Feature Inference in Perceptual Categorization

Emma Louise Morgan

A thesis submitted to the School of Psychology, Cardiff University, in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

September 2019

Supervisor: Mark Johansen

.......
...........

(CARDIFF

UNIVERSITY ;

PRIFYSGOL

(AFRDYD

007,00 0g 00,
-'.o_ofo.'»

School of Psychology




DECLARATION
This work has not been submitted in substance for any other degree or award at this or any
other university or place of learning, nor is being submitted concurrently in candidature for any

degree or other award.

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of PhD.

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise
stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff
University’s Policy on the Use of Third Party Editors by Research Degree Students. Other

sources are acknowledged by explicit references. The views expressed are my own.

STATEMENT 3
| hereby give consent for my thesis, if accepted, to be available online in the University’s Open
Access repository and for inter-library loan, and for the title and summary to be made available

to outside organisations.

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS
I hereby give consent for my thesis, if accepted, to be available online in the University’s
Open Access repository and for inter-library loans after expiry of a bar on access previously

approved by the Academic Standards & Quality Committee.



Acknowledgements
First, 1 would like to thank the Cardiff University School of Psychology for funding this

research and allowing me to ask the questions | wanted to know the answers to.

Second, | would like to thank my supervisor Mark Johansen who has taught me so much and

who, through endless patience, has made me a better researcher.

I would also like to thank my friends at Cardiff University for lending me their ear when |

needed it and giving me perspective.

Lastly, I would like to thank my family for their support, I couldn’t have done this without

them.



Summary

The ability to make inferences about the properties of a category instance based on
knowledge of its category membership is a crucial cognitive ability. The purpose of this thesis
was to evaluate feature inference learning of categories and feature inference decision-making
for category instances in an attempt to clarify the nature of the category representation
underlying feature inference. Specifically, three experiments evaluated feature inference
learning of the classic Shepard, Hovland and Jenkins (1961) category structures compared to
standard classification learning. The results supported a label bias hypothesis in terms of an
advantage in feature inference learning tasks that allowed using label-based unidimensional
rules over classification learning tasks that did not. However, both classification and feature
inference learning resulted in predominantly rule representation, consistent with participants’
self-reported learning strategies. A further five experiments evaluated feature inference
decision-making in terms of analogues for standard categorical induction effects--notably
premise typicality--in the perceptual categorization paradigm. However, there was no evidence
of a premise typicality effect when similarity was controlled for. Possible conceptual and
methodological reasons for failing to find this effect are discussed. While results do not support
prototype representation as the underlying basis for feature inference, methodological
explanations and/or a lack of power to detect a potentially small effect cannot be ruled out as
explanations for the absence of premise typicality. The results of these eight experiments
tentatively support a bias for label-based rules as the representation underlying feature
inference learning and decision-making, but future research will need to more definitively

differentiate this from prototype and exemplar representation.
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Chapter One - General Introduction
1.1. Perspectives on Concepts

When interacting with complex environments, the ability to form categories is
adaptively important because it facilitates the classifying of novel objects and events into
categories and supports subsequent inferences of properties for those instances. Categories
reduce time spent exploring the features of new objects, guide human behaviour in relation to
these objects and aid communication (Murphy, 2002). For example, when encountering a new
instance of the category ‘apple’, people do not have to wait for someone else to bite into it
before inferring that it is edible. Classifying the novel object as an apple allows the
generalization of the feature, ‘edibility’ from the known category of ‘apple’ despite never
having seen that particular apple before. Making feature inferences about instances of
categories is a crucial cognitive ability that pervades everyday interactions with the
environment. An important perspective on categories is that they are fundamentally a way of

organizing information to facilitate feature inference.
1.1.1 Rules and The Classical View

While it is clear that people have categories to represent sets of things in the world,
assessing the nature of their mental representations is not straightforward, especially as people
tend to report little direct awareness of how they categorize. What Smith and Medin (1981)
called the Classical View of concepts is that each category is represented by a definition that
contains all the necessary and sufficient features for an instance to be classified as a member
of that category (Hull, 1920; Inhelder & Piaget, 1964; Smoke, 1932; etc.). However, this view
has been shown to be inconsistent with many reported categorization findings (Hampton, 1979;
Hampton, 1982; McCloskey & Glucksberg, 1978; Wittgenstein, 1953; etc.). For example, the
Classical View assumes that all objects that meet the definition for a category are equally good

members of that category and as such does not explain typicality effects. Typicality effects are



that some category members that have many features in common with many other category
members are judged better examples of a category than instances with fewer features in
common (Rosch & Mervis, 1975). For example, McCloskey and Glucksberg (1978)
demonstrated that not all category members are good examples of a category. They tested
participants on instances that were very typical of a category (e.g. chair in the furniture
category), were intermediately typical (e.g. bookends) or were unrelated to the category (e.g.
cucumber). They found that participants unambiguously categorized typical category members
and clear non-members into the appropriate categories; however, participants were inconsistent
in responding to the intermediately typical instances both between and within subjects across
testing sessions. For example, when asked in separate sessions whether bookends were
furniture, participants commonly gave different answers at different times. Some category
members are better than others and some are not good examples of the category, suggesting
that categories are not definitionally separate but are continuous.

The Classical View has been discarded as a theory of category representation because
few, if any, real-world categories actually have necessary and sufficient conditions, i.e. sets of
features that all instances have and all non-instances never have. Classically, Wittgenstein
(1953) used the example of a definition for the concept of a game to highlight the difficulty of
specifying necessary and sufficient conditions for most real-world categories. Instead, real-
world categories tend to have family resemblances of features (Rosch & Mervis, 1975) where
most instances of a category have many features in common, but not all, and few features in
common with other categories, but not none. So, categories tend to have sets of features, each
of which is semi-diagnostic of category membership. For example, the category ‘bird’ has
many semi-diagnostic features in common across category members such as: having feathers,
laying eggs, being able to fly, build nests, etc. So, feathers are strongly associated with the

category ‘bird’ but removing the feathers from a bird still leaves a bird. Nevertheless, the



presence of feathers is a strong indicator that something is a bird. These are typical category
features because they are shared by many category members, and birds that have few of these
features are likely to be atypical category members. These differences in instance typicality are

a key property of most real categories.
1.1.2. Exemplar and Prototype Representation

Accounting for the typicality structure of categories led to different theories of category
representation, notably prototypes (Homa, Sterling, & Trepel, 1981; Smith, 2002; Smith &
Minda, 2001; etc.) and exemplars (Medin & Schaffer, 1978; Medin & Schwanenflugel, 1981;
Nosofsky & Johansen, 2000; Nosofsky & Zaki, 1998; etc.). Exemplar representation is
composed of individually remembered instances based on interactions with category members.
So according to exemplar representation theory, when classifying a new instance as, for
example, a dog, the mind determines the similarity of the new instance to previously stored
instances of dogs. If the similarity is high, higher than to instances of other possible categories
such as cats, then it will be classified as a dog. According to prototype representation theory,
in contrast, categories are represented by an abstracted summary representation that combines
the ideal/typical features of all category members rather than the instances themselves. That is,
the category prototype is a kind of average or central tendency of the instances, a best instance.
So, when classifying a new instance of the category ‘dog’, prototype theory says that the mind
determines the similarity of the instance to various category prototypes and picks the one with
the highest similarity. Both exemplar and prototype theory can account for category typicality
effects, but they differ fundamentally in terms of what information the mind stores and uses to
make new classifications: instances or abstractions.

Exemplar theory has been formalized in various mathematical models which use
similarity to stored instances to categorize new instances (Kruschke, 1992; Medin & Schaffer,

1978; Nosofsky, 1986; etc.). Medin and Schaffer (1978) proposed the Context Model. In this



model each feature value from each feature dimension is encoded as a configuration for every
remembered exemplar in the category representation. To categorize a new instance, the model
makes a comparison between the stored exemplars and the new instance on each feature
dimension. The model sums across the differences for each feature dimension and uses an
exponential decay function of that distance to specify an overall measure of similarity between
the instance and a stored exemplar. This decay function means that similarity will be high when
the instances are highly similar on all dimensions, i.e. the differences are small, but similarity
will decrease quickly when even a small number of dimensional differences are large. The
similarities for all instances are then summed to get an overall similarity to a given category’s
representation. The model does this for each possible category, and then the probability that a
given instance is in a given category is its overall similarity to that category divided by its
overall similarity to all relevant categories.

The Context Model (Medin & Schaffer, 1978) used a multiplicative rule that combined
a measure of the differences between the instance and the representation and how important
that difference is in terms of its impact on categorizing that instance as a member of a given
category. This is in contrast to the common, previously used additive rule (Tversky, 1977),
which calculates similarity as the sum of the dimensional features that match and mismatch.
The key advantage of multiplicative similarity is that a single large dimensional difference
between the category and the instance to be categorized can cause the model to say that the two
are actually substantially dissimilar. This is important as some categories involve very typical
features, the lack of which make an instance unlikely to be in the category despite potentially
having many other features in common. In contrast, additive similarity in a model with the
same large dimensional difference might only correspond to a slight decrease in the similarity
between the category and the instance. Medin and Schaffer (1978) highlighted the importance

of using multiplicative similarity through the example of the similarity between a mannequin



and a human being. If similarity was calculated by summing together all the features that
mannequins and humans have in common, then similarity would be very high, and a mannequin
might even be classified as a human. However, multiplicative similarity takes into account that
an important feature in the similarity comparison is animation and because mannequins and
humans do not share this feature, they are unlikely to be classified into the same category.
Medin and Schaffer (1978) concluded that this exemplar model was more consistent with the
data from their experiments than other models including a prototype model, thus supporting
exemplar representation of categories.

The Context Model was further adapted by Nosofsky (1986) into the Generalized
Context Model (GCM) which used Shepard (1957)’s multidimensional scaling-choice
framework to explain similarity in the Context Model as inversely related to distances between
instances in a constructed space; the bigger the distance between instances in terms of the larger
differences between their feature values across stimulus dimensions, the lower the similarity.
He also found an influence of selective attention to different feature dimensions within stimuli
in terms of participants attempts to maximize accuracy in categorization tasks by paying greater
attention to more diagnostic dimensions. Additionally, participants were adding exemplars that
they experienced during the task to their exemplar-based representation. Overall, these models
show that exemplar representations are capable of accounting for typicality effects
(Busemeyer, Dewey, & Medin, 1984; Medin, Altom, Edelson, & Freko, 1982; Medin, Altom,
& Murphy, 1984; Medin & Smith, 1981; etc.).

Prototype theory has also been formalized in various mathematical models which use
similarity to an abstracted prototype to categorize new instances (Homa, 1984; Posner & Keele,
1968; Reed, 1972; Smith & Minda, 1998; etc.). Prototype models calculate similarity between
test items and the category representation in much the same way as exemplar models but the

category representations that instances are compared to are structured differently. Smith and



Minda (1998) used a prototype model with additive similarity to compare instances to the
category prototype and applied attention weights to each of the feature dimensions within the
category instances. They found that the prototype model fit the learning data better than an
exemplar model early in the learning of a category with a large number of instances in it, though
after initial learning, the exemplar model fit the data better. Overall, prototype models are, by
their nature, compatible with typicality effects as the summary prototype representation is
based on the typical features of a given category, so the more similar an instance is to the
category prototype the more typical it is.

There has been a lot of research trying to clarify whether exemplars or prototypes are
the basis for category representation (Ashby & Maddox, 1993; Malt, 1989; Minda & Smith,
2001; Palmeri & Nosofsky, 2001; Storms, De Boeck, & Ruts, 2000; Verbeemen, Vanpaemel,
Pattyn, Storms, & Verguts, 2007; etc.) but there is little consensus on which is the correct
representation. A variety of research has supported exemplar representation (Dopkins &
Gleason, 1997; Nosofsky, Kruschke, & McKinley, 1992; Palmeri & Nosofsky, 2001; Shin &
Nosofsky, 1992; Voorspoels, Vanpaemel, & Storms, 2008; etc.). For example, VVoorspoels,
Vanpaemel and Storms (2008) had participants rate the typicality of instances of 12 real-world
categories such as birds. They fitted a prototype model and an exemplar model to individual
and averaged participant data and found that the exemplar model fit both sets of data better
than the prototype model. In contrast, there is a body of research claiming an advantage of
prototype representation in explaining categorization performance (Minda & Smith, 2001;
Minda & Smith, 2002; Smith, Osherson, Rips, & Keane, 1988; Smith, Redford, & Haas, 2008;
etc.). For example, Minda and Smith (2002) reexamined the findings of 30 experiments that
used the “5-4” category structure initially proposed by Medin and Schaffer (1978) and which
provides support for exemplar representation. Minda and Smith found that when comparable

prototype and exemplar models were used (where both models were based on a multiplicative



similarity calculation), the prototype model fit the data better than the exemplar model.
However, Zaki, Nosofsky, Stanton, and Cohen (2003) argued that the specific version of the
GCM that Minda and Smith (2002) used did not allow for differences in how deterministic
responses were, as these are needed to account for individual participant data. Zaki et al. (2003)
applied the full version of the GCM that allowed for differences in response determinism and
found that the exemplar model provided a better fit of the data from Minda and Smith (2002)
than the prototype model. Overall, exemplars and prototypes are very different perspectives on
the underlying nature of category representation, but which is right has yet to be settled, due in
part to a shift in the literature towards evaluating the multiple systems perspective.

Despite the fact that most categories do not have necessary and sufficient conditions,
i.e. perfectly diagnostic rules, there are mathematical models of rule representation where
category membership is at least partly determined by (possibly semi-diagnostic) rules (see
Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Townsend, 1986; Erickson &
Kruschke, 1998; Nosofsky, Palmeri, & McKinley, 1994; etc.). For example, Ashby et al. (1998)
specified the COVIS model which is based on the assumption that there are two competing
systems used in category learning: one explicit verbal system that works slowly, is consciously
controlled and attempts to specify rules and the other which is implicit, similarity based and
not consciously controlled. Even if this multisystem perspective turns out to be incorrect and/or
not well differentiated from other kinds of representation, or worst of all hard to falsify, the
data supporting the many models with some kind of rule representation certainly have attributes
that implicate rules.

Rules, exemplars and prototypes are the dominant contenders for the basic
representations formed when learning new categories. However, there are well-established

influences on category formation that are harder to characterize in terms of these



representations. These influences include prior knowledge generally and more specifically, the

causal relations contained within that knowledge.
1.2. Prior Knowledge Influences in Categorization

The effect of prior knowledge in categories and on category learning is pervasive
(Gratton, Evans, & Federmeier, 2009; Kaplan & Murphy, 2000; Lewandowsky, Kalish, &
Griffiths, 2000; Palmeri & Blalock, 2000; Rips, 1989; Spalding & Murphy, 1996;
Wattenmaker, Dewey, Murphy, & Medin, 1986; Wisniewski & Medin, 1994; Ziori & Dienes,
2008; etc.). For example, Rips (1989) used a task in which an object was described to
participants as being between the size of a quarter (U.S. 25 cents) and a pizza, and participants
rated whether the object was more likely to be a quarter or a pizza. Participants preferentially
responded that the object was a pizza even though it was more similar in size to quarter, based
on their prior knowledge that pizzas vary in size, but quarters do not. This demonstrates an
effect of prior knowledge on the categorization of new instances.

Prior knowledge can improve category learning performance in various ways. For
example, Pazzani (1991) evaluated a common finding (Conant & Trabasso, 1964; Haygood &
Bourne, 1965; Hunt & Hovland, 1960; etc.) that conjunctive categories can be learned faster
than disjunctive categories. Conjunctive categories are based on two features that must occur
together e.g. in a category of balloons a given balloon instance must be small and yellow.
Disjunctive categories are based on two features, one of which must occur or both for
classification into a given category e.g. that a balloon must be either small or yellow or both.
Pazzani asked one set of participants to predict whether an image of a person doing an action
to a balloon was an alpha or not (a blank categorization word) and asked another set of
participants to predict whether the balloon in the image would be blown up or not. The
conjunctive concept to be learned was size of balloon = small and colour of balloon = yellow

and the disjunctive category to be learned was age = adult or action = stretching a balloon.



With the expectation and prior knowledge given by the instruction that the goal was to blow
up the balloon, participants were able to learn the disjunctive category easier than the
conjunctive. This suggests that the inclusion of prior knowledge in a task can reorder classic
categorization learning findings.

Prior knowledge also facilitates the attention to and usage of features that are marked
by that knowledge to be important. For example, Lin and Murphy (1997) had participants learn
novel categories and then gave them background knowledge about the importance of each
feature in the category. If, at test, novel instances did not have the features that their knowledge
marked as important, then the participants were less likely to categorize that instance as a
member of that category. In contrast, Heit (1998) found that when participants were given a
list that described a person, features that were incongruent with prior knowledge had a greater
impact on transfer performance than congruent features. Heit argued that participants tried to
explain how these features fit with the rest of the instance and therefore attended to these
features more. This suggests that prior knowledge can impact what information is attended to
in a categorization task, both in terms of more attention to features consistent with that
knowledge but also, sometimes, more attention to features inconsistent with that knowledge.

Murphy and Allopenna (1994) evaluated the nature of the features associated with prior
knowledge and found that categories of meaningful phrases were as hard to learn as categories
of meaningless symbols, suggesting that it is not the meaningfulness of features per se that
gives prior knowledge its advantage. Rather, they found that the relationships between the
features impacted learning, that is, features connected by a theme were easier to learn. For
example, the features: green, made in Africa, lightly insulated and can drive through jungles
can all be connected by the theme ‘jungle vehicle’ which aids understanding of the category
and how the features relate to it. This suggests that prior knowledge promotes easier category

learning by connecting category features together.



Additionally, there is an impact of when prior knowledge is introduced on the ease of
learning a category. For example, Wisniewski (1995) found that when participants were given
knowledge about the category before learning, performance was significantly better than if the
knowledge was given after learning but before testing. Further, Heit and Bott (2000) found that
the learning of features that were critical to the categorization of instances was facilitated by
prior knowledge whilst the learning of non-critical features was not. For some categories of
stimuli, this advantage was present from the first learning block, suggesting that the impact of
prior knowledge occurs very early in category learning.

Categorical induction is a particular kind of knowledge effect assessed in terms of
feature inferences about instances known to be in a particular category, and knowledge of
category membership tends to have a strong influence on feature inference. For example,
Kalish and Gelman (1992) showed an effect of prior knowledge in categorical induction tasks.
They tested children on inductions for features of items with two relevant categories such as
‘wooden pillows’ and found that the participants could make inductions of properties based on
the relevant category. For example, if making the induction about whether the wooden pillow
would be hard or soft, children were able to infer that it would be hard based on the ‘wooden’
feature despite the fact that pillows are typically soft. Further, Ross and Murphy (1999)
investigated whether using certain types of categories in an inference task promoted certain
kinds of inferences. They presented participants with a target instance (e.g. cereal) and then
two comparisons: one that was in the same taxonomic category (e.g. noodles, as both are in the
category ‘grains’) and one that would be used in the same situation as the target (e.g. milk).
They then asked two questions: which food was likely to share an enzyme with the target
(biochemical comparison) and which was likely to be eaten at the same meal (e.g. situational
comparison). They found that participants rated the same category option as more likely when

making a biochemical comparison but rated the same situation option as more likely when

10



making a situational comparison. So prior knowledge about categories and situations
influences which are used when.

Not surprisingly, prior knowledge effects particularly occur in subject area experts
(Johnson & Mervis, 1997; Medin et al., 2006; Shafto & Coley, 2003, Vitkin, Coley, & Hu,
2005; etc.). For example, Proffitt, Coley, and Medin (2000) gave induction problems to tree
experts relating to the susceptibility of certain trees to given diseases, and they found that the
experts responded based on reasoning about how those diseases could be transmitted, the
thickness of the specified tree’s bark, etc. rather than basing their reasoning on the typicality
or diversity of the given instances. This suggests that with well known, real-world categories,
specific prior knowledge tends to influence categorization more than just similarity, typicality
or diversity.

The influence of knowledge on induction can be included in categorization models
(Heit & Bott, 2000; Mooney, 1993; Rehder & Murphy, 2003; etc.). For example, Heit and Bott
(2000) proposed a connectionist model in which the hidden layer, between the feature-based
input layer and the category response output layer, contained the prior knowledge hard coded.
Learning with this model can occur directly as an association between the features (input) and
the category response options (output) or indirectly using the prior knowledge in the hidden
layer. Another example of a model of prior knowledge is the Induction Over the Unexplained
(10U) model that Mooney (1993) proposed. The IOU model is an artificial intelligence learning
model which categorizes by first using all the features of a concept that match prior knowledge.
When all the prior knowledge has been applied and if there are still features/instances left then
the remaining information is passed on to an empirical system that will try to find similarities
to add to the overall concept. But one of the challenges with such models is that the knowledge

they contain needs to be accurate, and knowledge in many domains can be quite complex.
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Causality is a specific form of prior knowledge i.e. how one feature might causally be
connected to another. Causality can influence categorization performance (Ahn, Kim,
Lassaline, & Dennis, 2000; Lassaline, 1996; Lien & Cheng, 2000; McNorgan, Kotack,
Meehan, & McRae, 2007; Rehder & Burnett, 2005; Rehder & Hastie, 2004; Rehder & Kim,
2006; Rottman, Gentner, & Goldwater, 2012; etc.) and causal knowledge of a category can
impact inductions of new features (Rehder & Hastie, 2001). For example, Rehder and Hastie
(2004) found that the existence of causal relationships between category instances strengthened
the coherence of that category which strengthened inductions based on those instances.
Participants were presented with a series of category instances such as ‘Lake Victoria Shrimp’,
were told that a given instance had a novel property and were asked to make an induction as to
what proportion of the rest of the category was likely to have that feature. For a Lake Victoria
Shrimp, two of the four features participants were told it possessed were, ‘Has high amounts
of ACh neurotransmitter’ and ‘Has a long-lasting flight response’. Some participants were
additionally told of a causal link that ‘A high quantity of ACh neurotransmitter causes a long-
lasting flight response’. Participants who were given this additional information rated
exemplars that were consistent with the causal relations as more likely to generalize to the rest
of the category than participants who did not receive such information. This shows that
causality can impact inductive strength, potentially above and beyond other factors such as
typicality, but as with other kinds of knowledge, causal interrelationships can be complex.

The focus of Experiments 4-8 in the present research was on assessing feature inference
as a kind of categorical induction, that is, on attribute inference in the context of categories as
a particular kind of knowledge effect. However, there are two key challenges for characterizing
knowledge influences on category learning and decision-making: one is that there is still
relatively little consensus on the basic nature of category representations in terms of when,

where and how people use rules versus prototypes versus exemplars. The second is that the full
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extent of knowledge effects on real-world categories is difficult to characterize accurately
because of their complexity. So, the present research took a simplified approach to these

difficulties by using the perceptual categorization paradigm.
1.3. Perceptual Categorization
1.3.1. The Paradigm

Many of the categories people learn are based on visual exposure to category instances
with attached conceptual labels, e.g. cat, tree, cloud, etc. and as such the perceptual
categorization paradigm, which uses novel, carefully controlled stimuli and newly constructed
categories (for examples see Griffiths, Hayes, & Newell, 2012; Honke, Conaway, & Kurtz,
2016; Johansen & Kruschke, 2005; Love, 2002; Nosofsky & Zaki, 2002; Yamauchi &
Markman, 1998; Zeigler & Vigo, 2018) is a way to assess the basic mechanisms of category
learning and feature inference. So, in contrast to real-world categories, which are complex and
interconnected with background knowledge, simple perceptual categories can be constructed
to test how people learn and represent new concepts and make inferences about features while

limiting the complex interplay with background knowledge because the categories are new.
1.3.2. Classification and Feature Inference Representations and the Impact of Category Labels

There are at least two ways to learn about categories via feedback: one is by
classification learning, assigning an instance to a category and then being told the correct
category, e.g. classifying a small, furry animal as a cat, not a dog. Another is by feature
inference learning, inferring features of known category instances and being told the correct
feature, e.g. inferring a cat is likely to purr if you pet it (rather than bite). A key difference
between these two learning tasks is the presence of category membership information as
essentially part of the stimulus in feature inference. In perceptual category learning, this
category information commonly takes the form of a verbal category label. This difference in
available information suggests the possibility that classification and feature inference learning

13



and decision-making result in fundamentally different category representations because of the

presence of the label in feature inference.
1.3.2.1. Classification and Feature Inference Learning

The presence of verbal category labels impacts categorization performance. Yamauchi
and Yu (2008) found that when verbal labels indicated the category membership of an instance
rather than indicating the description of an additional feature, participants were more likely to
make feature inferences consistent with the labels. Further, Yamauchi, Kohn, and Yu (2007)
found that verbal category labels that conveyed category membership information were viewed
earlier in a trial and more often than feature based labels that did not convey category
membership information. Finally, Lupyan, Rakison, and McClelland (2007) showed that
having labels present during a task aided categorization even if the labels were redundant with
other information, compared to not including a label in the task at all.

Category labels are closely tied to the functionality of categories. Yu, Yamauchi, and
Schumacher (2008) argued that labels have an impact on categorization tasks by highlighting
the interrelatedness of features and subsequently increasing the perceived similarity across
features within a category. Johansen, Savage, Fouquet, and Shanks (2015) concluded that the
dominant influence of the label on feature inference was due to it being more salient than other
features. Taken together, these studies suggest that the label is distinct from all other features
presented during a categorization task and produces differences in learning and responding
from tasks in which the label is not part of the stimulus such as in classification tasks.

The influence of category labels on feature inference suggests category representations
based on them. Consistent with this, Yamauchi and Markman (1998) hypothesized that feature
inference learning tasks, which include the category label, encourage learning the internal
structure of each category and the typicality of individual features within a category, which

induces prototype representation. Classification learning, in contrast, encourages learning the
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differences between categories. Anderson, Ross, and Chin-Parker (2002) further supported
Yamauchi and Markman’s hypothesis: participants who had completed a feature inference
learning task performed better on single feature classifications than full instance classifications.
This supports the hypothesis that feature inference encourages the learning of prototypical
features and thus encourages prototype representation. Johansen and Kruschke (2005) also
contrasted these kinds of learning on the 5-4 category structure from Medin and Schaffer
(1978) and argued that feature inference encouraged the formation of a set of label-based rules
that sometimes mimicked prototypes and sometimes didn’t. From this they suggested that
feature inference learning does not induce prototype representation per se but rather a tendency
to form rule representations based on the category labels, in contrast to classification learning.

Similarly, Sweller and Hayes (2010) argued that there is a difference in the content of
the representations formed through classification and typical feature inference learning but not
between classification and mixed feature inference learning. They distinguished between these
two types of feature inference learning as: typical feature inference where learning occurs
through querying only the typical features of the category instances, and mixed feature
inference where learning occurs through the querying of both typical and atypical features.
They argued that typical feature inference produced a different representation from
classification but as a result of the methodological artefact of only asking for typical feature
inferences. In contrast, they argued that there is no representational difference between
classification and mixed feature inference learning as both promote the incorporation of both
typical and atypical features and both lead to exemplar representation. However, Chin-Parker
(2011) used a feature inference task that queried both typical and atypical instances and found
that participants struggled to learn the structure to over 75% accuracy in the last learning block.
He took this as evidence that participants were not storing exemplars, which should potentially

allow near perfect performance. However, if they were learning a prototype, the prototype
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inconsistent features would remain hard to learn. So, the poor learning was taken as evidence
of a bias for prototype representation.

There is little consensus in the field about the representation underlying feature
inference learning. As previously stated, Sweller and Hayes (2010) argued for exemplar
representation for feature inference learning, Yamauchi and Markman (1998) made arguments
consistent with prototype representation, and Johansen and Kruschke (2005) concluded that
the representation is based on rules that use the category label. The variety of proposed
representations for feature inference learning, while not providing a consensus on the true
nature of the representation, have nonetheless emphasized the importance of evaluating the

basis for feature inference.
1.3.2.2. Classification and Feature Inference Decision-Making

Similar to classification and feature inference learning, classification and feature
inference decision-making have been argued to be different, with feature inference especially
influenced by category membership information. Gelman and Markman (1986) showed that
feature inference decision-making for real-world categories was more heavily influenced by
category membership than by perceptual similarity: they showed four-year-old children two
pictures of category instances and described an associated property. They also showed the
children a third instance that had the same category label as one instance but was perceptually
more similar to another and asked which associated property the queried instance was likely to
have. For example, a child might have been shown a tropical fish and been told that it could
breathe underwater, been shown a dolphin and been told it jumps up out of the water to breathe
and then been shown a shark as the testing item. The shark had the same category label as the
tropical fish, (‘fish”) but was perceptually more similar to the dolphin. The children were asked
if the shark could breathe underwater or if it has to jump out of the water to breathe. They found

that children preferentially used category membership information to make the feature
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inference inductions even when perceptual similarity indicated a different response. Similarly,
for adults, Yamauchi and Markman (2000) found that feature inferences were more likely to
be determined by a category label than by perceptual similarity. From this they argued for the
special status of the category labels. Taken together, prior research suggests that the presence
of the label in feature inference plausibly induces a difference in focus compared to
classification. The present research assessed feature inference and the potential impact of the
presence of the category label in the classic category structures from Shepard et al. (1961) as

well as in a variant of the family resemblance structure.
1.4. Shepard, Hovland and Jenkins (1961)

The category structures specified by Shepard et al. (1961) are a benchmark assessment
of category learning in the perceptual categorization paradigm. The reason these category
structures are important is that they represent an evaluation of the learnability of what are
among the simplest, non-trivial categories. Shepard et al. (1961) evaluated the relative
learnability of all possible category structures formed with eight instances, equally split into
two categories, with instances composed of features from three binary-valued dimensions.
There are six basic category structure types that are consistent with these constraints, Figure 1.
In the figure, each type is a cube with the specific instances of the A and B categories at the
corners of the cube and the edges indicating the three feature dimensions and thus the features
composing each instance. The Type | structure can be learned using a rule on a single
dimension, dimension one, that allows one feature to be exclusively associated with one
category and the other feature to be exclusively associated with the other category e.g. the
feature ‘square’-shaped only occurs in instances of category A, and the feature ‘triangle’-
shaped in category B. The Type Il structure, Exclusive-Or, can be learned using a rule based
on the configuration of the first two dimensions e.g. instances with features ‘white’ and

‘square’ or ‘black’ and ‘triangle’ are occurrences of category A while ‘black’ and ‘square’ or
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Figure 1. The six types of category structures from Shepard et al. (1961). The diagram in the
bottom right shows the assignment of the three stimulus dimensions to each dimension of the
abstract category structures i.e. the cubes. Each corner of a cube represents a category instance
as composed of a feature value from each of the three binary-valued stimulus dimensions. ‘A’
labels indicate instances of one category and ‘B’ labels indicate instances of the other category.

(Adapted in part from Kruschke, 1992 and Shepard et al., 1961).

‘white’ and ‘triangle’ are occurrences of category B. For Types Ill, IV and V, learning a rule
on the first dimension allows correct categorization of six out of the eight instances, but the
remaining two exceptions have to be handled in some other way e.g. for type V, category A
instances are cither ‘square’ or ‘large’ ‘black’ and ‘triangle’ and category B instances are either
‘triangle’ or ‘large’ ‘black’ and ‘square’. Finally, for Type VI, each category instance can be
memorized, or the structure learned in terms of the Odd-Even rule. The Odd-Even rule requires
memorization of a single instance and if another instance varies from that instance by one

feature or all three features then the correct category is the opposite of the category for the
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memorized instance. If the new instance varies by two features, then the correct category is the
same as the memorized instance (Shepard et al., 1961).

The classic findings of Shepard et al. (1961) were systematic differences in the learning
difficulty for these six category structures. The Type | category structure was the easiest to
learn, Type Il was more difficult, Types I, IV and V were equally difficult but all harder than
Type 11, and Type VI was the most difficult; in summary I<II<III=IV=V<VI. This pattern of
learning has been replicated and evaluated many times (Edmunds & Wills, 2016; Griffiths,
Christian, & Kalish, 2008; Kruschke, 1992; Kurtz, 2007; Love, Medin, & Gureckis, 2004,
Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994; Nosofsky, Palmeri, & McKinley,
1994: Rehder & Hoffman, 2005; Smith, Minda, & Washburn, 2004; Zauhar, Bajsanski, &
Domijan, 2016; etc.) though some studies have not clearly differentiated the learning between
some specific types (Kurtz, Levering, Stanton, Romero, & Morris 2013; Lewandowsky, 2011,
Love, 2002; Zauhar, Baj$anski, & Domijan, 2014; etc.). The key conclusion of Shepard et al.
(1961) was that this pattern of learning difficulty reflects the complexity of the rules that allow
accurate performance, more complex rules are harder to learn, and as such these results clarify
the cognitive mechanisms involved with basic category learning.

Nosofsky et al. (1994) replicated Shepard et al. (1961) with similar stimuli and found
the same ordering of the types, and this represents a kind of canonical replication. However,
deviations from the standard type ordering have been found as a result of initial task
instructions and the specific stimuli used: Nosofsky and Palmeri (1996) compared integral
dimension stimuli to the classic separable dimension stimuli used by Shepard et al. (1961) and
found that Type 11 was more difficult than Types I11 and IV and not significantly different from
Type V. Love (2002) evaluated these types using incidental unsupervised learning and found
that Type IV was easier than Type Il. Kurtz et al. (2013) evaluated a variety of manipulations

and found that the relationship of Type Il to the other types can be changed in various ways
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and questioned the universality of the ordering of Type Il in the classic results. Taken together,
these results suggest that although there are various influences on the exact ordering and
differentiation of the intermediate types, the overarching pattern of Type | being easiest and
Type VI being hardest and the other types being intermediate is fairly reliable.

Whilst this pattern of learning is reasonably well established for classification learning
there have been to our knowledge no attempts to assess feature inference in terms of the
learning and subsequent representation underlying it for these structures. The results of learning
the Shepard et al. (1961) structures by feature inference, are reported in Chapter 2 while the
experiments in Chapters 3 and 4 used a variant of the family resemblance category structure to

assess categorical induction as feature inference decision-making.
1.5. Categorical Induction

Categorical induction involves making judgements about unknown features of a
category instance based on known features of known category members from previously
known categories (Gelman & Markman, 1986; Heit, 2000; Medin, Lynch, Coley, & Atran,
1997; Proffitt et al., 2000; Rips, 1975; Rips, 2001; etc.). An example of a categorical induction
argument taken from Hayes, Heit and Swendsen (2010) is, ‘Sparrows have property X
Therefore Geese have property X’. This argument includes already known categories of birds,
however implies a generalization of an unknown feature (property X) from one known category
member to the other (sparrows to geese). The common response measurement for these
arguments is a rating of the likelihood of the conclusion being true (that geese have property
X) given that the premise is true (that sparrows have property X). These likelihood ratings can

be used to measure the strength of an inference for an unknown attribute.
1.5.1. Comparison of Categorical Induction and Feature Inference

Attribute inference in categorical induction and feature inference in perceptual

categorization are similar. Both processes are based on using category knowledge to make
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inferences about what feature an instance might have, but the origin of the knowledge is usually
different. Categorical induction normally uses known categories such as birds or mammals,
that is, rich and complex real-world categories acquired over a lifetime (see Osherson, Smith,
Wilkie, Lopez, & Shafir, 1990; Rips, 1975; Smith, Shafir, & Osherson, 1993; etc.). Feature
inference typically uses newly learned, constructed categories (see Griffiths et al., 2012;
Johansen & Kruschke, 2005; Murphy & Ross, 1994; Yamauchi, Love, & Markman, 2002; etc.).
As described earlier, this learning about category instances can be done by classification where
an instance is presented and participants classify it into one of several categories and then
receive feedback, or by feature inference in which participants chose between possible features
for a known category instance and receive feedback. Testing subsequently occurs via
classification or feature inference without feedback.

Both categorical induction and feature inference ask participants to make a response
about an attribute/feature that is hidden or not visible, though the nature of these responses is
different, a rating of argument strength in categorical induction versus a chosen feature in
feature inference. Nevertheless, these two kinds of responding should be related: if a participant
believes that one argument is stronger than the other as manifested through a difference in
ratings on the likelihood scales, the participant would plausibly choose the response/feature
associated with the stronger argument when faced with binary responses options that are
essentially pitting the two arguments against each other in a forced choice. Overall, the strong
similarities between these two paradigms suggest that effects found in the categorical induction
paradigm should also occur in the more methodologically controlled perceptual categorization

paradigm.

The categorical induction paradigm has a corpus of well-established empirical effects,
including premise typicality, premise conclusion similarity, etc. as described in detail below.

However, the category representations underlying these effects are unclear, in part because the
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categories themselves, e.g. birds, are so complex. Establishing these effects in the perceptual
categorization paradigm would allow an assessment of the representations underlying these
effects using the well specified representation models described above, i.e. prototype and

exemplar models.
1.5.2. Categorical Induction Effects
1.5.2.1. Premise Typicality and Typicality

Premise typicality is one well-established effect in the categorical induction paradigm;
the more typical a premise item is, the stronger the conclusion drawn from it for other instances,
i.e. the greater the judged argument strength (Rips, 1975). An example from Hayes et al. (2010)
is, “Sparrows have property X Therefore Geese have property X" is judged to be a stronger
argument than, "Penguins have property X Therefore Geese have property X.” The first
argument is judged to be stronger because a sparrow is a more typical exemplar of the bird
category than a penguin and shares more features with other category members. So, an
argument based on a premise using a typical category member is judged to be stronger than an
argument based on an atypical category member.

Category typicality effects are common and well documented (Light, Kayra-Stuart, &
Hollander, 1979; Lin, Schwanenflugel, & Wisenbaker, 1990; McCloskey & Glucksberg, 1978;
Medin & Schaffer, 1978; Nosofsky, 1988; Rosch & Mervis, 1975; Rosch, Simpson, & Miller,
1976; Rothbart & Lewis, 1988; Spalding & Murphy, 1999; etc.). As discussed above, Rosch
and Mervis (1975) specified typicality in terms of features shared across category instances: a
category instance is most typical when it has many features in common with other members of
the same category and few features in common with members of other categories. One
explanation for the premise typicality effect then is that the feature queried in an argument can
be better generalized across a category by an instance that has many features in common with

other category members than by an instance with fewer features in common.
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1.5.2.2. Other Categorical Induction Effects

There are many other well documented effects in categorical induction distinct from
typicality and premise typicality. One such effect is premise conclusion similarity where the
more similar the conclusion is to the premise, the stronger the argument is judged to be. For
example, ‘Leopards have property X Therefore Lions have property X,” is judged to be a
stronger argument than, ‘Leopards have property X Therefore Koalas have property X,’
because leopards are more similar to lions than to koalas (Hayes et al., 2010). This is different
from tests of premise typicality which attempt to hold similarity constant across the premises
such that only the typicality of the instances’ influences responding.

Premise diversity is another common effect in categorical induction where the greater
the extent to which the premises of an argument “cover” their parent category, the stronger the
conclusion is judged to be. An example of a diverse argument taken from Hayes et al. (2010)
is, ‘Lions and Mice have property X Therefore Mammals have property X.” This is judged to
be a stronger argument than the less diverse, ‘Lions and Tigers have property X Therefore
Mammals have property X’ because lions and mice cover the category ‘mammals’ better than
lions and tigers, which are both cats.

The inclusion fallacy is another reasonably well-established categorical induction effect
that is based on the idea that making a conclusion instance more general can strengthen an
inductive argument. It occurs when a conclusion that covers the whole of a category is judged
as stronger than a conclusion that is a specific member of that category. For example, ‘Crows
have property X Therefore Birds have property X,’ is judged to be a stronger argument than,
‘Crows have property X Therefore Ostriches have property X,” (Hayes et al., 2010). The
category ‘birds’ includes ostriches as well as many other bird instances and therefore the
argument based on the bird conclusion requires far more birds to have property X (weakening

the argument as it’s likelihood decreases) than simply requiring a single bird instance (ostrich)
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to also share the feature. So, choosing the bird conclusion as the stronger argument
demonstrates a fallacy in that the general conclusion is judged as a stronger argument than the
specific conclusion despite its implied reduced likelihood. Shafir, Smith and Osherson (1990)
argued that this fallacy is due to typicality. So, for the current example, crows are more typical
of the category bird and less typical in relation to the category ostrich, therefore the strength of
the argument is based on the strength of the typicality relations between the premise and the
conclusion. As the premise and general conclusion relation has stronger typicality, this is rated

as a stronger argument despite the specific conclusion being logically more likely.
1.6. Overview of the Thesis
1.6.1. Thesis Motivation

The prominent position of typicality in classification, feature inference and categorical
induction tasks naturally invokes prototype representation. A summary from Murphy (2002, p.
265) emphasizes this, "If read literally, almost all the work on category-based induction takes
a prototype view of concepts. This is not to say that researchers on induction propose a specific
category representation along with a learning rule. However, the talk about concepts is almost
inevitably one in which a concept has a summary representation.” So, part of the original
motivation for the present research was to be able to discriminate prototype and exemplar

representations using feature inference tasks.
1.6.2. Experiment Summary

The purpose of this research was to evaluate feature inference in perceptual
categorization as a mode of learning about categories and as a mode of decision-making using
categories to clarify the underlying category representations. The first three experiments
(Chapter 2) evaluated and clarified feature inference learning of the classic Shepard et al.
(1961) category structures in contrast to classification learning. The second three experiments
(Chapter 3) assessed analogues of premise typicality as feature inference in perceptual
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categories using decisions based on summaries of category instances. The last two experiments
assessed premise typicality as feature inference in classification learning of perceptual
categories (Chapter 4). So, all of these experiments were assessments of category-based feature

inference.
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Chapter Two - Feature Inference Learning Compared to Classification Learning

2.1. General Introduction

There are at least two ways to learn about categories via feedback: classification
learning and feature inference learning, as discussed in Chapter 1 (pp. 14-16). A key difference
between classification and feature inference learning tasks is the presence of the category label
as part of the stimulus in feature inference learning. This difference in available information
suggests that classification and feature learning could result in fundamentally different category
representations (see Anderson et al., 2002; Gelman & Markman, 1986; Johansen et al., 2015;
Yamauchi & Markman, 1998; Yamauchi & Markman, 2000). Yamauchi and Markman (1998)
proposed that feature inference learning promotes learning the internal structure of a category
including prototypical features, consistent with a prototype representation and in contrast to
classification learning. Johansen et al. (2015) found that the label has a larger impact on
learning than other features because it is more salient. Adapting the hypotheses from Yamauchi
and Markman (1998; 2000) in light of Johansen et al. (2015), | propose a label induced rule
bias hypothesis: category labels in feature inference bias participants to use the labels to try to
form rules. In contrast, classification learning does not result in such a bias due to the lack of
the category labels as part of the stimuli. Note that this is not a hypothesis about what
representation participants definitely use but rather a bias for trying to use a representation
based on the category labels as explained in detail below.

The purpose of this research was to go back to an important starting point for category
learning--Shepard et al. (1961)--and to re-evaluate these classic category structures, see Figure
1 (and described in Chapter 1, pp. 17-20) in terms of feature inference learning to assess the
underlying category representation. The conceptual reason these category structures are
important is that they represent an evaluation of the learnability of what are among the simplest,

non-trivial categories. Given the conceptual importance of the Shepard et al. (1961) types and
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prior research on potential differences between classification and feature inference learning,
the aim of Experiments 1-2 was to compare the category representation for classification and
feature inference learning of the classic types. The label bias hypothesis predicts that feature
inference learning induces a tendency to form rules (and therefore a rule-based representation)
based on the category labels starting with simple unidimensional rules and progressing to more
complex rules if required. This can potentially be observed in terms of advantages for feature
inference over classification learning wherever a label-based rule allows performance above
chance e.g. unidimensional rules for Types | and V (Figure 1 in Chapter 1, p. 18). This is
because the bias corresponds to participants trying to form a label-based rule first over other
feature-based rules and in Types | and V these rules are diagnostic and semi-diagnostic
respectively. In classification tasks there is no such bias as all stimulus features are roughly
comparable in nature, potentially leading to a difference in the representation underlying

classification and feature inference learning.
2.2. Experiment 1

Experiment 1 compared the learnability of a subset of the classic Shepard et al. (1961)
types, Figure 1 (Chapter 1, p. 18); specifically Types I, Il, V and VI by classification and feature
inference. Not all the features in the category structure types can be unambiguously learned by
feature inference. Consider Type | as shown in Table 1 for the rocket ship stimuli in Figure 2
and assume that the dreton category includes the four instances in the top four rows of Table
1. Suppose the participant is shown that an instance is a member of the category, ‘dreton’, has
narrow wings and a small booster (A11_in Table 1, Type I). If asked to infer what the length
of the body band should be (A11?), there are two dreton category instances that have narrow
wings and a small booster but one of them has a long body band (A111) and the other has a
short body band (A110), so this feature inference cannot be accurately learned for this type.

However, other feature inferences can be accurately learned, for example for Type I, knowing
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that a stimulus is a dreton with a large booster and a long body band (A?11) only corresponds
to one instance in the category structure, and thus its wing size can be unambiguously inferred
as narrow (Al111).

Table 1

Abstract category structures for each of the two learning conditions (classification and feature
inference) and the four category structure types (1, I1, V and VI) used in Experiment 1. Training

phase trials at the top and testing phase trials at the bottom.

Classification Feature Inference

Training Phase Training Phase
Typel Typell TypeV Type VT TIypel Typell TypeV TypeVI
Alll Alll Alll Alll Alll Alll Alll  Alll
Al01 Al110 A110 A 010 Al01 Al110 A110 Ao010
All0 Ao001 A1l01 A 001 A110 A 001 Al101  A001
A100 AO000 AO000 A 100 A100 A000 A000 A100
BO011 BO11 BO011 B 011 B 011 B 011 B 011 B 011
BO001 BO1I0 BO001 B 110 B 001 B 010 B 001 B 110
BO010 B101 BO010 B 101 B 010 B 101 B010 B101
BO0O0O B100 B100 B 000 B 000 B 100 B100 B 000

Testing Phase

TIypel Typell TypeV Type V1
Alll A1l A1l Alll
A101 A110 A110 A010
Al110 A001 A101 A001
A100 AO000 A000 A 100
B011 BO011 BO11 B011
BO01 BO010 BOO1 B110
B010 B101 BO010 B 101
BO0OO B100 B100 B 000

Alll A111 A1l1l A1l
Al01  A110  A110 A010
Al100 A001  A101 A001
Al00  A000  AQ00 A 100
B011 BO011 Boi1 Bo1l
B001 BO010 Bool B110
B010 B1l01 Bo010 B101
B000 B100 B100 B 000
Al?1 Al1l A110 Alll
A1?20  A000  A000 A100
B0?1 BO010 BO10 B110
B0?0 BI101 B100 B101
Al1? A11? Al01 A010
A10?  A007  A000 A001
B01? BO01? BOO1 BO11
B00? BI10? B100 B0OO

Note. ‘A’ and ‘B’ refer to the two category labels and the subsequent three numbers refer to
the three binary-valued feature dimensions and the feature values on those dimensions. Bolded
features and question marks indicate what was queried for a given instance in a given condition.
Bold features represent a correct answer and question marks indicate the lack of an

unambiguous correct answer.
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This experiment used Types I, Il, V and VI because these allow all feature inferences
on a single dimension, dimension one, to be unambiguously trained. In contrast, Types Il and
IV cannot be completely unambiguously trained by feature inferences on dimension one and
consequently have not been evaluated here. So, all responses were on a single dimension for
feature inference learning like they were in classification learning. It is also worth noting the
classic finding that Types I11, IV and V are equivalent in learning difficulty.

The stimuli in this experiment, the rocket ships in Figure 2, were used in preference to
the classic colour/shape/size stimuli in Shepard et al. (1961) because those stimuli don’t allow
feature removability i.e. for individual features to be removed but the stimulus to still be
presented. For example, you cannot remove the shape dimension from a ‘large black triangle’
as the colouring of the instance remains and needs to have a shape. In contrast, the rocket ship
stimuli can be presented with individual features removed so that those features can be queried

in terms of a feature inference learning task.

(N

ADAD 4D AN

AL BN BN 1T

Figure 2. Set of eight rocket ship stimuli used in Experiment 1 composed of features from three

dimensions--wing width, body band length and booster size.
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2.2.1. Materials and Methods
2.2.1.1. Participants

120 Cardiff University students participated for either course credit or payment. 30
participants were trained on each of the category structure types (Table 1) with 15 in each

learning condition: classification or feature inference.
2.2.1.2. Materials and Procedure

The abstract category structures corresponding to the four types--1, 11, V and VI--and
the specification of all training and testing trials, by type, are shown in Table 1. Each category
type has eight instances equally split into two categories, see the top of Table 1. Each instance
is composed of a category label, either A or B, and three binary-valued feature dimensions.
Each column indicates one feature dimension with two feature values. Bold features and
question marks indicate the feature that was queried on a trial. For example, the classification
condition training item A111 indicates that the category label was queried and the feature
inference training item A111 indicates that the first perceptual feature dimension was queried.
Bold features indicate the correct answer and question marks indicate that there was no
unambiguous correct answer. Testing trials, at the bottom of Table 1, omitted feedback and
included all classification and feature inference training items from both training conditions; a
given participant was only trained on classification or feature inference but was tested on both
in the testing phase. Testing also included a selection of feature inferences on the second and
third dimensions as shown at the bottom of Table 1.

The eight rocket ship stimuli used, Figure 2, corresponded to the eight instances in each
category structure type (Table 1). The rocket ships had features on three dimensions: wing
width (wide or narrow), body band length (long or short) and booster size (large or small). The
two categories of rocket ship were labelled ‘dreton’ and ‘rilbar’. The assignment of physical

features, Figure 2, to abstract category features, Table 1, was randomized across participants.
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The rocket ship stimuli were presented using DirectRT. Participants responded by
choosing between two on-screen options via key press (the w-key response with a “left” sticker
on the keyboard for the option on the left side of the screen and the p-key response with a
“right” sticker for the option on the right). The response options were either the category labels
or two different features. Participants completed 320 training trials consisting of the eight
category instances in random order within a block for 40 blocks of training. Subsequent to
training, participants were tested without feedback on a block of the classification training
instances, followed by a block of the feature inference training instances and finally, a block
of a selection of feature inferences on the second and third dimensions (see Table 1). The order
of the testing trials was randomized within each block.

In the training phase, after each classification training response, feedback contained the
full rocket ship stimulus, the words, ‘correct’ or ‘incorrect’ followed by ‘This is a dreton’ or
“This is a rilbar’ depending on the correct answer. After each feature inference training trial
there was feedback which contained the full rocket ship stimulus, the words, ‘correct’ or
‘incorrect’ followed by ‘The correct answer is shown above’. Participants could look at each
feedback screen for as long as they wanted and pressed the space bar to continue to the next
trial.

Participants were given a cover story that they were visiting an alien solar system and
needed to learn about the different types of rocket ships used by the aliens. They were told that
they were going to be shown rocket ships and would need to make a choice between two
responses. In the classification conditions, they were told that the category labels would be
their response options, and in the feature inference conditions, they were told that two features
would be their response options. They were made aware that they would have to guess initially

but that they could learn the correct responses with practice. Following this were two practice
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trials to ensure that participants were aware of which keyboard button related to which

response. They then completed the learning phase followed by the testing phase.
2.2.1.3. Design

This was a between-subjects design with eight conditions: four structure types (Types
I, 1, V and VI as in Table 1) learned by either classification or feature inference. The key
dependent variable was accuracy by block for each condition. | also report the proportion of
participants whose performance was greater than a learning criterion as an alternative measure

of learning.
2.2.2. Results

Asymptotic learning was fairly poor for all conditions except Type I as shown by the
proportions of participants who reached a learning criterion of 75% correct in the last four
blocks of training, Figure 3. Despite 40 blocks of training, only 13% of participants achieved
the criterion in the Type VI feature inference learning condition. Learning in this experiment
was substantially worse than a prior standard replication, Nosofsky et al. (1994), see Figure 4;
that is, the average proportion correct in the last sixteen trials of classification training was
worse for Type Il (t(14) = 3.9, p =0.002), Type V (t(14) = 4.7, p < 0.001) and Type VI (t(18)
= 6.2, p < 0.001) in this experiment than in Nosofsky et al. (1994). Despite this, there is
evidence that some learning occurred in all conditions as performance was significantly above
chance for Type Il (t(14) = 4.0, p =0.001) and Type V (t(14) = 3.0, p = 0.009) and there was a
marginal difference in the right direction for Type VI (t(14) = 1.5, p = 0.144. Note that the
degrees of freedom for some of the prior and subsequent t-tests are adjusted degrees of freedom

in the context of assuming unequal variances).

32



Proportion of Participants
o
[¥a]
1

learning: CL FI CL H CL F CL FH
type: I Il WV VI

Figure 3. Proportion of the N = 15 participants in each learning condition and type from
Experiment 1 who achieved the learning criterion (75% accuracy in the final four training

blocks).
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Figure 4. Accuracy in terms of proportion correct, averaged in the final learning phase block
by type for the Experiment 1 classification conditions, coloured bars, and for data from

Nosofsky et al. (1994), grey bars. Error bars show +1 standard error.

For the classification learning task, Figure 5 left panel, average accuracy over all
learning blocks, was higher for Type | than the next most accurate type, Type V (t(19) =5.5, p
< 0.001). There was no significant difference between Types V and Il (t(28) = 0.7, p = 0.501),

but average accuracy was significantly higher for Type Il than Type VI (t(15) = 2.7, p= 0.016).
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Overall, the results of the classification learning conditions replicate the classic difficulty
ordering, though Types Il and V were not clearly differentiated.

For the feature inference learning task, Figure 5 right panel, average accuracy was
significantly higher for Type | than Type V (t(21) = 12.0, p < 0.001). Type V was not
significantly different from Type Il (t(20) = 1.0, p = 0.339) nor was Type Il significantly
different from Type VI (t(21) = 1.5, p = 0.141). Thus, feature inference learning only clearly
replicated the classic finding in terms of Type | being the easiest with poor differentiation of

Types I, V and VI.
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Figure 5. Average accuracy as proportion correct across groups of four training blocks by type
(I, I, V and VI) and learning condition (CL = classification, FI = feature inference) in
Experiment 1. The ‘1CL’ header refers to the Type I classification condition, ‘1FI” refers to
the Type | feature inference condition etc. Classification learning is displayed on the left, and

feature inference learning is on the right. Error bars show %1 standard error.

A power analysis is helpful to contextualize nonsignificant results for null differences
between types, especially between Types Il and VI feature inference learning, Figure 5. Power
has been calculated in relation to the difference between the Types Il and VI classification tasks
in Nosofsky et al. (1994) as this is the smallest significant type difference in the present results.
The effect size Cohen’s d was specified using the difference of the average performance across

blocks for the two conditions in Nosofsky et al. (1994) divided by a pooled estimate of the
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standard deviation based on both, resulting in a d of 1.087. Assuming a significance level of
alpha as 0.05, this effect size d and the number of participants in the Types Il and VI feature
inference conditions, the power (Howell, 2007) in the feature inference conditions to detect an
effect this large was 0.85. (The classification learning data in this experiment is separate from
the feature inference learning data, and the difference between Experiment 1 Types Il and VI
classification can also be used to calculate an effect size, d = 0.996, and non-post-hoc power
for feature inference learning as 0.77). Thus, if the true difference between Types Il and VI in
feature inference was as large as the smallest significant type difference in the Experiment 1
classification learning results, this experiment had fairly high power to detect it. So, power
analyses suggest that the null result in terms of a nonsignificant difference between Types II
and VI in feature inference learning reasonably support a null conclusion of no difference
between these two types by feature inference learning in contrast to the significant difference
for classification. This indicates that performance in the Types Il, V and VI feature inference
conditions is very similar as there was likely enough power to detect a difference as big as
those in classification.

Direct comparison of classification and feature inference learning by type shows that
there were significantly higher accuracies for Type | feature inference than for Type |
classification in the first four blocks of learning (t(21) = 3.5, p = 0.002). This superior
performance in the feature inference condition supports the label bias hypothesis that feature
inference learning induces a bias to evaluate the label-based unidimensional rule and
classification does not due to the label not being present as part of the stimuli. The average
accuracies for classification and feature inference learning across all learning blocks were not
significantly different for Type Il (t(28) = 0.3, p = 0.737), Type V (t(21) = 0.3, p = 0.796) or

for Type VI (1(28) = 0.8, p = 0.442).
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As a way of visualizing learning at the level of individual participants, the learning error
diagrams in Figure 6 show responding on each learning trial for every participant arranged by
learning type and condition. Each participant’s responding is shown within a black rectangle
outline, within this outline a trial is a single dot, black dots indicate response errors and white
‘dots’ represent correct answers on individual trials. Each column of dots is the response
accuracy for each training item in a block in standardized order, as in Table 1, and each row of
dots in a rectangle represents the accuracy for a given training item across all forty training
blocks. Finally, participants in each condition have been arranged roughly by their learning
performance, good learners toward the top and poor learners toward the bottom.

A key benefit of error diagrams is to be able to spot patterns in errors at the level of
individual participants. Amongst these, perseverative suboptimal rule use can be seen, Figure
6, as systematic errors on particular instances i.e. as horizonal black lines. Such suboptimal
rule use is most apparent for Type V feature inference where a label-based rule allowed 75%
accuracy at the cost of consistent errors on the fourth and eighth instances in Table 1.
Participants were operationally defined as using this suboptimal rule if their responding was
consistent with this error pattern for over 15 blocks out of 40 (with a maximum allowed
deviation from the pattern of one response per block). Approximately half of the participants
in the Type V feature inference learning condition showed this pattern of responding,
significantly more than in classification learning (p = 0.018, Fisher's exact test). Crucially, this
occurred despite the existence of a corresponding suboptimal rule based on a single feature
dimension also being available in classification learning. This suggests that participants were
perseverating with a label-based rule in the feature inference learning condition which supports

the label bias hypothesis.
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Figure 6. Error diagram panels showing the individual performance of each participant in
Experiment 1 on every learning trial. Black dots = incorrect answers, white ‘dots’ = correct
answers. Each row represents a single category instance, and the instances are ordered as in
Table 1. Therefore, each row within a panel shows performance on one specific trial across the
40 learning blocks. Each column of panels represents a learning condition as indicated by the
column headers. The ‘1CL’ header refers to the Type I classification condition, ‘1FI’ refers to

the Type | feature inference condition etc.

Finally, the error diagrams show what appear to be rapid transitions from chance
performance to high accuracy, seen as a change from the left (noise) to the right (white) of an
individual panel. These potential rapid transitions are consistent with rule acquisition as finding

a rule that gives optimal performance allows for rapid performance improvement.
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2.2.3. Discussion

The results of this experiment support the label induced rule bias hypothesis which
states that the category labels in feature inference learning bias participants to try to form label-
based rules. This hypothesis is supported by the feature inference learning advantage for Type
I, the presence of significantly more sub-optimal rule use for Type V feature inference
compared to Type V classification and the similarity in the learning curves for Types I, V and
VI feature inference.

In more detail, the label bias for Type | manifests as follows: in classification learning
three unidimensional rules are all roughly equivalent, one for each feature dimension, with no
clear basis for an initial preference between them, whereas feature inference has a single label-
based unidimensional rule that is distinct from the other two feature based rules. Arguably,
these differences arise out of a tendency to start with the label-based rule in feature inference,
and therefore participants achieved perfect performance more rapidly in Type I. For Type |
classification, learning occurred more slowly due to the lack of a clear basis for a preference
between the three unidimensional rules. Some participants took longer than others to find the
correct rule, and this greater variability resulted in classification participants, on average, taking
longer to achieve perfect accuracy.

Further support for the label bias hypothesis comes from the perseveration of sub-
optimal rule use in the Type V feature inference learning condition. A possible reason for this
perseveration is in terms of difficulty as the relatively poor performance on the task overall
compared to Nosofsky et al. (1994) and the interaction of this with the difference between
classification and feature inference: the suboptimal label-based rule is easier to find in feature
inference due to the bias and gives accurate enough performance to encourage participants to

keep using the rule given the task difficulty.
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Finally, the similarity of the learning curves for Types Il, V and VI feature inference
support the label bias as the bias is consistent with attempts to form label-based rules in feature
inference conditions in contrast to classification. In Type | this leads to accurate performance
early on in learning as is observed as the label-based rule is accurate. However, a bias for
simple unidimensional rules for the harder types, doesn’t allow optimal performance. In
addition, even with the label bias, there are still multiple nonoptimal rules for the higher types
involving the labels. So, a label bias for the higher types is less helpful for performance and
may actually be harmful, manifesting in similar, relatively poor learning across the types.

The label bias hypothesis could be taken to imply that feature inference induces rule
representation and that classification does not. However, the error diagrams suggest rapid
transitions from chance performance to near perfect performance consistent with the use of
rules in both classification and feature inference learning tasks for people who learned. The
key difference is in terms of the label-based bias on rule formation in the feature inference
learning conditions rather than a wholly different class of representation such as exemplars.

Perhaps the most surprising aspect of these results is the poorer learning of the
classification conditions compared to Nosofsky et al. (1994): it is clear some learning occurred
in all conditions, just not as much, see Figure 4. Methodologically, the classification learning
conditions here were similar to standard replications with the key exception of the stimuli.

The current rocket ship stimuli are not unusual for the perceptual categorization
paradigm where many prior studies have used rocket ships (see Craig & Lewandowsky, 2012;
Johansen et al., 2015; Nosofsky et al., 1994; Palmeri, 1999; etc.). Also, different features were
not visually hard to discriminate, see Figure 2. Kurtz et al. (2013) argued that the nameability
of the feature values, the ease with which a feature can be given a verbal descriptor, influenced
learnability; the nameability of Types Il and IV impacts how well they are learned and can

reverse the typical ordering for these types. The implication of nameability is in terms of the
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implied interaction with the formation of verbal rules and their memorability. Minda,
Desroches, and Church (2008) found that when a naming task was given to children prior to
learning Type Il, performance improved. To improve the learning in the classification
conditions to be more consistent with prior replications, | adjusted the verbalizability of the

stimuli in Experiment 2.
2.3. Experiment 2

To improve the nameability of the features on each dimension and reduce
interference/confusability between dimensions, Experiment 2 changed the dimensions so that
they were not all manipulations of size. In particular, the dimensions were colour, shape and
size, as in the Shepard et al. (1961) stimuli, but applied to the rocket ship features, and the
category labels were changed from two syllables to one syllable. In combination, these changes
were intended to facilitate learning via more compact verbal rules. Importantly, rule use was
assessed by asking participants to report what they saw and how they responded using
qualitative questions at the end of the experiment. Finally, the feature inference feedback was
amended slightly to include the category label, responding was via mouse rather than keyboard
and the testing phase for both learning tasks was updated to include all possible feature

inferences.
2.3.1. Materials and Methods
2.3.1.1. Participants

255 Cardiff University students participated for either course credit or payment. 64
participants completed each of category Types I, I, V and VI (Table 1) with 32 in each learning
condition, classification or feature inference, except for Type Il feature inference for which

there were 31 participants due to an experimental error.
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2.3.1.2. Materials and Procedure

The key change from Experiment 1 to Experiment 2 was the use of eight new rocket
ship stimuli composed of three feature dimensions: body band colour (blue or green), cone
shape (pointed or rounded) and wing size (wide or narrow) as shown in Figure 7. Additionally,
the category labels were changed to ‘thab’ and ‘lork’ in an attempt to further aid the

verbalizability of the stimuli and improve learning.

i}
g

Figure 7. Rocket ship stimuli used in Experiment 2, composed of features on three stimulus

dimensions: blue/green body band, pointed/rounded cone and wide/narrow wings.
Experiment 2 also had several minor adjustments. The feature inference feedback was
adjusted to be identical to the classification feedback such that it included the label presented
under the stimuli as well as the feedback, ‘correct’ or ‘incorrect’ and a note that the correct
answer was shown at the top of the screen. The testing phase included all the original
classification and feature inference items in Experiment 1, but feature inference trials were
added to include all possible feature inferences on the training instances, see Appendix A. More
importantly, at the end of the experiment, participants were given the following questions:
‘Please write down the features you think changed between the different rocket ships.’, ‘Did
you find a rule to help you learn the task? If so, please describe it briefly.” and ‘If you did not

find a rule what did you use/learn to help you do the task?’ Participants responded via mouse
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clicking images of the relevant feature/word rather than by pressing buttons on a keyboard and
button pressing practice trials were eliminated. Participants moved on from each feedback
screen by left-clicking the mouse rather than pressing the space bar. All other methodological

details of this experiment were the same as in Experiment 1.
2.3.2. Results

The updated stimuli improved learning in all of the types, see Figure 8, with significant
differences for Type | (t(34) = 2.9, p = 0.006), Type Il (t(91) = 3.6, p = 0.001) and Type VI
(t(91) = 4.0, p < 0.001), and at least a marginally significant improvement in Type V (t(70) =
2.0, p = 0.046). Overall, these results are consistent with more compact and less confusable

verbal rules facilitating learning by being somewhat easier to use.
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Figure 8. Comparison of average accuracy as proportion correct by type across groups of four
training blocks between Experiments 1, dark lines, and 2, light lines. Error bars show £1

standard error.
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For average accuracy across all learning blocks in classification learning, Figure 9 left
panel, accuracy was significantly higher for Type I than the next closest type, Type Il (t(33) =
6.4, p < 0.001). There was no significant difference between Types Il and V (1(62) = 0.7, p =
0.492) and accuracy for Type V was significantly higher than for Type VI (1(62) = 4.4, p <
0.001). Thus, the results of classification learning replicate the classic difficulty ordering,
though Types Il and V were again not clearly differentiated.

For average accuracy across all learning blocks in feature inference, Figure 9 right
panel, Type | was significantly higher than Type Il (t(30) = 6.2, p < 0.001) and there was no
significant difference between Types Il and V (t(61) = 0.9, p = 0.390) or between Types V and
VI (1(62) = 1.5, p = 0.128).

Calculating power in relation to an effect size, d = 0.607, based on the difference
between classification Types V and VI for the data presented by Nosofsky et al. (1994), the
power to detect a difference this big between Types V and VI feature inference in the current
experiment was 0.67. (The classification learning data in this experiment is separate from the
feature inference learning data and the difference between Experiment 2 Types V and VI
classification can also be used to calculate an effect size, d = 1.096, and non-post-hoc power
for feature inference learning was 0.99. It is worth noting that the classification condition is a
methodologically stronger comparison to the feature inference condition). Thus, feature
inference learning replicated the ordering in Experiment 1 with Type | being the easiest and
poor differentiation of Types I1, V and VI, consistent with the label bias hypothesis.

Direct comparison of classification and feature inference learning by type shows that
Type | feature inference had higher accuracy than classification across the first four learning
blocks (t(48) = 2.6, p = 0.013). This replicates the findings of Experiment 1 and supports the
label bias hypothesis. It is worth noting that a significant difference occurred despite the

updated stimuli raising performance towards the ceiling. Additionally, when averaging over all
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learning trials, there was higher accuracy for the Type VI feature inference participants than
for the Type VI classification participants (t(59) = 2.1, p = 0.039). The average accuracies for
classification and feature inference were not significantly different for both Type Il (t(61) =
0.1, p = 0.941), and Type V (t(62) = 0.4, p = 0.725). These non-significant results, together
with the previous power arguments, indicate the poorer differentiation of the learning curves

in the feature inference learning conditions than in the classification learning conditions.
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Figure 9. Average accuracy as proportion correct across groups of four training blocks by type
(I, I, V and VI) and learning condition (CL = classification, FI = feature inference) in
Experiment 2. The ‘1CL’ header refers to the Type I classification condition, ‘1FI’ refers to
the Type | feature inference condition etc. Classification learning is displayed on the left, and

feature inference learning on the right. Error bars show £1 standard error.

As in Experiment 1, individual error diagrams, Figure 10, show rapid transitions from
chance performance to high accuracy, consistent with the sudden acquisition of a rule. There
was far less use of suboptimal rules, especially for Type V relative to the previous experiment,
as might be expected due to the improved ease of learning given by the updated stimuli. This
is consistent with more participants finding optimal rules, as supported by responses to the
questions about learning strategy.

At the end of the experiment, participants described the stimuli they saw and how they

used that information to learn the task. These qualitative data were used to assign participants
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Figure 10. Panels showing the individual performance of each participant in Experiment 2 on
every learning trial. Black dots = incorrect answers, white ‘dots’ = correct answers. Each row
represents a single category instance, and the instances are ordered as in Table 1. Therefore,
each row within a panel shows performance on one specific trial across the 40 learning blocks.
Each column of panels represents a learning condition as indicated by the column headers. The
‘1CL’ header refers to the Type | classification condition, ‘1FI’ refers to the Type | feature
inference condition etc. Blocks of colour to the left of each panel represent the learning strategy
as inferred from the questions at the end of the experiment (light green = optimal rule, dark
green = suboptimal rule, red = no rule/poor reported learning, blue = exemplars, grey =

ambiguous).
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to five groups in terms of those who used the optimal rule, suboptimal rules, no rule/poor
reported learning, memorized exemplars or whose response was ambiguous. Participants were
coded into the ‘Optimal rule’ group for Type | if they specified a first dimension,
unidimensional rule, for Type Il it was a configural rule based on the first two dimensions, for
Type V it was a unidimensional rule with two, full instance exceptions and for Type VI it was
the Odd-Even rule. Rules specified by participants were checked to confirm that they were
optimal learning rules based on the specific stimuli a given participant actually saw.
‘Suboptimal rules’ were coded as any specification of a rule that was not the optimal rule for
the condition a participant was in e.g. a unidimensional rule in Type I1. Participants were coded
into the ‘No rule/poor reported learning’ group if they specified that they had not been able to
learn the task. The ‘Exemplars’ group was coded as a specification of more than two individual
instances (so as to distinguish from optimal rule users in Type V specifying exceptions) or also
specified as a mention of an instance memorization strategy. Finally, participants were coded
into the ‘Ambiguous’ group if they gave responses that lacked sufficient information and/or
were unclear.

The proportion of the participants attributed to each strategy for each learning condition,
Figure 11 left panel, shows a predominance of optimal rule use, 67% (participants marked by
light green patches, Figure 10) across Types I, Il and V for participants in the error diagrams
compared to the next highest strategy. As seen in the error diagrams for Type VI, the majority
of participants did not learn the task. For all types, participants who reported that they did not
learn, the red patches in Figure 10, were all participants in the error diagrams who clearly did
not learn anything or who learned very little. When the participants who did not learn were
removed, Figure 11 right panel, the proportion of optimal rule users averaged across all types
was even higher, 79%. Despite the complexity of the Odd-Even rule in Type VI, roughly half

of the participants who learned the task made a statement consistent with using this rule.
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Although there were more participants who reported exemplar memorization (the blue patches
in Figure 10) for the harder types, inclusion in this group was taken on participants’ statement
that they were using exemplars rather than a requirement to list all exemplars. In contrast, the
attribution to the rule use group was based on the specification of a rule and a check that their

rule would produce optimal performance.
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Figure 11. Proportion of participants who reported using each kind of representation for each
type and learning condition. The left panel includes all participants and the right panel is for
participants who met the learning criterion (where the number of participants who learned in
each type and condition can been see in the error diagrams, Figure 10). Light green = optimal
rule, dark green = suboptimal rule, grey = ambiguous, red = no rule/poor reported learning,

blue = exemplars.

Participants in both learning conditions were tested on one block of classification items
matching the classification training condition items and one block of feature inference items
matching the feature inference training condition items, even though they were only trained on
one of these learning tasks. For participants who met a 75% learning criterion in the last four
learning blocks, the testing trial results, Figure 12, showed that decrements in performance
between trained and untrained items were either tiny (classification) or not existent (feature
inference). For example, one of the largest decrements was only 0.043 in Type Il classification.

This equates to one participant out of three making a single mistake across the eight untrained
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testing items on average and shows very little decrement for the untrained trials. This is
consistent with verbal rule use.
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Figure 12. Average accuracy as proportion correct in the testing phase for each type, by prior
learning condition and whether trials were previously trained or untrained for participants who

met a 75% learning criterion in the last four learning blocks. Error bars show £1 standard error.
2.3.3. Discussion

The label bias hypothesis was most directly supported by the Type | advantage. There
was better performance in the Type | feature inference condition over the Type I classification
condition early in training because the bias induced participants to try the correct rule more
quickly. The hypothesis was also supported more subtly by the poor differentiation between
Types Il, V and VI in feature inference learning which is consistent with similar attempts to
use label-based rules in all feature inference tasks even when these were not optimal rules.

As well as the support for the label bias hypothesis in terms of differences between the
learning tasks, further support for this hypothesis comes from the pervasive use of rules in both
learning tasks. This is supported by the rapid performance transitions in the error diagrams, the
high accuracy on the untrained testing trials and the qualitative descriptions of rules that are

accurate.
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In more detail, the testing trial data showed essentially no decrements between
performance on trained and untrained classification and feature inference trials. For example,
a unidimensional rule in feature inference training might have been responding with wide
wings for a thab and this would make it easy to do the untrained classification item that
involved responding thab when shown a rocket ship with wide wings. The verbal rule explicitly
contains the key elements of the stimuli and the category label, so it does not matter which is
queried.

For the qualitative data, what people said they did was quite closely related to their
actual performance. Bearing in mind that the strategy reported by 13% of all participants was
ambiguous and a further 5% reported a strategy that was inconsistent with their performance,
the strategy reported by 82% of participants was consistent with their learning performance
either in terms of learning the task or saying that they didn’t learn. For example, a participant
in the Type VI classification condition who did not learn the task said, “No, didn't find a rule
so I guessed each time.” Another participant in the Type VI feature inference condition who
did learn, stated, “If only one feature had changed, the top was the opposite to the previous
rocket. If two changed, it was the same top as the previous rocket. If three changed, it was again
the opposite.” This is the Odd-Even rule. As it seems strange that participants could verbalize
accurate rules if they were not using them, these data indicate the wide use of verbal rules
across all types in both classification and feature inference learning.

Lastly, the learning improved significantly from Experiment 1 to Experiment 2,
arguably due to the improvement of the nameability of the feature dimensions and values used
for the stimuli and its subsequent impact on the ease with which the features could be used in
verbal rules. However, it is important to note that learning was still poorer than in Nosofsky et

al. (1994), see Figures 4 and 9, and without a direct comparison to the stimuli commonly used
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in the Shepard et al. (1961) replications, the conclusions in terms of the nameability of the
stimuli are limited due to other methodological differences.

Arguably, the stimuli used by Shepard et al. (1961) are specialized even by the
standards of the perceptual learning paradigm in that their features can be described in a way
that allows extremely compact verbal rules. In the classic stimuli, the noun descriptor of the
object as a whole is treated as one of the features e.g. for a small, black triangle the name of
the object overall is, ‘triangle’ however that is also one of the features. This contrasts with the
rocket ship stimuli in which, ‘rocket ship’ is the name of the object but is not a feature value
used to discriminate category instances. Additionally, the Shepard et al. (1961) stimuli are
composed of features that refer to the instance as a whole and therefore do not require additional
descriptors to discriminate between the feature dimensions. For example, with the size feature
dimension, the Shepard et al. (1961) stimuli may have the value ‘big” and that is sufficient to
describe that feature value because it refers to the instance as a whole. With the rocket ship
stimuli, the size dimension needs an extra descriptor, ‘big booster’ to indicate what is big. The
learning based on the Shepard et al. (1961) stimuli therefore benefits from these advantages
that allow rules to be specified very compactly. Experiment 3 directly compared the classic
Shepard et al. (1961) stimuli to the rocket ship stimuli used in Experiment 2 in the context of

a common methodology.
2.4. Experiment 3

The learning in Experiment 2 was not as good, Figure 9, as Nosofsky et al. (1994),
Figure 4, the standard replication of Shepard et al. (1961). This is arguably due to the
specialized nature of the stimuli used in Shepard et al. (1961) and its replications. Despite both
sets of stimuli having the same feature dimensions of colour, shape and size, the Shepard et al.

(1961) stimuli allow especially compact rules, e.g. “black triangles, white circles group A
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else group B,” in contrast to the rocket ship stimuli e.g. “wide wings, pointed cone rockets
and narrow wings, rounded cone rockets thab else lork.”

The purpose of this experiment was to contrast the classic stimuli with the rocket ship
stimuli from Experiment 2 on Type Il classification learning and compare the lengths of the
implied learning rules from a qualitative question. | chose Type Il as the configural rule
involves four features per category and therefore the specification of this rule will include more
descriptors than, for example, the unidimensional rule of Type I. This experiment did not
include feature inference learning because the classic stimuli do not facilitate the feature

removability needed for feature inference.
2.4.1. Materials and Methods
2.4.1.1. Participants

60 Cardiff University students participated for course credit or payment.
2.4.1.2. Materials and Procedure

The materials and procedure were identical to the Type Il classification learning
condition from Experiment 2 for the rocket ship stimuli condition, except for the removal of
the feature inference testing items at the end. The second condition used the stimuli of Shepard
et al. (1961) which included category labels (group A and group B) and dimensional variations

of shape (triangle/circle), colour (black/white) and size (large/small). Note, the size dimension

was scaled to be comparable to the overall size of the rocket ship stimuli.
2.4.2. Results

For the early learning blocks (1-4), Figure 13, learning was significantly faster for the
classic stimuli than the rocket ship stimuli (t(55) = 4.2, p < 0.001). Individual error diagrams,
Figure 14, also show this and replicate the rapid transitions from poor performance to high

accuracy, indicative of rule use.
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Figure 13. Average accuracy as proportion correct, averaged over four learning blocks for both
the rocket ship stimuli condition and the classic stimuli condition. Error bars show +1 standard
error.

The key rule use query prompted participants to specify how they learned the task.
Importantly, participants’ full descriptions generally used more words than necessary to specify
a rule and included comments not directly about their rule e.g. one participant stated, “Yes,
leaving the mouse cursor on Group A | would select it if either an unfilled circle or filled
triangle appeared. Otherwise | selected Group B then reset my cursor on Group A. | focused
only on Group A by using true/false methods to switch and select Group B if necessary. Also,
| repeated the words, "unfilled circle, filled triangle" in my head.” From this | inferred the rule,
“unfilled circle, filled triangle, Group A”. Thus, data tabulation was in terms of a rule for one
category with the other category implied to be instances that did not satisfy this rule, with
additional comments and connectives removed, and only words which directly described
features and category labels were included. The participants who did not learn were removed.
There were significantly fewer words in the tabulated configural rules for the classic stimuli

compared to the rocket ship stimuli, Figure 15, (t(41) = 2.4, p = 0.021).
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Figure 14. Error diagram panels showing the individual performance of each participant in
Experiment 3 on every learning trial. Black dots = incorrect answers, white ‘dots” = correct
answers. Each row represents a single category instance, and the instances are ordered as in
Table 1. Therefore, each row within a panel shows performance on one specific trial across the
40 learning blocks. Each column of panels represents a learning condition as indicated by the
column headers. ‘Rocket Ship’ refers to the learning condition which used the Experiment 2
rocket ship stimuli and ‘Classic’ refers to the learning condition which used the Shepard et al.

(1961) stimuli.
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Figure 15. Average word count from the extraction of the specified verbal rule for the
participants who achieved the learning criterion of greater than 75% correct over the last four
learning blocks. Error bars show %1 standard error.

The qualitative data was coded into an additional grouping in Experiment 3 that was
not present in responding in Experiment 2. Participants were coded into the ‘pattern of
responding’ group if they indicated that they responded with set answers regardless of what the

stimuli were. Rule use, Figure 16, was high in both conditions with 70% of participants
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Figure 16. Proportion of all participants who reported using each kind of representation for
both learning conditions in Experiment 3. Light green = optimal rule, blue = exemplars, red =

no rule/poor reported learning, grey = ambiguous, yellow = pattern of responding.
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reporting an accurate rule in the rocket ship stimuli condition and 90% of participants reporting
an accurate rule when learning the classic stimuli. And the somewhat higher rule use for the

classic stimuli was consistent with the better learning performance, Figure 13.
2.4.3. Discussion

Learning of the classic stimuli was better than the rocket ship stimuli, and the classic
stimuli were described more compactly in verbal rules. This implies that the especial rule
compactness of the classic stimuli influences learning performance of the Shepard et al. (1961)

types; compact verbal rules facilitate learning.
2.5. General Discussion

Learning about categories by feature inference is plausible given the functional
importance of feature inference in categorization. This research compared classification and
feature inference learning of the classic category structures from Shepard et al. (1961;
replicated and evaluated many times; Edmunds & Wills, 2016; Griffiths et al., 2008; Kruschke,
1992; Kurtz, 2007; Lewandowsky, 2011; Love, 2002; Love et al., 2004; Nosofsky et al., 1994;
Rehder & Hoffman, 2005; Smith et al., 2004; Zauhar et al., 2016). These experiments provided
support for the label-bias hypothesis i.e. a bias to try to use label-based rules in feature inference
learning in contrast to classification learning. This manifested most directly in terms of Type |
being learned faster by feature inference than by classification and by suboptimal rule use in
Type V when the stimuli were hard to learn (Experiment 1). More subtly, this manifested in
terms of less differentiation of the harder types for feature inference learning in contrast to the
classic type ordering for classification learning.

Despite the support for the bias hypothesis, the results did not support a distinct kind of
representation for classification versus feature inference learning; the results supported the
preponderance of verbal rule representation for both in contrast to the conclusions of prior

research (Anderson et al., 2002; Sweller & Hayes, 2010; Yamauchi & Markman, 1998; etc.).
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Notwithstanding skepticism about self-report data, the qualitative data showed strong
correspondence between what participants said about rules, what stimuli they saw and how
well they learned. In particular a little under half of the participants who learned Type VI in
Experiment 2 explicitly reported using the Odd-Even rule, a complex rule to articulate
especially if this was not how they did the task. Further, the error diagrams, which showed
individual participants’ performance on individual trials (Figures 6, 10 and 14), demonstrated
relatively rapid changes in performance from chance to high accuracy consistent with the
acquisition of rules for many participants. The testing phase evaluated training instances from
both classification and feature inference even though participants were only trained on one or
the other. Testing trials showed little difference in accuracy on untrained responses (trials
trained in the alternative learning condition) versus trained responses consistent with the use
of rules, as a rule can be easily reversed in terms of stimulus and response.

The contrast in performance between Experiments 1 and 2 also supported the
preponderance of rule-based representations; the implied greater difficulty of using the verbal
rules on the stimuli in Experiment 1 corresponded to poorer performance but more suboptimal
rule use especially for Type V. Changes to the stimuli to allow more compact verbal rules
corresponded to better learning in Experiment 2, also shown by less suboptimal rule use in
Type V. Experiment 3 directly compared the classic stimuli to the rocket ship stimuli from
Experiment 2 and demonstrated the superior learnability of the classic stimuli, consistent with
the argued relationship between rule compactness and learning difficulty.

While these results don’t support a difference in the kind of representation for
classification and feature inference learning (Anderson et al., 2002; Johansen & Kruschke,
2005; Sweller & Hayes, 2010; Yamauchi & Markman, 1998; etc.), the label-bias hypothesis is
notably consistent with the spirit of the representational difference hypothesis from Yamauchi

and Markman (1998), Anderson et al., (2002) etc. and with the importance of category labels
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in category based decision-making (Gelman & Markman, 1986; Johansen et al., 2015;
Yamauchi & Markman, 2000; etc.). Feature inference is plausibly less about the contrast
between categories and more focused on the internal attributes of the category as centered on
a conceptual label.

The fairly pervasive evidence for the use of rules for both classification and feature
inference also has implications for various categorization models that have used Shepard et al.
(1961) as a set of benchmarks. In particular, the fact that models such as ALCOVE (Kruschke,
1992) and SUSTAIN (Love et al., 2004) can account for the Shepard et al. (1961) results does
not fit well with the prevalent evidence for rule representation in these tasks because the
representations in these models are not explicitly rules, though it is worth noting that there was
some evidence of exemplar use for some participants, especially for Type VI. The implications
for dual-system models such as ATRIUM (Erickson & Kruschke, 1998) and COVIS (Ashby et
al., 1998) are less clear because these models embody rule systems and similarity-based
systems. Nevertheless, the evidence for rules here fits more comfortably with the fact that
RULEX (Nosofsky et al., 1994) and DIVA (Kurtz, 2007) have been shown to be able to account
for the classic Shepard et al. (1961) findings in terms of the representational assumptions
embodied in these models.

The overarching aim of this thesis is to assess the nature of the representation
underlying feature inference learning and decision-making. The present experiments assessed
feature inference learning of the Shepard et al. (1961) structures and the results indicated that
the dominant representation for these structures was rule based. However, these structures may
be inordinately conducive to rules and as such would be expected to support this representation.
And this may have especially been the case as the type seemingly most conducive to prototype
representation, the Type IV family resemblance structure, wasn’t included in the present

experiment for reasons of methodological control (see p. 29). Given the ecological plausibility
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of such structures, Experiments 4-8 assessed feature inference decision-making based on a
variant of the family resemblance structure. The motivation for this was that prototypes are a
plausible representational basis for categorical induction effects (Murphy, 2002), and a family
resemblance structure should promote prototype representation. So, Experiments 4-8 in
Chapters 3 and 4 were set up as a test of whether prototype representation underlies feature
inference decision-making using perceptual categories that should maximally facilitate this

assessment.
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Chapter Three - Premise Typicality as Feature Inference Decision-Making in
Perceptual Categories

3.1. General Introduction
3.1.1. Categorical Induction and Feature Inference

As described in Chapter 1, the categorical induction paradigm has a corpus of well-
established empirical effects including premise typicality. However, the category
representations underlying these effects are unclear, in part because the real-world categories
commonly used in categorical induction tasks are so complex. In contrast, the perceptual
category learning paradigm, with its highly controlled, simple stimuli, has fostered the
development and evaluation of many well-specified formal models of category representation
(Anderson, 1991; Kruschke, 1992; Love et al., 2004; Nosofsky et al., 1994; etc.). The
similarities between the categorical induction and perceptual categorization paradigms suggest
that the key categorical induction effects, particularly premise typicality, should occur via
feature inference testing in the perceptual categorization paradigm, allowing an assessment of
the representations underlying these effects and therefore feature inference using the many well

specified representation models.

To investigate the premise typicality effect via feature inference in perceptual
categorization, the following experiments used constructed categories that had two crucial
properties necessary to be able to test premise typicality — a typicality structure and attached
hidden features. First, the categories needed to contain instances with different levels of
typicality. At least one instance needed to have a higher level of typicality than all others and
another instance needed a lower level of typicality to correspond to a clear typical and atypical
premise on which to base the test of premise typicality. Second there needed to be ‘hidden’
feature dimensions such that hidden features could be attached to the typical and atypical

instances, corresponding to premise typicality statements in the categorical induction paradigm
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where a known instance has a previously unknown property attached to it e.g. “Robins have
property X”.

To assess premise typicality, the following experiments used decision-making tasks
based on a category summary of simple rocket ship stimuli in two constructed categories,
Figure 17. The rocket ships varied in terms of the width of the wings (wide or narrow), the
body band length (long or short), the booster size (large or small) and the cone shape (pointed
or rounded) and were in two categories, ‘dreton’ or ‘rilbar’, that were designed to have a
typicality structure based on family resemblance.

The family resemblance structure and its variants have been commonly used in
perceptual categorization learning because real-world categories tend to have family
resemblance structures (see Love, 2002; Markman & Maddox, 2003; Minda et al., 2008; Rosch
& Mervis, 1975; Ward, Vela, & Hass, 1990; etc.). The family resemblance structure in the
following experiments was a constructed category structure with a strong typicality gradient
which included a prototype, consisting of all typical category features, a set of instances that
varied from the prototype by one atypical feature and a very atypical instance that varied from
the prototype by having two atypical features, Table 2. So, for example, the dreton category
prototype, the rocket outlined in green in Figure 17, had features typical of a dreton, in this
case a long body band, small booster, pointed cone and narrow wings. The atypical instance,
the rocket outlined in red in Figure 17, had two features typical of the dreton category, a long
body band and small booster, and two atypical features, a rounded cone and wide wings. So,

this category structure has the typicality gradient necessary for testing premise typicality.
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Figure 17. An illustration of a sample trial used in Experiment 4. The individual rocket ship at
the bottom of the figure is a premise typicality testing trial including a rocket without a hidden
feature, presented with its category label and two hidden feature response options. Typical
features/instances are indicated by green dashed outlines and atypical features/instances by red
dashed outlines, added for explanatory purposes only. Participants did not see these coloured

outlines.
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In the abstract family resemblance category structure for these experiments, Table 2,
the typicality of a feature for a given category varies depending on how common that feature
is within a category. In the table, each row specifies a specific category instance with six
instances each for category A and B. For category A the most common value on every
dimension is feature 1 and for category B the most common value is 3. Therefore, these values
are the typical features whereas 3 for category A and 1 for category B are the atypical features.
For example, in reference to Figure 17, a typical 1 feature for category A, ‘dreton’ is the small
booster and the typical 3 feature for category B, ‘rilbar’ is the large booster. Conversely, the
atypical 3 feature for the dreton category is the large booster and the atypical 1 feature for the
rilbar category is the small booster. The other non-hidden feature dimensions were structured
similarly. The 1 and 3 values on each dimension represent the two possible values each feature
dimension could take: wide/narrow wings, long/short body band, large/small booster and
pointed/rounded cone shape.

In Table 2, the hidden features are shown on hidden feature dimensions one and two
with the letters V, X, Y and Z referring to physical features: straight and curved pipes and
vertically and horizontally lined boxes, see Figure 17. Each binary-valued hidden feature
dimension, pipes or boxes, occurred in only one category, with one hidden feature attached to
the typical instance and the other hidden feature attached to the atypical instance. For example,
the dreton category might have had the two pipe features associated with the typical and
atypical instances, while the rilbar category might have had the two box features associated
with its typical and atypical instances. A feature inference task tested premise typicality with
the structure in Table 2 by attaching hidden features to the prototype (typical) and the atypical
instances for each category and then querying which of these hidden features should be

attached to a novel instance that did not (yet) show a hidden feature attached. The dotted cut-
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Table 2.

The abstract category structure and key test cases for Experiments 4-8.

Category Dimension Dimension Dimension Dimension  Hidden Hidden
1 2 3 4 Dimension Dimension
1 2

Classification

A 1 1 1 1 V -
A 3 1 1 3 X -
B 3 3 3 3 - Y
B 1 3 3 1 - Z
Generalized A 1 1 3 3 - -
Premise
Typicality B 3 3 1 1 - -
Ordinary - -
Premise A 3 1 1 1
Tvpicality 1 3 3 3 - -
Premise A 1 3 1 1 - -
Conclusion
Similarity B 3 1 3 3 - -
Blank - - - - - -—
Feature - - - -
Inferences - -

Note. The full abstract specification of all testing trials is in Appendix B. Colour coding refers
to the typicality structure (green = typical, red = atypical, yellow = ordinary category
instances). Dashes indicate the absence of a feature on a given dimension, see main text for an
explanation of the testing trials.

out surrounding the hidden feature was intended to convey their hidden status by allowing
participants to ‘see into’ the typical and atypical rocket ships whilst suggesting that the other
rocket ships might have these features but that they are currently hidden due to the lack of a

cut-out. An example of a premise typicality testing trial can be seen at the bottom of Figure 17.
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This test instance has three features in common with the typical instance, a pointed cone, long
body band and small booster. The test instance also has three features in common with the
atypical instance, a long body band, wide wings and a small booster. Thus, the test instance
was equally similar to the typical and atypical instances. The ‘straight pipe’ hidden feature was
attached to the typical instance of the dreton category and the ‘curved pipe’ hidden feature was
attached to the atypical instance. The key test of premise typicality was a new category instance
that was equally similar to the typical and atypical instances, presented with its category label
and the straight and curved pipes as the response options. So, a premise typicality effect in this
paradigm corresponds to a preference for the feature associated with the typical instance, e.g.
the straight pipe, over the atypical instance, the curved piped.

To summarize, Figure 18 shows the mapping between a standard premise typicality test
in the categorical induction paradigm and the corresponding test in the perceptual
categorization task used in the following experiments. The typical premise instance, ‘a robin’,
shown on the top left of Figure 18, maps onto the typical rocket ship instance that is shown at
the bottom of the left-hand column. The atypical premise, ‘a penguin’, shown on the top of the
middle column in Figure 18, maps onto the atypical rocket ship instance. The conclusion
instance, ‘a crow’, shown on the top of the right column, maps onto the test rocket ship instance
which is equally similar to the typical and atypical rocket ship instances. The ‘sesamoid bone’
feature maps onto the hidden feature a rocket is shown to have e.g. a straight or curved pipe.
There are two hidden feature response options for the rocket ship stimuli to allow a contrast
between a hidden feature associated with the typical instance, ‘the straight pipe” and a hidden
feature associated with the atypical instance, ‘the curved pipe’. This contrast between two
hidden features is not necessary in the classic categorical induction paradigm as responses are
judgements of argument strength rather than binary choices. However, in perceptual

categorization, feature inference responding requires different hidden features be attached to
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the typical and atypical instances so as to assess a preference for generalizing the hidden feature

associated with the typical instance over the hidden feature associated with the atypical

instance.

Typical
Premise

Atypical
Premise

Conclusion

A robin has a
sesamoid bone

A penguin has a
sesamoid bone

A crow has a
sesamoid bone
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rocket has a
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Figure 18. A summary of the mapping between premise typicality in the classic categorical

induction paradigm as linguistic descriptions and in the perceptual categorization paradigm as

perceptual rocket ships. Note that the participants did not see the phrases, ‘The typical rocket

has a straight pipe’, ‘The atypical rocket has a curved pipe’ or ‘The ordinary rocket has which

pipe?’ on the screen in the course of the experiment; these were added to the figure for

explanatory purposes only.
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3.1.2. Key Testing Trials
3.1.2.1. Tests of Premise Typicality

These experiments measured the key effect of premise typicality in two ways, see Table
2. The first, ‘generalized’ premise typicality, was based on instances not presented in the
category summary such as A1133?, where ‘?° indicates a label or feature being queried at test
and for this instance indicates that the hidden feature was being queried (see Table 3 for all
testing trials of this type). This instance has two features in common with the typical instance
and two features in common with the atypical instance, making it equally similar to both.
Second, a test of ‘ordinary’ premise typicality was based on instances in the category summary,
such as A3111?in Table 2, that had three features in common with both the typical and atypical
instances, (see Table 3 for all testing trials of this type). So, as previously stated, a premise
typicality effect corresponds to a preference for the hidden feature attached to the typical

instance over the hidden feature attached to the atypical instance in both premise typicality trial
types.

3.1.2.2. Unambiguous Testing Trials with Clear Correct Answers

Three sets of testing trials assessed participants’ engagement with the task via questions
with clear correct answers in the category summary. The classification testing trials included
all 12 instances present in the category summary, see Figure 17 and Table 2. On each
classification testing trial, one instance occurred individually underneath the summary with the
response options as the categories dreton and rilbar. Incorrect answers to these trials imply
participants likely weren’t fully attending to the task. Further, the classification trials included
typical, atypical and ordinary category instances which allowed for tests of typicality. A
typicality effect should correspond to an appreciation of the typicality structure of the category

as, for example, shown by greater accuracy on the typical instances than the atypical instances.
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The hidden feature inference trials presented the typical and atypical instances without
hidden features, and participants inferred those hidden features based on the ‘correct answer’
in the category summary, see Table 2. For example, in Figure 17, the green dotted instance in
the dreton category would have been presented underneath the category summary without a
cut-out showing the straight pipe, but the pipe would still be visible on the matching rocket in
the summary. The straight and curved pipe would be the response options. This tested the
attachment of the hidden features to the typical and atypical instances, a crucial property for
the assessment of premise typicality.

Table 3.

The abstract structure for all testing trials in Experiment 4.

Abstract Testing
Structure  TrialType Triak Continued
A3111__ Bledil A3111 _ - AT111
A1311__ Classification  A1311 Ambizuous B¥333__
A1131_ A1131 _ Al117_
Al113__ A1113__ EEEEN
A 1111V A1111 Block & AZ113E_
A 3113 X AZ113 Fxception A3113_
B1333 _ B1333__ Feature B1331Y
B 3133 _ B3133_ _ Inference B1331 ¥
B 3313 B3313
B3331__ B3331__ Block? A3TEs v
—— - Label vi Feature B1711 W
B 3333 ¥ B3333_ _ -
B1331 7 B1331__ Bleock 10 AZ11ZT_
Continwows B1221 7
Block 2 71133 _ : o g
Ceneralized 23311 _ CGeneralization AQ1107_
Claszzification #1313 Balld_:
—— *
73131 _ al2zl: :
——— PECECER 33223:.
C-enernlized B3311_7 ALD0T7_
Premize Al13137 B3443 7
Typicality B3131_7 Block 11 A ___7_
Blodk 4 A31117 Blank Feature Inference B__ _ _ _ H
Crriginal 211137
Typicality B1333 ¢ Label v= Hidden A _7T__Z
- - B33zl 7 Features B ¥__W_
Blod: & Al13117_ B__?_¥X_
Erm:iw All131 ?: Block 13 A22127 _
-nclision B3133 7 Premise Diversity BI232 7
Similarity B3313_7
= Block 14 A__ T
Blodk 6 ALLIIV_ The Inclusion A3D037 _
Hidden A3113X_ Fallacy B 3
Feature B3333_Y p1a41 7
Inference B1331_Z

Note. Question marks indicate no answer in the category structure, red labels/features were

queried. See main text and Appendix C for all testing block descriptions.
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Finally, the exception feature inference testing trials had only one exact match in the
category summary and tested for correct exception feature inferences on the first or fourth
feature dimensions, see Table 3, i.e. they tested the inference of atypical/non-prototypical
features. For example, in Figure 17, the red dotted instance in the dreton category would have
been presented below the category summary with the wide wings missing and the curved pipe
hidden feature present. The response options would have been wide wings and narrow wings.
This tested the ability to correctly attach the non-hidden features to the atypical category

instances.
3.1.2.3. Premise Typicality Like Effects

Osherson et al. (1990) specified premise conclusion similarity effects as distinct from
premise typicality effects. Similarity effects occur in terms of higher argument strength ratings
when the premise and conclusion are very similar than when the premise and conclusion are
dissimilar. The present experiments tested premise conclusion similarity using trials where the
conclusion (the tested instance) was more similar to the typical instance than to the atypical
instance, and participants chose between the hidden feature attached to the typical versus
atypical instance. For example, the testing trial A1311 in Table 2, has three features in common
with the typical instance for category A and only one feature in common with the atypical
instance (see Table 3 for all testing trials of this type). A preference for the typical hidden
feature on this test shows a premise typicality like effect that nonetheless is confounded with
similarity because it can be based on similarity rather than typicality.

Finally, Blank Feature Inference tests included instances with no features and only a
category label, see Table 2. These could also show a premise typicality like effect in terms of
preferential responding with the typical hidden feature over the atypical in the absence of

specific feature information.
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3.1.3. Experiment Overview

The following three experiments all used the same category structure and testing trial
types, Table 3, to assess categorical induction in category summary-based decision-making,
most importantly, premise typicality. Experiment 4 investigated premise typicality but only
included a limited number of trials with clear correct answers before the crucial test of premise
typicality. Experiment 5 mixed in trials with clear correct answers to encourage participants to
carefully attend to the instances in the category summary, especially the instances with hidden
features. To further enhance attention to the summary, Experiment 6 added initial training trials
with corrective feedback and asked participants to categorize the ordinary instances in the
category and infer each non-hidden feature from those instances using the category summary.
These experiments followed a progression of decision-making tasks that promoted increased
use of and engagement with the category summary in terms of appreciating the typicality
structure and attaching the hidden features to instances in that structure, both necessary

prerequisites for assessing premise typicality.
3.2. Experiment 4
3.2.1. Introduction

Category-based decision-making has been widely evaluated using summary
presentations of constructed categories (Griffiths et al., 2012; Johansen et al., 2015; Murphy &
Ross, 1994; Murphy & Ross, 2010; Yamauchi & Yu, 2008; etc.). For example, Murphy and
Ross (1994) used a decision-making task in which they presented sets of children’s drawings
and participants judged which child drew a test item and how likely the drawing was to have a
certain feature. They found that participants tended to use only the category that the instance
was most likely to have come from when making predictions; they don’t tend to use multiple
categories to inform their decisions. As a further example, Griffiths et al. (2012) used a category

summary of alien bug stimuli to assess feature inference and they found that participants
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preferred to use information about the features of the category instances when reasoning. The
present experiment used a summary presentation methodology similar to that in Murphy and
Ross (1994) and Griffiths et al. (2012) to evaluate categorical induction effects, particularly
premise typicality. This was to allow for an assessment of the underlying category

representation of these effects as elicited by feature inference testing.
3.2.2. Materials and Methods
3.2.2.1. Participants

40 Cardiff University students participated for course credit or payment; however, the

reported data includes 37 participants as 3 data sets were lost due to experimental error.
3.2.2.2. Materials and Procedure

In total there were 16 rocket ship stimuli that varied on four binary valued dimensions,
see Figure 19. These dimensions were wing size (wide/narrow), body band size (long/short),
booster size (large/small) and nose cone shape (pointed/rounded). In addition, there were two
hidden feature dimensions, pipes and boxes, each with two different features as, for example,
shown in Figure 17.

The assignment of the four physical stimulus dimensions in Figure 19 to the four
abstract dimensions composing the 16 abstract category instances, see Table 3, was randomly
allocated for each participant from a set of possible assignments, as was the assignment of the
physical features comprising the two hidden features dimensions and their values. Similarly,
the category labels dreton and rilbar were also randomly allocated to the two abstract

categories, A and B, in Table 2. The ordering of the trials was randomized within blocks.
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Figure 19. The 16 basic rocket ship stimuli used in Experiments 4-7, composed of binary
features on four dimensions: nose cone shape (pointed/rounded), body band size (long/short),
wing size (wide/narrow) and booster size (large/small).

Testing trials included a category summary presented on the screen above the testing
item and the summary consisted of twelve rocket ships with the category labels underneath, for
example see Figure 17. On all trials, participants chose between two on-screen options via key
press (w-key response with a “left” sticker on the keyboard for the option on the left side of the
screen and p-key response with a “right” sticker for the option on the right). The response
options were either the category labels or two different features. After each trial, participants
rated their confidence in their answer using a scale from one to nine with one anchored as a
rating of ‘very unconfident’ in their response and nine indicating ‘very confident’. 16
classification testing trials individually tested the category assignment of the category summary
instances and the generalization instances which were not in the summary, Figure 19.

Following classification testing, this experiment had 46 feature inference testing trials,

see Table 3, including the keys tests of generalized and ordinary premise typicality, premise
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conclusion similarity and hidden feature attachment. The experiment also included additional
tests toward the end, Table 3, that are not central to the key arguments including tests
contrasting labels versus non-hidden features and labels versus hidden features, continuous
feature tests, etc., as described in Appendix C.

This experiment used three category summary variants, and one of these category
summaries was present on the screen while participants were responding on all testing trials,
though note that after participants responded the summary was replaced by the response
confidence judgment scale. All three category summaries had the twelve instances that matched
the abstract category structure, see the first 12 instances in Table 2, six in each category, e.g.
Figure 17. On classification testing trials, none of the 12 category instances showed hidden
features. However, for all testing trials except the classification, premise diversity and the
inclusion fallacy trials, the category summary had hidden feature cut-outs on the two typical
and two atypical instances only, e.g. Figure 17. On the premise diversity and the inclusion
fallacy trials, see Appendix C for the full description of these testing trials, the category
summary contained the hidden features on the typical and atypical instances as well as on two
ordinary instances: A1311 and B3133, which were shown to have the typical and atypical
hidden feature respectively. So, two instances in each category were shown with the same
hidden feature, the typical instance and an ordinary instance for Category A and the atypical
instance and an ordinary instance for category B, but these additional hidden features only
occurred in the last two testing blocks of the experiment, Table 3.

Participants first read through the on-screen instructions and then completed two
practice trials where they were asked to press each of the response buttons to ensure they knew

how to respond. They then proceeded through the 62 test trials.
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3.2.2.3. Reporting

The full abstract structures for Experiments 4-8 in terms of all testing trials is in
Appendix B as well as the average data for each experiment at the level of individual trials. In
addition to the key conceptual tests described in detail above, Appendix D discusses the results
for additional tests not directly relevant to the key conclusions including: contrasts between
category labels and non-hidden and hidden features, classification generalization tests and
replications of other less relevant categorical induction effects in the categorical induction

paradigm besides the key test of premise typicality.
3.2.3. Results

The classification test results, Figure 20, show a typicality effect as accuracy
significantly increased with typicality (F(2,108) = 12.9, p < 0.001). The typical instance
accuracy was significantly higher than ordinary instance accuracy (t(36) = 6.8, p < 0.001) and
ordinary instance accuracy was higher than atypical instance accuracy but not significantly
(t(36) = 1.5, p = 0.134). Overall, participants were reasonably sensitive to the typicality
structure of the categories, a necessary prerequisite for a premise typicality effect.
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Figure 20. Average accuracy as proportion correct for classification testing trials in Experiment
4, grouped by trial type--typical = green, ordinary = yellow, atypical = red--see Table 2. The

dashed line is a reference for two-option chance responding. Error bars show +1 standard error.
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Despite sensitivity to the typicality structure, there was no effect of premise typicality,
see Figure 21, for the generalized premise typicality tests (t(36) = 0.1, p = 0.891) or for the
ordinary premise typicality tests (t(36) = 0.9, p = 0.378). Participants showed no preference for
responding with the hidden feature attached to the typical instance compared to the hidden
feature attached to the atypical instance.
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Figure 21. Average proportion of typical hidden feature responding averaged over type of
premise typicality trial (Table 3) in Experiment 4. The dashed line is a reference for two-option
chance responding. Error bars show %1 standard error.

Clarifying the lack of premise typicality, the hidden feature inference trials, Figure 22
middle bar, showed that the hidden feature attachment to the typical and atypical instances was
poor (t(36) = 0.3, p = 0.758). However, classification testing performance was good (t(36) =
15.9, p < 0.001) as was the accuracy for the exception feature inference trials (t(36) = 6.2, p <
0.001), see Figure 22. This suggests that participants were attending to the category labels and
non-hidden features but not the hidden features despite their clear presence in the category
summary, Figure 17. Lack of attending to the hidden features may have resulted in their not
being accurately attached to the typical and atypical instances and this attachment is a necessary
prerequisite for a premise typicality effect in terms of having a basis for preferring the typical

hidden feature over the atypical.
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Figure 22. Average accuracy as proportion correct for classification, hidden feature inference
and exception feature inference testing trials in Experiment 4, grouped by trial type, see Table
3. The dashed line is a reference for two-option chance responding. Error bars show +1 standard
error.

Despite the lack of premise typicality, as explained by an apparent lack of hidden
feature attachment, premise typicality like effects occurred in terms of a preference for the
typical over the atypical hidden feature. Specifically, premise conclusion similarity trials,
Figure 23 left bar, showed significantly more typical hidden feature responding than atypical
(t(36) = 3.6, p = 0.001). Whilst this appears to show premise typicality as a preference for the
typical hidden feature, this result is confounded with a difference in similarity in terms of
greater similarity to the typical instance than the atypical. Participants were able to respond
preferentially with the typical hidden features, when the test item was more similar to the
typical than the atypical instance but nonetheless did not show premise typicality when the test
item was equal similar, Figure 21. Premise conclusion similarity shows that participants
processed and knew something about the hidden features, but strangely this didn’t extent to
correctly attaching them to the typical and atypical instances on the hidden feature inference
trials or to generalizing them to show premise typicality. The blank feature inference trials
resulted in another premise typicality like effect, Figure 23 right bar, where there was a

significant preference for the more typical hidden feature (t(36) = 3.2, p = 0.003) despite the
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presence of only the category label in the testing item. Overall, when the test item was equally
similar to the typical and atypical instances, this did not result in a premise typicality effect,
Figure 21; however, premise typicality like effects occurred, apparently based on the category

label alone and on the basis of similarity rather than typicality.

Premise Conclusion Blank Feature
Similarity Inference

Trial Type

Figure 23. Average proportion typical hidden feature responding for premise conclusion
similarity and blank feature inference testing trials in Experiment 4, grouped by trial type, see
Table 3. The dashed line is a reference for two-option chance responding. Error bars show +1

standard error.
3.2.4. Discussion

In this experiment, participants showed poor performance on attaching the hidden
features to the typical and atypical instances despite the correct answers being clearly present
in the category summary. This failure to accurately attach the hidden features to the typical and
atypical category instances is a plausible reason for the lack of a premise typicality effect
despite the fact that they did seem to know something about these features based on the results
of the premise conclusion similarity trials. Nevertheless, participants could not apparently
generalize these hidden features to new instances based on typicality on the key premise
typicality tests. One possible explanation for the lack of hidden feature attachment is that there

were many testing trials without clear correct answers, and this may have induced
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disengagement with the category summary and guessing. In particular, on the generalized
classification trials there were no instances in the category summary that perfectly matched the
testing items and this block occurred immediately before the key generalized tests of premise
typicality. So, the lack of a sense of giving correct answers based on the lack of clearly
matching cases in the category summary may have caused participants to stop engaging with
the category summary and start guessing. In order to address this, the next experiment added

more trials with clear correct answers.
3.3. Experiment 5
3.3.1. Introduction

Experiment 5 added trials within and between blocks that had a clear correct answer
based on the category summary to maintain participants’ engagement with the summary. This
included adding tests of hidden feature attachment intermixed with the key tests, particularly
of premise typicality, as well as three additional classification with hidden features testing
blocks. These additions minimized the occurrence of long sequences of trials without clear
correct answers. These changes were intended to maintain the participants’ attention to the
details of the category summary and facilitate better attachment of the hidden features to the
typical and atypical instances as a prerequisite for testing premise typicality. Additionally, this
experiment added tests of some common categorical induction effects from the classic verbal
paradigm, e.g. ‘Sparrows have property X Therefore Geese have property X’ (example taken
from Hayes et al., 2010) at the end of the experiment to ensure that these effects, particularly

premise typicality, actually occur in this participant population, see Appendix E.
3.3.2. Materials and Methods
3.3.2.1. Participants

48 Cardiff University students participated for payment or course credit.
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3.3.2.2. Materials and Procedure

This experiment differed from the last experiment in terms of adding the four trials that
tested hidden feature attachment (Appendix B) to the blocks testing generalized and ordinary
premise typicality as well as in the blocks testing premise conclusion similarity and hidden
feature inference. Similarly, this experiment added three classification blocks of category
instance tests that also had clear correct answers as specific instances in the category summary.
The classification blocks occurred before and after the first two premise typicality blocks and
after the ambiguous and exception feature inference trial block. To further this, a second block
of generalized classification, see Appendix B, occurred with the hidden features present in the
category summary and both blocks of generalized classification were moved to the end of
testing, thus reducing the number of trials testing an instance without clear correct answers in
the category summary before the key tests of premise typicality.

Additionally, this experiment made two minor design changes. First, participants
responded via mouse clicking images of the relevant feature/word rather than by pressing
buttons on a keyboard as in the prior experiment, and button pressing practice trials were
eliminated. Secondly, the experiment changed the trial ordering such that ordinary premise
typicality trials occurred before generalized premise typicality trials.

The end of the experiment had 10 classic paradigm categorical induction effect
questions using real-world categories that tested premise typicality, conclusion typicality,
premise diversity, the inclusion fallacy and premise specificity. These were not based on the
perceptual rocket ship stimuli, rather they were representative tests of the classic effect in the
standard categorical induction paradigm, taken from Hayes et al. (2010), see Appendix E. The
key effect of premise typicality was measured by the difference in likelihood ratings between
arguments based on a typical and atypical premise. In the standard effect, the typical premise

should be rated a more likely basis for an argument than the atypical premise.
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3.3.3. Results

The classification test results, Figure 24, show a typicality effect in that accuracy
significantly increased with typicality (F(2,141) = 18.7, p < 0.001). The typical instance
accuracy was significantly higher than ordinary instance accuracy (t(47) = 7.4, p <0.001), and
ordinary instance accuracy was significantly higher than atypical instance accuracy (t(47) =
3.9, p <0.001). This suggests that participants were sensitive to the typicality structure of the
categories.
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Figure 24. Averaged accuracy as proportion correct for all classification testing trials in
Experiment 5, grouped by trial type--typical = green, ordinary = yellow, atypical = red--see
Table 2. The dashed line is a reference for two-option chance responding. Error bars show 1
standard error.

Fixing the key lack of hidden feature attachment in the previous experiment, the current
hidden feature inference trials, see Figure 25 middle bar, showed good, significant attachment
of the hidden features to the typical and atypical instances (t(47) = 22.4, p < 0.001).
Additionally, classification performance across all testing blocks was good (t(47) = 16.2, p <
0.001) as was exception feature inference performance (t(47) = 12.8, p < 0.001), see Figure 25.
Keeping in mind that the category summary was present on the screen for all testing trials,

participants accurately used the summary to classify the instances and attach non-hidden and
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hidden features to the instances. Overall this shows engagement with the category summary in
terms of good attention to the category label, non-hidden and hidden features, all of which are

conceptually necessary for premise typicality.
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Figure 25. Average accuracy as proportion correct for classification, hidden feature inference
and exception feature inference testing trials in Experiment 5, grouped by trial type, see Table
3. The dashed line is a reference for two-option chance responding. Error bars show +1 standard
error.

Despite strong attachment of the hidden features, no premise typicality occurred, see
Figure 26, on the generalized premise typicality trials (t(47) = 1.0, p = 0.312) or on the ordinary
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Figure 26. Average proportion of typical hidden feature responding averaged over type of
premise typicality trial (Table 3) in Experiment 5. The dashed line is a reference for two-option

chance responding. Error bars show +1 standard error.
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premise typicality trials (t(47) = 1.9, p = 0.067, note: this is in the direction of atypicality not
typicality). Participants showed no preference for generalizing the hidden feature attached to
the typical instance compared to the atypical instance.

To clarify the strategy used by each participant, error diagrams (similar to those in
Chapter 2, Figure 14) show all individual participant responses to classification tests of the
summary instances, see Figure 27. White ‘dots’ represent correct answers on individual trials
and black dots represent incorrect answers. Each rectangle is made up of 12 columns which
specify the classification trials for all 12 summary category instances (ordered as in Table 2)
and four rows which indicate performance on each instance over the four classification testing
blocks. The first column of four rectangles labelled, ‘Examples’, indicates the pattern of
responding consistent with a rule on dimensions one through four respectively e.g. a rule on
dimension one would be ‘a 1 feature on dimension one means the instance belongs to category
A, a 3 feature on dimension one means the instance belongs to category B’. Using this rule
corresponds to errors on instances A3111 and B1333, see Table 2, and these exceptions to the
rule can be seen as vertical black lines of errors in the diagrams. Subsequent columns of
rectangles represent participants grouped by performance. The first grouping has participants
that responded consistent with one of the four dimensional rules, the second grouping has
participants with good overall accuracy, and the third grouping has participants whose
responding did not correspond to either of the other groups.

There were two dominant modes of responding, the largest group of participants were
responding with high accuracy, 44% of participants, the second largest group were apparently
using a dimensional rule, 29% of participants. The other group of participants were using a
variety of apparent strategies such as guessing and strategies that resulted in idiosyncratic

errors. Thus, of the participants who were engaged with the task, a non-trivial number were
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Figure 27. Error diagrams showing performance of each individual participant over
classification testing trials for the category summary instances in Experiment 5. Instances are
arranged in columns (ordered as in Table 2) and testing blocks are arranged in rows. See main
text for details. Black dots = incorrect answers, white ‘dots’ = correct answers. The ‘Examples’
grouping shows error patterns corresponding to unidimensional rules in order with a dimension
one rule at the top and a dimension four rule at the bottom. The ‘rules’ grouping has apparent
suboptimal dimensional rule users, the ‘good’ group includes high accuracy performers and the

‘other’ group has the remaining participants that used various other strategies.
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responding consistent with the use of dimensional rules, implying a failure to attend to other
features not relevant to their rule and possibly a failure to perceive the typicality structure. If
participants did not notice or fully appreciate that the typical instance was more typical than
the atypical instance, but rather just classified both typical and atypical instances using a
unidimensional rule, then the premise typicality tests may not actually have been a test of
premise typicality at all. So, the apparent typicality effects reported above could potentially
have been partially due to combining differences in rule use across participants, discussed in
detail below.

Classic categorical induction tests based on real categories, Figure 28, showed a
significant effect of premise typicality based on a difference in rated argument strength for the
typical premise greater than the atypical premise (t(47) = 4.7, p < 0.001). This replication of
the classic paradigm premise typicality effect suggests that the failure to find premise typicality

in the perceptual paradigm was not due to a defect in the participant population.
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Figure 28. Average argument likelihood ratings for classic paradigm premise typicality testing
trials in Experiment 5. Error bars show +1 standard error.

For the blank feature inference trials, a premise typicality like effect occurred in the
previous experiment, Figure 23, however this effect did not occur in the current results, Figure
29 right bar; there was not a significant preference for responding with the more typical hidden

feature (t(47) = 1.4, p = 0.182) corresponding to a lack of a premise typicality like effect when
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only the category label was presented on a testing trial. So, this experiment did not replicate
the premise typicality like effect from the last experiment (Experiment 4).

Despite the lack of premise typicality, a premise typicality like effect occurred in terms
of a preference for the typical hidden feature over the atypical hidden feature on the premise
conclusion similarity trials, Figure 29 left bar, which resulted in significantly more typical
hidden feature responding than atypical (t(47) = 20.7, p < 0.001). So, a premise typicality like
effect occurred but likely as a result of a difference in similarity i.e. the test item was more
similar to the typical instance than the atypical one. In contrast, when the similarity of the test
item to the typical and atypical instances was the same in the premise typicality tests, see Figure
26, participants did not show a preference for the hidden feature associated with the typical

instance over the hidden feature associated with the atypical instance.
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Figure 29. Average proportion typical responding for premise conclusion similarity and blank
feature inference testing trials, see Table 3, in Experiment 5, grouped by trial type. The dashed

line is a reference for two-option chance responding. Error bars show £1 standard error.
3.3.4. Discussion

Accuracy was high across the classification testing blocks, but the results also indicated
a strong typicality effect as differences in accuracy between the typical, ordinary and atypical
instances. Further, participants accurately attached the hidden features to the typical and
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atypical instances. However, there was still no effect of premise typicality in the perceptual
categorization paradigm despite replicating the classic premise typicality effect based on a
written statement such as, ‘Sparrows have property X Therefore Geese have property X’
(Hayes et al., 2010).

The error diagrams, see Figure 27, show that, despite reasonably high average accuracy,
a substantial proportion of participants were not accurately classifying all the category
instances despite those instances being unambiguously present in the category summary that
was always available. Additionally, a nontrivial subset of participants were apparently using
suboptimal dimensional rules. This suggests that even mixing in trials with clear correct
answers was not enough for the majority of participants to process the category summary
sufficiently to do even basic classification. So, while there were “clear” correct answers in the
category summary, an obvious reason for these errors was that participants did not receive
explicit feedback so the correct answers may not have actually been all that clear for these
trials. This suggests including trials which require participants to respond on all dimensions to
reduce the effect of ignoring features and dimensions that apparently occurred with

unidimensional rule use and also suggests providing explicit feedback.
3.4. Experiment 6
3.4.1. Introduction

The evidence of unidimensional rule use for the classification of instances by a subset
of participants in the previous experiment is not consistent with a clear appreciation of the
category typicality structure and may even indicate that participants were only actually
attending to a single feature dimension of the stimuli. Importantly, rule-based performance can
give rise to a pseudo-typicality effect as a result of averaging across participants without
individual participants having any understanding of the typicality structure. Stated abstractly,

a rule chosen on the basis that a 1 on a dimension belongs to category A and a 3 belongs to
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category B will correspond to accurate classification of the typical instances, Table 2. However,
each unidimensional rule will cause errors in classifying two ordinary instances, somewhat
reducing accuracy for these compared to the typical instances. And two out of the four
unidimensional rules will cause additional errors on the atypical instances, reducing accuracy
even further compared to the typical instances. Therefore, an apparent typicality effect can
occur even if all participants were classifying instances based on unidimensional rules. So
again, a key prerequisite for the premise typicality effect is that participants realize that the
typical instance is more typical than the atypical instance in order to generalize the typical
hidden feature more than the atypical.

Regehr and Brooks (1995) found that the use of a category summary produced single
dimensional sorting in categories which is equivalent to unidimensional rule use in a decision-
making task. Lassaline and Murphy (1996) found that a way to encourage family resemblance
sorting (and therefore encourage an understanding of typicality) was to have participants
undergo a task before sorting that facilitated an understanding of the relationship between
instances and features. They used perceptual bug stimuli with eight dimensions and either had
participants make inferences that emphasized the properties shared between features or make
frequency estimates of features which did not encourage this understanding. They found that
making feature inferences before a sort encouraged family resemblance sorting compared to
those who made frequency judgements or no judgements before the sort. At minimum, this
suggests that feature inferences are a good way to get participants to attend to all of the features
in the category instances.

Spalding and Ross (1994) showed that a comparison-based learning task presented
initially can impact what is learned in a later task by focusing participants on features that were
consistent in the earlier comparisons. This has arguably been the case for Experiments 4 and 5

of the current research, where initial classification decision-making comparisons have focused
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participants attempting to use rules on whichever of the stimulus dimensions was perceived as
more salient as a basis for their rule. A widely found preference for unidimensional rule sorting
(Medin, Wattenmaker, & Hampson, 1987) may manifest as a preference to look for
unidimensional rules. However, an initial comparison task that forces attention to multiple
dimensions, should reduce the preference for unidimensional rules and reduce the number of
participants showing a typicality effect without understanding the typicality structure, which
should strengthen the basis for premise typicality.

To encourage participants to use all of the feature dimensions in premise typicality
decision-making, the present experiment first presented a feedback learning task based on the
category summary, including feature inference trials which forced attention to each feature
dimension in turn. This additional experience with the category structure was intended to
enhance the perception of similarities between instances and features within a category and
therefore result in better appreciation of the typicality structure across dimensions, as

manifested by reduced dimensional rule use.
3.4.2. Materials and Methods
3.4.2.1. Participants
48 Cardiff University students participated for payment or course credit.
3.4.2.2. Materials and Procedure

The main change in this experiment was the addition of feedback on a series of training
trials with the category summary present, before the testing trials. This summary learning task
was based on the eight ordinary category instances in Table 2 (excluding the typical and
atypical instances for each category) and included eight classification trials and 32 feature
inference trials. Each individual feature of the included instances was queried, and participants
received feedback for both the classification and feature inference trials. Participants could
look at each feedback screen for as long as they wanted and left-clicked the mouse to continue
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to the next trial. The eight instances were included as all features of those instances can be
unambiguously inferred (when the typical and atypical instances are excluded) and only these
eight instances were present in the category summary on the screen during the feedback
learning phase. After this the participants completed the same key decision-making tests as in
Experiment 5 and also the classic paradigm tests of standard effects including premise
typicality questions at the end of the experiment. Finally, the category labels were reduced from
two syllables (dreton/rilbar in Experiment 5) to one syllable, ‘thab/lork’ to make them easier

to remember. All other aspects of the experiment were the same as in Experiment 5.
3.4.3. Results

Overall accuracy on the summary learning trials, see Figure 30 first bar, was reasonably
good (t(47) = 11.1, p < 0.001), suggesting that participants were attending reasonably well to
all of the feature dimensions and instances. The summary learning classification trials showed
good performance, Figure 30 second bar (t(47) = 9.7, p < 0.001), but all had the same typicality
as only the ordinary instances were present in the summary at this point in the experiment. The
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Figure 30. Average accuracy as proportion correct averaged across all learning trials (all data
=dark blue), across classification trials (classification = light blue) and averaged across all four
blocks of feature inference training trials grouped by trial type (typical = green, atypical = red)
for Experiment 6. The dashed line is a reference for two-option chance responding. Error bars

show =1 standard error.
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feature inferences were on features that were typical of the category (a ‘1’ feature for category
A and a ‘3’ feature for category B) or atypical of the category (a ‘3’ feature for category A and
a ‘1’ feature for category B). Participants were significantly more accurate on typical feature
inferences than atypical feature inferences (t(47) = 6.1, p < 0.001) and thus showed an effect
of typicality across multiple dimensions, see Figure 30.

The classification test results for the ordinary, typical and atypical instances were
without feedback and show, Figure 31, a typicality effect as accuracy increased with typicality
(F(2,141) = 7.9, p = 0.001). There was a non-significant trend for typical instance accuracy to
be higher than ordinary instance accuracy (t(47) = 1.2, p = 0.246), and ordinary instance
accuracy was significantly higher than atypical instance accuracy (t(47) = 4.1, p <0.001). The
feature inference feedback trials and the classification testing trials show sensitivity to the
typicality structure of the category across dimensions, fixing the apparent issue in the previous
experiment that some participants were seemingly attending to only one dimension as indicated
by the error diagrams, see Figure 27.
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Figure 31. Averaged accuracy as proportion correct averaged across all blocks of classification
testing trials, see Table 2, for Experiment 6, grouped by trial type--typical = green, ordinary =
yellow, atypical = red. The dashed line is a reference for two-option chance responding. Error

bars show *1 standard error.
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Confirming this reduction in dimensional rule use, the error diagrams (explained on p.
81) in the current experiment showed only 6% of participants using rules, see Figure 32. This
suggests that the typicality results were not due to apparent rule users giving typicality like
responses without sensitivity to the typicality structure. So, a potential reason for the lack of
premise typicality in the prior experiment was eliminated in this experiment.

The hidden feature inference trials, see Figure 33 middle bar, showed good attachment
of the hidden features to the typical and atypical instances (t(47) = 13.0, p < 0.001), maintaining
the high levels of attachment demonstrated in Experiment 5. Additionally, classification
performance, see Figure 33 left bar, across all testing blocks was good (t(47) = 14.3, p <0.001)
as was the exception feature inference (t(47) = 7.8, p < 0.001), see Figure 33 right bar. Keeping
in mind that the category summary was present on the screen for all testing trials, participants
showed high levels of engagement with the category summary particularly as high accuracy in
attaching the hidden features to the typical and atypical instances. Again, this is a key
prerequisite for a premise typicality effect.

Despite good attachment of the hidden features to the typical and atypical instances and
sensitivity to the typicality structure of the category, no premise typicality occurred, see Figure
34, on generalized premise typicality trials (t(47) = 0.4, p = 0.681) or ordinary premise
typicality trials (t(47) = 0, p = 1, note that the average proportion was literally 0.50).
Participants showed no preference for generalizing the hidden feature from the typical instance
compared to the atypical instance when similarity of the test instance to the typical and atypical

instances was the same.
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Figure 32. Error diagrams showing performance of each individual participant over
classification testing trials for the category summary instances in Experiment 6. Instances are
arranged in columns (ordered as in Table 2) and testing blocks are arranged in rows. See main
text for details. Black dots = incorrect answers, white ‘dots’ = correct answers. Error patterns
in the ‘Examples’ grouping correspond to unidimensional rules, shown in order with a
dimension one rule at the top and dimension four rule at the bottom. The ‘rules’ grouping has
apparent suboptimal dimensional rule users, the ‘good’ group includes high accuracy
performers and the ‘other’ group has the remaining participants that used various other

strategies.
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Figure 33. Average accuracy as proportion correct for the classification, hidden feature
inference and exception feature inference testing trials, see Table 3, in Experiment 6. The
dashed line is a reference for two-option chance responding. Error bars show +1 standard error.
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Figure 34. Average proportion of typical hidden feature responding averaged over type of
premise typicality trial (Table 3) in Experiment 6. The dashed line is a reference for two-option
chance responding. Error bars show %1 standard error.

The classic paradigm tests of premise typicality, Figure 35, showed a significant effect
of premise typicality based on a difference in rated argument strength for the typical premise
greater than the atypical premise (t(47) = 2.5, p = 0.014). This replicates the classic paradigm
effect, further confirming the conclusion that the failure to find this effect in the perceptual

paradigm was not due to a defect in the participant population.
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Figure 35. Averaged argument likelihood ratings for classic paradigm premise typicality

testing trials in Experiment 6. Error bars show 1 standard error.

Consistent with the lack of premise typicality, the blank feature inference trials, Figure

36 right bar, showed no premise typicality like effect (t(47) = 1.1, p = 0.280). However, a

premise typicality like effect occurred on the premise conclusion similarity trials, Figure 36 left

bar, which had significantly more typical hidden feature responding than atypical (t(47) = 5.6,

p < 0.001). As in the previous experiment, this shows a premise typicality like effect in which

similarity was confounded with typicality. However, when the test item was equally similar to

the typical and atypical instances, participants showed no premise typicality effect, Figure 34.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Proportion Typical Responding

Premise Conclusion Blank Feature
Similarity Inference
Trial Type

Figure 36. Average proportion typical responding for premise conclusion similarity and blank

feature inference testing trials, see Table 3, grouped by trial type in Experiment 6. The dashed

line is a reference for two-option chance responding. Error bars show x1 standard error.
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3.4.4. Discussion

In this experiment accuracy was high across the summary learning task and across
multiple classification testing blocks. Additionally, high accuracy on the typical testing items
compared to the atypical items showed an effect of typicality validated by the relative absence
of apparent dimensional rule users. Further, participants accurately attached the hidden features
to the typical and atypical instances. However, there was no effect of premise typicality despite
an effect being found in the classic paradigm categorical induction task.

Regehr and Brooks (1995) found that the use of a category summary encourages
unidimensional rule use, and Medin et al. (1987) reported a preference among participants to
use unidimensional rules in sorting based decision-making tasks. However, as Lassaline and
Murphy (1996) suggested, this experiment included a task before decision-making which
encouraged a focus on more feature dimensions and unidimensional rule use declined.
Similarly, the current results are consistent with those of Spalding and Ross (1994) which
suggested that an initial comparison-based learning task can influence later performance as the
introduction of the summary learning task in this experiment reduced the number of rule users.
Overall, the inclusion of the summary learning task had the desired effects in terms of
encouraging participants to attend to all feature dimensions and reducing unidimensional rule
use; however, the current findings suggest that rule use was not the basis for the lack of the

premise typicality effect.
3.5. General Discussion

Experiment 4 employed a basic summary decision-making task to test premise
typicality. Whilst participants were able to correctly classify category instances and were
apparently sensitive to the typicality of the structure and to similarity effects, participants did
not correctly attach the hidden features to the typical and atypical instances and did not show

premise typicality. Experiment 5 remedied this with the inclusion of more intermixed trials that
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had clear correct answers in the category summary to motivate participants to continue using
the summary even after tests on items with no perfectly matching correct answers in the
summary. This manipulation was successful, and participants on average attached the hidden
features to the typical and atypical instances accurately. However, they were not able to
generalize this to use the typical hidden feature more than the atypical hidden feature and did
not show an effect of premise typicality. However, the error diagrams indicated quite a few
participants who apparently used unidimensional rules. As previously described (pp. 85-86),
participants using unidimensional rules to make classification decisions can produce pseudo-
typicality: a pattern of responding that looks like a typicality effect but in the absence of any
appreciation of typicality. To reduce dimensional rule use, Experiment 6 used a feedback
learning task based on the category summary before the decision-making task to ensure that
participants focused on all non-hidden feature dimensions, by querying features on each
dimension before the critical premise typicality trials. This is in contrast to participants
potentially attending to only one dimension when using a unidimensional rule. Again,
participants correctly classified the category summary instances and showed typicality effects
with very little evidence of dimensional rule use. Further, participants were accurate in
attaching the hidden features to the typical and atypical instances, however there was still no
evidence of premise typicality.

The error diagrams for Experiment 5 suggested that roughly a third of participants were
using rules, a third were using a strategy such as overall similarity that allows perfect
performance, and some were responding randomly. This is consistent with the findings of Little
and McDaniel (2015) who found that participants differentially used rules or memorization
strategies on the same task, and in particular, some used perceptual similarity for ambiguous
items. This shows individual differences in categorization strategy across participants. Pothos

(2005) argued that rules and similarity are on a continuum in which using rules equates to using
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similarity on the basis of a restricted set of features. The participants in the current experiments
had the category summary available when responding and therefore had at least the potential
to compare a testing instance to other instances and to multiple features in the category
summary. The extent to which this occurs can be argued to depend on the level of experience
participants have with the category summary and all of its components. Those that had less
experience (potentially due to limited desire to attend) may have used a single dimension-based
strategy and those who were more engaged, that is, more experienced (due to higher levels of
attending) may have used more features. This is consistent with the groupings of participants
in the error diagrams and suggests that with an increase in experience participants can be
encouraged to reduce their attention to single dimensions and reduce attempted dimensional
rule use as was seen in Experiment 6.

Further, Johansen and Palmeri (2002) found that the strategy for classifying instances
can change over the course of an experiment from dimensional rule use initially to responding
based on multiple dimensions with experience. Therefore, experience could be what allows
participants to stop using unidimensional rules and attend to all dimensions. Participants who
lack the opportunity (or motivation) to gain enough experience of the category structure may
not make this change. The inclusion of summary learning trials with feedback resulting in less
rule use in Experiment 6 also supports this idea and suggests that a more in-depth learning task
might be sufficient to produce a premise typicality effect, as evaluated in the next chapter.

To summarize, there are certain minimal performance requirements for a perceptual
categorization task testing premise typicality that need to be met, as the absence of any of these
prerequisites constitutes a plausible explanation for the lack of premise typicality. | argue that
there are three such prerequisites and discuss a fourth, the lack of internal category
representation, which may be the explanation for the lack of premise typicality in Experiments

4-6. First, participants must have the ability to correctly categorize the category instances as
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indicated by high accuracy on the classification testing trials. Second, participants must
demonstrate understanding of the typicality gradient within the category structure as indicated
by, for example, higher accuracy for the typical instances than the atypical instances. This
ensures that when participants generalize a feature, they at least have the potential to understand
that the typical instance is better for such generalization than the atypical instance. Thirdly,
they must correctly attach the hidden features to both the typical and atypical instances as
indicated by high accuracy on the hidden feature inference trials. Without this, participants may
be aware that one instance is more typical than another, and so is potentially better for the
generalization of hidden features, but not know what that hidden feature is.

In Experiments 5 and 6 all three prerequisites were met and yet premise typicality did
not occur. For this reason, | pose a fourth prerequisite as a possible requirement: a strong
internal mental representation of the categories. This is in contrast to the category summary
used in the current experiments which is an external representation of the categories. If the
internal representation of the categories is developed by a full learning task, this has the
potential to strengthen the participants’ natural understanding of a category’s typicality
structure, allowing them to infer hidden features consistent with that structure. This aligns
closely to the well-known demonstrations of premise typicality in the classic paradigm version
of categorical induction as in that domain the categories used are real-world, well known

categories such as bird or mammal with representations that are definitely internal.
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Chapter Four - Premise Typicality as Feature Inference Decision-Making following
Classification Learning

4.1. General Introduction

Perceptual learning is a basic cognitive skill required for everyday functioning in the
world. Many studies (e.g. Ashby & Gott, 1988; McKinley & Nosofsky, 1995; Medin &
Schaffer, 1978; Shephard et al., 1961; Yamauchi & Markman, 1998; Yamauchi et al., 2002;
etc.) have used carefully designed category structures in the perceptual learning paradigm to
draw conclusions about category representation. For example, Medin and Schaffer (1978)
concluded that people represent categories by storing instances/exemplars and Shepard et al.
(1961) concluded that people use rules, as discussed in Chapter 2. The present experiments
were based on a variant of the family resemblance category structure (Rosch & Mervis, 1975)
used in Experiments 4-6 (Chapter 3) where the instances varied in typicality with a highly
typical prototype, four ordinary instances each with one prototype inconsistent feature, and an
atypical instance with two prototype inconsistent features.

Experiments 4-6 (Chapter 3) evaluated premise typicality via decision-making and via
a learning task based on the external summary representation of family resemblance categories
(Figure 17 and Table 2 in Chapter 3). Premise typicality did not occur in any of these tasks,
possibly due to the use of the external representation and the absence of a fully internalized
representation of the categories, analogous to the internal category representations in the classic
categorical induction paradigm, e.g. for categories such as robins and sparrows, etc.

Given that premise typicality is measured via hidden feature inferences, one possible
learning approach to producing a fully internalized representation is feature inference learning.
However, Sweller and Hayes (2010) showed that feature inference learning of both typical and
atypical features is difficult and unreported data | have collected showed that almost no

participants were able to learn this category structure by feature inference of instance features.
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Further, Jee and Wiley (2014) found that classification learning allowed a better understanding
of the typical and atypical features within a category than feature inference learning. This
suggests that classification learning is a reasonable approach to generating a sense of instance
typicality.

Chapter 3 (pp. 96-97) identified four prerequisites, the absence of any of which could
provide a reason for the observed absence of premise typicality. As such, these prerequisites
needed to be met for the current tests to be a legitimate assessment of the presence or absence
of a premise typicality effect in this paradigm. The first is accurate classification testing
performance. In the summary decision-making task, failing to accurately classify the instances
in the summary likely indicated a lack of engagement with the summary as the task wasn’t
particularly difficult. Participants could satisfy the easy requirement of accurately classifying
the instances in the summary without internally representing the categories. Without the
category summary the task presumably becomes harder; however, accurate classification
performance would imply a strong internal category representation which provides a basis for
appreciating the typicality structure and therefore a basis for preferring the typical hidden
feature in the key premise typicality test.

The second prerequisite is appreciation of the typicality structure of the categories as
indicated by a typicality effect, for example, higher accuracy for the typical category instance
than for the atypical instance. This appreciation of the typicality structure in the category
potentially allows a realization that some instances are a better basis for generalizing hidden
features than others. If participants don’t perceive that some instances are more typical than
others then a preference for one hidden feature over the other cannot be based on typicality, a
defining precondition for evaluating premise typicality. On the one hand, the external category

summary seems particularly conducive to noticing which features are typical, but on the other,
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forgetting and interference between category instances internally in memory may be necessary
to foster a sense of typicality.

The third prerequisite is the accurate attachment of the hidden features to their
respective typical and atypical instances. If participants cannot accurately identify the hidden
features associated with the typical and atypical instances, then they have no basis in typicality
for preferring the typical hidden feature over the atypical on a test of premise typicality. When
the categories are externally represented in a summary, then a failure to accurately attach a
hidden feature to a typical or atypical instance is likely due to a lack of engagement as the
feature is visually associated with only one instance. Attachment of the hidden features is more
challenging to represent internally for some types of representation but is still a necessary
methodological prerequisite before asking about a preference for the typical hidden feature
over the atypical on a test of premise typicality.

After the failure to find premise typicality in decision-making tasks based on a category
summary, these three prerequisites converge to one potentially fundamental prerequisite: the
internal representation of the categories. Specifically, a category may need to be learned and
mentally represented internally, as are the categories in the classic categorical induction
paradigm, e.g. robins, to fully appreciate the typicality structure they have. The perceptual
category learning paradigm has been widely shown to generate fully internalized category
representations that produce category typicality effects (Light et al., 1979; Lin et al., 1990;
McCloskey & Glucksberg, 1978; Medin & Schaffer, 1978; Nosofsky, 1988; Rosch & Mervis,
1975; Rosch et al., 1976; Rothbart & Lewis, 1988; Spalding & Murphy, 1999; etc.) and as
such, perceptual learning tasks should produce analogues of premise typicality. The following
two experiments were designed to satisfy the fourth prerequisite in terms of producing a fully

internalized category representation while continuing to satisfy the first three prerequisites.
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4.2. Experiment 7
4.2.1. Introduction

The purpose of this experiment was to use feedback learning of category instances
across a series of trials to produce a fully internalized representation of the family resemblance
category structure, see Table 2 in Chapter 3, before the key test of premise typicality. Premise
typicality was tested by querying hidden features and is described in detail in Chapter 3 (p. 66).
To highlight the typicality structure in the categories, this experiment included a phased
introduction of the typical and atypical instances. The ordinary category instances were
introduced first in early learning blocks, followed by blocks of the typical and atypical
instances with their hidden features. This was intended to sharply distinguish the typical and
atypical instances from the ordinary instances and highlight the attachment of the hidden

features to those instances.
4.2.2. Materials and Methods
4.2.2.1. Participants

48 Cardiff University students participated for course credit or payment.
4.2.2.2. Materials and Procedure

The learning phase in this experiment eliminated the category summary from
Experiment 6 and instead presented a series of classification trials with feedback. The learning
task introduced instances in the category structure in a phased way with just the ordinary
category instances (excluding the typical and atypical instances) in the first 20 blocks (160
trials) followed by 20 blocks (80 trials) of just the typical and atypical instances with their
hidden features.

The testing phase added an extra block each of the ordinary and generalized premise

typicality trials and all the premise typicality testing blocks also included tests of hidden feature
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attachment for the typical and atypical instances. Additionally, two blocks of classification
testing trials were removed as participants no longer needed the additional trial blocks that
fostered interaction with the category summary as the category summary was eliminated. All
other aspects of the experiment were the same as in Experiment 6 (though see Appendix B for

minor changes to one block of generalized classification trials).
4.2.3. Results

Average accuracy in the first 20 blocks of the learning phase, the orange line Figure 37,
was not particularly good at 68% correct. As such, a post data collection criterion was imposed
of greater than 75% correct over the last 4 blocks of ordinary instance learning, i.e. over blocks
17-20, blue line Figure 37, and the resulting average performance in those blocks was 94%
correct. 15 participants met this criterion; so, about a third of participants learned the task well.
Only these criterion data are considered in subsequent analyses with the exception of the tests

of premise typicality and the error diagrams.
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Figure 37. Average accuracy as proportion correct across all learning blocks with all data as
orange lines and criterion data (75% or greater correct in blocks 17-20) as blue lines for
Experiment 7. Blocks 1-20 were ordinary instance classification learning trials and blocks 21-
40 were typical/atypical instance classification learning trials. The two learning phase learning
curves are separated by a break in the lines. The dashed line is a reference for two-option chance

responding. Error bars show £1 standard error.
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The classification learning results, blocks 1-40 in Figure 38, show an initial typicality
effect as significantly higher accuracy on the typical than the atypical instances in blocks 21-
24 (t(14) = 3.2, p=0.006). While ordinary instance accuracy was significantly lower than both
the typical instances, (t(14) = 8.8, p < 0.001) and the atypical instances, (t(14) =5.7, p < 0.001),
ordinary instances were trained separately in earlier blocks (1-20). Accuracy remained high in
the first classification testing block, CL1 on the far right in Figure 38, but the drop in accuracy
for the atypical instances in CL2 left overall accuracy on the typical instances significantly
higher than the atypical instances, (t(14) = 4.1, p = 0.001). Overall the phased introduction of
the typical and atypical instances (blocks 21-40) after the ordinary instances (blocks 1-20)
apparently made the atypical instances especially easy to learn, but they were still learned more

slowly than the typical instances, consistent with a typicality effect.
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Figure 38. Averaged accuracy as proportion correct for classification learning in Experiment
7, grouped by trial type--typical = green, ordinary = yellow, atypical = red--see Table 2 in
Chapter 3. Dots on the far right indicate average accuracy in the classification testing blocks,
CL1 and CL2, for different levels of typicality. The dashed line is a reference for two-option

chance responding. Error bars show +1 standard error.
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Overall classification testing performance, combined across all typicality instances,
was good, Figure 39 left bar (t(14) = 26.2, p < 0.001), indicating the persistence of learning
from the training phase. However, accuracy for the hidden feature inference trials was poor,
Figure 39 middle bar (t(14) = 0.9, p = 0.384), suggesting participants did not successfully attach
the typical and atypical hidden features to the typical and atypical category instances.
Exception feature inference was also poor, Figure 39 right bar (t(14) = 0.4, p = 0.709). So,
while participants knew the category structures well enough to classify the instances, including
those with hidden features visible, there was little evidence that they could make accurate
feature inferences, especially of the critical hidden features, a necessary prerequisite for
premise typicality.
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Figure 39. Average accuracy as proportion correct for the classification, hidden feature
inference and exception feature inference testing trials in Experiment 7, grouped by trial type,
see Table 3 in Chapter 3. The dashed line is a reference for two-option chance responding.
Error bars show +1 standard error.

Consistent with the poor attachment of the hidden features, there was no effect of
premise typicality for participants who met the criterion, Figure 40 blue bars, on the generalized
premise typicality tests (t(14) = 0.4, p = 0.683) or the ordinary premise typicality tests (t(14) =
0.7, p = 0.510). There was also no effect of premise typicality for all participants including

those who did not meet the learning criterion, Figure 40 orange bars, on the generalized premise
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typicality tests, (t(47) = 0.3, p = 0.772), or the ordinary premise typicality tests (t(47) = 0.1, p

= 0.930).
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Figure 40. Proportion of typical hidden feature responding averaged over both blocks of each
type of premise typicality testing trial (Chapter 3, Table 3) in Experiment 7. Orange bars = all
data, blue bars = criterion data. The dashed line is a reference for two-option chance

responding. Error bars show £1 standard error.

As in the decision-making experiments in Chapter 3, error diagrams for all participants,
Figure 41, are helpful in identifying participants apparently using dimensional rules as this is
potentially a marker for task difficulty and a tendency to attend to only a subset of dimensions.
The error diagrams here have a somewhat different format than those in the previous chapter
in that rows and columns are swapped (see Chapter 3, p. 81); specifically, each column here
has the results of a single training block, and each row indicates accuracy on a particular
instance. So here, the errors associated with being exceptions to a dimensional rule correspond
to horizontal black lines. In addition, the present diagrams had the added high-level grouping,
‘Good HFs’ containing participants who were reasonably accurate on the typical and atypical
instances with hidden features in blocks 21-40 but not accurate on the ordinary instances in
blocks 1-20. The good performance on both the typical and atypical instances in the absence

of good performance on the ordinary instances suggests that good performance didn’t arise out
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Figure 41. Error diagrams showing performance of each individual participant over all
classification learning trials in blocks 1-40 of Experiment 7. Instances are arranged in rows
(ordered as in Table 2) and learning blocks are arranged in columns. Black dots = incorrect
answers, white ‘dots’ = correct answers. The ‘Examples’ grouping shows error patterns
corresponding to unidimensional rules in order with a dimension one rule at the top and a
dimension four rule at the bottom. The ‘Rules’ grouping has apparent dimensional rule users,
the ‘Good All”’ group includes performers with high accuracy on all trials, the ‘Good HF’ group
includes performers with high accuracy on the typical and atypical instances only and the ‘Poor

Learning’ group has low accuracy performers.
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of an appreciation of the typicality structure. Rather, this good performance may have been
based on a dimension two or three rule which would have allowed perfect performance in
blocks 21-40 as these only included the typical and atypical instances not the ordinary
instances. This allows the rules on dimensions two and three to be perfectly diagnostic. Related
to this, suboptimal, dimensional rule users were the largest group in Figure 41 with 38% of
participants, while the Good HFs learning group were second largest at 31%. Taken together,
this suggests that many participants were using dimensional rules especially in the
typical/atypical phase of learning. As discussed in Chapter 3 (pp. 85-86), averaging across
participants using different dimensional rules can look like a typicality effect even though
individual participants may not have had any appreciation of the typicality structure of the
categories. At minimum, the number of dimensional rule users is symptomatic of task difficulty
and a tendency to not attend to most of the stimulus dimensions which is problematic as the
differences in category instance typicality are specified in terms of most or all of the
dimensions.

The classic paradigm version of premise typicality, Figure 42, resulted in a significant
premise typicality effect with greater likelihood ratings over all participants for the argument
including the typical premise compared to the argument with the atypical premise, (t(47) = 2.0,
p = 0.05). However the effect was not significant for the learning criterion participants, (t(14)
= 0.5, p = 0.655), likely due to the reduction in power from the small number of participants.

In this experiment there were no premise typicality effects, likely due to the lack of
hidden feature attachment to the typical and atypical instances, and similarly there were no
premise typicality like effects on the blank feature inference testing trials, Figure 43 right bar.
There was no significant preference for responding with the typical hidden feature over the
atypical hidden feature, (t(14) = 0.8, p = 0.433). The premise conclusion similarity trials, Figure

43 left bar, produced a trend in terms of a preference for the typical hidden feature over the
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atypical, but unlike the prior results in Experiments 4, 5 and 6 (Chapter 3), this was not

significant, (t(14) = 1.1, p = 0.290).

11

Typical Atypical Typical Atypical
Premise Premise Premise Premise

R e LA = 00 WD

Average Likelihood Rating

All Criterion

Questions

Figure 42. Average argument likelihood ratings for the classic paradigm premise typicality
testing trials in Experiment 7. Orange bars = all data, blue bars = criterion data. Error bars show

+1 standard error.

Premise Conclusion Blank Feature
Similarity Inference
Trial Type

Figure 43. Average proportion typical hidden feature responding for premise conclusion
similarity and blank feature inference testing trials in Experiment 7, grouped by trial type, see
Table 3 in Chapter 3. The dashed line is a reference for two-option chance responding. Error

bars show #1 standard error.
4.2.4. Discussion

This experiment implemented a full learning task to encourage the formation of a fully
internalized category representation (prerequisite 4), before the key tests of premise typicality.

A criterion ensured that only those who learned the task reasonably well were included in the
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testing trial analysis (prerequisite 1, the accurate classification of category instances).
Prerequisite 2 was apparently satisfied in terms of a typicality effect as accuracy on the typical
instances was higher than on the atypical instances. However, this may not have been based on
an actual appreciation of the typicality structure of the category as participants were more
accurate on the atypical instances during learning than the ordinary instances, despite having
more prior training on the ordinary instances. This suggests that participants used dimensional
rules during the second phase of learning as, for example, the rule, ‘an instance that has a 1
feature on dimension 2 is a thab and a 3 feature on dimension 2 is a lork,” allows perfect
performance and therefore higher asymptotic accuracy on the atypical instances than on the
ordinary instances as an artefact of the phased design. Moreover, attempts to use dimensional
rules in phase 2 are consistent with the observed typicality effect in the learning criterion
participants in that early attempts to use rules on dimension one or four by some participants
would accurately classify the typical instances but not the atypical, while a rule on dimension
two or three would accurately classify both. This could give an initial learning decrement in
performance on the atypical instances. The existence of the “Good HF” group in the error
diagrams also supports the occurrence of this strategy in terms of high accuracy on the typical
and atypical instances despite low accuracy on the ordinary instances. The use of such a
dimensional rule in phase 2 does not correspond to participants appreciating the typicality
structure of the categories and does not provide a basis to learn the attachment of the hidden
features to the typical and atypical instances. And this is consistent with the key limitation of
this experiment in terms of the failure to satisfy prerequisite 3 as indicated by the observed lack
of hidden feature attachment in the results. As previously stated, premise typicality cannot be
reasonably assessed unless participants accurately attached the hidden features to the typical
and atypical instances, otherwise they have no basis for preferring one hidden feature over the

other on the key tests of premise typicality. To remedy this, the learning phase in the next
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experiment still introduced the hidden features in a phased way but also continued to train the
ordinary trials into the second learning phase so as to discourage participants from trying to
use a separate strategy for classifying the typical and atypical instances.

The error diagrams suggest that rule use was also a prevalent strategy for learning the
ordinary instances in the first learning phase, yet a further symptom of a tendency to not attend
to all of the stimulus dimensions. A plausible reason that participants use rules is that
unidimensional rules are easy to apply in what is a relatively difficult learning task and use of
these rules produces better than chance performance. This difficulty of learning is indicated by
only 31% of participants reaching the learning criterion of greater than 75% accuracy over the
final four blocks of ordinary instance learning. There are several potential ways to make this
learning task easier. One is to improve the discriminability and verbalizability of the stimuli,
as described in detail in Chapter 2 (pp. 39-40). Kurtz et al. (2013) found that the verbalizability
of the stimuli features and dimensions used in a perceptual learning task impacted the ease of
learning. For example, when a feature dimension consisted of difficult to describe patterns
instead of easy to name solid colours, performance on an Exclusive-Or category structure
suffered due to the difficulty of identifying appropriate words to distinguish the values of the
differing feature dimensions. An additional potential problem with the stimuli in Experiment 7
was that three of the four non-hidden feature dimensions varied based on size such that the
values were all effectively large/small. These descriptors potentially increased the cognitive
capacity needed to distinguish between the feature dimensions and their values because of
descriptor confusability and cross-dimension interference. The participants in Experiment 7
may not have had much cognitive capacity to spare due to this potential confusability of the
feature value descriptors and the requirement for a full internal representation. The next
experiment changed the stimuli to colour, shape and size dimensions so that each feature

dimension and its values could be more easily and uniquely differentiated and described, thus
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facilitating the ease of learning and potentially minimizing the use of suboptimal dimensional

rules.
4.3. Experiment 8
4.3.1. Introduction

To reduce attempts to use rules to classify the typical and atypical instances in the
category structure, Table 2 in Chapter 3, learning in phase 2 was changed to include continued
presentation of the ordinary instances along with the typical and atypical instances. This
inclusion of the ordinary instances meant that there was no longer any perfectly diagnostic rule
that could be applied to the second learning phase.

To encourage participants to learn the attachment of the hidden features, a third learning
phase had hidden feature inference trials for the typical and atypical instances mixed in with
all of the previous classification trials. Additionally, this experiment changed the stimulus
dimensions to make them more verbalizable and less confusable and so, easier to learn. Finally,
this experiment included qualitative questions at the end to determine learning strategy by

asking participants to describe what they used to guide their responding in the task.
4.3.2. Materials and Methods
4.3.2.1. Participants

128 Cardiff University Psychology students participated for course credit.
4.3.2.2. Materials and Procedure

Two stimuli feature dimensions and values were changed, see Figure 44, to improve
learning: the size of the body band was changed to the colour of the body band, blue or green
(and the size was set as the previous ‘short’ value). The size of the booster was changed to the
length of the boosters with feature values of tall and short. Additionally, a second booster was

included and both boosters were the previous ‘large’ size value. The wing size dimension with
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wide/narrow feature values, the cone shape dimension with pointed/rounded feature values and

the hidden features remained the same as in the previous experiment.

NN
NN
NN
NN

>

>
N[>

>

AN

4V
7
AN
V4

NN
NN
NN
\NA[D
N>

>
N[>

ADA D V ADAD |

FLlV L L0 2hdh, LL-"L 2o A5 AL. ELLO N

Figure 44. The 16 basic rocket ship stimuli used in Experiment 8, composed of binary features
on four dimensions: nose cone shape (pointed/rounded), body band colour (blue/green), wing
size (wide/narrow) and booster length (tall/short).

As in Experiment 7, participants learned the ordinary category instances first, in blocks
1-5. However, different from Experiment 7, the next blocks, blocks 6-10, had the typical and
atypical instances (without their hidden features) mixed in with the ordinary instances. Finally,
learning blocks 11-15 maintained the inclusion of the ordinary instances and showed the hidden
features attached to the typical and atypical instances on the classification trials as well as
mixing in feature inference trials querying those hidden features.

The testing phase eliminated the continuous generalization, the perceptual premise
diversity and the perceptual inclusion fallacy trials from Experiment 7 as the new stimulus
dimensions weren’t all compatible with the continuous generalization trials. Additionally, the
confidence rating trials for individual testing trials were removed. All other materials and

procedures were the same as in Experiment 7 (though see Appendix B for minor changes to
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one block of generalized classification trials). The full abstract structure of all training and

testing blocks and average accuracies for each testing trial are in Appendix B.
4.3.3. Results

The average learning accuracy across all participants and blocks, the orange line in
Figure 45, was only at 66%. So, a post data collection criterion was imposed of greater than
75% correct over the last learning block (block 15), the blue line in Figure 45, and this resulted
in an average accuracy of 93% correct in that block. This criterion included about a third of the
participants (43 out of 128) and most of the following analyses are based only on those

participants who learned the task well unless otherwise stated.
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Figure 45. Average accuracy as proportion correct for all participants, orange line, and for
learning criterion participants (greater than 75% accuracy in block 15), blue line, by learning
block in Experiment 8. Blocks 1-5 were ordinary instance classification learning trials only,
blocks 6-10 had typical and atypical instances without hidden features as well as ordinary
instance classification learning trials, and blocks 11-15 had all classification typicality trials
(with typical and atypical instance hidden features) as well as hidden feature inference learning
trials. The three learning phase learning curves are separated by breaks in the lines. The dashed

line is a reference for two-option chance responding. Error bars show +1 standard error.
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The learning phase data, Figure 46, show a typicality effect as significantly greater
accuracy on the typical instances than the atypical in blocks 6-15 (t(42) = 6.0, p < 0.001). The
ordinary trial accuracy across blocks 6-15 was also significantly less than the typical trial
accuracy (t(42) = 21.1 p < 0.001) but not better than accuracy on the atypical instances (t(42)
= 2.4, p =0.019) in part because accuracy on the atypical instances was almost as high as the
typical instances by the last block of training. Criterion participants achieved 89% percent
correct overall in the last block on typical and atypical hidden feature inference, the blue and
purple lines in Figure 46, suggesting good attachment of the hidden features to these instances.
However, there was no significant difference in accuracy between inferring the typical and
atypical hidden features in the learning phase (t(42) = 0.4, p = 0.692). In the two classification

testing blocks, CL1 and CL2 on the far right in Figure 46, accuracy on the typical instances
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Figure 46. Averaged accuracy as proportion correct for all blocks of classification learning in
Experiment 8, grouped by trial type--typical = green, ordinary = yellow, atypical = red, typical
hidden feature inference = purple, atypical hidden feature inference = blue. Average accuracy
in the two classification testing blocks, CL1 and CL2 is shown by dots on the far right for the
different levels of typicality. The three learning phase learning curves are separated by breaks
in the lines. The dashed line is a reference for two-option chance responding. Error bars show

+1 standard error.
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was significantly higher than the atypical instances, (t(42) = 3.4, p = 0.002). Overall, there was
a typicality effect, indicating sensitivity to the typicality structure with good attachment of the
hidden features to that structure, but this didn’t extend to a difference between typical and
atypical hidden feature inference learning.

Improving on Experiment 7, accuracy on the hidden feature inferences, Figure 47
middle bar, was high (t(42) = 13.3, p < 0.001), indicating good attachment of the hidden
features to the typical and atypical category instances. Further, the average accuracy over both
blocks of the classification testing trials, Figure 47 left bar, was good, (t(42) = 23.2, p <0.001)
and there was a trend towards a preference for the atypical non-hidden features in the exception
feature inference trials, Figure 47 right bar; however, this was not significant (t(42) = 1.5, p =
0.129). Overall, this suggests that participants maintained their learning into the testing phase
including accurately attaching the hidden features to the typical and atypical instances, a

necessary prerequisite for premise typicality.
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Figure 47. Average accuracy as proportion correct for the classification, hidden feature
inference and exception feature inference testing trials in Experiment 8, grouped by trial type,
see Table 3 in Chapter 3. The dashed line is a reference for two-option chance responding.

Error bars show +1 standard error.
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However, despite strong attachment of the hidden features by the learning criterion
participants, there was no effect of premise typicality, Figure 48 blue bars, for the generalized
premise typicality trials (t(42) = 0.1, p = 0.960) or the ordinary premise typicality trials (t(42)
= 0.6, p = 0.553). This suggests that participants had no preference for responding with the

typical hidden feature over the atypical hidden feature for those trials.
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Figure 48. Average proportion of typical hidden feature responding by type of premise
typicality trial, see Table 3 in Chapter 3, in Experiment 8. The blue bars are for the 75%
learning criterion participants (greater than 75% correct in block 15) and the grey bars are for
the subset criterion participants with greater than 75% correct in block 15 and the additional
conditions of 85% correct over all hidden feature inference testing trials and an overall
typicality effect. The dashed line is a reference for two-option chance responding. Error bars
show =1 standard error.

As this experiment had a large number of participants it is possible to select only those
participants who strongly met all of the identified prerequisites for premise typicality by
showing greater than 75% accuracy in the final block of learning and greater than 85%
accuracy in attaching hidden features to the instances in testing and, once these participants
were selected, further analyses showed an overall typicality effect: accuracy was significantly
higher for the typical instances compared to the ordinary instances (t(28) = 3.2, p = 0.003) and

the ordinary instances had marginally higher accuracy than the atypical instances (t(28) = 1.8,
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p = 0.076). These participants are arguably the most likely to show premise typicality in terms
of both learning well but also in terms of having typicality-based differences in performance.
There were 29 participants who met these stringent criteria; however they showed no effect of
premise typicality, Figure 48 grey bars, for the generalized premise typicality trials (t(28) =
0.6, p = 0.575) or the ordinary premise typicality trials (t(28) = 0, p = 1, note the average
response proportion was literally 0.5).

The classic paradigm version of premise typicality, Figure 49, resulted in significantly
higher likelihood ratings for the argument that included the typical item as a premise compared
to the argument with the atypical premise for all participants (t(127) = 4.4, p < 0.001) and for
those who met the 75% learning criterion, (t(42) = 3.6, p = 0.001). So, these participants did
show a classic premise typicality effect despite the lack of premise typicality in the perceptual

learning task.
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Figure 49. Average argument likelihood ratings for the classic paradigm premise typicality
testing trials in Experiment 8. Orange bars = all data, blue bars = 75% criterion data. Error bars
show 1 standard error.

The error diagrams help to clarify the strategy used by each participant, see Figure 50
(and for a more detailed explanation see p. 81 and pp. 105-107). As in the previous experiment,

each row corresponds to a specific category instance and every column corresponds to a
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learning block. As not all learning trials occurred in all learning blocks with later blocks
phasing in additional trials, the rows towards the bottom of each individual participant’s error
diagram indicate performance on trials introduced in later blocks and are arranged such that all
trials in a given block are grouped together in one column. So, blocks (columns) 6-10 added
the typical and atypical classification trials and blocks (columns) 11-15 added the hidden
feature inference learning trials for the typical and atypical instances. The “Good HF” grouping
from the last experiment was eliminated here as there was no clear group of participants who
learned the typical and atypical instances well but the ordinary instances poorly. As shown in
Figure 50, 23% of participants were apparently using a dimensional rule, somewhat less than
the 38% of the prior experiment, but the prevalence of dimensional rules still suggests the task
was quite hard. Further, the large group of poor learners (45%) also indicate that this task was
hard to learn even with the updated stimuli. However, there were a nontrivial number of good
learners, (32%).

At the end of this experiment, participants were asked to write down what rule or other
learning method they used during the tasks. The experimenter coded these written descriptions
and assigned each participant to a strategy type, see Figure 51. The ‘Optimal rule’ group was
specified in terms of descriptions of an accurate unidimensional rule plus individual exemplar
exceptions. This group consisted of participants specifying between two and four exceptions
which could correspond to optimal performance in the first learning phase or in both the first
and second learning phases. The ‘Suboptimal rule’ group was specified as any unidimensional,
configural or any idiosyncratic rule that corresponded to inaccuracies in performance. The
‘Exemplars’ group was specified as a description of more than four individual instances (so as

to distinguish from optimal rule users specifying exceptions) or also specified as a mention of

118



Examples Rules Good Poor
Learning i

r
T
ot
(=
(=1
=
=1
e

alll I cAF ol

L o M nt el

Ty o W M W
L M Ml U M U M M A L

Bt T T ] 1T

) B £ 0 8

N a7 A M TR SR
AT o N ST
ST RN RSN R e R

A o i e ol P 2
Bt et M Tl B OIS g

1%

LK

Figure 50. Error diagrams showing performance of each individual participant on each trial
over classification and feature inference learning in Experiment 8. Instances are arranged in
rows and testing blocks are arranged in columns. ‘Examples’ of the predictions of all
unidimensional rules are shown on the left side in order with a dimension one rule at the top
and a dimension four rule at the bottom for comparison. The ‘Examples’ graphs exclude the
hidden feature inference trials as unidimensional rules do not make predictions for these trials.
Coloured blocks to the left of each diagram indicate the experimenter identified learning
strategy based on participants’ qualitative self-reports: light green = optimal rule, dark green =
suboptimal rule, yellow = prototypes, blue = exemplars, grey = ambiguous, red = no rule/poor

reported learning.

119



an instance memorization strategy. The ‘Prototypes’ group was specified as a description of
three or more features indicated to ‘mostly” belong to one category. The ‘Ambiguous’ group
was specified in terms of responses that lacked sufficient information and/or were unclear.
Finally, participants were coded into the ‘No rule/poor reported learning’ group if they
indicated that they were not able to learn the task. Participant reports were consistent with the
stimuli they saw for 61% of participants, ambiguous for 35% of participants, and inconsistent
for only 4% of participants, see Figure 51. This suggests that participants self-reports were
fairly but not extremely accurate. Overall, the self-report results indicate that about a third of
participants used dimensional rules, roughly consistent with the number of apparent
dimensional rule users in the error diagrams.
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Figure 51. Proportion of participants in each of the 6 strategy groups: light green = optimal
rule, dark green = suboptimal rule, blue = exemplars, yellow = prototypes, grey = ambiguous,
red = no rule/poor reported learning.

Just as there was no effect of premise typicality, there was no premise typicality like
effect on the blank feature inference trials, Figure 52 right bar, i.e., no preference for responding
with the typical hidden feature over the atypical, (t(42) = 0.7, p = 0.519). However, the premise

conclusion similarity testing trials, Figure 52 left bar, resulted in a strong preference for
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responding with the typical hidden feature, (t(42) = 12.7, p < 0.001). This indicates a premise

typicality like effect that is nonetheless based on similarity rather than typicality.
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Figure 52. Average proportion typical hidden feature responding for premise conclusion
similarity and blank feature inference testing trials grouped by trial type, see Table 3 in Chapter
3, in Experiment 8. The dashed line is a reference for two-option chance responding. Error bars

show +1 standard error.
4.3.4. Discussion

In this experiment accuracy was high by the end of the learning phase when a criterion
was applied. Additionally, a strong effect of typicality occurred with higher accuracy on the
typical instances than the atypical instances and participants were able to accurately attach the
hidden features to each of the typical and atypical instances. However, there was no effect of
premise typicality. The error diagrams suggest that roughly half of the participants who learned
something about the category structure were responding consistent with a dimensional rule.
Further, a subset of very good learners who met all of the prerequisites of learning and testing
still showed no effect of premise typicality despite a learning criterion higher than the accuracy
predicted by the use of suboptimal unidimensional rules. This suggests that the lack of a

premise typicality effect in the perceptual paradigm was not simply due to a predominance of
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unidimensional rule use in learning, however, a tendency to attend to only a subset of feature
dimensions cannot be completely eliminated as a potential explanation for the observed lack
of premise typicality.

Participants reported their own strategies in self-report data reasonably well as only 4%
of participants reported a strategy inconsistent with their performance. Rule use was the
dominant strategy that participants reported using, and the error diagrams also suggest that a
little under half of all participants who learned were using rules. Whilst the subset data using
the stringent prerequisite based criterion suggests caution in attributing the lack of premise
typicality to suboptimal dimensional rule use, the fact that half of the participants who learned
were likely using dimensional rules and such rules do not reflect a clear appreciation of the
typicality structure leaves the reason for the absence of the effect uncertain: it may be due to a
lack of typicality appreciation or a lack of sensitivity and power for detecting a small premise

typicality effect.
4.4. General Discussion

In Experiment 7 the learning task introduced the ordinary instances in early learning
blocks and the typical and atypical instances in a second learning phase. This resulted in good
end of learning performance on the typical and atypical instances, however, that didn’t translate
into accurate feature inference of the hidden features for the typical and atypical instances, and
there was no effect of premise typicality. The good performance on the typical and atypical
instances was potentially due to the presence of a perfectly diagnostic unidimensional rule in
the second phase of learning that allowed 100% accuracy on the typical and atypical instances.
This rule could have been based on non-hidden feature dimensions two or three and did not
require participants to learn about the relations of each instance with the hidden features. This
may have led to poor testing performance on the hidden feature inference trials and the

subsequent lack of premise typicality. Ultimately, the prominent use of unidimensional rules
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suggests that participants found the learning task difficult and the rates of learning could be
improved.

To improve learning and reduce dimensional rule use, Experiment 8 changed the stimuli
and intermingled ordinary instances with the typical and atypical instances in the second
learning phase to reduce dimensional rule use in that phase based on the lack of a perfectly
valid rule. Additionally, Experiment 8 included feature inferences based on the hidden features
to improve the learning of those features. This had the intended effect with high accuracy in
attaching the hidden features and the strengthening/maintaining of the typicality and
classification prerequisites. However, the participants who learned the task in terms of the 75%
learning criterion (and therefore supposedly had internally represented the category) showed
no effect of premise typicality and neither did a subset of participants who learned the task well
and met the prerequisites strongly.

Overall the results of these two experiments are consistent with three possible
conclusions. The first possible conclusion is that the prerequisites have not been satisfied with
sufficient power to detect the effect. Second, the stated prerequisites may be necessary for
premise typicality, but they are not sufficient and there is some further requirement for this
effect in the perceptual category learning paradigm. Third, premise typicality doesn’t actually
exist in the perceptual paradigm after controlling for the similarity of the test cases to the typical
and atypical category instances.

The first possible conclusion is that premise typicality didn’t occur due to the difficulty
of learning the instances of this variant of the family resemblance structure, resulting in few
participants meeting the learning criterion and lessening the power to find a premise typicality
effect. An obvious solution is to train participants for far longer in the present tasks, perhaps
across multiple sessions. This would likely improve performance, but it wouldn’t necessarily

eliminate rule-based learning strategies or produce an appreciation of typicality differences.

123



Another possible solution is to use other category structures that participants may find easier
to learn such as structures with reduced feature dimensions (Zeithamova & Maddox, 2006). |
have done several (unreported) experiments based on reduced dimensions attempting to do this
which resulted in good learning by a majority of participants but did not show a premise
typicality effect. Also, an information integration category structure (Ashby & Gott, 1988)
might be sufficient to disrupt dimensional rule use and produce better appreciation of typicality.

The second possible conclusion is that the lack of premise typicality is due to a
methodological failure to satisfy some additional requirement for a premise typicality effect.
One possible new prerequisite might be that the hidden feature needs to be attached to a
subcategory rather than a specific instance as a direct analogue to the classic categorical
induction paradigm. In the classic paradigm the key components, e.g. robins and penguins, are
both subcategories of the category bird rather than specific instances of the category bird,
unlike in the current experiment. Whilst this is methodologically possible in the perceptual
paradigm, it would be practically difficult. In particular it would require a more complex
learning task with presumably substantially more training than the current experiments to
obtain good learning.

The final possible reason for the failure to observe premise typicality is that it doesn’t
actually exist after controlling for similarity in the perceptual paradigm and perhaps even in
the classical categorical induction paradigm. Experiments 4-6 and 8 all resulted in a preference
for responding with the typical hidden feature when the test item was more similar to the typical
instance than to the atypical but not when the test item was equally similar to the typical and
atypical instances i.e. there was an effect of premise conclusion similarity but not premise
typicality. However, fully controlling for similarity in the classic paradigm with real-world

categories is at best, extremely difficult.
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While all three conclusions are plausible given the current set of results, the first
conclusion needs to be more compellingly eliminated, i.e. the prerequisites need to be met with
sufficient power via a larger number of participants. The ideal follow up experiment would do
this whilst also clarifying the possible additional prerequisite stated above that the key
comparison needs to be made on subcategories rather than specific instances. Such an
experiment would include a hierarchy of categories learned in great detail, potentially over
multiple learning sessions, by a large number of participants trained to a very high learning
criterion. If this experiment still did not demonstrate a premise typicality effect, the third
conclusion relating to the impact of similarity on the premise typicality effect would become
more relevant.

It is important to note the expectation from these data had these experiments been
conducted without reference to the classic categorical induction paradigm. Typicality effects
have been widely demonstrated in the literature and these effects alone should have elicited a
preference for responding consistent with the features associated with a typical instance (Light
et al., 1979; Lin et al., 1990; McCloskey & Glucksberg, 1978; Medin & Schaffer, 1978;
Nosofsky, 1988; Rosch & Mervis, 1975; Rosch et al., 1976; Rothbart & Lewis, 1988; Spalding
& Murphy, 1999; etc.). Although the hidden features being induced were less visually frequent
than the non-hidden features, they were still associated with the typical instance and short of
finding a premise typicality effect, there should still have been a preference for the typical
features to the extent that typicality effects are pervasive. From this perspective, premise
typicality effects really should exist in perceptual categorization.

Overall these findings demonstrate an initial attempt to find premise typicality via
feature inference testing following classification learning of a family resemblance structure.
Though learning of the structures was good by at least a subset of participants, no effect of

premise typicality occurred. This result in combination with the failure to find premise
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typicality in the category summary based decision-making task (see Chapter 3) was surprising.
The difficulty of finding categorical induction effects in the perceptual categorization domain
begins to cast doubt on the existence of such effects, but additional experimental designs with
higher power will be needed to definitively establish whether premise typicality effects are

actually distinct from premise conclusion similarity effects.
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Chapter Five - General Discussion

The ability to make inferences about instances of a category is a crucial cognitive ability
that allows efficient interaction with everyday reality. There is little consensus on the nature of
the category representation underlying feature inference (see Chapter 1, p. 16) and the
overarching purpose of this thesis was to assess feature inference in perceptual categorization,
motivated by its adaptive importance for categories. This research has evaluated attribute
induction in terms of feature inference learning—Iearning about category instances by making
feature inferences with feedback—and feature inference decision-making—making feature
inferences for known category instances.

The aim of Experiments 1-3 was to assess the category representations resulting from
feature inference learning of the classic category structures from Shepard et al. (1961). They
constructed six ‘types’ of category structure that differed in the complexity of the rule
characterizing them and in their learning difficulty with Type | as the easiest, Type Il was more
difficult, Types I1I, IV and V were harder still but were as equally difficult as each other and
Type VI was the most difficult i.e. I<lI<IlI=IV=V<VI. Type | was learnable by a
unidimensional rule on the first feature dimension and Type Il was learnable by a configural
rule across the first two feature dimensions. As Types 1l and 1V are not perfectly learnable by
feature inference on the first feature dimension (see Chapter 2, p. 29) and Types IlI, IV and V
are equally difficult, Experiments 1 and 2 only assessed Type V which was learnable by a
unidimensional rule plus the memorization of two exception instances. Finally, Type VI was
learnable by complete memorization of instances or by the Odd-Even rule in which one
instance was memorized and if a further instance differed from that instance on one or three
features it belonged to a different category and if it varied by two features it belonged to the
same category as the memorized instance. Participants learned these types by classification or

feature inference.

127



Experiments 1-2 tested a label-bias hypothesis that participants in the feature inference
conditions would preferentially try to form rules based on the category labels in contrast to
classification learning, in which rules could not be based on the category label (due to the
absence of the label as part of the stimuli). The tendency to form label-based rules in feature
inference manifested in a Type | feature inference learning advantage over classification. In
the Type | feature inference condition, the unidimensional rule that allowed good learning of
the category structure included the category label and many feature inference learners achieved
perfect accuracy almost immediately in the learning phase consistent with forming a label-
based rule. In classification learning by contrast, the correct feature dimension to use to form a
unidimensional rule was initially no more likely to be chosen than rules based on the other two
feature dimensions and so across participants, finding the correct unidimensional rule took
longer, resulting in an early accuracy advantage in the feature inference condition. The results
of Type V feature inference in Experiment 1 also supported the label bias hypothesis in terms
of atendency to perseverate on a label-based rule despite persistent errors on the two exceptions
to that rule; a pattern that didn’t occur in Type V classification learning. Additionally, the lack
of differentiation in the feature inference learning curves for Types Il, V and VI is consistent
with similar attempts to use suboptimal label-based rules across the more complex types.

The error diagrams for Experiments 1-3 showed performance on each individual trial
for each individual participant and indicated relatively sudden improvements in accuracy
consistent with the acquisition of a rule. Qualitative data of participants’ self-reported learning
strategies in Experiments 2-3 indicated that a relatively high proportion of participants were
using rules in that they specified a correct rule for the type they were learning and the stimuli
they saw. Overall, the results of Experiments 1-3 indicated the dominance of rule representation
in both classification and feature inference learning but greater consistency in rule strategy in

feature inference consistent with the label-bias hypothesis.
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A further interesting finding from Experiment 1 was that participants found Types II,
V and VI quite a bit harder to learn than, for example, the participants in the standard replication
in Nosofsky et al. (1994), apparently due to differences in the stimuli. Only 13% of participants
in the Type VI feature inference learning condition learned the structure by the end of training.
Improving the verbalizability of the stimuli and reducing their confusability in Experiment 2
increased the proportion of participants who learned but learning was still worse than Nosofsky
et al. (1994), see Figures 4 and 9 in Chapter 2. Experiment 3 further assessed the impact of
verbalizability by comparing the rocket ship stimuli from Experiment 2 to the classic stimuli
from Shepard et al. (1961). The rocket ship stimuli were line drawings with binary features that
varied on dimensions including the size of the wings, the colour of a band drawn across the
body of the ship and the shape of a cone positioned at the top of the ship (see Figure 7 in
Chapter 1). The classic stimuli were one of two shapes, circle or triangle, that varied in size
and colour. Experiment 3 found that the classic stimuli were substantially easier to learn than
the rocket ship stimuli and corresponded to more compact verbal rules. This suggests that the
classic Shepard et al. (1961) stimuli are extremely specialized in terms of allowing inordinately
compact verbal rules, even compared to the generally simple stimuli commonly used in
perceptual categorization tasks.

Experiments 4-8 evaluated categorical induction as a reasoning process used to infer
features/attributes for members of categories. The standard categorical induction paradigm
(Chapter 1, pp. 20-24) asks participants to rate argument strength in terms of generalizing the
presence of a hidden feature from one category member to another, for example from sparrows
to geese. There are many influences on these argument likelihood ratings, but the most
important one for the purposes of this thesis is premise typicality; the more typical the premise
category instance, the stronger the judged argument that is based on it compared to an argument

based on the atypical category instance, e.g. “Sparrows have property X Therefore Geese have
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property X" is judged to be a stronger argument than, "Penguins have property X Therefore
Geese have property X.” (Hayes et al., 2010). The purpose of Experiments 4-8 was to produce
an analogue of premise typicality in the perceptual categorization paradigm using feature
inference decision-making so as to be able to assess the category representation underlying
feature inference using standard exemplar and prototype models (Homa, 1984; Kruschke,
1992; Medin & Schaffer, 1978; Nosofsky, 1986; Posner & Keele, 1968; Reed, 1972; Smith &
Minda, 1998 etc.). The feature inference task was based on categories with a strong typicality
structure, i.e. with a typical and an atypical instance, and ‘hidden’ features attached to the
typical and atypical instances, (see Chapter 3, Figure 18). Participants were tested on a new
instance that was equally similar to the typical and atypical instances and were asked which
hidden feature the new instance had: the one attached to the typical instance or the one attached
to the atypical instance. This assessed an analogue of the classic premise typicality effect in the
perceptual categorization paradigm across Experiments 4-8.

As classic tests of premise typicality are based on summary descriptions, e.g. ‘Robins
have a sesamoid bone’, Experiments 4-6 were based on a summary presentation of perceptual
instances in two categories with hidden features attached to the typical and atypical instances.
Experiment 4 used a basic summary decision-making task to assess premise typicality using
feature inference testing. Participants were able to correctly categorize the instances and were
significantly more accurate in classifying the typical category instances compared to the
atypical instances, thus showing a typicality effect. However, participants did not show a
premise typicality effect. This was arguably because they were not able to correctly attach the
hidden features to the typical and atypical instances. A plausible reason for the lack of hidden
feature attachment was a lack of engagement with the category summary due to a potential
tendency for guessing induced by testing trials without a clear correct answer immediately

before the key tests of premise typicality.
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To enhance engagement and reduce guessing, Experiment 5 included more testing trials
with clear correct answers in terms of the category summary. This maintained classification
accuracy, and as before, participants showed a typicality effect, but importantly they also
showed reasonably good attachment in terms of accurately inferring hidden features. However,
there was still no effect of premise typicality, despite the presence of a typicality effect. But
this typicality effect may have been due to pseudo-typicality brought about by averaging across
participants who were using unidimensional rules, as seen in the error diagrams. Specifically,
there were four unidimensional rules that a participant could have used, none of which resulted
in errors on the typical instances. Each of these rules produced an error on one of the ordinary
category instances and thus reduced ordinary instance accuracy somewhat compared to typical
instance accuracy. Finally, there were two rules which produced errors on the atypical
instances, and thus reduced atypical instance accuracy even further compared to typical
instance accuracy. Overall, the use of dimensional rules across participants would result in
lower accuracy on the atypical instance because more rules are inconsistent with its correct
classification than for the typical instance. So, although the data showed a typicality effect
across participants, individual participants may not have appreciated the typicality structure of
the categories.

Experiment 6 reduced dimensional rule use by having participants complete a learning
task based on the category summary that asked them to attend to every feature and dimension
of the ordinary category instances before the key test of premise typicality. Participants in
Experiment 6 accurately classified the category instances and showed an effect of typicality
despite the almost complete elimination of dimensional rule users. In addition, they accurately
attached the hidden features to the typical and atypical instances; nevertheless, there was still

no effect of premise typicality.
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Experiments 4-6 identified three prerequisites for a premise typicality effect such that
the failure to establish any one prerequisite provided a plausible explanation for the lack of an
effect. The first was that participants needed to be sufficiently engaged with the category
summary so as to accurately classify each instance into the correct category. The second was
that participants needed to show an appreciation of the typicality structure within each
category, for example, in terms of higher accuracy on the typical instance than the atypical
instance. The third prerequisite was that participants needed to accurately attach the hidden
features to their respective typical and atypical category instances for the key trials to be a test
of premise typicality. These three prerequisites were all reasonably well satisfied in Experiment
6 and yet there was not even a tendency towards a premise typicality effect. However, it is
possible that the premise typicality effect failed to occur because of the summary-based
methodology; Experiments 4-6 used a summary presentation of the category instances, so the
category was externally represented rather than internally, mentally represented, and in the
classic categorical induction paradigm, the categories are usually internally represented.
Internal category representations might plausibly be more likely to produce a premise typicality
effect due to forgetting and interference between features that make the typical features more
prominent in the representation. While summary based decision-making tasks are common and
ecologically plausible, the categories in categorical induction tasks are usually real-world
categories with rich internal representations, e.g. robins and birds. This suggests the possibility
of a fourth prerequisite for premise typicality that participants must have an internalized,
learned representation of the categories.

Experiment 7 removed the category summary and replaced it with a trial-by-trial
classification learning task with feedback for all the category instances. Learning occurred in
two phases to strengthen the typicality effect. The phased design first presented the ordinary

category instances. Following this, the second phase presented only the typical and atypical
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category instances with their hidden features. Participants correctly classified the instances
(prerequisite 1) and showed a typicality effect in terms of greater accuracy in initially
classifying the typical instances over the atypical instances (prerequisite 2), however,
participants did not learn the attachment of the hidden features to the typical and atypical
instances (prerequisite 3). So as in experiment 4, this lack of attachment provides a plausible
reason for the observed lack of premise typicality. The error diagrams showed a group of
participants who correctly classified the typical and atypical instances but did not correctly
classify the ordinary instances. The performance of this group is consistent with the application
of a perfectly diagnostic unidimensional rule during the second phase of learning which could,
in particular, be used without attending to or learning about the hidden features.

This perfectly diagnostic rule was only applicable to the typical and atypical instances
when they were learned separately from the ordinary instances. So, to preclude the use of this
kind of rule, Experiment 8 maintained training of the ordinary instances into the second phase
along with the typical and atypical instances (without hidden features present) so that
participants learned the typical and atypical instances in relation to the ordinary instances rather
than via a separate rule. In addition, a third learning phase continued training on the ordinary,
typical and atypical instances (with hidden features present) while also training hidden feature
attachment by feature inference. Participants who met a learning criterion and therefore formed
a strong internal representation of the categories (prerequisite 4) correctly classified the
category instances (prerequisite 1), showed a typicality effect (prerequisite 2) and accurately
attached the hidden features to the typical and atypical instances (prerequisite 3); nevertheless
there was still no effect of premise typicality. Further, a subset of participants who met the
prerequisites especially strongly also did not show premise typicality.

Overall, Experiments 4-8 didn’t find any evidence of premise typicality. This might

mean that the stated prerequisites were not met with sufficient power to detect an effect;
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however the novelty of the present tests of premise typicality and their methodological
difference from the classic paradigm make it difficult to conceptually specify power ina formal
sense as it is not clear what the effect size in this paradigm should be. Nor is it straightforward
to specify a minimum effect size such that smaller values, even if corresponding to significant
effect, would not constitute a conceptually meaningful indication of premise typicality. As such
even Bayesian support for a null hypothesis isn’t completely straightforward in this context.
Nevertheless, Experiment 8 had at least a moderate level of intuitive power by the standards of
perceptual category learning. Alternatively, the observed lack of premise typicality might mean
that there is an additional prerequisite that needs to be met to find a premise typicality effect.
A possibility is that a structure with subcategories within categories needs to be used in the
perceptual paradigm to make a closer comparison with the classic categorical induction
paradigm. Finally, the lack of premise typicality might mean that premise typicality does not
exist in the perceptual categorization paradigm when similarity is controlled for. That is,
similarity may be fundamentally responsible for replications of classic premise typicality
despite attempts to control for it. Regardless of which explanation is correct, and it may be a
combination of them, having failed to establish an analogue of premise typicality using
perceptual categories, this research has not facilitated a direct comparison of representation
models. However, qualitative data in Experiment 8 and error diagrams for Experiments 1-3, 5
and 7-8 suggest that rules were a prominent strategy in feature inference learning and decision-
making, and many participants tried to use a rule-based representation.

Experiments 1-2 show the dominance of the category label in feature inference of
perceptual categories as argued by Yamauchi and Yu (2008), specifically the category label
when it represents category membership information. Similarly, both Gelman and Markman
(1986) and Yamauchi and Markman (2000) found that the category label was used to guide

feature inference for category instances above perceptual similarity in both children and adults.
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Yamauchi and Markman (1998) hypothesized that feature inference learning promotes
prototype representation due to a focus on learning within category information compared to
classification learning which focuses on between category information. And the current results
are somewhat consistent with the spirit of this hypothesis, that classification and feature
inference learning produce differences in the category representation. In the Shepard et al.
(1961) category structures, both feature inference and classification learning encouraged the
formation of rules and thus rule-based representation. However, in feature inference learning
this representation was centered on the category labels and corresponded to a tendency for a
within category focus, a subtle difference from the representation for classification learning
which was not centered on the labels.

In feature inference testing of a family-resemblance structure seemingly well suited to
typicality-based effects and therefore strongly suited to prototype representation, there was no
clear evidence of premise typicality effects despite the evidence for typicality effects. So those
results do not support prototype representation though they aren’t necessarily evidence against
it either. However, note that the qualitative data suggested that rule use was a reasonably
predominant representation strategy. Therefore, these experiments are consistent with the
conclusions of Johansen and Kruschke (2005) that feature inference learning encourages the
learning of label-based rules that can mimic a prototype model but is not necessarily prototype
representation. Overall, the prevalence of rule use in Experiments 1-3, 5 and 7-8, as seen from
the error diagrams and qualitative data indicate at least a tendency to try to use rules for
representing perceptual categories.

It is worth clarifying the relationship between the present evidence for the attempted
formation of rules and the rejected Classical View (Chapter 1, pp. 1-3) that categories have
necessary and sufficient features for classifying an instance as a member of a category. The

generally agreed fact that most real-world categories do not have necessary and sufficient
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conditions does not fit especially comfortably with the evidence for attempted rule use, but this
is also not completely inconsistent as the attempted rules need not be optimal in the way that
the Classical View would suggest. And category labels as a basis for feature inference can be
similar to prototypes, so the rejection of the Classical View of categories need not be
inconsistent with a bias to form label-based, though potentially suboptimal rules. Additionally,
the continued success of the COVIS framework (Ashby et al., 1998) with a module based on
rules suggests the continued relevance of rule representation.

A key limitation of Experiments 7-8 is that the variant of the family resemblance
structure used in the learning task proved hard for participants to learn in terms of satisfying
all of the identified prerequisites. While Experiment 8 had a reasonably large sample size of
128 participants, once the prerequisites were strongly applied, 29 participants remained. While
this is a reasonable sample size, a larger sample size might help clarify the absence of premise
typicality. Another possible improvement would be to train participants in the current task for
longer. However, the error diagrams show that many participants learned essentially nothing
by the end of training, so more training might not actually produce all that much more learning.
Another alternative might be to specify a category typicality structure based on a smaller
number of feature dimensions that are easier to learn. However, this might also have the effect
of actually encouraging rules at the expense of typicality perception.

The largest potential limitation of Experiments 4-8 is the possibility that the test of
perceptual premise typicality is not equivalent to the specification of the test in the classic
paradigm. Specifically, the classic paradigm uses categories within categories e.g. the category
bird includes the subcategory ‘robin’ but robin itself is a category based on lots of instances of
robins. In contrast, Experiments 4-8 used single instances, a typical instance and an atypical
instance, rather than typical and atypical subcategories of instances as a basis for tests of

premise typicality. It might be possible to create an experimental design with perceptual
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subcategories in perceptual categories. However, participants already struggled to learn the
current, less complex category structure so this may not be all that practical. And more
importantly, even if the current design is not an exact match to the classic version of premise
typicality, it is doing the same thing in spirit and so should still produce an analogue of the
effect. The fact that there was not even a tendency towards responding with the typical feature,
leaves the question of why not? One possible reason why there was no tendency towards
responding with the typical feature is that these experiments so carefully controlled for test
item similarity to the typical and atypical category instances, something which is far more
difficult to do for real-world categories due to their complexity. Potentially, similarity effects
could be influencing typicality effects in real-world categories.

The results for Experiments 4-8 are consistent with the idea that similarity rather than
typicality is the basis for premise typicality even in the classic categorical induction paradigm.
The premise typicality and premise conclusion similarity tests are equivalent in as much as
they require responding with the typical hidden feature over the atypical hidden feature.
However, the comparison between the premises and conclusion is equated in similarity for the
premise typicality tests but not for the premise conclusion similarity tests. When the test item
was more similar to the typical instance in the premise conclusion similarity tests, typical
hidden feature responding was significantly higher than chance, an effect that did not occur for
premise typicality when the test item was equally similar to the typical and atypical instances.
This suggests that responding consistent with a premise typicality effect occurs based on
perceptual categories when typicality is confounded with similarity. This seems to support
exemplars more than prototypes as, if they were forming a representation based on prototypes,
they should have shown premise typicality. Future experiments may be able to control for the
effects of similarity in the classic versions of categorical induction tasks more carefully to tease

apart typicality and similarity. In the classic paradigm, the comparisons between the premises
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and conclusion control for similarity through participants ratings of similarity, however these
ratings may not reflect the internal representation of the similarity between a premise and
conclusion, so distinguishing typicality and similarity for anything other than fairly controlled
perceptual categories may prove challenging.

More speculatively, there are subtle ways in which the current methodologies can be
argued to be biased against prototypes but also biased in their favour. The majority of
participants in Experiments 7-8 did not learn the categories well, despite the fact that they were
linearly separable and hence prototype representable. So, the difficulty of learning doesn’t
particularly support prototype representation as a default, or the categories should have been
relatively easy to learn, at least all else being equal. Also, a tendency for prototype
representation should presumably have made the typical hidden features quite a bit easier to
learn than the atypical hidden features; the typical hidden feature was attached to the
prototypical instance, but prototype representation by itself doesn’t have anything to attach the
atypical hidden feature to. That might have manifested in a premise typicality effect as a result
of substantially greater accuracy in attaching the typical hidden feature to the typical instance
than the atypical hidden feature to the atypical instance (because participants should not be able
to learn the atypical instance very well). However, the results of Experiment 8 didn’t show a
clear difference in accuracy for the hidden features and nor did they show premise typicality.
But it is also possible to argue the opposite; the fact that participants were asked to learn both
the typical and atypical hidden features effectively drove them away from their default,
prototype representation. And the difficulty of learning argument can also be reversed: it is
possible that the difficulty in learning the current category structures with instances composed
of only a small number of feature dimensions may reflect the unrepresentativeness of such
category structures relative to real-world categories composed of instances with a much larger

number of feature dimensions. So rather than simplifying the categories, this suggests that
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further experiments might try substantially increasing the number of semi-diagnostic feature
dimensions. Ultimately these results haven’t provided the clear evidence for prototypes that
they might have, but the remaining possible explanations for these results also haven’t
definitely ruled out prototype representation.

In summary, this thesis attempted to assess the category representation underlying
feature inference learning of the classic Shepard et al. (1961) category structures and feature
inference decision-making in a perceptual categorical induction paradigm. This was based on
the idea (summarized by Murphy, 2002) that prototype representation is a plausible basis for
categorical induction effects and, by extension, feature inference learning and decision-
making. However, none of the experiments here provided compelling evidence for prototype
representation, but rather provided tentative support for category label-based rule

representation underlying feature inference learning and decision-making.
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Appendices

7.1. Appendix A: All Experiment 2 testing trials on the second and third stimulus dimensions.

Testing Trials

Type I Typell Iypel Type IT
Al?1 A1l Al Alll
Al?1 Al10 Al110 A010
Al1?20  A0O01 Al?1 A001
A1?0  A000 ADDD A100
B0?1  BO11 B0?1 BO11
B0 BO10 B0 B110
B0?0  Bl01 B0O10 B101
E0?20 Bl100 B100 BOOD
Al1? Al11? Al1? Alll
Al0?  Al11? Al11? AO010
Al1?  A00? Al01 A001
Al0?  A00? A000 A100
B01?  BO1? BO1? BO11
B00? BO01? B001 Bl110
B0O1? B10? BO1? B101
B0O0? B10? B100 BOO0D
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7.2. Appendix B: Full specification of all trials in Experiments 4-8 with average response

proportions for each trial.

For the first structure table for each experiment, the abstract category structure used is
in the left, top corner. The next column is the descriptor for the construct that each block was
training/testing followed in the next column by the abstract structure of the trials. The next two
columns contain the average response proportions over all participants with the first column
showing averaged abstract correct/typical/label-based responding depending on the trial. If the
trial had a unique correct answer in the category summary or given in the learning, then the
first column was a measure of responding with that correct answer. If the trial was querying
either a hidden feature for an instance other than the typical and atypical of each category or a
non-hidden feature and there was no correct answer (as in there was no exact match or multiple
matches in the category summary or learning task) column one was a measure of responding
with the typical feature. If the trial was comparing the effects of the label against another
stimulus component, the feature typical of the category the label is denoting is considered to
be label-based responding therefore, for these trials, column one represents the proportion of
participants responding with the label consistent option. The second column shows the
averaged abstract incorrect/atypical/hidden feature-based responding which is the opposite of
the responding displayed in the first column. It shows responding with the incorrect answer,
the atypical feature or the feature typical of the category denoted by the hidden feature
respectively. The final two columns report the response proportions based on participants who
met a criterion of greater than 75% correct in the classification testing block (Experiments 4-
6) or greater than 75% in either blocks 17-20 (Experiment 7) or block 15 (Experiment 8). For
each trial in the table, the letter/number/symbol in red was queried. When a letter or number
was marked in red, this indicated that when this label or feature was queried there was a unique,

correct answer in the category summary or learning task. A red question mark indicated that
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when that label or feature was queried there was no basis in the category summary or learning
task for responding with any one answer over the other or there were two answers that were

consistent with the information provided on that trial.
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Experiment 5

Abstract Testing
Structure  TrialType  Triak Mo Criterion Criterion Continned
Correct Incorrect  Correct Incorrect Hidden A11117 0.979 0.021 1.000 0.000
Typical  Anypical  Typical  Avypical Fearre A31137_ 0938 0.0832 0.944 0058
Lsbel HFs Label HFs Inference B3333 7 0.875 0.125 0.288 0111
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Block 2 B1331_7 0.888 01 0944 0056 0547 0.458 0.444 0558
Classificanion  A3111__ 0.875 0125 0944 0056 0.479 0.521 0.223 0611
With AlZll 0917 0083 0944 0056 Generalized 0.542 0.458 0.556 n4ss
Hidden Al131 _ 0.854 0146  0.889 0111 Classifieation with 0521 0.479 0.556 0444
Features Alll3 . 0.8%6 0104 0544 0056 Hidden Feammes 0.453 0.542 0.333 0667
Block 2 ALLLIV_ 0.958 0042 1000 0000 0.542 0.458 0.389 o611
AZ13X_ 0.7 0333 0889 0111 Premise 0438 0.563 0.500 0.500
B1333__ 0538 0083 1.000 0000 Diversiny 0.375 0.625 0.222 o778
B3133__ 0.288 014  0.944 0056 The 0417 D5as FECE 0EET
B3313__  o0a13 0183 0944 0056 Tnclusion 0.438 0.563 0.444 0556
B3331__  0.854 0146  0.889 0111 Fallacy 0771 0.229 0.839 0111
B3333_Y¥ 0538 0063 0944 0056 0375 0625 0.333 0EE7
B1331_7 0.750 0350  0.944 0056 Typical Premise 2825 2778
Premise Alz117_ 0.522 0.0e2 1.000 0000 Anpical Premise 3.453 3.833
Conclusion ~ A11317_ 0.517 0.083 1.000 0000 Typical Conclusian 4500 4.444
Stmtlarmy B3133 7 0.958 0.042 1.000 0000 Anpical Conclusion 3.958 4.111
B3313_ 7 0.558 0.042 1.000 0000 More Diverse Pramuse 4317 4722
Hidden Al1117_ 0.938 0.063 1.000 0.000 Less Diverse Premize 40938 4167
Framre A31137_ 0517 0083 0.889 0111 Category Conclusion e 543
Inference B3333_7 0.558 0042 1000 0000 Lo e Conclusion 2354 2889
Block 3 B1331 7 0.8%6 01 0944 0056 Category Premise 7146 £.500
Hidden AL111V_ 0.538 0063 1000 0.000 Instance Premtise cERa 7.929
Feamre A3113X_ 0.517 0083 0944 0056
Inference B3333_¥ 0.958 0042 1000 0.000
Block 4 B1331 7 0.517 0083 0944 0056
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Experiment 6 — Summary Learning Task

Alstract Tirial Type Testing Mo Crit ericn L bearii can
Structura Trialks Correct Inicoe rect Conrrasct Incanr asct
Typical Stypical Typical & typical
Lahed HFs Lakel HFs
A 3111 Classjfication A3111 0750 0250 0758 0.242
& 1311 Lsaming &1311 0896 0,104 0.939 0061
A1131 a1131 L 0.208 0879 0121
A1113 A1113 0792 0,208 0.848 152
A1 B1333 04813 0.138 0.939 061
A 313X B3133 0729 0271 0818 0182
B1333_ : B3313 0792 0,208 0.879 0121
B3133_ B3331 04813 . 138 0.848 152
B3313__ Framrs Iyference  A3111 0521 0.479 GG 0.364
B 3331 Dimernrion I A1311 0833 0167 0818 0182
B 3333 Y Leaming A1131 .72 0.271 0.848 152
E1331 7 A1113 .72 0.271 0.637 0,303
B1333 0521 0.479 GG 0.364
B3133 0371 0.229 0.788 0212
B3313 0EET 0.333 0.788 0212
B3331 0667 .333 0.758 0.242
Frature fgference 83111 0Aa7s 0125 0.848 152
Dimernrion 1 A1311 0625 0375 0.788 0212
Lraming A1131 0750 0,250 0.788 0212
81113 0EET 0.333 0758 0.242
B1333 0371 0.229 0.848 152
B3133 0521 0.479 0576 0424
B3313 0792 0,208 0.9049 0091
B3331 0708 0.292 0.727 0.273
Frarure Ipference A3111 a5 0. 146 0.939 061
Dimrnrion 3 A1311 04813 0.138 0818 0182
Leaming A113] 0542 0458 GG 0.364
A1113 0750 0250 0.788 0212
B1333 0742 0.208 0.848 152
B3133 a5 0. 146 0.939 061
B33l3 0521 0.479 0667 0.333
B3331 L 0.208 .848 0152
Frarues Fyferance 23111 .72 0.271 0.788 0212
Dimension 4 A1311 0750 0250 0.788 0212
[ sarning 41131 a5 0. 146 0.9049 0091
A81113 0479 0521 0606 0.334
B1333 0792 0,208 0818 0182
E3133 a5 0. 146 0.9049 0091
E3313 0.750 0250 0848 152
E3331 0458 0.542 0.576 424
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Experiment 6 — Testing Trials

Abstract Trial Type Testing Mo Criterion Cri tesri on

Structure Triaks Correct Inoor red Carrect Incaarr ect
Typical Mypical Typical Atypical

Labrel HEs Label HFs

& 3111 Clexjfication A3 0.958 0.042 0.970 0.030

A1311 Al31l 0875 0.125 0.970 0.030

A1131 Al13_ 0833 0.167 0904 0.091

1113 _ Allls 0.938 Q.063 1.000 0004

A 1111V Al111 0.896 0.104 1.000 0.004

A 313X A3l 0.854 0.146 1.000 0.004

Bi3ma__ Blaaa__ 0.917 0083 1.000 0.004

B3l3a__ B3133__ 0792 0.208 0.970 0.030

B33la__ B33y __ 0.854 0,146 0.970 0.030

B3331_ Baial__ 0.958 0.042 1.000 0.004

B33aa_Y B3IIA__ 0896 0,104 0.970 0.030

B1331 2 B133l 0813 0,183 0.939 1.061

Clarrificarion A1 _ 0,896 0.104 0.970 0.030

itk A1311 0792 0.208 0.879 o121

Hiddrn Feamures 1131 0792 0.208 0.904 0.091

Block I Al113 0.8133 0.167 0.904 0.091

ALY 0.896 0.104 0.904 0.091

A3113N 0.708 0292 0814 0182

B1333_ 0.917 0.083 0.939 1.061

B3i3a__ 0.854 0,146 0.970 0.030

Bazia__ 0875 0.125 0.970 0.030

Bazal__ 0833 0.167 0.970 0.030

B3IIIAY _ 0.917 0.083 0.970 0.030

B13317 _ 0667 0.333 0.727 0273

Orafimery A31117 0.542 0458 0485 515

Bremirs A11137 0.458 0.542 0.545 0455

Tipicalny B1333_? 0.438 0.563 0.455 0.545

B3ial 7 0.563 0,438 0.485 0515

Fidden Framre  A11117_ 0833 0.167 0848 0152

Byference Block ] A31137_ 0875 0.125 0.879 121

B3333_? 0833 0.167 0939 061

B1331_? 0792 0.208 0.848 0152

Crmsrabed A11337_ 0,636 0,354 0.606 0.334

Drentice B33ll ? 0.542 0458 0.5495 Q455

. 7 0.458 0.542 0.485 0515

Typicalty E;'Ei';? 0.438 0,563 0455 0,545

Hidden Frames 511117 0.896 0.104 0.939 0061

Dnfiremcs Block? 231137 0854 0,146 0904 Q091

B3333 7 0.917 0.083 0.904 0.091

p1aal 7 0875 0125 0.904 0.091

Clarrificasion A1l 0875 0.125 0.904 Q.09

itk A1311_ _ 077 0.229 0.904 0.091

Fiddrn Framrer  A1131__ 0875 0.125 0.939 Q.061

Block ] Al113_ 0854 0.146 0.970 0.030

A1V _ 0875 0125 0.909 00491

AILILAN 0,688 ERE] 0.758 0242

B13i3__ 0813 0.188 0.909 0091

Baiia__ 0771 0224 0874 01

EERE 0813 0188 0.909 00491

B333l__ 0.875 0125 0.909 .09

B33AIY _ 0813 0.188 0818 0142

813312 0708 02492 0818 01482

Brengics EEREN TEEE] 0.167 0818 0182

Come Brsism 11317 a.7249 027 0667 0313

Somilarity B3133 7 0.667 0333 0697 a.30

B3313 7 0.704 02492 0.758 0242

AL1117 0875 0125 0.909 .0

Hididen Foatwrs 31933~ 0.933 0.063 0.970 0.030

Igferemes Block 3 pyang 3 0,896 0.104 0570 0,030

B13al ? 0813 0.188 0.909 .09
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Cortinned

Fidden Fraturs 1111V 0875 0125 0.3 0.0al

Fyference Block 4 A311AK_ 0.938 0,063 0370 0,030

B3333_Y 0875 0125 0.3 0.0al

B13al 7 0.836 0.104 0370 0,030

Hidden Featurs 811117 0875 0125 03| 0061

Iyference Block 5 431137 0.938 0,063 03 0,061

B33aa_? 0.836 0.104 a7 0121

B133l1 7 0732 0.208 0.848 0.152

AmBiguour BFIIL__ T 0604 [JETE] 0637

07333 _ 0.313 0,638 0.242 0.758

81117 0417 0583 036 0,636

B33a?__ 0.438 0563 036 0,636

Exceprion A3113Y_ 0,833 0.167 a7 0121

Featars A311Y_ 0.750 0.250 0.848 0.152

FAr— B13al_Y 0813 0.188 0.848 0.152

B133l_y 0,833 0.167 A7 0121

Classjficason 3111 0875 0125 0370 0,030

itk A1311 0771 022 a7 0121

Ffidden Features Al1131_ 0.875 0125 02313 0,061

Block 3 A1113__ 0732 0.208 a7 0121

A1111V 0.854 0.135 a7 0121

A1 0.636 0354 0.788 0212

B133d__ 0.854 0.135 0.3 0.0al

BI13d__ 0875 0125 0370 0,030

B33LA__ 0732 0.208 0.848 0.152

B33al__ 0771 022 0.3 0.0al

BIIAAY _ 0.854 0.135 a7 0121

B13317 0.636 0354 0.788 0.212

Labelvs A3733 ¥ 01500 0,500 0.455 0.545

Feanurs B1711 W 11563 0.438 0515 0.485

Comsnusur B21127 0521 047 0515 0.485

Gemerali-tion B1221 7 0.542 0.458 0.545 0.455

A01107_ 0.438 0.563 0424 057

p4114 7 0473 0521 0.455 0.545

812217 0542 0.458 0.485 0515

B3z2a_7 01500 0,500 0.455 0.545

10017 0.336 0,604 0.334 0,606

B3343_7 0417 0583 0333 0,667

Flznk Feanurs " 0.625 0375 0.545 0.455

Iyference o E 0.473 0521 0.545 0.455

Fabelvs A F__ ¥ 0.583 017 0545 0455

Hidden L 0.542 0.458 0.57% 0.424

Features B_F__W_ 11563 0.438 0.545 0.455

B__F_%_ 0.542 0.458 0515 0.485

Generalzed 71133 0.583 0.417 0.5606 0.334

Classjficasion 731 0.604 0.335 0,636 036

71313 0.354 0,646 030 0657

73131 0.458 0.542 0515 0.485

Generaloed 71133 1. 500 0500 0.455 0.545

Clarsficarion 73311 0.646 0354 0637 030

itk Hidden 1313 0.438 0563 0.424 0.57%

Fearures 23131 0.438 0583 0.334 0,606

Premie 22127 0.336 0,604 0.334 01.606

Diversity p2232_? 0.521 047 0515 0.485

The & F_ 01,500 0.500 0.334 01.606

Fucharion A30037F 0.336 0,604 03564 0,636

Fallacy B 7 .68 0313 0.848 0.152

Ela41 7 0.542 0.458 0.396 0604
Typical Premis 473 464
Anpical Premis 4106 334
Typical Conchurion 438 5.30
Anpical Conchiion 330 4,06
Mare Diverse Bremive 521 5.30
Less Diverse Premive 5.23 467
Cassgory Conchiion 521 482
Festance Conchiion 333 a7
Catrpory Premine 5.15 5.21
Futznce Premise 677 6.82
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Experiment 7 — Learning

Abstract Tzl Type Testing Ma Crerian CrRzfan

Stucue Trrizls Correct I ncar ect Conrect I ncar ect
Typical Atypial Typical Atypial

Labesd HFs= Labesl HFs

A 2111 Clarrjficasion AT111 T nds nss FER

A 1311 Phose | a1zl o5 045 0Es 021

& 11321 r rnmhg AllZl [ - 04z 055 044

& 1112 Block 1 AlllE 042 055 055 044

A 1111V 1223 &0 o440 055 042

AZ11EX 83123 0&s3 03E u 1] 042

81333 B3213 a0z 045 ass e

332133 B3221 04s .52 050 as0

a3z13 Clarrjfiration A3111 sz 0.4z 0s0 050

23231 Phgre I Alz11 0Tl o 0s1 [n R ]

a33az v Learming Blockd ~ AL1ZL o o3 053 LET]

21221 X AlllE oLed 040 05z ozE

- 21323 055 042 asa as0

83123 0as 035 075 0xs

B3Z12 [nk=n] .40 o539 0zl

83321 0.4 L5 044 05&

fh:q‘ﬂrﬂfﬂl A32111 055 o4l ass (a2

Pgrr T AlZ1l Tl ozs 0Ts 0I5

Leaming Block3 ~ AlL31 o7 0z7 0=l R E]

A1113 055 sl 53 ozl

B133z sz n.4s 0zs ors

53133 e o3l 0Ts 0I5

FEESE] e [u i3 05z ozE

EEEE ) a7l oz 0=l o013

Clarrjfiration A3111 &7 [EE) ors 05

Phgre I Alz11 a5 035 (a=1-] 0zl

Imﬂhrl 4 AllZl 0L=E 04z o539 0zl

AlllE oea ozl (ak=1-} ozl

1223 0ss 4L 0zE 053

B32133 oss 035 aTs 0zs

B3Z12 oEs 035 o539 0zl

83321 Las .35 053 (ke -]

Clarrification AT111 oeT FET) ns=1 nis

Phase | a1zl o 0z ors 0z

Lsarming Block 5 AL131 T 027 059 031

A1113 e o3s asa asa

B133z nEs oz oss nz1

53133 055 042 053 0zE

B3213 u i) [ e (ak=1-} ozl

EEEE ) 054 045 (a=1-] 0zl

fh:q'ﬂrm‘.im A32111 [ B o4z ass [

Bhger 1 Alz1l Tl [ulei] axl a9

Lsarming Block §  A1131 o 0z 0EE 01z

AlllE oLed 040 055 044

1223 a2 oz= a5z 0zs

B32133 asT oz 053 03z

83212 0as Q.25 (a=1-] 0zl

83321 s a.z1 aTs 0zs

fh:q'ﬂ.rmh AZ111 T 0I5 0T: 0zs

Phare I a1311 s 03s 059 031

r _,Hr.‘-“! T AllZ1 0Tl o 0s1 [n R ]

Block A1113 a5 o3s 53 ozl

BlIzE 0ss 44 [ =11 0zl

83123 Q=0 .40 0s0 asa

B331E [aE=C] ozl ars 0zz

B3331 a7 03z as1 013

fh:q'ﬂrm‘.im A32111 aTs oxs asE o1z

f.r— AlZ11 oTs oz ns=s o1z

Lsarning Block § al1z1 oEs 0as 0Es 021

AlllE oLed 040 055 044

BlIzE as0 0.s0 053 0zE

EIEE] aTr 0Lz (a=1-] 0z1

83212 ars 0zl oass ansg

g3331 oA oz ars 0zs

Clarrjfiradion A3111 =] 037 0= EE]

Phgre 1 Alz11 o7l o [oF-1-} 01z

Lraming Black § Aallzl s ozl aTs 0zs

AlllZ Tl ozs 0Ts 0I5

21322 oar 03z nsE o1z

2123 a7 03z as1 ols

B3Z12 aTr [ B 0=l ols

83321 el 032 53 0zl
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A1211 a7l 0= o=s FRE!

e 1 Al121 75 REs nSd ao0s
Isamming Block 1]~ Al113 0.5 .40 ors s
1333 054 0.4 053 a3l

B3133 &7 REE! R ao0s

CESIE] s ES) aTs e

B33 o7l 0z 0=l o1s

Clarrificason AZ111 ) FES CEE 0z
Al211 T 0T nsd oo0s

Flase I A1121 aTs 0T sl a1s
Leaming Block 12 a1112 o 0zl 0=l nis
21333 0Es 03 o=l a1s

23133 aTs 0 o=z CRE!

53313 Tz 0T nsd ons

FETEE] osT oIz 0=l n1g
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B1333 s 021 ns=s o1z

CETES] s 0.4 0=l o1

CESIE] s 0zl n=s o1z

B33 a7l 0= n=s RRE!

Clarrjficaton AZ111 ) FET n=s FRE]
Phars I Al211 o7l o= ns=s o1z
; ) A1121 orr oz 1m 0
Lrarming Block I3 Al113 s 0zl ns=s o1z
Bl o7l o= T 005

B2133 orr oz ooy 005

CESIE] 0rs s e 006

B33 0=l 01 ars =

Clzimificason CESEED o7l GFC] GE=3 GRE]
Al211 0r: 07 ors s

Fhavs I A1131 .73 021 a:E1 013
Leaming Block 1€ A111% as7 0zz oTs 0zs
21333 (k] 0zl 0El 19

B2133 Ty il ns=s o1z

B3I a7l ule] o=l als

B33 071 03 o=s FRE!

Clarrjficaton AZ111 ) FET 7S 0
A1211 Ty 0z 1m o
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21333 a7l = 0Es RE!

53133 Ty s 1m 0

53313 Tz o7 ns=s o1z
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Clzrrificasion AZ111 o3 0zl 0=1 019
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Diore I A1121 =1 o1 RN 00s
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Experiment 7 — Testing

Trial Type Testing Mo Criterion Criterion Continued
Trials Comect  Tncosrect Corect  Incosect Generalized A11337_ 056 044 044 056
Tupical Atvpical Topical Atvpical Premise 83311 ? 0.56 044 044 056
Label  HFs  Labdl  HF: Typicality A13132_ 050 0.50 056 0.4
Ordinary A31117_ 0.56 0.44 050 050 83131 ? 048 052 044 056
Premise A11132_ 0.50 050 056 0.44 Hidden AL111V_ 054 046 050 0.50
Typicality B1333 7 0.42 058 031 063 Feature A3113X_ 050 o050 06 038
B3331 7 0.48  0.52 0.56 044 Inference
Hidden AL11TV_ 058 042 044 056 Block 7 Ba3mY 02 048 036 044
Feature A3113X_ 0.50 050 044 056 81331 7 D44 056 044 036
Inference B3333_Y 0.48 0.52 0.44 0.56 Classification A3111_ _ 0.75 0.25 0.88 0.13
Block 1 B1331 Z 0.52 048 050 050 Al311 077 0.3 0394 0.06
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Experiment 8 — Learning
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Experiment 8 — Testing
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7.3. Appendix C: Additional testing trials included in Experiments 4-8.

Experiments 4-8 included additional testing trials that were not central to the key
assessments of premise typicality. These are described in detail below and were intended to
provide additional clarification and constraints for models. The results for these trials are
presented in Appendix D and the average response proportions across participants are in
Appendix B.

Experiments 4-8 included ‘ambiguous’ testing trials that matched two instances in the
category summary, the typical instance and an ordinary instance and these predicted different
features as a response. For example, the instance A?111 has the same last three features as both
the typical instance A1111 and the ordinary instance A3111. So, based on a match to a single
category instance, both 1 and 3 are possible responses, however, a 1 feature is the more typical
feature for category A, so a 1 feature response potentially corresponds to a typicality effect.

Exploratory trials in Experiments 4-8 evaluated the relative influence that each part of
the stimulus had on responding—category labels, non-hidden features and hidden features—
by pitting these against each other. In the ‘label vs feature’ trials the category label from one
category was combined with the typical features of the other category and participants were
queried on a missing non-hidden feature. So, the label corresponded to the typical response for
one category while the instance features corresponded to the alternative response i.e. the typical
features of the other category. Similarly, the ‘label vs hidden feature’ trials contrasted a feature
inference response consistent with the category label (the typical non-hidden feature for that
category) to the response consistent with the hidden feature (the atypical non-hidden feature
for the category denoted by the category label).

Another common effect in categorical induction is premise diversity in which the
conclusion is judged as stronger when the premises of an argument are diverse in their coverage

of a category. Experiments 4-6 tested premise diversity by adding a hidden feature to one
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additional instance in each category in the category summary (specifically the A1311 and
B3133 instances) that was typical and atypical respectively. Therefore, category A had a less
diverse set of instances with the typical feature (A1111 and A1311) whereas category B had a
more diverse set of instances with the atypical feature (B1331 and B3133). The test instances
were A2212 and B2232 which were equally similar to the typical and atypical instances for
each category and so there should have been no effect of similarity. These are continuous
instances as the 2 value relates to the feature dimensions on a continuum from 0 to 4 (see Figure
53). Additionally, putting the atypical hidden feature on the more diverse set of premises
separates off the effect of premise typicality (and the assumed preference for the typical hidden
feature) from the effects of premise diversity. This is because a premise diversity effect could
be detected as a ‘premise atypicality’ effect on these trials whereas if the typical hidden feature

was attached to the more diverse set, a preference for responding with the typical hidden feature

TR
T

Figure 53. Specification of the continuous dimension values from 0 to 4 for the four non-hidden
feature dimensions used in Experiments 4-7. Top left panel = wing continuum, top right panel
= body band continuum, bottom left panel = cone continuum, bottom right panel = booster

continuum.
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might have been seen due to premise typicality, premise diversity or both. So specifically, a
diversity effect would correspond to more responding with the atypical feature on the test
instance in category B than for the typical feature on the test instance in category A. Note, that
the lack of category summary in Experiment 7 meant that these trials were not tests of premise
diversity in this experiment though they were included in the testing phase.

A further categorical induction effect is the inclusion fallacy which occurs when a
conclusion that covers a category is judged stronger than a conclusion that is a member of that
category. Experiments 4-7 attempted to test the inclusion fallacy via a blank feature inference
trial (a trial with no feature information present on the screen, only a category label is
presented) and a specific category instance for each category. The specific category instances
were A3003 and B1441. Continuous instances were used as all non-continuous instances had
been used in other testing trials and may have had associations separate from the inclusion
fallacy. A3003 and B1441 had not been used in any other testing trials. We originally thought
an inclusion fallacy would manifest as higher levels of typical responding on the blank trials
than the specific instance trials. However, we’ve realized after the fact that this is not well
founded as the specific instance is also more similar to the atypical instance. Also as discussed
below the specific instance was based on the continuous instances which were likely
perceptually problematic. As a result, | have not discussed the results of these trials below and
have only reported the classic paradigm test results for the inclusion fallacy.

Experiments 4-8 also included generalization classification trials which queried the
category label for the four instances that were not present in the category summary/not trained
during the training phase (A1133, B3311, A1313, B3131). These trials tested for dimensional
rule use.

The stimuli used in Experiments 4-7 were composed of features on continuous

dimensions that had five possible values (see Figure 53). For example, the wing dimension on
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the continuum varied from a value of 0 which had very narrow wings to the value of 4 which
had very wide wings. The wings presented as part of the category summary or learning task
had a value of 1 for the narrow wings and a value of 3 for the wide wings (note this is not a
direct reference to the abstract category structures as the assignment of physical continuum
values to abstract features values was counterbalanced so that ‘1’ abstractly could refer to wide
or narrow wings). The wings with the value of 2 was intermediate in size between the wide and
narrow wings. These continuums allowed for ‘continuous generalization’ testing trials and
these were used to test similarity. For example, A01107? tested similarity as this item is more
similar to the typical than to the atypical instance. The single case, A2112?, was equally similar
to the typical and atypical instances, potentially measuring continuous premise typicality.
However, as this was only a single instance and was based on the potentially inconsistent
continuous stimuli, this was not used as a reliable measure of premise typicality.

Finally, the classic version of some common categorical induction effects were also
included alongside the classic version of premise typicality as a further check that these effects
could be obtained in the current participant population. These additional tests included:

conclusion typicality, premise diversity, the inclusion fallacy and premise specificity.
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7.4. Appendix D: Results for subsidiary testing trials described in Appendix C.

Experiment 4

In Experiment 4, the ambiguous testing trials did not show a significant preference for
responding with the typical non-hidden features over the atypical, (t(36) = 1.3, p =0.212). This
indicates no typicality effect with non-hidden features. The label vs feature trials showed
marginally significant non-hidden feature consistent responding (t(36) = 1.7, p = 0.095). That
is, participants were responding with the feature typical of the category denoted by the non-
hidden features e.g. responding with the 1 feature at test when all the non-hidden features also
had a 1 value. The label vs hidden feature trials had no significant preference in responding
based on the label over the hidden features (t(36) = 0.4, p = 0.657). Overall, these trials show
only a weak preference for the non-hidden features in responding. The generalized
classification testing trials showed that 32% of participants responded in a way that was
perfectly consistent with a rule. There were four patterns of responding that matched to each
of the four possible unidimensional rules. Any participant who matched the pattern of
responses predicted by any of the four rules over all four classification generalization trials was
classed as responding in a rule consistent way. For example, the pattern matching to a
unidimensional rule on dimension one would have errors on instances 2 and 4 but not on
instances 1 and 3. This percentage suggests that roughly a third of participants were responding
consistent with rule use.

The continuous generalization testing trials in this experiment produced poorly
differentiated results suggesting that participants found them confusing. Additionally, post hoc
examination of the added dimensional values suggested that they actually may not have been
perceived as being from the same dimension. As such the continuous generalization trials and
the premise diversity and inclusion fallacy effects based on these stimuli were not considered

for further analysis in this or subsequent experiments.
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Experiment 5

In Experiment 5, the ambiguous testing trials showed a significant preference for
responding with the typical non-hidden features over the atypical, (t(47) = 4.2, p <0.001). This
is consistent with a typicality effect based on non-hidden features. There was no significant
preference in responding on the label vs feature trials (t(47) = 0.5, p = 0.607) or for the label
vs hidden feature trials (t(47) = 0.7, p = 0.512). Overall, this shows no preference for
responding consistent with the category label or the non-hidden or hidden features. The
generalized classification testing trials showed that 40% of participants responded in one of the
four ways that was perfectly consistent with one of the four unidimensional rules (i.e. had errors
on the instances that the use of a given rule would have had errors on), matching roughly to the
estimate from the error diagrams of 29%.

The classic categorical induction paradigm tests showed a significant effect of
conclusion typicality with greater likelihood ratings for the typical conclusion over the atypical
conclusion (t(47) = 2.2, p=0.030). There was no effect of premise diversity with no significant
difference between the ratings for the diverse and less diverse arguments (t(47) = 0.1, p =
0.950). Likelihood ratings were significantly higher for the general category conclusion than
for the specific conclusion (t(47) = 6.6, p < 0.001), showing the inclusion fallacy. Finally,
premise specificity occurred with significantly higher likelihood ratings for the specific
premise compared to the general premise (t(47) = 4.3, p <0.001).

Experiment 6

In Experiment 6, the ambiguous testing trials showed a significant preference for
responding with the atypical non-hidden features over the typical, (t(47) = 2.6, p = 0.012). This
indicates an atypicality effect with non-hidden features. There was no significant preference in
responding for the label vs feature trials (t(47) = 0.5, p = 0.627) or for the label vs hidden

feature trials (t(47) = 1.2, p = 0.231). Again, there was little preference in responding with the
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feature typical of the category the label suggested or the feature typical of the category that the
non-hidden features or hidden feature suggested. The generalized classification testing trials
showed that 23% of participants responded in a way that was perfectly consistent with one of
the four unidimensional rules, matching roughly to the reduction in the estimate from the error
diagrams to 6%.

In the classic paradigm tests, there was a significant effect of conclusion typicality with
the more typical instance being rated as having a higher likelihood than the atypical instance
(t(47) = 3.7, p=0.001). There was no effect of premise diversity with no significant difference
between the likelihood ratings for the diverse and less diverse arguments (t(47) = 0.05, p =
0.962). There was significantly higher likelihood ratings for the category conclusion than the
specific conclusion (t(47) = 4.9, p < 0.001), demonstrating the inclusion fallacy. Finally,
premise specificity occurred as measured by significantly higher likelihood ratings for the
specific premise compared to the general premise (t(47) = 3.9, p < 0.001).

Experiment 7

In Experiment 7, the ambiguous testing trials showed a significant preference in
responding with the typical non-hidden features over the atypical, (t(14) = 2.6, p = 0.021),
showing a typicality effect. Participants preferentially responded with the typical feature of the
category denoted by the feature information on the label vs feature testing trials (t(14) = 2.9, p
= 0.012). Contrastingly, for the label vs hidden feature testing trials, participants showed a
preference for the typical feature of the category denoted by the label information (t(14) = 3.1,
p = 0.009). These results suggest an ordering of preference for using non-hidden feature
information above the category labels and a preference for the category labels above the hidden
feature information.

In the classic categorical induction paradigm tests, there was not an effect of conclusion

typicality as the rated likelihoods of the arguments including the typical and atypical premises
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were not significantly different (t(14) = 0.2, p = 0.843). Similarly, there was no effect of
premise diversity with no significant difference between the diverse and less diverse arguments
(t(14) = 0.5, p = 0.628). For the test of the inclusion fallacy, participants gave higher likelihood
ratings for the general category conclusion compared to the specific conclusion (t(14) = 3.2, p
= 0.006), demonstrating the inclusion fallacy. Finally, an effect of premise specificity was
found with marginally higher likelihood ratings for the specific premise compared to the
general premise (t(14) = 1.8, p = 0.094).

The generalized classification testing trials showed that 20% of participants responded
in a way that was perfectly consistent with one of the unidimensional rules. This matches
roughly to the estimate from the error diagrams of 38% of participants showing rule like
performance during the learning trials.

Experiment 8

For Experiment 8, the ambiguous testing trials showed a significant preference for
responding with the typical hidden feature over the atypical, (t(42) = 3.2, p = 0.002), showing
a typicality effect. For the label vs feature testing trials, participants did not consistently,
preferentially use the label or the non-hidden features to respond, (t(42) = 1.3, p = 0.212). For
the label vs hidden feature trials, participants showed a prevailing preference for responding
with the typical feature of the category denoted by the category label, (t(42) = 3.1, p = 0.004).
This suggests that the hidden features might not have been a preferred basis for responding
over the category label.

In the classic categorical induction paradigm tests, there was a conclusion typicality
effect in which the rated likelihood of the argument including the typical premise was
significantly higher than the likelihood for the atypical premise, (t(42) = 4.1, p <0.001). There
was no effect of premise diversity with no significant difference between the diverse and less

diverse arguments, (t(42) = 0.1, p = 0.959). For the test of the inclusion fallacy, the likelihood
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ratings were significantly higher for the general category conclusion than the specific
conclusion, (t(42) = 5.7, p < 0.001), demonstrating the inclusion fallacy. Finally, there were
higher likelihood ratings for the specific premise compared to the general premise, (t(42) = 5.8,
p < 0.001), demonstrating premise specificity.

The generalized classification testing trials showed that 2% of all participants
responded on these trials in a way that was perfectly consistent with one of the unidimensional
rules. This somewhat matches the estimate from the error diagrams of 23% of participants

seemingly using rules on the learning trials.
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7.5. Appendix E: All classic paradigm categorical induction questions used in Experiments 5-

8, (from Hayes et al., 2010).

Premise Typicality Question 1:

Sparrows have property X / Therefore / Geese have property X

Premise Typicality Question 2:

Penguins have property X / Therefore / Geese have property X

Conclusion Typicality Question 1:

Vultures have property Y / Therefore / Sparrows have property Y

Conclusion Typicality Question 2:

Vultures have property Y / Therefore / Quail have property Y

Premise Diversity Question 1:

Lions have property Z / Mice have property Z / Therefore / Mammals have property Z

Premise Diversity Question 2:

Lions have property Z / Tigers have property Z / Therefore / Mammals have property Z

Inclusion Fallacy Question 1:

Crows have property A / Therefore / Birds have property A

Inclusion Fallacy Question 2:

Crows have property A / Therefore / Ostriches have property A
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Premise Specificity Question 1:

Birds have property B / Therefore / Sparrows have property B

Premise Specificity Question 2:

Animals have property B / Therefore / Sparrows have property B
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