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Abstract— In this paper, we propose a distributed solution for
3D human pose estimation using a RGBD camera network. The
key feature of our method is a dynamic hybrid consensus filter
(DHCF) is introduced to fuse the multiple view information
of cameras. In contrast to the centralized fusion solution,
the DHCF algorithm can be used in a distributed network,
which requires no central information fusion center. Therefore,
the DHCF based fusion algorithm can benefit from many
advantages of distributed network. We also show that the
proposed fusion algorithm can handle the occlusion problems
effectively, and achieve higher action recognition rate compared
to the ones using only single view information.

Index Terms— Distributed information fusion, RGBD camera
network, consensus filtering, action recognition, human pose
estimation.

I. INTRODUCTION

DUE to the widespread of the low-cost RGBD sensors,
the real time 3D human pose estimation is available

on the commercial products, such as Microsoft Xbox using
Kinect for human computer interaction (HCI) games [1],
[2]. More potential applications have been studied in many
research fields. For instance, Morato et al. developed a N-
Kinect system to build an explicit model of the human body,
which is used to detect an imminent collision between the
robot and the human [3]. Pathirana et al. proposed a Kinect
based bio-kinematic measurement system for rehabilitation
and physiotherapy applications, i.e., monitoring of home-
based prescribed exercise routines which can significantly
reduce the need for patients to travel to regional centers [4].
Geiselhart et al. estimated the workers movements and inter-
action with digital object models using multi-depth camera
system [5], such that a low cost camera setup to facilitate
interaction with virtual environments for planning experts is
possible.
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(a) Topology of the RGBD camera network

(b) Real experimental scenario

Fig. 1: The experimental setup uses four Kinect V2 cameras,
which have a loop topology and construct a distributed sensor
network.

To accurately estimate the human pose is still a chal-
lenge problem due to the occlusion problem [6]. Many
researchers propose to use multiple 3D cameras to handle
occlusion problem by fusing multiple view information. The
key problem is how to fuse. Current works mostly employ
a centralized network topology, and use a central computer
node to fuse information from all sensor nodes. The fusion
algorithm can be a simple weighted summation method using
skeleton joint tracking status [7], [8], [9], or additional bone
length constrain conditions [10]. In order to use the temporal
information and get smooth trajectory of skeleton joints, a



Kalman filter or particle filter can be employed [11], [12],
[13].

Compared to the centralized network topology, the dis-
tributed network topology is more desirable in many appli-
cation scenarios due to its scalability to a large number of
sensors, ease of installation and high tolerance to node failure
[14]. Furthermore, each camera can process information and
make decision locally, such that the camera nodes become
distributed smart agents, which can achieve consensus by
exchanging information with neighbor nodes after a number
of iterations [15]. Song et al. propose a distributed 2D camera
network to track human trajectories and recognize actions
using a Kalman consensus filter (KCF) [16], [15]. The KCF
was introduced by Olfati-Saber and has been applied in many
fields [17], [18]. Kamal et al. proved that the KCF can not
handle information redundant and naive node problems for
the camera network, and proposed an information weighted
consensus filter (IWCF) to replace the KCF, which shows
improved performance for 2D human tracking using a 2D
camera network [14]. Wang et al. employ the IWCF to track
3D human skeleton joints using multiple Kinects [19]. Li et
al. further prove that the IWCF based human skeleton fusion
algorithm can achieve higher action recognition [20], [21].

In this paper, we propose a dynamic hybrid consensus filter
(DHCF) based human pose estimation and action recognition
algorithm using a 3D RGB-D camera network, which can
handle occlusion problem and achieve higher recognition rate
than single views. The proposed method is a proof-of-concept
study in using consensus for 3D human pose estimation,
which can not only been used for small network in the indoor
environment using RGB-D cameras, e.g., Microsoft Kinect,
Asus Xtion and Intel Realsense, but also can been used for
large and scalable network in the outdoor environment using
advanced 3D cameras.

II. DISTRIBUTED HUMAN POSE ESTIMATION

In this section, we first introduce the DHCF algorithm
and show how the skeletons from multiple views can be
fused, and then discuss the human action recognition method
used for demonstrating the performance of the proposed idea
compared to the single views.

A. Dynamic Hybrid Consensus Filter for Skeleton Fusion

The DHCF is a distributed fusion algorithm, whose core
idea is the iterative information exchanges between the sensor
node and its neighbors [22], [23]. After a number of itera-
tions, the sensor nodes in the whole network can achieve
consensus state about the target. Compared to the IWCF
proposed in [14], DHCF can achieve faster convergence
rate and have no requirement about the total number of
sensor nodes. The distributed camera network used in this
paper construct an undirected graph G = (C,E) where
C = {1, 2, 3, , N} means vertex set that has N nodes, and
E ⊂ {{i, j}|i, j ⊂ C} denotes the edge set. We define the

Algorithm 1 DHCF based skeleton fusion

• Initialization: measurement noise R, process noise Q and
total consensus iteration steps L.

• For k = 1, · · · ,∞:
1) Predicted human pose for the next time step:
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bi,k = 1 (5)

else

ui,k = 0, Ui,k = 0, bi,k = 0 (6)

end if
3) Perform consensus iteratively:
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(c) Update consensus terms
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end for
4) Compute the posterior estimation at k time step:
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neighbor nodes of ith node as Ni = {j ∈ C|i, j ∈ E}. To
model the human motion, we use a linear dynamic model,
which is

x(t+ 1) = Fx(t) + w (13)

where the state vector x(t) =
(px(t), py(t), pz(t), vx(t), vy(t), vz(t))

T includes the
position and velocity of the skeleton joints, F is the state
transition matrix and w ∼ N(0, Q) is the Gaussian noise
with mean 0 and covariance Q. The skeleton measurement
from each camera node can be used to update the system
state of the filter. The measurement model for each joint
using the 3D camera is

z(t) = Hx(t) + v (14)

where H is the linear observation matrix, z is the predicted
measurement of the joint, which has a Gaussian noise v ∼
N(0, R) with zero mean and covariance R. The DHCF
filter can use the dynamic model for prediction and the
measurement model for state updating.

The dynamic hybrid consensus filter (DHCF) which han-
dles information fusion problem of multiple RGBD cameras
can be seen in Algorithm 1. First, the main parameters
of the algorithm are initialized, i.e., number of consensus
iterations L, measurement noise R and process noise Q.
Second, the DHCF is conducted in four steps for the time
step k = 1, · · · ,∞. The first step is the state prediction
based on the human skeleton motion model, where the
prior mean, information matrix and information vector are
calculated as shown in (1), (2) and (3) respectively. The
second step is to compute the information contributions Ui,k

and ui,k according to skeleton measurements as shown in (4).
To weight the information contributions, the DHCF uses a
distributed estimation of ratio factor S/N to solve the naive
node and overweighting problems, where S is the number
of cameras that have valid measurements of human target.
We introduce a quantity bi,k to indicate whether the camera
is a naive node, i.e., bi,k = 0 for the naive sensor and
bi,k = 1 for the valid sensor (i ∈ S). Since the naive
nodes have no valid measurement about current human target,
the information contributions for these naive sensor nodes
are zero. The third step is to perform the hybrid consensus
iteration for L steps. For each iteration l, the ith node sends
its prior informations (yl−1

i,k , Y l−1
i,k ), information contributions

(ul−1
i,k , U l−1

i,k ) and bl−1
i,k to neighbor nodes and receives these

consensus quantities from neighbors in parallel, then the
consensus on this sensor node is performed according to (7),
(8) and (9).

The Metropolis weights are used with the DHCF due to
its fast convergence rate as shown in [24], which is defined

as

�i,j,k =





1
1+max{di,k,dj,k} if j ∈ Ni

1−�
j∈Ni

�i,j,k if i = j

0 otherwise

(15)

where di,k and dj,k are the degrees of the camera node i
and camera node j at the time step k respectively. Finally,
the estimated human skeleton results of the algorithm at the
discrete time step k are derived by (12). The DHCF algorithm
requires no information of the number of sensor nodes of the
camera network, which is suitable for scalable networks.

B. Skeleton Based Human Action Recognition

To demonstrate the performance of the fusion algorithm,
and to show potential application, we use a skeleton based
human action recognition algorithm proposed by [25] to com-
pare the recognition rate. Each skeleton joint can be treated as
a point in the Lie group, and the 3D geometric relationships
between skeleton joints can be modeled as rotations and
translations. The human actions are then modeled as curves
in the Lie group, which are mapped to vectors in their Lie
algebra. The action classification can be further processed by
a combination of dynamic time warping, Fourier temporal
pyramid representation and linear SVM.

III. EXPERIMENTAL SETUP AND RESULTS

We construct a RGBD camera network using four Kinect
V2 sensors (C1, C2, C3 and C4), which has a loop topology
as shown in Fig. 1. The cameras are calibrated using a
chessboard, followed by an iterative closest point optimiza-
tion method on the point cloud captured by four Kinect V2
sensors to achieve accurate calibration result. Each camera is
connected to a computer to record and process the skeleton
sequences.

Eight actors are invited to stand in the central position
surrounding by cameras as shown in Fig. 1, and do 20 action
classes according to the MSRAction3D dataset [23], i.e.,
two hand wave, bend, side-boxing, forward kick, side kick,
jogging, tennis serve, tennis swing, golf swing, pickup and
throw, high arm wave, horizontal arm wave, hammer, hand
catch, high throw, forward punch, draw x, draw circle, draw
tick, hand clap. To show the occlusion problems, we ask each
actor to do the same action class five times in three directions,
i.e., one in middle, twice in left and twice in right, which are
shown as red arrows in Fig. 1.

The skeletons are recorded using the Microsoft Kinect
SDK library, which have poor quality when the camera has
a side view or back view of the target human. Each skeleton
has 20 joints, and each joint has a confidence score, which
is corresponding to the probability of the joint detection.
However, the skeleton detection algorithm of the Kinect only
considers that the human is facing the sensor, such that the
algorithm can make mistake if the human shows backside
to the Kinect, i.e., the skeleton joint has a high confidence



(a) 3 (b) 4 (c) 6 (d) 8

Fig. 2: This sequences of the skeleton data is the high arm wave action captured by Kinect C1 which is on the left side of
the actor, We can see that the estimation of the right arm (red color) is incorrect due to the occlusion by the torso. The blue
color, red color and green color corresponding to torso part, right body part and left body part respectively. Since C1 is on
the left side of the actor, the right arm of the actor is occluded by the torso, which result in incorrect estimation in the first
two frames.

(a) 3 (b) 4 (c) 6 (d) 8

Fig. 3: The DHCF based skeleton fusion result of sensor node C1, which is converged after 9 iterations, where the joints
with poor quality are corrected. Other nodes C2, C3 and C4 have the same estimation results as node C1, since the DHCF
algorithm is converged.

score for the wrong detection (right elbow labeled as left
elbow, etc.). To solve these problems, the joint angle and
joint position constraints are used to correct the confidence
score, such that a rear view and a front view about the human
can be discriminated.

We introduce the DHCF algorithm to fuse the skeleton
from multiple views as shown in Algorithm 1, where the
transition matrix F and the observation matrix H are defined
as

F =




1 0 0 Δt 0 0
0 1 0 0 Δt 0
0 0 1 0 0 Δt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, (16)

H =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 . (17)

The Gaussian process noise Q and measurement noise R

are defined as

Q =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 50 0 0
0 0 0 0 50 0
0 0 0 0 0 50



, (18)

R =



20 0 0 0 0 0
0 20 0 0 0 0
0 0 20 0 0 0


 . (19)

The iteration number L can be set as different values, such
that we can see the convergence rate of the algorithm.

For action recognition, the cross subject test setting is
employed, i.e., we use half of the subjects half (2, 4, 6, 8)
for testing and the other half (1, 3, 5, 7) for training, since
we have 8 individual persons to demonstrate the 20 action
classes.

The average action recognition results are summarized in
Table I. We can see that the DHCF based skeleton fusion
algorithm has higher recognition rate than the results from
single views (C1 to C4). The recognition rates of DHCF
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Fig. 4: This figure shows that the confusion matrix of
UKF based centralized fusion (a), and IWCF and DHCF
based distributed fusion (b) respectively. The values in the
confusion matrix present the recognition accuracy. It is clear
that the DHCF based method outperforms the others.

based algorithm for all cameras are converged to 94.50%
after 9 iterations. The occlusion problem can be seen in Fig.

TABLE I: Comparison of Recognition Rate

Data source Method Recognition result
Single view Kinect C1 82.75%

Kinect C2 67.00%
Kinect C3 75.50%
Kinect C4 87.50%

Multiple view UKF [13] 88.50%
IWCF (L=9) [19] 93.75%

DHCF (L=9) 94.50%

2, where the person is facing the direction between C3 and
C4, such that the C1 and C2 have side view and rear view of
the human body respectively. Therefore, the right part of the
human body is occluded from the C1 and C2 views. However,
the proposed fusion algorithm can correct this situation after
few number of iterations as shown in Fig. 3. All cameras can
converge to the same human pose result and achieve the same
recognition rate, so each camera can make decision locally
with correct human pose information through the distributed
camera network using the proposed method.

The experiment result also shows that the DHCF based
fusion algorithm outperforms the IWCF based one for skele-
ton fusion, since the DHCF has faster convergence rate
and can preserve the consistency of the local filters, such
that the novel information is never overestimated [22], [23].
Furthermore, we also compare our method with the state of
the art work OpenPTrack [13], which is based on centralized
unscented Kalman filters (UKF) to track multiple people with
asynchronous data sources. For comparison, we use the same
filter parameters and keep the same asynchronous mechanism
as the original OpenPTrack algorithm. The data association
part of the original OpenPTrack algorithm is removed, since
our dataset only has one person for each image frame.
The results in the Table I show that our method has better
recognition accuracy than the OpenPTrack algorithm, i.e.,
94.50% vs 88.50%. The confusion matrix of recognition
results for all methods are shown in Fig. 4. which show
that the DHCF has better performances than UKF and IWCF
based methods.

IV. CONCLUSION AND FUTURE WORKS

In this work, we propose a dynamic hybrid consensus
filter for skeleton fusion from multiple views, which can
handle occlusion problem efficiently and further improve the
action recognition accuracy. To demonstrate the idea, we use
a distributed RGBD camera network and collect 20 action
classes from 8 individual persons. Finally, a Lie group based
action recognition method is used to show the improved
performance of the proposed idea. In future, a distributed
data association method can be combined with our current
work to handle multiple human tracking and pose estimation
problems.
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