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Abstract

The problem of parameter estimation for the non-stationary ergodic diffusion with Fisher-Snedecor invari-
ant distribution, to be called Fisher-Snedecor diffusion, is considered. We propose generalized method of
moments (GMM) estimator of unknown parameter, based on continuous-time observations, and prove its
consistency and asymptotic normality. The explicit form of the asymptotic covariance matrix in asymp-
totic normality framework is calculated according to the new iterative technique based on evolutionary
equations for the point-wise covariations. The results are illustrated in a simulation study covering various
starting distributions and parameter values.
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1. Introduction

Fisher-Snedecor diffusion (FSD) X = (Xt, t ≥ 0) is defined as the solution of the non-linear stochastic
differential equation (SDE)

dXt = −θ (Xt − κ) dt+

√
2θXt

(
Xt

β/2 − 1
+

κ

α/2

)
dWt, t ≥ 0 (1.1)

with values in (0,∞), where (Wt, t ≥ 0) is the standard Brownian motion. From the SDE (1.1) we
see that infinitesimal parameter of FSD are polynomials - the drift coefficient is linear and the squared-
diffusion coefficient is quadratic, depending on parameters ensuring that its leading coefficient and its
discriminant are positive. According to general results from Genon-Catalot et al. (2000), for α, β > 2 the
diffusion X satisfying (1.1) is ergodic. Under the particular choice κ = β/(β − 2), the unique invariant
distribution is the well-known Fisher-Snedecor distribution FS(α, β) with shape parameters (degrees of
freedom) α and β and the PDF given by (2.7).

FSD belongs to the class of diffusion processes with invariant distributions from the Pearson family
of continuous distributions, introduced by K. Pearson (1914). The study of such processes started in
the 1930’s by A. Kolmogorov (see Shiryayev (1992)) and therefore processes from this family are often
called Kolmogorov-Pearson (KP) diffusions. For more detailed discussion on KP diffusions we refer
to papers Forman and Sørensen (2008), Shaw and Munir (2009) and Avram et al. (2013a). Together
with the reciprocal gamma and the Student diffusions, FSD forms the class of the so-called heavy-tailed
KP diffusions. Statistical inference for heavy-tailed KP diffusions, relying on the GMM estimation and
spectral representation of the diffusion transition density (eigendifferential expansion in Itô and McKean
(1974)), is developed in recent papers Leonenko and Šuvak (2010a), Leonenko and Šuvak (2010b) and
Avram et al. (2011), where the stationary version of the respective diffusions are observed. Statistical
inference of non-stationary FSD was motivated mostly by theoretical reasons, to complete the recent
theoretical results developed for stationary case in Avram et al. (2011), Avram et al. (2012) and Avram
et al. (2013b).

∗Corresponding author
Email addresses: kulik.alex.m@gmail.com (A.M. Kulik), LeonenkoN@cardiff.ac.uk (N.N. Leonenko),

ipapic@mathos.hr (I. Papić), nsuvak@mathos.hr (N. Šuvak)

Preprint submitted to Journal of Statistical Planning and Inference November 14, 2019



The theory of parametric inference for both stationary and non-stationary diffusions is a well stud-
ied field. Some of the classical references from this area are e.g. Kutoyants (2004), Bishwal (2007) and
Kessler et al. (2012). The approach presented in Sørensen (2012), based on optimal martingale estimating
functions, is applicable in estimation problems regarding stationary KP diffusions - some elements of this
theory are already applied in Forman and Sørensen (2008). Furthermore, martingale estimating functions
methodology for non-stationary diffusions is developed and thoroughly studied from theoretical and prac-
tical point of view in e.g. Kessler (1997), Kessler and Sørensen (1999) and Kessler (2000). The theory
of simulation approaches are well covered by a classical book Kloeden and Platen (2011), more practical
book Iacus (2008) and e.g. paper Kessler and Paredes (2002) devoted to computational properties of
martingale estimating functions. However, in this paper we focus on GMM estimators. Beside their sim-
plicity and appealing statistical properties such as consistency and asymptotic normality (with explicitly
known asymptotic covariance matrix), additional reason why we focus on GMM estimators is that in the
analysis of their asymptotic properties the continuous part of the spectrum of the corresponding diffusion
infinitesimal generator is not neglected. The concise overview of spectral properties and spectral repre-
sentation of transition density of stationary FSD, based on results from Avram et al. (2013b) and with
the obvious impact of the continuous part of the spectrum of the corresponding infinitesimal generator,
is given in Appendix A. We find this approach quite important since the impact of the continuous part
of the spectrum and its negligence in most of the statistical problems regarding diffusions having such a
structure of the spectrum still isn’t properly investigated (by the best knowledge of the authors).

In this paper we consider the problem of parameter estimation of FSD X in the non-stationary setting,
i.e. with the arbitrary distribution of the initial value X0. Results of analysis of asymptotic properties
of parameter estimators are obtained by application of the law of large numbers and the central limit
theorem for additive functionals for the FSD from Kulik and Leonenko (2013) and relying on the study
of explicit quantitative rates for the convergence rate of respective finite-dimensional distributions to
that of the stationary FSD and for the β-mixing coefficient. The techniques in Kulik and Leonenko
(2013) rely on the general theory developed for (possibly non-symmetric and non-stationary) Markov
processes, with the significant novelty based on the so-called Lyapunov-type condition. The natural idea
behind this approach is the extension of results in the stationary setting to the non-stationary setting
using the bounds for the deviation between the stationary and non-stationary versions of the FSD. The
technique is based on the notion of an (exponential) φ-coupling, introduced in Kulik (2011) as a tool
for studying convergence rates of Lp-semigroups generated by a Markov process. Similar results for the
reciprocal gamma and the Student diffusions were considered in Abourashchi and Veretennikov (2009)
and Abourashchi and Veretennikov (2010), respectively.

This paper is a natural extension of results from Kulik and Leonenko (2013), where it is proved
that the empirical moments of the FSD X are P -consistent, asymptotically normal and, under some
additional conditions on the initial distribution of X, asymptotically unbiased. Relying on these results,
it has been shown that the GMM estimator of parameter (α, β, κ, θ) of FSD, given either the discrete-time
or the continuous-time observations, are also P -consistent and asymptotically normal. We would like to
emphasize that in the GMM estimation moments of negative order have also been used, yielding a simpler
estimator than the one based on moments of positive order only. In this paper we develop an iterative
procedure for calculation of the asymptotic covariances in the asymptotic normality framework, where the
only drawback is experienced in the calculation of some asymptotic covariances related to discrete-time
empirical moments of negative order. However, the simulation study in Section 4 revealed the deficiency
of the proposed GMM estimators when diffusion parameters are estimated from observations from short
time-intervals, in which the diffusion still didn’t reach its asymptotic/stationary regime or is not in this
regime long enough. The detected problem is illustrated and discussed in Remark 4.1.

The paper is organized as follows. After Introduction, in Section 2 we give some important prelim-
inaries on FSD and references to certain results that are crucial for developing this paper. In Section
3 we focus to parameter estimation of FSD in non-stationary setting, based on continuous observations
in [0, T ]. In Subsections 3.1 and 3.2 we formulate results and give examples that are crucial for prov-
ing P -consistency and asymptotic normality of GMM estimator of parameters of non-stationary FSD as
T → ∞. Main result on asymptotic properties of the GMM estimator of parameters of FSD is formulated
in Subsection 3.3 and proved in 5.5. All the proofs are postponed to the separate Section 5, while Section
4 contains results of the simulation study based on discrete observations. Although the focus of the paper
is on the continuous observations, in order to provide the simulation study we established the connection
between estimators and their asymptotic properties based on continuous and discrete observations and
clarified it in Remark 5.1. Some results from previous researches of FSD are, for completeness of the
exposition, given in Appendix A and Appendix B.

2



2. Non-stationary Fisher-Snedecor diffusion

From the governing SDE (1.1) of the FSD X = (Xt, t ≥ 0) we see that its infinitesimal parameters,
i.e. the drift coefficient a(x) and the diffusion coefficient σ(x), are respectively given by

a(x) = −θ (x− κ) , σ(x) =

√
2θx

(
x

β/2 − 1
+

κ

α/2

)
. (2.1)

Here we assume that
θ > 0, κ > 0, β > 4, α > 2, (2.2)

where the restrictions imposed on values of parameters α and β ensure ergodicity of the diffusion and
existence of the second moment of its invariant distribution, respectively (see e.g. Forman and Sørensen
(2008); Genon-Catalot et al. (2000)). If the invariant distribution has finite variance, the autocorrelation
function is given by

ρ(t) = Corr(Xs+t, Xs) = e−θt, t ≥ 0, s ≥ 0 (2.3)

(see Bibby et al. Bibby et al. (2005), Theorem 2.3.(iii)). Therefore, parameter θ > 0 is usually called the
autocorrelation parameter.

For x ∈ (0,∞),

s(x) = exp

(
−
∫ x

1

2a(u)
σ2(u)

du

)
= Cx−α/2

(
x+

κ(β − 2)
α

)α/2+β/2−1

(2.4)

defines the scale density of FSD, where C is a constant which could be expressed explicitly. From
assumptions on parameter values (2.2) it follows that

∞∫

x

s(y) dy = ∞,

x∫

0

s(y) dy = ∞, x ∈ (0,∞).

Therefore, for α > 2 both 0 and ∞ are unattainable points of the state space for the diffusion X, i.e. the
random time moment T0,∞ is a.s. infinite for any positive initial condition X0, see e.g. Karlin and Taylor
(1981), Chapter 18.6. This means that (1.1) uniquely determines a time-homogeneous strong Markov
process X with the state space X = (0,∞), considered here as the locally compact metric space with the
metric d(x, y) = |x− y| + |x−1 − y−1|.

Generally, for any κ > 0 the unique invariant distribution is given by the PDF

p(x) =
1

xB(α/2, β/2)

(
αx

αx+ ̺

)α/2(
̺

αx+ ̺

)β/2

I(0,∞)(x), (2.5)

with ̺ = (β − 2)κ and with the moments of order υ ∈
[
− α

2 ,
β
2

)
of the following form:

mυ =
∫ ∞

0

xυp(x) dx =
( ̺
α

)υ Γ(α/2 + υ)Γ(β/2 − υ)
Γ(α/2)Γ(β/2)

. (2.6)

If κ = β/(β − 2), i.e. ̺ = β, the unique invariant distribution is the classical Fisher-Snedecor
distribution FS(α, β) with degrees of freedom α and β and with the PDF

fs(x) =
1

xB(α/2, β/2)

(
αx

αx+ β

)α/2(
β

αx+ β

)β/2

I(0,∞)(x). (2.7)

The relation between the PDFs (2.5) and (2.7) is

p(x) =
β

̺
fs

(
β

̺
x

)
, (2.8)

clearly stating that the invariant PDF for X is the image of FS(α, β) under the linear transformation
x 7→ (̺/β)x. It is not hard to see that the process (β/̺)X satisfies SDE (1.1) with κ = β/(β − 2), and
therefore the general FSD defined by (1.1) could be represented as

X =
̺

β
U, (2.9)
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where the so-called canonical FSD U satisfies the SDE

dUt = −θ
(
Ut − β

β − 2

)
dt+

√
4θUt

β − 2

(
Ut +

β

α

)
dWt, t ≥ 0. (2.10)

In this paper we focus on estimation of parameter (α, β, κ, θ) of the FSD (1.1). Estimation and the
analysis of asymptotic properties of GMM estimator in stationary setting (X0 ∼ FS(α, β)) are performed
in Avram et al. (2011). The results of this paper rely on the law of large numbers (LLN) and the central
limit theorem (CLT) for α-mixing sequences. The analogous of these theorems, as well as an extensive
and detailed study of other properties of the FSD in non-stationary setting are given in the recent paper
Kulik and Leonenko (2013). The proofs of the LLN and the CLT for additive functionals of the non-
stationary FSD in both discrete-time and continuous-time setting in Kulik and Leonenko (2013) are based
on coupling, ergodicity and mixing properties. For completeness, we give a short overview of these results
in Appendix B.

3. Parameter estimation of the non-stationary FSD

In this section we apply Theorems from Appendix B.2 to verify that GMM estimator of parameter
(α, β, κ, θ) of the FSD (1.1) is P -consistent and asymptotically normal. In Subsections 3.1 and 3.2 we
derive techniques for calculating the point-wise covariations of the estimator of the specific empirical
moments, further used for GMM estimation of parameter (α, β, κ, θ) in Subsection 3.3.

Let us introduce the notation
Xst = (Xst

t , t ≥ 0)

for the stationary version of the FSD (Xst
0 ∼ FS (α, β)) and its moments and mixed moments:

mυ = E(Xst
s )υ, mυ,χ(t) = E(Xst

s )υ(Xst
s+t)

χ.

Next we introduce the notation for empirical moments based on continuous-time observations (Xt, t ∈
[0, T ]) and discrete-time observations (X1, . . . , Xn) from the non-stationary FSD X = (Xt, t ≥ 0),
supposing certain restrictions on parameter values in order to ensure existence of the corresponding
theoretical moments in particular situations:

mυ,χ,c(t) =
1
T

∫ T

0

(Xs)υ(Xt+s)χ ds, mυ,χ,d(t) =
1
n

n∑

s=1

(Xs)υ(Xt+s)χ, t > 0. (3.1)

Usual empirical moments

mυ,c =
1
T

∫ T

0

(Xs)υ ds, mυ,d =
1
n

n∑

s=1

(Xs)υ (3.2)

are equal to the empirical mixed moments with χ = 0, and empirical covariances

Rc(t) =
1
T

∫ T

0

XsXt+s ds−
(

1
T

∫ T

0

Xs ds

)2

, Rd(t) =
1
n

n∑

s=1

XsXt+s −
(

1
n

n∑

s=1

Xs

)2

, (3.3)

can be written as
Rc(t) = m1,1,c(t) −

(
m1,c

)2
, Rd(t) = m1,1,d(t) −

(
m1,d

)2
. (3.4)

Since non-stationary FSD after some time reaches its steady state, it is well known that for any initial
distribution empirical moments given in (3.1) are estimators of theoretical moments mυ and mυ,χ(t),
for each fixed t > 0 in the latter case. This presents the basis for the GMM estimation of parameter
(α, β, κ, θ) of the non-stationary FSD.

In Subsection 3.1 we introduce evolutionary equations approach, a useful tool for calculating asymp-
totic covariances of moment estimators (3.2) and (3.4), while the technically sound Subsection 3.2 gives
the technique for calculating the specific covariances when the evolutionary approach is not applicable.
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3.1. Evolutionary equations for the point-wise covariations

In the following list of propositions and examples we use the following basic notation:

fυ(x) := xυ, Eυ,g(t) := Efυ(Xst
t )g(Xst

0 ), 〈f〉 :=
∫

(0,∞)

f(x) p(x)dx.

Proposition 3.1. For all υ ∈ N and non-negative functions g satisfiying

〈g〉 < +∞, 〈fυg〉 < +∞, (3.5)

Cυ,g(t) := Cov
(
fυ

(
Xst

t

)
, g
(
Xst

0

))
(3.6)

satisfies identity

Cυ,g(t) = e−
υθ(β−2υ)

β−2 tCυ,g(0) +
υθ̺(α+ 2υ − 2)

α(β − 2)

∫ t

0

e
υθ(β−2υ)

β−2 (s−t)Cυ−1,g(s) ds. (3.7)

In particular, note that C0,g(t) = 0, for all t ≥ 0.

Example 3.1.

(a) According to the Proposition 3.1, for υ ∈ N and non-negative function g satisfying (3.5), point-wise
covariances (3.6) can be calculated iteratively from (3.7). In particular,

C1,g(t) = e−θtC1,g(0), (3.8)

C2,g(t) = e−2θ β−4
β−2 tC2,g(0) +

2(α+ 2)̺
α(β − 6)

(
e−θt − e−2θ β−4

β−2 t
)
C1,g(0). (3.9)

Note that the condition for (3.9) to hold true is α > 2, β > 4 and (3.5), since

e−θt − e−2θ β−4
β−2 t = e−θt

[
1 − e−θ β−6

β−2 t
]
,

compensates the term (β − 6) in denominator.

(b) From (2.6) we obtain

〈f−1〉 =
αβ

(α− 2)̺
, 〈f1〉 =

̺

β − 2
, 〈f2〉 =

(α+ 2)̺2

α(β − 2)(β − 4)
.

Since

〈fυ−1〉 =
(β − 2υ)α

(α+ 2υ − 2)̺
〈fυ〉,

the above identities, after introducing the notation Cυ,χ(t) for Cυ,fχ
(t), can be written in the

following form:

C1,χ(t) =

[
〈fχ+1〉 − ̺

β − 2
〈fχ〉

]
e−θt =

2χ(α+ β − 2)̺
α(β − 2)(β − 2χ− 2)

〈fχ〉e−θt,

C2,χ(t) =

([
〈fχ+2〉 − (α+ 2)̺2

α(β − 2)(β − 4)
〈fχ〉

]
− 2(α+ 2)̺

α(β − 6)

[
〈fχ+1〉 − ̺

β − 2
〈fχ〉

])
e−2θ β−4

β−2 t

+
2(α+ 2)̺
α(β − 6)

[
〈fχ+1〉 − ̺

β − 2
〈fχ〉

]
e−θt

=

(
〈fχ+2〉 − 2(α+ 2)̺

α(β − 6)
〈fχ+1〉 +

(α+ 2)̺2

α(β − 4)(β − 6)
〈fχ〉

)
e−2θ β−4

β−2 t

+
4χ(α+ 2)(α+ β − 2)̺2

α2(β − 2)(β − 6)(β − 2χ− 2)
〈fχ〉e−θt.

(c) This part of the example contains the list of the covariances Cυ,χ(t) that can be calculated according
to the formulae from Example 3.1 (a) and (b). The items in the list are numerated as Iυ,χ. Each
item is provided by the conditions on parameters α and β, required for the respective identity to
hold true.
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I1,1 (α > 2, β > 4)

C1,1(t) =
2(α+ β − 2)̺2

α(β − 2)2(β − 4)
e−θt.

I1,2 (α > 2, β > 6)

C1,2(t) =
4(α+ 2)(α+ β − 2)̺3

α2(β − 2)2(β − 4)(β − 6)
e−θt.

I1,−1 (α > 2, β > 2)

C1,−1(t) = − 2(α+ β − 2)
(β − 2)(α− 2)

e−θt.

I2,2 (α > 2, β > 8)

C2,2(t) =

[
(α+ 6)(α+ 4)(α+ 2)̺4

α3(β − 2)(β − 4)(β − 6)(β − 8)
− 2(α+ 4)(α+ 2)2̺4

α3(β − 2)(β − 4)(β − 6)2

+
(α+ 2)2̺4

α2(β − 2)(β − 4)2(β − 6)

]
e−2θ β−4

β−2 t +
8(α+ 2)2(α+ β − 2)̺4

α3(β − 2)2(β − 4)(β − 6)2
e−θt =

=
8(α+ 2)(α+ β − 2)(α+ β − 4)̺4

α3(β − 2)(β − 4)2(β − 6)2(β − 8)
e−2θ β−4

β−2 t +
8(α+ 2)2(α+ β − 2)̺4

α3(β − 2)2(β − 4)(β − 6)2
e−θt.

I2,−1 (α > 2, β > 4)

C2,−1(t) =

[
̺

β − 2
− 2(α+ 2)̺

α(β − 6)
+

(α+ 2)β̺
(α− 2)(β − 4)(β − 6)

]
e−2θ β−4

β−2 t

− 4(α+ 2)(α+ β − 2)̺
α(α− 2)(β − 2)(β − 6)

e−θt =

=
8(α+ β − 2)(α+ β − 4)̺

α(α− 2)(β − 2)(β − 4)(β − 6)
e−2θ β−4

β−2 t − 4(α+ 2)(α+ β − 2)̺
α(α− 2)(β − 2)(β − 6)

e−θt.

Remark 3.1. The relations for various covariances in Example 3.1 were deduced for t ≥ 0. Clearly,

Cυ,χ(t) = Cχ,υ(−t), t ∈ R.

Observe in addition that X, like any ergodic one-dimensional diffusion, is time reversible in the sense
that the process Xst(−t), t ∈ R, has the same distribution with Xst. This gives the identities

Cυ,χ(t) = Cχ,υ(−t) = Cυ,χ(|t|), t ∈ R.

Hence, the above list provides explicit expressions for the point-wise covariations

Cυ,χ(t) = Cov
((
Xst

t

)υ
,
(
Xst

0

)χ
)

for all t ∈ R and every pair
(υ, χ), υ, χ ∈ {−1, 1, 2}

with the only exception
(υ, χ) = (−1,−1).

Proposition 3.2. Covariances Cυ(t, s) = Cov
(
Xst

t X
st
s ,
(
Xst

0

)υ
)

for υ ∈ {0, 1, 2} are given by following

expressions:

• for t ≥ s ≥ 0 :

Cυ(t, s) = e−θ(t−s)C2,υ(s) +
[
1 − e−θ(t−s)

]
C1,υ(s)〈f1〉,

• for t ≥ 0 > s :

Cυ(t, s) = e−θt
[
C1,υ+1(s) − C1,υ(s)〈f1〉 + C1,υ(0)〈f1〉

]
+ C1,υ(s)〈f1〉 − C1,1(t− s)〈fυ〉

= e−θt+θsC1,υ+1(0) +
[
e−θt + eθs − e−θt+θs

]
C1,υ(0)〈f1〉 − e−θt+θsC1,1(0)〈fυ〉.
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Remark 3.2. Note that Cυ(t, s) = Cυ(s, t) and Cυ(t, s) = Cυ(−t,−s). Hence, the two cases considered
above (t ≥ s ≥ 0 and t ≥ 0 > s) cover all possibilities.

Example 3.2. This example contains the list of covariances that can be calculated using the formulae
from the Proposition 3.2. The items in the list are numerated as IIυ and provided by the respective
conditions on the parameters α, β.

II−1 (α > 2, β > 4)

C−1(t, s) =
8(α+ β − 2)(α+ β − 4)̺

α(α− 2)(β − 2)(β − 4)(β − 6)
e−θ(t−s)−2θ β−4

β−2 s − 4(α+ 2)(α+ β − 2)̺
α(α− 2)(β − 2)(β − 6)

e−θt

− 2(α+ β − 2)̺
(β − 2)2(α− 2)

[
e−θs − e−θt

]
, t ≥ s ≥ 0,

C−1(t, s) = −
[
e−θt + eθs − e−θt+θs

] 2(α+ β − 2)̺
(β − 2)2(α− 2)

− 2β(α+ β − 2)̺
(α− 2)(β − 2)2(β − 4)

e−θt+θs, t ≥ 0 > s.

II1 (α > 2, β > 6)

C1(t, s) =
4(α+ 2)(α+ β − 2)̺3

α2(β − 2)2(β − 4)(β − 6)
e−θt +

2(α+ β − 2)̺3

α(β − 2)3(β − 4)

[
e−θs − e−θt

]
, t ≥ s ≥ 0,

C1(t, s) =
4(α+ 2)(α+ β − 2)̺3

α2(β − 2)2(β − 4)(β − 6)
e−θt+θs +

2(α+ β − 2)̺3

α(β − 2)3(β − 4)

[
e−θt +eθs −2e−θt+θs

]
, t ≥ 0 > s.

II2 (α > 2, β > 8)

C2(t, s) =
8(α+ 2)(α+ β − 2)(α+ β − 4)̺4

α3(β − 2)(β − 4)2(β − 6)2(β − 8)
e−θ(t−s)−2θ β−4

β−2 s +
8(α+ 2)2(α+ β − 2)̺4

α3(β − 2)2(β − 4)(β − 6)2
e−θt

+
4(α+ 2)(α+ β − 2)̺4

α2(β − 2)3(β − 4)(β − 6)

[
e−θs − e−θt

]
, t ≥ s ≥ 0,

C2(t, s) =
6(α+ 2)(α+ 4)(α+ β − 2)̺4

α3(β − 2)2(β − 4)(β − 6)(β − 8)
e−θt+θs

+
4(α+ 2)(α+ β − 2)̺4

α2(β − 2)3(β − 4)(β − 6)

[
e−θt + eθs − e−θt+θs

]
− 2(α+ 2)(α+ β − 2)̺4

α2(β − 2)3(β − 4)2
e−θt+θs, t ≥ 0 > s.

Proposition 3.3. Covariances C(t1, . . . , t4) = Cov
(
Xst

t1
Xst

t2
, Xst

t3
Xst

t4

)
, where {t1, . . . , t4} = {t[1], . . . , t[4]}

and t[1] ≤ . . . t[4] can be explicitly determined in terms of the functions Cυ,χ(t) and Cυ(t, s). In particular,

C(t1, . . . , t4) = Cov
(
Xst

t[1]
, Xst

t[2]
Xst

t[3]
Xst

t[4]

)
− C1,1(t2 − t1)C1,1(t4 − t3) + 〈f1〉Cov

(
Xst

t[2]
, Xst

t[3]
Xst

t[4]

)

+ 〈f1〉2
[
C1,1(t[4] − t[3]) − C1,1(t2 − t1) − C1,1(t4 − t3)

]
,

where

Cov
(
Xst

t[2]
, Xst

t[3]
Xst

t[4]

)
= e−θ(t[3]−t[2])

[
C2,1(t[4] − t[3]) − 〈f1〉C1,1(t[4] − t[3]) + 〈f1〉C1,1(0)

]

and

Cov
(
Xst

t[1]
, Xst

t[2]
Xst

t[3]
Xst

t[4]

)
= e−θ(t[2]−t[1])

[
C2(t[4] − t[2], t[3] − t[2])

− 〈f1〉C1(t[4] − t[2], t[3] − t[2]) + C1,1(0)
(
C1,1(t[4] − t[3]) + 〈f1〉2

)]
.

In the next section we introduce the technique for calculating the specific covariances when the
previous evolutionary approach is not applicable (e.g. C−1,−1(t)).
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3.2. Integral formula for the continuous-time asymptotic covariances

In this section we consider continuous-time asymptotic covariances

σf,g =
∫ ∞

−∞

Cov
(
f(Xst

t ), g(Xst
0 )
)
dt := lim

T →∞

∫ T

−T

Cov
(
f(Xst

t ), g(Xst
0 )
)
dt (3.10)

for functions f, g : (0,∞) → R satisfying some growth conditions. As an extension of the Subsection 3.1,
here we further develop the approach for their explicit calculations, needed for determining the explicit
form of the asymptotic covariance matrix in the light of the CLT from Appendix B. Calculations from
the previous sections can be used to derive the (mutual) asymptotic covariances for empirical moments
mυ, υ ∈ {−1, 1, 2}, and empirical covariances Cυ,χ(t) in the continuous-time setting in all possible cases
except the one where υ = χ = −1. In this section we provide the tool which is applicable in particular
in this exceptional case.

Below we denote by π the invariant distribution of the FSD X and by X we denote its state space.

Theorem 3.1.

1. Let
|f(x)| ≤ C

(
x−γ1 + xδ1

)
, |g(x)| ≤ C

(
x−γ2 + xδ2

)
, x ∈ X, (3.11)

with some constants C, γ1, γ2, δ1, δ2. Assume that γi, δi, i = 1, 2 satisfy

γi <
α

2
, δi <

β

2
, (3.12)

and

γ1 + γ2 <
α

2
+ 1, δ1 + δ2 <

β

2
. (3.13)

Then the limit (3.10) is well defined.

2. Assume, in addition, that f, g are centered in the sense that

∫

X

f dπ =
∫

X

g dπ = 0,

and α 6∈ {2(m+ 1),m ∈ N}. Then

σf,g =
(β − 2)

θB(α/2, β/2)

∫ 1

0

(∫ u

0

f

(
̺(1 − v)
αv

)
vβ/2−1(1 − v)α/2−1 dv

)
×

×
(∫ u

0

g

(
̺(1 − v)
αv

)
vβ/2−1(1 − v)α/2−1 dv

)
u−β/2−1(1 − u)−α/2 du,

(3.14)

where B(·, ·) is the standard beta function.

The following examples illustrate the use of the last theorem.

Example 3.3. Let f(x) = g(x) = x−1 − αβ
(α−2)̺ = f−1(x) − 〈f−1〉. Conditions of the Theorem 3.1 are

satisfied with γ1,2 = 1 and δ > 0 small enough because α > 2, β > 2. The function f is centered and
hence we can calculate the covariance σf,f according to (3.14). For the function F defined by (5.23) we
have

F (u) =
∫ u

0

(
α

̺
vβ/2(1 − v)α/2−2 − αβ

(α− 2)̺
vβ/2−1(1 − v)α/2−1

)
dv

=
αβ

̺

(
1
β
B(β/2 + 1, α/2 − 1;u) − 1

α− 2
B(β/2, α/2;u)

)

=
αβ

̺

(
uβ/2+1

β(β/2 + 1) 2F1(β/2 + 1, 2 − α/2;β/2 + 2;u)

− uβ/2

(α− 2)(β/2) 2F1(β/2, 1 − α/2;β/2 + 1;u)

)
, u ∈ (0, 1).

Here we have used first

B(a, b; z) =
∫ z

0

ta−1(1 − t)b−1 dt, z ∈ (0, 1),
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under the assumption a > 0, b > 0, and then the definition of the incomplete beta function B(a, b; z) =
za

a 2F1(a, 1 − b; a+ 1; z), where 2F1 is the hypergeometric function defined by

2F1(a, b; c, z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, |z| < 1,

and where (k)n, k ∈ {a, b, c}, is the Pochhammer symbol defined by

(k)n =

{
1 , n = 0

k(k + 1) · · · (k + n− 1) , n > 0
.

Then according to the recursive relation (for various relation on hypergeometric functions we refer e.g.
to Abramowitz and Stegun (1967), Section 15)

2F1(a, b; c; z) +
bz

c
2F1(a+ 1, b+ 1; c+ 1; z) = 2F1(a+ 1, b; c; z), |z| < 1, c 6= −1,

with a = β/2, b = 1 − α/2, c = β/2 + 1 we have

F (u) = − αuβ/2

̺(α/2 − 1)

(
u(1 − α/2)
(β/2 + 1) 2F1(β/2 + 1, 2 − α/2;β/2 + 2;u)

+ 2F1(β/2, 1 − α/2;β/2 + 1;u)

)

= − αuβ/2

̺(α/2 − 1) 2F1(β/2 + 1, 1 − α/2;β/2 + 1;u).

According to the symmetry of the Gauss hypergeometric function in its first two parameters as well as
the simple relation 2F1(a, b; b; z) = (1 − z)−a, we obtain

F (u) = − α

̺(α/2 − 1)
uβ/2(1 − u)α/2−1.

Then

σf,f =
(β − 2)

θB(α/2, β/2)
α2

̺2(α/2 − 1)2

∫ 1

0

u2(β/2)−β/2−1(1 − u)2(α/2−1)−α/2 du

=
α2(β − 2)B(α/2 − 1, β/2)
θ̺2(α/2 − 1)2B(α/2, β/2)

=
4α2(β − 2)(α+ β − 2)

θ̺2(α− 2)3
.

Example 3.4. Similar calculation with g(x) = x− ̺
β−2 gives

G(u) =
̺

α(β/2 − 1)
uβ/2−1(1 − u)α/2, u ∈ (0, 1)

and

σf,g = − 4(α+ β − 2)
θ(β − 2)(α− 2)

,

σg,g =
4̺2(α+ β − 2)

θα(β − 2)2(β − 4)
.

Note that the last two formulae can also be obtained by integration of respective expressions for C1,−1

and C1,1 from Subsection 3.1.

3.3. Parameter estimation in continuous-time setting

The results of this section are a direct application of the LLN and the CLT from Appendix B, i.e.
Theorem 3.4 from Kulik and Leonenko (2013), to the GMM estimator (α̂c, β̂c, κ̂c, θ̂c) of the parameter
(α, β, κ, θ) of the non-stationary FSD in continuous-time setting, i.e. on fixed time interval [0, T ]. In
particular, the main novelty of this section is the application of the techniques developed in 3.1 and 3.2
for calculation of the covariance matrix in asymptotic normality framework (we assume that all covariance
matrices are non-degenerate).
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In Theorem 3.2 we use the following GMM estimators:

α̂c =
2(m−1,cm1,cm2,c −m2

1,c)

m−1,cm1,cm2,c − 2m2,c +m2
1,c

, β̂c =
4m−1,c(m2

1,c −m2,c)

2m−1,cm
2
1,c −m−1,cm2,c −m1,c

,

κ̂c = m1,c, θ̂c(t) = −1
t

log

(
m1,1,c(t) −m2

1,c

m2,c −m2
1,c

)
.

(3.15)

Empirical moments m−1,c, m1,c, m2,c and m1,1,c of the invariant distribution (2.5) are given at the
beginning of the Section 3. Now we state the main result of this section.

Theorem 3.2. Let α > 2, β > 8. Then, for an arbitrary initial distribution of the FSD, the estimator
(α̂c, β̂c, κ̂c, θ̂c) given by (3.15) has the following properties:

(i) P -consistency, i.e. for every t > 0

(α̂c, β̂c, κ̂c, θ̂c(t))
P→ (α, β, κ, θ), T → ∞

(ii) asymptotic normality, i.e. for every t > 0

(Σ̂c)−1/2
√
T (α̂c − α, β̂c − β, κ̂c − κ, θ̂c(t) − θ)

D−→ N (0, I), T → ∞,

where Σ̂c is the asymptotic covariance matrix depending on P -consistent estimate of the parameter
(α, β, κ, θ) and I is the (4 × 4) identity matrix.

Remark 3.3. P -consistency and asymptotic normality of the estimator of parameter (α, β, κ, θ) in the
discrete-time setting is proved by the means of the Theorem 3.2 in Remark 5.1 by simple use of the
Chebyshev inequality, Slutsky theorem and delta method.

Example 3.5. Let us consider a special parametrization of the FSD where ̺ = β, or equivalently κ = β
β−2

and parameter θ is known (the so-called canonical parametrization). In this special case

m−1 =
α

α− 2
, m1 =

β

β − 2
, m2 =

β2(α+ 2)
α(β − 2)(β − 4)

.

We introduce the following estimators of unknown parameter (α, β):

1. estimator (α̂, β̂) depending on empirical moments m1,c and m2,c:

α̂c =
2m 2

1,c

m2,c(2 −m1,c) −m 2
1,c

, β̂c =
2m1,c

m1,c − 1
, (3.16)

2. estimator (α̂, β̂) depending on empirical moments m−1,c and m1,c:

α̂c =
2m−1,c

m−1,c − 1
, β̂c =

2m1,c

m1,c − 1
. (3.17)

Estimator (3.17) is clearly analytically simpler, with α̂c depending only on m−1,c and β̂c depending
only on m1,c. Also, the covariance matrix Σ(α, β) = Σ related to the estimator (m−1,c,m1,c) is simpler
than the covariance matrix related to the estimator (m1,c,m2,c):

1. elements of the covariance matrix related to the estimator (m−1,c,m1,c):

Σ11 =
α2(α− 2)(β − 2)(α+ β − 2)

θβ2
,

Σ12 = − (α− 2)(β − 2)(α+ β − 2)
θ

= Σ21,

Σ22 =
(β − 2)2β2(α+ β − 2)

θα(β − 4)
.

(3.18)
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2. elements of the covariance matrix related to the estimator (m1,c,m2,c):

Σ11 =
(β − 2)2β2(α+ β − 2)

θα(β − 4)
,

Σ12 = − (α+ 2)(β − 8)(β − 2)2β(α+ β − 2)
(β − 6)(β − 4)2θ

= Σ12,

Σ22 =
α(α+ 2)(β − 2)2(α+ β − 2)

(
α
(
β3 − 24β2 + 194β − 520

)
+ 2

(
β3 − 23β2 + 184β − 496

))

(β − 8)(β − 6)2(β − 4)3θ
.

(3.19)

To illustrate the difference, for parameters (α, β) = (10, 20), assuming θ = 1, we compute the matrix
Σ for both estimators:

1. estimator (m−1,c,m1,c):
[

1008 −4032
−4032 22680

]
,

2. estimator (m1,c,m2,c):
[

22680 −7290
−7290 2437.23

]
.

Estimators (3.17) and (3.16) are transformations of (m−1,c,m1,c) and (m1,c,m2,c), respectively. Note
that the range of true values for the parameter (α, β) required for the estimator (3.17) to be asymptotically
normal is wider than the respective range for (3.16): α > 2, β > 4 against α > 2, β > 8.

4. Simulation results

In this section we present results of the simulation study based on 10000 sample paths of the non-
stationary FSD on interval [0, T ] with time-step ∆t = 1/252, where 252 is taken to be the conventional
number of working days in one year. The time-horizon is taken to be T = 30000, while some other options,
explicitly T ∈ {100, 500, 1000, 10000}, are considered in the Remark 4.1. Sample paths are simulated in
Rcpp environment in statistical software R, by using the Milstein approximation scheme (for details of
the computational procedure we refer e.g. to Iacus (2008)). Simulation is performed in two different
scenarios, depending on values of parameters α > 2, β > 8, κ > 0 and θ > 0. In each scenario three
possible starting distributions are observed: uniform distribution on (0, 1), normal distribution with mean
10 and variance 1 and Fisher-Snedecor distribution with shape parameters both equal to 10.

Mean values of estimates of moments m−1, m1, m2 and m1,1(k) for k = 1 and k = 5 (see expression
(2.6))of the invar iant distribution (2.5), based on the corresponding estimators given at the beginning of
the Section 3, are given in Table 1. Mean values, as well as RMSEs (in %) and REs (in %) of estimates
of parameters κ, α, β and θ, based on estimators (3.15), are given in Tables 2 and 3, respectively.

Estimation of moments and mixed moments
EXtXt+k

E(Xt)−1 EXt E(Xt)2 k = 1 k = 5

Scenario 1 (α = 10, β = 10, κ = 5, θ = 0.05)
Theoretical values 0.3125 5 40 39.2684 36.682
X0 ∼ U(0, 1) 0.3131 4.9863 39.4061 38.6835 36.1345
X0 ∼ N (10, 1) 0.3125 4.9948 39.5151 38.7888 36.2281
X0 ∼ FS(10, 10) 0.3129 4.9877 39.4231 38.6999 36.1491

Scenario 2 (α = 5, β = 11, κ = 7, θ = 0.025)
Theoretical values 0.291 7 88.2 87.2321 83.5939
X0 ∼ U(0, 1) 0.2919 6.9777 86.5939 85.6379 82.0476
X0 ∼ N (10, 1) 0.2907 6.9936 86.9163 85.9558 82.3479
X0 ∼ FS(10, 10) 0.2914 6.9755 86.5311 85.5757 81.9892

Table 1: Mean values of estimated moments and mixed moments of FSD.
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Estimation of parameters κ, α and β
κ RMSE (%) RE (%) α RMSE (%) RE (%) β RMSE (%) RE (%)

Scenario 1
Theoretical values κ = 5 α = 10 β = 10
X0 ∼ U(0, 1) 4.9863 0.2738 −0.2731 9.6714 3.3972 −3.2856 10.7455 6.9375 7.4547
X0 ∼ N (10, 1) 4.9948 0.1049 −0.1048 9.6655 3.4606 −3.3448 10.7568 7.0359 7.5684
X0 ∼ FS(10, 10) 4.9877 0.2461 −0.2455 9.6903 3.1958 −3.0968 10.7427 6.9135 7.4269

Scenario 2
Theoretical values κ = 7 α = 5 β = 11
X0 ∼ U(0, 1) 6.9777 0.3192 −0.3182 4.9094 1.8460 −1.8126 12.4899 11.9292 13.5449
X0 ∼ N (10, 1) 6.9936 0.0916 −0.0915 4.9237 1.5496 −1.5259 12.4721 11.8033 13.3829
X0 ∼ F(10, 10) 6.9755 0.3508 −0.3496 4.9299 1.4216 −1.4016 12.4437 11.6016 13.1243

Table 2: Mean values, RMSE and RE for estimates of parameters α, β and κ of FSD.

Estimation of parameter θ
k = 1 RMSE (%) RE (%) k = 5 RMSE (%) RE (%)

Scenario 1 (true values: α = 10, β = 10, κ = 5, θ = 0.05)
X0 ∼ U(0, 1) 0.0515 3.0736 3.1711 0.0516 3.1349 3.2363
X0 ∼ N (10, 1) 0.0517 3.3954 3.5147 0.0518 3.4620 3.5862
X0 ∼ FS(10, 10) 0.0516 3.1398 3.2415 0.0517 3.2093 3.3157

Scenario 2 (true values: α = 5, β = 11, κ = 7, θ = 0.025)
X0 ∼ U(0, 1) 0.0261 4.1839 4.3666 0.0261 4.2685 4.4588
X0 ∼ N (10, 1) 0.0261 4.3328 4.5290 0.0262 4.4425 4.6489
X0 ∼ FS(10, 10) 0.0261 4.1771 4.3592 0.0261 4.2357 4.4231

Table 3: Mean values, RMSE and RE for estimation of autocorrelation parameter θ of FSD.

From the theoretical point of view, GMM based estimates obtained here could be valuable as the
starting values in some more advanced and numerically more complex estimation procedures.

Empirical variances σ̃2
α, σ̃2

β , σ̃2
κ and σ̃2

θ and asymptotic covariance matrices calculated for means of
estimated values of parameters α, β, κ and θ given in Tables 2 and 3, in scenario 1 (α = 10, β = 10, κ =
5, θ = 0.05 for lag k = 5), for all three observed starting distributions are of the following form:

• X0 ∼ U(0, 1)
empirical variances: σ̃2

α = 0.973843, σ̃2
β = 1.98796, σ̃2

κ = 0.01846974, σ̃2
θ = 0.00001857,

Σ̂c =




3.0257281683 −4.073098390 0.0360270976 0.0007536235
−4.0730983895 6.089502030 −0.1092301826 −0.0022849033

0.0360270976 −0.109230183 0.0181306898 0.0003792621
0.0007536235 −0.002284903 0.0003792621 0.0013140138


 , (4.1)

• X0 ∼ N (10, 1)
empirical variances σ̃2

α = 0.9373594, σ̃2
β = 1.928097, σ̃2

κ = 0.01912949, θ̃2
β = 0.00001861,

Σ̂c =




2.9908388099 −4.041027043 0.0357738599 0.0007505208
−4.0410270435 6.066711470 −0.1090047438 −0.0022868745

0.0357738599 −0.109004744 0.0181164481 0.0003800756
0.0007505208 −0.002286874 0.0003800756 0.0013130525


 , (4.2)

• X0 ∼ FS(10, 10)
empirical variances: σ̃2

α = 1.000106, σ̃2
β = 1.999009, σ̃2

κ = 0.01879328, σ̃2
θ = 0.00001888,

Σ̂c =




3.0531077176 −4.089963619 0.0361923961 0.0007580354
−4.0899636190 6.083323154 −0.1091180825 −0.0022854351

0.0361923961 −0.109118083 0.0181147595 0.0003794065
0.0007580354 −0.002285435 0.0003794065 0.0013152270


 . (4.3)
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The presented results testify that in the proposed scenarios, based on the simulation of 10000 inde-
pendent sample paths consisting of 30000 · 252 points each, we are close to the real parameter values and
that the empirical and the asymptotic variances of proposed GMM estimator are comparable (in a sense
that they are of the approximately the same order of magnitude).

Remark 4.1. Non-stationary FSD (1.1) reaches its invariant (steady-state) distribution (2.5) very fast
(e.g. for θ = 0.05 approximately for T = 100), so the results of the simulation study presented in Tables
1, 2 and 3, based on 10000 sample paths on time-interval [0, 30000], resemble the stationary setting.
However, the observed sample paths are simulated from the non-stationary process and the results in
the Table 4, for time-horizon T ∈ {100, 500, 1000, 10000}, show that estimation based on shorter time-
intervals, in which the diffusion is not in its invariant distribution for very long time, are not on satisfactory
level.

Estimation of parameters κ, α, β and θ
Theoretical values κ = 5 α = 10 β = 10 θ = 0.05, k = 1

T = 100
κ RMSE (%) α RMSE (%) β RMSE (%) θ RMSE (%)

X0 ∼ U(0, 1) 4.0838 22.4348 6.5395 52.9168 9.0412 10.6043 0.0966 48.2241
X0 ∼ FS(10, 10) 4.2578 17.4322 8.7197 14.6824 35.6906 71.9814 0.1038 51.8333

T = 500
κ RMSE (%) α RMSE (%) β RMSE (%) θ RMSE (%)

X0 ∼ U(0, 1) 4.8278 3.5665 7.6774 30.2523 18.6641 46.4211 0.0665 24.8539
X0 ∼ FS(10, 10) 4.8311 3.4952 8.0709 23.9016 68.3760 85.3749 0.0678 26.2916

T = 1000
κ RMSE (%) α RMSE (%) β RMSE (%) θ RMSE (%)

X0 ∼ U(0, 1) 4.9218 1.5889 8.3667 19.5214 56.8924 82.4229 0.0607 17.6082
X0 ∼ FS(10, 10) 4.9203 1.6205 8.4318 18.5985 26.7961 62.6811 0.0614 18.5682

T = 10000
κ RMSE (%) α RMSE (%) β RMSE (%) θ RMSE (%)

X0 ∼ U(0, 1) 4.9889 0.2229 9.9086 0.9221 11.3669 12.0259 0.0522 4.2672
X0 ∼ FS(10, 10) 4.9960 0.0794 11.6923 14.4736 11.3174 11.6407 0.0521 4.1174

Table 4: Mean values and RMSE for estimates of parameters α, β, κ and θ of FSD.

This is surely a drawback of the proposed GMM estimator for non-stationary FSD parameters. How-
ever, since α, β and κ are present both in the defining SDE and in the density of its invariant distribution,
it is hard to expect to obtain estimations arbitrarily close to the real values of parameters based on the
sample of trajectories that didn’t reach or are not long enough in the stationary setting. This deficiency
is also reflected in the asymptotical performance of GMM estimator (α̂, β̂, κ̂, θ̂). In particular, there is
a discordance between empirical variances σ̃2

α and σ̃2
β with the corresponding asymptotic covariances of

estimators for α and β, given in the estimated covariance matirces (4.1), (4.2) and (4.3).

Remark 4.2. From Table 3 it could be seen that the estimates of the autocorrelation parameter θ are
stable with respect to small lags (1 and 5), for which the autocorrelation function contain the most
information about the dependence structure. However, the practical question "which lag t to use for
estimation of θ?" remains open and due to further research. As an alternative, θ could be estimated by
the least-squares method

θ̃ = min
θ>0

T −1∑

t=1

(ρ(t; θ) − ρ̂(t))2, (4.4)

where ρ(t; θ) = e−θt is the theoretical autocorrelation function and ρ̂(t) = (m1,1,c(t)−m2
1,c)/(m2,c −m2

1,c)
is its empirical counterpart. However, it is well known that due to the non-linearity this estimator is not
consistent (see e.g. Ivanov (1997) or Malinvaud (1970)). The similar procedure was used in part II.A of
Forman (2007).
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5. Proofs

5.1. Proof of the Proposition 3.1

According to Proposition 3.1 in Kulik and Leonenko (2013), for every υ ∈ (−α/2+1, β/2) the function
fυ(x) = xυ belongs to the domain of the extended generator A of the FSD X, and

Afυ(x) = −θ
(
x− ̺

β − 2

)
υxυ−1 +

2θ
β − 2

(
x+

̺

α

)
υ(υ − 1)xυ−1

= −υθ(β − 2υ)
β − 2

fυ(x) +
υθ̺(α+ 2υ − 2)

α(β − 2)
fυ−1(x),

with ̺ = (β − 2)κ. This, by definition, means that for every x ∈ (0,∞) the process

f(Xt) −
∫ t

0

Af(Xs) ds

is a Px-martingale with respect to the natural filtration for the FSD X. Then for every bounded function
g we have

Efυ(Xst
t )g(Xst

0 ) = Efυ(Xst
0 )g(Xst

0 ) +
∫ t

0

EAfυ(Xst
s )g(Xst

0 ) ds.

From the relations above we have

Eυ,g(t) = 〈fυg〉 − υθ(β − 2υ)
β − 2

∫ t

0

Eυ,g(s) ds+
υθ̺(α+ 2υ − 2)

α(β − 2)

∫ t

0

Eυ−1,g(s) ds.

Considering this identity as an equation of Eυ,g(t), by solving it we obtain

Eυ,g(t) = e−
υθ(β−2υ)

β−2 t〈fυg〉 +
υθ̺(α+ 2υ − 2)

α(β − 2)

∫ t

0

e
υθ(β−2υ)

β−2 (s−t)Eυ−1,g(s) ds. (5.1)

When υ ∈ N, relation (5.1) allows expressing Eυ,g(t) in the terms of 〈g〉, 〈f1g〉, . . . , 〈fυg〉. Indeed,
E0,g(t) ≡ 〈g〉. Then using (5.1) iteratively with υ = 1, . . . , υ gives the required expression for Eυ,g(t).
Note that by the monotone convergence theorem the same relations hold true for a non-negative g such
that

〈g〉 < +∞, 〈fυg〉 < +∞. (5.2)

Finally, from (2.6) we see that

〈fυ−1〉 =
(β − 2υ)α

(α+ 2υ − 2)̺
〈fυ〉, (5.3)

and therefore

〈fυ〉〈g〉 = e−
υθ(β−2υ)

β−2 t〈fυ〉〈g〉 +
υθ̺(α+ 2υ − 2)

α(β − 2)

(∫ t

0

e
υθ(β−2υ)

β−2 (s−t) ds

)
〈fυ−1〉〈g〉.

Combined with (5.1), this gives the relation

Cυ,g(t) = e−
υθ(β−2υ)

β−2 tCυ,g(0) +
υθ̺(α+ 2υ − 2)

α(β − 2)

∫ t

0

e
υθ(β−2υ)

β−2 (s−t)Cυ−1,g(s) ds.

In particular, for υ = 0, fυ(x) = 1 and therefore

C0,g(t) = Cov
(

1, g
(
Xst

0

))
= 0,

for all t ≥ 0 and all non-negative functions g such that 〈g〉 < ∞.
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5.2. Proof of the Proposition 3.2

First, consider the case t ≥ s ≥ 0. Write

Cυ(t, s) = EXst
t X

st
s

(
Xst

0

)υ −
(
EXst

t X
st
s

)
〈fυ〉

= Cov
(
Xst

t , X
st
s

(
Xst

0

)υ
)

+
(
EXst

s

(
Xst

0

)υ
)

〈f1〉 −
(
EXst

t−sX
st
0

)
〈fυ〉

= Cov
(
Xst

t , X
st
s

(
Xst

0

)υ
)

+ C1,υ(s)〈f1〉 − C1,1(t− s)〈fυ〉.

(5.4)

The same argument that leads to (3.8) yields

Cov
(
Xst

t , X
st
s

(
Xst

0

)υ
)

= e−θ(t−s)Cov
(
Xst

s , X
st
s

(
Xst

0

)υ
)

(5.5)

under the assumption
〈fυ〉 < ∞, 〈fυ+2〉 < ∞.

From (5.4) we get

Cov
(
Xst

s , X
st
s

(
Xst

0

)υ
)

= Cυ(s, s) − C1,υ(s)〈f1〉 + C1,1(0)〈fυ〉.

Clearly, Cυ(s, s) = C2,υ(s). Finally, we obtain

Cυ(t, s) = e−θ(t−s)C2,υ(s) +
[
1 − e−θ(t−s)

]
C1,υ(s)〈f1〉,

where we take into account that
e−θ(t−s)C1,1(0) = C1,1(t− s),

see (3.8).
When t ≥ 0, s < 0 relation (5.4), still holds true, but instead of (5.5) we have

Cov
(
Xst

t , X
st
s

(
Xst

0

)υ
)

= e−θtCov
(
Xst

0 , X
st
s

(
Xst

0

)υ
)
, (5.6)

where
Cov

(
Xst

0 , X
st
s

(
Xst

0

)υ
)

= EXst
s

(
Xst

0

)υ+1 − EXst
s

(
Xst

0

)υ〈f1〉
= C1,υ+1(s) − C1,υ(s)〈f1〉 + 〈f1〉〈fυ+1〉 − 〈fυ〉〈f1〉2

= C1,υ+1(s) − C1,υ(s)〈f1〉 + C1,υ(0)〈f1〉.
Then, using (3.8) we obtain

Cυ(t, s) = e−θt
[
C1,υ+1(s) − C1,υ(s)〈f1〉 + C1,υ(0)〈f1〉

]
+ C1,υ(s)〈f1〉 − C1,1(t− s)〈fυ〉

= e−θt+θsC1,υ+1(0) +
[
e−θt + eθs − e−θt+θs

]
C1,υ(0)〈f1〉 − e−θt+θsC1,1(0)〈fυ〉.

5.3. Proof of the Proposition 3.3

C(t1, . . . , t4) = Cov
(
Xst

t1
Xst

t2
, Xst

t3
Xst

t4

)
= EXst

t1
Xst

t2
Xst

t3
Xst

t4
−
(
C1,1(t2 − t1) + 〈f1〉2

)(
C1,1(t4 − t3) + 〈f1〉2

)

= EXst
t[1]
Xst

t[2]
Xst

t[3]
Xst

t[4]
−
(
C1,1(t2 − t1) + 〈f1〉2

)(
C1,1(t4 − t3) + 〈f1〉2

)
.

An explicit calculation gives

EXst
t[1]
Xst

t[2]
Xst

t[3]
Xst

t[4]
= Cov

(
Xst

t[1]
, Xst

t[2]
Xst

t[3]
Xst

t[4]

)
+〈f1〉Cov

(
Xst

t[2]
, Xst

t[3]
Xst

t[4]

)
+〈f1〉2Cov

(
Xst

t[3]
, Xst

t[4]

)
+〈f1〉4,

and therefore

C(t1, . . . , t4) = Cov
(
Xst

t[1]
, Xst

t[2]
Xst

t[3]
Xst

t[4]

)
− C1,1(t2 − t1)C1,1(t4 − t3) + 〈f1〉Cov

(
Xst

t[2]
, Xst

t[3]
Xst

t[4]

)

+ 〈f1〉2
[
C1,1(t[4] − t[3]) − C1,1(t2 − t1) − C1,1(t4 − t3)

]
.
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The same argument that leads to (3.8) yields

Cov
(
Xst

t[2]
, Xst

t[3]
Xst

t[4]

)
= e−θ(t[3]−t[2])Cov

(
Xst

t[3]
, Xst

t[3]
Xst

t[4]

)
,

which after straightforward transformations gives

Cov
(
Xst

t[2]
, Xst

t[3]
Xst

t[4]

)
= e−θ(t[3]−t[2])

[
C2,1(t[4] − t[3]) − 〈f1〉C1,1(t[4] − t[3]) + 〈f1〉C1,1(0)

]
.

Similarly,

Cov
(
Xst

t[1]
, Xst

t[2]
Xst

t[3]
Xst

t[4]

)
= e−θ(t[2]−t[1])

[
C2(t[4] − t[2], t[3] − t[2])

− 〈f1〉C1(t[4] − t[2], t[3] − t[2]) + C1,1(0)
(
C1,1(t[4] − t[3]) + 〈f1〉2

)]
.

Hence C(t1, . . . , t4) can be expressed explicitly in the terms of the functions Cυ,χ(t) and Cυ(t, s).

5.4. Proof of the Theorem 3.1

Statement 1. We restrict ourselves to the case of centered f, g. If f, g are supported on some segment
[u, v] ⊂ (0,∞), then f, g ∈ L2(π) and (3.10) holds true according to L2-bounds for α-mixing processes
(see e.g. Hall and Heyde (1980)) since the stationary Fisher-Snedecor diffusion is α-mixing with an
exponentially decaying rate (see Avram et al. (2011)). The following approximation procedure, similar to
the one from the proof of Theorem 3.4 in Kulik and Leonenko (2013), extends (3.10) to the general case.

Let φ1,2 be defined as in the Theorem Appendix B.1 with γ1,2, δ1,2 satisfying (3.11). According to
the Proposition 3.2. from Kulik and Leonenko (2013), there exist non-negative functions ψ1,2 from the
domain of the extended generator A, satisfying

Aψ1,2 ≤ c1,2ψ1,2 + C1,2I[u,v](x)

with positive constants c1,2 and C1,2, and such that

Aψ1,2 ≤ c′
1,2ψ

1+ε
1,2 + C ′

1,2

with positive constants c′
1,2 and C ′

1,2 from Theorem 3.2 in Kulik and Leonenko (2013). By the condition
(3.13), respective parameters γ′

1,2, δ
′
1,2 in the construction of ψ1,2 can be chosen in such a way that

γ′
1 + γ2 <

α

2
, γ′

2 + γ1 <
α

2
, δ′

1 + δ2 <
β

2
, δ′

2 + δ1 <
β

2
. (5.7)

For centered f, g we have
∫ T

−T

Cov
(
f(Xst

t ), g(Xst
0 )
)
dt =

∫ T

0

(∫

X

gTtf dπ

)
dt+

∫ T

0

(∫

X

fTtg dπ

)
dt = ̺T (f, g) + ̺T (g, f),

where

̺T (f, g) =
∫

X

g(x)

(∫

X

f(y)

(∫ T

0

(
(δx)t(dy) − π(dy)

)
dt

))
π(dx),

µt(dy) =
∫

(0,∞)

Pt(x, dy)µ(dx).

Here we used the standard notation

Ttf(x) =
∫

X

f(y)Pt(x, dy), Pt(x, ·) = (δx)t.

Then we have by Theorem 3.2 in Kulik and Leonenko (2013)

|̺T (f, g)| ≤ C2‖f‖φ1
‖g‖φ2

C2

∫

X

φ2(x)ψ1(x)π(dx),

where ‖f‖φ1 = sup
x=(x1,...,xr)

|f(x)|
r∑

i=1

φ1(xi)

, analogously for ‖g‖φ2
. According to the procedure in Section 5.6

in Kulik and Leonenko (2013), pp. 22-23, one can construct centered compactly supported functions
fn, gn, n ≥ 1, such that

‖f − fn‖φ1 → 0, ‖g − gn‖φ2 → 0, n → ∞, (5.8)
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fn(x) = f(x)
r∏

i=1

I{xi≥1/n},

and analogously for functions gn.
Note that (5.7) provides that the function φ2ψ1 is integrable with respect to the invariant density π.

For any T > 0 we have the following upper bound for |̺T (f, g) − ̺T (fn, gn)|:

|̺T (f, g) − ̺T (fn, gn)| ≤ |̺T (f, g) − ̺T (f, gn)| + |̺T (f, gn) − ̺T (fn, gn)|

≤ C2

(
‖f − fn‖φ1‖gn‖φ2 + ‖f‖φ1‖g − gn‖φ2

)∫

X

φ2(x)ψ1(x)π(dx).
(5.9)

Combined with similar estimate for ̺T (g, f), this yields that the limit (3.10) exists and

σf,g = lim
n→∞

σfn,gn
. (5.10)

Statement 2. Consider first the case when f, g are compactly supported. We have

σf,g =
∫ ∞

0

∫

X

(
f(x)Ttg(x) + g(x)Ttf(x)

)
π(dx)dt.

Because f, g are compactly supported, we can write |f | ≤ Cfφ, |g| ≤ Cgφ, where φ is defined as in the
Theorem Appendix B.1 with γ, δ satisfying

γ <
α

2
− 1, δ <

β

2
. (5.11)

Then the Theorem Appendix B.1 (Theorem 3.1 in Kulik and Leonenko (2013)) with µ = δx yields

|Ttf(x)| ≤ Ce−ctφ(x), |Ttg(x)| ≤ Ce−ctφ(x).

Then according to the Lebesgue’s dominated convergence theorem we obtain

σf,g = lim
s→0+

∫ ∞

0

∫

X

e−st
(
f(x)Ttg(x) + g(x)Ttf(x)

)
π(dx)dt

= lim
s→0+

∫

X

(
f(x)Rsg(x) + g(x)Rsf(x)

)
π(dx)

= lim
s→0+

∫

X

∫

X

Gs(x, y)
(
f(x)g(y) + f(y)g(x)

)
π(dx) dy,

(5.12)

where Rs =
∫∞

0
e−stTt dt is the resolvent operator, and Gs is the respective resolvent kernel (see e.g.

Karlin and Taylor (1981)). The explicit formula for Gs is

Gs(x, y) = Csf1(x ∧ y, s)f4(x ∨ y, s) p(y), (5.13)

with

f1(x, s) = 2F1

(
z+,s, z−,s;

α

2
; −α

̺
x

)
,

f4(x, s) =

(
α

̺
x

)−z+,s

2F1

(
z+,s, u+,s; 1 + 2∆s; − ̺

αx

)
.

being the classical Gauss hypergeometric functions with parameters

∆s =

√
β2

16
+
s(β − 2)

2θ
, z±,s = −β

4
± ∆s, u±,s = 1 − α

2
+ z±,s

related to continuous part of the spectrum of the infinitesimal generator of FSD and involved in the
spectral representation of its transition density (see Appendix A). For more information we refer to
Avram et al. (2013b). Straightforward calculation then gives that

z+,s → 0+, Cs ∼ (β − 2)
θβ

Γ(z+,s), s → 0 + .
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All the above and the following relations regarding the hypergeometric functions can be found (with
much more details) in e.g. Nikiforov and Uvarov (1988) or Luke (1969). According to the relation

2F1

(
a, b; c; z

)
=

Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−z)−a
2F1

(
a, a− c+ 1; a− b+ 1;

1
z

)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b
2F1

(
b, b− c+ 1; b− a+ 1;

1
z

)
, |arg (−z)| < π

(5.14)

with

a = z+,s, b = u+,s = 1 − α

2
+ z+,s, c = 1 + 2∆s = 1 +

β

2
+ 2z+,s,

we obtain

f4(x, s) =
Γ(1 + β/2 + 2z+,s)Γ(1 − α/2)

Γ(1 − α/2 + z+,s)Γ(1 + β/2 + z+,s)
f1(x, s) +

Γ(1 + β/2 + 2z+,s)Γ(α/2 − 1)
Γ(z+,s)Γ(α/2 + β/2 + z+,s)

f2(x, s)

with

f2(x, s) =
(α
̺
x
)1−α/2

2F1

(
u+,s, u−,s; 2 − α

2
; −α

̺
x
)
.

This leads to the representation

Gs(x, y) =
[
C1

sf1(x ∧ y, s)f1(x ∨ y, s) + C2
sf1(x ∧ y, s)f2(x ∨ y, s)

]
p(y) (5.15)

with

C1
s ∼ (β − 2)

θβ
Γ(z+,s), C2

s → (β − 2)
θβ

Γ(1 + β/2)Γ(α/2 − 1)
Γ(α/2 + β/2)

, s → 0 + .

Because f1(x ∧ y, s)f1(x ∨ y, s) = f1(x, s)f1(y, s), we have by (5.12) that σf,g = σ1
f,g + σ2

f,g with

σ1
f,g =

2(β − 2)
θβ

lim
s→0+

Γ(z+,s)

(∫ ∞

0

f(x)f1(x, s) p(x) dx

)(∫ ∞

0

g(x)f1(x, s) p(x) dx

)
, (5.16)

σ2
f,g =

(β − 2)
θβ

Γ(1 + β/2)Γ(α/2 − 1)
Γ(α/2 + β/2)

× lim
s→0+

∫ ∞

0

∫ ∞

0

(
f(x)g(y) + f(y)g(x)

)
f1(x ∧ y, s)f2(x ∨ y, s) p(x) p(y) dxdy.

(5.17)

Existence of the limits in (5.16), (5.17) is provided by the following lemma.

Lemma 5.1. Let [u, v] ⊂ (0,∞) be an arbitrary segment. Then

(i) uniformly for x ∈ [u, v],

f2(x, s) → χ(x) =
(α
̺
x
)1−α/2

2F1

(
1 − α

2
, 1 − α

2
− β

2
; 2 − α

2
; −α

̺
x
)
, s → 0+;

(ii) uniformly for x ∈ [u, v],
f1(x, s) − 1

z+,s
→ Ψ(x), s → 0+,

where Ψ is some locally bounded function.

Proof. When [u, v] is located close to 0 the required statements follow directly from the definition of the
Gauss hypergeometric function for the complex-valued z with |z| < 1. If the segment [u, v] is located
near other two singular points of the Gauss hypergeometric function, i.e. near 1 and ∞, we must use the
relation providing the analytic continuation of this function to the respective parts of the complex plane.

When [u, v] is located close to ∞, one can use the functional relation (5.14) with z′′ = 1/z and then
the definition of the Gauss hypergeometric function.

At last, when [u, v] is located near ̺/α, the arguments of functions f1 and f2 are located near (−1)
and so |1 − (α/̺)x| = |1 − z| is located near zero, and therefore the relation

2F1

(
a, b; c; 1 − z

)
=

Γ(c)Γ(c− b− a)
Γ(c− a)Γ(c− b) 2F1

(
a, b; a+ b− c+ 1; z

)
+

+ zc−a−b Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) 2F1

(
c− a, c− b; c− a− b+ 1; z

)
, |arg (z)| < π

(5.18)
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yields the proofs of the statements of the Lemma. Specifically, when x = ̺/α, i.e. the arguments of
functions f1 and f2 are both (−1), according to Slater (1966), page 5, function f2 is well-defined, while
f1 is well-defined when α/2 − 2∆s > 0 so we restrict our considerations according to this condition.

Now, by the means provided by the Lemma 5.1 we can continue with the proof of the Statement 2
from the Theorem 3.1. Lemma 5.1 provides the following explicit formulae for covariances σ1,2

f,g:

σ1
f,g = 0,

σ2
f,g =

(β − 2)
θβ

Γ(1 + β/2)Γ(α/2 − 1)
Γ(α/2 + β/2)

∫ ∞

0

∫ ∞

0

(
f(x)g(y) + f(y)g(x)

)
χ(x ∨ y) p(x) p(y) dxdy.

The second relation follows from Lemma 5.1 directly because f and g are compactly supported. To verify
the first relation, we note that statement (ii) of Lemma 5.1 provides

∫ ∞

0

f(x)f1(x, s) fs(x) dx =
∫ ∞

0

f(x) p(x) dx+
∫ ∞

0

f(x)(f1(x, s) − 1) p(x) dx

∼ z+,s

∫ ∞

0

f(x)Ψ(x) p(x) dx, s → 0+,

where the first term vanishes because f is centered. Together with the same relation for g this yields the
required identity, since

lim
s→0+

z2
+,sΓ(z+,s) = 0.

Hence, after the transformations Γ(β/2 + 1) = (β/2)Γ(β/2),Γ(α/2) = (α/2 − 1)Γ(α/2 − 1) we get

σf,g =
(β − 2)

θ(α− 2)B(α/2, β/2)

∫ ∞

0

∫ ∞

0

(
f(x)g(y) + f(y)g(x)

)

×
(
χ(x ∨ y)
xy

)(
αx

αx+ ̺

)α/2(
̺

αx+ ̺

)β/2(
αy

αy + ̺

)α/2(
̺

αy + ̺

)β/2

dxdy.

(5.19)

Now changing the variables

u =
̺

αx+ ̺
⇔ x =

̺(1 − u)
αu

,

v =
̺

αy + ̺
⇔ y =

̺(1 − v)
αv

,

and noting that
α

σ
(x ∨ y) =

(
1
u

− 1

)
∨
(

1
v

− 1

)
=

1
u ∧ v

− 1,

transforms the integral on the right hand side of (5.19) as follows:

∫ 1

0

∫ 1

0

(
f̂(u)ĝ(v) + f̂(v)ĝ(u)

)
Q(u ∧ v)uβ/2−1(1 − u)α/2−1vβ/2−1(1 − v)α/2−1 dudv, (5.20)

with

f̂(z) = f

(
̺(1 − z)
αz

)
, ĝ(z) = g

(
̺(1 − z)
αz

)
, z ∈ (0, 1),

Q(z) =

(
1
z

− 1

)1−α/2

2F1

(
1 − α

2
, 1 − α

2
− β

2
; 2 − α

2
; 1 − 1

z

)
, z ∈ (0, 1).

To simplify the expression for Q(z), z ∈ (0, 1), we use the relation

2F1(a, b; c; z) =(1 − z)−a Γ(c)Γ(b− a)
Γ(c− a)Γ(b) 2F1

(
a, c− b; 1 + a− b;

1
1 − z

)

+ (1 − z)−b Γ(c)Γ(a− b)
Γ(c− b)Γ(a) 2F1

(
c− a, b; 1 − a+ b;

1
1 − z

) (5.21)

valid for |arg (−z)| < π, |arg (1 − z)| < π with

a = 1 − α

2
, b = 1 − α

2
− β

2
, c = 2 − α

2
,
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and z′ = 1 − 1/z (note that for z ∈ (0, 1) one has arg (−z′) = arg (1 − z′) = 0, therefore (5.21) is
applicable). Since 1/(1 − z′) = z, (5.21) provides

Q(z) =

(
1
z

− 1

)1−α/2

z1−α/2 Γ(2 − α/2)Γ(−β/2)
Γ(1)Γ(1 − α/2 − β/2) 2F1

(
1 − α

2
, 1 +

β

2
; 1 +

β

2
; z

)

+

(
1
z

− 1

)1−α/2

z1−α/2−β/2 Γ(2 − α/2)Γ(β/2)
Γ(1 + β/2)Γ(1 − α/2) 2F1

(
1, 1 − α

2
− β

2
; 1 − β

2
; z

)

=: Q1(z) +Q2(z).

We proceed with further transformations separately for Q1 and Q2. From the symmetry of the Gauss
hypergeometric functions in its first two parameters, i.e. from 2F1(a, b; c; z) = 2F1(b, a; c; z), it follows
that

Q1(z) =

(
1
z

− 1

)1−α/2

z1−α/2 Γ(2 − α/2)Γ(−β/2)
Γ(1)Γ(1 − α/2 − β/2)

(1 − z)−1+α/2 =
Γ(2 − α/2)Γ(−β/2)
Γ(1 − α/2 − β/2)

.

Since f and g are supposed to be centered, we have

∫ 1

0

f̂(u)uβ/2−1(1 − u)α/2−1 du =
∫ 1

0

ĝ(u)uβ/2−1(1 − u)α/2−1 du = 0

providing that this part of Q is negligible in the integral (5.20). Therefore,

∫ 1

0

∫ 1

0

(
f̂(u)ĝ(v) + f̂(v)ĝ(u)

)
Q(u ∧ v)uβ/2−1(1 − u)α/2−1vβ/2−1(1 − v)α/2−1 dudv

=
2Γ(2 − α/2)Γ(−β/2)

Γ(1 − α/2 − β/2)

(∫ 1

0

f̂(u)uβ/2−1(1 − u)α/2−1 du

)

×
(∫ 1

0

ĝ(u)uβ/2−1(1 − u)α/2−1 du

)
= 0.

Next, using the relation 2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c− a, c− b; c; z) we obtain

Q2(z) =

(
1
z

− 1

)1−α/2

z1−α/2−β/2(1 − z)α/2−1 Γ(2 − α
2 )Γ( β

2 )

Γ(1 + β
2 )Γ(1 − α

2 )
2F1

(
−β

2
,
α

2
; 1 − β

2
; z

)

=
1 − α/2
β/2

z−β/2
2F1

(
−β

2
,
α

2
; 1 − β

2
; z

)
= (α/2 − 1)B

(
−β

2
, 1 − α

2
; z

)
,

where B(a, b; z) = za

a 2F1(a, 1 − b; a + 1; z) is the incomplete Beta function B(a, b; z) (see e.g. Nikiforov
and Uvarov (1988)). Summarizing all the above, we get the formula for covariances

σf,g =
(β − 2)

2θB(α/2, β/2)

∫ 1

0

∫ 1

0

(
f̂(u)ĝ(v) + f̂(v)ĝ(u)

)

×B

(
−β

2
, 1 − α

2
;u ∧ v

)
uβ/2−1(1 − u)α/2−1vβ/2−1(1 − v)α/2−1 dudv,

(5.22)

valid for any centered f, g having a compact support in (0,∞). Denote

F (u) =
∫ u

0

f

(
̺(1 − v)
αv

)
vβ/2−1(1 − v)α/2−1 dv, G(u) =

∫ u

0

g

(
̺(1 − v)
αv

)
vβ/2−1(1 − v)α/2−1 dv,

(5.23)
and note that F,G vanish at some neighborhoods of the points 0 and 1 since f, g are centered and
compactly supported. Then, using the integration-by-parts formula, we can write the integral in (5.22)
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as follows:
∫ 1

0

∫ 1

0

(
F ′(u)G′(v) + F ′(u)G′(v)

)
B

(
−β

2
, 1 − α

2
;u ∧ v

)
dudv

= 2
∫ 1

0

F ′(u)

(∫ u

0

G′(v)B

(
−β

2
, 1 − α

2
; v

)
dv

)
du

+ 2
∫ 1

0

G′(u)

(∫ u

0

F ′(v)B

(
−β

2
, 1 − α

2
; v

)
dv

)
du

= −2
∫ 1

0

(
F (u)G′(u) + F ′(u)G(u)

)
B

(
−β

2
, 1 − α

2
; v

)
du

= 2
∫ 1

0

F (u)G(u)

[
B

(
−β

2
, 1 − α

2
; v

)]′

du = 2
∫ 1

0

F (u)G(u)u−β/2−1(1 − u)−α/2 du,

where, in the last identity, we have used the relation d
dzB (a, b; z) = za−1(1 − z)b−1 for the derivative

of the incomplete Beta function. From this representation of the integral from (5.22) we finally obtain
(3.14), under the additional assumption that f, g are compactly supported.

To remove this assumption, we use an approximation procedure, similar to the one from the proof
of Theorem 3.4 in Kulik and Leonenko (2013). Let φ1,2 be defined as in the Theorem Appendix B.1
with γ1,2, δ1,2 from the condition (3.11). Consider sequences of centered compactly supported functions
fn, gn, n ≥ 1 such that (5.8) holds true. Then respective functions Fn, Gn converge to F,G point-wise,
and there exist constants ε ∈ (0, 1) and C > 0 such that

|Fn(u)| ≤ Cuβ/2−δ1 , |Gn(u)| ≤ Cuβ/2−δ2 , u ∈ (0, ε), n ≥ 1,

for u close enough to 0, and

|Fn(u)| ≤ C(1 − u)α/2−γ1 , |Gn(u)| ≤ C(1 − u)α/2−γ2 , u ∈ (0, 1 − ε), n ≥ 1.

Under condition (3.13) this provides

∫ 1

0

Fn(u)Gn(u)u−β/2−1(1 − u)−α/2 du →
∫ 1

0

F (u)G(u)u−β/2−1(1 − u)−α/2 du, n → ∞,

which together with (5.10) completes the proof.

5.5. Proof of the Theorem 3.2

(i) P -consistency

From the general expression (2.6) for moments of the FS distribution with the density (2.5), it follows
that in particular moments of order −1, 1 and 2 are given by

m−1 =
αβ

(α− 2)(β − 2)κ
, m1 = κ, m2 =

(α+ 2)(β − 2)κ2

α(β − 4)
, (5.24)

while

m1,1(t) =
2κ2(α+ β − 2)

α(β − 4)
e−θt + κ2.

The assumptions α > 2 and β > 8 in the statement of this theorem ensure that {−1, 1, 2} ⊂
(−α/4 − 1/2, β/4). Now from the LLN for the FSD with the arbitrary initial distribution (Theorem
3.4 from Kulik and Leonenko (2013), part 1, see also Appendix B), it follows that for every t > 0

(m−1,c,m1,c,m2,c,m1,1,c(t))
P−→ (m−1,m1,m2,m1,1(t)), (5.25)

i.e. empirical moments are P -consistent estimators of the corresponding theoretical moments.
Furthermore, let g : R4 → R

4 be a function defined by

g(x, y, z, w) = (g1(x, y, z, w), g2(x, y, z, w), g3(x, y, z, w), g4(x, y, z, w)), (5.26)

where
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g1(x, y, z, w) =
2(xyz − y2)
xyz − 2z + y2

, g2(x, y, z, w) =
4x(y2 − z)

2xy2 − xz − y
,

g3(x, y, z, w) = y, g4(x, y, z, w) = −1
t

log

(
w − y2

z − y2

)
.

Clearly, for estimator (3.15), (α̂c, β̂c, κ̂c, θ̂c(t)) = g(m−1,c,m1,c,m2,c,m1,1,c(t)) and (α, β, κ, θ) =
g(m−1,m1,m2,m1,1(t)).

The function g is well defined and smooth in the neighbourhood of the point (m−1,m1,m2,m1,1(t)),
and therefore according to the continuity mapping theorem applied to the function g and result (5.25) it
follows that for every t > 0

g(m−1,c,m1,c,m2,c,m1,1,c(t))
P−→ g(m−1,m1,m2,m1,1(t)),

i.e.
(α̂c, β̂c, κ̂c, θ̂c(t))

P−→ (α, β, κ, θ). (5.27)

(ii) Asymptotic normality with explicitly calculated asymptotic covariance matrix

According to the CLT for the FSD with the arbitrary initial distribution (Theorem 3.4 from Kulik
and Leonenko (2013), part 2, see also Appendix B), it follows that for the function f : R2 → R

4 defined
by

f(x, y) = (x−1, x, x2, xy),

we have
1√
T

∫ T

0

(
f
(
Xst

s , X
st
s+t

)
− E

[
f
(
Xst

0 , X
st
t

)])
ds

D−→ N (0,Σ), T → ∞,

where

Σi,j =

∞∫

−∞

Cov
(
fi

(
Xst

s , X
st
s+t

)
, fj

(
Xst

0 , X
st
t

))
ds, i, j ∈ {1, 2, 3, 4}.

Hence,

√
T (m−1,c − E[m−1,c],m1,c − E[m1,c],m2,c − E[m2,c],m1,1,c(t) − E[m1,1c(t)])

D−→ N (0,Σ), T → ∞

where

E[m−1,c] = E[1/Xst
0 ] =

αβ

(α− 2)(β − 2)κ
, E[m1,c] = E[Xst

0 ] = κ,

E[m2,c] = E
[
(Xst

0 )2
]

=
(α+ 2)(β − 2)κ2

α(β − 4)
, E[m1,1,c] = E[Xst

0 X
st
t ] = κ2 +

2κ2(α+ β − 2)
α(β − 4)

e−θt.

Therefore, (m−1,c,m1,c,m2,c,m1,1,c(t)) is asymptotically normal estimator of theoretical moments
(m−1,m1,m2,m1,1(t)) of FSD invariant distribution. In the following part of the proof we provide the
explicit expressions for the elements of the asymptotic covariance matrix Σ = Σ(α, β, κ, θ), calculated by
applying the evolutionary equations approach detailed in Section 3.1 together with the result of Theorem
3.1 (more precisely, Example 3.3). Covariances Σi,j = (Σ(α, β, κ, θ))i,j are given by following expressions:

Σ11 =
4α2(α + β − 2)

θκ2(α − 2)3(β − 2)
, (5.28)

Σ12 = −

4(α + β − 2)

θ(α − 2)(β − 2)
= Σ21,

Σ13 = −

8κ(α + β − 2)(αβ + β − 3α − 4)

θα(α − 2)(β − 4)2
= Σ31,

Σ14 = −

4κ(α + β − 2)

θ(α − 2)(β − 2)
−

4κ(α + β − 2)
(

α
(

β2
− 2β − 4

)
+ 2
(

β2
− 6β + 8

))

θα(α − 2)(β − 2)(β − 4)2
e−θt = Σ41,

Σ22 =
4κ2(α + β − 2)

θα(β − 4)
,
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Σ23 =
8κ3(α + 2)(β − 2)(α + β − 2)

θα2(β − 4)(β − 6)
= Σ32,

Σ24 =
4κ3(α + β − 2)

θα(β − 4)
+

4κ3(α + β − 2) (α (β + 2) + 4 (β − 2))

θα2(β − 4)(β − 6)
e−θt = Σ42,

Σ33 =
8κ4(α + 2)(β − 2)2(α + β − 2)(α(β − 6)(2β − 7) + (β − 4)(5β − 22))

θα3(β − 4)3(β − 6)(β − 8)
,

Σ34 =
8κ4(α + 2)(β − 2)(α + β − 2)

θα2(β − 4)(β − 6)
+

8κ4(α + 2)(β − 2)(α + β − 2)
(

α
(

β3
− 7β2 + 44

)
+ 5β3

− 52β2 + 172β − 176
)

θα3(β − 4)3(β − 6)(β − 8)
e−θt,

Σ44 =
4κ4(α + β − 2)(α(4β − 15) + β − 2)

θα2(β − 4)2
+

12κ4(α + 2)(β − 2)(α + β − 2)

θα2(β − 4)(β − 6)
eθs +

4κ4(α + 2)(β − 2)4(α + β − 2)(α + β − 4)

θα3(β − 4)2(β − 6)2(β − 8)
e

−2θ
(β−4)
β−2

s
−

8κ4(α + β − 2)2s

α2(β − 4)2
e−2θs +

4κ4(α + β − 2)
(

16(β − 2)2 + α2
(

−

(
3β2

− 56β + 2(β − 10)(β − 6)θs + 164
))

+ 2α(β − 2)(5β + 2(β − 6)θs + 2)
)

θα3(β − 4)(β − 6)2
e−θs

−

4κ4(α + β − 2)
(

α2(β((β − 6)(β − 1)β + 72) − 176) + α(β((β − 6)(β − 1)β + 72) − 176)(β − 2) + 2(β − 4)(β − 2)4
)

θα3(β − 4)3(β − 6)(β − 8)
e−2θs.

Asymptotic normality of the estimator (α̂c, β̂c, κ̂c, θ̂c(t)) now follows by applying the multivariate delta
method (see e.g. Serfling (1980), Theorem 3.3.A.):

√
T (α̂c − α, β̂c − β, κ̂c − κ, θ̂c(t) − θ)

d−→ N (0,Σc) , T → ∞,

i.e.
(Σc)−1/2

√
T (α̂c − α, β̂c − β, κ̂c − κ, θ̂c(t) − θ)

d−→ N (0, I) , T → ∞, (5.29)

where Σc = DΣDτ and where the elements of the (4 × 4) matrix

D = D(α, β, κ, θ) =

[
∂gi

∂xj

]

(x1,x2,x3,x4)=(m−1,m1,m2,m1,1(t))

,

for function g from (5.26) and for i ∈ {1, 2, 3, 4}, are given by following expressions:

d11 = −κ(α− 2)2(α+ 2)(β − 2)
8(α+ β − 2)

, d12 = −α(α2 − 4)(3β − 8)
8κ(α+ β − 2)

, d13 =
(α− 2)α2(β − 4)2

8κ2(β − 2)(α+ β − 2)
,

d14 = d24 = d31 = d33 = d34 = d41 = 0, d32 = 1,

d21 =
κ(α− 2)2(β − 4)(β − 2)2

8α(α+ β − 2)
, d22 =

(3α+ 2)(β − 4)(β − 2)β
8κ(α+ β − 2)

, d23 = − α(β − 4)2β

8κ2(α+ β − 2)
,

d42 =
α(β − 4)

κt(α+ β − 2)
(eθt − 1), d43 =

α(β − 4)
2κ2t(α+ β − 2)

, d44 = − α(β − 4)
2κ2t(α+ β − 2)

eθt. (5.30)

Now the explicit covariances from the asymptotic covariance matrix Σc = DΣDτ can easily be
calculated by matrix multiplication. Since matrices Σ = Σ(α, β, κ, θ) and D = D(α, β, κ, θ) depend on
unknown parameters α, β, κ and θ, so does the matrix Σc. However, since (α̂c, β̂c, κ̂c, θ̂c(t)) is for each
t > 0 P -consistent estimator of the parameter (α, β, κ, θ) and since

[
D(α̂c, β̂c, κ̂c, θ̂c(t)) Σ(α̂c, β̂c, κ̂c, θ̂c(t))D(α̂c, β̂c, κ̂c, θ̂c(t))τ

]−1/2

×

× [D(α, β, κ, θ) Σ(α, β, κ, θ)D(α, β, κ, θ)τ ]1/2 =
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(Σ̂c)−1/2(Σc)1/2 P−→ I, (5.31)

according to (5.29), (5.31) and the Slutsky theorem (see Serfling (1980), Theorem 1.5.4.1) we finally
obtain that for every t > 0

(Σ̂c)−1/2
√
T (α̂c − α, β̂c − β, κ̂c − κ, θ̂c(t) − θ)

d−→ N (0, I) , T → ∞, (5.32)

where Σ̂c = D̂Σ̂D̂τ depends on consistent estimate of parameter (α, β, κ, θ).

Remark 5.1. If (X1, . . . , XT ) are discrete observations from the non-stationary FSD, then m−1,d, m1,d,
m2,d and for every fixed t > 0 m1,1,d(t) given by (3.2) and (3.1) are, according to the Theorem 3.3
from Kulik and Leonenko (2013) (see also Appendix B), consistent estimators of respective moments.
Therefore, for each t > 0

(m−1,d,m1,d,m2,d,m1,1,d(t))
P−→
(
E[1/Xst

t ], E[Xst
t ], E[(Xst

t )2], E[Xst
0 X

st
t ]
)
, T → ∞. (5.33)

To verify the asymptotic normality of the estimator (m−1,d,m1,d,m2,d,m1,1,d(t)) by using the asymptotic
normality of the continuous-time setting estimator from Theorem 3.2, rewrite

√
T (m−1,d,m1,d,m2,d,m1,1,d(t))

as follows:
√
T (m−1,d,m1,d,m2,d,m1,1,d(t)) +

√
T (m−1,c,m1,c,m2,c,m1,1,c(t)) −

√
T (m−1,c,m1,c,m2,c,m1,1,c(t)) =

√
T (m−1,c,m1,c,m2,c,m1,1,d(t)) +

√
T (m−1,d −m−1,c,m1,d −m1,c,m2,d −m2,c,m1,1,d −m1,1,c) .

(5.34)
Note that in the expression (5.34) we have the following types of convergence:

• according to the part (ii) of the Theorem 3.2 for every t > 0

√
T (m−1,c − E[m−1,c],m1,c − E[m1,c],m2,c − E[m2,c],m1,1,c(t) − E[m1,1c(t)])

d→ N (0,Σ), T → ∞,
(5.35)

where Σ, depending on unknown parameters, is given by (5.28)

• by direct computation we see that for every t > 0

E
[√

T (m−1,d −m−1,c,m1,d −m1,c,m2,d −m2,c,m1,1,d(t) −m1,1,c(t))
]

= 0

and that

Var
(√

T (m−1,d −m−1,c,m1,d −m1,c,m2,d −m2,c,m1,1,d(t) −m1,1,c(t))
)

=

1

T
Var




T∑

i=1

1

Xst

i

−

T∫

0

1

Xst
s

ds,

T∑

i=1

Xst

i
−

T∫

0

Xst
s ds,

T∑

i=1

(Xst

i
)2

−

T∫

0

(Xst
s )2 ds,

T∑

i=1

Xst

0
Xst

i
−

T∫

0

Xst

0
Xst

s ds


→ 0,

as T → ∞. Therefore, according to the Chebyshev inequality, it follows that for every t > 0

√
T (m−1,d −m−1,c,m1,d −m1,c,m2,d −m2,c,m1,1,d(t) −m1,1,c(t))

P−→ 0, T → ∞. (5.36)

According to the Slutsky theorem (see Serfling (1980), Theorem 1.5.4.1.), from expressions (5.34), (5.35)
and (5.36) it follows that for every t > 0

√
T (m−1,d,m1,d,m2,d,m1,1,d(t))

d−→ N ((E[m−1,c], E[m1,c], E[m2,c], E[m1,1,c]),Σ) , T → ∞.

Since E[m−1,c] = E[1/Xst
t ], E[m1,c] = E[Xst

t ], E[m2,c] = E[(Xst
t )2], E[m1,1,c] = E[Xst

0 X
st
t ], it follows

that for every t > 0

(Σ)−1/2
√
T
(
m−1,d − E[1/Xst

t ],m1,d − E[Xst
t ],m2,d − E[(Xst

t )2],m1,1,d − E[Xst
0 X

st
t ]
) d−→ N (0, I) , T → ∞.

(5.37)
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Therefore, from the expressions (5.35) and (5.37) it follows that (m−1,c,m1,c,m2,c,m1,1,c) and
(m−1,d,m1,d,m2,d,m1,1,d) have the same asymptotic distributions.
Let

α̂d =
2(m−1,dm1,dm2,d −m2

1,d)

m−1,dm1,dm2,d − 2m2,d +m2
1,d

, β̂d =
4m−1,d(m2

1,d −m2,d)

2m−1,dm
2
1,d −m−1,dm2,d −m1,d

,

κ̂d = m1,d, θ̂d(t) = −1
t

log

(
m1,1,d(t) −m2

1,d

m2,d −m2
1,d

) (5.38)

be the discrete time estimators of the unknown parameters.
Finally, by the same procedure like in the proof of the Theorem 3.2, part (ii), it follows that for every
t > 0

(D̂Σ̂D̂τ )−1/2
√
T (α̂d − α, β̂d − β, κ̂d − κ, θ̂d(t) − θ)

d→ N (0, I) , T → ∞, (5.39)

where D̂ = D(α̂d, β̂d, κ̂d, θ̂d(t)) and Σ̂ = Σ(α̂d, β̂d, κ̂d, θ̂d(t)) are matrices as in the Theorem 3.2 depending
on consistent estimates of parameters.
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Appendix A. Spectral representation of transition density of Fisher-Snedecor diffusion

For deriving the closed-form results in the framework of statistical analysis, e.g. calculation of asymp-
totic covariances in explicit form, the explicit expression for diffusion transition density

p(x, t) = p(x;x0, t) =
d

dx
P (Xt ≤ x | X0 = x0), x > 0, t ≥ 0,

can be extremely useful.
For canonical FSD such representation is given in terms of the spectrum of the corresponding in-

finitesimal generator and it is thoroughly studied in Avram et al. (2013b). In the general case of the FSD
(2.9) satisfying the SDE (1.1) and having the invariant density (2.8), infinitesimal generator is defined as
follows:

(Gf)(x) =
2θ

β − 2
x
(
x+

̺

α

)
f ′′(x) − θ

(
x− ̺

β − 2

)
f ′(x), x > 0. (A.1)

The domain of the operator G is the space of functions

D(G) =

{
f ∈ L2((0,∞), p(x)) ∩ C2((0,∞)) : Gf ∈ L2((0,∞), p(x)), lim

x→0

f ′(x)
s(x)

= lim
x→∞

f ′(x)
s(x)

= 0

}
,

where s(x) is the scale density given by (2.4) with κ = ̺/(β − 2).
As for the canonical FSD, the spectrum of the operator (−G) consists of two disjoint parts: the

discrete spectrum and the essential spectrum (see Avram et al. (2013b), Subsection 4.3). The discrete
spectrum of the operator (−G) is the finite set σd(−G) = {λn, n = 0, . . . , ⌊β/4⌋}, where the eigenvalues
λn are given by

λn =
θ

β − 2
n(β − 2n), θ > 0, β > 2, n = 0, . . . ,

⌊
β

4

⌋
, (A.2)

and the corresponding eigenfunctions are orthogonal Fisher-Snedecor polynomials given by the Rodrigues
formula

Pn(x) = KnP̃n(x) = Knx
1− α

2

(
x+

̺

α

)α+β

2 dn

dxn

{
x

α
2 +n−1

(
x+

̺

α

)n− α+β

2

}
, (A.3)
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where P̃n(x) are non-normalized polynomials and the normalization constant Kn can be expresses ex-
plicitly. The essential spectrum of the operator (−G) is σess(−G) = [Λ,∞), where

Λ =
θβ2

8(β − 2)
, θ > 0, β > 2.

Moreover, operator (−G) has the absolutely continuous spectrum of multiplicity one in (Λ,∞), i.e.
σac(−G) ⊆ (Λ,∞) ⊂ σess(−G), whose elements could be parameterized by

λ = Λ +
2θk2

β − 2
=

2θ
β − 2

(
β2

16
+ k2

)
, θ > 0, β > 2, k > 0, (A.4)

and where Λ is the cutoff between the absolutely continuous spectrum and the discrete spectrum. Ac-
cording to Borodin and Salminen (2002), in the general case for spectral representation of the transition
density two linearly independent solutions of the SL equation, one of which is strictly increasing while
the other one is strictly decreasing, are crucial. Such solutions in the case of the FSD are

f1(x) = f1(x,−λ) = 2F1

(
z+,λ, z−,λ;

α

2
; −α

̺
x

)
, (A.5)

f4(x) = f4(x,−λ) =

(
α

̺
x

)−z+,λ

2F1

(
z+,λ, u+,λ; 1 + 2∆λ; − ̺

αx

)
, (A.6)

where λ > Λ is the spectral parameter,

∆λ =

√
β2

16
− λ(β − 2)

2θ
, z±,λ = −β

4
± ∆λ, u±,λ = 1 − α

2
+ z±,λ (A.7)

and 2F1(a, b; c; ·) is the Gauss hypergeometric function (see e.g. Nikiforov and Uvarov (1988) or Luke
(1969)). Due to the procedure of the analytic continuation of the function 2F1(a, b; c; ·), solutions
f1(x,−λ) and f4(x,−λ) are well defined on the whole state space of the FSD. Spectral representation of
transition density p(x;x0, t) is given in Theorem Appendix A.1. The proof can be conducted analogously
as in the canonical case for which we refer to Avram et al. (2013b), Theorem 4.1.

Theorem Appendix A.1. Spectral representation of the transition density of the FSD with the PDF
(2.8) with parameters α > 2, α /∈ {2(m+ 1), m ∈ N}, β > 2, ̺ > 0 and θ > 0 is of the form

p(x;x0, t) = pd(x;x0, t) + pc(x;x0, t). (A.8)

The discrete part of the spectral representation

pd(x;x0, t) = p(x)

⌊ β

4 ⌋∑

n=0

e−λnt Pn(x0)Pn(x) (A.9)

is given in terms of the eigenvalues λn given by (A.2) and the normalized Fisher-Snedecor polynomials
Pn(·) given by (A.3). The continuous part of the spectral representation

pc(x;x0, t) = p(x)
1
π

∞∫

Λ

e−λt k(λ)× (A.10)

×

∣∣∣∣∣∣

B
1
2

(
α
2 ,

β
2

)
Γ
(

− β
4 + ik(λ)

)
Γ
(

α
2 + β

4 + ik(λ)
)

Γ
(

α
2

)
Γ (1 + 2ik(λ))

∣∣∣∣∣∣

2

f1(x0,−λ)f1(x,−λ) dλ

is given in terms of the elements λ of the absolutely continuous spectrum of the operator (−G) given by
(A.4), solution f1(·,−λ) of the Sturm-Liouville equation (Gf)(x) = −λf(x) for λ > Λ given by (A.5) and
parameter k(λ) = −i∆λ, where ∆λ is given in (A.7).

Furthermore, the explicit expression for the corresponding two-dimensional density is given by follow-
ing expression:

p(x, y, t) =
∂2

∂x∂y
P (Xs+t ≤ x,Xs ≤ y) = p(y) p(x; y, t) = p(y) (pd(x; y, t) + pc(x; y, t)) , (A.11)

where pd(x; y, t) is given by (A.9) and pc(x; y, t) is given by (A.10). Representation (A.11) of two-
dimensional density of the FSD can be used in calculation of explicit form of expectation E[Xm

s X
n
t ],

s, t ∈ (0,∞), which is very useful for calculating the explicit expressions of asymptotic covariances of
parameter estimator in asymptotic normality framework (see Avram et al. (2011)).
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Appendix B. Important results on non-stationary Fisher-Snedecor diffusion

Appendix B.1. Coupling, ergodicity, and β-mixing

This section collects the results on ergodic behavior of the FSD. A traditional tool for proving the
ergodicity of a Markov process X is the coupling construction. A coupling for a pair of processes U and
V is any two-component process Z = (Z(1), Z(2)) such that Z(1) has the same distribution as U and
Z(2) has the same distribution as V . According to this terminology, for a Markov process X and every
pair of probability distributions µ, ν ∈ P, where P is the family of probability distributions on the Borel
σ-algebra on the diffusion state space X, we consider two versions X(µ) and X(ν) of the process X with
the initial distributions µ and ν, respectively. Any two-component process Z = (Z(1), Z(2)) which is a
coupling for X(µ) and X(ν) is called (µ, ν)-coupling for the process X. According to Kulik and Leonenko
(2013), the Markov process X admits an exponential φ-coupling if there exists an invariant measure π
for this process and positive constants C and c such that, for every µ ∈ P, there exists a (µ, π)-coupling
Z = (Z(1), Z(2)) such that

E
[
φ(Z1

t ) + φ(Z2
t )
]
1IZ1

t 6=Z2
t

≤ Ce−ct

∫

X

φdµ, t ≥ 0. (B.1)

In Kulik (2011) an exponential φ-coupling is introduced, and it was demonstrated that it is a convenient
tool for studying convergence rates of Lp-semigroups, generated by a Markov process, and spectral prop-
erties of respective generators. In Kulik and Leonenko (2013) it is shown that this notion is also efficient
for proving LLN and CLT for the FSD in non-stationary setting.

Next we provide the definition of the well-known β-mixing coefficient, also known as complete regu-
larity or Kolmogorov’s coefficient. Generally, β-mixing coefficient of the process X is defined as

βµ(t) = sup
s≥0

Eµ sup
B∈FX

≥t+s

|Pµ(B|FX
s ) − Pµ(B)|, µ ∈ P, t ≥ 0, (B.2)

where FX
≥r for a given r ≥ 0 denotes the σ-algebra generated by the process X at times v ≥ r.

The state-dependent β-mixing coefficient is defined by

βx(t) = sup
s≥0

Ex sup
B∈FX

≥t+s

|Px(B|FX
s ) − Px(B)|, x ∈ X, t ≥ 0, (B.3)

where the initial distribution of X is the degenerate distribution µ = δx.
The stationary β-mixing coefficient is defined by

β(t) = sup
s≥0

Eπ sup
B∈FX

≥t+s

|Pπ(B|FX
s ) − Pπ(B)|, x ∈ X, t ≥ 0, (B.4)

where π denotes the (unique) invariant distribution of the process X. For more information about various
types of mixing coefficients see e.g. Bradley (2005).

Finally, results concerning the φ-coupling and β-mixing for the non-stationary FSD are stated in the
Theorem Appendix B.1. For the proof we refer to Kulik and Leonenko (2013), Theorem 3.1.

Theorem Appendix B.1. Let the function φ be defined as φ = φ♦+φ�, where φ ≥ 1, φ♦, φ� ∈ C2(0,∞),
φ♦ = 0 on [2,∞), φ� = 0 on (0, 1], φ♦(x) = x−γ for x small enough and φ�(x) = xδ for x large enough

with non-negative γ and δ satisfying γ <
α

2
− 1 and δ <

β

2
. Then the following statements hold true.

1. FSD admits an exponential φ-coupling.

2. Finite-dimensional distributions of the FSD admit the following convergence rate in the weighted
total variation norm with the weight φ: for any m ≥ 1 and 0 ≤ t1 < . . . < tm

‖µt+t1,...,t+tm
− πt1,...,tm

‖φ,var ≤ mCe−ct

∫

X

φdµ, µ ∈ P, t ≥ 0. (B.5)

Here µt1,...,tm
, 0 ≤ t1 < . . . < tm, m ≥ 1, denotes finite-dimensional distributions of the respective

diffusion with the initial distribution µ, while πt1,...,tm
denotes the corresponding finite-dimensional

invariant distribution. Constants C and c are the same as in the bound (B.1) in the definition of
an exponential φ-coupling.
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3. FSD admits the following bound for the β-mixing coefficient:

βµ(t) ≤ C ′e−ct

∫

X

φdµ, µ ∈ P, t ≥ 0. (B.6)

Here the constant c is the same as in the bound (B.1), and C ′ is a positive constant which can be
given explicitly (see Kulik and Leonenko (2013), relation (5.15)).

Furthermore, from (B.6) and Corollary 3.1 from Kulik and Leonenko (2013), the following bounds for
the β-mixing coefficients can be obtained:

- bound for the state-dependent β-mixing coefficient:

βx(t) ≤ C ′e−ctφ(x), x ∈ X, t ≥ 0 (B.7)

- bound for the stationary β-mixing coefficient:

β(t) ≤ C ′′e−ct, t ≥ 0, C ′′ := C ′

∫

X

φdπ < +∞. (B.8)

Appendix B.2. Limit theorems for additive functionals for random samples from the Fisher-Snedecor dif-
fusion

Here we state the LLN and CLT for additive functionals of the FSD X, separately for the discrete-
time and the continuous-time observations. For the proofs we refer to the recent paper Kulik and
Leonenko (2013), Theorems 3.3 and 3.4. For clarity of the exposition, we introduce the notation
Xst = (Xst

t , t ∈ (−∞,∞)) for the stationary version of the FSD X, by which we understand the strictly
stationary process such that for every m ≥ 1 and t1 < . . . < tm the distribution of the random vector
Xst

t1
, . . . , Xst

tm
is π0,t2−t1,...,tm−t1

(time-shift invariance of the finite-dimensional distributions). Heuristi-
cally, Xst is a solution of the SDE (1.1) defined on the whole time axis and starting at (−∞) from the
invariant distribution π.

Theorem Appendix B.2. (Discrete-time case)
Let, for some r, k ≥ 1, a vector-valued function

f = (f1, . . . , fk) : Xr → R
k

be such that for any i = 1, . . . , k for some γi, δi such that γi < (α/2) − 1 and δi < β/2

|fi(x)| ≤ C

r∑

j=1

(
x−γi

j + xδi

j

)
, x = (x1, . . . , xr) (B.9)

with some constant C. Then the following statements hold true.

1. Law of large numbers
For arbitrary initial distribution µ of X and arbitrary t1, . . . , tr ≥ 0,

1
n

n∑

l=1

f
(
Xt1+l, . . . , Xtr+l

) P→ af , (B.10)

with the asymptotic mean vector
af = Ef

(
Xst

t1
, . . . , Xst

tr

)
.

If, in addition, the initial distribution is such that for some positive ε

∫

X

(
x−γi−ε + xδi+ε

)
µ(dx) < ∞, i = 1, . . . , k, (B.11)

then (B.10) holds true in the mean sense.

2. Central limit theorem
Assume in addition that there exists ε > 0 such that

E
∥∥f
(
Xst

t1
, . . . , Xst

tr

)∥∥2+ε
< ∞. (B.12)
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Then
1√
n

n∑

l=1

(
f
(
Xt1+l, . . . , Xtr+l

)
− af

)
⇒ N (0,Σ), (B.13)

where the components of the asymptotic covariance matrix Σ are given as follows:

(Σ)i,j =
∞∑

l=−∞

Cov
(
fi

(
Xst

t1+l, . . . , X
st
tr+l

)
, fj

(
Xst

t1
, . . . , Xst

tr

)
)
)
, i, j = 1, . . . , k.

Theorem Appendix B.3. (Continuous-time case)
Let the components of a vector-valued function f : Xr → R

k satisfy (B.9) with γi, δi satisfying γi < α/2
and δi < β/2 for every i = 1, . . . , k. Then the following statements hold true.

1. Law of large numbers
For arbitrary initial distribution µ of X

1
T

∫ T

0

f
(
Xt1+s, . . . , Xtr+s

)
ds

P→ af . (B.14)

If, in addition, the initial distribution is such that for some positive ε

∫

X

(
x−(γi−1)∨0−ε + xδi+ε

)
µ(dx) < ∞, i = 1, . . . , k, (B.15)

then (B.14) holds true in the mean sense.

2. Central limit theorem
Assume in addition that

γi <
α

4
+

1
2
, δi <

β

4
, i = 1, . . . , k. (B.16)

Then for arbitrary initial distribution µ of X

1√
T

∫ T

0

(
f
(
Xt1+s, . . . , Xtr+s

)
− af

)
ds ⇒ N (0,Σ), (B.17)

where the components of the asymptotic covariance matrix Σ are given as follows:

(Σ)i,j =
∫ ∞

−∞

Cov
(
fi

(
Xst

t1+s, . . . , X
st
tr+s

)
, fj

(
Xst

t1
, . . . , Xst

tr

)
)
)
ds, i, j = 1, . . . , k. (B.18)

Statements of Theorems Appendix B.2 and Appendix B.3 clearly show that the technique for calcu-
lation of asymptotic covariances (Σ)i,j in discrete and continuous-time setting rely on properties of the
stationary FSD Xst. Therefore, we refer to Appendix A, where we give a short overview of the most
important probabilistic properties of the stationary FSD in the canonical case.
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