analyzed here. Another extension would encompass both the
concomitant action of radiotherapy and chemotherapy. As shown in [53], the outcome of LGG
patients is highly variable when single-modality treatment strategies of standard radiotherapy
versus primary temozolomide chemotherapy are administered. An open problem is whether it
would be possible to generalize the framework presented here to such a therapeutic scenario. We
hope that the results obtained in this article will stimulate further research for identifying optimal
treatments for LGG patients.
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A Explicit solutions

Explicit solutions will be used throughout this paper to reduce the number of approximations.
Such solutions are commonly derived using standard techniques [54].
The general solution of (2.1) is

T @, ), e

u(®) =u; 3 K (A1)
The formal solution of the Skellam model (2.5) in infinite space is given by:
ept I:I _ (xfor)2
u(x, t) e 4Bt up(a)da, (A2)

B (4nDt)™? Rn

where n is the dimension considered.

B Calculating time to malignant transformation

The time to malignant transformation, Tmt¢, will be found in the case of each tumour growth
model as the total treatment time, Tt, plus the time that elapses until the critical tumour density,
uris reached from the tumour density obtained when the therapy is finished, u,'ﬂ, which is
denoted by Ty:

Tmt=Te+Tr=NA+Tr. (A1)
Keep in mind that Eq. (A 1) is only valid when the tumour density, u(t), remains below, or equal,
to the critical value, ur—lt may happen, for spacings between sufficiently large doses, that the

critical density is reached before the end of the treatment. In this case, we will find the last session,
j, for which u < urn this case, the time to malignant transformation will be given by:

Tme=jA+T,

where TJ is the time that elapses until the density u s reached starting from ujD.
i Exponential model

Using the recursion formula (2.10) and Eq. (2.2) we get a recursive equation providing the
tumour density after every dose tj, dj:

ur(t) = Su(t) (A2)
us{t) = Sup(t) =SuiePtz=t) = g2 ePA (A3)
us{t) = Sug(t) =SukPt™t) = g3, e2PA (A4)

: (A5)
qutt) = Suj()= Su}j_letj -1 =gly,eU—DPA, (A6)

Thus, the time to malignant transformation is given by Eq. (3.1)

We noted, in Section i, that dTmt(A)/dA =0, [A>0. However, this does not mean that
Tmt is stationary with respect to A. Critically, because of its piecewise nature it can have both a
zero-derivative and be monotonically decreasing (see Fig. 3(a)).
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i Gompertz model

This time we combine Egs. (2.3) and (2.10) to get a recursive equation providing the tumour
density after every dose tj, dj:

uf = Sui(®) (A7)
—pA _ _
Uty = sup=suf  =s¢ g™ (A8)
—pA — — —
Uity = Sust)=Subf  =glte PhreTA e (A9)
(A 10)
uilt) = Suj®) = SujD_l(fpA =S k=0 e_kpAu'i_G_l)pA =gVYi u‘f_(j_l)pA (A11)
where the geometric progression is expressed as follows
i —jpA _
o — pA _ e 1
Yi = e T epA_1° (A12)
k=0 e~ P 1
Thus, the time to malignant transformation is given by
1
1, Tog(uR)
Tmt(A)=(N — DA+ =1 — = Al
mi(@)=(N = DA+ Zlog 0 (A13)
with u given by Eq. (A 11) with j = N.
It is straightforward to show that
dTmt(D) 1 duy
M =N-1+ N Al4
da ug loguy dA (Al4)
where
0 I:—IpA —NpA —NpA
duy — Vi ™™ jogs © Ee -1) N_e P
da (e=PA —1)2 e—PA —1
(I

— (N —1)logu;e”(N=Dea

The expression (A 14) is positive for the values of the parameters considered in the article, which
means that the optimum value for A within this interval is reached exactly on its border, where
the border is defined as the largest value of A for which the therapy is completed before the
tumour reaches the critical value ur

Since Eqg. (3.2) is valid while u(t) <urand ujD gives the tumour density after the radiation
doses, this means that the condition for this scenario to hold is (Fig. 2)

UN/S<um (A 15)

Fig. 3(b) shows a simulation computed from Eq. (2.3), with doses given equally spaced in time
and according to Eq. (2.10). This picture shows the existence of a single global maximum in the
time to malignant transformation, given by Eq. (2.8). It is possible to calculate this maximum
quantitatively by inserting Eq. (A 11), for j = N, into Eq. (A 15) and solving for A:
SNy TP oy (A 16)
Using formula (A 12) and defining a = e P2 after some algebra, we obtain
P(a)= alN logSug — aN ™t logu; —alog Sur—= logur=0. (A17)

In the range of parameters of interest, i.e. 0 <uj; <ur< S <1, it is straightforward to prove that
the previous equation has at least one root. Thus, we can get an estimation for the value of the
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root by taking into account that a <1 and N [Tahd thus, Eq. (A 17) becomes

—alogSuc+ logur=0

and from here
__ logur
log Surs

which, finally, leads to the result in Eqg. (3.3).

iii Logistic model

For this case, as in the exponential model, the general formula for the tumour density
corresponding to thejth irradiation can be calculated,

ui(t) = . - . A 18
R ) 1+ Sug(ePA — 1)[(SI—1el—DpPA — 1)/(SePA — 1)] (A 18)
Thus, for this model, the time to malignant transformation is given by
1 Eu'E(j, uxy)
Tmt(A)=(N — 1A+ = log ———N2 A19
(@) =N =DA+Jlog oy, (A19)
and, for the parameters of the model,

which means that the optimum value for A within this interval is reached again exactly on its
border. As in the Gompertz model, the condition UE/S < urmust be satisfied, and thus, we
obtain the following algebraic equation

R —
upN T +upN Tt S, *hUu1—D+1-Su =0,

where 8 = ePAS. In the range of parameters of interest (0 <u; <ur<<S<1)and for N [Tiis
possible to find an approximation of Agpt:

(a) Results for Skellam model

i Dirac delta initial condition

Combining the Dirac delta initial conditions, u(x, 0) = u16(x) with (A 2) generates the solution
of Eq. (2.5):
t
U, 1) uze® ¢~X/(4DY).

- (4nDt)n/2 (A20)

where n refers to the spatial dimension. Such a solution represents the tumour density at each
point x and at each time t. From this solution, it can be seen that the maximum density for each
instant of time is obtained at the origin, x =0, i.e., u(t) = maxy rgfu(x, t)} = u(0, t). Since we are
interested in the maximum value of the density, in what follows we will take the value of x =0
and, therefore, we get the following expression:

_ uz pt
ut)=———-e".
® (4nDt)n/2
Consider again Fig. 2 in the situation where there is an uniform schedule of fractionated
irradiation, i.e., the first fraction is given on day zero, the second fraction on day A, the third
on day 2A and so on, with the N fraction being given on day (N — 1)A. Define ug, uz,...,uyN
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to denote the tumour cell density immediately before the administration the radiotherapy and

upu5l. .., ug the tumour cell density immediately after radiotherapy, i.e.

uilx, §) =Ssuix. ), i=1,2,..., (A21)

where i is the number of fractions and thus, from Fig. 2 and using formula (A 20), it is
straightforward to get the following recursive iteration:

0

ur = Sug, (A22)
uy = SuZzsuilmepA:SzLepA (A23)
(4nbp)"/2 (4nbp)n/2-
U2 = Sua= Uzl'j ePRA-D) _ g3 uz o2PA (A 24)
8 7 YT anbayn2 = @yt
(A 25)
Geda
0
U YA (k— pA
UY = Sug=S. okl e DA—(DD) =gy, ST (A 26)
(4nDAp)"/2 (4nbAa)n/2

Thus, given D, p, S and urwe wish to find the best choice of A providing the maximum Tmt
given by Eq. (2.8). Further, we are interested in the range of values of A for which the therapy can
be completed before the tumour density reaches u—{Choosing A above (and perhaps below) this
range leads to a suboptimal use of therapy and to smaller values of the objective function, Tmt.
We can compute explicitly the time Ty in Eq. (A 1) from the equation
U ePTr

E_—~— A27
Uy  (4nDTy)n/2 (A2

This is done using the Lambert function [51], W, defined by z = W (ze*), which is useful to solve
certain transcendental equations. Thus, the solution of (A 27) is given by

1 1
u
T,.:—ZQW I:Ipi'\l2 C 1 (A 28)
P 2nnDupP
with u given by Eq. (A 26) with k =N,
(EVEE]
o_ SePA
UuN= ——= Suj. (A29)
(4nDA) 2
Therefore, the time to malignant transformation Tm¢ is given by
1 2 1
u
Tme=(N-DA— S w =12 ] (A30)
2ndDu P
The optimum value for A is derived from
n I:IW(Z) 1 1

where z = —puﬁ/n/uzéernnD. Since it is not possible to solve Eq. (A 31) explicitly in terms of A

we have to resort to numerical methods to calculate the value of Agpt. From Eq. (A 28), we can
obtain the regrowth time for different spatial dimensions. Thus, for 1, 2 and 3 spatial dimensions,
the regrowth time is reflected in table 5.
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Spatial dimensions - —
1D (—1/2p)W _—pud/u2nD
2D (—1/p)W, —pun/urdnD 0
3D (—3/20)W (—p/61D) u/ucs’>

Table 5. Re-growth time in 1, 2 and 3 dimensions for the Skellam equation with a Dirac delta initial condition.

il Gaussian initial condition

Solving Eqg. (2.5) with the initial condition given by (3.6) we obtain the following analytic
solution: 1
o e—x2/(4Dt+0)

ux,t)=ue”t
x,H=u DI+ o

(A32)

In the same way as was done for the initial Dirac delta condition, we consider only the density at
x=0
' 1 Lo

=ue” :
u() =u ADt+o

(A33)
which will be the point of highest tumour density. Again, it is possible to calculate the iterative
formula, — — ] s

U= sePt us. (A34)

The elapsed time Ty can also be calculated from the following relation
L1 ()
i:l: PTr o

me DT +o (A %)

Unfortunately, this time cannot be calculated analytically and we have to resort to numerical
methods to obtain it.
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