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System dynamics play a critical role in influencing supply chain performance. However, the dynamic 

property of the assemble-to-order (ATO) system remain unexplored. Based on control theory, the 

inventory and order based production control system (IOBPCS) family, can be utilized as a base 

framework for assessing system dynamics. However, the underlying assumption in traditional IOBPCS-

based analytical studies is that the system is linear and the delivery time to end customers is negligible 

or backlog is used as a surrogate indicator. Our aim is to incorporate customer delivery lead-time 

variance as the third assessment measure alongside capacity availability and inventory variance as part 

of the so-called ‘performance triangle’– capacity at the supplier, the customer order decoupling point 

(CODP) inventory and the delivery lead-time. Using the ‘performance triangle’ and adopting non-

linear control engineering techniques, we assess the dynamic behaviour of an ATO system in the 

electronics sector. We benchmark the ATO system dynamics model against the IOBPCS family. We 

exploit frequency response analysis to ensure a robust system design by considering three measures of 

the ‘performance triangle’. The findings suggest delivery LT variance can be minimised by maintaining 

the ATO system as a true Push-Pull hybrid state with sufficient CODP stock, although increased 

operational cost driven by bullwhip and CODP variance need to be considered. However, if the hybrid 

ATO system 'switches' to the pure Push state, the mean and variance of delivery LT can be significantly 

increased. 

 

Keywords: System dynamics, Nonlinear Control theory, Trade-off analysis, Minimum Reasonable 

Capacity, Minimum Reasonable Lead-time. 
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1. Introduction  

The Assemble-to-order system, that is, a combining Make-to-stock (MTS) and Make-

to-order (MTO) productions separated by a customer order decoupling point (CODP) (Harrison 

et al. 2005) in the final assembly plant, has been well-adopted in various industries. e.g. 

electronic consumer (Chen et al., 2012); semiconductor (Lin et al. 2018), and automobile (Choi 

et al. 2012). Given the attractiveness of the ATO strategy for companies, including increasing 

product variety, achieving quick response time and low cost, hence benefiting from the 

potential risk-pooling effect (Xiao et al. 2010), academics and practitioners have become 

increasingly interested in analysing ATO systems. 

The focus of this paper is to study the dynamic performance of the ATO system by 

using combined control theory and system dynamics simulation. Systems dynamics plays a 

critical role in influencing supply chain performance (Spiegler and Naim 2017). Dynamic 

characteristics, particularly the bullwhip effect (Lee et al., 1997), are considered to be the main 

sources of disruptions in the business world (Christopher and Peck 2004). System dynamics 

performance has been extensively studied in pure MTS, or Push-based, systems by assessing 

order variability (bullwhip) and inventory variance as the two main performance indicators. 

However, the dynamic behaviour of delivery lead-time, a key performance metric alongside 

the traditional assessment of bullwhip and inventory variance in hybrid systems, such as ATOs, 

remains unexplored. This makes it difficult for managers to set control policies for dynamic 

performance assessment and control, as some of the control rules in traditional MTS systems 

may break down in the order-driven or hybrid MTO and MTS systems (Akkermans and Vos 

2003; Edward et al. 2005). For instance, Goncalves et al. (2005) simulated a complex 

semiconductor manufacturer and producer supply chain that combines both MTS and MTO 

manufacturing. They indicated that reducing the level of finished goods inventory can induce 

greater bullwhip effects in the semiconductor industry. By simplifying and linearizing 

Goncalves et al. (2005)’s complex hybrid model, Lin et al. (2018) then showed that in such a 

hybrid model the forecasting policy may result in greater bullwhip than the impact of delays 

often highlighted in the studies of MTS-based literature.  

From an analytical control theory perspective, the well-recognised inventory and order-

based production control system (IOBPCS) family of models (Lin et al. 2017), also, ignore the 

dynamic behaviour of delivery lead-time. This is because the underlying assumption of the 

IOBPCS family models in most studies is that the system is linear (Lin et al. 2017) and final 

customer delivery lead-time can be disregarded and set as zero. This has greatly limited the 
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applicability of published results and has made it difficult to measure end customer delivery 

lead-time dynamic performance. The customer delivery lead-time measure is especially 

important in ATO systems, due to capacity constraints, where products cannot always be 

delivered within the planned lead-time (Wikner et al. 2007).  

As a result, motivated by the practical need and academic gap identified for delivery 

lead-time dynamics assessment, we study the dynamic behaviour of a nonlinear ATO supply 

chain system within the context of personal computer (PC) sector. This ATO system is well-

adopted by the personal computer (PC) industry and its associated semiconductor products 

(Govindan and Popiuc 2014; Katariya et al. 2014; Lin et al. 2017). However, such systems has 

suffered severely from capacity unevenness, or the bullwhip effect (Karabuk and Wu 2003; 

Gonçalves et al. 2005) due to the characteristics of high levels of stochasticity and nonlinearity 

(Wang and Rivera 2008). For this reason, by incorporating delivery lead-time variance as the 

third measure as part of the so-called ‘performance triangle’ (delivery lead-time, inventory and 

capacity) (Klasse and Menor 2007), we aim to analytically assess the delivery lead-time 

dynamics within the context of the PC ATO system. Overall, we fill the gaps between 

theoretical predictions and empirical observations, and also advance methodologies that can be 

used to overcome the difficulties associated with nonlinear systems analysis. Our key 

contributions in this paper are as follows: 

1. Based on nonlinear control theory, we develop a linearisation method to allow for the 

dynamic analysis of delivery lead-time.  To the best of our knowledge, that is the first 

time that delivery lead-time is analytically assessed as a dynamic metric in combination 

with capacity (bullwhip) and inventory variability. The so-called the 'performance 

triangle' (delivery lead-time, inventory and capacity) is analysed within the context of 

the ATO system dynamics. This offers both practical implications in assessing time-

based dynamic behaviour and extends the theoretical understanding from the balanced 

design of capacity-inventory dynamics to the trade-off consideration of inventory, 

capacity and delivery lead-time. 

2. We develop a nonlinear system dynamics model of the ATO system. Although the 

model is based on the PC industry, it is a generic ATO representation that can be 

extended to study other ATO-based systems for different industries or products. Also, 

the modelling concept, i.e. the Pull and Push parts separated by the CODP stock point, 

can be exploited for modelling other types of hybrid systems with different locations of 
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the CODP. For example, in the case of the engineering-to-order systems where the 

CODP is located fully upstream in the design process (Gosling et al., 2017).  

The remainder of this paper is organized as follows. We first model the information and 

material flow of the PC supply chain in block diagram form based on the descriptions given by 

Kapuscinski et al. (2004), Huang and Li (2010) and Katariya et al. (2014). Utilizing a Taylor 

series expansion technique, we linearise the nonlinear representation of delivery lead-time 

dynamics in the ATO system. Based on the constraints of two stocking points, the nonlinear 

ATO system can be categorised as three distinctive operational states and the dynamic 

performance of the 'performance triangle' in responding to sinusoidal demand are analysed 

separately by using frequency response techniques. Analysing the system dynamics model via 

the ‘filter lens’ or sinusoidal input (Towill et al. 2007) allows us to investigate the parameters 

that impacts on the dynamic properties of the system, including the natural frequency (ωn) and 

damping ratio (ζ). The former determines how fast the system’s output oscillates during the 

transient response, while the latter describes how oscillations in the system decay with time. 

Simulation and numerical studies of the nonlinear ATO system then will be presented for 

verification and further analysis. We then end with a discussion and conclusion. 

  

2. Literature review 

2.1 Control theory applications in system dynamics research 

Classic control theory techniques, with feedback thinking and sufficient analytical tools, 

are advantageous for analysing system dynamics (Lin et al. 2019). The application of classic 

control theory in a production system can be traced back to Simon (1952). By adopting classic 

control theory, Towill (1982) translated Coyle's (1977) system dynamics work to represent the 

Inventory and Order based Production Control System (IOBPCS) in a block diagram form. 

John et al. (1994) then extended the original model to the automatic pipeline, inventory and 

order-based production control system (APIOBPCS) by incorporating an automatic work in 

progress (WIP) feedback loop. These two original models and their variants, i.e. the IOBPCS 

family, have been recognized as a base framework for production planning and control systems 

(Lin et al. 2017).  

Traditionally, the IOBPCS family represents a typical MTS-based production system 

in which its service level capabilities are determined by net stock variance and capacity 

availability. Topics include stability (e.g. Wang et al. 2012), forecasting (e.g. Li et al. 2014) 
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and supply chain resilience (e.g. Spiegler et al. 2012), to name but a few. However, limited 

effort has been made to model and analyse the dynamic behaviour of time-oriented production 

systems, e.g. MTO or ATO system. Also, most of IOBPCS-based studies assume the system is 

completely linear, although linear assumptions are often criticized for failing to capture the 

nature of nonlinear attributes of the real supply chain systems with resource and physical 

constraints (Lin et al. 2017).  

Nonlinearities can naturally occur through the existence of physical and economic 

constraints in supply chain system. For instance, fixed and variable capacity constraints in the 

manufacturing and shipping processes, variable delays and variable control parameters. Recent 

IOBPCS-based works analytically studied some forms of nonlinearities in supply chain 

systems, such as capacity (Jeong et al. 2010; Spiegler et al. 2016a; Spiegler et al. 2016b) and 

non-negative order constraints (Wang et al. 2012; Wang et al. 2014; Wang et al. 2015) and 

shipment constraints (Spiegler et al. 2017). Such authors identified the impact of different 

nonlinearities on the system dynamics such as bullwhip effect in responding to cyclical demand 

with different mean and frequencies. Also, system structure simplification and linearisation 

methods are proposed for giving further analytical insights in managing system dynamics in 

supply chain systems. However, most analyses are limited to a single echelon system and are 

restricted to the analysis of the different nonlinearities individually. Furthermore, all studies 

solely explore the dynamic performance of a MTS-based production-inventory control system 

utilizing bullwhip and inventory variance as performance indicators. To the best of our 

knowledge, no previous work has analytically assessed the nonlinear ATO system by 

incorporating the end customer delivery lead-time dynamics.    

 Beside the IOBPCS family applications, other control approaches / frameworks have 

also been implemented in studying supply chain dynamics. Specifically, based on optimal 

control, Ma and Koren (2004) developed a novel method to simultaneously achieve the 

production target and minimize WIP inventory in large manufacturing systems. Using transfer 

function and block diagram techniques, Duffie and Shi (2009) presented a method to study the 

WIP dynamics of a production network. They found that unwanted dynamic variations of the 

work systems and the production network can be triggered if the structure of order flows 

between the work systems is omnidirectional and variable. Also, the desired and consistent 

WIP dynamic behaviour can be produced by sharing order flow structure information. 

 Jeken et al. (2012) investigated the dynamic interaction of autonomous products and 

work systems by using hybrid simulation and classic control theory. Such hybrid methods 
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provide traceable insight into dynamic behaviour of the interacting autonomous products and 

autonomous work systems. In a multi-product manufacturing environment, Sagawa and 

Nagano (2015) used Bond Graphs to develop a production control model and study its dynamic 

performance at the job shop level. Sagawa and Mušič (2019) further revisited a bond graph / 

mathematical model to depict the dynamics of multi-workstation production systems, and 

propose closed-loop simulation models with state feedback controllers. Their model provides 

prescriptive capacity adjustments and can help to define appropriate reference levels for the 

WIP in the system. 

 It should be noted that system dynamics and control theory are often criticised as 

theory-rich but data-poor modelling approach (Pruyt et al. 2014), some attempts have been 

implemented to integrate other data sources into system dynamics and control theory models. 

Examples such as combined static value stream mapping and system dynamics models 

(Agyapong-Kodua et al. 2009; Stadnicka and Litwin 2017), combine big data and control-

theoretic models (Hofmann 2017), to name but a few. 

 

2.2. ATO system dynamics  

From the system dynamics perspective, existing literature puts the major emphasis on 

the dynamic modelling and analysis of general customized system such as MTO and hybrid 

MTS-MTO related systems (Hedenstierna and Ng 2011; Choi et al. 2012; Wikner et al. 2017), 

while giving little analytical implications specifically for the ATO system. Regarding case 

study based research, there have been a few studies of the dynamics of ATO systems. Berry 

and Towill (1992) developed causal loop diagrams to explain the ‘gaming’ that yields bullwhip 

in the electronics supply chains, including semiconductor production, while Berry et al. (1994) 

undertook simulation modelling of a generic electronics industry supply chain to highlight the 

opportunities afforded by different supply chain reengineering strategies to mitigate bullwhip. 

Gonçalves et al. (2005) developed a system dynamics simulation model to explore how market 

sales and production decisions interact to create unwanted production and inventory variances 

in the Intel hybrid ATO supply chain. Lin et al. (2018) then analytically explore Intel’s hybrid 

ATO model using control engineering. The analytical insights, including the derivation of the 

stability region as well as the root causes of bullwhip effect, are verified by simulation tests. In 

recent publication, Lin et al. (2019) developed a PC ATO system dynamics model and explored 

the impact of capacity and non-negative order nonlinearities on dynamic performance. 

However, delivery lead-time is not considered in their model due to the assumption that CODP 

https://www.sciencedirect.com/topics/economics-econometrics-and-finance/manufacturing-system
https://www.sciencedirect.com/topics/engineering/state-feedback-controller
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inventory is always sufficient and thereby all incoming customized orders can be fulfilled by 

desired lead times.  

In terms of analytical/conceptual works, Wikner et al. (2007) developed an MTO 

system dynamics model and explore its dynamic performance by using the order book feedback 

control concept. They suggested that managers may be able to control the level of capacity and 

lead-time flexibility by selecting appropriate forecast smoothing and order book control 

parameters. Although the model could potentially be extended and used for the dynamic 

analysis of decoupled systems, it lacks a mechanism for integration between the MTS and MTO 

elements. Also, Özbayrak, et al. (2007) developed a four-echelon MTO based system dynamics 

model and analysed some key dynamic metrics such as inventory, WIP levels, backlogged 

orders and customer satisfaction.  

Anderson et al. (2005) assessed the dynamic performance of order-based service 

supply chains with different degrees of demand variability and information sharing. They 

developed a capacity management model for a serial chain by presenting related capacity, 

processing, backlog and service delays at each supply chain stage. By using the system 

dynamics simulation approach, they characterise the bullwhip phenomenon exist in such 

supply chain systems. The impact of different levels of information sharing and management 

strategies on capacity and service delay variability are also studied. Furthermore, using a 

closed-loop production planning and control system proposed by Duffie and Falu (2002), 

Knollmann et al. (2014) compared different control strategies (planned lead time and proactive 

lead time control) to study capacity and lead time dynamics.  

Overall, three main limitations are identified. First, most studies do not consider the 

impact of nonlinearities, such as inventory and capacity constraints, on the dynamics of the 

ATO system. Second, simulation is the primary choice for most studies and thereby gives little 

analytical insight or guidance in understanding the system control policies and structures to 

reduce supply chain dynamics. Finally, although a number of researches investigate the 

dynamic property of the hybrid MTS-MTO/ATO model, delivery lead time dynamics is largely 

ignored in literature and most models developed are purely conceptual and thus lead to the 

difficulty in bridging the gap between theory and real-world observation. We aim to address 

these gaps by incorporating customer delivery lead-time variance as part of the ‘performance 

triangle’ within the context of PC ATO supply chains, as found in Lin et al. (2019) as an 

example. 
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3. Empirical PC model formulation and validation 

3.1 The PC supply chain description 

There are three manufacturing and one distribution echelons for the PC supply chain: 

PC part production, sub-assembly, final assembly and distribution (Katariya et al. 2014; Lin et 

al. 2019). From the material flow perspective, the part and sub-assembly echelons offer what 

the company called ‘commodities’ required by final PC assembly such as the processor, 

graphic, motherboard, disk, and software. The corresponding production time is measured in 

terms of weeks. As the material flows downstream, the process transitions from automated 

production to highly manual approaches. Final assembly of a PC at the assembly echelon is a 

largely manual process to allow quick changeover and a high level of flexibility. The 

corresponding time is measured in terms of days/hours. The final products are shipped either 

to several company owned distribution centres or directly to final customers. 

From the information flow perspective, as illustrated in Figure 1, the hybrid ATO 

production strategy implements the CODP in the OEMs’ final assembly plants. It should be 

noted that Figure 1 only show a two-echelon PC ATO supply chain, i.e. the supplier (sub-

assembly) and the Original Equipment Manufacturer (OEM) echelons. Specifically, the 

downstream production of the CODP (final assembly) essentially operates as a MTO in which 

end customers’ orders pull the available CODP inventory based on their specific PC 

configurations. However, production upstream of the CODP, i.e. the PC sub-assemble 

manufacturing, is characterized by MTS: long-term demand forecasting is shared by the OEM 

and the CODP inventory to determine production rates. It should be noted that although the 

delayed manufacturing point is located in the OEM’s final assembly plant, there are two CODP 

inventory stock points due to the adoption of the vendor-managed inventory (VMI) strategy in 

most of PC supply chains (Huang and Li 2010). Specifically, PC part suppliers are required to 

manage the finished PC part (CODP inventory) at both their supplier and OEMs sites, by 

renting or building inventory hubs near the OEMs’ final assembly factories to be pulled by 

customer orders at a high frequency. This is because of the long geographical distance between 

OEMs’ final assembly and PC part suppliers’ plants driven by the global supply chain strategy, 

i.e. longer delay between suppliers and OEMs comparing the short lead-time requirements 

pulled by customer orders.  

As a result, the VMI hub inventory is directly pulled by end customer orders and the 

inventory at the supplier site is also pulled by the required replenishment of the VMI hub, while 

the supplier’s part manufacturing push the finished CODP inventory into its stock point. In 
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return, the OEMs may share important information, e.g. forecasting, real-time backlog, and 

shipment, to help their suppliers make better CODP inventory replenishment decisions. In other 

words, the material CODP is incorporated in the final assembly site, while the information 

CODP is moved to the upstream suppliers’ sites to ensure information transparency.  

 

 

Figure 1. Main material and information flows in PC supply chains, based on Kapuscinski et al. 

(2004) and Katariya et al. (2014). 

 

3.2 Modelling the PC supply chain. 

We model the material and information flows of the PC ATO supply chain at an 

aggregate/single product level. Although in practice, PC and semiconductor companies offer a 

variety of customized products by a number of commodity parts, the study of the ATO system 

dynamics based on a single product and a single part setting provide insights of system 

dynamics at an aggregate level. This assists the long-term strategic planning (e.g. capacity 

planning, labour expansion, inventory holding) and offers the benchmark of system dynamics 

performance for subsequent dis-aggregate dynamic modelling and analysis. (Größler and Jörn‐

Henrik 2008; Lin and Naim 2019) The entire supply chain is modelled as a two-stage system, 

i.e. the PC sub-assembly manufacturing supplier and the OEM’s final assembly systems 

connected by the CODP inventory to represent a typical hybrid ATO structure. The 

downstream distribution/sales and marketing echelons are not considered in this study, since 

the orders can be directly transferred to final assembly plant via on-line shopping. Also, the 
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upstream PC part fabrication echelon is not considered due to the same ordering policy adopted 

in the sub-assembly supplier echelon, i.e. MRP replenishment rule. All notations used in this 

paper are presented in Table 1. 

Table 1. Notations and model descriptors used in modelling PC ATO supply chain system. 

 

Regarding the OEM’s final assembly echelon, it focuses on the control of physical final 

assembly transformation under the pure order-driven strategy. To model this echelon at 

aggregate level, the relationship between incoming orders and the replenishment of CODP 

AINVAS 
CODP inventory at VMI 

hub site  near OEM site 
𝛕A Time to average consumption 

AINVSA 
CODP inventory at the 

subassembly supplier site 
𝛕AS 

Transport delay for CODP inventory 

between the supplier site and VMI 

hub site 

AINV*AS Desired AINVAS level 
Pull 

ORATEAS 
Desired ORATEAS 

AINV*SA Desired AINVSA level 
Push 

ORATEAS 
Maximum ORATEAS 

AVCON Averaged consumption rate SH Actual shipment rate 

BL 
Current backlog orders 

level 
SH* Desired SH rate 

BL* Target backlog orders level SHMAX Maximum shipment rate 

BLADJ Backlog adjustment  𝛕AINV Time to adjust AINVSA discrepancies 

CONS Customer demand rate 𝛕BL Time to adjust backlog discrepancies 

COMRATEAS 
VMI inventory (PC parts) 

arrival rate at the OEM site  
𝛕I Time to adjust AINVAS discrepancies 

COMRATESA 
Sub-assembly PC 

completion rate 
𝛕WIP Time to adjust WIP discrepancies 

WIP 

Sub-assembly PC 

manufacturing work in 

process level 
𝛕DD 

Final assembly operations time 

(including order processing and final 

assembly), and transport delay at the 

OEM site 

WIP* Desired WIP level 𝛕SA 
PC  sub-assemble manufacturing 

delay 

WIPADJ WIP adjustment s s transform operator 

ORATEAS 

Order rate for the 

replenishment of VMI 

inventory at the OEM site 

a Exponential smoothing coefficient 

ORATESA 

Order rate at PC sub-

assembly manufacturing 

site   

b 
First order smoothing coefficient 

(final assembly) 

△T 

Time interval between 

samples 
LT Delivery lead-time 

IOBPCS Inventory and Order Based Production Control System 

VIOBPCS Variable Inventory and Order Based Production Control System 

APIOBPCS Automatic Pipeline and Inventory and Order Based Production Control System 

APVIOBPCS 
Automatic Pipeline and Variable Inventory and Order Based Production Control 

System 
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inventory at the OEM VMI hub site (AINVAS) should be captured. Specifically, the supply 

chain order fulfilment starts by receiving end customers’ customized orders at the OEM’s final 

assembly and distribution. If all required AINVAS are available, they are immediately collected 

to start the final assembly activities including processing orders, final assembly, test, pack 

orders and ship them out to the customer by quoted lead times (𝛕DD). This is reflected by desired 

shipment rate (SH*). However, if AINVAS constrains the desired SH*, the OEM can only 

assemble and ship out all PC parts they currently hold on hand, which is represented by SHMAX.  

 The first order lag approach (Sarimveis et al. 2008) can be used for aggregately modelling 

such a process. Specifically, the output of the first order delay, i.e. actual shipment rate, SH, is 

determined by:  

𝑆𝐻(𝑡) = 𝑀𝑖𝑛(𝑆𝐻∗(𝑡), 𝑆𝐻𝑀𝐴𝑋(𝑡))             (1) 

If required PC parts in AINVAS are available for immediate final assembly, SH=SH*:  

S𝐻*(t) = 𝑆𝐻(𝑡) =
BL(t)

τDD

     (2) 

As illustrated in Equation (2), the output, shipment rate (SH) under such condition, can 

be modelled as the desired fraction (determined by τDD) of current backlog orders (BL) (Wikner 

2003). BL refers to cumulative order level determined by the difference between outflow 

shipment rate SH (= SH*) and inflow customer demand rate (CONS): 

𝐵𝐿(𝑡) = 𝐵𝐿(𝑡 − 1) + 𝐶𝑂𝑁𝑆(𝑡) − 𝑆𝐻(𝑡)    (3) 

Thus, BL can be treated as a form of ‘intangible WIP’ in the order driven system, which 

indicates those customised orders that the OEM has already received but not yet shipped to 

customers. Moreover, τDD  refers to the average physical delay of each received customised 

order including all final assembly operations (e.g. order processing, final assembly) and 

transportation delay. As suggested by Atan et al. (2017), a fixed τDD is normally assumed for 

modelling such delays due to the usually highly reliable final physical assembly operations and 

delivery times. 

As a result, if SH=SH*, all incoming customized orders can be fulfilled by the quoted 

τDD due to sufficient PC parts in AINVAS available for the immediate final assembly operations 

and delivery. Hence, customers’ waiting time is the sum of the physical final assembly 

operations and transport lags.  

However, if there insufficient AINVAS constrains SH*, the OEM can only ship at 

SHMAX, which is represented by a function of on hand AINVAS and τDD.  



 

 

12 

𝑆𝐻(𝑡) = 𝑆𝐻𝑀𝐴𝑋 =
𝐴𝐼𝑁𝑉𝐴𝑆(𝑡)

𝜏𝐷𝐷
   (4) 

As a result, the average delivery lead-time (LT) may increase due to insufficient, and 

the further replenishment process of, AINVAS. AINVAS is the accumulation of VMI inventory 

driven by its replenishment, which is given by COMRATEAS minus its depletion (i.e. SH): 

𝐴𝐼𝑁𝑉𝐴𝑆(𝑡) = 𝐴𝐼𝑁𝑉𝐴𝑆(𝑡 − 1) + 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) − 𝑆𝐻(𝑡)  (5)       

In practical terms, AINVAS is an inbound inventory of parts and subassemblies for the 

assembling operation, and it contains the same parts and subassemblies as the outbound 

inventories of the suppliers, AINVSA. Furthermore, given the dynamical measurement of the 

delivery LT dynamics is implicit in the ATO model, we incorporate the nonlinear division loop 

( ) based on Little’s Law (Simchi-Levi and Trick, 2011): 

          𝐿𝑇(𝑡) =
𝐵𝐿(𝑡)

𝑆𝐻(𝑡)
          (6) 

While SH depletes AINVAS, COMRATEAS replenishes it. COMRATEAS is the delayed 

order rate (ORATEAS) for the replenishment of VMI inventory at the OEM site, due to the 

transport delay between the supplier and the OEM’s final assembly plant. A first order lag can 

be used to model such a delay (Sipahi and Delice 2010), 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐴𝑆(𝑡 − 1) + 𝑏 · (𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐴𝑆(𝑡 − 1)) (7) 

where 𝑏 =
1

(1+
τAS
△T

)
  (𝑇𝑜𝑤𝑖𝑙𝑙 1977) 

ORATEAS is determined by the minimum of the desired Pull ORATEAS from the final 

assembly echelon and the feasible Push order rate (ORATESA) from the supplier echelon:  

ORATEAS(t) = 𝑀𝑖𝑛(𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡), 𝑃𝑢𝑠ℎ  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡))   (8) 

 Equation (7) states that customers’ orders pull the replenishment of AINVAS if there are 

enough finished PC parts in the sub-assembly supplier manufacturing echelon. However, the 

constrained CODP inventory at the supplier site (AINVSA) will lead to the scenario that the 

upstream supplier plant pushes all feasible AINVSA (Push  ORATESA(t)) to meet the OEM’s 

demand as soon as possible. By design, Pull ORATEAS aims to eliminate gaps between targeted 

inventory (AINVAS
*) and AINVAS, as well as target backlog orders (BL*) and BL adjusted by 

𝛕I and 𝛕BL. SH, as a more reliable proxy for current demand, is also utilized for deciding Pull 

ORATEAS and a non-negativity constraint is given to avoid negative orders being placed on 

the supplier: 

      𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝑀𝑎𝑥 (0,  𝐴𝐼𝑁𝑉𝐴𝑆𝑎𝑑𝑗(𝑡) + 𝑆𝐻(𝑡) + 𝐵𝐿𝐴𝐷𝐽(𝑡))            (9) 
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       AINVASadj is the AINVAS error control loop adjusted by 𝛕I: 

𝐴𝐼𝑁𝑉𝐴𝑆𝑎𝑑𝑗(𝑡) =
1

τI

 · (𝐴𝐼𝑁𝑉𝐴𝑆
∗ (𝑡) − 𝐴𝐼𝑁𝑉𝐴𝑆(𝑡)),         𝐴𝐼𝑁𝑉𝐴𝑆

∗ (𝑡) = 𝑆𝐻(𝑡) · τAS   (10) 

and BLADJ is the backlog error control loop adjusted by 𝛕BL: 

𝐵𝐿𝐴𝐷𝐽(𝑡) =
1

τBL

· (𝐵𝐿(𝑡) − 𝐵𝐿(𝑡)
∗ ),  𝐵𝐿(𝑡)

∗ = 𝐶𝑂𝑁𝑆(𝑡) · τDD   (11) 

COMRATESA will replenish the depletion of AINVSA. Due to the long production delay, 

𝛕SA, usually 4-8 weeks, the supplier echelon is characterized by push production. The 

APVIOBPCS archetype, i.e. the general case of order-up-to policy (Wang et al. 2014), can be 

utilized to model such a system. For each replenishment cycle, order rate at PC sub-assembly 

manufacturing site (ORATESA) is determined by:  

𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝑀𝑖𝑛 (𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑖𝑚𝑖𝑡, 𝐴𝑉𝐶𝑂𝑁 (𝑡) + 𝐴𝐼𝑁𝑉𝐴𝑆𝑎𝑑𝑗(𝑡) + 𝐹𝑊𝐼𝑃𝐴𝐷𝐽(𝑡))        (12) 

where a capacity limit (Min) is utilized to represent the manufacturing plant production 

resources constraints. AVCON(t) is a feedforward forecasting policy where the exponential 

smoothing is adopted (Dejonckheere et al. 2003): 

𝐴𝑉𝐶𝑂𝑁 (𝑡) = 𝐴𝑉𝐶𝑂𝑁 (𝑡 − 1) + 𝑎 · (𝐶𝑂𝑁𝑆(𝑡) − 𝐴𝑉𝐶𝑂𝑁 (𝑡 − 1)), 𝑎 =
1

(1+
τA

△T
)

   (13) 

AINVSAadj is the CODP inventory error feedback loop adjusted by τAINV  and targeted 

AINVSA (AINVSA*), where AINVSA* for upstream suppliers are based on actual pull 

ORATEAS and 𝛕SA, although different safety stock policies can be considered: 

𝐴𝐼𝑁𝑉𝑆𝐴𝑎𝑑𝑗(𝑡) =
1

τAINV

· (𝐴𝐼𝑁𝑉𝑆𝐴
∗ (𝑡) − 𝐴𝐼𝑁𝑉𝑆𝐴(𝑡)), 𝐴𝐼𝑁𝑉𝑆𝐴

∗ (𝑡) = τSA · 𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡)   (14) 

AINVSA depends on the accumulation between COMRATESA and ORATEAS: 

𝐴𝐼𝑁𝑉𝑆𝐴(𝑡) = 𝐴𝐼𝑁𝑉𝑆𝐴(𝑡 − 1) + 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) − 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡)    (15) 

Furthermore, the dynamic role of WIP inventory at the PC sub-assembly manufacturing site 

is considered, in line with John et al.’s (1994) standard modelling approach, which a fraction 

of WIP error is corrected based on the difference between target WIP (WIP*) and WIP: 

𝑊𝐼𝑃𝐴𝐷𝐽 =
1

τWIP

· (𝑊𝐼𝑃∗(𝑡) − 𝑊𝐼𝑃(𝑡))    (16) 

WIP* depends on AVCON and estimated 𝛕SA (assume equal to actual 𝛕SA, consistent with 

John et al., 1994), and WIP is an accumulative level between COMRATESA and ORATESA:  

𝑊𝐼𝑃∗(𝑡) = 𝜏𝑆𝐴 · 𝐴𝑉𝐶𝑂𝑁(𝑡) 𝑎𝑛𝑑  𝑊𝐼𝑃(𝑡) =  𝑊𝐼𝑃(𝑡 − 1) + 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡)  (17) 
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A first order delay is used to model the supplier manufacturing time. This can be interpreted 

as a production smoothing element representing how slowly the production units adapts to 

changes in ORATEAS (Wikner 2003): 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡 − 1) + 𝑐 · (𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡 − 1)), 𝑐 =
1

(1+
τSA

△T
)

(18) 

Based on Equations (1) - (18), we developed the PC ATO supply chain model in block 

diagram form, using the continuous time domain, Laplace s, representation as shown in Figure 

2. The rationale for using continuous time domain approach is primarily to examine the stability 

of the system, although neither continuous or discrete approaches are superior for application 

in different scenarios (Warburton and Disney 2007). Also, a continuous time approach has the 

advantage of handling nonlinearities present in the system in an easier way than a discrete time 

approach (Spiegler et al. 2016b). The entire system consists of a form of Variable Inventory 

and Order based Production Control System (VIOBPCS) (Edghill and Towill 1990), with the 

addition of final distribution and BL adjustment loops, for the MTO element and an exact 

APVIOBPCS for the MTS phase. Also, the two Min functions result in the hybrid ATO system 

potentially interchanging between three operational states depending on availability of AINVSA 

and AINVAS: 

1. Supplier manufacturing Push + final assembly (Pull+ Pull) state, named as the Push-

Pull-Pull state. The system performs as the desired ATO production if enough AINVAS 

and AINVSA can be guaranteed, all incoming orders thereby fulfilled by 𝛕DD. 

2. Supplier manufacturing Push + final assembly (Pull+ Push) state, named as the Push-

Pull-Push state. If AINVAS is insufficient for incoming orders’ pull, the final assembly 

plant can only ship SHMAX. The increased backlog and inventory correction signals 

increase the replenishment rate of AINVAS, given the condition that customer orders 

can still pull the AINVSA at the supplier manufacturing site. The averaged delivery LT 

is larger than 𝛕DD, due to the extra PC part transport acquisition time (𝛕AS) needed.  

3. Supplier manufacturing Push + final assembly (Push+ Push) state, termed as the Pure 

Push state. If pull ORATEAS is still constrained by AINVSA, the whole supply chain 

system will switch to the pure push production, i.e. all AINVSA and AINVAS are ‘pushed’ 

out as long as they are produced at the supplier site or arrived at the VMI hub. The 

increase of customer orders cannot be fulfilled for a short time period due to the long 

supplier manufacturing delay. 
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Having developed the model, it is important to verify the logic and correctness of the 

model (Sargent 2013). This verification process is done by simulation on MatlabTM. Although 

we do not show the full verification results, part of the simulation analysis is reported in Table 

2. The verification result shows the hybrid ATO model is logical and correct. 

Verification 

test 

Details  Verification process Verification results 

Family 

member and 

parameters  

Behaviour 

reproduction 

for cognate 

system and 

be 

consistent 

with system 

data and 

description 

1.Regarding the final assembly 

system, we use the similar Intel 

supply chain model (Lin et al. 

2018) to reproduce its dynamic 

behaviour by utilizing the same 

system parameter settings, i.e. τAS 

= τI = τBL = 2τDD = 4 with a unit 

step increase. 

2. For the supplier manufacturing 

system, OUT settings 

(Dejonckheere et al. 2003), i.e. 

τSA=τA/2=8, τAINV= τWIP=1 is 

utilized to check whether the 

dynamic behaviour is what we 

expected. That is, the special case 

of APVIOBPCS archetype.  

1. Dynamic behaviour of the 

final assembly is consistent 

with the Intel hybrid supply 

chain model e.g. maximum 

overshoot/undershoot, rising 

time and setting time.  

2. The dynamic performance of 

the order-up-to policy can be 

reproduced. 

Boundaries 

and 

Structure  

Include all 

important 

factors and 

be 

consistent 

with system 

description 

Related empirical and conceptual 

works including Kapuscinski et al. 

(2004), Katariya et al. (2014) and 

Wikner et al. (2017) are utilized to 

check the consistency regarding 

the system framework and 

important factors of the PC ATO 

supply chain. 

 

1. The ATO system dynamic 

model is consistent with 

previous descriptions 

characterized by combined 

MTO and MTS production, 

VMI strategy, and material and 

information decoupling points. 

2. All important factors are 

included for the system 

dynamics model.  

Extremities Model is 

logical for 

extreme 

values 

1. We check whether the dynamic 

performance of the final assembly 

system is consistent with the 

VIOBPCS archetype (Edghill and 

Towill 1990) if τBL = τDD = ∞  

2. For the supplier manufacturing 

part, we increase the value of τWIP, 

τAINV and τA to extreme conditions 

to see whether the dynamic 

performance of the system is still 

what we expected. 

1. The dynamic behaviour of 

the final assembly system is 

consistent with corresponding 

performance in the original 

VIOBPCS if the backlog and 

shipment loops are removed. 

2. The extreme values of τA, 

τAINV, and τWIP will lead to the 

expected dynamic performance 

in responding to a step demand 

increase. For example, the 

infinite τAINV will remove the 

inventory feedback loop, which 

result the permanent inventory 

drift. 

Table 2. The verification of the hybrid PC supply chain model. 

 

3. Dynamic analysis of the hybrid ATO structure. 
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3.1 Model simplification and delivery LT linearisation   

There are multiple nonlinearities in the hybrid ATO system and depending on the rate 

of change in the output in relation to input, they can be categorized as continuous and 

discontinuous nonlinearities. To analytically explore the dynamic ‘performance triangle’ of the 

ATO supply chains, an explanation of the main characteristics of different types of 

nonlinearities and corresponding simplification / linearisation approaches are reported in Table 

3. 

Type of nonlinearity in 

this study 

Main characteristics Simplification/linearisation methods 

in this study 

Single-valued 

discontinuous 

nonlinearity: 

1) Non-negative order 

constraint in final 

assembly plant, i.e. 

Equation (9).  

2) Capacity constraint in 

the supplier 

manufacturing plant, i.e. 

Equation (12). 

Sharp changes in output 

values or gradients in 

relation to input (e.g. 

piecewise linear function). 

Single-valued nonlinearities 

are also called memory-less, 

which means that the output 

value does not depend on the 

history of the input. 

This study focuses on the multi-valued 

nonlinearities, i.e. shipment and non-

negative CODP inventory constraints, 

since their analyses are crucial for 

understanding the dynamics of ATO 

systems. Moreover, single-valued 

capacity and non-negative order 

constraints have already been explored 

in Wang et al. (2012), Wang and Disney 

(2014) and Spiegler et al. (2016b). 

Multi-valued 

discontinuous 

nonlinearity: 

1) Shipment constraint, 

i.e. Equation (1) 

2) CODP inventory 

constraint, i.e. Equation 

(8). 

In contrast to the single-

value nonlinearity, the 

output value of multi-valued 

discontinuous nonlinearity 

does depend on the history 

of the input. e.g. changes in 

capacity constraint subject to 

the long-term demand 

forecasting (Spiegler et al. 

2016b) 

As highlighted previously, two multi-

valued nonlinearities (i.e. switches) 

govern three operational states (Push-

Pull-Pull, Push-Pull-Push, and Pure 

Push) of the hybrid ATO system 

depending on the feasible AINVAS and 

AINVSA. We analyse them separately by 

assuming all discontinuous 

nonlinearities are not active and 

temporarily operates as a certain state, 

that is, the analysis of three operational 

states 

Continuous 

nonlinearity: 

Delivery LT, as shown 

by Equation (6). 

A feature of the outputs in 

continuous nonlinearity 

functions is that they are 

smooth enough to possess 

convergent expansions at all 

points and therefore can be 

linearised. 

Taylor series expansion with small 

perturbation theory will be utilized to 

linearise the delivery LT variable.  

Table 3. Main characteristics of different type of nonlinearities in the ATO system and corresponding 

simplification/linearisation methods.  
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Figure 2. System dynamics model of the PC hybrid ATO supply chain.
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Noting that the exclusion of capacity and non-negative order constraints is often 

criticized for being incapable of representing real supply chain scenarios, the analytical insights 

derived from the linearised model will be verified by simulation, with the nonlinearities 

retained, in Section 4. We now linearise the continuous nonlinearity, delivery LT, Equation (6), 

as shown in Figure 3, by using the Taylor series expansion technique. By temporarily removing 

all discontinuous nonlinearities, the whole system can be represented by a set of linear 

differential equations that do not need to be linearised. It should be noted that two multi-valued 

nonlinearities govern the three-different operational status of the system (Push or Pull), and 

thereby there are three sets of linear differential equations depending on the specific operational 

state. e.g. the system will become Push-Pull-Pull state if SH*>SHMAX and Pull ORATEAS<Push 

ORATESA. The only nonlinearity now is the delivery LT, so the problem becomes the 

linearisation of a nonlinear, continuous function with one state variable and one input variable 

only. Let the output delivery 𝐿𝑇 = 𝑦, input 𝐵𝐿 = 𝑢 and 𝑆𝐻 = 𝑥, we have 

                                                 𝐿𝑇 =
𝐵𝐿

𝑆𝐻
 →  𝑦 = 𝑔(𝑥, 𝑢)                                                                              (19) 

The delivery LT can be linearised about a nominal operating state space x∗ for a given 

input u∗, by using small perturbation theory with Taylor series expansion. The first order Taylor 

series approximation of the nonlinear state derivatives leads to the following linearised function 

                                   𝑦 − 𝑦∗ =
𝜕𝑔

𝜕𝑥
│

𝑥∗,𝑢∗(𝑥 − 𝑥∗) +
𝜕𝑔

𝜕𝑢
│

𝑥∗,𝑢∗(𝑢 − 𝑢∗)                                    (20) 

The equilibrium or resting points (x∗, u∗) is determined by the final value theorem of a 

step input demand (CONS) with zero initial condition,  
𝜕𝑔

𝜕𝑥
│

𝑥∗,𝑢∗  (final value of SH in 

responding a step CONS) and 
𝜕𝑔

𝜕𝑢
│

𝑥∗,𝑢∗ (final value of BL in responding to a step CONS) can 

be found through the partial derivatives of the output LT equations: 

                                   
𝜕𝑔

𝜕𝑥
│

𝑥∗,𝑢∗ = −
𝜏𝐷𝐷

𝐶𝑂𝑁𝑆
 ,

𝜕𝑔

𝜕𝑢
│

𝑥∗,𝑢∗ =
1

𝐶𝑂𝑁𝑆
 ,       𝑦∗ = 𝜏𝐷𝐷                       (21) 

Thus, delivery LT can be linearised by 

    LT − 𝜏𝐷𝐷 = (−
𝜏𝐷𝐷 · 𝐶𝑂𝑁𝑆

𝐶𝑂𝑁𝑆2
(𝑆𝐻 − 𝐶𝑂𝑁𝑆)) +

1

𝐶𝑂𝑁𝑆
(𝐵𝐿 − 𝜏𝐷𝐷 · 𝐶𝑂𝑁𝑆) =

𝐵𝐿 − 𝜏𝐷𝐷 · 𝑆𝐻

𝐶𝑂𝑁𝑆
   (22) 

So 

                                                                 LT =
𝐵𝐿 − 𝜏𝐷𝐷 · 𝑆𝐻

𝐶𝑂𝑁𝑆
+ 𝜏𝐷𝐷                                                      (23) 

Where SH depends on the minimum value of SH* and SHMAX, so if SH* can always be 

satisfied, i.e. 𝑆𝐻∗ = 𝑆𝐻, then we have  

                                               𝐵𝐿 = 𝑆𝐻∗ · 𝜏𝐷𝐷 = 𝑆𝐻 · 𝜏𝐷𝐷                                                             (24) 
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and as a result, delivery LT will become constant: 

                                                        LT =
𝐵𝐿 − 𝜏𝐷𝐷 · 𝑆𝐻

𝐶𝑂𝑁𝑆
+ 𝜏𝐷𝐷 = 𝜏𝐷𝐷                                             (25) 

From the customers’ perspective, this means that their customized PC products can be 

received by the ‘promised’ 𝜏𝐷𝐷 i.e. 100% customer service. However, if there is insufficient 

AINVAS to meet SH* i.e. SH*<SHMAX, then: 

                                                                    𝑆𝐻 =
𝐴𝐼𝑁𝑉𝐴𝑆

𝜏𝐷𝐷
                                                                           (26) 

and therefore, LT is time varying so that  

                         LT =
𝐵𝐿 − 𝜏𝐷𝐷 ·

𝐴𝐼𝑁𝑉𝐴𝑆
𝜏𝐷𝐷

𝐶𝑂𝑁𝑆
+ 𝜏𝐷𝐷 =

𝐵𝐿 − 𝐴𝐼𝑁𝑉𝐴𝑆

𝐶𝑂𝑁𝑆
+ 𝜏𝐷𝐷                                         (27) 

As a result, if Equation (26) holds, LT can be approximated by the summation of 𝜏𝐷𝐷 

and the difference between BL and AINVAS. Since 𝐵𝐿 − 𝐴𝐼𝑁𝑉𝐴𝑆 > 0 when SH*<SHMAX, the 

averaged delivery LT now is larger than 𝜏𝐷𝐷 and this means the time for end customers to wait 

is longer than the promised 𝜏𝐷𝐷 and thus lead to a decrease in customer service. Moreover, 

AINVAS will be further determined by the CODP inventory constraint between downstream 

final assembly and the supplier, i.e. the minimum value of Pull ORATEAS and Push ORATESA.  

Figures 3a and 3b reported the numerical simulation comparison between original 

nonlinear LT and linearised LT response in responding to a sinusoidal input with the same 

Mean (1) but different frequency (ω) and amplitude (A). Note that we deliberately cross-check 

the different operational states based on the discontinuous nonlinearity switch between Pull 

ORATEAS and Push ORATESA, that is, compare the original and linearised lead-time response 

for Push-Pull-Push and pure Push production scenarios. Moreover, two single-valued 

nonlinearities, capacity and non-negative constraints, are kept in the simulation verification to 

ensure the system stability, as we will show in the next section, the linear system with Push-

Pull-Push state is fundamentally unstable.  

Overall, based on Figure 3, the linearised delivery LT response is reasonably accurate 

by comparing the blue dash line (the original LT response) and the orange solid line (the 

linearised LT response). Furthermore, comparing Figures 3a and 3b, the linearisation accuracy 

is increased from Push-Pull-Push to pure Push state and the linearised LT response tends to be 

more accurate with an increase in demand frequency. 
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Figure 3a. Comparison between linearised and original LT response for Pull ORATEAS< Push ORATES

 

Figure 3b. Comparison between linearised and original LT response for Pull ORATEAS> Push ORATESA (Different scales in the y-axis). 
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3.2 The analysis of multi-valued nonlinearities  

As summarized in Section 2.2, the PC ATO supply chain can operate between three 

different states based on two multi-valued nonlinearities, i.e. Equation (1) and (8), which is 

determined by the availability of AINVAS and AINVSA. In the nonlinear environment, different 

operational states may result during the dynamic response. To understand the impact of such 

multi-valued nonlinearities on the dynamic performance, that is, the ‘performance triangle’, we 

analyse the three operational states, Push-Pull-Pull, Push-Pull-Push and pure Push separately 

by assuming all discontinuous nonlinearities inactive and the whole system temporarily 

operates in a particular production state.  

As a result, for each state the system is completely linear and the corresponding transfer 

function techniques can be applied. We start by analysing the Characteristics Equations (CE) 

of the transfer functions for the three operational states. The CE, defined by equating the 

denominator of overall transfer function to zero, can be used to find poles (roots), which give 

an initial understanding of the underlying dynamic mechanism of the hybrid ATO system 

including system stability and unforced system dynamics property (i.e. natural frequency and 

damping ratio). Also, the location of roots is a useful indicator for designing system transfer 

functions to yield ‘good’ system dynamics performance.  

 

Push-Pull-Pull operational state. 

By design, the entire supply chain operates as the Push-Pull-Pull state in which all 

incoming end customer order can be satisfied by 𝜏DD: 

𝑆𝐻(𝑡) = 𝑆𝐻∗(𝑡) < 𝑆𝐻𝑀𝐴𝑋(𝑡)  

𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) < 𝑃𝑢𝑠ℎ 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡)    (28) 

By maintaining such a state and removing the two Min functions, the corresponding 

system state in block diagram form can be illustrated as in Figure 4. We derive the CEs for 

both final assembly and supplier sub-assembly manufacturing echelons, although the full 

transfer functions can be found in Appendix 1:  

                                𝐶𝐸𝑓𝑖𝑛𝑎𝑙 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦:   (1 + τ𝑖𝑠 + 𝜏𝑖𝜏AS𝑠2)(𝜏BL + 𝜏BL𝜏DD𝑠)                               (29) 

𝐶𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 :  (1 + τ𝑖𝑠 + 𝜏𝑖𝜏AS𝑠2)(𝜏BL + 𝜏BL𝜏DD𝑠)(1 + 𝜏𝐴𝑠)(𝜏WIP + (𝜏AINV𝜏SA +

𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠2)                                                                                                               (30)  

We start the analysis via the Initial Value Theorem (IVT) and Final Value Theorem 

(FVT). The IVT is a useful tool to mathematically crosscheck the correctness of a transfer 

function and guide the appropriate initial conditions required for a simulation. The FVT is 

useful to understand the end steady state value of the dynamic response of a transfer function 
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and can also help verify any simulation. Since we are interested in the performance triangle, 

that is, the dynamic performance of the final assembly variable, delivery LT and supplier 

manufacturing’s variables, ORATESA, AINVSA (the interface between push and pull loops, 

although AINVAS is also part of CODP inventory), the initial and final values of AINVAS, 

AINVSA, and ORATESA in responding to a unit step input are obtained. Note that there is no 

dynamic behaviour for LT for the Push-Pull-Pull state as it is a constant value (𝜏DD). 

  𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝐼𝑁𝑉𝑆𝐴

𝐶𝑂𝑁𝑆
= 0                   𝑙𝑖𝑚

𝑠→0
𝑠

𝐴𝐼𝑁𝑉𝑆𝐴

𝐶𝑂𝑁𝑆
= 𝜏SA     

                                       𝑙𝑖𝑚
𝑠→∞

𝑠
𝑂𝑅𝐴𝑇𝐸𝑆𝐴

𝐶𝑂𝑁𝑆
= 0                 𝑙𝑖𝑚

𝑠→0
𝑠

𝑂𝑅𝐴𝑇𝐸𝑆𝐴

𝐶𝑂𝑁𝑆
= 1                               (31)  
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Figure 4. The Push-Pull-Pull state in the block diagram form.
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 As expected, the initial values of AINVSA and ORATESA are zero, the same as obtained 

by John et al. (1994). The final value for the ORATESA, as expected, equals to the unit demand. 

The final value of the AINVSA however, is defined by 𝜏SA. By inspecting Equation (29) and 

(30), a third-order polynomial describes the dynamic nature of the final assembly system, while 

a sixth order polynomial characterises the dynamic behaviour of the supplier’s manufacturing 

system. Also, there is a third-order polynomial, (1 + τ𝑖𝑠 + 𝜏𝑖𝜏AS𝑠2)(𝜏BL + 𝜏BL𝜏DD𝑠), in both 

CEs, which illustrates that, in the Push-Pull-Pull state, the dynamic performance of the supplier 

sub-assembly system can be partially manipulated by the final assembly control policies, while 

the dynamic property of the final assembly system is not influenced by the supplier 

manufacturing system.  

By further inspecting Equation (30), we obtain its six roots as follow: 

𝑅1&2 = −
1

2𝜏𝐴𝑆
±

√𝜏𝑖
2 − 4𝜏𝑖𝜏AS

2𝜏𝑖𝜏AS
, 𝑅3 = −

1

𝜏𝐴
, 𝑅4 = −

1

𝜏𝐷𝐷
 

𝑅5&6 = −
1

2
(

1

𝜏𝑆𝐴
+

1

𝜏𝑊𝐼𝑃
) ±

√−4𝜏AINV𝜏SA𝜏WIP
2 + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)2

2𝜏AINV𝜏SA𝜏WIP
    (32) 

- 

From Equation (32), we can conclude that the hybrid Push-Pull-Pull state is permitted 

to be stable for possible value of τA, τAINV, τWIP and τI , given ,  𝜏SA  and  𝜏𝐴𝑆  (the system 

physical delays) are positive. However, the system’s response will be continuously oscillatory 

if 𝜏𝑆𝐴 = −𝜏𝑊𝐼𝑃 , that is, the 𝑅5&6  become purely imaginary with no real part. Also, three 

feedback inventory loops, AINVAS, AINVSA and WIP adjustment, may generate oscillations of 

the Push-Pull-Pull state if the square root part of 𝑅1&2 and 𝑅5&6 become negative, i.e. 𝜏𝐼
2 −

4𝜏𝐼𝜏𝐴𝑆 < 0 and −4𝜏AINV𝜏WIP
2 𝜏SA + (𝜏AINV𝜏WIP + 𝜏AINV𝜏SA)2 < 0. The corresponding CODP 

inventory-based control policies, 𝜏𝐼,  𝜏AINV and 𝜏WIP, should be carefully adjusted to avoid the 

possible oscillatory dynamic response.  

Furthermore, the inventory proportional control parameters, 𝜏AINV and 𝜏WIP, and their 

associated upstream inventory feedback loops, may dominate the dynamic behaviour of the 

entire Push-Pull-Pull state regarding oscillatory behaviour and recovery speed. This is due to 

the fact that the real part of 𝑅5&6, −
1

2
(

1

𝜏𝑆𝐴
+

1

𝜏𝑊𝐼𝑃
), is smaller than the real part of 𝑅1&2, −

1

2𝜏𝐴𝑆
, 

given the sub-assembly manufacturing delay, 𝜏SA , and associated 𝜏WIP  are longer than 

downstream transport acquisition delay  𝜏𝐴𝑆. 
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The Push-Pull-Push operational state. 

If AINVAS continuously depletes and is insufficient for satisfying SH*, the company 

can only assemble and ship what they have on hand, SMAX, to customers. As a result, the final 

assembly and distribution is switched from Pull to Push and if CODP inventory at the supplier 

site (AINVSA) still can be pulled by replenishment of VMI, the system now operates as Push-

Pull-Push state, that is: 

𝑆𝐻(𝑡) = 𝑆𝐻𝑀𝐴𝑋(𝑡) < 𝑆𝐻∗(𝑡)    (33) 

 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) < 𝑃𝑢𝑠ℎ 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡)  (34) 

Similarly, we can derive the corresponding block diagram to represent such operational 

state, as illustrated in Figure 5. The only difference between Figure 4 and 5 is that SH now 

equals to SHMAX due to the AINVAS constraint. We obtain the CEs for both final assembly and 

sub-assembly manufacturing echelons, although the entire transfer function can be found in 

Appendix 1 in the supplementary file: 

 𝐶𝐸𝑓𝑖𝑛𝑎𝑙 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦:     𝑠3𝜏𝑖𝜏AS𝜏BL𝜏DD + 𝑠2(𝜏𝑖𝜏AS𝜏BL + 𝜏𝑖𝜏BL𝜏DD) − 𝑠(𝜏AS𝜏BL + 𝜏BL𝜏DD) + 𝜏𝑖    (35) 

𝐶𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 : 
(1 + 𝑠𝜏𝐴) (𝜏𝑖 + 𝑠𝜏BL (𝜏DD − 𝜏AS + 𝑠𝜏𝑖(𝜏DD + 𝜏AS(1 + 𝑠𝜏DD))))

(𝜏WIP + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠2)  
   (36) 

 

Equations (35) and (36) illustrate that the upstream part of the Push-Pull-Push state, 

(𝜏WIP + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠2), remain the same as the Push-Pull-Pull 

state, due to the assumption that CODP inventory at the sub-assembly supplier site can still be 

pulled by customer orders. However, the structure of downstream final assembly and 

distribution echelon changes due to the constraint of AINVAS. Also, the delivery LT is no 

longer a constant level and its dynamic property can be characterised by a third order 

polynomial in non-factorised form including BL and AINVAS loops, that is, Equation (35). 

Furthermore, the non-factorised third order polynomial indicates that the independent 

feedforward BL→SH*→BL loop in the desired Push-Pull-Pull state now has been transformed 

into part of feedback loop, due to the SHMAX constraint caused by insufficient AINVAS, i.e. BL

→ORATEAS→AINVAS→BL. Thereby AINVAS becomes work-in-process inventory and will 

be pushed out for final assembly as long as they are arrived in the VMI inventory hub. 



 

 

26 

 

Figure 5. The Push-Pull-Push operational state in the block diagram form. 
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To accesses the stability condition of the Push-Pull-Push state, that is, the stability of 

the non-factorised third-order polynomial, the Routh-Hurwitz stability criterion is utilized. 

Such method has the advantage of easily and quickly determining the system stability without 

solving the root of the equations (Disney and Towill 2002). Details of the stability analysis can 

be found in Appendix 2 in the supplementary file. Based on the Routh-Hurwitz stability 

analysis, the Push-Pull-Push state characterized by the third order polynomial is unstable. This 

means the switch from desired Push-Pull-Pull to Push-Pull-Push, resulted by stock out of 

AINVAS, not only decreases customer service level due to the increase of delivery LT, but also 

yields unstable dynamic response (exponentially growing) of CODP inventory and ORATESA 

and thus such a state cannot be maintained for a long period of time.  

 

The pure Push operational state. 

If CODP inventory at the sub-assembly supplier site, AINVSA, still constrains the Pull 

ORATEAS required by VMI hub replenishment, the system state will switch to a pure Push 

system with its block diagram representation given as in Figure 6: 

𝑆𝐻(𝑡) = 𝑆𝐻𝑀𝐴𝑋(𝑡) < 𝑆𝐻∗(𝑡);  𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝑃𝑢𝑠ℎ 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) < 𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡)  (37)  

We derived the corresponding CEs as: 

𝐶𝐸𝑓𝑖𝑛𝑎𝑙 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 = 𝐶𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔            

(1 + 𝑠𝜏𝐴) (

(𝜏𝑖𝜏SA + 𝑠𝜏BL((1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)𝜏𝑖 − (𝜏AS − 𝜏DD + 𝜏𝑖)𝜏SA))

𝜏WIP + 𝑠(1 + 𝑠)𝜏AINV(1 + 𝑠𝜏AS)𝜏BL

(1 + 𝑠𝜏DD)𝜏𝑖(𝜏WIP + 𝜏SA(1 + 𝑠𝜏WIP))

) (38) 

 

Comparing with the Push-Pull-Push and Push-Pull-Pull state, the pure Push state is 

characterized by a sixth-order polynomial including a first order forecasting loop, and a new 

fifth-order polynomial in the non-factorised form. This suggests that the final assembly 

structure independent of the sub-assembly supplier site in the former two states, i.e. BL→

ORATEAS→AINVAS→BL, now is incorporated into the supplier’s AINVSA→ORATESA→

AINVSA feedback loop, i.e. a fifth order production push loop as in Figure 6. The reduction of 

independent feedback loops thus may reduce the oscillatory behaviour and contribute to the 

corresponding decrease of bullwhip and inventory variance.  
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Figure 6. The pure Push state in the block diagram. 
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The Routh-Hurwitz stability criterion is utilized to examine the stability of Pure Push 

operational process as given in Appendix 2 in supplementary file. We conclude that depending 

on the physical delay, the system is partially stable for certain values of control parameters. 

Specifically, the system can be stable for long time adjustment of two inventory stocks (𝜏AINV 

and 𝜏𝑖), although 𝜏AINV have a more profound impact on the system stability condition. We 

obtained the initial value and final value of performance triangle related variables based on the 

transfer functions of such state, although the full transfer functions can be seen in Appendix 1 

in the supplementary file: 

                                 𝑙𝑖𝑚
𝑠→∞

𝑠
𝐿𝑇

𝐶𝑂𝑁𝑆
= 0              𝑙𝑖𝑚

𝑠→0
𝑠

𝐿𝑇

𝐶𝑂𝑁𝑆
= 𝜏𝐴 + 𝜏DD + 𝜏BL(

𝜏DD − 𝜏AS

𝜏𝑖
+

1

𝜏SA
− 1)     

     𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝐼𝑁𝑉𝑆𝐴

𝐶𝑂𝑁𝑆
= 0                   𝑙𝑖𝑚

𝑠→0
𝑠

𝐴𝐼𝑁𝑉𝑆𝐴

𝐶𝑂𝑁𝑆
= 1     

                                          𝑙𝑖𝑚
𝑠→∞

𝑠
𝑂𝑅𝐴𝑇𝐸𝑆𝐴

𝐶𝑂𝑁𝑆
= 0                 𝑙𝑖𝑚

𝑠→0
𝑠

𝑂𝑅𝐴𝑇𝐸𝑆𝐴

𝐶𝑂𝑁𝑆
= 1                                 (39)   

The final value of AINVSA is 1, due to the stock-out condition that AINVSA becomes 

WIP inventory, which, similar to the status of AINVAS in hybrid Push-Pull-Push state, all 

finished PC parts at the sub-assembly supplier are batched and pushed out as long as they are 

produced. As a result, the average of AINVSA will be equal to the average of CONS. The final 

value of delivery LT, as expected, is larger than the desired constant 𝜏DD and depends on the 

combined control parameters for the final assembly and sub-assembly systems. This is due to 

the increased average of BL driven by insufficient AINVAS and AINVSA as well as transport 

and manufacturing delays (𝜏AS and 𝜏SA), if the system switches to the pure Push state.  

 

Inter-state comparisons. 

Table 4 summarizes the analytical findings for the three operational states. Depending 

on the availability of AINVAS and AINVSA, the ATO system may switch between the different 

states. By design, the system operates in the desired Push-Pull-Pull state in which two inventory 

stocks are pulled by end customer orders. Thus, all customized orders can be fulfilled by the 

quoted 𝜏DD. Such a system state is stable for all positive values of control parameters with two 

feedback inventory control loops that characterize the oscillatory behaviour, with the control 

parameter in the supplier manufacturing system, i.e. 𝜏AINV , being key in determining the 

dynamic behaviour and recovery speed. 
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Operational 

state 

Structure Initial insights for the 

dynamic properties 

Stability 

Push-Pull-

Pull 

Final assembly  Includes first order 

BL and second order 

AINVAS adjustment 

loops 

1. Delivery LT is a 

constant level, 𝜏𝐷𝐷 . 
2. the state is 

characterised by a two-

degree-of-freedom 

system with 

independent feedback 

adjustment loop at final 

assembly and the sub-

assembly supplier sites, 

which may lead to 

complex dynamic 

response, such as two-

resonance peak 

frequencies 

The system is 

stable for all 

positive 

values of 

control 

parameters 
Sub-assembly 
supplier 

manufacturing  

Includes first order 

forecasting and 

second order 

AINVSA adjustment 

loops 

Push-Pull-

Push 

Final assembly  Characterized by a 

third order, non-

factorized loop, due 

to the incorporation 

of BL adjustment 

loop into feedback 

AINVAS loop (i.e. 

stock out of AINVAS) 

Not applicable due to 

the state is unstable 

The system is 

inherently 

unstable  

Sub-assembly 
supplier 

manufacturing 

Same structure as the 

Push-Pull-Pull state 

Pure Push The whole system is characterised by a 

first order forecasting loop and a fifth 

order, non-factorized loop, due to the 

incorporation of final assembly 

structure into the sub-assembly 
supplier loops 

1. The average delivery 

LT larger than, 𝜏𝐷𝐷 and 

its dynamic 

performance due to 

physical delay and 

system control policies 

at both final assembly 

(VMI) and the sub-

assembly supplier site.  

2. AINVSA becomes 

WIP inventory (all 

AINVSA are pushed out 

as long as they are 

produced at the sup-

assembly site) and the 

average level equal to 

the mean of demand.  

3. The variance of 

ORATESA and AINVSA 

may be reduced due to 

the incorporation of 

final assembly 

structure. 

The system is 

conditionally 

stable for 

positive 

values of 

control 

parameters 

Table 4. Summary of three operational states based on two multi-valued nonlinearities. 
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As the level of AINVAS falls it will eventually reach a level such that the OEM can no 

longer pull the required PC parts from AINVAS. Instead, all available AINVAS at the VMI hub 

is pushed into the final assembly plant at the maximum shipment rate, SHMAX. This leads to 

the switch from desired Push-Pull-Pull state to Push-Pull-Push state under the condition that 

AIVNSA are still sufficient to be pulled by the VMI hub replenishment. As a result, the delivery 

LT is increased driven by a new third-order feedback loop (one real root and two complex 

roots), which depends on all control and physical parameters in the final assembly echelon and 

leads to instability. Such an operational state is fundamentally not stable and cannot be 

maintained due to permanent AINVAS discrepancies. 

If AINVSA still constrains the pull ORATEAS, the whole system switches to the pure 

Push production state. Two inventory stock points, AINVAS and AINVSA, become WIP 

inventory to be pushed out as soon as possible. In other words, there is no ‘finished stock’ at 

the OEM (VMI inventory hub) and upstream sub-assembly supplier sites.  All produced PC 

parts in AINVSA at the subassembly echelon are immediately batched and pushed out for 

shipment to the OEM site, and all PC parts arriving into AINVAS at the VMI hub are 

immediately pushed out for final assembly and the subsequently final delivery to meet the 

incoming customised orders as soon as possible. 

As a result, LT is further increased due to the longer upstream sub-assembly supplier 

manufacturing delay. The whole system is characterized as a first order forecasting loop and a 

fifth-order push loop. The new non-factorized fifth-order loops may increase the instability but 

reduce the complex dynamic property contributed by independent feedback loops in the Push-

Pull-Pull state. The pure Push system is conditionally stable subject to the choice of control 

parameter and actual physical lead time ratio, with 𝜏AINV being the key parameter on system 

stability.   

 

4. Simulation analysis 

To further analyse the dynamic performance of ORATESA, AINVSA and delivery LT as 

the ‘performance triangle’ and to consider the hybrid ATO system switch from one state to 

another, Bode plots and system dynamics simulation are utilized. A Bode Plot is a useful tool 

to show the gain response of a given linear, time-invariant system for different demand 

frequencies (Towill et al.,2003; Towill et al. 2007), which we undertake for bullwhip, inventory 

variance and LT variance in the ATO context.  
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As shown in Figure 7, we present the Bode plot (Left) and the corresponding simulation 

results (Right) for the dynamic response of ‘performance triangle’, i.e. ORATESA, AINVSA and 

linearised LT under two stable operational states, the Push-Pull-Pull and pure Push states. For 

both Bode plot and simulation, the control parameters selected are as per the recommended 

settings of APVIOBPCS (Wang et al. 2014) and VIOBPCS (Edghill and Towill 1990) 

archetypes with varying values of 𝜏AINV, which allows us to deliberately maintain two different 

states. Regarding the simulation, we select sinusoidal demand input, i.e. ω=0.12rad/week, 

mean=1 and amplitude=0.2, to represent the cyclical demand pattern evident in the real-world 

PC industry (Kapuscinski et al. 2004; Katariya et al. 2014). Note that there is no bode plot of 

delivery LT for the Push-Pull-Pull state due to the constant value of LT (𝜏DD), i.e. there is no 

dynamic oscillations (variance) of delivery LT but a constant value. 

Overall, the simulation results support the analytical insights derived by the transfer 

function analysis. As the shift from the Push-Pull-Pull to pure Push state is due to stock-outs 

in AINVSA and AINVAS, the speed of ORATESA response slows (the decrease of the cross-over 

frequency) and the unwanted demand amplification (bullwhip) is significantly decreased for a 

range of frequencies. This behaviour is due to a change from demand pull to production push, 

that is, the shift from a two-degrees-of-freedom state with two independent feedback loops to 

a one-degree-of-freedom Push state. Although the corresponding bullwhip related cost will be 

decreased, e.g. ramping up / down machines, hiring and firing staff, the mean and variance of 

delivery LT is significantly increased as the system switches from the desired hybrid Push-

Pull-Pull state to the pure Push state. For the desired Push-Pull-Pull state, the delivery LT is a 

constant value, i.e. the amplification ratio is zero (infinitely small) for all demand frequencies, 

so that consistent customer service levels can be guaranteed even for highly volatile demand 

patterns. However, if the desirable state cannot be maintained, the peak magnification and 

bandwidth of LT response are dramatically increased for low frequencies, which means both 

the variance and mean of LT are significantly increased due to the influence of CODP inventory 

shortage and long sub-assemble manufacturing and transport delays. Hence, high customer 

service cannot be maintained with the increase of demand fulfilment uncertainty.  
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Figure 7. Bode plot of ORATESA, AINVSA and linearised LT for different operational state 

(Demand frequency ω=0.12rad/week, 𝜏SA=2𝜏AS = 2𝜏I = 8𝜏DD = 8, 𝜏WIP = 16  𝜏AINV = 8 for the Push-Pull-Pull and 𝜏AINV = 40 for the Pure Push states)
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 The frequency response performance of AINVSA, as expected, is significantly improved 

from the desired Push-Pull-Pull to the pure Push state. This is because AINVSA becomes WIP 

inventory with the change of system structure, i.e. AINVSA will be pushed out immediately as 

long as they are produced in the supplier plant. Note that AINVSA exhibits significant 

oscillatory behaviour for the desired hybrid state for demand with low frequencies (e.g. 

between 0.01 rad/week - 0.1 rad/week), suggesting CODP inventory utilized as the buffer will 

unavoidably experience high variance for maintaining ‘Leagile’ balance (Naylor et al. 1999). 

Also, although information sharing is often regarded as a means to radically reducing / 

eliminating the bullwhip effect (Yang et al. 2011; Hosoda and Disney 2012), our simulation 

results demonstrate that for both operational states the bullwhip cannot be totally avoided at 

the low / medium demand frequency range.” 

 

5. Conclusion.  

In this paper, we study the delivery lead-time dynamics within the context of PC ATO 

system. We summarize the main results and the corresponding managerial implications in 

Table 6. Also, we link the ATO analysis results to the general impact of supply chain 

decoupling point (Gosling et al. 2017; Wikner et al., 2017) on ‘performance triangle’ shown in 

Figure 8.  

The analysis indicates that the hybrid Push-Pull-Pull state can only be maintained if there 

are sufficient AINVAS and AINVSA. In such circumstance, delivery LT is a constant level in 

which all customer orders can be fulfilled with the scheduled time.  

The system will fail to operate in the desired state with a decrease of the CODP inventory 

at final assembly (VMI hub) and the sub-assembly supplier manufacturing site, leading to the 

shift from Push-Pull-Pull to pure Push state. Although the CODP inventory variance and 

bullwhip (the corresponding capacity adjustment) will be significantly decreased, the mean and 

variance of the delivery LT, however, are dramatically increased due to the stock out issues as 

well as long physical delays (𝜏SA and 𝜏AS).  
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 Findings/Outcomes Managerial implications 

Model 

development 

 

We developed a nonlinear system 

dynamics model of the PC ATO supply 

chains, which capture main characteristics 

of the pull and push parts separated by a 

CODP point 

 

The hybrid ATO model is helpful for 

pratitioners to design their hybrid 

supply chain system from the supply 

chain dynamics perspective. The 

model also could be a base 

framework for possible further 

modification, generlization and 

analysis in PC or other related 

industries.  

Delivery LT 

linearisation  

Based on Taylor series expansion with 

small perturbation theory, delivery LT can 

be linearised by following equations: 

𝐿𝑇 = 𝜏𝐷𝐷               𝑖𝑓  𝑆𝐻𝑀𝐴𝑋 > 𝑆𝐻∗ 

 𝐿𝑇 = 𝜏𝐷𝐷 + 𝐵𝐿 − 𝐴𝐼𝑁𝑉𝐴𝑆  𝑖𝑓  𝑆𝐻𝑀𝐴𝑋 <
𝑆𝐻∗  

 

Managers may simply calculate the 

estimated delivery LT by considering 

difference between current backlog 

and raw materials inventory level at 

final assembly plant (VMI hub), 

under the condition that desired 

shipment rate cannot be fully 

satisfied. 

Three 

measures of 

performance 

triangle 

As the switch from true hybrid Push-Pull-

Pull to pure Push state, the mean and 

variance of delivery LT can be significantly 

increased, although ORATESA and AINVSA 

variance can be mitigated due to 

independent inventory feedback loops at 

both final assembly and supplier 

manufacturing sites has been integrated as a 

fifth-order production push feedback loop.  

Due to nonlinear switch between 

different operational process, 

maintaining the ‘true’ hybrid ATO 

operational state is always desirable 

to ensure customer service level, that 

is, the reliable LT. 

 

 

τA𝐼𝑁𝑉  significantly influence the dynamic 

behaviour of three measures of performance 

triangle regarding system oscillatory 

behaviour s and recovery speed. 

 

Managers need to be aware that 

CODP inventory control policy 

should be fine-tuned for dynamic 

performance balance between 

delivery LT, capacity adjustment and 

CODP inventory.  

Two peak frequencies can be observed in 

the bode plot diagram of ORATESA due to 

the effect of two natural frequencies driven 

by two independent feedback loops (two-

degree-of-freedom system). 

It is important for managers to 

consider the adoption of collaborative 

control policy design with their 

supply chain partners to reduce the 

influence of supply chain dynamics. 

Table 6. Summary of findings and managerial implications. 

 

This is an undesirable condition because of the significant decrease of customer service. In 

PC supply chains, the upstream suppliers, such as semiconductor manufacturers, may slowly 

adjust inventory error, i.e. long inventory adjustment time, to maintain the ‘Lean’ production 

and avoid expensive capacity fluctuation. On the other hand, from the entire ATO supply chain 

perspective, this may cause an operational shift from desired hybrid structure to a pure Push 

state driven by frequent stockouts, which significantly influence the downstream OEMs’ 

customer service, i.e. the long and unreliable delivery LT. Such findings also support the 



 

 

37 

importance of adopting a collaborative design and planning strategy between suppliers and 

OEMs to reduce operational cost driven by poor supply chain dynamics.  

Overall, this study provides the theoretical foundation of modelling and assessing 

dynamic performance of the ATO system within the context of the PC sector. In particular, we 

contribute to the system dynamics analysis with respect to the lead-time dynamics and the 

corresponding ‘performance triangle’ by means of adequate tools of classical control theory. 

We demonstrate how competing performance trade-offs that need to be considered with respect 

to the performance triangle and how it relates the general supply chain decoupling point and 

upstream / downstream activities. Such a three-way trade-off may be summarised as shown in 

Figure 8. 

 

Figure 8. Linking the ATO system dynamics analysis to ‘performance triangle’ trade-off considerations. 

 

Previous control-theoretic research, limited to linear model representations (e.g. 

Dejonckheere et al., 2003), have only ever considered the trade-off between inventory, such as 

the CODP, and capacity in satisfying customer service requiremenets. Such trade-off would 

allow the establishment of the minimum reasonable inventory (MRI) (Grünwald and Fortuin, 

1992), following a ‘level scheduling’  strategy (i.e. minimising bullwhip) or, if following a 

‘chase’ strategy, minimising inventory variance, hence the need to determine what we call the 

minimum reasonable capacity (MRC). The final design, for instance, can be based on the cost 

assignment for capacity and inventory related factors, such as machine/labour adjustment costs 
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and inventory holding costs.  We can also see from Figure 8 our contribution to the field by the 

inclusion of a third metric, namely a maximum reasonable lead-time (MRL) i.e. the maximum 

time a customer is willing to wait for a delivery. Although the performance of MRI and MRC 

may be improved under a Pure Push state, lead-time now becomes the ‘buffer’ to absorb 

fluctuating end customer demand and thereby the MRL can no longer be achieved. 

The research, however, is limited to the analysis of non-negative inventory constraints 

without considering capacity limits. Some analytical methods, such as describing functions 

(Wang et al.2015; Spiegler et al. 2016b), for instance, can be considered for future work. This 

research can also be extended to the analysis of the impact of demand characteristics (e.g. 

amplitude and mean of sinusoidal demand) on the occurrence of nonlinearities in the PC ATO 

system. Furthermore, due to the importance of maintaining hybrid ATO structure to ensure 

customer service level, further control policy trade-off design between capacity and CODP 

inventory should be considered to minimize the corresponding operational cost within the 

context of the PC sector.  
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