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Summary 

Mycobacterium abscessus is a multidrug resistant pathogen commonly isolated from 

patients with cystic fibrosis. Currently, there is no rapid diagnostic tool to detect the 

presence of M. abscessus. Rapid diagnosis followed by appropriate, prompt treatment 

remains the best curative approach to mitigate disease burden and halt transmission. A 

major bottle neck in developing a rapid diagnostic assay is DNA extraction. 

Mycobacterial cells are very difficult to lyse, the existing methods are time consuming 

resulting in long turnaround time to detect the pathogen. 

 

This study employed the use of microwave energy to rapidly release nucleic acids from 

microorganisms and test the ability to detect the released nucleic acids in a magnetic-

bead-based sandwich hybridisation assay using specific DNA probes. Based on published 

genome sequences, probes targeting the rpoB and erm-41 genes of M. abscessus and M. 

smegmatis were designed. In a magnetic-bead-based sandwich hybridisation assay using 

these specific probes, M. abscessus and M. smegmatis were distinguished from non-

specific isolates within 70 mins with a lower detection limit of 1 pg/µL.  

 

The disruptive effects of microwaves on biological structures has been attributed to the 

local generation of heat. The contribution, if any, of non-thermal factors is yet to be 

determined. To study the interaction of microwaves with cell membranes, the structure 

which represents the major barrier to DNA release, fluorescent microscopy was employed 

to examine the passage of different sized fluorescent dextran particles into bacterial and 

yeast cells following microwave exposure. The results show a transient membrane 

disruption, size dependent permeabilization of dextran particles into cells.  

 

In conclusion, a prototype hybridisation assay capable of detecting M. abscessus and M. 

smegmatis has been developed. The application of microwaves to cells induced membrane 

disruption allowing internalisation of varying sizes of fluorescent dextran particles and 

the release of intact DNA for detection in hybridisation assay.   
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1.0 Mycobacteria 

Mycobacteria species are a worrying problem consistently generating research interest 

due to their pathogenicity for humans and animals (Han et al. 2007). They are a diverse 

species reported to number over 100 members ranging from harmless saprophytes to 

pathogenic organisms (Ripoll et al. 2009). They are grouped as slow or rapid growing, 

pigmented or non-pigmented and tuberculous or nontuberculous (Adekambi and 

Drancourt 2004). They are characterised by the unique composition of their cell wall 

structure and high mycolic acid content comprising mainly of alkyl and long β-hydroxyl 

fatty acids (Hett and Rubin 2008). This enhances cell wall rigidity and enables the bacteria 

to survive in the presence of antibiotics which target cell wall structures common to other 

classes of bacteria. A typical mycobacteria specie is considered as Gram-positive, non-

motile, non-spore forming and rod-shaped bacilli with size ranging between 0.3 to 0.5 µm 

in diameter and length between 1.5 μm and 4.0 µm (Cook et al. 2009). The cell wall 

structure and membrane compositions of mycobacteria in comparison to other groups of 

bacteria e.g. Gram-negative, Gram-positive and yeast cells differ significantly, and these 

are discussed below.  
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1.1 Cell wall differences of mycobacteria and other cell types  

Structurally, Gram positives e.g. S. aureus and Gram-negatives e.g. E. coli are 

differentiated based on the composition of peptidoglycan in their cell wall. E. coli has a 

thin peptidoglycan (PG) layer that is a few nanometres thick, representing one to a few 

layers while in S. aureus, the PG is between 30–100 nm thick and contains many layers 

(Fig. 1.1) (Huanga et al. 2008). Peptidoglycan is not present in yeast cells (C. albicans) 

but the outer core consist of intricate network of polysaccharide fibrils composed of β-

(1,3)-glucan which is linked covalently to β-(1,6)-glucan and chitin- a β-(1,4)-linked 

polymer of N-acetylglucosamine (Ruiz-Herrera et al. 2006). This organised core structure 

acts as a scaffold for the external layer which consist of highly glycosylated 

mannoproteins (McKenzie et al. 2010). The cell wall characteristics of mycobacteria lie 

between that of Gram-positive and Gram-negative bacteria. Mycobacteria have a complex 

cell envelope consisting of a PG containing arabinogalactan that is covalently attached to 

mycolic acids (Fig 1.1). Mycolic acids are characterised by intricate long chain alkyl 

groups with a maximum length of about 90 carbons. This intricate network of alkyl chains 

give the bacteria a waxy appearance and become resistant to lyse and for exogenous 

substances to penetrate (Silhavy et al. 2010).  
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Figure 1.1. Comparison of cell wall composition between Mycobacteria  (A), 

Gram-positive (B), Gram-negative (C) and yeast cells (D). Picture adapted from 

(Brown et al. 2015) 

 

 

 

 

 

Tuberculous mycobacteria (slow growers) are those that cause tuberculosis and is 

comprised of six members known as the Mycobacterium tuberculosis complex (MTBC). 

These include; M. tuberculosis (M. tb), the causative agent for tuberculosis in man, 

Mycobacterium africanum, Mycobacterium bovis, Mycobacterium canettii, 

Mycobacterium pinnipedii and Mycobacterium microti. Although this group (MTBC) are 

genetically similar, they affect a diverse range of hosts. For instance, M. africanum and 

M. canettii are the closest relative to M. tb both causing tuberculosis (TB) but are 
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restricted to the equatorial regions of Africa. M. bovis, the causative agent of bovine 

tuberculosis is the only member of the complex capable of infecting a diverse range of 

animals including wild and domestic species (Mostowy et al. 2005). M. pinnipedii and M. 

microti infect seals and wolves respectively (Cousins et al. 2003; Mostowy et al. 2005). 

Although mycobacteria species are known primarily for their pathogenicity, some possess 

unique characteristics which are being exploited for industrial applications. For example, 

Mycobacterium austroafricanuum has the  unique ability  to degrade methyl tert-butyl 

ether and is being explored as a potential decontaminant of contaminated ground water 

(Maciel et al. 2008). Of species in the MTBC, M. tb and M. bovis are the most common 

and are described below.  

 

 

1.2 Bovine tuberculosis (B. Tb) 

Mycobacterium bovis (M. bovis) is the causative agent of B. tb, which mostly occurs in 

domestic and wild animals. M. bovis can be shared between humans and animals (zoonotic 

transmission) (Mostowy et al. 2004; Mostowy et al. 2005; Schiller et al. 2010). Zoonotic 

transmission occurs through the consumption of unpasteurised cow milk or meat infected 

with the bacilli (de la Rua-Domenech et al. 2006; Torres-Gonzalez et al. 2013). There is 

undisputable scientific evidence from badgers acting as reservoirs for M. bovis and are 

actively involved in transmission to cattle (Bhuachalla et al. 2015). Clinical evidence of 

human to human transmission has also been documented (Sunder et al. 2009). Infection 

with M. bovis is characterised by the formation of granuloma lesions with different 

degrees of calcification, necrosis and encapsulation in the lung tissues and other organs 

(Michel et al. 2010). B. tb remains a major public health concern in developing countries 
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and developed countries such as the UK. Identifying the presence of the pathogen in a 

single animal often results in the slaughter of the entire herd. Between 2008 and 2015, a 

total of 68, 630 cattle were slaughtered in the UK due to B. tb with 11.8% of these cases 

occurring in 2015 alone (fig 1.2) (Carl 2015). Such losses can have a huge financial impact 

on farm output and a subsequent decline in business. Between 2008 and 2009, Britain 

spent approximately £100 million on the management of B. tb (Schiller et al. 2010) and 

the Welsh government spends about £5 million a year on vaccination research. 

 

 

 

Figure 1.2 The scale of Bovine tuberculosis in UK. The total number of animals 

slaughtered in regions of Wales, Scotland and England. Picture adapted from 

https://www.thetimes.co.uk/article/shoot-the-badgers-ql67nxgjdf9. Date accessed 18/11/2018 

 

 

https://www.thetimes.co.uk/article/shoot-the-badgers-ql67nxgjdf9
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On the global scale, an estimated US$3 billion is lost annually due to B. tb (Schiller et al. 

2010). These are huge expenditures which are very costly and presents a major problem. 

The above challenges can be attributed in part to the absence of effective diagnostic tools 

capable of delivering patients results within a short time frame. The most widely used 

screening tool is the tuberculin skin test (TST). This test is discussed in detail in section 

1.9.4.1. Unfortunately, TST is prone to false-positive results due to exposure of cattle to 

other environmental mycobacteria species (Katial et al. 2001; Buddle et al. 2009). Also, 

the test can generate a false-negative result due to immunosuppression, desensitization 

towards tuberculin and the use of less potent tuberculin (Wadhwa et al. 2012). Measuring 

humoral antibody following injection of a mycobacterial purified protein derivative (PPD) 

is as an alternative method to detect M. bovis infection. Unfortunately, this test lacks 

specificity due to cross reactivity with other pathogens (Lilenmaum et al. 1999; Molicotti 

et al. 2014). Accessing sensitive, specific point-of-care (POC) assay capable of 

determining whether an animal is infected will have a significant effect on disease control 

and prevent the needless slaughter of farm animals. 

 

 

1.3  Human tuberculosis (M. tb) 

TB is the number one cause of mycobacteriosis worldwide. It is transmitted through 

inhalation of respiratory droplet containing viable bacteria which can be produced by 

sneezing or coughing. Such respiratory droplets are usually 1-5 µm in diameter and 

contain between 1-10 bacilli (Lee 2016a). TB is reported in over 205 countries and 

territories which consists about 99% of the world’s population (WHO 2015). The reported 

disease burden is low in developed countries such as Canada, New Zealand and Australia 
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but considerably higher in countries such as Brazil, China, Namibia and some parts of the 

African continent (McNerney et al. 2012). This is mainly attributed to factors such as 

HIV/AIDS co-infection, the emergence of multidrug resistant isolates, the absence of 

rapid and efficient diagnostic tools and the deterioration of public health systems (Weyer 

et al. 2011; Forrellad et al. 2013; WHO 2015). For instance, HIV/AIDS patients suffer a 

weakening of the immune system and as a result become susceptible to M. tb (Kasprowicz 

et al. 2011; Venturini et al. 2014). Disturbingly, TB has become incessantly resistant to 

antibiotics. In 2014, the global estimate of new multidrug resistant TB (MDR-TB) was 

480, 000 with half of these cases occurring in China, India and the Russian federation 

(WHO 2015). TB drug resistance is difficult to treat (Kamphee et al. 2015).  

 

Currently, only a small number of drug resistant TB cases are detected and appropriately 

treated since the tools for providing accurate and rapid diagnosis at the time of the initial 

patient consultation are unavailable (Ormerod 2005). A reported 32% of HIV related 

deaths are associated with TB, with over 650,000 cases due to MDR-TB (Moreno-

Altamirano et al. 2012). Out of the total number of individuals infected with TB in 2014, 

12% (1.2 million) were living with HIV and 0.4 million subsequently died (WHO 2015) 

and in 2015, an estimated 10.4 million people were reported to have suffered from TB 

which resulted in a total of 1.8 million deaths (WHO 2015).  

 

TB transmission and its ability to establish lifelong infections depends on the bacterial 

load at the time of infection, the immune status of the individual, virulent state of the 

bacilli, environmental stress and biosocial factors (Lee 2016b). TB mainly presents in two 
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different states namely; active and latent forms. Latent TB is when an individual is 

infected with the TB bacilli but does not present with any clinical symptoms, with a 

negative chest X-ray and no microbiological evidence. Latent TB is not transmitted (Lee 

2016a) since the bacilli has reduced metabolic activity and remains dormant for decades 

unless the host immune response is compromised then the bacterium is reactivated (fig 

1.3a).  

 

Upon infection, TB bacilli are engulfed by antigen presenting cells (alveolar macrophages 

or dendritic cells) to form a solid granuloma. Inside the granuloma, the bacilli are 

contained so that they do not develop into active forms (Fig 1.3a) (Pai et al. 2016). Latent 

TB is reported in about 2 billion individuals (Kaufmann et al. 2017). Solid granulomas 

can lose their ability to contain the bacterium through cell death and necrosis releasing 

dormant bacteria which are subsequently activated and go on to cause clinical symptoms 

(active TB) (Fig 1.3b). Apart from the lungs which TB primarily infects (pulmonary TB), 

M. tb also infect the lymph nodes, pleura, skin, joints, central nervous system (CNS), 

gastrointestinal tract, abdomen (extrapulmonary TB). Miliary TB is a hematogenous form 

of TB which is characterised by tiny lesions on multiple organs involving the lungs, 

spleen, CNS and liver (Nachiappan et al. 2017).  
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Figure 1.3. Infection stages of (a) latent and (b) active TB . (a) Latent TB – M. tb 

bacilli enters the lungs and reaches the alveoli space where it is phagocytosed by the alveolar 

macrophages. When this defence mechanism fails, M. tb progresses to infect the interstitial tissues 

of the alveolar epithelium or the infected alveolar, macrophages migrating to the lung 

parenchyma. This event is followed by the action of dendritic cells or inflammatory cells 

transporting M. tb to the pulmonary lymph nodes for T cells to be primed. T and B cells are then 

recruited to the lung parenchyma to form granuloma. (b) Active TB - The active stage develops 

at the stage of granuloma formation. When the bacilli load is too large for the granuloma to 

contain, or necrosis of the granuloma occurs, it ruptures and leads to the active and symptomatic 

TB. Picture adapted from (Pai et al. 2016). 
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1.4 Virulence factors of M. tb 

Unlike other bacteria (e.g. Clostridium difficle) that produce toxins, mycobacteria lacks 

classical virulent factors (Forrellad et al. 2013). Complete sequencing of the M. tb genome 

reveals about 4,000 genes, of which 91 (2.3%) have been associated with virulence. Genes 

required for lipid metabolism, cell wall function and regulatory proteins synthesis 

accounts for approximately 5.7%, 13% and 4.7% respectively. These genes are needed 

for bacterial survival and thus could be considered as factors contributing to M. tb 

virulence (Smith 2003). Additionally, genes that are essential for signal transduction 

pathways and cell surface proteins have all been implicated as virulent factors (Smith 

2003). To this end, a classical definition of M. tb virulence factors is yet to be determined. 

According to Dubnau, M. tb virulent factors includes elements that are required for 

pathogenicity and bacterial survival inside a host while excluding those that are required 

for bacterial growth in culture medium (Dubnau 2002). Some of the key elements 

considered as M. tb virulent factors (i.e. controlling the interaction of the pathogen with 

host phagosomes and lysosomes) are discussed in more detail below. 

 

 

1.4.1 Interaction with phagosome and Lysosome 

As a well-known fact, TB infection begins with the inhalation of aerosols from the 

environment containing viable M. tb bacilli. Upon entering the lung, the bacillus is 

internalised by host activated macrophages and are taken up into the acidic compartment 

of the lysosomes. The mechanism is demonstrated with the use of nanoparticles (fig. 1.4) 

(Kaufmann 2001). Bacilli which are able to evade delivery to the lysosome and survive 

go onto cause an infection (Kaufmann 2001; Russell 2001). The bacterium possesses a 
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molecule called lipoarabinomannan (LAM) in its cell wall which prevents the formation 

of phosphatidylinositol 3-phosphate (PIP3) on the surface of endosomal and phagosomal 

membranes and regulates the transfer of phagocytosed M. tb bacilli to lysosomes. (Vergne 

et al. 2003). In addition, M. tb also produces a lipid phosphatase (SapM) and a protein 

phosphatase (PtpA and PtpB) which are released into the cytosol for specific functions 

upon entry into the host. SapM hydrolyses PIP3 on the phagosomal membrane while 

Protein tyrosine phosphatase (A/B) interferes with trafficking processes via 

dephosphorylation mechanisms (Saleh and Belisle 2000; Bach et al. 2008).  

 

Another mechanism by which M. tb outwits lysosomal degradation is by producing a 

signalling molecule that prevents fusion of the phagosome to the lysosome. Increased 

synthesis of protein kinase G (PknG) in the phagosome of infected macrophages has been 

reported in a study by Walburger and colleagues. It was discovered that PknG prevents 

fusion of phagosomes and lysosomes. To confirm this observation mutants  lacking the 

ability to synthesise PknG were unable to prevent phagosome / lysosome fusion resulting 

the death of the bacterium  (Walburger et al. 2004).  
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Figure 1.4. The process of macrophage mediated phagocytosis and lysosome 

degradation of bacteria in infected host. Nanoparticles enter the cell via four major 

pathways, namely; clathrin/caveolar-mediated, phagocytosis, micropinocytosis and pinocytosis. 

Upon entry into the cell, nanoparticles exit via lysozyme secretion, vesicle related secretion and 

non-vesicle related secretion. MVBs means multivesicular bodies. Picture adapted from Oh and 

Park 2014.  
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1.4.2 Cell envelope virulent factors 

The outer membrane of M. tb is of interest as it interacts with macrophages. The 

mycobacterial cell wall consists of glycolipids such as LAM - as mentioned above, 

trehalose 6, 6´- di-mycolate (TDM) also known as cord factor and phithiocerol 

dimycocerate (PDM). All these glycolipids have been implicated in M. tb virulence 

(Meena and Rajni 2010). LAM stimulates the release of tumour necrosis factor (TNF- α), 

a major cytokine released in response to M. tb infection. TNF- α is over produced in TB 

infected individuals which leads to the notable Tb-like symptoms such as weight loss, 

fever and cytokine-mediated necrosis (Rajini et al., 2011). LAM also acts as a virulent 

factor by inhibiting the activity of protein kinase C, an enzyme required for macrophage 

activation (Chan et al. 1991). While macrophages are required to engulf (phagocytose) 

M. tb bacilli, their reduced activation implies a deficiency in phagocytic process, allowing 

M. tb to be viable and become virulent (Rajini et al., 2011).  

 

When M. tb is phagocytosed, the bacilli contained in the phagosome fuses with the 

lysosome (acidic environment) to form the phagolysosome for intracellular destruction of 

the pathogen. PDM and TDM demonstrate similar virulence characteristics by preventing 

the formation of the phagolysosome. PDM which is present on the plasma membrane of 

M. tb participates in a receptor dependent phagocytosis of M. tb. This process involves 

modifying the plasma membrane of the host cells which eventually affects its biophysical 

property. One way the bacteria benefits from this is to regulate phagosomal pH, thereby 

creating a protective niche for the bacteria to survive (Astarie-Dequeker et al. 2009).   
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Similarly, TDM is required to inhibit fusion of phospholipid vesicles between phagosome 

and lysosome. This is achieved by increasing the stearic hindrance and increasing the 

force of hydration atb their surfaces to hinder their fusion (Rajini et al., 2011).  

 

1.4.3 Metabolic adaption of gene expression 

Metabolic adaptation is very important for any pathogen to survive in its host and results 

in the activation of specific genes are to enable the bacterium to employ an alternate 

biosynthetic pathway for nutrient metabolism. Studies have found that, M. tb switches 

from a preference for carbohydrate as main source of carbon to fatty acids after infecting 

its host (Segal and Hubert 1955). A key enzyme which the bacteria needs to continually 

metabolise fatty acids is isocitrate lyase produced by the isocitrate lyase (icl) gene. For 

M. tb to be able to thrive on fatty acids as the sole carbon source, the fatty acid is first 

converted into acetyl coA which can be channelled into the Kreb’s cycle via the 

glyoxylate cycle. In this   cycle, M. tb utilises isocitrate lyase to metabolise isocitrate to 

succinate. Mutant strains lacking icl cannot synthesis isocitrate lyase, hence are unable to 

metabolise fatty acids leading to reduced bacterial growth. This has been experimented in 

the lungs and extra-pulmonary organs of infected mice (McKinney et al. 2000; Shi et al. 

2003). Also, the igr operon in M. tb contains virulent genes such as cytochrome 125, 

fadE28/29 and lipid transfer protein (lpl2) that are required for cholesterol metabolism 

(Joshi et al. 2006). Mutant M. tb (i.e. lacking igr operon) replicate at a lesser rate in mouse 

models (Chang et al. 2009).  
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1.5 Treatment of M. tb and multi-drug resistant (MDR) burden 

Drug resistance is a major challenge in TB treatment. Drugs commonly used include 

rifampicin (RIF), ethambutol (ETMB), pyrazinamide (PZ) and isoniazid (INH). These are 

considered the first line of drugs for TB treatment. The nature of M. tb to demonstrate 

varying level of resistance to antibiotics i.e. intrinsic and passive mechanisms renders 

monotherapy noneffective. By applying multitherapy, other resistant mechanism which 

normally would have escaped single antibiotic treatment can be averted. Various forms 

of resistance have been encountered in TB therapy, namely; multi-drug resistance (MDR), 

extensive drug resistance (XDR) and total drug resistance (TDR). MDR refers to high 

level resistance to rifampicin and isoniazid (Ormerod 2005). An MDR strain that has 

additional resistance to any of the fluoroquinolone antibiotics (ofloxacin, levofloxacin and 

moxifloxacin) and to any of the second line injectable antibiotics (amikacin, kanamycin 

and capreomycin) is considered an XDR (Shah et al. 2007). XDR TB has been detected 

in 92 countries and 9.6% of MDR-TB cases progress to XDR-TB (Blaas et al. 2008; 

Velayati et al. 2009). TDR refers to M. tb that is insensitive to all forms of anti-TB drugs. 

TDR M. tb  have been identified in India, Italy and Iran (Migliori et al. 2007; Udwadia et 

al. 2012).  

 

To enable accurate reporting of TB and drug resistant cases, the WHO collaborates with 

and request data from the national tuberculosis control programme (NTP) or relevant 

public health authorities within the 203 countries and territories that are engaged in TB 

surveillance. These data are collated following standard procedures and further forms the 

basis of annual TB reports. In 2013, less than 25% of MDR cases were detected resulting 

in 170, 000 deaths (WHO 2013; Günther 2014). A careful examination of this problem 
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could be attributed to patient-clinician inadequacies. The administration of wrong 

antibiotics, inappropriate treatment regimens and non-adherence to treatment plan by the 

patient are all contributing factors. TB treatment can be improved by following and 

adhering to the treatment regimen lasting between 6-9 months. Patients unable to adhere 

to this treatment regimen create the opportunity for selecting resistant strains. Another 

major contributing factor is the lack of rapid diagnostic procedures. Diagnosis remains a 

corner stone in TB treatment and drug resistance monitoring. Studies to underpin the 

development of effective POC diagnosis is lacking and there is no doubt that these tools 

are much needed for TB management.  

 

1.6 Drug resistance mechanisms 

Resistance due to the acquisition of transferable DNA elements has yet to be reported in 

TB therapy. Gene mutations at drug binding targets, or a modification of specific enzyme 

required to convert a pro-drug into an active drug are the main factors contributing to 

resistance in M. tb. Four main drugs are considered as the first line of anti-TB drugs. Their 

mechanism of action and resistance are discussed below.  

1.6.1 Rifampicin (RIF) 

RIF is a lipophilic drug which targets and binds to the β-subunit of the RNA polymerase 

(rpoB). Upon binding, rifampicin inhibits the elongation of mRNA, a key transcriptional 

process required for bacterial growth (fig. 1.5). Resistance to RIF arises when its binding 

target (an 81 base pair region of the rpoB gene) is mutated (El-Hajj et al. 2001). This 

region is also referred to as RIF resistance determining region (RRDR) and approximately 
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95% of RIF resistant strains harbour this mutated gene (Zaczek et al. 2009). Almost all 

RIF resistant strains demonstrate isoniazid resistance, hence detection of RIF resistant 

isolate is usually classified as MDR (Qazi et al. 2014).  

1.6.2 Isoniazid (INH) 

INH is only active against actively replicating M. tb (Palomino and Martin 2014). The 

drug is designed as a pro-drug that requires activation by an enzyme produced by the 

bacterium called  catalase-peroxidase enzyme, katG,  which is encoded by katG gene 

(Konno et al. 1967; Scorpio and Zhang 1996). Activated INH in the form of isonicotinoyl 

acyl radical complexes with NAD+/NADH to form an INH-NADH adduct which  inhibits 

an enoyl-acyl carrier protein (ACP) reductase encoded by isonicotinic acid hydrazide A 

(inhA) which plays a critical role in mycolic acid synthesis a key component  for cell wall 

biosynthesis  (Cade et al. 2010).  

 

Resistance to INH is mainly attributed to mutations occurring in katG, inhA, kasA and ndh 

genes which reduce the binding affinity of the resulting proteins for INH. These genes 

also perform specific functions aiding M. tb survival. For instance, KasA encodes β-

ketoacyl-ACP involved in the synthesis of mycolic acid, KatG catabolises catalase and 

peroxidases generated within macrophages to aid bacterial survival (Ng et al. 2015), inhA 

encodes NADH-specific enoyl-ACP reductase required for mycolic acid biosynthesis 

(Vilcheze et al. 2000) and ndh is involved in ATP generation (Awasthy et al. 2014). 

Mutations in KasA has been detected in INH resistant and susceptible isolates, hence their 

role in INH resistance may be of less significance (Larsen et al. 2002; Almeida Da Silva 

and Palomino 2011). 
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1.6.3 Ethambutol (ETMB) 

ETMB is a bacteriostatic drug which interferes with the biosynthesis of arabinogalactan 

in the bacterial cell wall (fig 1.5). It targets the embB gene at position 306, although other 

studies have shown that mutation in this region does not necessarily lead to drug resistance 

but predisposes to other resistance mechanisms (Sreevatsan et al. 1997). As this gene is 

not a clear indicator of ETMB resistance, there is the need to identify other genes that can 

accurately predict ETMB resistance.  

 

1.6.4 Pyrazinamide (PZ) 

This is also another prodrug which is converted to its active form (pyrazinoic acid) by 

pyrazinamidase (PZase). The exact mechanism of PZ action is not fully known. One 

mechanism suggests that in acidic conditions, pyrazinoic acid disrupts bacterial 

membrane energetics via depletion of membrane potential and inhibits membrane 

transport (fig. 1.5) (Whitfield et al. 2015). A second mechanism suggests pyrazinoic acid 

inhibits fatty acid synthase type I in actively replicating M. tb bacilli (Ramaswamy and 

Musser 1998; Almeida Da Silva and Palomino 2011). Mutations occurring within pncA 

gene (encoding PZase) is the chief mechanism of PZ resistance. However, some 

pyrazinamide resistant isolates have been found not to harbour pncA mutations, 

suggesting resistance occurring through other genes such as panD. It is believed that panD 

is a target for pyrazinoic acid which inhibits panthoenate and co-enzyme A synthesis 

which are essential for energy production and fatty acid metabolism (Zhang et al. 2013). 
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Figure 1.5 Schematic representation of the mechanism of action of the first -

line anti-TB drugs . Picture adapted from (National Institute of Allergy and Infectious 

Diseases 2016). 

 

1.7 Policies and strategies to prevent TB infection 

The WHO has set itself the goal of a world free of TB by 2035. This can only be realised 

if there is a concerted effort from governments, non-governmental organisations and all 

other relevant bodies in countries where TB burden is high to support and implement 

policies developed by WHO. Two of the major policies implemented by the WHO will 

be discussed here i.e. The STOP TB strategy and the Directly Observed Treatment Short-

Course (DOTS) program. The former was built on the success of the latter to address 

unmet needs. The DOTS control program was established in 1994 when the WHO 

declared TB a disease of public health concern. This policy has 5 main components which 
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requires; (1) Government bodies to be committed to and to sustain TB control activities, 

(2) Identification of TB by sputum smear microscopy in symptomatic patients, (3) A 

supervised treatment regimen in patients between 6 to 8 months of therapy, (4) A constant 

and uninterrupted supply of all essential TB drugs and (5) A detailed recording and 

reporting system that easily allows assessment to treatment (Enarsona and Billo 2007).  

 

After 10 years of successful DOTS implementation, 20 million people have been treated 

and more than 16 million have been cured (Otu 2013). The implementation of DOTS also 

ensured that patients who do not adhere to rigorous requirement of TB medication were 

monitored. Also, the right drug dosage was given to patient to swallow under direct 

supervision from a health worker (Otu 2013). To address the unmet needs in the DOTS 

program, the STOP TB strategy was implemented which further focuses on addressing 

TB/HIV, MDR-TB, promoting research with the aim to developing vaccines, produce 

new drugs and diagnostic tools (The Stop TB Strategy 2018) 

 

1.8 TB Prevention Challenges 

The goal of the WHO to reduce TB mortality to 95% by 2035 can be realised by 

intensifying research into the development of new drugs, vaccines and rapid diagnostic 

tools. Vaccination is an effective method for the control of most infectious disease. Bacilli 

Calmette-Guerin (BCG), an attenuated strain of M. bovis is the first TB vaccine to be 

introduced in 1921 and  while this vaccine shows efficacy against TB in children, it offers 

little or no protection in adults with pulmonary TB (Kaufmann et al. 2017). The inability 

of this vaccine in preventing pulmonary TB in adults could be due to immunogenetic 
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differences in adults and children. Exposure to environmental mycobacteria which is 

likely to be high in adults could explain the observed differences. Due to these challenges, 

a more efficacious form of the vaccine capable of being used to protect against all forms 

of TB must be developed. Having TB vaccine is also of great importance to reduce the 

increasing cases of MDR-TB. Currently, there are approximately 13 vaccines in clinical 

development. These vaccines fall under 3 categories namely; viral vectored subunit, 

adjuvanted protein subunit and whole cell-derived vaccines (Fletcher and Schrager 2016). 

These are discussed below. 

 

1.8.1 Subunit vaccine 

Subunit vaccines contain one or more antigens in the form of protein, peptides or DNA 

(Franco-Paredes et al. 2006). Out of the 13 vaccines currently being studied 8 are subunit 

vaccines. Six contain or express either Ag85A or Ag85B. Ag85A is an enzyme required 

for mycolic acid biosynthesis during M. tb dormancy. Ag85A is required for lipid 

accumulation and lipid storage in M. tb. To boost the protectivity of this vaccine type, 

antigens can be formulated with an adjuvant or expressed by a recombinant viral vector 

(Kaufmann et al. 2017).  

 

1.8.2 Viral vectored vaccines 

The immune markers produced in TB patients are very diverse. For a vaccine to be 

effective, it needs to identify all the immune markers produced by an individual. Subunit 

vaccines can only elicit an immune response in a specific subpopulation of CD4+ T- cells 

which may not provide complete protection against TB in humans. To increase the 
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efficacy and protectivity of TB vaccines, antigens can be expressed from a recombinant 

viral vector e.g. adenovirus or vaccinia vectors. The choice of these vectors for vaccine 

development stems from a number of advantages, namely (1) they are  respiratory viruses 

and can be targeted to the lungs where M. tb resides, (2) they can express multiple antigens 

at the same time, (3) they possess  intrinsic adjuvant property and (4) have  an acceptable 

safety profile (da Costa et al. 2015). Unfortunately problems have also been encountered 

with an adenovirus type 5 HIV-1 vaccine trial being  discontinued due to  the occurrence 

of HIV infection in vaccine recipients (da Costa et al. 2015).   

 

1.8.3 Whole Cell-derived vaccines 

The challenge of identifying a single universal antigen suitable to be incorporated into a 

TB vaccine remains a challenge and an area of increased research. In contrast whole cells 

are polyantigenic and thus have the potential to stimulate a more comprehensive spectrum 

of protection than subunit vaccines. VaccaeTM is a whole cell heat-inactivated vaccine 

generated from a non-tuberculous mycobacterium (M. vaccae) and is currently the only 

vaccine candidate that has reached the most advanced stage of clinical trials.  In China it 

is currently being administered as an adjunctive treatment to M. tb (Frick 2015; Kaufmann 

et al. 2017).  

 

1.9 Methods of TB diagnostics 

Diagnosis is a key and fundamental component in the fight against TB (WHO 2015). In 

the absence of effective preventative methods, it is estimated that 200 million individuals 
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will develop active TB of which 35 million will die between 2000 and 2020 (Meena and 

Rajni 2010). The current control strategy for TB management requires effective diagnosis, 

followed by treatment at an early stage and extensive patient follow-up (Battaglioli1 et al. 

2013). Diagnosis is estimated to have saved about 43 million lives between 2000 and 2014 

(WHO 2015). Unfortunately, these requirements are not easily met especially in low 

resource settings such as Asia and Africa where rapid and simple diagnostic tools are not 

widely available. The diagnostic methods which are currently available lack specificity, 

sensitivity, are time consuming, requires access to sophisticated equipment and the need 

for highly trained technical staff (Maiga et al. 2012). Diagnostic tools capable of detecting 

the presence of M. tb in a clinical sample and at the same time determining its antibiotic 

sensitivity would be helpful in the effective management and control of TB.  The methods 

that have been developed for TB diagnosis are discussed below. 

 

1.9.1 Microscopy 

Microscopy is the cheapest and fastest means of detecting pulmonary TB (WHO 2013). 

The characteristic cell wall composition of these species enables easy detection using the 

Ziehl-Neelsen (ZN) staining method which is a common staining method for 

mycobacteria species. After staining, bacilli appear as pink or red rods under light 

microscope (Perkins et al. 2006). This method suffers from sensitivity and is unreliable. 

Sensitivity ranges between 22-43% with a lower limit of detection between 103-104 bacilli 

per ml (Singh and Kashyap 2012; Singhal and Myneedu 2015). Sensitivity can be 

improved using fluorescent microscopy. While this approach makes it easier to visualise 

the bacterium, it is unable to determine antibiotic susceptibility and identify resistant 
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isolates (Ryu 2015). It is also unable to distinguish between virulent and non- virulent 

mycobacteria species. 

 

Also, the cost of operation, the frequent need to replace the expensive mercury vapour 

lamps, the need for a continuous power supply and the need for a dark room restricts its 

use in less resourced communities. Light emitting diode (LED)-based fluorescent 

microscope have been developed and while they deliver readings three times faster than 

ZN, they currently lack sensitivity and specificity (Bhalla et al. 2013). 

 

1.9.2 Chest X-ray 

Chest X-ray has been used for more than 100 years for TB diagnosis. In a typical Tb 

patient, chest X-rays depict miliary nodules, lymphadenopathy, pleural effusion, 

cavitation and consolidation (fig. 1.6) (Nachiappan et al. 2017). An abnormal X- ray data 

is not an absolute confirmation of TB infection as other diseases such as sarcoidosis and 

neoplasma present with similar radiologic evidence (Mortaz et al. 2013) and requires 

further  clinical testing to ascertain the diagnostic status of the patient. Chest X-ray also 

suffers interobserver variability and specificity. A sensitivity range between 73-79% and 

a specificity of 60-63% has been reported (Piccazzo et al. 2014). To improve on the 

specificity of TB radiology, more powerful and sensitive imaging tools such as magnetic 

resonance imaging (MRI) and computer tomography (CT) scan are currently being used 

(Skoura et al. 2015). A CT scan is twice as sensitive in the detection of  TB lung cavities 

compared to chest X-ray (Nachiappan et al. 2017). Clearly given the reported level of 

sensitivities and specificities, chest X-ray results need to be confirmed with an additional 
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confirmatory test. The cost of operating such equipment, the need to train radiologists and 

the health hazards associated with exposures to radiations require much simpler and less 

expensive methods.  

 

 

Figure 1.6 Conventional X-ray of a TB patient . The right upper lope indicates a large 

cavity in the lung surrounded by consolidation and infiltrates. Picture adapted from (Pai et al. 

2016).  

 

 

1.9.3 Mycobacterial culture 

Sputum culture remains the gold standard for TB diagnosis (Ryu 2015). Before culturing 

on specialised medium (Lowenstein-Jensen), sputum samples must first be 

decontaminated to reduce the number of other bacteria present. Although an important 

procedure, decontamination reduces the number of viable bacilli in the sputum samples 

thus compromises sensitivity (Grandjean et al. 2008). The specificity and sensitivity of 
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this method is reported to be 98% and between 26-42% respectively (Wadhwa et al. 

2012). Traditional M. tb culture require 4-6 weeks of incubation on solid media (fig. 1.7), 

but this can be reduced to 10 days using a highly enriched liquid culture (Murray et al. 

2003; Ryu 2015). This method has some limiting factors, such as the need for biosafety 

level 3 (BSL 3) containment and time for pathogen detection as M. tb grows slowly 

(Grandjean et al. 2008). A tool capable of the real-time detection of the pathogen would 

have a significant impact on TB control. 

 

 

Figure 1.7. Growth of M. tb on Lowenstein-Jensen (LJ) agar. Yellow colonies of M. 

tb are seen growing on LJ agar after 6-8 weeks post culture. Picture adapted from (Castellana et 

al. 2016). 

 

 

1.9.4 Immunological methods 

Direct detection of M. tb bacilli from sputum samples can be challenging especially in 

children below the age of 12 and in severely compromised individuals such as those 

infected with HIV and in those who are unable to produce quality sputum samples 
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(Shingadia and Novelli 2003). Serological based methods come in handy when blood and 

urine are sample targets, as any patient would be able to provide these specimens without 

any difficulty. Immunological assays can be categorised into (1) direct assays which target 

the bacterium and (2) indirect assays which detect the body’s immune response to the 

pathogen. 

 

1.9.4.1 Indirect assay - Tuberculin skin test (TST) 

In TST, a cocktail of mycobacterial proteins containing purified peptide protein (PPD) 

prepared from heat killed cultures of M. tb is injected intradermally (Trajman et al. 2013). 

This induces a delayed-type hypersensitivity reaction due to the release of interferon 

gamma (INF-γ) at the site of injection (Huebner et al. 1993) and causes skin induration. 

The size (diameter) of induration measured on the skin is compared to a cut-off to 

determine whether a person is infected with TB. Although TST has been used extensively 

to diagnose active and latent TB (Trajman et al. 2013), the test lacks specificity. The 

components of PPD are found in other species of mycobacteria such as M. bovis and non-

tuberculous mycobacteria. Secondly, individuals vaccinated with Bacillus Calmette-

Guérin (BCG)- an attenuated strain of M. bovis, also respond positively to TST. The assay 

takes between 2-3 days for an induration to form on the skin (Pouchot et al. 1997). The 

protracted waiting period to determine ones TB status may lead to loss of active TB as 

patients at remote testing centres as they may fail to return to the health facility.  
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1.9.4.2 Direct assay - Antigen based test 

The low specificity of PPD necessitates the use of more specific pathogen derived 

antigens.  ESAT-6 and culture filtrate protein (CFP-10) are major antigenic proteins 

associated with M. tb and can trigger the release of INF-γ in TB infected patients (Xu et 

al. 2012). The genes encoding these antigens are located in the region of difference 1 

(RD1) in the mycobacteria genome. RD1 is not present in M. bovis and other non-

tuberculous mycobacteria species hence, it is expected to be more specific in TB 

diagnostic assays than TST (Trajman et al. 2013). The combined use of these antigens 

specifically selects for M. tb hence a potential to be an effective diagnostic marker (Ravn 

et al. 2000). Two commercially available test kits; QuantiFERON-TB Gold-In-Tube 

(QFT-GIT) assay and T-SPOT.TB have been developed to measure the amount of INF-γ 

released in response to ESAT-6 and CFP-10 in sputum samples (Ahmad 2010).  

 

Unfortunately, the cost of these tests (QFT-GIT and T-SPOT.TB) limits their use in low 

resource settings (Lalvani and Pareek 2010; WHO 2010). Secondly, the production of 

antibodies in TB patients are not homogenous as they vary from patient to patient. Thus, 

designing a diagnostic tool based on these two antigenic proteins is likely to suffer 

sensitivity towards M. tb detection in a larger population set.  

 

The nature of antigen and antigen stability in clinical specimen are very important factors 

to be considered in the design of an antigen based detection kit (Cho 2007). LAM, a 

17KDa lipopolysaccharide is another M. tb antigen released into the urine of active TB 

patients (Achkar and Ziegenbalg 2012; Gomez et al. 2012). The sensitivity and specificity 
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of diagnostic assays based on this antigen ranges from 59-67% and 80-94% respectively 

(Peter et al. 2012). 

 

1.9.5 DNA based methods 

DNA diagnostic tests have proven  in identifying bacteria and determining their antibiotic 

sensitivity within a short time frame as compared to sputum culture (Craw and 

Balachandran 2012). Several DNA based methods for M. tb detection have been 

developed and are currently in use, these are discussed below.  

1.9.5.1 Xpert MTB/RIF assay 

Xpert MTB/RIF is an automated real time nucleic acid assay developed for the 

identification of both M. tb and rifampicin resistance (Theron et al. 2014). This is the only 

rapid test approved by the WHO for the detection of TB and rifampicin resistance in 

symptomatic TB patients (Horne et al., 2019). This assay requires an extensive DNA 

preparation step for DNA release and to remove PCR inhibitors. This is followed by DNA 

amplification which takes approximately 120 minutes. In smear positive TB specimens, 

this assay has a sensitivity of approximately 98% while in smear negative but culture-

positive specimens, the sensitivity of the assay is reduced to between 60-80% (Boehme et 

al. 2010). Although the Xpert MTB/RIF assay is an improvement over immunological 

tests, its low sensitivity in smear negative but culture positive samples makes it unreliable 

for TB diagnosis especially in patients with very low bacilli levels.  

 

Currently, the assay is designed to detect rifampicin resistance only, which limits its 

application for other resistance detection. The cost in obtaining a single cartridge ($10) is 
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also a limitation (Engstrom et al. 2012). Performing this assay requires a computer, a 

constant supply of electrical power and requires routine maintenance to operate 

efficiently. All these contribute to financial burdens and makes it unattractive to use 

especially in resource deprived areas (Kamphee et al. 2015). Other assays such as 

MTBDRplus and MTBDRsl are approved by the WHO. MTBDRplus is developed for 

the detection of RIF and INH resistance. RIF resistance is associated with mutations in 

the rpoB gene while INH resistance involves multiple genes such as the katG, inhA, 

and kasA genes and the intergenic region of the oxyR-ahpC complex (Lacoma et al., 

2008). MTBDRsl targets mutations in the gyrA and rrs genes and are associated with 

XDR-TB (Viveiros et al. 2005; Barnard et al. 2008; Jacobson et al. 2013; Kipiani et al. 

2014; Theron et al. 2014). Similarly, these tests are limited by factors akin to the Xpert 

MTB/RIF assay (Yadav et al. 2013). 

 

1.9.5.2 Isothermal nucleic acid amplification tests 

PCR based diagnosis of M. tb involves long and repetitive cycles of template denaturation, 

annealing and strand extension of specific target region using a thermocycler. The 

amplicons generated can only be visualised with a specialised equipment via 

electrophoresis. Isothermal amplification tests rely on the generation of DNA amplicons 

by autocycling and strand displacement process under a constant temperature (Iwamoto 

et al. 2003). The process is mediated by a specialised polymerase (Bst) and is faster (60 

minutes) than traditional PCR (2-3 hours). Also, the amplicons can be visual observed by 

a colour change in the reaction assay. Some examples of isothermal detection include 

Loop mediated isothermal amplification (LAMP) (Iwamoto et al. 2003; Ou et al. 2014) 

and transcription mediated amplification (TMA) (Shenai et al. 2001). LAMP and TMA 
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have been developed to detect TB, mainly targeting the rrs, gyrB gene and the insertion 

sequence (IS 6110). The performance of LAMP assays targeting these gene sequences 

have been evaluated. 

 

TB-LAMP targeting the rrs gene has sensitivity and specificity of 100% and 94.2% 

respectively (Pandey et al. 2008) while targeting gyrB gene yielded about 97% sensitivity 

in smear-positive, culture positive specimens and 48.8% in smear negative but culture 

positive specimens respectively (Boehme et al. 2007). TB-LAMP targeting the IS6110 

also has the highest sensitivity (100%) but was less specific in detecting other members 

of the MTB complex (Aryan et al. 2010). While these test shorten the time to detection in 

comparison to traditional PCR, they still require purified DNA from clinical samples 

(Shah et al. 2007). These assays also need costly and cold storage to guarantee assay 

reproducibility.  

 

1.9.6 High performance liquid chromatography (HPLC) 

HPLC is mainly used for the analysis of different compounds in samples at microliter 

volumes. Samples are injected into a stream of liquid (mobile phase) which passes through 

a column (stationary phase). The efficiency of separation is dependent on the degree of 

sample retention in the column (Butler et al. 1991). HPLC is further equipped with 

detectors that can identify different components present in a sample. The difference in 

sample composition generates a distinct chromatograph which is unique to the sample (fig 

1.8) (Floyd et al. 1992). With the aid of an appropriate standard, the chromatograph 

generated can be identified. In mycobacteria species, the distributions of mycolic acids 
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(2-alkyl, 3-hydroxy fatty acids) are unique and has been the basis of bacteria identification 

via HPLC technique (Duffey et al. 1996). To determine this, mycolic acid is first extracted 

from pure cultures of mycobacteria and then analysed. This method has 100% sensitivity 

(Thibert and Lapierre 1993) and takes about 2 hours with the exception of the added time 

required to culture the pathogen (7-21 days) and extract mycolic acid from the bacteria 

(Duffey et al. 1996). HPLC is sophisticated and requires trained personnel which comes 

at a cost. Studies show that, growing the bacteria on solid media as compared to liquid 

media boosts the specificity of the assay since liquid media are likely to contain chemicals 

acting as contaminants (Duffey et al. 1996).  

 

 

Figure 1. 8 Superimposed chromatographs of M. tuberculosis and M. bovis 

(BCG) determined using HPLC . The unique chromatographs from BCG and M. tb are 

clearly separated based on their mycolic acid composition. Picture adapted from (Floyd et al. 

1992). 
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1.10 Surrogate model for TB diagnosis 

Owing to the challenges associated with working with M. tb, i.e. its slow growth requiring 

6-8 weeks and the need to handle the bacterium in biosafety level 3 facilities, many 

researchers employ faster growing and less virulent member of the mycobacterial group. 

These group of mycobacteria shares with M. tb the ability to develop broad spectrum 

antibiotic resistance, to undertake preliminary research to develop new diagnostics for M. 

tb. Commonly used bacteria as models for M. tb studies include M. smegmatis and M. 

abscessus (Cortes et al. 2010). These two species fall under the umbrella of 

nontuberculous mycobacteria (NTM) and are described below.  

 

1.11 Non-tuberculous mycobacteria (NTM) 

Non-tuberculous mycobacteria (NTM) refers to all other mycobacteria except those 

belonging to MTBC and Mycobacterium leprae (the causative agents for leprosy) (Lee et 

al. 2014). NTM are common environmental pathogens causing significant morbidity and 

mortality in both immunocompetent and immunosuppressed individuals (Döffinger et al. 

2000; Nessar et al. 2012). Currently, species of NTM are estimated at more than 150 

(Johnson and Odell 2014) with major infections occurring in HIV/AIDS patients (fig 1.9). 

There is a correlation between NTM infections and HIV/AIDS patients, claiming the lives 

of millions every year. This could be attributed to the weakening of the immune system 

in HIV patients. Treatment is also a major challenge due to the complex pharmacological 

interactions between antiretroviral and anti-mycobacterial drugs (Abston and Farber 

2018; AIDSinfo. 2018). 
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Figure 1.9 Global distribution of NTM isolated from various parts of the 

continent. The picture above depicts NTM surveillance among HIV/TB patients across the 

continent. Picture adapted from (Nishiuchi et al. 2017).  

 

 

 

Other diseases that predisposes an individual to NTM infections include cystic fibrosis 

(CF), hematopoietic stem cell transplant, hematologic malignancies and hairy cell 

leukaemia (Henkle and Winthrop 2014). Based on their growth rate NTMs can be divided 

into two groups, namely; rapid growing (e.g. M. abscessus, M. smegmatis, M. chelonae) 

and slow growing (e.g. M. kansasii, M. avium). The rapid growers require 2-3 days to 

grow on artificial media while the slow growers take more than 7 days (Esteban and Ortiz-
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Pe´rez 2009). The phylogeny of mycobacterial species showing the fast growing and slow 

growing NTM are indicated in figure 1.10. The most common and frequent in clinical 

infections (M. abscessus) is described below. 

 

 

 

Figure 1.10. Phylogenetic tree of Mycobacteria . Mycobacterial species categorised as 

rapid or slow growers and are represented with thin or thick lines respectively. Picture adapted 

from https://ars.els-cdn.com/content/image/1-s2.0-S1567134817303519-gr1_lrg.jpg. Date 

accessed: 28/09/2019. 

 

https://ars.els-cdn.com/content/image/1-s2.0-S1567134817303519-gr1_lrg.jpg
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1.12 Mycobacterium smegmatis (M. smegmatis) 

M. smegmatis is an aerobic fast-growing bacterium, commonly used as a surrogate model 

in TB research (Chaturvedi et al. 2007). M. smegmatis was first isolated from the human 

smegma in 1885. Smegma is a natural liquid produced under the foreskin of the human 

penis (Bohsali et al. 2010). This bacterium is considered non-pathogenic and uncapable 

of eliciting immune response even in immunocompromised individuals. A study by Best 

and Best contradicts the above claim, where M. smegmatis was implicated in the 

formation of granuloma on the hand of a 67-year old Caucasian (Best and Best 2009). 

Treatment of this condition required the combination of antibiotic (doxycycline) and 

surgical therapy. The gene sequence of this pathogen was not provided by the authors to 

ascertain whether a mutation or acquisition of a foreign gene has occurred, as is the 

predominant modes of resistance with bacteria. M. smegmatis has a generation time of 

between 3-4 hours as compared to M. tb 24 hours. The short generation time and safe 

working with a biosafety level 2 cabinet makes it a good choice as a surrogate bacterium.  

 

 

1.13 Mycobacterium abscessus (M. abscessus) 

M. abscessus were previously considered as an environmental pathogen inhabiting soil, 

biofilms and tap water systems (Honda et al. 2016), it is now known as the most 

pathogenic and multi-drug resistant opportunistic pathogen currently infecting patients 

with CF (Nessar et al. 2012). Infection with M. abscessus leads to TB-like symptoms in 

the lungs of CF patients causing lung dysfunction (Floto et al. 2016). The nomenclature 

of M. abscessus has undergone frequent revisions, hence the classification in the literature 
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is not uniform (Brown-Elliott and Wallace 2002; Adekambi and Drancourt 2004; 

Adekambi et al. 2006; Leão et al. 2010 ; Leao et al. 2011).  

 

To enhance clarity and to facilitate reference to recent publications, the following three 

subspecies names is adopted in this work, i.e. M. abscessus subspecie abscessus, M. 

abscessus subspecie bolletii and M. abscessus subspecie massiliense, all three referred to 

as the M. abscessus complex (Lee et al. 2015). Of these three species, M. bolletii is very 

rare while M. abscessus and M. massiliense occur in similar numbers (Koh et al. 2010). 

Global estimate of M. abscessus infection may be under reported as guidelines for the 

reporting and diagnosing of M. abscessus and NTM do not exist (Johnson and Odell 

2014). Countries such as United States (Esther et al. 2010), Brazil (Duarte et al. 2009), 

Korea (Kwon et al. 2009), China (Nie et al. 2014) and countries in Western Europe (Roux 

et al. 2009) have documented numerous cases of M. abscessus infections (Tettelin et al. 

2014). 

 

 

1.14 Pathogenicity 

As the name suggest, M. abscessus is responsible for causing an abscess in soft tissues 

and on the skin, characterised by a red-pink swelling filled with pus (fig. 1.11) (Kwon et 

al. 2009). M. abscessus infections can also occur in causing acute and chronic meningitis, 

neutrophilic pleocytosis and meningoencephalitis (Talati et al. 2008; Medjahed et al. 

2010). M. abscessus contributes to about 65-80% of pulmonary disease caused by rapidly 

growing mycobacterium (Lee et al. 2014). It is the most frequent mycobacteria pathogen 



39 
 

isolated from patients with cystic fibrosis (Fletcher et al. 2016). Approximately, 3-10% 

of cystic fibrosis patients living in the UK and the USA are infected with M. abscessus 

(Bryant et al. 2013).  

 

The lung microbiome of CF patients is very complex. While M. abscesssus represent the 

dominant mycobacterial pathogen, Pseudomonas aeruginosa followed by Burkholderia 

cepacia complex are the most common opportunistic bacterial pathogen isolated in these 

patients (Birmes et al. 2017). Recent studies suggest that, M. abscessus can inhibit quorum 

sensing thus preventing the growth of Pseudomonas aeruginosa (Birmes et al. 2017). This 

finding could suggest other multifaceted interaction occurring within the microbiome of 

CF patients which are yet to be investigated. 

 

 

Figure 1.11 M. abscessus  infection on the left forearm of a patient 

characterised by red-pink nodules filled with pus . Picture adapted from (Kwon et al. 

2009). 
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1.15 M. abscessus virulence factors 

Similar to other pathogens, M. abscessus is able to evade the host immune response. This 

suggests that the organism possesses certain virulent factors that enhances its ability to 

outwit host immune mechanisms and promote survival. Based on the growth morphology 

of M. abscessus on solid agar plates, two major forms (rough and smooth) have been 

identified (fig. 1.12). The rough (R) form lacking glycopeptidolipid (GPL) are more 

pathogenic, can persist and multiply in the host macrophages upon infection. The smooth 

(S) forms are characterised by the presence of GPL, present in their cell membrane and 

they tend to succumb easily to the host immune machinery (Ruger et al. 2014).  

 

 

Figure 1.12 Morphology of rough (left) and smooth (right) forms of M. abscessus  

cultured on 7H11 agar . Picture adapted from (Ruger et al. 2014). 

 

 

The chemical structure of GPL is depicted in Fig 1.13 below. Upon entry into the host 

cells, M. abscessus (R form, wild type) become tightly attached to the phagosomal 
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membrane while the S forms are unable to attach but resides loosely in the phagosome 

(Byrd and Lyons 1999). M. abscessus attachment to the phagosome is dependent on the 

absence of GPL in R (Howard et al. 2006). The S morphotype exhibit sliding motility and 

have the capacity to form biofilms (Schorey and Sweet 2008). 

 

 

Figure 1.13. Schematic diagram of mycobacterium cell envelope. The magnified 

cell membrane envelope shows the different layers biomolecule arrangement and lipids present. 

The membrane also depicts the presence of GPL responsible for producing smooth colonies of M. 

abscessus. Picture adapted from Gutiérrez et al., 2018.  

 

 

GPL mutants (R morphotype) are non-motile, lack the ability to form biofilms and are 

cord forming. Cord formation is the ability of bacteria to align end to end and side to side 

as compared to forming clumps (aggregates of bacteria in random orientation). Cord 

formation is a property of bacterial virulence associated with M. tb and NTM (Sa´nchez-

https://www.ncbi.nlm.nih.gov/pubmed/?term=Guti%26%23x000e9%3Brrez%20AV%5BAuthor%5D&cauthor=true&cauthor_uid=29922253
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Chardi et al. 2011). Cord formation is enhanced by the production of trehalose 6, 6 ̍- 

dimycolate (TDM) - a known virulent factor in M. tb (Behling et al. 1993). The 

mechanism of R morphotype virulence has been demonstrated using a zebrafish model. It 

was found that, the R morphotype inhibits macrophage and neutrophil mediated 

phagocytosis, partly aided by their ability to attach (Bernut et al. 2014). Further studies 

have also shown that, spontaneous conversion of the S to R form does occur after several 

passages (Howard et al. 2006). This is believed to occur due to the insertion or deletion 

of nucleotide bases in the mps1 gene required for GPL synthesis or the mmpL4b gene 

which is responsible for the translocation of GPL into the cell surface (Fig. 1.14) (Pawlik 

et al. 2013; Ridell 2015). 

 

 

 

Figure 1.14 Schematic representation of the M. abscessus  GPL genes 

associated with the synthesis and transport of GPL . Picture adapted from (Pawlik et 

al. 2013) 

 

 

M. abscessus also harbours other genes that are linked to virulence. For instance, 

MAB_O55 which encodes phospholipase C (PLC), an enzyme which is absent in most 

rapidly growing mycobacteria. PLC mediates hydrolysis of  host phospholipids to  
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produces diacylglycerol (DAG) which activates protein kinase C, resulting in the 

unregulated activation of neutrophils and macrophages which results in the  inflammation 

observed in the lungs of CF patients (N’Goma et al. 2015). 

 

1.16 Transmission of M. abscessus  

The primary environment of M. abscessus includes fresh water and soil (Honda et al., 

2016). Transmission from the environment to an individual could occur when there is 

close contact. Some healthy fish farmers have been reported to be infected with M. 

abscessus through contact with fish possibly contaminated with the bacterium. This is 

possible to the extent that, M. abscessus shares the same ecological niche with the fish 

pathogen M. marinum. It has been reported that M. abscessus harbours a mercury resistant 

plasmid with about 99% of its nucleotide sequence identical to an episome of M. marinum 

(Bernut et al. 2014).  

 

Nosocomial transmission of NTM is also very common in haemodialysis, dental and 

surgery departments. Portable and treated water from hospital taps have been found to be 

contaminated with NTM (Phillipsa and von Reyn 2001). Recent studies have also 

suggested that person-to-person through the generation of aerosols particularly among CF 

patients is possible (Bryant et al. 2013; Birmes et al. 2017), although this observation 

contradicts other studies (Harris and Kenna 2014). Aerosols generated by CF patients 

contain significant concentrations of viable bacteria of a respirable size range which could 

be responsible  for air borne transmission (Birmes et al. 2017). Additionally, the ability 



44 
 

of M. abscessus to withstand desiccation in arid environment could also suggest 

transmission via air (Wallace et al. 1997; Bryant et al. 2013).  

 

Transmission via fomite formation is also another possibility, owing to M. abscessus 

resistance to disinfectants and chlorination (Koh et al. 2010). To prevent this form of 

transmission, surgical wounds, intravenous catheters and injection sites should be 

shielded from environmental contamination. Also, surgical apparatus (e.g. endoscope, 

catheters) must be well sterilised after use.  

1.17 M. abscessus treatment and resistance mechanisms  

Clarithromycin, a macrolide antibiotic is the current drug of choice for the treatment of 

M. abscessus infections (Petrini 2006). The mechanism of action of action is similar to 

other macrolide antibiotics in that it  binds to 23S rRNA and subsequently inhibit protein 

synthesis (Stout and Floto 2012). Resistance to clarithromycin is a major concern and 

occurs in two forms, acquired and inducible. The former results from a mutation in the 

drug binding pocket at position 2057 or 2058 of the rrl gene which encodes  23S rRNA 

(Bastian et al. 2011), while the latter is associated with the presence of a complete, 

functional and active erm-41 gene. In the presence of clarithromycin, the erm-41 gene is 

activated and encodes a methylase enzyme (erythromycin methylase). This enzyme adds 

a methyl group to adenine at position 2057 or 2058 in the 23S rRNA, thereby inhibiting 

clarithromycin binding (Mougaria et al. 2017). 

 

All three subspecies of M. abscessus have varying treatment responses to clarithromycin. 

M. abscessus and M. bolletii have full length copies of the erm-41 gene and hence are 
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resistant to clarithromycin. M. massiliense have a 274 bp deletion in the erm-41 gene, 

making it non-functional and rendering it susceptible to clarithromycin (Kim et al. 2010; 

Yoshida et al. 2014). Other features also contribute to the functionality of the erm-41 

gene. The presence of thymine (T) or cytosine (C) at position 28 of erm-41 gene confers 

either resistance or susceptibility  to clarithromycin respectively (Mougaria et al. 2017). 

 

Amikacin, an aminoglycoside antibiotic is another drug frequently used for the treatment 

of M. abscessus (Nessar et al. 2012). Amikacin like other aminoglycosides (kanamycin, 

tobramycin) inhibits protein synthesis by binding to the rrs gene of the 16S rRNA. Since 

M. abscessus possess a single copy of the rRNA operon which is a target for binding, a 

single point mutation occurring within this operon  can result  in resistance (Cortes et al. 

2010).  A point mutation is a single base change from A to G at position 1408 and is a 

well-known mutation site in the M. abscessus rrs gene (Nessar et al. 2012). 

 

Azithromycin an anti-inflammatory drug has also been used to treat M. abscessus 

infections. However, its use has been reported to increase patient’s susceptibility to M. 

abscessus and NTM in general (Renna et al. 2011). In a study by Renna and colleagues, 

azithromycin terminates autophagosome process and lysosomal acidification and 

degradation of pathogens in macrophages. As a result, engulfed bacteria continue to 

proliferate increasing pathogen survival (Renna et al. 2011).  

 

M. abscessus is resistant to several anti-TB drugs including rifampicin and ethambutol 

making it a good surrogate bacterium for M. tb (Nessar et al. 2012). The antibiotic 
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resistance could be due to the uniqueness and diversity that exist within its genome. 

Among the species of mycobacteria, certain virulent genes have been identified to exist 

only in M. abscessus (Nunes-Costa et al. 2016). Furthermore, it has also been shown that, 

M. abscessus has undergone frequent evolutionary changes, progressing from an 

environmental organism to a successful human virulent lung pathogen (Birmes et al. 

2017), during which it is likely to have acquired unique genes which encode antibiotic 

resistance. One of the unique enzymes produced by M. abscesssus i.e. 2-N-

acytyltransferase and aminoglycoside phosphotransferase have been found to degrade 

aminoglycoside antibiotics and promote resistance (Ripoll et al. 2009).  

 

The nature of M. abscessus resistance demands urgent therapeutic procedures i.e. multi 

therapy as opposed to monotherapy. The latter is no longer recommended for M. 

abscessus treatment. The American Thoracic Society (ATS) recommends a combinatorial 

approach based on an oral macrolide and intravenous administration of either amikacin, 

cefoxitin or imipenem (Griffith et al. 2007). In extremely difficult to manage cases 

removal of affected body parts by surgery is required to enhance treatment success and 

this has been applied in many conditions (Jarand et al. 2011).  

 

1.18 Diagnosis of M. abscessus 

Many of the traditional approaches for M. tb diagnosis can also be applied to the detection 

of M. abscessus. Microscopy and culturing on 7H10, 7H11 agar and in 7H9 broth or 

Luria-Bertani broth or on agar are commonly applied (Ryu 2015). Growth appears as 

yellow or cream colonies after 3 days of culture (Cortes et al. 2010). Previously, M. 
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abscessus and M. chelonae were considered as same species. Biochemical tests such as 

sodium chloride tolerance and citrate uptake can be used to distinguish between M. 

abscessus and M. chelonae (Conville and Witebsky 1998). Also, growth on MacConkey 

agar without crystal violet, aryl sulphatase and nitrate reductase tests are used for 

identification (Silcox et al. 1981). These biochemical tests are not always reliable, giving 

overlapping phenotypic patterns and are time consuming and labour intensive (Conville 

and Witebsky 1998; Kulandai et al. 2014). Other innovative methods (e.g. HPLC) for M. 

abscessus detection have also been developed. HPLC is limited in the sense that it is not 

able to discriminate between M. chelonae and M. abscessus (Jeong et al. 2011). Also, in 

terms of simplicity, cost and portability, HPLC cannot match the requirements of a rapid 

diagnostic tool.  

 

The optimal treatment regimen for M. abscessus is specie specific, necessitating accurate 

speciation followed by treatment. Thus, the diagnostic tool must be developed to be very 

specific and sensitive. The INNO-LiPA is an example of a molecular based commercial 

kit developed for the identification of M. tb complex and 8 other NTM species including 

M. abscessus (Miller et al. 2000; Padilla et al. 2004). This kit requires DNA extraction 

followed by DNA amplification with probes targeting the 16S-23S rRNA internal 

transcribed spacer region (ITS). The ITS region is selected because it is predicted to have 

more discriminatory power in distinguishing closely related mycobacteria species. 

Evaluation of the INNO-LiPA kit shows that it has specificity (87%) as compared to 

culture (96.3%) (García-Agudo et al. 2011). The reduced level of specificity could be 

attributed to  cross reactivity with other mycobacteria species (Tortoli et al. 2010). 
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Performing this assay takes about 3 hours in addition to a DNA extraction and 

amplification step, defeating the purpose of POC developments.  

 

PCR, targeting multiple gene sequences (rpoB, 16s rRNA, erm-41, gyrB) has also been 

developed for detection of M. abscessus (Matsumoto et al. 2011). The performance of 

PCR based assays are comparable to culture in terms of specificity and sensitivity (Kim 

et al. 2015). The disadvantage to using PCR over culture is the time to detection and the 

need for costly reagents and equipment. While PCR may take about 2-3 hours, culture 

may require about 48-72 hours. Regarding the challenges with the current detection 

methods as described above, they do not present as attractive tools for rapid detection of 

M. abscessus, hence the need for rapid detection tools to meet POC needs. 

 

1.19 Point-of-care (POC) diagnostics 

POC testing refers to the use of diagnostic tools to generate patient results at the point 

where patient consultation and presentation takes place or within the perimeter of the 

health care facility (Dheda et al. 2013). Failure to produce diagnostic results on same day 

has been a major challenge for disease control (Rossato Silva et al. 2012). By generating 

timely results, treatment can begin immediately and prevent adverse case of the disease 

(Dheda et al. 2013). A POC diagnostic tool must be designed to meet the ASSURED 

guidelines. ASSURED is an acronym meaning the diagnostic tool should be Affordable, 

Sensitive, Specific, User-friendly, Rapid, Equipment-free and Deliverable (Urdea et al. 

2006). In addition, the PC tool must be portable for easy transport (fig 1.15). An ideal 

POC test should be able to identify the biological marker in a clinical specimen that is 
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predictive of a disease state. In addition, the biomarker should be specific to the pathogen 

causing the disease and not cross react with other pathogens. This is a challenge 

encountered using serological based assays.  

 

DNA based detection methods offer superior advantage over serological tests and could 

be a promising option for the development of a POC testing. Identifying the specific 

nucleic acid sequence in M. tb as well as M. abscessus could serve as an important 

biological marker for specific and sensitive detection and monitoring of treatments. The 

development of a rapid assay with the potential of miniaturisation into a portable device 

to be used at the POC will alleviate the burden of mycobacteria related disease and other 

diseases of public health importance.  

 

 

Fig 1.15 Innovative technologies for the development of miniaturised 

biosensors. Complex and large laboratory equipment for diagnostic purposes translated into 

miniaturised format biosensors. Picture adapted from (Ahmed et al. 2014) 
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1.20 Techniques for bacteria cell wall lysis 

The sensitivity of any DNA based detection assay is dependent on the ability to access 

the target (DNA) from the specimen. This requires the release of the target DNA from the 

organism in sufficient quantities to allow their detection. In the case of bacteria, the DNA 

is locked within the bacterium necessitating the use of some form of lysis method. Also, 

the nature of the clinical sample in which the bacterium is present may require the use of 

complex purification procedures to remove inhibitory factors such (e.g. proteins) which 

could inhibit detection of targets. Thus, the initial processing of the clinical sample is an 

important consideration when attempting to develop a rapid POC. Mycobacteria species 

have a rigid cell wall composed of mycolic acid which make it more resistant to disruption 

than other types of bacteria. Currently, there lacks an efficient and rapid method for lysing 

mycobacterial cells and it is a bottleneck in the development of rapid DNA based 

detection tools.  

1.20.1 Boiling and sonication 

 Boiling is one of the simplest methods to break open bacterial cells. This usually involves 

heating the bacterial suspension at boiling temperature (100˚C) in Tris acetate EDTA 

(TAE) buffered solution (Odumeru et al. 2001). Typically for mycobacterial cells that 

have rigid cell walls, this temperature is necessitated to permeabilise cell wall and to 

release intracellular DNA. Although simple to perform the purity of the DNA yield is 

usually low due to the presence of contaminants such as proteins and carbohydrates. Lysis 

protocols have been developed that employ mechanical methods such as sonication and 

bead beating. In sonication, a bacterial suspension is exposed to sound waves generated 

by an oscillating transducer which causes the bacterial cells to agitate and subsequently 
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leads to cell lysis. This method involves high frequency oscillation of bacterial cells in an 

enclosed tube containing beads (Vandeventer et al. 2011). These procedures also cause 

DNA shearing which compromise the integrity of the DNA. Rapid testing of nucleic acids 

in resource deprived areas require novel tools that are less sophisticated and can perform 

cell lysis in microliter quantities. The use of microwave energy is one such approach 

currently being considered (Vaid and Bishop 1998). 

 

1.20.2 Microwave (MW) mediated cell lysis 

Microwave (MW) is the second component of the electromagnetic spectrum after radio 

waves having a low frequency but longer wavelengths. Bacterial cells exposed to MWs 

results in cell lysis and the release of DNA (Jankovic et al. 2014). Joshi et al. demonstrated 

the use of microwave energy as a means of disrupting the vegetative and sporulating C. 

difficile. Additionally, the MW induced cell lysis, resulting in the release of sufficient 

single stranded DNA to enable detection of C. difficle toxin genes using specific DNA 

probes. A similar approach has also been used to recover DNA from Bacillus anthracis 

spores (Aslan et al. 2008) and Chlamydia trachomatis (Zhang et al. 2010). In this 

research, the optimum microwave condition for the release of ssDNA and dsDNA from 

M. abscessus will be determined. The released nucleic acid will then be detected in an 

enzyme linked oligonucleotide sandwich hybridisation assay (ELOSHA).  
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1.21 Factors modulating MWs effect in biological membranes 

As MWs will be considered as a fast DNA release tool from cells, it is worth noting that 

cells have significant differences in their cell wall and membrane composition (discussed 

in section 1.1).  The type and composition of membrane phospholipids and fatty acids in 

cell membranes are reported to influence cells susceptibility to MWs (Unsay et al. 2013a; 

Oncul et al. 2016). Fatty acids and phospholipids components in their membranes are 

present in diverse proportions, the reason being that the environmental conditions to 

which cells are cultivated or exposed in the natural are different (Sohlenkamp and Geiger 

2016). The membranes of E. coli are composed of three major phospholipids: 

phosphatidyl ethanolamine (PE), phosphatidyl glycerol (PG) and cardiolipin (Raetz and 

Dowhan 1990; Raetz and Whitfield 2002). S aureus is also mainly composed of 

phosphatidyl glycerol, lysyl phosphatidyl glycerol and wall teichoic acids (Haest et al. 

1972; Atilano et al. 2011; Piggot et al. 2011). Teichoic acids play a key role in concealing 

PG at the bacterial surface, and could contribute to membrane rigidity (Brown et al. 2013). 

Phosphatidyl choline, phosphatidyl inositol and phosphatidyl ethanolamine are the major 

phospholipids in C. albicans (Haest et al. 1969; Georgopapadakou et al. 1987). 

Cardiolipin (1,3-diphosphatidyl-sn-glycerol) is present in all the four types of cell 

membranes and has four acyl chains (Crellin et al. 2013). It plays a key role in maintaining 

membrane integrity in response to stress. Its presence of cardiolipin induces bilayer 

structure remodelling, deformation of the membrane and enhancing permeabilization 

(Unsay et al. 2013b).   

 

Generally, saturated fatty acids tend to increase membrane fluidity unlike unsaturated 

fatty acids (Marrink et al. 2009). The composition of saturated FA in E. coli and C. 
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albicans are below 50% (Haest et al. 1969; Georgopapadakou et al. 1987) suggesting a 

less compact membrane. In the case of M. smegmatis, mycolic acid is the major fatty acid 

constituting about 30-60% and are predominantly saturated (Taneja et al. 1979). 

Cardiolipin is composed of about 95% unsaturated fatty acids (Unsay et al. 2013b). The 

presence of cholesterol and membrane proteins (constituting about 50% of weight in cell 

membrane) reduces membrane fluidity, increases stability and could also pose resistance 

to an external MW E fields (Israelachvili and Mitchell 1975; Cullis and De Kruijff 1979; 

Smaby et al. 1994; Veatch and Keller 2005; van Uitert et al. 2010a; van Uitert et al. 

2010b).  

1.22 Thesis Aim 

The principal aim of this study is to develop a colorimetric oligonucleotide hybridisation 

assay (COHA) capable of detecting the presence of M. abscessus within a short time 

frame. The rapidity and sensitivity of the COHA would be aided using microwaves for 

fast DNA release and magnetite particles to trap and enrich target molecules. The 

development of this assay will serve as a proof-of-concept that can be used for the 

detection of M. tb and other pathogenic bacteria of clinical importance.  

1.23 Thesis Objectives 

The specific objectives of this thesis were; 

1. To develop an optimised method for the extraction of DNA from M. abscessus 

2. To design DNA probes using bioinformatic approach for the detection of M. 

abscessus and M. smegmatis 
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3. To characterise the biological effect of microwaves on micro-organisms of 

structural diversity 

4. To identify the optimum microwave conditions for the release of DNA from M. 

abscessus  

5. To develop a sandwich hybridisation assay on a magnetite bead support for the 

detection of M. abscessus  

6. To develop M. smegmatis-macrophage infection model and detect the presence 

of intracellular M. smegmatis using the hybridisation assay. 
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Chapter 2 

General materials and methodology 
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2.0 General Materials 

The following methods were general throughout the study. Specific methods are described 

in their respective chapters (3,4,5 and 6). 

2.1 Materials 

The following bacterial culture media were purchased and used in the study: Luria-Bertani 

(LB) broth and LB agar were purchased from Thermo Fisher Scientific Ltd, UK. Yeast 

extract, Low-Dusting (LD) was purchased from Becton Dickinson (BD, Difco). 

Biological media was prepared according to manufacturer’s protocol and sterilised for 15 

minutes at 121°C and 100 kPa using a bench top autoclave (CertoClav EL sterilizer, 

Austria). Deionised water was obtained from an ELGA pure lab option BP15 dispenser 

(ELGA lab water, UK).  

2.2 General Instruments 

Nanodrop (ND 1000 spectrophotometer, LabTech), Qubit 3.0 Fluorometer (Life 

Technologies), Orbital incubator shaker (MaxQTM 440, Thermo Scientific), Eppendorf 

AG Centrifuge 5417R (Hamburg, Germany), Heat Block (DRI-Block® DB.3D, Techne), 

UV/Vis spectrophotometer (Ultrospec 2100 pro, Biochrom, USA), T100 Thermo cycler 

(Bio-Rad, UK). 

2.3 General Methods 

2.3.1 Revival of isolates and culture from MicrobankTM cryo-protective beads 

Cryo-protective beads containing bacteria were stored in vials at freezing conditions (-80 

ºC). Beads were thawed and kept in ice. A single bead was inoculated in 20 ml LB broth 
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using a 10 µl sterile loop. Broth containing bead was incubated at 37°C for 72 hours under 

constant shaking at 200 rpm.  

 

2.3.2 Culture of bacterial and yeast cells 

The following micro-organisms were used in this study: Escherichia coli (NCTC 1093) 

and Staphylococcus aureus (NCTC 13373) were purchased from the HPA culture 

collections service (Public Health England, Porton Down, UK). Mycobacterium 

abscessus (ATCC 19977T) was purchased from American Type Culture Collection 

(ATCC), UK. Candida albicans (NCPF 3179) was purchased from the National collection 

of pathogenic fungi (NCPF), England, UK. Mycobacterium smegmatis (NCTC 8159) is 

an archived clinical isolate used in a previous study and was included in this study. All 

micro-organisms were cultured in their respective media. M. abscessus, M. kansasii, E. 

coli and S. aureus were cultured in 20 ml of LB broth and incubated at 37°C. 

Mycobacteria cells were cultured between 48 - 72 hours, whiles E. coli and S. aureus were 

cultured overnight under constant shaking in an orbital incubator shaker at 200 rpm. C. 

albicans were cultured in yeast extract broth at 30 °C overnight with constant shaking in 

an orbital incubator shaker at 200 rpm. Cells were harvested (centrifugation at 4, 000 rpm 

for 10 min) and resuspended in phosphate buffered saline (PBS).  

 

2.3.3 Determining the purity of cell cultures 

The following methods were performed to determine whether all bacterial and yeast cells 

were pure and not contaminated with other bacteria.  
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2.3.3.1 Streak plate method 

Cell suspensions were streaked on their respective agar plate to identify single colonies 

(pure bacterial cultures) or mixed colonies suggesting the presence of other bacterial 

contaminants. With the aid of a sterile inoculating loop, 10 µL of cells suspension were 

transferred onto either LB agar (to identify M. abscessus, M. kansasii, M. smegmatis, E. 

coli and S. aureus) or yeast extract agar (to identify C. albicans) and incubated at 37°C 

for 48 - 72 hours in the case of M. abscessus and overnight for the remaining cells. Single 

colonies were observed for uniformity. The colonies were also stained using Ziehl 

Neelson and Gram staining procedures. Ziehl Neelson stain was performed to identify 

acid-fast bacilli (mycobacteria) and Gram staining to identify Gram-negative (E. coli) and 

Gram-positive (S. aureus) isolates. The methods for staining are described below. 

 

2.3.3.2 Bacterial staining methods to determine bacterial purity 

2.3.3.2.1 Acid fast staining [Ziehl Neelsen stain (ZN)] 

Acid fast staining also known as ZN stain was developed specifically to identify 

mycobacteria species. A single colony of bacteria growing on agar and suspension 

prepared in PBS. Ten microliters of the stock suspension was diluted (1/100) and 10 µL 

spotted and smeared on microscope slide, dried in a biosafety cabinet and heat fixed for 

staining. The staining procedures are as follows; bacterial smear on slides were flooded 

with carbol fuchsin, warmed over a flame of fire and allowed to stand for 5 minutes. This 

is to allow carbol fuchsin to penetrate the thick cell wall of mycobacteria. Bacteria were 

then washed under a gentle flowing water to remove excess carbol fuchsin, decolourized 

with 95% ethanol containing 5% HCl for 5 minutes and washed again under tap water to 
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remove excess decolorizing solution. Finally, bacteria were counter stained with 

methylene blue for 1 minute and washed with gentle flowing tap water. The procedure for 

the ZN stain is depicted in Fig 2.1 below. The slide was then dried under room temperature 

and observed with light microscope under oil immersion using X100 objective lens.  

 

 

Fig 2.1. Ziehl-Neelsen Stain (ZN-Stain): principle, procedure, reporting and 

modifications  (Laboratory Info 2018). Adapted from https://laboratoryinfo.com/zn-stain/. Date 

accessed 02.10.2018 

 

 

2.3.2.2 Gram staining 

This method was developed by Hans Christian Gram for the differentiation of bacteria 

based on their cell wall composition. This method can distinguish bacteria with (Gram-

positive) or without (Gram-negative) peptidoglycan in their cell wall. Prior to staining, 10 

µL of diluted bacteria (section 2.3.3.2.1) was spotted on microscope slides and heat fixed. 

Heat fixed slides were flooded with 2% crystal violet solution for 1 minute and washed 

using gentle flowing tap water. Slides were flooded with iodine solution for 1 minute and 

https://laboratoryinfo.com/zn-stain/
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rinsed with water to remove excess iodine. Slide was decolorized by dropwise addition of 

95% HCl for 5 seconds while washing gently with tap water. Finally, bacteria were stained 

with safranin for 1 minute and the excess safranin washed with water, dried under room 

temperature and observed with light microscope under oil immersion using X100 

objective lens.  

2.3.4 Standardization of cells concentration 

Suspension of M. avium at optical density of 1.0 corresponds to approximately 2 x 108 

CFU/mL (Radomski et al. 2013). Cell density indirectly measures the turbidity of the cells 

solution. This parameter is largely dependent on the cells number, size and the nutritional 

requirement (Stevenson et al. 2016). Since all cells differ in relation to these parameters, 

the cells used in this study were standardised to determine their concentration to be used 

in subsequent assays. A calibration curve was generated to determine cells concentration 

at varying optical density (OD). Prior to standardisation, cells were cultured as described 

above (section 2.3.2), pelleted (centrifugation at 4,000 g for 10 min) and washed twice 

with sterile 1X PBS solution. This referred to as the stock bacterial concentration). Stock 

concentration of cells (M. abscessus, E. coli, S. aureus and C. albicans) were serially 

diluted ((1/10) in PBS solution to bacterial suspensions at varying OD (measured at 600 

nm) ranging from 1.3 to 0.05.  

 

The concentration of cells in CFU/mL were determined in each dilution using the method 

described by Miles and Misra (Miles and Misra, 1938) and is described below. Cell 

suspensions at their respective optical densities were further diluted (1/10), 8 times. 

Twenty microliters of each dilution was plated on either LB agar (M. abscessus, E. coli, 
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S. aureus) or Yeast extract agar (C. albicans) in triplicate and incubated at 37°C overnight, 

except for M. abscessus which was incubated for 72 hours. The dilution resulting in 

countable cell colonies between 30-100 was used to determine cell concentration and 

expressed as CFU/mL. The experiment was repeated twice and the mean colony forming 

unit was determined using the formula below.  

 

Colony forming unit per millilitre (CFU/mL) = Mean colony count x dilution factor 

               Volume inoculated (mL)  

 

 

The mean number of colonies forming unit per millilitre (y-axis) was plotted against the 

optical densities on the x-axis. The line of best fit and the equation of the line was 

generated. The estimated concentration of cells was calculated from the equation of the 

graph with known optical density values (Appendix 1). 

 

2.4 Statistical Analysis 

All experiments were performed at least two times under independent conditions. 

Statistical analysis of data was performed using the Statistical Package for the Social 

Sciences (SPSS) version 25 or Microsoft excel 2013 analysis tool pack. Independent 

sample t-Test was performed to determine statistical significance between two groups. 

Data was considered significant when the p-value < 0.05. Analysis of Variance (ANOVA) 

was performed to determine the difference among group means. To determine the 

difference within groups, post-hoc analysis was performed using Bonferroni and Tukey 

tests. p-values less than 0.05 were considered as significant.  
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Chapter 3 

Molecular and antibiotic based characterization of Mycobacterium abscessus 

isolates 
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3.0 Introduction 

3.1 Identification and typing methods for bacteria  

Bacterial typing/characterisation systems are important scientific tools frequently used to 

study and understand disease epidemiology, clinical outbreaks and disease relapse 

(Iakhiaeva et al. 2012; Wong et al. 2012). Non-tuberculous mycobacteria (NTM) are 

oligotrophs, commonly inhabits the environments e.g. soil and water distribution systems 

and are likely to be frequently associated with humans through inhalation and soil 

bioaerosols (Honda et al. 2016). The transmission of M. abscessus has been hypothesised 

to occur via aerosol generation (Bryant et al. 2013; Trovato et al. 2017). For this reason, 

it is possible for frequent outbreaks of and this would require bacterial typing tools to 

identify and characterise them. Various techniques for typing micro-organisms have been 

developed and these vary widely with respect to cost, specificity, sensitivity, simplicity 

and the time required to perform the assay. Commonly used typing methods can be 

broadly divided into phenotypic and molecular approaches and are discussed in more 

detail below.  

 

3.2 Phenotypic typing of M. abscessus 

Phenotypic methods represent the traditional approach for the identification of bacteria 

for which other identification strategies are based on. The approach generally consists of 

(1) collection of a sample which is representative of the site of bacterial infection, (2) the 

application of various staining methods and an examination of colonial morphology and 

(3) response to biochemical and serological tests, susceptibility to phages and 

antimicrobial agents such as bacteriocins (Castro-Escarpulli et al. 2015). Examples of 
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clinical samples which are routinely screened for the presence of the pathogen include 

urine, semen, blood, faeces, vaginal fluid and cerebrospinal fluid. These methods albeit 

being cheap and simple to perform have several limitations. For instance, the presence of 

bacteria which are not the target organism can result in misinterpretation of clinical 

results.  They also suffer from a lack of specificity in that they are unable to discriminate 

between closely related species (Suffys et al. 2001). To improve on specificity, it is 

recommended that the sample is obtained directly from the site of bacterial infection and 

kept under proper storage conditions (Suffys et al. 2001).  

 

Clarithromycin is the drug of choice for treatment of M. abscessus, but treatment success 

is severely hampered due to inducible resistance. This mode of resistance is expressed in 

M. abscessus when full length of erm-41 gene is present (Ruger et al. 2014). While the 

erm-41 gene has phenotypic consequence, it is not definitive in M. abscessus 

characterisation. Its polymorphic nature was genotypically explored for precise detection 

of M. abscessus (discussed in chapter 4).  

 

The full length of this gene is present in M. abscessus subsp abscessus and M. bolletii but 

truncated in M. massiliense. Variants of this gene are present in M. tb (erm-37), M. 

fortuitum (erm-39) and M. smegmatis (erm-38). The erm gene is believed to have 

originated from Streptomyces, a specie which synthesises macrolides (Nash et al. 2005) 

and also demonstrate inducible resistant to macrolides but they carry subtle differences in 

their individual nucleotide sequences which can serve as a basis for genotypic 

characterisation. 
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 3.3 Molecular typing techniques 

Molecular typing offers a number of advantages over phenotypic methods with regards to  

precision and  accuracy as well as the ability to distinguish between closely related species 

and to detect antibiotic susceptible strains (Harris and Kenna 2014). Some of the methods 

currently used include DNA hybridisation, plasmid profiling, PCR, ribotyping, 

spoligotyping and mycobacterial interspersed repetitive unit variable number tandem 

repeat (MIRUS-VNTR) (Castro-Escarpulli et al. 2015). The massive expansion in the use 

of these techniques has been made possible by the proliferation of low-cost whole genome 

sequencing systems and the availability of open source bioinformatic tools. 

3.4 Techniques for the isolation of DNA from M. abscessus 

DNA based molecular typing methods are dependent on the ability to access high quality 

DNA locked inside the cell. Mycobacteria species possess a thick, waxy cell wall, which 

makes them difficult to lyse compared to Gram-negative and Gram-positive bacteria. 

Commercial DNA extraction kits are designed to lyse Gram-positive and negative 

bacteria and thus are relatively inefficient when applied to a mycobacteria (Kaser et al. 

2009). In addition to affecting the overall DNA yield, the purity can also be compromised 

by the presence of bacterial contaminants such as carbohydrates, lipids and proteins 

(Timms et al. 2015). To increase DNA yields additional approaches such as mechanical  

disruption (the use of glass beads), sonication (subjecting cells to high frequency 

vibration) and enzymatic cell disruption have been employed (Granger et al. 2004; 

Radomski et al. 2013; Park et al. 2014). Mechanical cell disruption of mycobacteria cells 

has been reported to cause a 10-fold increase in DNA concentration (Granger et al. 2004; 

Radomski et al. 2013; Park et al. 2014). In-house DNA extraction methods developed by 
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Timms and colleagues improves yield but do not produce better DNA purity than 

commercial kits (Timms et al. 2015). This challenge needs to be addressed as any 

molecular based detection assay (e.g. VNTR), which would be used in this study would 

require purified and high yield DNA. 

3.5 Molecular typing of M. abscessus 

In the context of the molecular typing of M. abscessus isolates, the following methods 

have been employed; pulsed field gel electrophoresis (PFGE), repetitive sequence-based 

(Rep)-PCR, multilocus sequence typing (MLST), multispacer sequence typing (MST), 

variable number of tandem repeat (VNTR) and whole-genome sequencing (Harris and 

Kenna 2014). The usefulness and advantages of these methods over other methods are 

described below. 

 

3.5.1 Pulsed field gel electrophoresis (PFGE) 

PFGE is considered the gold standard for bacterial typing and is performed when a 

bacteria-specific typing method is not available (Machado et al. 2014). This technique 

requires careful isolation of genomic DNA, followed by restriction enzyme digest before 

pulsed electrophoresis. PFGE can be used to separate large size DNA (10 Mb) on an 

agarose gel using pulsed or alternating voltage gradients to produce high resolution DNA 

patterns (Jagielski et al. 2014). PFGE has been developed for the differentiation of the M. 

abscessus complex (Wallace et al. 1993; Matsumoto et al. 2011). Although it is 

considered reproducible, it requires careful isolation of DNA to avoid shearing and 

damage due to the rigidity of the mycobacteria cell wall as this has been observed in M. 

abscessus isolates (Machado et al. 2014). The procedure is also expensive to perform, 
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requiring high level expertise and thus is confined to highly resourced laboratories. While 

no standard protocol for PFGE has been approved, the existing protocols require about 

one week to complete (Jagielski et al. 2014). PFGE can only discriminate bacteria to the 

strain level (Quainoo et al. 2017). 

 

3.5.2 Repetitive sequence-based PCR 

Rep-PCR amplifies repetitive elements within the bacterial genome. The amplified 

fragments once separated on a gel produce a band pattern corresponding to the length and 

the size of the amplified region. While commercial Rep-PCR systems (e.g. DiversiLab 

System, bioMerieux, France) has been develop for the identification of M. abscessus, 

concerns have been expressed as to the specificity of this approach (Zelazny et al. 2009; 

Harris et al. 2012). It remains unclear whether the DNA profile generated represent same 

strain or related strains of a genotype (Harris and Kenna 2014).  

 

3.5.3 Multilocus sequence typing (MLST) and multispacer sequence typing 

(MST) 

MLST amplifies nucleotide sequences that are conserved in housekeeping genes 

(Eisenberg and Levanon 2013). Usually, about 8 housekeeping genes are targeted 

(Macheras et al. 2011). In other instances, MLST can be performed by sequencing a single 

copy of a gene in combination with different gene alleles to generate an allelic profile. 

This allele profile serves as a fingerprint to differentiate other isolate and develop an 

evolutionary relationship (Macheras et al. 2011). MLST compared to PFGE is less 

discriminative in identifying M. abscessus (Machado et al. 2014). It does not provide 
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discrimination between variants of a single clone (Machado et al., 2014). In organisms 

that have undergone high levels of recombination, MLST may not provide detail 

biological diversity, hence results may be misleading (Quainoo et al. 2017). While MLST 

targets housekeeping genes, MST amplifies sequences in the spacer region located 

between the 16S rRNA and 23S rRNA genes. These regions are less exposed to 

evolutionary pressures and are well conserved, hence can be informative of M. abscessus 

identity (Sassi et al. 2013).   

 

3.5.4 Variable number of tandem Repeats (VNTR) 

Short repeated DNA sequences adjacent to each other (tandem repeat) are useful bacterial 

fingerprints. The frequency with which these DNA repeats occur within the genome can 

vary between isolates of the same species and is referred to as VNTR. Using bioinformatic 

tools, VNTRs can be identified and amplified by PCR using specific DNA primers. The 

approach is relatively simple, rapid to perform and comparable in sensitivity to PFGE 

(Harris and Kenna 2014; Chen et al. 2017a). Several studies have reported the usefulness, 

efficiency and reliability of VNTR in typing M. abscessus isolates (Choi et al. 2011; 

Harris et al. 2012; Wong et al. 2012; Davidson et al. 2013; Trovato et al. 2017). A duplex, 

low cost PCR assay based on targeting a VNTR region of M. abscessus has been 

developed and proves to be efficient in differentiating M. abscessus group (Choi et al. 

2011). This method is also simple, reliable and accurate. The accuracy of this method was 

confirmed by subjecting same bacterial isolates to multiple sequence analysis (Choi et al. 

2011). 
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3.5.5 Whole Genome Sequencing (WGS) 

Whole-genome sequencing is a popular and easy tool for genotyping. With the use of the 

tool the entire genome of a bacterial pathogen can be determined at high resolution and 

distinguish highly related lineages. The genomic data obtained can also detect 

antimicrobial resistant genes which can improve treatment outcome. Additionally, WGS 

can identify single nucleotide polymorphisms (SNPs), which are impossible to detect with 

PFGE. SNPs refer to nucleotide differences that occur at a specific location within the 

genome. Usually, such nucleotide differences have phenotypic outcomes and are 

additional source of information for differentiating closely related bacterial species. 

Recently, WGS has been used to predict possible person-to-person transmission of M. 

abscessus among CF patients confined in a particular hospital (Bryant et al. 2013). The 

ability of this tool to identify individual nucleotide base differences makes it valuable to 

support transmission dynamics and epidemiological studies. Despite carrying lots of 

advantages, it presents with high costs. The interpretation of genomic data also requires 

specific algorithms which will demand expertise.  

 

Based on the advantages of VNTR typing (as discussed above), this tool was used for the 

characterisation of suspected clinical isolates of M. abscessus that were received from the 

University Hospital of Wales (UHW). VNTR typing was further supported with 

phenotypic testing (antibiotic susceptibility to clarithromycin).   
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3.6 Aims and objectives 

The aim of this chapter is to characterise and confirm the identity of a collection of clinical 

isolates of M. abscessus provided by Public Health Wales  

 

The objectives are to;  

1. determine their antibiotic susceptibility to clarithromycin.  

2. develop an efficient cell lysis method which maximise the release of DNA from 

M. abscessus to support VNTR based characterisation. 

3. employ a VNTR assay to determine the genetic identify of each clinical isolate   

 

3.7 Materials 

3.7.1 Chemicals 

Clarithromycin (Cat. No.: C9742), Tween 20, Triton X-100, acid washed diatomaceous 

earth, ethylenediaminetetraacetic acid (EDTA) and GenElute bacterial genomic DNA 

isolation kit were all purchased from Sigma Aldrich, UK. Sodium dodecyl sulphate 

(SDS), urea, lysozyme and Tris base were purchased from Fisher Scientific, UK. Taq PCR 

core kit (250U) and DNeasy blood & tissue kit were purchased from Qiagen, UK. Zirconia 

beads (0.1 mm) was also purchased from (BioSpec, USA). 96-well microtiter plate (Life 

Science, USA). All reagents were purchased as molecular grade.  

3.7.2 Preparation of diatomaceous earth solution 

Diatomaceous earth powder (10 g) was mixed with 50 ml of sterile milli-Q water and 500 

uL of 37% HCl. The mixture was mixed and stored at 4 °C for further use. 
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3.7.3 Instruments 

Nanodrop (ND 1000 spectrophotometer, LabTech), spectrophotometer (Ultrospec 2100 

pro, USA), UV transilluminator (ChemiDoc, Bio-Rad laboratories, UK), Thermal cycler 

(T100, Bio-Rad). 

 

3.7.4 Bacterial isolates 

3.7.4.1 M. abscessus (ATCC 19977T) 

The type strain of M. abscessus (ATCC 19977T) is a biosafety level 2 pathogen and was 

purchased from the American type culture collections (ATCC), UK. This isolate 

demonstrates intrinsic resistance to clarithromycin due to the presence of a complete and 

functional erm-41 gene  (Bryant et al. 2013).  

 

3.7.4.2 M. kansasii (ATCC 12478) 

The type strain of M. kansasii (ATCC 12478T) is a biosafety level 2 pathogen which was 

first isolated from human pulmonary secretions and lesions. This bacterium was included 

as a negative control in the MIC assay as it lacks the erm-41 gene making it susceptible 

to clarithromycin (Biehle and Cavalieri 1992).  

 

3.7.4.3 E. coli (NCTC 1093) 

E. coli (NCTC 1093) is a biosafety level 2 pathogen was originally isolated from human 

faeces. This bacterium being Gram-negative and having a less rigid cell wall as compared 

to mycobacteria was used as a negative control in the DNA extraction. 
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3.7.4.4 M. abscessus clinical isolates 

Eight suspected clinical isolates of M. abscessus were obtained from the UHW with 

unique identity numbers (9723, 11490, 10006, 10332, 11365, 8899, 9568, 9495) assigned 

by the hospital. The isolates were collected from patients in July 2012 and their 

corresponding antibiotic resistance profiles shown in Table 3.1 

 

Table 3.1 The clinical isolates of suspected M. abscessus used in this study  

Unique strain 

Number 

Antibiotic resistance (MIC > 128 µg/mL) 

determined by UHW 

Collection date 

8899 Imipenem, Rifampicin 11/07/2012 

10006 Rifampicin, ciprofloxacin, Imipenem 12/07/2012 

10332 Rifampicin 22/07/2012 

11365 Rifampicin, ciprofloxacin, Imipenem 23/07/2012 

9495 Rifampicin, Imipenem 11/07/2012 

9723 Rifampicin, ciprofloxacin 12/07/2012 

11490 Rifampicin 24/07/2012 

9568 Rifampicin 12/07/2012 
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3.8.1 Lysis buffers for DNA extraction 

Genomic DNA from M. abscessus (ATCC 19977T) was performed using three different 

lysis buffers (A, B and C) (Boom et al. 1990; Kotlowski et al. 2004; Kaser et al. 2009; 

Omar et al. 2014). The composition of the lysis buffers is shown in Table 3.2 below. E. 

coli (NCTC 1093) a common Gram-negative bacterium having a less rigid cell wall was 

included as a control. 

 

 

Table 3.2 Lysis buffers developed to enhance mycobacteria cell wall lysis and the 

subsequent recovery of DNA 

Lysis Buffer Buffer Composition 

Buffer A 8M urea, 60 mM Tris-HCl, 1% Triton X-100, 10% Tween-20, 3mg/mL 

proteinase K 

Buffer B 2 mM EDTA, 10 mM Tris-HCl, 0.6% SDS, 400 mM NaCl, 3mg/mL 

proteinase K 

Buffer C 60 mM Tris-HCl, lysozyme (50 mg/mL), 3% SDS 

 

 

3.8.2 Sample processing 

Stationary phase cultures of M. abscessus and E. coli grown in their respective media 

(described in section 2.3.2) were pelleted (centrifugation at 4, 000g for 10 min at 4 °C). 

Bacterial pellets were resuspended in 500 µL of PBS to a final concentration of 1 x 108 
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CFU/mL. Bacterial concentration was determined by comparing the optical density 

against that of a previously constructed calibration curve (Appendix 1). One hundred 

microliter of this bacterial suspension was used for DNA extraction using either a 

commercial kit or an in-house method as described below.  

 

3.8.3 In-house method 

To isolate DNA from highly rigid mycobacterial cell walls and support molecular 

characterisation of isolates by VNTR, an in-house DNA extraction protocol was 

developed. The in-house method was evaluated alongside commercial DNA extraction 

methods (section 3.8.4) with cells of E. coli and M. abscessus. One hundred microliters 

of bacterial suspension (E. coli or M. abscessus) were lysed with 250 µL of one of the 

following lysis buffers (A, B or C) (Table 3.2) and 500 µL zirconia beads. Cells were 

lysed overnight at 60⁰C with constant shaking at 200 rpm. To capture the released DNA, 

40 µL of diatomaceous earth solution was added to the lysed sample and incubated at 

37⁰C for 60 mins. DNA bound to diatomaceous earth was pelleted by centrifugation at 

10,000 rpm for 60 seconds and the supernatant discarded. Bound DNA was washed twice 

with 900 µL of ice cold 70% alcohol and 900 µL of absolute acetone. After the wash step, 

DNA bound to diatomaceous earth was dried at 50⁰C for 20 min using a heat block to 

evaporate any excess acetone that might be present. To elute DNA from the diatomaceous 

earth, 100 µL of 1x TE buffer was added and incubated at 55⁰C for 20 min with 

intermittent vortexing. The mixture was then centrifuged (10, 000 rpm for 2 min) and the 

supernatant containing DNA extract was aliquoted into a new microcentrifuge tube and 

quantified using a Nanodrop. DNA purity was determined by measuring the 260/280 nm 



75 
 

absorbance ratio. The lysis buffer which resulted in the highest DNA yield was used to 

extract DNA from the remaining M. abscessus isolates (Table 3.1).  

 

3.8.4 DNA extraction using commercial DNA extraction kits 

Using the same bacterial suspension as stated in section 3.6.3, DNA was extracted using 

two commercial DNA kits namely (1) GenElute bacterial genomic DNA kit (Sigma 

Aldrich) and (2) DNeasy Blood & Tissue Kit (Qiagen) following the respective 

manufacture’s protocol. The purity and yield of the extracted DNA obtained from both 

methods were quantified using a Nanodrop. 

 

3.8.5 Characterization of M. abscessus isolates 

The identity of the 8 clinical isolates (Table 3.1) were determined using a VNTR assay 

and by determining their susceptibility to clarithromycin. 

 

3.8.5.1 VNTR assay 

All M. abscessus DNA extracts obtained were subject to VNTR analysis. The VNTR 

assay is a duplex PCR based on the amplification of two VNTR targets (11 and 23). PCR 

was performed in 20 µL reaction containing 1 µL each of 20 nmoL of VNTR primers 

(Appendix 2.1), 4 µL of 5X Q-solution, 2 µL of 10X PCR buffer, 0.4 µL of 25mM MgCl2, 

0.4 µL of 10mM dNTP mix, 1µM each of primer, 0.2 µL of Taq DNA polymerase and 1 

µL of extracted DNA. PCR was performed in a 200 µL PCR tube in a thermal cycler with 

the following thermocycling profile; denaturation at 95⁰C for 10 min, followed by 35 
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cycles of 95⁰C for 30s, 63⁰C for 30s, 72⁰C for 45s and a final extension at 72⁰C for 10 

min. PCR products were electrophoresed on a 2% agarose gel stained with 4 µL of 

SafeviewTM. Electrophoresis was performed in 1X TAE buffer at 100V for 30 min and 

visualised in UV transilluminator.  

 

3.8.5.2 Detection of non-M. abscessus isolates by PCR 

A conventional PCR using specific probes was performed to determine the identity of 

isolates which were not M. abscessus using primers targeting the 50 bp region of the erm-

38 gene of M. smegmatis. Extracted DNA (5 µL) from isolates were amplified in a total 

reaction volume of 20 µL containing 0.2 µM of forward, 0.2 µM of reverse primers 

(Appendix 2.2), 4 µL of 5X Q-solution, 2 µL of 10X PCR buffer, 0.4 µL of 25mM MgCl2, 

0.4 µL of 10mM dNTP mix, 0.2 µL of Taq DNA polymerase and 1 µL of extracted DNA. 

DNA was first denatured at 95⁰C for 10 min, followed by 35 cycles of 95⁰C for 30s, 56⁰C 

for 30s, 72⁰C for 30s and a final extension at 72⁰C for 10 min. PCR products were viewed 

as described above (Section 3.6.5.1). 

 

3.8.6 Preparation of clarithromycin stock 

Clarithromycin (30,000 ug/mL) was prepared in acetone and then diluted in LB broth to 

a stock concentration of 1000 µg/mL. The antibiotic solution was sterilised using a 0.2 

µm millipore filter (Minisart syringe filter, Germany). Two-fold serial dilution of the 

working concentrations of the antibiotic (10, 20, 40, 80, 160, 320 and 640) µg/mL was 

prepared in fresh LB broth. The final antibiotic concentrations tested in each assay was 

reduced by 10-fold to give a final concentration range of 0, 1, 2, 4, 8, 16, 32 and 64 µg/mL. 



77 
 

3.8.7 Determining MIC using broth microdilution method 

Bacterial suspensions to be tested (1 x 106 CFU/mL) as determined in section 2.2.4 were 

tested in the MIC assay. MIC of the bacterial isolates (Table 3.1) were determined using 

the broth microdilution method in a 96-well plate (CLSI 2012). In a typical experiment, 

the MIC assay consisted of the following; bacterial suspension (25 µL), LB broth (200 

µL) and varying concentrations of clarithromycin solution (25 µL) incubated in a 96-well 

plate. Two standard mycobacteria strains; M. kansasii ATCC 12478 (clarithromycin 

sensitive < 1 ug/ml) and M. abscessus ATCC 19977T (clarithromycin resistant > 64 ug/ml) 

were included in the assay. Broth solutions without clarithromycin were included to 

determine whether acetone had an inhibitory effect on the growth of bacterial cultures. In 

addition, broth alone was also included as a control to ensure that there was no bacterial 

contamination. The plates were incubated at 37°C and observed visually for growth on 

days 3, 5, 7, 9, 11, 13 and 14. Each assay was performed in triplicates and repeated twice. 

3.9 Statistics 

Statistical analysis of data was performed using Microsoft excel 2013 analysis tool pack. 

A two-tailed independent sample t-test was performed to determine statistical significance 

between the extraction methods.  
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3.10 Results 

3.10.1 Determination of the clarithromycin sensitivity of M. abscessus isolates   

The MIC of M. abscessus isolates was determined against clarithromycin at varying 

concentrations of 1, 2, 4, 8, 16, 32 and 64 µg/mL. M. abscessus demonstrates inducible 

resistance after 3 days when cultured with clarithromycin. To determine this, the MIC of 

each isolate was monitored on days 3, 5, 7, 9, 11, 13 and 14. The following antibiotic 

susceptibility breakpoints were applied based on CLSI guidelines (CLSI 2012). Isolates 

were determined to be susceptible, intermediate and resistant if the MIC < 2 µg/mL, MIC 

= 4 µg/mL and MIC ≥ 8 µg/mL respectively (Brown-Elliott et al. 2012). Following 14 

days of incubation, isolates 10332 and 11365 were found to be sensitive and intermediate 

sensitive respectively. The remaining 6 isolates (9495, 8899, 10006, 9723, 11490 and 

9568) were sensitive on day 3 (MIC <2 µg/mL) but had MIC values ≥ 8 µg/mL on day 14 

indicating inducible resistance (fig 3.1A, B). As expected, the control isolates ATCC 

19977T and ATCC 12478 remained resistant and sensitive respectively 14 days post 

culture. There was no growth in the broth only samples or in the broth with antibiotic 

controls after 14 days of incubation (fig 3.1A, B).
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Figure 3.1A MIC of bacterial isolates against clarithromycin. M. abscessus isolates (9568, 11365, 11490, and 10006) at 1 x 

106 CFU/mL were tested against varying concentrations of clarithromycin (1, 2, 4, 8, 16, 32 and 64 µg/mL) and incubated for 14 days. The 

MIC of each isolate was determined on days 3, 5, 7, 9, 11 and 14. Each experiment included a positive (M. abscessus ATCC 19977; blue 

line) and a negative control (M. Kansasii ATCC 12478; black line) isolate. Data represents MIC of triplicate experiments.  
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Figure 3.1B MIC of bacterial isolates against clarithromycin. M. abscessus isolates (9495, 10332, 8899 and 9723) at 1 x 106 

CFU/mL were tested against varying concentrations of clarithromycin (1, 2, 4, 8, 16, 32 and 64 µg/mL) and incubated for 14 days. The 

MIC of each isolate was determined on days 3, 5, 7, 9, 11 and 14. Each experiment included a positive (M. abscessus ATCC 19977; blue 

line) and a negative control (M. Kansasii ATCC; black line) isolate. Data represents MIC of triplicate experiments. 
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3.10.2 Developing DNA extraction for mycobacterial cells 

Three different buffer formulations (buffer A, B and C) (Table 3.1) were investigated for 

their ability to efficiently lyse mycobacterial cells to release DNA. Two commercial DNA 

extraction kits [GenElute bacterial genomic DNA kit (Sigma Aldrich) and DNeasy Blood 

& Tissue Kit (Qiagen)] were also included for comparison. Also, E. coli was included in 

the extraction protocol to investigate the effect of the different cell lysis compositions on 

different cell wall structures. The concentrations of the DNA extracts and purity obtained 

by the commercial kits and in-house methods were compared (fig. 3.2). The two 

commercial kits were effective in recovering DNA from E. coli but not from M. abscessus 

as the DNA yields   were significantly lower than that obtained for E. coli (p<0.05). All 

buffer formulations investigated resulted in a significant recovery of DNA from M. 

abscessus and E. coli as compared to the commercial kits (p <0.05). Comparing the three 

lysis buffer formulations, buffer A was the most efficient as it resulted in a significant 

release of DNA (p<0.05) from M. abscessus and E. coli (fig. 3.2). There was no significant 

difference in DNA purity as determined by the 260/280 ratio when both methods i.e. 

commercial and in-house methods were compared (p > 0.05).  
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Figure 3.2 Comparison of DNA yield and purity using different extraction 

methods. Pairwise DNA extraction was performed on suspensions of E. coli and M. abscessus 

(1.0 x 108 CFU/mL) using two commercial kits (Qiagen and Sigma Aldrich) and an in-house 

method. DNA yield (bar) and purity (dotted lines) were compared from all methods. Data 

represents mean of 2 replicates ± standard error (SE).  
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Following the optimisation of the lysis buffer, DNA extraction was performed using 

buffer A on all of the bacterial isolates (Table 3.1). The DNA yield and purity were 

quantified, and the result displayed in fig 3.3. The concentration of DNA recovered varied 

markedly with the highest yield being obtained from isolate 8899 which was significantly 

higher than that obtained for isolate 11490 (p < 0.05).  

 

 

 

Figure 3.3. Mean concentration (bar) and purity (line) of M. abscessus  DNA 

extracts. DNA was extracted from all clinical isolates using lysis buffer A. DNA concentration 

(bar) and purity (dotted lines) were measured using the Nanodrop. Neg ctrl represents a DNA 

extraction mixture where bacteria were not added. Data represents mean of 2 replicates ± standard 

Error (SE).  
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3.10.3 VNTR characterization of M. abscessus isolates 

To confirm the identity of the clinical isolates provided by the UHW, a VNTR assay was 

performed targeting loci 11 and 23 of the M. abscessus genome. A typical M. abscessus 

with both loci present will generate two distinct bands with estimated band sizes of 

between 393-492 bp and 196-238 bp. Bands of the expected sizes were observed for 

isolates (11365, 10332, 9568, 10006, 11490, 8899 and 9495) and the positive control 

isolate ATCC 19977T. No bands were seen for isolate 9723 (lane 8), suggesting the 

absence of the VNTR targets that characterise M. abscessus (fig 3.4). Subsequent PCR 

analysis using primers designed to identify the rpoB gene of M. smegmatis revealed the 

presence of a band of the expected size (200 bp) for the M. smegmatis control and sample 

9723 but was absent from M. abscessus the ATCC 19977T (fig. 3.5). These results suggest 

that 9723 is an isolate of M. smegmatis. The results for the VNTR and antibiotic 

susceptibility testing for each isolate are summarised in Table 3.3 
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Figure 3.4. VNTR characterization of M. abscessus  isolate. Two VNTR loci (11 and 

23) were amplified in a duplex PCR. PCR amplicons (5 µL) were electrophoresed on 2% agarose 

gel stained with SafeviewTM in a 1X TAE buffer. Lane L= 50 bp molecular weight marker; lane 

1= 11365, lane 2= 10332, lane 3= 9568, lane 4= 10006, lane 5= 11490, lane 6= 8899, lane 7= 

9495, lane 8= 9723 (M. smegmatis) and lane 9= ATCC 19977T (M. abscessus).  
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Figure 3.5 PCR identification of isolate 9723. M. smegmatis specific primer targeting 

rpoB gene was synthesised and the identity of isolate 9723 determined in a conventional PCR 

assay. PCR amplicons (5 µL) were electrophoresed on 1.5% agarose gel stained with SafeviewTM 

in a 1X TBE electrophoresis buffer. Lane L= 100 bp molecular weight marker; lane 1= no template 

control, lane 2= ATCC 19977T (M. abscessus), lane 3= 9723 (M. smegmatis), lane 4= M. 

smegmatis (NCTC 8159). 
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Table 3. 3 Summary of antibiotic and VNTR characterizations of UHW test isolates  

Bacterial isolate MIC VNTR (loci 11 and 

23) 

Bacterial isolate 

9568 Ind. Resistant Present  M. abscessus 

11365 Mod Resistant  Present  M. abscessus 

11490 Ind. Resistant Present  M. abscessus 

10006 Ind. Resistant Present  M. abscessus 

9495 Ind. Resistant Present  M. abscessus 

10332 Sensitive Present  M. abscessus 

8899 Ind. Resistant Present  M. abscessus 

9723 Ind. Resistant Absent  M. smegmatis 

ATCC 19977 Resistant Present  M. abscessus 

ATCC 12478 Sensitive  ND - 

 

Key 

Ind. Resistant = inducible resistant; Mod. Sensitivity = Moderate sensitivity; ND = Not detected. 
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3.11 Discussion 

Identification of bacteria using phenotypic methods is not always accurate and reliable 

(Harris and Kenna 2014). For this reason, VNTR typing was performed in addition to 

clarithromycin susceptibility testing to comprehensively characterise the bacterial isolates 

used in this study. Based on the VNTR data, all the isolates with the exception of 9723 

produced a VNTR profile indicative of M. abscessus. Further analysis of isolate 9723 

using a PCR assay targeting the erm-38 gene confirmed and identified this isolate as M. 

smegmatis.  

 

Subsequently, the susceptibility profile of the isolates to clarithromycin, which is the drug 

of choice for M. abscessus treatment was determined. Their susceptibility to 

clarithromycin is dependent on the presence and functionality of the erm-41 gene which 

is present in all isolates of M. abscessus. Of the eight isolates tested, 10332 and 11365 

were susceptible and moderately susceptible respectively to clarithromycin after 14 days 

of incubation. Since this test is not decisive, it is not possible to assign these isolates as 

M. abscessus as these could be susceptible M. abscessus isolates, M. massiliense or any 

of the rapid growing NTM species harbouring the inducible erm gene.  

 

While a strain may have an MIC value below 2 (susceptible) on day 3 of incubation, it 

could become resistant to clarithromycin with MIC greater than 8 on day 14 of incubation 

(Bastian et al. 2011). This mode of resistance which is described as inducible requires the 

presence of a complete and functional erm-41 gene. Full length erm-41 gene is present in 

M. abscessus and M. bolletii and confers resistance to clarithromycin but when 

truncated/incomplete it renders the isolate sensitive and this is usually seen in M. 
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massiliense (Sapriel et al. 2016). Inducible resistance was observed in 9495, 8899, 10006, 

11490, 9568 and 9723 having MIC lower than 2 on day 3 but greater than 8 after 14 days 

post culture.  

 

Although isolate 9723 was identified as M. smegmatis by PCR, it demonstrated inducible 

resistance to clarithromycin similar to the M. abscessus isolates. Inducible resistance to 

macrolides does not only occur in M. abscessus but in all mycobacteria species harbouring 

the erm gene (Nash 2003; El Helou et al. 2013). Variants of the erm gene have been 

identified in M. smegmatis, M. tb complex, M. fortuitum and M. mageritense and harbours 

the erm-38, erm-37, erm-39 and erm-40 genes respectively (Nash et al. 2009).  

 

While the antibiotic testing of the isolates informs of inducible resistance instigated by 

the erm gene, the VNTR is more decisive in characterising M. abscessus isolates. This 

further highlight the advantage of using VNTR over clarithromycin susceptibility testing 

as without the former, isolate 9723 would have been characterised as M. abscessus. The 

uniqueness of the erm-41 gene as it is only present in M. abscessus serves as a useful 

molecular target to be used in molecular based detection assays, and this will be discussed 

in the next chapter.  

 

Isolation of DNA from mycobacterium species is complicated by the presence of mycolic 

acids (MA) which contribute to the creation of thick and rigid cell walls which are difficult 

to lyse. MA is not a component of Gram-negative bacterial cell walls, and this partly 

explains why bacterial cells belonging to this group are easier to disrupt using 
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commercially available methods (Mitchell et al. 2012). DNA extraction from 

mycobacterial cells have been a major bottleneck to PCR and other DNA dependent 

typing and identification methods. It becomes a research priority to develop an effective 

cell lysis procedure to augment DNA yield and purity. To achieve this, we compared the 

efficiency of three different lysis buffers in combination with zirconia beads to that of two 

commercially available methods.  

 

It was evident from the study that the in-house method was effective in releasing DNA 

from mycobacterial cells and E. coli compared to the two commercial DNA extraction 

methods. The latter was only effective against E. coli. DNA release from bacterial cells is 

enhanced in the presence of chaotropic agents, detergents, enzymes and mechanical 

disruption (Belisle and Sonnenberg 1998). 

 

Urea is a chaotropic agent and detergents such as  Triton X-100, SDS and Tween-20 are 

able to denature proteins and disrupt membrane integrity (Belisle and Sonnenberg 1998; 

Danilevich et al. 2008). These chemicals in combination with zirconia beads (mechanical 

lysis) maximised the recovery of DNA from the bacteria used in this study. The highest 

yield of DNA was achieved using buffer formulation A compared to the commercial kits. 

The significant release of DNA is an indicator of severe membrane damage (Zhen et al. 

2013).   

 

It was observed that, the three lysis buffer formulations resulted in varying DNA yield. 

As shown in Table 3.1, buffer A contained two main detergents (Tween 20 and Triton X-
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100) and proteinase K while buffers B and C contained SDS and lysozyme. Lysozymes 

are known to have a disruptive and lytic activity against mycobacterial cell walls (Salton 

1958) but appeared to have been inhibited in this study. Lysozyme degrades cell wall by 

disrupting N-acetyl-glucosamine and N-acetylmuramic acid bonds in murein. This 

enzyme is stabilized by four disulphide bonds which keeps it stable and active (Chamani 

et al. 2010). Lysozyme are inactivated in the presence of surfactants and detergents such 

as SDS (Chamani et al. 2010). It is likely that the lytic activity of lysozyme may have 

been inhibited in buffers B and C due to the presence of SDS, and resulting in the lesser 

DNA yield than that of buffer A (Koga and Kramer 1983). The optimal lysis buffer (A), 

was applied for DNA extraction from the remaining M. abscessus isolates. The lysis 

buffer components of the commercial kits were not disclosed for commercial reason and 

thus it was impossible to draw any conclusion as to the relative contribution of the any of 

the individual elements to the differences in DNA yield which was observed. 

 

Differences in the incubation periods employed in the various lysis approaches may have 

also contributed to the observed differences in DNA yield (Lever et al. 2015). The in-

house methods included an overnight (18 hours) lysis step compared to the commercial 

kits where the incubation period was 2 hours. Thus, the markedly longer incubation time 

for the in-house methods may have been a contributing factor for DNA release.  

 

The yield of DNA recovered from the 7 M. abscessus isolates using lysis buffer A method 

differed significantly and this could be influenced by a number of factors. Mechanical and 

chemical cell lysis could interact with and cause degradation of nucleic acids (Islam et al. 
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2017). Another factor worthy of consideration is the technicalities of the DNA extraction 

procedure i.e. binding of the DNA and subsequent elution form the diatomaceous earth as 

this was key to maximise DNA recovery. Diatomaceous earth consists of positively 

charged silica matrix that attract and selectively binding to negatively charged DNA. The 

challenge with this technique is the inability to recover small fragments of DNA as these 

types of DNA bind tightly to the silica matrix (Koo et al., 1998) and could affect the 

overall DNA recovery.  

 

On the basis of a comparison of the 260/280 ratio of the isolated DNA, the in-house 

method had the same level of DNA purity as that of the commercial DNA extracts, 

suggesting an efficient removal of DNA contaminants such as proteins and carbohydrates. 

The commercial kits required spin columns containing silica for DNA purification. The 

use of diatomaceous earth in this study proved to be efficient as that of spin columns, 

yielding comparable DNA purity. 

 

Overall, the in-house method was time consuming, but economically more viable (£0.34 

per sample) than the commercial kits (£3.32 per sample) and allows for the control of 

other parameters i.e. buffer concentrations to applied on other sample types. The method 

developed in this study demonstrates the ability to produce relatively high DNA yields 

without compromising on purity and can serve as an excellent alternative to the 

commercial kits. A major selling point of commercial kits is the fact that they are less 

time consuming. The reason we did this was to optimise DNA release from these bacteria 



93 
 

so that can support our subsequent probe detector work and to have a base line method 

against which we could compare our microwave-based lysis method. 

 

In conclusion, the identity of the bacterial isolates obtained from the UHW have been 

confirmed using a combination of genetic and phenotypic methods. An efficient DNA 

extraction method has been developed for M. abscessus which would be employed in this 

study to isolate high quality DNA. The challenge in isolating purified DNA from 

mycobacterial cells that has been a frequent challenge and a bottleneck in major studies 

can be surmounted by employing the bacterial cell lysis procedure developed in this study.  
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Chapter 4 

The design of DNA probes for the detection of Mycobacterium abscessus and 

Mycobacterium smegmatis  
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4.0 Introduction 

The success of any molecular based identification method relies on the identification of specific 

nucleotide sequences which are only found in a bacterial genome. This is particularly important 

in the case of the non-tuberculous mycobacteria (NTM) as the taxonomy of M. abscessus group 

remains complex and debatable due to the lack of individual gene targets with sufficient specificity 

to support species level discrimination (Wertz et al. 2003; Zeigler 2003; Johnson and Odell 2014; 

Rubio et al. 2015). In chapter 3, VNTR typing was used as a tool to distinguish individual M. 

abscessus isolates. VNTR relies on the amplification of repeats of short nucleotide sequence at 

different loci across the genome. Thus, while an effective typing tool, it is not suitable for the 

development of a rapid detection system. Individual gene targets such as the rpoB gene have  been 

proposed as a diagnostic marker for the identification of rapid growing mycobacteria (de Zwaan 

et al. 2014; Nasiri et al. 2017), but others have questioned its sensitivity reporting that it is unable 

to distinguish M. abscessus from M. avium (Adekambi and Drancourt 2004).  

 

In some clinical laboratory, M. abscessus isolates are not routinely distinguished from M. 

chelonae and are report as M. abscessus-M. chelonae complex (Griffith et al. 2015). The 

distinction between these two isolates is relevant for their effective treatment. The absence of erm-

41 gene in M. chelonae could be used as the basis for distinction between these two bacterial 

species. As discussed in section 3.2, the erm gene (erm-41) represents a potentially unique target 

for M. abscessus identification (Brown-Elliott et al. 2015) and the rpoB gene being polymorphic 

in nature could be exploited for specific bacterial identification (ref).  

In this study we employed a bioinformatic based approach to identify unique target sequences 

within the erm-41 and rpoB gene sequences of M. abscessus and M. smegmatis (rpoB only). This 

approach is discussed below. 
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4.1 Bioinformatic probe design  

When designing probes for bacterial identification, it is important to target conserved regions of 

the bacterial genome, as these regions are unlikely to be affected by evolution and/or 

environmental cues (Guerrero et al. 2010). An efficient method of achieving this is to employ a 

bioinformatic based approach (Luo et al. 2015). Bioinformatics refers to the application of 

computational algorithms to study biological information e.g. protein or DNA sequences for 

evidences relating to their function, identifying homologs, sequence patterns and evolutionary 

relatedness (Xiong 2006). The potential of this approach is based on the ability to access 

sequencing data from open source databases such as the National Centre for Bioinformatics 

Information (NCBI). In addition to providing access to genomic data, the NCBI database provides 

researchers with the ability to identify unknown nucleotide or protein sequences by comparing 

their homology to known sequences stored in its database. This homolog search is performed 

using a software tool called Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1990; 

Pearson and Lipman 1998). BLAST can also be used to determine the specificity of short stretches 

of DNA probes.  

4.2 Basic Local Alignment Search Tool (BLAST) 

Various BLAST formats have been developed, and these include MegaBLAST, BLAST URL 

API, BLAST standalone applications, BLAST+ remote service, C++ Application programming 

interface (API) and NCBI BLAST. All except NCBI BLAST require much stricter settings 

(Madden 2013). The NCBI BLAST algorithm is the easiest to access and is much simpler, quick 

to use, requires only a web browser and  set-up requires no registration (Madden 2013). In addition 

to its diverse formats, BLAST is designed to support more detailed data analysis. For instance, 

MegaBLAST performs nucleotide search by considering the first 28 nucleotides of the query 

sequence and then proceeds to align the remaining nucleotides. This approach is different to that 

of BLASTN which considers more than 28 nucleotides of the query sequence (Madden 2013). 
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BLASTP (searches for protein sequences and compares to other protein sequences), BLASTX 

(searches for nucleotide sequences and compares to protein database), TBLASTN (searches for 

protein sequences and compares to nucleotide database) (Morgulis et al. 2008; Pearson 2013). In 

this study, BLASTN was used to retrieve nucleotide sequences from the NCBI database.  

4.3 Statistical analysis of BLAST output  

To perform a similarity search, the  query sequence (DNA or protein) is compared against the 

NCBI database of sequences (subject sequences), to generate a number of sequence output called 

‘matched sequence’ (Pearson and Lipman 1998). While a database search will always turn out 

with a ‘match sequence’, this will require further analysis using specific statistical scoring 

matrices to ascertain the significance of the ‘matched sequence’ (Karlin et al. 1991). Scoring 

matrices such as the E- value, maximum score, total score, query coverage and maximum identity 

are mostly used. The E-value is the traditional statistic test used to score ‘matched sequences.’ 

The E-value is the probability of the match and the query sequence being identical. The lower the 

E-value, or the closer it is to zero, the more significant is the alignment between the query and the 

matched sequence. Shorter query sequences will produce high E-value and vice versa. This is 

because, the probability of finding another short sequence in the database is very high (Pearson 

2013). An E-value of 10-3 and below is indicative of statistical significance, however, it is not 

uncommon for a BLAST search to produce a match with an E-value of 10-50 (Nagar and Hahsler 

2013), indicating a very strong relationship between the query and the ‘matched sequence’. The 

maximum score generates similar output to that of the E-value. It determines the highest scoring 

between a set of aligned segments from the same subject sequence. It also considers the sum of 

the matches, mismatches, gap openings for each segment. Gap openings usually occur because of 

genetic mutations from nucleotide deletions or insertions (Krane and Raymer 2002). The 

maximum identity is the highest percentage similarity between the query and the subject sequence 

over the length of the coverage area. The query coverage refers to the percentage of the length of 
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query sequence covered and included in the aligned sequence. The total score is also determined 

by the sum of the alignment scores of all segments from the same subject sequence (Madden 

2013).  

4.4 Multiple Sequence Alignment (MSA) 

MSA is an important technique in probe design. After the BLAST search, several matched 

sequences are identified and the homology between these matched sequences can be retrieved and 

if there is any region of homology, this can be determined by performing a sequence alignment. 

Two types of alignment can be performed i.e. pairwise and multiple sequence alignment. The 

former is the alignment between two sequences and the latter is more than two nucleotide 

sequences using bioinformatics tools such as CLUSTAL W and T-coffee (Thompson et al. 1994; 

Notredame et al. 2000 ; Larkin et al. 2007). The regions showing homology after sequence 

alignment is usually chosen for the probe/ primer design. Also, when homology is identified 

between multiple sequences, there is the likelihood that, this region of comparison has similar 

function and could be structurally related and have biochemical functions (Karlin and Altschul 

1990; Altschul et al. 1997). This can be confirmed by determined using specific tools to predict 

the presence of any protein secondary structures (discussed in section 4.5 below).  The design of 

probes using bioinformatic tools are discussed in this chapter using two genes of M. abscessus 

(erm-41 and rpoB) were selected to be tested as for specific identification.  

4.5 Predicting protein structure  

One approach to confirm whether the nucleotide region against which our  probes were designed 

are conserved is to determine  in the gene sequence encodes for  secondary structures, which 

serves as a starting point for determining tertiary and quaternary structures of the protein (Deng 

and Cheng 2011). In that case, the corresponding amino acid sequence would be the required 

template for secondary structure prediction. Predicting the secondary structure provides clues for 
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functional sites, conserved regions and protein stability (Zhou and Zhou 2005; Godzik et al. 2007; 

Deng and Cheng 2011). Additionally, the secondary structure also determines how the proteins 

fold (Hol et al. 1981).  

 

Proteins are polymers of amino acids linked by a polypeptide bond. Four types of protein 

structures are formed in living tissues, namely; primary, secondary, tertiary and quaternary 

structures. Primary structures are the simplest, made of linear chains of amino acids. Secondary 

structures are composed of the α-helix and β sheet. The α-helix resembles spiral staircases while 

β sheets are formed when β strands self-assemble and both are stabilized by hydrogen bonding 

(Deng and Cheng 2011).  

 

The initial steps in predicting secondary structure follows the same principle as determining 

conserved nucleotide regions. First, the query protein sequence is used to identify similar protein 

sequences using BLASTP, followed by sequence alignment with CLUSTAL Omega to identify 

domains and predict their secondary structures using a specific bioinformatic tools. A myriad of 

such tools is available e.g. JPRED, PHD, 3D-PSSM, GenThreader, Meta Server CBS and Phyre2 

(Edwards and Cottage 2003).  

 

4.6 Aims and objectives 

The aim of this chapter is to design DNA probes capable of distinguishing M. abscessus from 

other mycobacteria. 

The objectives are to;  

1. employ a bioinformatic approach to identify unique nucleotide regions within the rpoB 

and the erm-41 genes of M. abscessus  
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2. predict the secondary structures of the conserved regions from their corresponding protein 

sequences 

3. design DNA specific probes capable of binding to these unique regions 

4. determine the ability of the candidate probes to differentiate M. abscessus from other 

mycobacteria 

 

 

4.7 Materials 

4.7.1 Chemicals 

Qiagen PCR core kit (Qiagen, UK), 100 bp Hyper ladder (Bioline, UK) 

4.7.2 Bioinformatic tools 

The following bioinformatic tools were used in this study;  

1. National Center for Bioinformatic Information (NCBI). Accessed from  

https://www.ncbi.nlm.nih.gov/. Date accessed: November 2015. 

2. NCBI-BLAST. 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearc

h&LINK_LOC=blasthome). (Date accessed: December 2015) 

3. CLUSTAL W (http://www.ebi.ac.uk/Tools/msa/clustalw/) 

(Accessed on November 2015).  

4. Oligo integrated DNA technologies (IDT) analyser 

(https://www.idtdna.com/calc/analyzer) (Accessed on December 2015). 

5. Reverse complement. https://www.bioinformatics.org/sms/rev_comp.html (Date 

accessed: December 2015) 

https://www.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://www.ebi.ac.uk/Tools/msa/clustalw/
https://www.idtdna.com/calc/analyzer
https://www.bioinformatics.org/sms/rev_comp.html
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6. Probe check. http://131.130.66.200/cgi-bin/probecheck/probecheck.pl (Date accessed: 

December 2015) 

7. Phyre2. Accessed from  

http://www.sbg.bio.ic.ac.uk/phyre2/phyre2_output/4dfba067a02da9d8/summary.html. 

(Date accessed: 29.01.2019) 

8. Thermo scientific Tm calculator. Accessed from   

(https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-

biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-

scientific-web-tools/tm-calculator.html) (Date accessed January 2016) 

 

4.8 Methodology 

4.8.1 Bioinformatic identification of target gene and multiple sequence alignment 

The full and complete nucleotide sequences of the erm-41 and rpoB genes of M. abscessus (M. 

abscessus; ATCC 19977T) and the rpoB gene sequence of M. smegmatis (MC2 155) were 

downloaded in FASTA format from NCBI. Using the BLAST tool, a similarity search was 

performed against the NCBI nucleotide database to obtain sequences that matched the query 

sequence. A major challenge encountered in post BLAST analysis was the availability of the full 

and complete coding sequences of the erm-41 and rpoB genes that matched the query sequence. 

For this reason, the number of the matched sequences that were complete were used. A total of 

ten, eight and three complete matched sequences out of the possible 100 for the erm-41 (M. 

abscessus; ATCC 19977T), rpoB (M. abscessus; ATCC 19977T) and rpoB (M. smegmatis; MC2 

155) genes respectively were retrieved from NCBI, as these sequences showed 100% homology 

to the query sequence. A multiple sequence alignment was then performed using CLUSTAL W 

to identify conserved regions showing 100% nucleotide alignment and numbering more than 50 

nucleotides in length. This region was considered suitable for probe design. Phylogenetic trees 

http://131.130.66.200/cgi-bin/probecheck/probecheck.pl
http://www.sbg.bio.ic.ac.uk/phyre2/phyre2_output/4dfba067a02da9d8/summary.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-calculator.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-calculator.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-calculator.html
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based on each target gene (erm-41 and rpoB) were constructed with CLUSTAL W using 

the neighbour-joining methods. The default setting of CLUSTAL W for constructing the 

phylogenetic tree was applied.  

4.8.2 Predicting secondary structure of conserved regions 

The amino acid sequence of the erm-41 and rpoB gene (M. abscessus; ATCC 19977T) and the 

rpoB of M. smegmatis (MC2 155) was retrieved from NCBI and imported to Phyre2 software to 

determine if the conserved regions from which the probes were designed bears any secondary 

structures. The Phyre2 data output were then compared to the erm-41 nucleotide sequence to 

determine regions of secondary structure formation.  

4.8.3 In silico analysis of designed probes 

In silico analysis of potential probes (anchor and detector) were performed to determine if they 

were capable of forming hairpin, self- and hetero dimerization using the oligo IDT analyser tool. 

This tool predicts hairpin oligo secondary structure using a multiple fold (mfold) algorithm (Zuker 

2003). Probes capable of forming secondary structures were discarded based on their Gibbs free 

energy (∆G) values. Self-dimerization and hetero dimerization were also computed using the same 

software. The percentage of G-C in the probe was also determined and if more than 70%, those 

probes were excluded. The specificity of the probes was also determined using BLAST. Probes 

that were found to have nucleotide similarity with non-M. abscessus species were rejected. An 

overview of the bioinformatic probe design and analysis is shown if figure 4.1 below.   
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Figure 4.1. Overview of the workflow for bioinformatic probe design and in 

silico analysis. The first step is to load the query sequences to NCBI then the tool searches for 

similar sequences. Conserved regions are then located from the similarity search and the probes 

designed form the conserved regions.  
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4.8.4 Probe synthesis and modification 

A pair of probes (anchor and detector) were synthesized for each conserved region that showed 

100% homology. The anchor and detector probe were designed to have 17 and 22 nucleotides 

respectively with 5’-biotin and 3’-HRP modifications. To allow flexibility between the anchor 

probe and the magnetite beads, 5 thymine residues were inserted to the anchor probe sequence 

between the biotin and the 17-nucleotide sequence. These probes were designed to facilitate the 

development of the hybridization assay which will be discussed in Chapter 6. The same probes 

without biotin or HRP modifications at 5’ (anchor probe) or 3’ (detector probe) ends were 

synthesized so that they could be used in a PCR assay with the anchor probe serving as the forward 

primer and the reverse complement of the detector probe functioning as the reverse primer (Fig 

4.2).  

 

 

Figure 4.2 Schematic representation of probe design . The anchor (17 nucleotide) and 

detector probe (22 nucleotide) were designed to target same strand of bacterial gene. The reverse 

complement of the detector probe was obtained using Oligo IDT analyser. Between the anchor 

and the detector probe is a 5-nucleotide gap. 

 

4.8.5 Determination of probe specificity via PCR assay 

Following probe design and in silico analysis, probes were synthesized and subjected to specificity 

testing in a PCR assay using DNA extracts obtained from M. abscessus isolates (Chapter 3, Table 

3.3) and non-M. abscessus isolates (E. coli, S. aureus, M. smegmatis and M. kansasii). DNA were 

amplified using the Taq PCR core kit (Qiagen, UK). The synthesized probes (forward and reverse 
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primer without biotin and HRP modification) were used for the PCR assay. In a typical 

experiment, PCR was performed in a total reaction volume of 20 µl reaction containing 10.7 µl of 

nuclease free water, 0.1 µM of anchor and detector probe, 4 µl of 5X Q-solution, 2 µl of 10X PCR 

buffer, 0.6 µl of 25mM MgCl2, 0.4 µl of 10mM dNTP mix, 0.2 µl of Taq DNA polymerase and 2 

µl of DNA extract. Amplification was performed in a 200 µl PCR tube using a thermal cycler 

(T100, Bio-Rad) with the following thermocycling profile; initial denaturation at 95⁰C for 5 min, 

followed by 35 cycles of denaturation at 95⁰C for 30s, annealing at the probe respective 

temperature as determined by thermo scientific Tm calculator (Table 4.5) for 60 s, 72⁰C for 20s 

and a final extension at 72⁰C for 10 min. PCR products were electrophoresed on 2% agarose gel 

stained with 4 µl of SafeviewTM. Electrophoresis was performed in 1X TBE buffer at 100 Volts 

for 30 min and visualized in UV transilluminator (ChemiDoc, Bio-Rad laboratories, UK). 

 

4.8.6 Determining the sensitivity of the probes by PCR 

M. abscessus (ATCC 19977T) DNA was serially diluted in nuclease free water to the following 

concentrations; 10 ng/µL, 2 ng/µL, 0.4 ng/µL, 80 pg/µL, 16 pg/ µL and 3.2 pg/ µL. Serially diluted 

DNA was then used in a PCR reaction using each candidate probe and the amplified DNA if any, 

was electrophoresed and visualized as described in section 4.7.4 above.  
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4.9 Results 

4.9.1 Multiple sequence alignment (MSA) of M. abscessus genes  

The nucleotide sequences of the erm-41 of M. abscessus were retrieved from NCBI and imported 

into CLUSTAL W for alignment to identify conserved regions. Probes (E1, E2 and E3) were 

designed to target the conserved regions of the erm-41 gene. These regions are highlighted in red 

as shown in fig. 4.3A-C. The probe targeting the rpoB gene of M. abscessus and M. smegmatis 

are displayed in fig 4.3 D and E respectively. Similarly, the probe binding regions are highlighted 

in red. The probe for M. smegmatis was also designed and used for the identification of M. 

smegmatis and isolate 9723 (discussed in chapter 3). The anchor and detector probes numbered 

17 and 22 nucleotides respectively. The erm sequences of S. aureus (ermA, ermB and ermC), and 

E. coli and the rpoB sequences of S. aureus and E. coli were added to determine the specificity of 

the selected region. The aligned sequence showed that the region selected for probe binding did 

not have any similarity with the erm sequences of E. coli or S. aureus. Similarly, the selected 

region for the rpoB probe did not have any similarity with the rpoB sequences of E. coli or S. 

aureus. The phylogenetic analysis of the 17 sequences of erm-41 did not show any similarity with 

the erm genes of E. coli and S. aureus (fig. 4.4). Similarly, that of the rpoB gene sequences of M. 

abscessus and M. smegmatis did not show any similarity with those of E. coli or S. aureus as 

shown in figures 4.5 and 4.6 respectively. 
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Figure 4.3A-C.  Sequence alignment of conserved regions of the erm-41 probe. 

Probe binding regions for E1, E2 and E3 are shown in A, B and C respectively. 

DNA sequences with their respective accession numbers were retrieved from NCBI database in 

FASTA format. Seventeen sequences for the M. abscessus targeting the erm-41 gene were 

downloaded in FASTA format and aligned using CLUSTAL W to identify conserved regions 

(highlighted in red). The erm genes of S. aureus and E. coli were also included.   
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Figure 4.3D-E.  Sequence alignment of conserved regions of the  rpoB probe for 

M. abscessus  (D) and M. smegmatis  (E). DNA sequences with their respective accession 

numbers were retrieved from NCBI database in FASTA format. Ten and three sequences of rpoB 

for M. abscessus and M. smegmatis were downloaded in FASTA format and aligned using 

CLUSTAL W to identify conserved regions. The probe sequences are highlighted in red in the 

aligned sequence. The rpoB sequence for E. coli and S. aureus were also retrieved from NCBI 

and imputed into CLUSTLAL W.  
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Figure 4.4. Phylogenetic tree based on the complete gene sequence of the erm-

41 gene of M. abscessus . The erm genes of E. coli (WP_110459157.1) and S. aureus  

(CP000258.1_7865-8599-0.00115, JF968510.1, AF299292.1, X03216.1) were included to 

identify sequence similarity. The phylogenetic tree was constructed using the 

neighbour joining model in the CLUSTALW program .  
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Figure 4.5. Phylogenetic tree based on the partial gene sequence of the rpoB 

gene of M. abscessus . The rpoB  genes of E. coli (NC_000913.3:4181245-4185273) and 

S. aureus  (NC_007795.1:522160-525711) were included to identify sequence 

similarity. The phylogenetic tree was constructed using the neighbour joining model 

in the CLUSTALW program .  

 

 

 

Figure 4.6. Phylogenetic tree based on the partial gene sequence of the rpoB 

gene of M. smegmatis . The rpoB genes of E. coli (NC_000913.3:4181245-4185273) and 

S. aureus  (YP_499096.2) were included to identify sequence similarity. The 

phylogenetic tree was constructed using the neighbour joining model in the 

CLUSTALW2 program .   
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4.9.2 Determining the secondary structures of the conserved regions 

To determine if the unique nucleotide regions from which the probes were designed were 

conserved due to an essential biological role their corresponding amino acid sequences were 

obtained from NCBI and modelled with Phyre2 to determine the presence of any secondary 

structures i.e. α-helix and β-strand. Analysis of the erm-41 gene, constituting 173 amino acids 

showed regions of α-helix (31%) and β-strand (28%), and 98% of the total amino acid sequence 

were modelled with 100% confidence. Positions 57-86 and 147-162 of the amino acid sequences, 

the regions from which the probes were designed, contained a three α-helix and β-strands (fig 

4.7).  

 

Similarly, for the rpoB gene of M. abscessus gene, 91% of the total amino acid residues (1128) 

were modelled with 100% confidence. The total percentage of α-helix and β-strand formed were 

28% and 26% respectively. The amino acid region where the probe was designed i.e. between 

positions 910 and 957 (indicated in a box in fig 4.8) had 3 α-helix and 1 β-sheet strand. Finally, 

the rpoB gene of M. smegmatis was modelled with a total of 1138 amino acid residues. Again, 

92% of the amino acids were modelled with 100% confidence which resulted in α-helix (28%) 

and β-strand (26%). The probe position was identified between amino acid positions 20 to 34, 

which shows α-helix formation and the appeared of disordered amino acids (fig. 4.9).  
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Figure 4.7 Secondary structure prediction of M abscessus erm-41 gene. The 

corresponding amino acid sequence of the erm-41 gene of M. abscessus was retrieved from NCBI 

and modelled in Phyre2 to reveal any α-helix and β-strand. The regions where probes were 

designed (in rectangle) showed the presence of α-helix (violet) and β strands (light blue arrow).  
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Figure 4.8 Secondary structure prediction of M abscessus rpoB gene. The 

corresponding amino acid sequence of the nucleotide sequence of the rpoB gene of M. abscessus 

was retrieved from NCBI and modelled in Phyre2 to reveal any α-helix and β-strands. The regions 

where the probe was designed (in rectangle shape) showed α-helix and β strand formation. Amino 

acid positions 1 to 900 have been truncated from the figure and only shows regions of interest.    
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Figure 4.9 Secondary structure prediction of M smegmatis  rpoB gene. The 

corresponding amino acid sequence of the nucleotide sequence of the rpoB gene of M. smegmatis 

was retrieved from NCBI and modelled in Phyre2 to reveal any α-helix and β-strands. The regions 

where the probe was designed (in rectangle shape) showed α-helix and β strand formation. 
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4.9.3 In silico analysis of candidate probes 

In silico analysis of candidate probes in terms of their potential to self and hetero-dimerize was 

determined. The thermodynamic stabilities of the probes, expressed as ∆G was computed by 

taking into consideration the probe length and concentration of Mg2+, Na+ and dNTP used in the 

PCR assay. The ∆G values for probe-target was approximately four times higher than in probe-

probe hybrid (Table 4.1), suggesting that hybrid formation between the probe and target is 

thermodynamically favourable. The specificity of the candidate probes was subjected to similarity 

check using BLAST. Probes that had similarity with any non-mycobacteria and any gut bacteria 

were rejected and considered non-specific (Appendix 3). Candidate probes with G-C content 

exceeding 70% were rejected as this will increase the annealing temperature substantially. The 

final probes for synthesis and to be used in the PCR and hybridization assays are shown in Table 

4.2 and 4.3 respectively.  
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Table 4.1 Thermodynamic stabilities (∆G) of probes as determine using the Oligo IDT 

Analyzer 

The thermodynamic stability (∆G) of the probes (anchor and detector) for each gene target 

forming self- or hetero dimers were determined using the Oligo IDT.  

Hybrid complex Duplex formation (∆G) 

kcal/mole 

Probe type 

anchor-anchor -9.75 E1 

detector-detector -9.89 E1 

anchor-detector -6.68  E1 

anchor-target -36.29   E1 

detector-target -48.17   E1 

anchor-anchor -9.75  E2 

detector-detector -4.95  E2 

anchor-detector -6.68  E2 

anchor-target -40.65  E2 

detector-target -43.17  E2 

anchor-anchor -3.61  E3 

detector-detector -4.74  E3 

anchor-detector -6.68  E3 

anchor-target -34.48  E3 

detector-target --47.58  E3 

anchor-anchor -5.02  rpoB-M. abscessus 

detector-detector -6.76  rpoB-M. abscessus 

anchor-detector -6.78  rpoB-M. abscessus 

anchor-target -36.34  rpoB-M. abscessus 

detector-target -45.23  rpoB-M. abscessus 

anchor-anchor -7.58 rpoB-M. smegmatis 

detector-detector -4.41 rpoB-M. smegmatis 

anchor-detector -7.58 rpoB-M. smegmatis 

anchor-target -32.21 rpoB-M. smegmatis 

detector-target -37.58 rpoB-M. smegmatis 

*ND = Not determined. 
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4.9.4 Probes used in the PCR and hybridization assay 

Probes targeting different conserved regions of the erm-41 gene (E1, E2 and E3), and rpoB of M. 

abscessus and M. smegmatis are presented in the Table 4.2 below. Their G-C content were also 

determined and those that exceed 70% were excluded. The anchor and detector probes were 

modified with biotin and HRP at their 5’ and 3’ ends respectively for the hybridization assay 

(Table 4.3).  

 

Table 4.2 Probes sequences synthesized for PCR assay 

Probe type Anchor probe (5’-3’) /  

G-C content (%) 

Detection probe (5’-3’) 

(Reverse complement) / G-C content 

(%) 

E1 GCCGGAATCACATTGCC 

58.8 % 

TGCGGTGGATGATGGAAAGCGC 

59.1 % 

E2 GAGCTGCATCCGGGGCG 

62.5 ºC 

AAACCGTGAACGAAGGTGTCGA 

50 % 

E3 GGTTTGCCGAGGAAGAT 

52.9 % 

GAGCAGGTCCGCTTCCGCTACC 

68.2 % 

rpoB (M. 

smegmatis) 

GTCCTAGCCTGAGTAGTTT 

47.4 % 

AACGACACAGGACCAGGTAC  

52.4 % 

rpoB (M. 

abscessus) 

CTCGGGTGGATTGCCAA 

58.8 % 

GGCTCACCCTCGATGTTCCAGC 

63.6 % 
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Table 4.3 Probes sequences synthesized for DNA hybridization studies 

Probe type Anchor probe (5’-3’) Detector probe (5’-3’) 

E1 tttttGCCGGAATCACATTGCC GCGCTTTCCATCATCCACCGCA-

HRP 

rpoB (M. 

smegmatis) 

tttttGTCCTAGCCTGAGTAGTTT AGTACCTGGTCCTGTGTCGTT-

HRP 

rpoB (M. 

smegmatis) 

GTCCTAGCCTGAGTAGTTT GTACCTGGTCCTGTGTCGTT-

HRP 

rpoB (M. 

abscessus) 

tttttCTCGGGTGGATTGCCAA GCTGGAACATCGAGGGTGAGCC-

HRP 

 

 

4.9.5 Determination of the specificity of candidate probes using PCR 

Prior to the PCR assay, the annealing temperatures for the candidate probes were determined using 

the Tm calculator algorithm (Thermos fisher Scientific), based on the primer pair sequence, primer 

concentration and DNA polymerase used in the PCR assay. The results are shown in Table 4.4. 

The specificity of the probes was tested against 7 M. abscessus isolates (as identified in Chapter 

3) and a collection of non-M. abscessus isolates (E. coli, S. aureus and M. kansasii) in a PCR 

assay. The anchor and detector probe pairs were designed to amplify a 50 bp region, hence an 

amplicon of the same size was expected. DNA amplicons estimated at 50 bp were identified for 

M. abscessus isolates 11365, 10332, 9568, 10006, 11490, 8899, 9495 (lane 1-7) and the positive 
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control isolate, ATCC19977T (lane P) (fig 4.10). A PCR master mix control (lane M) was also 

included to monitor PCR contamination. The non-M. abscessus isolates (lane 8-12) did not 

generate a 50 bp amplicon indicating that the specificity of the candidate probes except for the E2 

probe which produced DNA amplicons greater than 50 bp was non-specific (fig. 4.10B). 

 

Table 4.4 The annealing temperature of the candidate probes 

Bacterial target Probe type Annealing temperature (ºC) 

M. abscessus E 1 54.2 

M. abscessus E 2 52.4 

M. abscessus E 3 52.4 

M. abscessus rpoB 55.0 

M. smegmatis rpoB 56.0 
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Figure 4.10 Determining the specificity of the designed probe . PCR was performed using the designed probes (A) E1 (B) E2 (C) E3 

and (D) rpoB and amplified at their respective annealing temperatures (Table 3.2). The anchor and detector probes (reverse complement) were used 

as forward and reverse primer respectively against a panel of M. abscessus and non-M. abscessus DNA extracts. PCR amplicons (5 µl) was 

electrophoresed in 1% agarose gel stained with SafeviewTM in a 1X TBE electrophoresis buffer. Lane L= 50bp molecular weight marker; lane 1= 

11365, lane 2= 10332, lane 3= 9568, lane 4= 10006, lane 5= 11490, lane 6= 8899, lane 7= 9495, lane 8= 9723 (M. smegmatis), lane 9= S. aureus, 

lane 10=E. coli, lane 11=M. smegmatis, lane 12=M. kansasii, lane M= PCR master mix control and lane P= M. abscessus type strain (ATCC 19977T).
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4.9.6 Determination of probe sensitivity to M. abscessus  

Serial dilutions of M. abscessus DNA (ATCC 19977T) were performed and amplified with primers specific 

for E1, E2, E3, and rpoB. Lanes 1, 2, 3, 4, 5 and 6 represent DNA concentrations 10 ng/µL, 2 ng/µL, 0.4 

ng/µL, 80 pg/µL, 16 pg/ µL and 3.2 pg/ µL respectively. The limit of detection for primers E1 (A) and rpoB 

(D) was 80 pg/µL while that for E2 (B) and E3 (C) was 0.4 ng/µL and 2 ng/µL respectively (fig.4.11). E1 

and rpoB probes were selected as the most sensitive and specific probes for detection of M. abscessus DNA 

in the hybridization studies. 
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Figure 4.11 Determining the sensitivity of candidate probes (E1, E2, E3 and rpoB). Serially diluted M. abscessus DNA (10 ng/µL, 

2 ng/µL, 0.4 ng/µL, 80 pg/µL, 16 pg/ µL and 3.2 pg/ µL was amplified in a PCR reaction and electrophoresed in 2% agarose gel stained with 

SafeviewTM in a 1X TAE electrophoresis buffer. Gel electrogram results with the E1, E2, E3 and rpoB probes are shown in A, B, C and D respectively. 

Lane L= 50bp molecular weight marker; lane 1= 10 ng/µL, lane 2= 2 ng/µL, lane 3= 0.4 ng/µL, lane 4= 80 pg/µL, lane 5= 16 pg/ µL and lane 6= 

3.2 pg/ µL. Arrows indicate the least concentration of DNA detected with respective primers. PCR was repeated twice ensure consistency of the 

amplified region. 
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4.10 Discussion 

Conserved regions within bacterial genome are vital for the normal function of the organism and 

thus they represent useful identification targets (Luo et al. 2015). Indeed, this might be the case 

for the erm-41 gene as its maintenance is required for M. abscessus survival in presence of 

clarithromycin and other macrolide antibiotics. Also, the rpoB gene encode the β subunit of RNA 

polymerase where transcription events occur (Macheras et al. 2011). Additionally, this is a single 

copy gene (Adékambi et al. 2003), hence a highly important gene for bacterial survival and is not 

likely to undergo frequent mutation. Genomic regions conserved between related species are 

commonly detected by performing sequence alignment studies and as such represents the key first 

step in probe design (Hysom et al. 2012; Sobhy and Colson 2012; Nagar and Hahsler 2013).  

 

In this study, CLUSTAL W was employed to identify conserved regions of the erm-41 and rpoB 

genes of M. abscessus and M. smegmatis. The accuracy and speed of this tool makes it most 

preferred means of performing a MSA (Daugelaite et al. 2013). The number of sequences aligned 

was determined by their availability in the database and only complete coding sequences of each 

gene was included in the analysis. As a result, 10 separate sequences for the E1 and E2, 8 for E3, 

8 for rpoB gene of M. abscessus and 3 for rpoB gene of M. smegmatis were assessed.  

 

The presence of any secondary structures confirms that the regions are conserved and required for 

biological function. Analysis of the amino acid sequences encoded by these nucleotide regions 

indicated they were involved in the formation of α-helix and β-strands structures. These secondary 

structures are often essential to biological activity and as a consequence tend to be conserved 

(Yang et al. 2016) making the nucleotide regions good targets for detection probes. 
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The efficiency and specificity of any probe based molecular assay is strongly connected to the 

accuracy, efficiency and the physicochemical characteristics of the probes. In silico analysis of 

the candidate probes against the DNA sequences currently deposited in the NCBI database found 

not matches to any known mycobacteria or gut related bacteria, indicating that the probes may be 

well matched to their respective genes.  

 

The thermodynamics of the probe-target hybrid must be favourable for a successful hybridization 

assay. While the following thermodynamic properties; Gibbs free energy (∆G) and Enthalpy (∆H) 

can be determined the former is considered a more reliable indicator (Lomzov et al. 2015). Based 

on the algorithm of this tool, the ∆G value of a probe pair must not be more negative than -9 

kcal/mol (IDT 2011). Certainly, this was realized in the probe-probe hybrid complex, while that 

of the probe-target was approximately four times more negative. Furthermore, mycobacteria DNA 

have a high G-C content (Kumar and Kaur 2014). G-C formation in duplex oligonucleotides are 

energetically more favourable and gives maximum thermodynamic stability in DNA duplexes 

than A-T hybrids (Lomzov et al. 2015).  

 

Although published nucleotide sequences are very informative, they do not represent a holistic 

collection of diversity found in nature and thus require experimental testing to confirm the 

predicted results. Post PCR analysis of the candidate probes against the M. abscessus and non-M. 

abscessus isolates used in this study found the erm-41 (E1) and rpoB probes to be the most specific 

and sensitive for M. abscessus detection. The E2 and E3 probes generated amplification products 

in the presence of DNA from E. coli, M. smegmatis and M. kansasii indicating that they lacked 

specificity. An explanation for this lack of specificity could be due to the fact that bioinformatic 

tools such as BLAST and CLUSTAL W employ heuristic approaches which provide an estimate 
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of the actual binding and discriminatory performances of the probe (Kalendar et al. 2017). Also, 

BLAST performs local rather than a global alignment which could limit the coverage area between 

the query and subject sequences. These limitations highlight the need for experimental testing 

using target and non-target DNA (Loy et al. 2008).  

 

In conclusion, by using a bioinformatic based approach, probes which bind to the conserved 

regions of the erm-41 and rpoB genes of M. abscessus have been identified. Probes E1 and rpoB 

performed similarly in the PCR assays and were modified with biotin and HRP for use in the 

hybridization assays. These probes were designed based on the most recent nucleotides sequences 

of M. abscessus available in the database. The ability of these probes to correctly identify all 7 M. 

abscessus isolates suggest that these probes have the potential to be employed in the hybridization 

assay (discussed in chapter 6).  
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CHAPTER 5 

A study of the interaction between low power 2.45 GHz microwaves and the cell 

walls of structurally diverse microorganisms  
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5.0 Introduction 

5.1 Electromagnetic (EM) spectrum  

The electromagnetic spectrum is composed of seven waves, namely; Gamma (γ) rays, X-

rays, ultraviolet, visible light, infrared, microwaves (MW’s) and radio waves. These 

waves are defined by the wavelengths (λ), frequency (f) and photon energy (E), and are 

related by Planck’s equation as shown in Eqn. 1 below, 

 

Energy (E) = h f  = h c  ……………………. (5.1) 

                            λ 

 

where c is the speed of light in meters/second (m/s) and h is the Plank’s constant in 

electron volts (eV). In Eqn. 5.1, it can be deduced that, the energy of an EM wave is 

inversely related to the wavelength. The EM energy increases from radio waves to γ-rays 

and the wavelength increases from γ-rays to radio waves. The energy transmitted by γ-

rays are ionising while that of MW’s and radio waves are non-ionising. Ionising radiations 

have the capacity to break the chemical or molecular bond present in a molecule while 

non-ionising radiations do not have such sufficient enough energy (Beavers 2001). The 

frequencies of EM waves range from 1 Hz to 1025 Hz, with a corresponding wavelength 

from thousands of kilometres to the size of the nucleus of an atom (Fig 5.1) (Beavers 

2001).  

 

The EM field is a combination of both the electric (E) and magnetic (H) fields, and both 

are measured in volts per meter and Tesla respectively (Vorst et al. 2006). MWs are a 

component of the EM spectrum and their applications have been studied extensively and 

will be discussed in this chapter.   
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Fig 5.1 The Electromagnetic (EM) spectrum . Adapted from (Mini Physics 2018) 

 

5.2 Microwaves (MW’s) and applications 

MWs originate from two sources, namely artificially and from cosmic regions. Artificial 

MWs are generated from the electronic oscillations of humanly crafted devices whose 

frequencies ranges between 300 MHz to 300 GHz with wavelengths corresponding to 1 

m and 1 mm respectively (Banik et al. 2003; Geddes et al. 2017). Natural MWs are mainly 

those from the cosmic MW background which peaks at around 160 GHz. Other cosmic 

forms come from electronic transitions in hydrogen, the most common element in the 

universe, which emits at 1.4 GHz and correspond to a wavelength of about 21 cm (Hill et 

al. 2018). These two types of MWs differ in the sense that, natural MW’s (also non-

ionising) are not polarised and not biologically active while those generated artificially 

are polarised and have the capacity to cause biological effects (Panagopoulos et al. 2015). 

Polarisation refers to the ability of MWs to travel in a transverse manner such that the two 

main components i.e. the E and H fields are perpendicular to the direction of their travels 
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(Sun et al., 2016). The applications of polarised MW are numerous encompassing health, 

telecommunications, food industry and other industrial applications (Celandroni et al. 

2004; Shahin et al. 2013). In the food industry, MWs are employed to sterilise food items 

to prolong their storage times (Woo et al. 2000). They are also used in the medical field 

to treat various malignant diseases such as cancer in a procedure called diathermy. This 

is a surgical technique which uses high frequency EM waves to generate heat directly in 

cancer cells to induce killing, and thereby accelerate treatment (Yang and Wang 1979). 

Surgical tools are also sterilised with MWs to halt transmission of nosocomial and other 

pathogenic diseases (Celandroni et al. 2004). A growing field of MW application is the 

isolation of DNA from microbial cells for downstream application such as PCR and 

hybridisation assays (Vaid and Bishop 1998; Melendez et al. 2016). The ability of our 

prototype MW device to release nucleic acids from microbial cells is explored in this 

chapter while the subsequent detection of the liberated nucleic acids is discussed in 

chapter 6.  

 

Mobile phones, computers and several wireless devices have been built to operate at the 

MW frequency range. Other ISM frequency bands at 2.4 GHz, 5.7 GHz and 900 MHz 

also support Bluetooth applicators, RF heating and microwave heating respectively 

(Kumbhar 2017). The increase in demand for communication and wireless devices 

operating at such frequencies suggest that mankind is likely to be frequently exposed to 

MW radiations. This has been an area of concern and has obtained research attention. The 

next generation (5G) of mobile communication devices demands a high frequency to 

operate. The physiological effect of electromagnetic radiation changes with frequency and 
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as the frequency increases, the depth of penetration into biological tissues deepens. 

Biological organs such as eyes and skin could potential be at risk (Nature Research, 2019).  

 

The relationship between MW frequency and their penetration depth into materials is 

inversely correlated. MW frequency greater than 10 GHz have low penetration depth and 

only induce skin surface heating while those with frequency less than 150 MHz penetrate 

deep into the body without loss of energy (McRee 1974; Wu et al. 2015). Materials (e.g. 

biological tissues) with high moisture content efficiently absorb MWs and the effect is 

pronounced, while those materials without moisture content have diminished MW effect 

or rather require longer exposure times (Dawkins et al. 1979a). Although this is an 

increasing area of study, the exact mechanism MW action remains elusive and has been 

debated between thermal and non-thermal mechanisms. 

5.3 MW thermal and nonthermal bioeffect 

MW induced thermal effects have been widely reported and the mechanism of action is 

well explained compared to its nonthermal counterpart (Rougier et al. 2014). Heat 

generation is an inevitable process during MW excitation especially in materials with high 

moisture content and absorb MWs effectively. These water molecules interact with the 

high frequency alternating electric (E) fields, rotating at about 2.4 x 109 times per 

oscillation. The rapid motion of water molecules induces friction, leading to the loss of 

energy which is dissipated in the form of heat (Kim et al. 2014). MW heating is different 

from that of conventional heating in that, the former produces a rapid intense heating 

while the latter is  relatively slow (de la Hoz et al. 2007). 
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Nonthermal MW effect is believed to occur via direct interaction of MWs (E and or H 

field) with a biological material without the concomitant increase in temperature. Its 

existence is doubted mainly because the mechanism of action remains speculative and not 

well understood. Also, experiments reporting nonthermal effect are sometimes not 

reproducible (Pall 2013). Albeit these hindrances, several studies have reported the 

existence of nonthermal MW effect at a range of frequencies in biological membranes, 

mammalian organs (e.g. kidney, heart, brain), and their disruptive effect on purified DNA 

(Pall 2014; Nguyen et al. 2015; Pall 2015; Nguyen et al. 2016; Geddes et al. 2017).  

 

Several mechanisms have been proposed to support the nonthermal effect and these vary 

with regards to the material under study. For instance, it is believed that MWs produce 

reactive oxygen species (ROS) that are responsible for dsDNA and ssDNA breaks 

(Scholes et al. 1960; Buxton et al. 1988; von sonntag 2007), Although this has been 

reported, the mechanism for ROS production still remain elusive (Wang and Zhang, 

2017). ROS are normally generated from the mitochondria in the electron transport chain 

and damage to this cell machinery could lead to unregulated ROS production, hence it 

could be that MW induced damage to the mitochondria is responsible for the increased 

levels of ROS. Pore formation in biological membranes have also been reported in a 

phenomenon akin to electroporation (Nguyen et al. 2015). In electroporation, an external 

E field just above the membrane potential of the cell causes membrane distortion and 

induces pores within the membrane (Nguyen et al., 2016). Although such pores have been 

reported, they are yet to be visualised under any experimental setting.  
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MW parameters are key factors that determine their effect on biological cells. Also, the 

complexity/ composition of cells also impacts on their susceptibility to MWs, and both 

are discussed below specifically in their application towards biological membrane 

disruption 

 

5.4 Factors modulating membrane disruption  

Pulse MW are about twice more effective than continuous waves (CW) applied at same 

power levels (Watchtel et al., 1989). The former is believed to generate energetic 

electrons at the pulse peaks and have the capability to penetrate easily into biological cells 

than the latter. The peak power is expressed as the ratio of the average power to the duty 

cycle, hence is twice higher than CW (Ando et al. 2011). Repetitive short pulses have also 

been reported to induce stress in membranes of cells leading to membrane disruption 

(Nguyen et al. 2015). The success of electroporation/ membrane disruption can be 

modulated by the following MW E field parameters i.e. pulse amplitude, duration, 

number, shape and the repetition frequency. For instance, increasing the pulse duration 

and pulse number could result in joule heating and result in irreversible electroporation 

(Pliquett et al. 2007). Near optimal conditions favouring electroporation/ membrane 

disruption would require an increase in the amplitude, pulse number and duration (Rols 

2006). The MW parameters required for the influx of small molecules such as fluorescent 

particles (3-2000 kDa) differs from that of larger molecules such as DNA (Batista 

Napotnik and Miklavcic 2018).  
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While the influx of small particles is easy, that of DNA is challenging and requires 

specialised conditions. This is because DNA molecules are negatively charged and are 

repelled by the cumulative negative charge on the membrane surface. While the influx of 

small molecules requires pulse duration between 10 to 100 µs, the influx of larger 

molecules require longer pulse durations lasting for a few milliseconds or a high voltage 

and short length pulses (Klenchin et al. 1991; Sukharev et al. 1992; Wolf et al. 1994; 

Satkauskas et al. 2002) 

 

Cellular factors usually include the membrane composition and cell walls. Significant cell 

wall difference exists in Gram-negative, Gram-positive, Mycobacteria and yeast cells and 

these have been discussed in section 1.20 The shape of the cell also affects the success of 

electroporation/ membrane disruption (Canatella et al. 2001; Maček-Lebar and Miklavčič 

2001; Pavlin et al. 2005). Cell membranes are composed of fatty acids (FA), cholesterol 

and membrane proteins (constituting about 50% of weight in cell membrane). These 

biomolecules contain ions that contribute to the transmembrane potential across the cell. 

The presence of the transmembrane potential does influence any external electric fields 

and could pose resistance to them. This interaction has the capacity to affect membrane 

fluidity and stability (Israelachvili and Mitchell 1975; Cullis and De Kruijff 1979; Smaby 

et al. 1994; Veatch and Keller 2005). The proportion of cells in suspension are also critical 

for electroporation/ membrane disruption. Dense cell suspensions tend to electrically 

shade other cells from E field radiation, thereby reducing the amount of E field exposures 

to such cells and reduce resealing process. In a low cell densities  where single cells are 
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dominant, the fraction of cells with the membrane disrupted is significant and the 

resealing process is not hindered (Pavlin et al. 2002; Pucihar et al. 2006).   

5.5 Challenges with MWs studies 

A critical review of the literature reveals that, there is no accepted mechanism to explain 

MW mediated nonthermal effect. There is also a significant challenge in comparing data 

across studies as there are inconsistencies in the MW parameters applied. For instance, 

the magnitude of the E and H fields and the MW power varies in many published studies. 

In some studies, a conventional MW oven is used which cannot generate a constant MW 

E field energy. To effectively investigate nonthermal MW bioeffect, parameters such as 

MW power, E and H field intensities and the sample volume need to be standardised. 

 

Controlling the temperature generated during MW exposure at a level that has no lethal 

effect on cells has been the common way to determine the existence of nonthermal MW 

effect. Major studies have focussed on the effect of 2.45 GHz MWs on mammalian cells, 

tissues and organs (Geddes et al. 2017) under nonthermal conditions, while those on 

bacterial and yeast cells are scarce. The most recent study shows the ability of 2.45 GHz 

MWs to alter cell membranes of E. coli (Rougier et al., 2014) under nonthermal 

conditions. In a similar study, membrane permeability was observed in a range of 

structurally diverse microorganisms but at a much higher frequency of 18 GHz (Shamis 

et al. 2011; Nguyen et al. 2015; Nguyen et al. 2016). Thus, there is a gap in knowledge 

with regards how MWs at 2.45 GHz interact with microorganisms under nonthermal 

conditions. Considering the significant difference in membrane composition that exist 

across microorganisms belonging to different taxa, there is the likelihood that they could 
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demonstrate varying responses following MW exposure. Also, 2.45 GHz is the designated 

bandwidth for the operation of common applicators such as computers, mobile phones 

and also in industrial and medical applications. Since mankind is frequently exposed to 

these devices, their possible effect on humans is an area of concern and continuous to 

attract research interest.  

 

5.6 Aim 

In light of the paucity of knowledge and the challenges in MW studies, the aim of this 

chapter was to investigate 

1. the biological effects of 2.45 GHz MWs on biological materials using a defined 

MW applicator that allows the control of MW power and delivers pulses into a 

fixed sample volume and minimising bulk sample heating.  

2. the ability of MWs to release nucleic acids from M. smegmatis as a model for M. 

abscessus.  

5.7 Specific objectives 

The specific objectives were to; 

1. characterise the E, E+H and H field intensities within the sample tube and MW 

cavity  

2. examine the effect of individual MW components (E, H and E+H) fields on the 

viability, morphology and membrane permeability of structurally diverse 

microorganisms to fluorescent dextran particles of various sizes (3, 10 and 70 kDa) 

following exposure to MW E. H and E+H fields. 
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3. determine if present, the half-life of MW mediated membrane disruption  

4. examine the ability of MW components to induce DNA release from M. smegmatis 

and to characterise their disruptive effect on nucleic acids. 

5.8 Materials 

5.8.1 Description of MW system  

As shown in the schematic diagram in Figure 5.2, the bench-top MW application system 

used in this study consists of the following elements: a MW signal generator (TEG-4000-

1, Telemakus), a MW switch (TES-7000-50, Telemakus), 20 dB directional couplers 1 

and 2 (ZABDC20-322H-S+, Mini-Circuits), MW power amplifier (ZHL-30W-252-S+), 

MW circulator (NG-3548, Racal-MESL), MW power sensor 1 (ZRP-Z51, Rhode & 

Schwarz), and power sensors 2 and 3 (TED-8000-40, Telemakus). Synchronized signal 

generation, switching on/off, and data acquisition from three power sensors are controlled 

by LabVIEW user interface. The combination of switch, attenuator and the directional 

coupler 1 produce microwave pulse with high on/off isolation (>50 dB) without turning 

on and off the MW signal generator. This also minimizes unwanted heating at the pulse 

OFF state due to leakage power. Power sensors 2 and 3 monitor the incident and the 

reflected power, respectively. Power sensor 1 also monitors the reflected power, which is 

technically redundant but was included as a safety measure in case the low-cost power 

sensors 2 and 3 fail. A cylindrical cavity resonator designed at 2.45 GHz when empty, 

reducing to about 2.45 GHz when sample-loaded (i.e. internal radius = 46 mm, internal 

height = 40 mm) is used as a MW applicator. This was made from Aluminium metal and 

operates in the TM010 mode. The cavity was critically coupled with a loop-terminated N-
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type connector, which couples to the MW H field around the cavity’s inner circumference. 

The maximum power delivered to the cavity was limited to 12 W (41 dBm). When excited 

in its TM010 mode, the cavity produces distinct E and H fields with the maximal E field 

obtained axially while maximal H field is obtained just inside the circumference, as shown 

in Figure 5.3. Each sample was contained in a 0.2 mL mini-micro tube (Alpha 

laboratories, UK) and was inserted into the cavity, one at a time, to allow samples to be 

exposed to the E field (position A), H field (position C) and E+H fields (position B), 

respectively. 

 

 

 

 

Figure 5.2. Schematic diagram of the bench-top microwave application system . 

Reproduced and modified with permission from (Williams et al. 2016) 
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Figure 5.3. (Left) Modelling (COMSOL) of E and H field distribution inside the 

cavity. (Right) An illustration showing all sample tube positions (A, B, and C) inside the cavity 

aligned with E field maximum (A), mixed E+H field (B), and H-field maximum (C), respectively. 

In the experiment only one tube was inserted at a time. The distances between A-B and A-C are 

27 mm and 42 mm, respectively. This cavity was designed to study the separate effect of MW E, 

H and E+H fields.  

 

 

 

 

 

 

 

A B C

E H
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Figure 5.4 Modelling (COMSOL) of the E field (A) and H field (B) distribution 

at the centre of the one-hole TM010 cavity. Maximum E and H fields were obtained at 

140 kV/m (1.4 kV/cm) and 0 A/m respectively. Picture reproduced with permission from 

(Williams et al. 2016). (B) A picture of the TM010 resonant cavity indicating sample location in 

the middle. This cavity was designed to study MW E field alone.  
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5.9 Methods 

5.9.1 Culture and preparation of bacterial and yeast cells 

The following microorganisms with differences in membrane structure were used in this 

study: Escherichia coli (NCTC 1093), Staphylococcus aureus (NCTC 13373), 

Mycobacterium smegmatis (NCTC 8159) and Candida albicans (NCPF 3179). E. coli, S. 

aureus, C. albicans and M. smegmatis were cultured as described earlier (section 2.3.2). 

Bacterial suspensions were also prepared to a concentration of 1 x108 CFU/mL as 

described in section 2.3.4. 

 

5.9.2 DNA extraction 

DNA was extracted from M. abscessus (ATCC 19977T) following the method discussed 

in section 3.8.3.  

5.10 MW irradiation 

Two separate MW excitation conditions were applied. To examine pulsed MW effects of 

biological cells, a 1% duty cycle for 60 seconds was applied to cells as this reduces global 

heating in sample solution. For the speedy release of DNA from bacterial cells to support 

the development of the detection assay, a higher duty cycle was investigated. The duty 

cycle refers to the ratio of pulse duration or pulse width to the total period of the waveform 

and is expressed in ratio or as a percentage.  

5.10.1 Effects of MW radiation on M. abscessus DNA  

To investigate the effect of MWs on purified M. abscessus DNA (3.5 ng/µL) where there 

is minimal global heating, 2.45 GHz MWs were applied at 1% duty cycle for 60 seconds. 
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The pulse period and the ON time were kept constant at 1000 ms and 10 ms, respectively. 

Post microwaved DNA were quantified for dsDNA and ssDNA to determine whether 

there is any decrease in the dsDNA and ssDNA concentrations. The concentrations were 

determined using the Qubit BR assay kit and Qubit 3.0 fluorometer. Untreated DNA was 

included as a control.  

 

5.10.2 Effect of 2.45 GHz MW on the cell density of M. smegmatis 

Cells of M. abscessus (170 µL; 1 x108 CFU/mL) were treated with MW E field alone at 

1% for 60 seconds, using the same pulse parameters as above (section 5.10.1). As a 

positive control, cells were treated with 1% Triton X-100 for 60 min at 37 °C. Triton X-

100 is a chemical known to disrupt bacterial cell wall. Untreated cells were included as a 

negative control.  

 

5.10.3 Determination of cell viability in MW treated samples 

The viability of cells (S. aureus, E. coli, C. albicans and M. smegmatis) was determined 

following exposure to E, H and E+H fields. MW power was pulsed at 1% duty cycle for 

60 sec. This time frame was used to minimise global heating while exposing samples to 

MW pulses. The pulse period was the same as above (section 5.10.1). Sample excitation 

was performed at room temperature and repeated 5 more times with a 2 min interval 

between each excitation cycle. Cell viability was determined immediately after MW 

exposure using the drop count method (Miles and Misra 1938). Cells were incubated 

overnight at 37 ºC and the dilution containing countable bacterial colonies (between 30 

and 300) were used to determine viability. M. smegmatis, E. coli and S. aureus were plated 
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on LB agar and C. albicans was plated on yeast extract agar. Cells without MW treatment 

were included as negative controls. 

 

5.10.4 Quantification of dsDNA released following MW treatment 

Using similar MW exposure conditions, sample volume and concentration, 170 µL 

aliquots of test microorganism (M. smegmatis) in a 0.2 mL mini-micro tube (Alpha 

laboratories, UK) were placed in the different radial positions of the TM010 mode resonant 

cavity to determine the effect of exposure to E, H and E+H fields on DNA release. Sample 

exposure was performed for 5 times. DNA concentration of the bacterial suspension was 

determined immediately following exposure to E, H and E+H fields using the Qubit 

dsDNA BR Assay Kit (Invitrogen) and Qubit 3.0 fluorometer (Invitrogen). Suspensions 

of MW treated cells (20 µL) were mixed with 180 µL of dsDNA BR Qubit assay reagent 

and vortexed. The concentration of dsDNA was then quantified using the Qubit 3.0 

fluorometer (Invitrogen). Untreated bacterial suspension was used as a negative control.  

 

5.10.5 MW induced membrane disruption 

To determine the effect of MW (E, H and E+H) field exposure on cell wall permeability 

the entry of fluorescently labelled dextran particles into micro-organisms of structural 

diversity was examined. Suspensions of the following size particles were prepared in 

water and tested; 3 kDa (Cat. No. D3308) and 70 kDa (Cat. No. D1818) both tetramethyl 

rhodamine (TMR) and 10 kDa Alexa 488 (Cat. No. D22910), all purchased from Fisher 

Scientific, UK. Cells were treated with MW power pulsed at 1% duty cycle for 60 sec. 

Sample excitation was repeated 5 more times with a 2 min interval between each 
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irradiation cycle to minimise sample heating. MW treated samples were centrifuged at 

10000 g for 5 min, washed twice with distilled water and then resuspended in 100 µL of 

distilled water. An aliquot (10 µL) of this suspension was spotted on a microscope slide, 

mounted with glass cover slip (diameter = 0.1-0.17 mm) (Fisher Scientific, UK) and 

observed with a fluorescent microscope (Leica DM IRB, Germany) using ×63 objective 

lens under oil immersion. TMR dextran particles (3 and 70 kDa) and 10 kDa Alexa 488 

were excited using the green (530-550 nm) and blue (460-490 nm) excitation filter blocks, 

respectively. Ten images from different fields of view were captured under phase contrast 

and fluorescent views, and subsequently analysed. The percentage of fluorescent cells 

after separate exposures to E, H and E+H fields were calculated as the ratio of the total 

number of cells under phase contrast to the number of fluorescent cells. Cell suspensions 

containing fluorescent dextran particles without MW treatment was used as controls. All 

experiments were performed in triplicate and the percentage of fluorescent and non-

fluorescent cells calculated as mean ± standard deviation (SD). To determine if MW 

exposure caused permanent damage to the cell wall, permeability to 10 kDa fluorescent 

dextran particles was assessed in M. smegmatis at 5, 10, 60, 120 and 300 seconds 

following MW E field exposure.  

5.11 Theoretical and experimental calculation of bulk sample heating 

To predict the rate of bulk heat generation following MW exposure of cell suspensions 

under the conditions used in this study, we employed a formula based on the definition of 

the specific heat capacity of the cell suspension, close to that of water Cw, of approximate 

value of 4.2 J/g/K. The initial rate of temperature rise in a sample during MW exposure 

is then defined as: dT/dt = P/(mCw), where m is the mass of the sample and P is the MW 
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rms power dissipated. The total sample volume is 170 µL (i.e. a mass of approximately 

0.17 g). Since the MW cavity is critically coupled and also, since the water sample 

provides the main load, the rms MW power dissipated is approximately the rms input 

power (Pin) generated by the MW circuitry, i.e. 12 W, which is reduced to an effective 

value of 0.12 W when taking into account the standard 1 % duty cycle. This yields an 

initial heating rate of approximately 0.17 0C/s over the standard 60 s exposure time, even 

if this initial heating rate were to be maintained the maximum possible temperature rise 

would be about 10 0C; in practice, heat transfer to the surroundings will limit this 

temperature rise to only a fraction of this maximum value, so we expect a temperature 

rise of a few 0C at most. To validate this calculation, the temperature of samples during 

MW excitation was measured using a Luxtron fibre optic temperature sensor (LumaSense 

Technologies, Santa Clara, CA, USA). Using this temperature sensor probe, the bulk 

temperature increases of the cell suspension placed at the E field position was measured 

to be 2.6 ± 0.4 ºC over 60 seconds exposure time at 1 % duty cycle with 12 W rms power 

input and this is entirely consistent with the calculation above.  

 

 

5.12 Theoretical calculation of MW power generated in one-hole and three-hole 

MW cavities  

The total power generated within the MW cavity was calculated using the formula 

below 

Pdiss = πε0ε2 f E1
2 V ……………. Eqn. 5.2 

where: 
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Pdiss = rms MW power dissipated into the cavity (around 12 W) 

𝜀0 = permittivity in vacuum, 8.85  10-12 F/m 

𝜀2 = dielectric loss factor of water, approximately 9.2 at 2.45 GHz 

f = microwave frequency, 2.45 GHz 

E1 = the spatially averaged electric field amplitude generated within the sample 

V = the sample volume placed in the MW cavity, 170 µL  

 

To determine the E field value, Eqn. 5.2 can be rearranged as; 

 

diss
1

2 0

P
E

f V


 
……  Eqn. 5.3 

 

Thus, the calculated E field value is estimated at 10.2 kV/m for the one-hole TM010 mode 

cavity. Using the 3-hole cavity designed for combined E, H and E+H fields excitation, the 

power dissipated in the cavity is readjusted to accommodate the two additional holes that 

have been created. The total power dissipated in the 3-hole cavity (fig 5.3, right) becomes;  

Pdiss = PA + PB + PC ……………. Eqn. 5.4 

where: 

PA = power dissipated at port A 

PB = power dissipated at port B, which is approximately half of that in PA (i.e. PB = ½ 

PA) 

PC = power dissipated in port C, which is approximately zero since there is almost zero 

E field at this position (rather, a maximum H field). 



146 
 

 

Thus, for the cavity displayed in Fig 5.3, with three samples at each of the ports A, B 

and C, Eqn. 5.3 now becomes  

 

diss
1

2 0

4

5

P
E

f V


 
 ……………. Eqn. 5.5 

Thus, the calculated E field amplitudes within the samples at for ports A, B and C is 9.2 

kV/m, 4.6 kV/m and 0 kV/m, respectively. To determine the magnitude of the H field at 

the perimeter of the cavity, the formula (below) was applied. 

 

 

H1 = E1  J1 (2.405)/𝜂0…………... Eqn. 5.6 

                                                    377 

 

where: 

J1(x) is a first order Bessel function of the first kind 

𝜂0 is the free space wave impedance, approximately 377 𝜂.  

Since J1 (2.405) = 0.519, the amplitude of the azimuthal magnetic field at port C is 

determined to be 12.6 A/m. 

 

5.13 Data Analysis 

Results were analysed with SPSS (v.23). Significant differences within groups were 

determined using one-way analysis of variance (ANOVA) followed by a multiple 

comparison analysis using Tukey and Bonferroni tests. Graphs were plotted in Microsoft 
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excel 2016. All simulations were performed using COMSOL Multiphysics software 

(version 5.3a). Schematic drawing of the bench-top microwave was performed using 3D 

SolidWorks.  
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5.14 Results 

5.14.1 Estimating the global heat generated in a microwaved sample using 

COMSOL  

The maximum E field and H field intensity at the central position of the one-hole TM010 

mode cavity (Fig 5.4) was calculated at 10.24 kV/m and 0 A/m respectively. Similarly, E 

and H field intensity at the central and circumferential sample positions within the three-

hole TM010 mode cavity (Fig. 5.3) were calculated to be approximately 9.16 kV/m and 

12.6 A/m (corresponding to a magnetic flux density of 15.80 µT), respectively. Based on 

the design of the cavity, the E field is halved at port B of the three-hole cavity and this 

was calculated to be 4.58 kV/m.  

 

By placing the sample tube into the three-hole TM010 mode cavity, the field intensity is 

perturbed. For this reason, the Q value (representing the amount power dissipated into the 

sample) at the three sample positions were measured by determining the Q value (power 

dissipated into sample) in each sample tube containing similar sample volumes of 170 µL. 

The Q values when cavity is loaded with sample and without sample at the E, E+H and H 

positions are presented in Table 5.1 below. 

Table 5.1 Mean Fₒ, Q and loss (dB) measured at E, E+H and H field positions with loaded 

sample (water)  

 E field E+H field H field 

Mean Fₒ (MHz) 2353.32 ± 2.92 

 

2392.3 ± 1.23 

 

2406.28 ± 0.05 

 

Mean QL 644 ± 10.98 1798.725 ± 143.20 

 

7459.05 ± 458.52 

 

Mean Loss (dB) -43.595 ± 0.13 

 

-34.4425 ± 0.63 

 

-23.1275 ± 0.38 

 

 

The Q value for the empty tube (QE) was measured at 7429 
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With the measured Q values, the power dissipated (Pdiss) and mean E field in the sample 

tube can be related by the formulae below; 

                                              Pdiss ∝ 𝛥 (
1

𝑄
)………………………. Eqn. 5.7 

          Pdiss  ∝ Ein 
2  

Therefore;             Ein ∝ √𝛥 (
1

𝑄
) ……………………… Eqn. 5.8 

The inverse of the change in Q (∆Q) is determined using the formulae below; 

𝛥 (
1

𝑄
) =

1

𝑄𝐿
−

1

𝑄𝐸
 

Where QL represent the Q value when the cavity is loaded with water at E field position 

and QE is when the cavity is empty. Therefore,  

𝛥 (
1

𝑄
) =

1

644
−

1

7429
 

      = 0.001418 

Based on Eqn 5.8, mean E field at E field position is 0.03765 V/m. Similarly, inverse of 

∆Q and mean E field dissipated at position E+H are determined below; 

      

𝛥 (
1

𝑄
) =

1

𝑄𝐿
−

1

𝑄𝐸
 

Where QL represent the Q value when the cavity is loaded with water at E+H field 

position and QE is when the cavity is empty. 

     𝛥 (
1

𝑄
) =

1

1799
−

1

7429
 

       𝛥 (
1

𝑄
)  = 0.000421 

          Ein = 0. 02051 V/m 
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Finally, inverse of ∆Q and mean E field dissipated at the H field position is also 

determined below 

𝛥 (
1

𝑄
) =

1

𝑄𝐿
−

1

𝑄𝐸
 

Where QL represent the Q value when the cavity is loaded with water at H field position 

and QE is when the cavity is empty. 

𝛥 (
1

𝑄
) =

1

7459
−

1

7429
 

       𝛥 (
1

𝑄
)  ∝ 0 

              Therefore, Ein ∝ 0 V/m 

 

Based on the above formula, the fractional E field dissipated into the sample at the E, E+H 

and H field positions are 1, 0.544 and zero respectively. This further explains that there is 

E field reduction in the E+H positions. 

 

5.14.2 Effect of MW E field exposure on the cell morphology and viability of M. 

smegmatis 

The effect of MW energy (1% duty cycle for 60 seconds) on cellular morphology and cell 

viability of M. smegmatis was determined. Gross cellular morphology was not affected 

following MW treatment, as no significant difference in optical density was observed (p 

> 0.05). However, there was a significant decrease in cell density following chemical 

treatment (p < 0.001) (Fig 5.5).  
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Figure 5.5 Effect of MWs on the cell morphology of M. smegmatis . The optical 

density of cells of M. smegmatis were measured following MW treatment (1% duty cycle for 60 

seconds). Untreated and chemical (1% Triton X-100) treated cells were included as negative and 

positive controls respectively. M. smegmatis cells density were not affected following MW 

treatment (p > 0.05). Cells density was significantly reduced following chemical treatment (p < 

0.001). Data represent mean of triplicate experiment ± standard deviation.  

 

 

Cell membranes of microorganism act as a permeability barrier, protecting cells from the 

hostile environment and sustain viability. Any breach in membrane permeability will 

increase the influx and efflux of chemicals and may adversely affect viability. To 

determine the effect of MW exposure on the viability of M. smegmatis we counted the 

number of viable cells (CFU/mL) immediately following exposure to the E, H, and E+H 

fields. The effects of exposure to E field radiation can be seen in figure 5.6. At 1% MW 

pulsing, there was no significant loss (p > 0.05) of viability after 60 seconds. A higher 
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MW duty cycle (30%) was also tested to determine cells viability and when this was 

investigated, there was a significant loss of cells viability (p < 0.001) after 30 seconds. At 

this duty cycle, the temperature of cells suspension reached approximately 79°C. Thus, it 

possible that extreme heating could have resulted in the loss of cells viability (Fig 5.6).  

 

 

Figure 5.6 Effect of MW E field on M. smegmatis  viability. Suspension of M. 

smegmatis were treated with pulse MWs at 1% duty cycle for 60 secs and 30% duty cycles for 30 

seconds. Cells viability (expressed as percentage) was determined using the drop count method. 

Pulse MW treatment of cells at 30% duty cycle reduced the viability significantly (p < 0001). Data 

represent mean of 3 independent experiment ± standard deviation.  

 

 

The effect of the H field and the E+H fields combined at the same 1% duty cycle on the 

viability of M. smegmatis was investigated. As can be seen from fig 5.7, exposure had no 

significant effect (p>0.05) on viability.  
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Figure 5.7 The effect of E and E+H MW fields on the viability of M. smegmatis . 

Suspension of M. smegmatis were treated with E and E+H fields at 1% duty cycle for 1 min. MW 

treatment were repeated for 5 times. Cells viability was determined and expressed as a percentage. 

The E and E+H fields did not significantly affect cells viability (p > 0.05). Data represent mean 

of 3 independent experiment ± standard deviation.  

 

 

 

Since cells belonging to different taxa have different membrane compositions and cell 

wall structures, the effect of exposure of these cell types to the various MW fields were 

determined. The viability of E. coli, S. aureus and C. albicans under the same test 

condition (1% duty cycle for 60 seconds) and to eliminate global heating was investigated. 

Exposure to E, H and E+H fields at a 1% duty cycle for 60 seconds had no significant 

effect (p>0.05) on the viability of any of the test microorganisms (fig. 5.8).  
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Figure 5.8 The effects of E, H and E+H fields on cell viability . MW power was 

pulsed at 1% duty cycle for 60 seconds. Sample excitation was repeated 5 more times with a 2 

min interval between each excitation cycle. Cell viability after exposure to E, H and E+H fields 

was determined and expressed as percentage. Viability reduced (but not significantly) in cells 

treated with E fields alone (p>0.05), while cells treated with H and E+H fields remained 

unaffected as untreated. Data are mean ± SD of three independent experiments. 
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S. aureus and C. albicans were exposed to MW E, H and E+H fields at 1% duty cycle for 

60 seconds in the presence of 3 kDa fluorescent dextran particles. While exposure to the 

H field and a combination of E+H fields did not result in the internalisation of 3 kDa 

dextran particles (fig. 5.9), all microorganisms exposed to the E field alone exhibited a 

significant uptake of 3 kDa fluorescent dextran particles (p<0.05) (fig. 5.9 - 5.11).  

 

To determine if cell wall composition of a microorganism affected its ability to internalise 

dextran particles following exposure to E field radiation, the relative ability of the cells to 

internalise 3kDa dextran particles was compared (Fig 5.11). Cells of M. smegmatis (50.4 

± 2.5%) demonstrated a significantly higher (p < 0.05) level of particle uptake compared 

to the other isolates. The fluorescence of C. albicans (30.5 ± 2.1%) was significantly 

higher than those of E. coli (17.5 ± 1.9%) (p=0.01) but not in S. aureus (23.6 ± 4.6%) (p 

= 0.096).  

 

Variation in the degree of MW-mediated disruption in the test organisms was further 

assessed by comparing their ability to internalise 10 and 70 kDa fluorescent dextran 

particles. All micro-organisms except for S. aureus internalised 10 kDa dextran particles 

while none of the organisms appeared to internalise 70 kDa dextran particles (Fig 5.11). 

The low proportion of untreated fluorescent cells in each population are likely to represent 

dead or damaged cells which have non-specifically bound the fluorescent dextran particles 

(Shi et al. 2007; Peterson et al. 2012).  
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Figure 5.9 Quantification of fluorescent cells after separate exposure to MW E, H and E+H fields at 1% duty 

cycle for 60 seconds. Sample excitation was repeated 5 more times with a 2 min interval between each excitation cycle. Cells exposed 

to E+H-field (grey bars) and H-field (white bars) did not result in significant uptake of 3 kDa dextran particle in all cells tested as compared 

to the control group (orange bar) (p>0.05). Cells exposed to E field alone (dark bars) resulted in a significant uptake of 3 kDa fluorescent 

dextran particle (p<0.05). Values represent mean ± SD of three independent experiments.
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Figure 5.10 Uptake of varying sizes of fluorescent dextran particles into cells after MW E -field exposure at 1% 

duty cycle for 60 seconds. Sample excitation was repeated 5 more times with a 2 min interval between each excitation cycle. Images 

captured under phase contrast and fluorescent fields following 3 kDa, 10 kDa and 70 kDa dextran application to MW treated cell 

suspensions of M. smegmatis (NCTC 8159), E. coli (NCTC 1093), C. albicans (NCPF 3179) and S. aureus (NCTC 13373) with 

corresponding controls (MW untreated). Images in phase contrast are of the same field as fluorescent view. Mostly 3 kDa and 10 kDa 

dextran were internalised in M. smegmatis, E. coli, C. albicans but not 70 kDa. Only 3 kDa was internalised in S. aureus. Scale bars 

correspond to 20µm.  
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Figure 5.11 Quantification of fluorescent cells after MW E-field exposure at 1% duty cycle for 60 seconds . Sample 

excitation was repeated 5 more times with a 2 min interval between each excitation cycle. The percentage of fluorescent cells after MW 

treatment (grey bars) and the corresponding untreated cells (white bars) was determined for each dextran particle size. Percentage of 

fluorescent cells was calculated as a ratio of the number of cells in fluorescent view to the total number counted under phase contrast. The 

percentage of fluorescent cells with 3 kDa dextran uptake was significantly high in M. smegmatis than in all cells (p<0.05) and in C. 

albicans in comparison to E. coli (p=0.01). Fluorescent cells of M. smegmatis and S. aureus decreased significantly when dextran size was 

increased to 10 kDa (p<0.05). None of the cells internalised the 70 kDa dextran particle. The label (*) and (***) represents (p<0.05) and 

(p<0.0001) respectively between groups compared and are statistically significant. Values represent mean ± SD of three independent 

experiments. 
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Studies suggest that, different types of phospholipids and fatty acids interact differently 

with MWs and hence could contribute to their varying level of sensitivity to MWs 

(Nguyen et al., 2016). Owing to the observed difference in the uptake of dextran particles 

across the different types of microorganisms, we sought to determine whether differences 

in fatty acid and phospholipids did contribute to this. The percentage of fatty acids 

(saturated and unsaturated) and phospholipids present in all cells reported in previous 

studies were analysed and are presented in Table 5.2. Comparing Table 5.2 and Figure 

5.11, differences in fatty acids composition (saturated and unsaturated) does not explain 

why uptake of dextran particles across microorganisms differ, and thus other factors could 

be responsible.  

 

Table 5.2. Compositions of fatty acids (saturated and unsaturated) and phospholipids in cell 

membranes of S. aureus, E. coli, C. albicans and M. smegmatis.  

 

PG = Phosphatidyl glycerol 

LPG = Lysyl phosphatidyl glycerol 

PE = Phosphatidyl ethanolamine 

PC = Phosphatidyl choline 

PI = Phosphatidyl inositol 

CL = Cardiolipin 
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5.14.4 Duration of cell wall disruption  

To determine the time frame of cell wall disruption M. smegmatis cells were exposed to 

MW E fields 1% duty cycle for 60s and 10 kDa dextran particles were added at different 

time periods post exposure after which intracellular fluorescent was determined. The 

shortest time to be investigated was 5 seconds post exposure which resulted in a 75.6% 

reduction (p<0.05) compared to when cells are microwaved in the presence of dextran 

particles (positive control). There was no significant difference in dextran particle uptake 

at periods longer than 5 seconds suggesting that disruption is transient (Fig 5.12).  

 

 

 

Figure 5.12 Time taken to regain structural integrity following MW exposure 

at 1% duty cycle. Addition of dextran particle (10 kDa) to MW E field treated bacterial 

suspension was delayed for 5s, 10s, 60 and 300 seconds. The percentage of fluorescent bacteria 

was significantly high (p<0.05) in MW treated suspension containing dextran particle (positive 

control) than when the addition of dextran particle was delayed (5, 10, 60 and 300 seconds) and 

in untreated. Values represent mean ± SD of two independent experiments.  
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5.14.5 Effect of MW E field exposure on the release of DNA from M. smegmatis 

To determine if exposure to the level of MW radiation which disrupted membrane 

permeability did result in the release of intracellular material, the concentration of dsDNA 

in cultures of M. smegmatis before and after exposures to 1% pulse of E, H and E+H MW 

fields was determined. While there was no significant increase in the concentration of 

dsDNA following five sequential exposures to E+H and H field radiation, there was a 

significant increase (p<0.05) in dsDNA concentration following five E field exposures 

(fig. 5.13). A release of nucleic acids from the cells without significant loss of viability 

(Fig 5.8) was observed. This could be attributed to a myriad of factors. For instance, 

increased cells population could reduce the local E field distribution in sample suspension 

in comparison to low cell suspensions and subsequently decrease the transmembrane 

voltage on the cell membrane (Pucihar et al., 2007). In a high cell population other cells 

could be shielded from MW interaction. Thus, the amount of dsDNA released could not 

be released from the entire cell population. The orientation of cells in the suspension could 

also affect transmembrane potential as cells at the poles have maximal transmembrane 

potential than and are easily electroporated (Kanduser and Miklavcic, 2008).  
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Figure 5.13 Release of double stranded DNA (dsDNA) following MW exposure . 

A suspension of M. smegmatis was treated (5 times) with MW E, H and E+H fields. MW pulsing 

was kept at 1% duty cycle for 60 seconds. A 2 min interval was allowed between exposures to 

avoid sample heating. The concentration of dsDNA release was significantly higher (p<0.05) in 

suspensions treated with MW E field alone. Data are mean ± SD of three independent experiments.  
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5.14.6 Effect of MW E field exposure on purified DNA 

The effect of MW exposure on the structural integrity of genomic DNA isolated from M. 

smegmatis was determined to assess if the energy levels employed had a detrimental effect 

on DNA recovery. Nucleic acid concentration was measured immediately following MW 

exposure. The concentration of ssDNA and dsDNA following MW treatment at a 1% duty 

cycle for 60 seconds was significantly reduced (p < 0.001) (Fig 5.14). 30% duty cycle was 

applied to test its effect on DNA integrity as significant heating (79°C) is produced with 

higher MW pulses.   

 

 

Figure 5.14 Effect of MW exposure on the structural integrity of M. smegmatis 

genomic DNA. The concentration of dsDNA (blue bar) and ssDNA (red bar) were quantified 

using the Qubit assay reagent following MW treatment at 1% duty cycle for 60 seconds and 10 

minutes and at 30% duty cycle for 30 seconds. Untreated DNA was used as a control and the 

concentration of dsDNA and ssDNA were also quantified. MWs significantly reduced (p < 0.001) 

the concentration of dsDNA and ssDNA following MW treatment at 1% and 30% duty cycle for 

60 seconds and 30 seconds respectively. The concentration in nucleic acid concentration was not 

significant (ns) after multiple exposures (10 times) at 1% duty cycle for 60 seconds. Data represent 

mean of triplicate experiment ± standard deviation.  
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5.15 Discussion 

The biological effects of MWs are associated with thermal and non-thermal mechanisms. 

The former is attributed to temperature change while the latter is temperature independent 

and is thought to be due to the action of E and/ or H field effects (Challis 2005). The 

present study focused on characterising the effect of nonthermal MWs (E, H and E+H) on 

cell morphology, viability and the cell wall permeability of a range of structurally diverse 

microorganisms.  

 

To examine the existence of nonthermal MW effects, maintaining the temperature change 

at a level that is not detrimental to the cell is vital. To minimise the bulk temperature 

change during exposure to 1% duty cycle of MW energy was maintained at approximately 

2.6 °C. Under these conditions, exposure to E, H and E+H fields did not result in a 

significant change in cell morphology or in cell viability, however, when a higher duty 

cycle (30%) was applied to the cells the viability of the cells decreased significantly and 

this could be attributed to the heat generated by MWs. M. smegmatis was the most 

sensitive microorganism while S. aureus was the least. These results are likely to reflect 

differences in cell wall, polarity and membrane composition of lipids, fatty acids, 

cholesterol and phospholipids (Nguyen et al. 2015; Nguyen et al. 2016).  

 

The degree of MW induced cell wall disruption varied with the type and proportion of 

membrane phospholipids (Leontiadou et al. 2004 ; van Uitert et al. 2010a; Piggot et al. 

2011). Based on the percentages of phospholipids and fatty acids present in the cells 

studied, S. aureus membranes contain a significant proportion of unusual lipids 

(phosphatidyl glycerol (PG) and lysyl phosphatidyl glycerol (LPG)) which have been 
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predicted to enhance membrane disruption (Haest et al. 1972; Piggot et al. 2011). 

Experimentally, this was not the case in this study as there was lower dextran infiltration 

into S. aureus compared to the other microorganisms. A similar experimental observation 

has been reported by Nguyen and colleagues (Nguyen et al. 2015; Nguyen et al. 2016).  

 

Saturated fatty acids are known to reduce membrane fluidity and increase stability and as 

a consequence may increase resistance to an externally applied E field (Israelachvili and 

Mitchell 1975; Cullis and De Kruijff 1979; Smaby et al. 1994; Veatch and Keller 2005; 

van Uitert et al. 2010a; van Uitert et al. 2010b). The predominant fatty acids present in S. 

aureus are saturated, estimated to be more than 90% (Atilano et al. 2011; Brown et al. 

2013), hence they could have contributed to a reduction of infiltration by 10 kDa dextran.   

 

Phosphatidyl choline, phosphatidyl inositol and phosphatidyl ethanolamine are the major 

phospholipids in E. coli and C. albicans (Haest et al. 1969; Georgopapadakou et al. 1987), 

in addition to cardiolipin which is present in M. smegmatis (Crellin et al. 2013). 

Cardiolipin increases membrane fluidity and reduces mechanical stability (Unsay et al. 

2013b). The composition of saturated fatty acids in E. coli and C. albicans were below 

50% (Haest et al. 1969; Georgopapadakou et al. 1987) suggesting a less compact 

membrane. It is likely that the presence of these lipids and the high proportions of 

unsaturated fatty acids could have influenced infiltration of 3 and 10 kDa dextran 

particles. In the case of M. smegmatis, mycolic acid is the major fatty acids constituting 

about 30-60% and these are predominantly saturated (89%) (Taneja et al. 1979). The 
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expectation therefore is that, cell membranes in M. smegmatis will be compact and less 

permeable, but this was the most sensitive to MW and dextran infiltration.  

 

These results suggest that differences in fatty acids and phospholipids content cannot not 

provide a satisfactory explanation for the varying uptake of dextran particles and thus 

other membrane factors e.g. proteins, cytoskeleton and inherent physical factors (e.g. 

dielectric properties, microthermal heating) could be contributing factors.  

 

Cells in suspension are surrounded by water molecules normally referred to as bulk or 

free water. Water molecules can also be tightly coupled to cell membranes (i.e. bound 

water) and have different dielectric properties compared to bulk water (Robinson 1931). 

Electrical conductivity is higher in bound water than in bulk water (Robinson 1931; 

Kaatze 1990). Secondly, the intermolecular interaction between bound water and cell 

membrane surface is stronger than between bulk water molecules. Due to the strong 

molecular bonding, bound water molecules will have to surpass a higher potential barrier 

in order to align to an applied E field (Dawkins et al. 1979b), suggesting a higher MW 

absorption resulting in localised/microthermal heating effects. Measuring localised 

heating can be experimentally challenging if not impossible (Rougier et al. 2014). Thus, 

the effects observed may still reflect a combination of thermal and non-thermal effects as 

the bulk temperature measured (2.6°C) is unlikely to be a true reflection of the temperature 

at the cell membrane surface.  
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While no significant effect on cell viability and morphology was observed, there was a 

significant release of dsDNA from cells and the results suggest that once released this 

DNA may be subject to degradation but only following E field exposure. E field exposure 

realised a significant reduction in the concentration of ssDNA and dsDNA. This could 

possibly have occurred via DNA fragmentation and according to MW theory could not 

have been achieved via covalent bond disruption as MW energy are non-ionising and are 

not able to generate the required threshold energy (1 eV) to induce such bond disruption 

(Beavers 2001; Geddes et al. 2017). Reactive oxygen species (ROS) are generated in 

samples following MW treatment (Geddes et al. 2017). ROS generated are believed to 

launch a nucleophilic attack on phosphodiester bonds and this could have led to DNA 

fragmentation (Scholes et al. 1960; von sonntag 2007).  

 

The mechanism by which the E field interacts with biological cells remains unclear. High 

frequency vibration of cell membranes (mechanical cell stimulation), enhanced diffusion 

across membranes, abnormal gating of voltage channels, increased membrane 

conductance and pore formation have all been cited as possible mechanisms (Benz and 

Zimmermann 1980; Chernomordik et al. 1987; Dower et al. 1988; Hibino et al. 1993; 

Krassowska and Filev 2007; Bockmann et al. 2008; Marrink et al. 2009; Pall 2013, 2014, 

2015). Pore formation has been likened to the process of electroporation (Kinosita and 

Tsong 1977; Teissie and Tsong 1981; Tieleman 2004; van Uitert et al. 2010a; Shamis et 

al. 2011).  
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The result of this study confirmed the findings of Shamis and colleagues which reported 

that the observed biological effects are due to the  E field  (Shamis et al. 2011). Biological 

membranes act as electrical insulators. For influx/efflux mechanism to occur, their 

membrane must be destabilised, and this can be achieved via the application of an external 

E field higher than the membrane potential. The field causes membrane instability, 

transforming if from its stable impermeable state to one in which it is more permeable 

facilitating the efflux and influx of molecules.  

 

The effects of H and E+H fields on cell membranes at the power levels used in this study 

were non-existent. The reason being that, the port of the TM010 mode cavity for combined 

E and H field exposure has the E field intensity halved.  Since the observed effects are E 

field dependent, halving the magnitude is likely to diminish any biological effect as a 

critical E field value is usually required to induce electroporation.   

 

In a study by Kardos and colleagues, the application of static H fields at field strength of 

4 Tesla did cause pore formation in the skin of guinea pig (Kardos and Rabussay 2012). 

Also, the combined effect of E+H fields on yeast cells has been reported by Novickij and 

colleagues which  saw the permeabilization of yeast cells to exogenous particles (Novickij 

et al. 2016). Certainly, these results cannot be compared to the present study as the 

experimental design and the MW parameters are not the same. Static H field was used 

which is different from MW H field levels. Based on the result obtained, a critical H field 

value higher than what is reported in this study (H = 15.80 µ Tesla) if applied to cells 
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would have induced membrane disruption and enhanced permeabilization to dextran 

particles.  

 

In conclusion, this study has shown that MW generated E fields can temporarily disrupt 

cell wall permeability resulting in the uptake of dextran particles and the release of DNA. 

The study does not completely rule out thermal effects as the temperature measured is 

global and does not reflect localised heating. Further work is required to distinguish the 

contribution of these two forms of energy (i.e. thermal and electric). By optimising this 

approach, it may be possible to enhance the efficiency of influx and minimizing the 

detrimental target cell damage as mostly encountered in electroporation. Further studies 

are required to determine if this is indeed the case. The rapid release of DNA from cells 

following MW treatment is also an improvement on the current DNA extraction 

methodologies. The released DNA may be employed for downstream applications (e.g. 

PCR, DNA hybridisation) and to support the development of point-of-care applicators. 

The applicability of this is discussed in the next chapter.   
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Chapter 6 

Rapid method of detecting Mycobacterium abscessus and Mycobacterium smegmatis 

using microwave assisted Enzyme Linked oligonucleotide sandwiched 

hybridization assay (ELOSHA)  
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6.0 Introduction 

6.1 Technologies for diagnostics 

The increasing demand for technologies capable of rapidly detecting the presence of substances 

has received much attention in areas of clinical diagnosis, agriculture, defence and security and 

environmental monitoring (Luka et al. 2015; Vigneshvar et al. 2016). Examples of these 

technologies include; Gas chromatography - mass spectrometry (GC-MS), high pressure liquid 

chromatography (HPLC) and biosensors (Wang and Kricka 2018). The ability  of these tools to 

detect proteins, metabolites, whole cell bacteria and DNA has been demonstrated across numerous 

studies (Shi et al. 2007). DNA based diagnostic tools are the most specific in clinical (Choe et al. 

2015). Although they have proven to be sensitive and specific, current approaches  are time 

consuming due to the requirement for sample processing  i.e. DNA extraction and amplification 

step  making them unsuitable for near patients’ bedside use (Ng et al. 2015; Sajid et al. 2015). 

These limitations have driven the development of alternate detection technologies.  

 

Lateral flow assays (LFA) are a promising technology for the development of low-cost, rapid, 

easy to use diagnostic assays. They require minimal labour, generate results rapidly and can be 

read visually (Sajid et al. 2015). LFA are mostly built on the principle of ELISAs to detect proteins 

and DNA from clinical samples, the former being the most commonly detected (Hsieh et al. 2017). 

Detecting the latter is very sensitive and informative in disease diagnosis, as DNA is 

biochemically more stable than RNA, proteins and cells (Yang et al. 2017). Although LFA are 

promising, their sensitivity and signal intensity are affected by the concentration of DNA in the 

sample, especially when the test procedure does not include a DNA amplification step. To 

overcome this limitation, magnetic particles (MP’s) have been frequently used to enrich the 

recovery of target DNA from samples (Pankhurst et al. 2003; Chen et al. 2017b; Modh et al. 
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2018). The characteristic properties of MPs and their applications in diagnostic assays are 

discussed below.  

 

6.2 Magnetic particles (MPs) and applications in biosensing 

MPs (as shown in figure 6.1) are usually of the nano- and micrometre sizes, consisting of iron 

oxide (Fe2O3) embedded inside a non-magnetic matrix (Thielbeer et al. 2011; Giouroudi and 

Keplinger 2013).  MPs are usually smaller than the biological molecules the seek to detect  e.g. 

viruses (20-450 nm), proteins (5-50 nm), genes  (2 nm wide and 10-100 nm long),  (Giouroudi 

and Keplinger 2013). The applicability of MPs in biosensing is enhanced by their high density, 

hydrophilicity, uniform dispersion in suspension, colloidal stability and super-paramagnetism 

(Pankhurst et al. 2003). Super-paramagnetism is the property of magnetic materials which 

provides a super-fast response to an external magnetic field (Annink and Gill 2014). 

 

 

Fig 6.1. Photograph of streptavidin coated magnetite particle (MPs) . The particle 

presented are of 1 µm size (Adapted from: https://www.fishersci.ie/shop/products/sera-mag-

speedbeads-streptavidin-magnetic-beads-2/11869912) [Date accessed: 08.03.2018].  

 

 

https://www.fishersci.ie/shop/products/sera-mag-speedbeads-streptavidin-magnetic-beads-2/11869912
https://www.fishersci.ie/shop/products/sera-mag-speedbeads-streptavidin-magnetic-beads-2/11869912
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For MPs to interact with biological markers, their surfaces have to be modified with functional 

groups e.g. carboxylate (-COOH), amine (-NH2) or proteins e.g. streptavidin or neutravidin (Salata 

2004). In this study, streptavidin coated magnetic microparticles of commercial origin and with a 

size of about 1 µm were used to develop a hybridization assay for the detection of M. abscessus 

and M. smegmatis. Streptavidin MPs were opted to enable binding with the biotin functionalized 

probes designed in section 3.2. Biotin-streptavidin interaction is one of the strongest non-covalent 

interaction and demonstrates resistance to heat and extreme pH conditions (Chung et al. 2013; 

Annink and Gill 2014). Using this approach, DNA targets can be concentrated from diverse 

samples and hybridized to their complementary probes (Edelstein et al. 2000). The principle of 

the detection assay is discussed in the next section.  

 

6.3 Principle of Enzyme linked oligonucleotide sandwich hybridization assay  

Enzyme linked oligonucleotide sandwich hybridization assay (ELOSHA) is simple to perform 

and provides the best sensitivity compared to other DNA based methods (Bahadır and Sezgintürk 

2016; Mak et al. 2016). In principle, this assay involves the capture of a target gene, herein 

ssDNA, between two complementary probes (capture and detector) to form a 3-strand DNA 

complex. The capture probe has biotin attached at the 5’ end which anchors the ssDNA and the 

reporter probe to the surface of MP (fig 6.2). Preceding the anchor probe at the 5’ end is a sequence 

of five thymidine residues to allow probe flexibility when bound to the MP via biotin-streptavidin 

interaction. The robustness and reproducibility of ELOSHA assays depends on several factors 

such as the flexibility and length of the capture probe (Parham et al. 2007; Patel et al. 2011). Probe 

sequences greater than 20 base pairs provide stability for target-probe binding (Wang 2011). The 

presence of the target gene is determined indirectly via a signal generated from the detector probe 

upon reaction with substrates such as 3,3,5,5-tetramethylbenzidine (TMB) or alkaline phosphatase 
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(AP) (fig. 6.3) (Thieme et al. 2008). TMB reacts with horse radish peroxidase (HRP) to form a 

blue color with maximum absorbance at 370 and 652 nm. This enzyme substrate reaction is 

terminated by the addition of 0.1 M hydrochloric acid which gives a yellow color with absorption 

maxima at 450 nm (Eickhoff and Malik 2013).  

 

 

Figure 6.2 Principle of sandwich hybridization assay . The three-strand hybrid 

complex (anchor probe-target ssDNA-detector probe) are immobilized unto MPs. The three-

strand hybrid complex can be separated by the application of a magnetic field and the target gene 

is indirectly detected by the signal intensity generated by the detector (HRP) probe. The enzyme 

substrate reaction is then terminated by the addition of HCl (stopping solution).  

 

 

Any DNA based test capable of delivering speedy results will depend on the sample preparatory 

step i.e. DNA extraction. The current methods of DNA extraction, as discussed in section 1.20, 

are expensive and time consuming. The next section discusses the applications of MW technology 

to rapidly release nucleic acids to support the hybridization assay. 
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6.4 Microwave (MW) induced DNA release  

The applications of MWs in releasing nucleic acids from bacterial cells have been studied 

extensively. Joshi and colleagues have demonstrated the use of MW energy in disrupting 

vegetative and sporulating C. difficile to release ssDNA and facilitate the detection of C. difficle 

toxins using specific DNA probes (Joshi et al. 2014). A similar approach has also been used to 

recover DNA from Bacillus anthracis spores (Aslan et al. 2008) and Chlamydia trachomatis 

(Zhang et al. 2010). In chapter 5, it was observed that DNA release from cells was as a result of 

membrane disruption (Jankovic et al. 2014). In this chapter, the optimum MW condition for the 

release of ssDNA from M. abscessus and other microorganisms was investigated as it is key step 

in the development of a MP based detection assay.  

 

 

 

Figure 6.3 Flow chart of sample processing and detection of targeted bacteria .  

ssDNA released from MW treated bacterial suspensions will be applied to an ELISA assay using 

specific probes to determine the presence or absence of target gene.  
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6.5 Bacterial-macrophage infection model 

Preparation of target DNA can present several challenges depending on the composition and 

complexity of the sample. In diagnosing M. abscessus from cystic fibrosis (CF) patients, sputum 

is the sample of choice. Sputum is a complex mixture of pus, cell debris, dead tissues and could 

contain common bacterial pathogens e.g. Pseudomonas aeruginosa which is also frequently 

isolated from CF patients (Birmes et al. 2017). During infection, macrophages are produced, and 

these engulf and destroy invading pathogenic microorganisms. Paradoxically, some intracellular 

microorganisms have the preference to multiply within macrophages and escape killing (Price and 

Vance 2014). Thus, clinical sputum samples may include not only macrophages but M. abscessus 

trapped within macrophages. The ability of MW’s to interact with M. abscessus trapped within 

macrophages and to release bacterial nucleic acids is a key first step in the development of the 

detection assay described in section 6.3.  

 

In the absence of clinical samples, a bacteria-macrophage infection model was developed to 

mimic. bacterial cells trapped inside a macrophage. The ability of the MWs to disrupt both 

macrophage and bacterial membrane to release unfragmented target DNA, and to be detected in 

the hybridization assay will be investigated.  M. smegmatis instead of M. abscessus was used as a 

surrogate to infect macrophages as we were unable to obtain M. abscessus green fluorescent 

protein (GFP) expressing variant.  
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6.6 Aim 

The aim of this chapter is to develop a sandwich hybridization assay capable of detecting M. 

abscessus using specifically designed probes. The speed and sensitivity of the assay is enhanced 

by the application of MWs to liberate ssDNA from bacteria and from macrophages infected with 

bacteria which is subsequently captured by MPs. In future applications, this assay can be applied 

for the detection of M. tuberculosis.   

 

6.7 Objectives 

The objectives are; 

1. To determine the optimum MW conditions for the release of bacteria specific nucleic acid 

from bacteria and macrophages infected with bacteria 

2. To optimize the assay parameters for the specific detection of M. abscessus 

3. To determine the specificity and sensitivity of the assay in detecting M. abscessus  

4. To develop a bacterial infection model for the detection of M. smegmatis (surrogate for 

M. abscessus) 

5. To determine sensitivity of the assay in M. smegmatis-macrophage infected cultures 

 

 

 

 

 

 



178 
 

6.8 Materials 

6.8.1 Hybridization assay 

Magnetite particles (MPs) - Dynabeads MyOne streptavidin coated beads C1 were purchased from 

Invitrogen, Thermofisher. Tween 20, Triton X-100, Bovine Serum Albumin (BSA), 1M H2SO4 

(stopping solution) and 1-StepTM Ultra TMB-ELISA solution were all purchased from 

Thermofisher Scientific. A MagRack 6 for the separation of magnetic beads was purchased from 

(Sigma Aldrich).  

 

6.8.2 Developing macrophage-infection model 

Mouse BALB/c monocyte macrophage; J774A.1, were purchased from the European Collection 

of Authenticated Cell Cultures (ECACC 91051511) as it is a very effective phagocytic cell line  

(Anes et al. 2006; Jordao et al. 2008). Dubelco Minimum Essential Media (DMEM), L-Glutamine, 

Pen-Strep, Fetal bovine serum (FBS) and 1 X PBS (GibcoTM) were purchased from ThermoFisher 

Scientific, UK. Gentamicin sulphate was purchased from Sigma Aldrich.   

 

6.8.3 Fluorescent labelling and confocal microscopy 

Transferrin Alexa FluorTM 546, Mounting oil solution (Dako) and para-formaldehyde (PFA) were 

purchased from Thermofisher Scientific.  

 

6.9 Methodology 

6.9.1 Determining the optimum MW power for the release of nucleic acids 

To identify the optimum MW condition for the release of dsDNA and ssDNA from M. 

abscessus and from J774A.1 macrophage cells, 170 µL of each cell type; 
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M. abscessus suspension (3.4 x 107 CFU/mL) and J774A.1 (1 x 106 cells/mL) were 

irradiated separately with MWs pulsed at varying duty cycles (30%, 40% and 50%) for 

10 and 20 seconds. MW pulsing was kept at a width of 1000 ms while the ON period was 

varied at 300 ms, 400 ms and 500 ms corresponding to 30% and 40% and 50% duty cycles 

respectively. M. abscessus and macrophage cells without MW treatment were included as 

negative controls. MW treated samples were quantified for dsDNA and ssDNA using the 

Qubit BR assay kit and Qubit 3.0 fluorometer (Life Technologies). The integrity of the 

released DNA following MW treatment of bacterial cells were determined on a 1.5% 

agarose gel as described in section (3.8.5.1) 

 

6.9.2. Capture of biotin labelled probes by streptavidin coated MPs 

MPs (100 µL) were washed three times with 1 X PBS to remove the storage buffer which 

contained azide and can inhibit the hybridization assay. To immobilize biotin probes on to MPs, 

10 µL of 20 µM biotin modified probes were immobilized on 100 µL of MPs at room temperature 

for 1 hour in an orbital shaker (170 rpm). Unbound probes were removed from the MPs by the 

application of a magnet (MagRack 6, GE Healthcare) followed by washing with 1X PBS. To 

determine whether biotin probes had bound to the MPs, the concentration of probe before and 

after addition to MPs was determined. The difference in probe concentration before and after 

addition to beads was determined to estimate the amount of probe bound to bead. The Qubit 3.0 

fluorometer was used to determine probe concentration. The possibility of probes leeching from 

MPs after several washes was also determined by measuring the probe concentration in the wash 

buffers after three washing steps. 
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6.9.3 Blocking unbound and free sites on surfaces of MPs 

Reducing background signal generated by the non- specific binding of HRP labelled DNA probes 

was important in developing this assay. Three different blocking solutions were tested to 

determine their effectiveness at blocking non-specific binding to the surfaces of the MPs. MPs 

were incubated with 200 µL of one of the following blocking solutions: (i) 1% BSA + 1% Triton 

X-100+ 1% Tween 20, (ii) 2X casein and (iii) 1% BSA solution, at room temperature and shaking 

at 170 rpm for 1 hour. Following blocking, MPs were collected from the suspension using a 

magnet and washed three times with hybridization buffer (PBS-Tween 20 (0.05%)). To determine 

the success of the blocking process, MPs were incubated with probe modified with horse radish 

peroxidase (HRP) (5 µL, 10 µM) in 195 µL of hybridization buffer for 1 hour. MPs were then 

washed thrice with hybridization buffer and the presence of HRP, if any, was detected by the 

addition of TMB substrate followed by the addition of 0.1 M HCl.  

 

6.9.4 The detection of M. abscessus ssDNA using ELOSHA 

The presence of purified and crude (released from microwaved bacteria) ssDNA were determined 

using probes targeting either the rpoB or the erm-41gene. In a typical experiment, ssDNA obtained 

from M. abscessus cells i.e. purified = 10 ng/µL or microwaved = 20 ng/µL were incubated with 

biotin probe functionalized MPs (10 µL), HRP probe (5 µL, 10 µM) and 150 µL of hybridization 

buffer. The mixture contained in a microcentrifuge tube was incubated at 50°C in an orbital 

incubator shaker at 200 rpm for 1 hour. After 1 hour of hybridization, the hybrid complex was 

separated from the solution via the application of a magnet and the supernatant which includes 

unbound probes were removed. The MPs were washed thrice with hybridization buffer and the 

presence of target gene was indirectly detected by addition of 100 µL TMB substrate for 10 min 

which would generate a blue color for a positive test. The enzyme substrate reaction was then 

stopped by the addition of 100 µL of 0.1 M HCl yielding a yellow color. As a control, non-specific 
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bacteria (E. coli, S. aureus, C. albicans and Enterococcus faecalis) were included to determine 

the specificity of the assay. A no template control (NTC) was also included in the assay. 

 

 6.9.5 Determining the sensitivity and specificity of the detection assay  

The sensitivity of the ELOSHA was determined using the erm-41 probes with purified ssDNA as 

a template. Serial dilutions of the following purified ssDNA; 10 ng/ µL, 1 ng/µL, 100 pg/µL, 10 

pg/µL and 1 pg/µL were prepared and tested in the assay as described in section 6.9.4. The 

specificity of the assay was also determined using a cocktail of ssDNA obtained from non-M. 

abscessus isolates (C. albicans, E. coli, MRSA, M. smegmatis and E. faecalis). ssDNA from these 

bacterial cells with (positive DNA mix) or without (negative DNA mix) M. abscessus ssDNA 

were mixed to a final concentration of 10 ng/µL. Twenty microliters of these solutions were tested 

in the assay as described in section 6.9.4.  

 

6.9.6 Developing bacterial-macrophage infection model  

6.9.6.1 Cell Line culture and bacterial infection 

J774A.1 macrophage was cultured in Dubleco Modified Eagle media (DMEM) supplemented with 

10% FBS, 1% L-glutamine and 1% Pen-Strep (complete culture media). Macrophages were 

incubated at 37ºC in 5% CO2 to 80% confluency, harvested and seeded onto 16 mm diameter 

cover slips in an 8-well tissue culture plate to a concentration of 1.0 x 106 cells/mL and incubated 

overnight in a fresh culture media. Cells were then washed with warm culture media and replaced 

with culture media without 1% Pen-Strep (antibiotic-free medium) for bacterial infection. To 

allow optimum infection of macrophage cells, bacterial cells (GFP M. smegmatis) at varying 

concentrations of 1 x 106 CFU/mL, 5 x 106 CFU/mL and 1 x 107 CFU/mL were added to 

macrophage cells to achieve a multiplicity of infection (MOI) of 1, 5 and 10 respectively. 
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Macrophage infected with bacterial cells were incubated for 3 hours at 37 ºC in 5% CO2. The 

optimum bacterial concentration to infect bacterial cells identified by this method was used in 

subsequent assays.  

 

6.9.6.2 Estimating the percentage of viable intracellular bacteria 

Infected macrophage cells were incubated for 3 hours to allow phagocytosis. To estimate the 

percentage of viable intracellular GFP M. smegmatis, macrophage infected cells were treated with 

(Gen +) or without (Gen -) gentamicin 50 µg/mL and incubated at 37 °C for 1 hour to kill 

extracellular bacteria. Their previous incubation times after addition of bacterial cells were 2 hours 

followed by 1 hour with gentamicin. Cells were then washed three times with warm PBS and 

further lysed with 500 µL of distilled water at 37°C for 1 hour. Cell lysates were serially diluted, 

plated on LB agar and incubated at 37 °C overnight. Visible colonies were counted and calculated 

in log cfu/mL as described in chapter 2. The percentage of intracellular bacteria was estimated 

using the formula below.  

 

Viable intracellular bacteria = Bacterial concentration after gentamicin treatment (Gen +) x 100 

                                              Bacterial concentration without gentamicin treatment (Gen -) 

 

6.9.6.3 Fluorescent labelling and confocal microscopy 

Macrophages infected with GFP M. smegmatis were washed three times with ice cold 1X PBS 

(GibcoTM) to remove extracellular bacteria and stained with cold transferrin 546 (10 µg/mL) for 

15 min in the dark. After staining, cells were washed with 1X PBS and fixed with 3% para-

formaldehyde for 15 min in the dark. Fixed cells were then washed with warm 1X PBS, blotted 
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dry and mounted on a microscope slide and covered with 20 µL mounting oil immersion. Images 

were captured on a Leica SP5 confocal laser scanning microscope (Leica, Germany) under a X63 

objective lens. GFP and transferrin 546 were excited at 488 nm and 543 nm respectively and 

emissions were collected sequentially at 510 nm and 573 nm respectively. Z-stack images were 

generated with a z-step of 0.49 µm. Images were captured from 10 different fields and analysed 

using Fiji imaging software (Schindelin et al. 2012).  

 

6.9.6.4 Identification of M. smegmatis in macrophage cells  

Following the successful development of the macrophage-bacterial infection, cell suspension was 

treated with MWs at 40% duty cycle for 20 seconds to release ssDNA of M. smegmatis, which 

will include ssDNA of that of macrophage cells. Their concentration was determined with Qubit 

BR assay kit. The ssDNA released (20 ng/µL), quantified with the Qubit 3.0 fluorometer were 

tested in the detection assay (described in section 6.9.4) using M. smegmatis specific probes 

(designed in chapter 3).  

 

6.9.6.5 Sensitivity of assay in macrophage infected bacterial cells 

Macrophage infected bacterial cells were diluted 5, 25, 125 and 625 times in PBS. Sample 

dilutions were treated with MWs pulsed at 40% duty cycle for 20 seconds and the amount of 

ssDNA quantified using the Qubit BR assay kit. The ssDNA released (20 ng/µL) were then 

subjected to the detection assay as described in section 6.9.4.  

 

6.10 Statistical Analysis 

Analysis of data for the hybridisation assay were normalised against the E. coli control. In the 

absence of an E. coli control, the results were normalised against the negative control (No template 

control).  
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6.11 Results 

6.11.1 Determining optimum MW condition for the release of dsDNA and ssDNA 

The concentration of single stranded DNA (ssDNA) and double stranded DNA (dsDNA) released 

following MW treatment at varying duty cycles were quantified using the Qubit BR assay kit. 

After 20 seconds, maximum concentration of dsDNA was released at 30 % and 40% duty cycles 

in M. abscessus and at 50% duty cycle from 774A.1 macrophage (fig.6.4). There was no 

significant difference in dsDNA concentrations released from M. abscessus at 30 % and 40% duty 

cycles. Similarly, the maximum release of ssDNA was observed at 30% and 40% duty cycle from 

M. abscessus and at 30% from macrophage cells all after 20 seconds of MW treatment (fig.6.5). 

Again, there was no significant difference in ssDNA concentration at 30% and 40% duty cycles. 

The results in fig. 6.4 and fig. 6.5 indicates that increasing MW duty cycles to 50% decreases the 

concentration of ssDNA and dsDNA. It is likely that the decrease in dsDNA and ssDNA 

concentration be as a result of fragmentation induced by MWs. Temperature generation during 

MW excitation is inevitable. Thus, a combination of temperature and MW specific effect could 

be responsible for this decrease. Microwaved bacteria were electrophoresed in duplicate on 

agarose gel for all conditions tested. DNA released was observed at approximately 100 bp after 

20 seconds of microwave irradiation at 30%, 40% and 50% duty cycles. Except at 50% duty cycle, 

DNA was not visible after 10 seconds at 30% and 40% duty cycles. The reason for this observation 

could be attributed to the higher MW intensity and longer time duration, herein 20 seconds for 

which bacterial cells were exposed. On the contrary, low intensity MWs when applied for a short 

period of time (10 seconds) was not enough to cause DNA release (fig. 6.6). In comparison to the 

untreated cells, it is likely that DNA released following MW irradiation were predominantly 

ssDNA which were observed mainly at 100 bp. High molecular weight DNA (<3000 bp) and 

extracellular DNA attached to bacterial cells were observed trapped in the wells in the untreated 
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samples. The movement of these extracellular DNA could have been restricted owing to their 

overall size and attachment to bacterial cells (fig. 6.6).   

 

                                                                                                                                                                 

 

 

Figure 6.4. MW induced release of dsDNA from M. abscessus  and from J774A.1 

cells. M. abscesssus (3.4 x 107 CFU/mL) and J774A.1 macrophage (1.0 x 106 cells/mL) were 

treated with 12 W MW energy pulsed at 30%, 40% and 50% duty cycles for 10 (blue dots) and 20 

(red dots) seconds. The concentration of dsDNA released were determined using the Qubit 

dsDNA BR assay kit (Invitrogen) and Qubit 3.0 fluorometer. Data represent mean of triplicate 

experiment ± standard deviation.  
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Figure 6.5. MW induced release of ssDNA from M. abscessus  and J774A.1 cells . 

M. abscesssus (3.4 x 107 CFU/mL) and J774A.1 macrophage (1.0 x 106 cells/mL) were treated 

with 12 W MW energy pulsed at 30%, 40% and 50% duty cycles for 10 (blue dots) and 20 (red 

dots) seconds. The concentration of dsDNA released were determined using the Qubit dsDNA BR 

assay kit (Invitrogen) and Qubit 3.0 fluorometer. Data represent mean of triplicate experiment ± 

standard deviation. 
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Figure 6.6. Release of nucleic acids in post microwave irradiated M. abscessus cells.  Suspensions 

of M. abscessus (1x108 CFU/mL) were treated with microwave energy at 30%, 40% and 50% 

duty cycles for 10 and 20 seconds time intervals. Microwaved samples were loaded in duplicate 

for each microwave condition and compared with untreated samples. Lane L= molecular weight 

ladder
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6.11.2 Determining binding capacity of magnetite particles and the effect of 

blocking buffers to reduce background signals 

To confirm that biotin probes had bound to the MPs whose surface is modified with streptavidin, 

the two were mixed and incubated together. The concentration of biotin probe before and after 

addition of MPs was determined and the percentage of probe bound estimated. There was 

significant decrease (p < 0.001) in the concentration of biotin probe following the addition to MPs 

(orange bar), indicating that the probes were bound to MPs possibly via biotin-streptavidin 

interaction (fig 6.7). The binding capacity of the MPs was determined at 89.82% based on the 

ratio of bound and free biotin probe in the solution. Repeated washing of the biotin labelled probes 

did not result in the removal of the probes from the MP surface (fig. 6.8). When HRP labelled 

DNA probes lacking biotin modification was added to the MPs, there was no obvious decrease in 

their free concentration suggesting that minimal non-specific binding to surface of the MPs had 

occurred (fig 6.7). 

 

To determine if low level, non-specific DNA binding had occurred, HRP labelled DNA probes 

were mixed with MP, washed and then suspended in TMB solution. The results indicate that the 

HRP labelled probe does attach to the MPs resulting in a background signal (fig 6.9). To minimize 

the background signal, MPs immobilized with biotin probe were incubated with varying blocking 

solutions prior to incubation with the HRP probe. The background signal was effectively removed 

when MPs were blocked with a solution comprising 1% Tween 20, 1% Triton X-100 and 1% BSA 

(fig 6.10).  In contrast, casein (2x) and 1% BSA were not effective in preventing HRP from 

binding to the MP (fig. 6.10).  
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Figure 6.7 Characterization of the binding of biotin labelled probes to MPs. 

Biotin (10 µL, 20 µM) and HRP labelled probe (5 µL, 10 µM) were added separately to MPs (1.3 

x 108 particles/mL) and incubated at RT for 1 hour. The concentration of HRP and biotin probes 

in the supernatant after addition to MPs were quantified using the Qubit BR assay kit and Qubit 

3.0 fluorometer. Data represents the average of four separate experiments ± standard deviation. 

ns represent no significance. 
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Figure 6.8 Determining the ability of biotin probes to leech from MPs following 

repeated washing. Biotin probes bound to MPs (probe bound) were subjected to three washing 

steps and the supernatants were collected after the first (x1), second (X2) and third (X3) wash 

with hybridization buffer and the concentration of free probes, if any, in the washing buffers were 

quantified using the Qubit 3.0 fluorometer. Data represent mean of triplicate experiment ± 

standard deviation. 
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Figure 6.9 Signal generated by mixing MPs with HRP labelled DNA probe . MPs 

(1.3 x 108 particles/mL) incubated with HRP probes (5 µL, 10 µM) were washed thrice with 

hybridization buffer followed by the addition of TMB substrate for 10 min and stopping solution. 

A background signal was measured even after three washing step with hybridization buffer. Data 

represent mean of duplicate experiment ± standard deviation.  
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Figure 6.10 The ability of blocking buffers to reduce the background signal . The 

ability of different blocking solutions to reduce background signal were determined. HRP probe 

(5 µL, 10 µM) was added to blocked MPs (1.3 x 108 particles/mL) and incubated for 1 hour. The 

presence of HRP probe was determined by the addition of TMB. Background signal was 

effectively reduced below cut-off value when blocking solution comprising 1% Tween 20+1% 

Triton X-100+1% BSA was used. Data represent mean of triplicate experiment ± standard 

deviation. Data represent mean of duplicate experiment ± standard deviation.  
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6.11.3 Detection of purified M. abscessus DNA using ELOSHA  

The principle of the ELOSHA is based on the hybridization of target ssDNA to corresponding 

anchor and the detector probes, with the formation of a 3-strand DNA complex. This assay was 

developed to detect 50-nucleotide sequences within the rpoB and erm-41 genes of M. abscessus. 

The complex is anchored to streptavidin coated MPs via biotin interaction. The target ssDNA is 

indirectly detected by the signal generated from the detector probe (HRP) following the addition 

of TMB substrate (fig 6.2). We first looked at the ability of the erm-41 (fig. 6.11) and rpoB (fig. 

6.12) probes to distinguished M. abscessus from non-M. abscessus isolates (M. smegmatis, E. coli, 

MRSA, E. faecalis and C. albicans) using purified DNA to determine the specificity of the assay. 

Data were normalised against E. coli or against reaction mixture without DNA template i.e. no 

template controls (NTC).  Following normalisation of all data, the assay distinguished M. 

abscessus from non-M. abscessus isolates using the erm-41 (fig. 6.11) and the rpoB probe (fig. 

6.12). The rpoB probe was discontinued because it produced large variations between isolates.  

 

When the erm-41 was tested against impure ssDNA released from microwaved bacteria, it was 

able to distinguish M. abscessus isolates from non-M. abscessus isolates (fig. 6.13). Next, the 

ability of the assay to detect target M. abscessus DNA in the presence of DNA derived from a 

cocktail of non-M. abscessus isolates (C. albicans, E. coli, MRSA, M. smegmatis and E. faecalis) 

was determined. An aliquot of M. abscessus ssDNA was mixed with a cocktail of non-M. 

abscessus DNA (positive mix). The negative mix consisted of a cocktail of ssDNA isolated from 

non-M. abscessus isolates. All ssDNA was mixed at a concentration of 10 ng/µL.  As can be seen 

from figure 6.14, the assay was able to detect M. abscessus in the presence of unrelated bacterial 

DNA (fig. 6.14).  
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Figure 6.11 Colorimetric detection of purified M. abscessus  ssDNA using erm-

41 probe. ssDNA (10 ng/µL) obtained from 7 M. abscessus isolates and non-M. abscessus 

isolates were tested in the detection assay. M-9723 previously identified as M. smegmatis did not 

give any significant signal in comparison to the test isolates. A no template control (NTC) was 

also included. Data represent mean of triplicate experiment ± standard deviation. 
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Figure 6.12 Colorimetric detection of purified M. abscessus  DNA using rpoB 

probe. ssDNA (10 ng/µL) obtained from 7 M. abscessus isolates and non-M. abscessus isolates 

were tested in the detection assay. A no template control (NTC) was also included. Data represent 

mean of triplicate experiment ± standard deviation. 
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Figure 6.13 Colorimetric detection of microwaved M. abscessus  DNA using erm-

41 probe. ssDNA (20 ng/µL) obtained following MW treatment of bacterial suspensions (1x108 

CFU/mL) were subjected to the detection assay. M. abscessus ssDNA were detected from non. 

M. abscessus DNA. Positive control (ATCC 19977) and a NTC were also included. Data represent 

mean of triplicate experiment ± standard deviation. 
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Figure 6.14 Specificity of erm-41 gene assay for M. abscessus  in the presence of 

ssDNA cocktail derived from unrelated bacteria . The signal generated from pure M. 

abscessus ssDNA (ATCC 19977) and a positive mix (M. abscessus ssDNA was mixed with a 

cocktail of non-M. abscessus ssDNA) were significantly higher than that of the negative mix 

(cocktail of ssDNA isolated from non-M. abscessus isolates) and NTC (p < 0.05). The data 

represent mean of triplicate experiment ± standard deviation.  

 

 

6.11.4 Determining the limit of detection of the assay  

The sensitivity of the assay was determined using a range of concentrations of purified ssDNA: 

10 ng/µL, 1 ng/µL, 100 pg/µL and 10 pg/µL, 1 pg/µL, 0.1 pg/µL, 10 fg/µL and 1 fg/µL. As can 

be seen from fig 6.15 the limit of detection was 1 pg/µL.  
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Figure 6.15 Sensitivity of the assay using erm-41 probe. The limit of detection using 

purified ssDNA was 1 pg/µL. The difference in absorbance between 1 pg/µL and 0.1 pg/µL was 

significant (p < 0.05). Data are shown as mean of triplicate experiment ± standard deviation 

 

 

 

6.11.5 Development of macrophage-infection model 

The results above confirm the ability of the assay to detect M. abscessus when suspended in 

solution. While encouraging the next step would be to determine the ability of the approach to 

detect the presence of the pathogen in clinically relevant samples such as infected macrophages. 

Unfortunately, we lacked access to fully validated M. abscessus infected macrophage model. 

While the creation of such a model was feasible the amount of time required to optimize this 

approach was beyond the scope of this project. For this reason, we switched to an M. smegmatis 

infected macrophage model which had been developed as part of another project. This approached 
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offered the additional advantage that we could employ a GFP expressing M. smegmatis and thus 

visualize the location of the bacteria within the infected cells.  

 

To optimize the uptake of GFP M. smegmatis into macrophage cells, varying concentrations of 

the bacteria were incubated with macrophages to achieve an MOI of 1, 5 and 10 bacteria per 

macrophage. To determine the number of viable intracellular bacteria, cells sticking to the external 

surfaces of the macrophages (extracellular bacteria) were killed by exposure to gentamicin after 

which the cells were lysed in water. Gentamicin does not penetrate macrophage cell membranes 

hence does not interfere with the viability of intracellular bacteria. To determine the appropriate 

level of gentamicin to use in this assay a time-kill experiment using 50 and 100 µg/mL of 

gentamicin was performed. As can be seen from figure 6.16, treatment with 50 µg/mL resulted in 

bacterial killing after 60 min of treatment of macrophage exposed cells and was the level used in 

subsequent studies.  

 

The optimum MOI by exposing the macrophages to a range of bacterial concentrations was 

determined. Using an MOI of 1, uptake of bacteria was sparse, leaving most of the macrophages 

empty without bacilli. At MOI of 10, macrophages had high numbers of both intracellular and 

extracellular bacilli. When macrophages were infected with bacterial cells at MOI of 5, the number 

of bacilli in macrophages were almost even, resulting in an average of 2-3 bacilli per macrophage 

(fig 6.18). Overall the concentration of viable intracellular bacteria was estimated at 2.8 x105 

CFU/mL (fig 6.16) representing about 86.81±8.47% of the total bacteria being phagocytosed. For 

this reason, subsequent macrophage infection was carried out at a MOI of 5.  

 



200 
 

In addition to measuring the recovery of viable bacteria from infected macrophages, the ability of 

this bacterium to express GFP meant that it was possible to visualize the location within infected 

macrophages using a fluorescent microscope (fig 6.17).  While a useful tool to determine bacterial 

uptake, it is unable to distinguish between live and dead cells as dead cells retain the ability to 

fluoresce. 
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Figure 6.16 Time-kill kinetics of gentamicin against GFP-M. smegmatis . GFP M. 

smegmatis (1 x 106 CFU/mL) was treated with varying concentration of gentamicin (10, 50 and 

100 µg/mL) and incubated at 37 °C for 30 min and 60 min. Cells without gentamicin treatment 

were set as controls and the concentration of viable cells determined using the Miles and Misra 

method. The results are expressed as log CFU/mL. After 60 min, cells viability was completely 

lost after gentamicin treatment at 50 and 100 µg/mL. Data represent mean of triplicate experiment 

± standard deviation.  
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Figure 6.17 Estimating the concentration of viable intracellular bacteria . 

J774A.1 macrophage was infected with GFP M. smegmatis at MOI = 5 for 3 hours including 1 

hour gentamicin treatment. Post infected cells were treated with (+) or without (-) gentamicin (50 

µg/mL) for 1 hour to kill extracellular bacteria. Macrophage cells were washed thrice with warm 

PBS and lysed with distilled water for 1 hour at 37 °C. Bacterial concentration in cell lysate was 

determined using the Miles and Misra method. The concentration of bacterial cells used to infect 

macrophages were also quantified (initial inoculum). The percentage of viable internalized 

bacteria was estimated at 86.81±8.47%. Data represent mean of triplicate experiment. (***) 

represent p < 0.001.  
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Figure 6.18 Determining the optimum bacterial concentration for macrophage infection . J774A.1 macrophage (1.0 x 

106 cells/mL) were infected with varying concentrations of GFP-M. smegmatis (1 x 106 CFU/mL, 5 x 106 CFU/mL and 1 x 107 CFU/mL) 

resulting in a MOI of 1 (A), 5 (B) and 10 (C) respectively. Infected macrophages were incubated for 3 hours and the macrophage membrane 

stained with Transferrin Alexa 546 (red). Stained cells were observed on a confocal microscope under x63 objective lens. Internalized 

GFP-M. smegmatis was confirmed by capturing Z-stack images and analysed with Image J. Captured images are presented in orthogonal 

views (XZ and YZ) to confirm phagocytic activity. Scale bar in each image correspond to 10 µm.   
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6.11.6 Detection of M. smegmatis in macrophage cells  

Following the successful development of the macrophage-M. smegmatis infection model, the next 

step was to determine the ability of the assay to detect the presence of M. smegmatis engulfed by 

macrophage cells. Infected macrophages were treated with MWs at 40% duty cycle for 20 seconds 

and the released ssDNA was detected using the hybridization assay developed in this study. Using 

the rpoB probe (designed in chapter 3) specific for M. smegmatis, the specificity of the assay was 

determined using purified M. smegmatis ssDNA, macrophages infected with M. smegmatis, lysed 

non-infected macrophages, lysed macrophages spiked with 10 ng/µL of E. coli DNA (control 

DNA) and a no template control (NTC). With the cut-off value determined at 0.314, a positive 

signal was obtained from purified M. smegmatis ssDNA and from M. smegmatis infected 

macrophages but not in non-infected macrophages or from lysed non-infected macrophages 

spiked with E. coli DNA (control DNA) or from the NTC (fig. 6.18). For this particular assay, the 

rpoB probe was used rather than the erm-41 since the erm-41 gene was specific to M. abscessus 

only. The M. smegmatis specific rpoB probe that was designed in section 3.10.3 was able to 

distinguish M. smegmatis from M. abscessus. For this reason, the same probe sequences (anchor 

and detector) were modified with biotin and HRP respectively and synthesized to be used in this 

detection assay.   
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Figure 6.19 Detection of M. smegmatis  DNA in macrophage infected cells. Purified 

ssDNA was obtained from M. smegmatis, microwaved M. smegmatis infected macrophages (20 

ng/uL), lysed non-infected macrophages spiked with E. coli DNA (20 ng/uL), lysed non-infected 

macrophages (20 ng/uL) and a NTC were tested in the detection assay using the rpoB gene. The 

presence of target gene was determined by measuring the signal generated by HRP. Data represent 

mean of triplicate experiment ± standard deviation. 
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6.11.7 Determining the limit of detection of assay in macrophage-bacterial 

suspensions 

In section 6.10.5, the concentration of viable intracellular M. smegmatis released upon 

macrophage lysis was estimated at 2.85 x 105 CFU/mL. The following range of dilutions, 5, 25, 

625 and 3125-fold of this lysate were prepared to determine the limit of detection of the ELOSHA. 

The concentration of ssDNA in sample dilutions before and after MW treatment were quantified 

using the Qubit 3.0 fluorometer. Sample dilutions were treated with MW at 40% duty cycle for 

20 seconds. The concentration of ssDNA (from macrophages and M. smegmatis) was significantly 

increased after MW treatment in samples diluted to a factor of 5, 25, 125 and 625, but not in the 

sample diluted by a factor of 3125 (fig 6.20). The initial ssDNA concentration measured before 

MW exposure is likely to be extracellular nucleic acids present in the cell suspension (fig. 6.19). 

Cells treated with MWs saw a gradual reduction in the concentration of ssDNA (fig 6.20). The 

number of viable bacteria present in each sample dilution was determined using the Miles and 

Misra method and the results displayed in figure 6. 21. As can be seen, there was about a one log 

reduction (from the first to the last dilution) in the concentration of viable bacterial with increasing 

sample dilutions. On the basis of the results presented in figure 6.22 the minimum number of 

intracellular M. smegmatis that could be detected using the assay in its current configuration was 

approximately 7.8 x 104 CFU/mL. 
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Figure 6.20 Quantification of ssDNA in sample dilutions following MW 

treatment . Macrophage infected with bacterial cells at MOI of 5(section 6.10.5) were diluted in 

water to yield the following dilution range 5, 25, 125, 625 and 3125. Diluted cells were treated 

with MWs at 40% duty cycle for 20 seconds and the concentration of ssDNA released after MW 

excitation was quantified using the Qubit 3.0 fluorometer. Blue and orange bars indicate samples 

before and after microwave treatment respectively. The concentration of ssDNA decreases 

gradually in samples from dilution factor of 5 to 625 but was not detected at a dilution of 3125. 

Data represent mean of triplicate experiment ± standard deviation.  
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Figure 6.21 Concentration of viable bacteria in lysed macrophage infected cells . 

Macrophage cells (1.0 x 106 cells/mL) were infected with GFP M. smegmatis (5.0 x 106 cfu/mL) 

representing a MOI of 5 and incubated for 2 hours and treated with gentamicin for additional 1 

hour to kill extracellular bacteria. Post infected macrophages are lysed in water to release 

intracellular bacteria and diluted to the factors of 5, 25, 125, 625 and 3125. The concentration of 

viable bacteria in each of the dilutions were enumerated and the concentration calculated as log 

CFU/mL. Data represent mean of triplicate experiment ± standard deviation.  
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Figure 6.22 Detection of M. smegmatis  in sample dilutions using ELOSHA . 

Sample dilutions diluted were treated with MWs at 40% duty cycle for 20 seconds. ssDNA 

released from sample dilutions were analysed in the detection assay targeting the rpoB gene of M. 

abscessus. The limit of detection was obtained at a dilution factor of 25, corresponding to 4.89 

log CFU/mL. NTC was included in the assay. Data represent mean of triplicate experiment ± 

standard deviation.  
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6.12 Discussion 

Diseases associated with M. abscessus e.g. cystic fibrosis are of public health importance and 

requires attention. More worrying is their possibility of being transmitted from one person to 

another via aerosol generation (Birmes et al. 2017). The current DNA based diagnostic tests for 

M. abscessus e.g. Cobas Amplicor, INNO-LiPA, GenoType NTM-DR kit are sensitive and 

specific but are costly, have long turnaround time and are not easily integrated into the medical 

workflow. They are also only as good as the quality and quantity of DNA they must work with.  

The above challenge necessitates the need to develop simple and low-cost technologies for DNA 

extraction which can be integrated into POC assays. The release of DNA from bacteria such as 

members of the mycobacteria family is particularly challenging due to the rigidity of the 

mycobacterial cell wall. Commercial DNA extraction tools struggle with speed and are costly, 

hence cannot be easily integrated into current diagnostic approaches (Kaser et al. 2009; Käser et 

al. 2010). 

 

In this proof-of-concept study, an assay capable to detect the presence of M. abscessus has been 

developed. This prototype assay employs MW technology to release ssDNA from microorganisms 

in under 20 seconds, followed by detection of these targets using a colorimetric sandwich 

hybridization assay using target specific DNA probes. To enhance the development of the assay, 

MPs modified with probes were used to enrich targets via their complementary sequence. The 

target was then identified indirectly by the signal generated from the HRP modified detector probe 

following a catalytic oxidation with TMB substrate solution. Using this principle, the assay was 

able to distinguish M. abscessus from non-M. abscessus using the erm-41 probe. Based on the 

inconsistency of the rpoB probe, i.e. generating variability in signal intensity in two of the isolates 

(8899 and 10006) and having a higher cut-off value than the erm-41 probe, further application of 

the probe was discontinued. This observation further establishes the need for experimental testing 
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of probes designed using bioinformatic tools and brings to light the limitation in using 

bioinformatic approaches which mostly employ heuristic approaches. Additionally, the genome 

sequences obtained from NCBI only represent a fraction of the diversity that exist in the real 

world, hence the possibility of detecting non-specific bacteria. The assay demonstrated specificity 

in detecting M. abscessus in the presence of other non-M. abscessus ssDNA and in complex 

mixture of macrophages and M. smegmatis, pointing to the robustness of the prototype assay. The 

sensitivity of the assay with regards to the detection of purified M. abscessus DNA was 1.0 pg/µL 

and in the presence of macrophages a positive signal was generated with as few as 7.8 x 104 

CFU/mL of M. smegmatis. 

 

Diagnostic assays (displayed in appendix 4) currently employed for M. abscessus detection 

requires between 4-6 hours to generate results (Peter-Getzlaff et al. 2008; Ngan et al. 2011; Qvist 

et al. 2015; Shenai et al. 2016; Rocchetti et al. 2017). The prototype assay cannot yet be compared 

to these assays as it requires optimization (outlined in section 7.3) and is yet to be evaluated using 

clinical samples. The relative rapidity of the assay is due to the application of MWs to release 

DNA for detection. The ability of microwaves to mediate the rapid release of DNA from bacteria 

has previously been reported (Vaid and Bishop 1998; Joshi et al. 2014). The mechanism by which 

MWs release nucleic acids from cells is unclear. Membrane disruption via thermal or athermal 

means has been frequently reported (Copty et al. 2006). When higher MW power is used, this 

could induce dsDNA and ssDNA fragmentation (Vaid and Bishop 1998) and this could 

compromise the sensitivity of the assay.  For this reason, the optimum MW conditions i.e. MW 

power, MW pulse rate and duration of exposure needed to be determined. In our study MW power 

(12W) pulsed at 40% duty cycle was optimal for the release of unfragmented ssDNA targets. A 

major advantage in MW mediated DNA isolation is that it is rapid and does not require the use of 

expensive or toxic reagents. In addition, the MW technology can be incorporated into microfluidic 
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devices (Breadmore et al. 2003) facilitating the development of POC devices. To improve on the 

sensitivity of the assay, the MW conditions required to liberate ssDNA from low concentrations 

of bacterial cells need to be identified. Also, the concentration of probes displayed on the surface 

of MPs, the concentration of MPs themselves and DNA probes design needs further optimization.  

 

In conclusion, a simple ELOSHA for the detection of M. abscessus and of M. smegmatis ssDNA 

in macrophage cells have been developed. The assay has the potential to be developed into a rapid 

POC which could be used to screen patients upon admission to hospital to enable appropriate 

treatment regimens and clinical management decisions to be made.  In the future, the assay can 

be developed to detect other common pathogens of public health importance, particularly M. 

tuberculosis.  
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Chapter 7 

General Discussion 
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7.1 General Discussion 

The aim of this project was to develop a rapid and simple assay capable of detecting M. 

abscessus and which could ultimately be adapted to detect M. tb. Chapter 3 describes the 

development of a novel chemical-based DNA extraction method for the recovery of high 

yield, pure DNA from rigid M. abscessus cells. Lysis buffer A proved to be the most 

effective, when compared to commercial systems, at recovering DNA from cells of M. 

abscessus. Using this method, sufficient DNA template was isolated to support VNTR 

and PCR based characterisation of the collection of suspected clinical isolates of M. 

abscessus. In combination with clarithromycin sensitivity testing, 7 of the 8 bacterial 

isolates were identified as M. abscessus and one as M. smegmatis. 

 

In chapter 4, a bioinformatic approach was employed to design probes and primers which 

recognised the erm-41 and rpoB genes of M. abscessus and M. smegmatis. The specificity 

and sensitivity of these probes was determined against the panel of 7 M. abscessus clinical 

isolates and a collection of non-M. abscessus isolates using PCR assay. The probes which 

performed the best in terms of specificity and sensitivity test were then used to form the 

basis of the detection assay.  

 

In Chapter 5 the interaction of pulsed nonthermal 2.45 GHz MWs with cell viability and 

membrane integrity of structurally diverse microorganisms was explored. The results 

showed that exposure to sub-lethal MW power levels disrupted cell membrane integrity 

and resulted in the uptake of dextran particles and the release of nucleic acids. The effect 

appeared to be due to the actions of the E field as the H field alone did not cause any 

membrane disruption. The results also showed that a critical E field intensity is required 
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to cause membrane disruption as halving the E field intensity diminished this effect. 

Although the effects seen occurred within approximately 2°C change in bulk temperature, 

there could be some microthermal influence. Thus, cells membrane disruption may be a 

combination of both thermal and MW specific effects.  

 

The development of the detection assay is discussed in chapter 6. The main accelerating 

component of the hybridisation assay is the use of MWs to release nucleic acids from 

microorganisms within 20 seconds. Nucleic acids are mainly locked within the cell’s 

nucleus which is then surrounded by layers of cell membranes and a cell wall (Tortoli 

2014). Using the erm-41 probe designed in chapter 4 and magnetite particles, a detection 

assay capable of distinguishing M. abscessus from non-M. abscessus was developed. The 

assay recorded a sensitivity to the level of 1 pg/uL in detecting purified M. abscessus 

ssDNA and 7.8 x104 CFU/mL in macrophage infected M. smegmatis cells.  

 

In our recent publication, we report the development of a novel split ring MW resonator 

capable of releasing single stranded DNA from C. difficile spores. The split ring resonator 

MW applicator was designed so that so that it could be incorporated into a portable 

handheld diagnostic device. With this approach, different strains of C. difficle were 

distinguished using specific probes (Hayder et al., 2019). Based on our published data, 

the current detection assay has the potential of being built into a handheld lateral flow 

assay for the detection of M. abscessus and other pathogens of public health importance.  
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7.2 Final conclusions 

Overall, this study has successfully achieved the principal aim of developing a rapid assay 

which can detect M. abscessus. The study further proves it is robust and can detect M. 

abscessus in the presence of non-M. abscessus ssDNA and in detecting M. smegmatis in 

the presence of macrophage cells. The speed of the current assay was enhanced using 

MWs to disrupt bacterial cells and release ssDNA within 20 seconds. The mechanism by 

which nucleic acids were released from cells was dependent on the MW E fields plus 

possible thermal temperature effect.  

 

7.3 Future work  

1. Develop a macrophage infection model using M. abscessus 

2. Optimising assay parameters such as probe design, magnetic particle 

concentrations and the concentration of biotin probes loaded on the magnetite 

particles surface to increase sensitivity and reduce the time required to generate a 

result 

3. Optimise the various components of the hybridisation buffer as this contributes to 

hybridisation efficiency and could also reduce the assay time 

4. Testing the robustness of the current prototype assay using clinical samples 

5. Adapt the technology to detect M. tuberculosis 
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9.0 Appendices  

Appendix 1, 2, 3 and 4 are contained in the attached CD.  

 


