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Abstract. We study the solvability complexity index (SCI) for unbounded
selfadjoint operators on separable Hilbert spaces and perturbations thereof.
In particular, we show that if the extended essential spectrum of a self-
adjoint operator is convex, then the SCI for computing its spectrum
is equal to 1. This result is then extended to relatively compact per-
turbations of such operators and applied to Schrödinger operators with
(complex valued) potentials decaying at infinity to obtain SCI = 1 in
this case, as well.

Mathematics Subject Classification. Primary 35P99; Secondary 35Q40.

Keywords. Schrödinger operators, Spectral approximation,
Computational complexity.

1. Introduction

The problem of computing spectra of partial differential operators is funda-
mental to many problems in physics with real world applications. Perhaps
one of the most prominent examples of this is quantum mechanics, where
the possible bound state energies of a particle subject to a force described
by a potential function V are given by the eigenvalues of the correspond-
ing Schrödinger operator −Δ + V . Generically, the spectral problem of such
an operator cannot be solved explicitly and one has to resort to numerical
methods. By practical constraints, any computer algorithm, which might be
used to compute the spectrum, will only be able to handle a finite amount
of information about the operator and perform a finite number of arithmetic
operations on this information (in practice, this “finite amount of informa-
tion” is usually given by some sort of discretisation of the domain, which
approximates the infinite dimensional spectral problem by a finite dimen-
sional one). In other words, any algorithm will always “ignore” an infinite
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amount of information about the operator. One might hope that by increas-
ing the dimension of the approximation (or decreasing the step size of the
discretisation), one will eventually obtain a reasonable approximation of the
spectrum. Hence, it is a legitimate question to ask:

Given a class of operators Ω, does there exist a sequence of algo-
rithms Γn such that Γn(T ) → σ(T ) (in an appropriate sense) for
all T ∈ Ω?

It turns out that the answer to the above question is not always in the
affirmative. Indeed, it has been shown in [2] that if Ω = L(H) (the space of
bounded operators on a separable Hilbert space H), then for any sequence of
algorithms there exists T ∈ Ω whose spectrum is not approximated by that
sequence. This observation has led to the wider definition of the so-called
Solvability Complexity Index (SCI), introduced in [9], of which we will now
give a brief review.

Definition 1.1. A computational problem is a quadruple (Ω,Λ,Ξ,M), where

(i) Ω is a set, called the primary set,
(ii) Λ is a set of complex valued functions on Ω, called the evaluation set,
(iii) M is a metric space,
(iv) Ξ : Ω → M is a map, called the problem function.

In the above definition, Ω is the set of objects that give rise to the com-
putational problem, Λ plays the role of providing the information accessible
to the algorithm, and Ξ : Ω → M gives the quantity that one wishes to
compute numerically.

An example of a computational problem in the sense of Definition 1.1
is given by the spectral problem discussed above. Indeed, given a separable
Hilbert space H with orthonormal basis {ei}, one can choose Ω = L(H), M =
{compact subsets of C}, equipped with the Hausdorff metric, and Ξ(T ) =
σ(T ). For the evaluation set one could choose Λ := {fij | i, j ∈ N}, where
fij(T ) = 〈Tei, ej〉 give the matrix elements of an operator with respect to
the basis {ei}.

Definition 1.2. Let (Ω,Λ,Ξ,M) be a computational problem. An arithmetic
algorithm is a map Γ : Ω → M such that for each T ∈ Ω there exists a finite
subset ΛΓ(T ) ⊂ Λ such that

(i) the action of Γ on T depends only on {f(T )}f∈ΛΓ(T ),
(ii) for every S ∈ Ω with f(T ) = f(S) for all f ∈ ΛΓ(T ) one has ΛΓ(S) =

ΛΓ(T ),
(iii) the action of Γ on T consists of performing only finitely many arithmetic

operations on {f(T )}f∈ΛΓ(T ).

We will refer to any arithmetic algorithm simply as an algorithm from
now on. For more general concepts the reader may consult [2].

In [2] it has been shown that if Ω is the set of compact operators on a
separable Hilbert space H, then there exists a sequence of algorithms Γn :
Ω → C such that Γn(T ) → σ(T ) (in Hausdorff sense) for all T ∈ Ω, while for
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the set of bounded selfadjoint operators Ω = {T ∈ L(H) |T ∗ = T} this is not
possible.

However, it turns out that there exists a family Γmn of algorithms such
that

lim
n→∞ lim

m→∞ Γmn(T ) = σ(T )

for all bounded selfadjoint operators. Hence, it is possible to compute the
spectrum of non-compact operators using algorithms, but the number of lim-
its required may increase (this general phenomenon has first been observed
by Doyle and McMullen in the context of finding zeros of polynomials, cf. [7]).
In order to capture this phenomenon, the following definition has been made

Definition 1.3. [2] Let (Ω,Λ,Ξ,M) be a computational problem. A tower
of algorithms of height k is a family Γn1,n2,...,nk

: Ω → M of arithmetic
algorithms such that for all T ∈ Ω

Ξ(T ) = lim
nk→∞ · · · lim

n1→∞ Γn1,n2,...,nk
(T ).

The examples above show that the number of limits required to compute
the problem function Ξ is a measure for the numerical complexity of the
underlying computational problem. This motivates the

Definition 1.4. [2] A computational problem (Ω,Λ,Ξ,M) is said to have Solv-
ability Complexity Index k if k is the smallest integer for which there exists
a tower of algorithms of height k that computes Ξ.

If a computational problem has solvability complexity index k, we write
SCI(Ω,Λ,Ξ,M) = k.

Remark 1.5. In this article we are mainly interested in the spectral problem
and will therefore write SCI(Ω,Λ) instead of SCI(Ω,Λ,Ξ,M), where it is un-
derstood that Ξ(T ) = σ(T ) and M is the set of closed subsets of C equipped
with the Attouch–Wets metric dAW defined as

dAW(A,B) =
∞∑

i=1

2−i min

{
1, sup

|x|<i

|dist(x,A) − dist(x,B)|
}

.

(Note that if A,B ⊂ C are bounded, then dAW coincides with the Hausdorff
distance.)

In practice it is often important to have control of the approximation er-
ror d

(
Γn1,...,nk

(T ),Ξ(T )
)

for all T ∈ Ω. It is straightforward to show, however,
that such an estimate is impossible to obtain as soon as SCI(Ω,Λ,Ξ,M) > 1
(cf. [2, Thm. 6.1]). Indeed, it is easy to see that if for a tower of algorithms
Γn1,...,nk

there exist subsequences n1(m), . . . , nk(m) such that Γn1(m),...,nk(m)

(T ) → 0 for all T ∈ Ω, then Γ̃m := Γn1(m),...,nk(m) is in fact a tower of height
1 for Ω and hence SCI(Ω) = 1.

For this reason, it is of particular interest to find classes Ω of operators
for which SCI(Ω,Λ, σ(·)) = 1 (with appropriately chosen Λ). The present



   54 Page 4 of 23 F. Rösler IEOT

article addresses precisely this question. In fact, we will show that for self-
adjoint operators whose extended essential spectrum (see (2.2)) is convex, we
have SCI = 1. This is done by explicitly constructing a sequence of arith-
metic algorithms which computes the spectrum of any such operator. The
result is then extended to certain relatively compact perturbations of such
operators. We stress that the new aspect of our work is to consider the shape
of the essential spectrum as a relevant criterion for reducing the numerical
complexity of the spectral problem. As an application of this approach, we
will show that our results apply to non-selfadjoint Schrödinger operators with
certain well behaved potentials.

The problem of determining the SCI for spectral problems has previ-
ously been studied in [2,9] for operator in abstract Hilbert spaces, as well as
for partial differential operators. Previous results include

Bounded operators Let H, Λ be as in the example above Definition 1.2. It
was shown in [2, Th. 3.3, Th. 3.7] that then

SCI(Ω, σ(·)) = 3 if Ω = L(H)

SCI(Ω, σ(·)) = 2 if Ω = {T ∈ L(H) |T selfadjoint}
SCI(Ω, σ(·)) = 1 if Ω = K(H),

where K(H) denotes the set of compact operators. The last of the above
bounds, SCI(K(H), σ(·)) = 1, is related to the fact that compact operators
can be approximated in operator norm by finite range operators.

Schrödinger operators In [2], the SCI for the spectral problem of Schrödinger
operators with complex valued potentials V has been studied. It has been
shown that if

Ω = {−Δ + V |V is sectorial and |V (x)| → ∞ as |x| → ∞} , (1.1)

then SCI(Ω, σ(·)) = 1. The proof relies on the fact that operators as in (1.1)
have compact resolvent.

In the case of bounded potentials, one lacks compact resolvent and the
situation is somewhat more difficult. It has been shown in [2, Th. 4.2] that
if Ω denotes the set of Schrödinegr operators on R

d with V bounded and
of bounded variation, then SCI(Ω, σ(·)) ≤ 2. It has since then been an open
problem, whether without any additional information the SCI of this problem
is equal to one or two.

The SCI of certain unbounded operators in separable Hilbert spaces,
whose matrix representation is banded, has been studied in [9].

In this article, we will take a step towards closing this gap. We will
prove that if M > 0 and Ω denotes the set of all Schrödinger operators
−Δ + V with supp(V ) ⊂ BM (0) and |∇V | ≤ M , then SCI(Ω, σ(·)) = 1 (for
the precise statement, see Sect. 4). This is done by first proving two abstract
theorems about the SCI of selfadjoint operators which are of independent
interest. The proofs of these abstract results rely on recent developments in
the theory of essential numerical ranges for unbounded operators, cf. [3]. The
main theorems of this article are Theorems 2.1, 3.1 and 4.3.
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The question as to wether the assumption on the decay of V is essential
for having SCI = 1 remains an interesting open problem and will be addressed
in future work.

2. Selfadjoint Operators

Let H be a separable Hilbert space and Hn ⊂ H be a sequence of finite
dimensional subspaces such that Hn ⊂ Hn+1 for all n ∈ N and Pn

s−→ I,
where Pn denotes the orthogonal projection onto Hn. Define

Ω1 :=

{
T : dom(T ) → H

∣∣∣∣∣
T selfadjoint, σ̂e(T ) convex
and

⋃
n∈N

Hn is a core of T

}
, (2.1)

where

σ̂e(T ) = σe2(T ) ∪
{

{+∞}, if T unbounded above
{−∞}, if T unbounded below

(2.2)

and

σe2(T ) = {λ ∈ C | ∃(xk) ⊂ dom(T ) : ‖xk‖ = 1 ∀k, xk ⇀ 0, ‖(T − λ)xk‖ → 0}.

(2.3)

Furthermore, for each n ∈ N, let {e
(n)
1 , . . . , e

(n)
kn

} be an orthonormal basis of
Hn and define

Λ1 :=
{
fi,j,n | 1 ≤ i, j ≤ kn, n ∈ N

}
, (2.4)

where fi,j,n : T �→ 〈
Te

(n)
i , e

(n)
j

〉
are the evaluation functions producing the

(i, j)th matrix elements. This is the set of information accessible to the algo-
rithm.

Theorem 2.1. We have SCI(Ω1,Λ1, σ(·)) = 1.

Remark 2.2. (i) Note that Theorem 2.1 in particular applies to bounded
selfadjoint operators with convex essential spectrum. In this sense, The-
orem 2.1 can be viewed as an extension of [2, Th. 3.7], where it was
shown that SCI = 1 for the set of all compact operators (which natu-
rally satisfy σe(T ) ⊂ {0}).

(ii) Theorem 2.1 is optimal in the sense that the selfadjointness assumption
in (2.1) cannot be dropped. Indeed, counterexamples show that SCI ≥ 2
for non selfadjoint bounded operators with convex essential spectrum
(cf. [2, Proof of Th. 3.7, Step II] for an explicit construction).

Remark 2.3. In addition to (2.3) we will need another version of the essential
spectrum, which is sometimes denoted σe5. Let H be a closed, densely defined
operator on H. Then

σe5(H) := C\Δ5(H), (2.5)

where Δ5(H) denotes the union of all components of the set {λ ∈ C |H −
λ is semi-Fredholm} which intersect ρ(H). Note that the definitions (2.3)
and (2.5) do not agree in general. However, it can be shown that for selfadjoint
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operators T on H, one always has σe2(T ) = σe5(T ) (cf. [8, Th. IX.1.6]). For
this reason, we will simply use the notation σe(T ) to denote the essential
spectrum, whenever the operators in question are selfadjoint.

2.1. Definition of the Algorithm

Let T ∈ Ω1 and define the truncated operator

Tn := PnT |Hn
. (2.6)

This operator can be represented by a finite dimensional (square) matrix with
elements (Tn)ij =

〈
Te

(n)
i , e

(n)
j

〉
. Moreover, let GR

n := 1
nZ ∩ (−n, n) ⊂ R.

Lemma 2.4. Let λ ∈ GR
n and denote by s(·) the smallest singular value of a

matrix. Then

(i) For all n and λ, we have s(Tn − λ) = ‖(Tn − λ)−1‖−1
L(Hn).

(ii) For any q > 0, testing whether s(Tn −λ) > q requires only finitely many
arithmetic operations on the matrix elements of Tn.

with the convention that ‖(Tn − λ)−1‖−1 = 0 for λ ∈ σ(Tn).

Proof. Part (i) was proved in [9], while part (ii) follows by noting that s(Tn −
λ) > q is equivalent to (Tn −λ)∗(Tn −λ)− q2I being positive definite; see [2,
Prop. 10.1] for a full proof. �

For n ∈ N we define a map Γ(1)
n : Ω1 → {closed subsets of C} by

Γ(1)
n (T ) :=

{
λ ∈ GR

n

∣∣∣ s(Tn − λ) ≤ 1
n

}
.

Then, by the above lemma, each Γ(1)
n is an arithmetic tower of height one in

the sense of Definition 1.3. Clearly, Γ(1)
n (T ) ⊂ σ 1

n
(Tn) for all n, where σ 1

n
(·)

denotes the 1
n -pseudospectrum, i.e. σ 1

n
(Tn) =

{
z ∈ C | ‖(Tn − z)−1‖ > n

}
.

Next we prove a version of the second resolvent identity for our operator
approximation.

Lemma 2.5. Let T : dom(T ) → H be selfadjoint,
⋃

n Hn form a core of T and
Tn be defined as in (2.6). Then each Tn is selfadjoint on Hn and Tn → T in
strong resolvent sense.

Proof. We start by showing that each Tn is selfadjoint. First note that each
Tn is automatically bounded, since the Hn are finite dimensional. Now let
x, y ∈ Hn. Then we have

〈Tnx, y〉 = 〈PnTx, y〉 = 〈Tx, Pny〉 = 〈Tx, y〉
= 〈x, Ty〉 = 〈Pnx, Ty〉 = 〈x, PnTy〉 = 〈x, Tny〉. (2.7)

and hence Tn is selfadjoint. The claim now follows directly from [13, Satz
9.29], since

⋃
n Hn is a core for T and Pn converges strongly to the identity.

�
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2.2. General Results on Spectral and Pseudospectral Pollution

In this subsection we collect facts about spectral and pseudospectral pollution
for closed, densely defined operators H,Hn on H, which are not necessarily
selfadjoint. These results will be used in later sections. The sets of spectral
and pseudospectral pollution are defined, respectively, as

σpoll(H) = {z ∈ C\σ(H) | ∃ sequence λn ∈ σ(Hn) : λn → λ}
σε,poll(H) = {z ∈ C\σε(H) | ∃ sequence λn ∈ σε(Hn) : λn → λ}.

The following definitions from [3], which are related to the essential spectrum,
will be used frequently in the sequel. The limiting essential spectrum:

σe

(
(Hn)n∈N

)
:=

{
λ ∈ C

∣∣∣∣
∃xk ∈ dom(Hnk

) s.t.
‖xk‖ = 1∀k, xk ⇀ 0, ‖(Hnk

− λ)xk‖ → 0

}
,

the limiting ε-near spectrum:

Λe,ε

(
(Hn)n∈N

)
:=

{
λ ∈ C

∣∣∣∣
∃xk ∈ dom(Hnk

) s.t.
‖xk‖ = 1∀k, xk ⇀ 0, ‖(Hnk

− λ)xk‖ → ε

}
,

the essential numerical range

We(H) := {λ ∈ C | ∃xk ∈ dom(H) s.t. ‖xk‖ = 1∀k, xk ⇀ 0, 〈Hxk, xk〉 → λ}
and the limiting essential numerical range

We

(
(Hn)n∈N

)
:=

{
λ ∈ C

∣∣∣∣
∃xk ∈ dom(Hnk

) s.t.
‖xk‖ = 1∀k, xk ⇀ 0, 〈Hnk

xk, xk〉 → λ

}
.

The essential limiting spectrum was originally introduced in [1] in the context
of Galerkin approximation and later adapted to a more general framework
in [4,5], where the set Λe,ε

(
(Hn)n∈N

)
was introduced. The essential numerical

range was originally introduced by Stampfli and Williams in [12] for bounded
operators and recently extended to unbounded operators in [3]. It was shown
there that the essential numerical range is a convenient tool when studying
spectral and pseudospectral pollution of operator approximations. This fact
will prove useful to our purpose as we shall see in the following.

In order to prove the next lemma, we need a fact about closures of
pseudospectra.

Lemma 2.6. For all operators H on H of the form H = T + V , where T is
selfadjoint and V is bounded, and all ε < ε′ one has

σε(H) ⊂ σε′(H).

Proof. This follows from the fact that the resolvent norm of any such operator
tends to 0 at i∞ and hence cannot be constant on an open set (cf. [6, Th.
3.2]). Indeed, in this case we have

σε(H) =
{
z
∣∣∥∥(H − z)−1

∥∥ ≥ ε−1
} ⊂ {

z
∣∣∥∥(H − z)−1

∥∥ > ε′ −1
}

= σε′(H).
�

Lemma 2.7. (i) For any closed, densely defined operator H on H one has
⋂

ε>0

⋃

δ∈(0,ε]

Λe,δ

(
(Hn)n∈N

) ⊂ σe

(
(Hn)n∈N

)
.
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(ii) The above inclusion holds, if
⋂

ε>0

⋃
δ∈(0,ε] is replaced by

⋂
k

⋃
δ∈(0,εk]

for any sequence (εk) with εk → 0.

Proof. We first prove (i). Let λ ∈ ⋂
ε>0

⋃
δ∈(0,ε] Λe,δ

(
(Hn)n∈N

)
. Then for all

ε > 0 there exists δ ∈ (0, ε] and a sequence (xk) with xk ∈ dom(Hnk
) (for

some subsequence (nk)) such that
• ‖xk‖ = 1 for all k
• xk ⇀ 0 as k → ∞
• ‖(Hnk

− λ)xk‖ → δ.

Hence, for every m ∈ N there exists a sequence (x(m)
k )k∈N with

∥∥x
(m)
k

∥∥ = 1,

x
(m)
k

k→∞−−−−⇀ 0 and

lim
k→∞

∥∥∥(Hnk(m) − λ)x(m)
k

∥∥∥ <
1
m

.

The notation nk(m) indicates that the corresponding subsequence of (Hn)
depends on m. Now, construct a diagonal sequence as follows. Since H is
separable, the weak topology is metrisable on the unit ball. Let d denote a
corresponding metric. Now, for any given m ∈ N, choose km ∈ N large enough
such that

d
(
x

(m)
km

, 0
)

<
1
m∥∥∥(Hnkm (m) − λ)x(m)

km

∥∥∥ <
1
m

.

Then for the sequence ym := x
(m)
km

, one has ‖ym‖ = 1 for all m, d(y, 0) → 0
and ‖(Hnkm (m) − λ)ym‖ → 0 as m → ∞. Hence λ ∈ σe

(
(Hn)n∈N

)
.

The proof of claim (ii) is now immediate, because the sequence of sets⋃
δ∈(0,ε] Λe,δ

(
(Hn)n∈N

)
is shrinking with ε. �

Finally, we prove the following characterisation of convergence of sets
in the Attouch–Wets metric. We recall that dAW(Xn,X) → 0 if and only if
dK(Xn,X) → 0 for all K ⊂ C compact, where

dK(X,Y ) := max
{

sup
x∈X∩K

dist(x, Y ), sup
y∈Y ∩K

dist(y,X)
}

.

Proposition 2.8. Let X,Xn, n ∈ N be closed subsets of C. Assume that
(a) If λn ∈ Xn and λn → λ, then λ ∈ X.
(b) If λ ∈ X, then there exist λn ∈ Xn with λn → λ.
Then one has dAW(Xn,X) → 0.

Proof. Let K ⊂ C be compact. We will show that if (a), (b) hold, then both
distances supz∈Xn∩K dist(z,X) and supw∈X∩K dist

(
w,Xn

)
converge to zero.

We begin with the latter.
Let ε > 0. For all w ∈ X ∩ K, the ball Bε(w) contains infinitely many

elements zn ∈ Xn, by (b). The collection {Bε(w) |w ∈ X ∩K} forms an open
cover of the compact set X∩K. Hence, there exist finitely many w1, . . . , wk ∈
X ∩ K such that Bε(w1), . . . , Bε(wk) cover X ∩ K. Now, any w ∈ X ∩ K
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is contained in some Bε(wi) and hence dist(w,Xn) < ε for any w ∈ X ∩
K, as soon as n = n(i) is large enough. But since there are only finitely
many Bε(wi), one will have dist(w,Xn0) < 2ε for all w ∈ X ∩ K for n0 =
max{ni | i = 1, . . . , k}.

To show that supz∈Xn∩K dist(z,X) → 0 as n → ∞, note that since all
sets Xn ∩ K are compact, we can choose a sequence zn ∈ Xn ∩ K such that

sup
z∈Xn∩K

dist(z,X) = dist(zn,X).

Since the sequence (zn) is obviously bounded, we can extract a convergent
subsequence znj

→ z0 ∈ K. Now use assertion (a) from above to conclude
that in fact z0 ∈ X ∩ K. This readily implies

sup
z∈Xnj

∩K
dist(z,X) = dist(znj

,X) → 0.

Since the same reasoning can be applied to every subsequence of the sequence
(

sup
z∈Xn∩K

dist(z,X)
)

n∈N

,

we conclude that the whole sequence converges to zero. �

2.3. Proof of Theorem 2.1

Next, we prove convergence of the algorithm Γ(1)
n . By the conditions in (2.1)

and Lemma 2.5, we have Tn → T in strong resolvent sense for all T ∈ Ω.

Lemma 2.9. If λn ∈ Γ(1)
n (T ), n ∈ N and λn → λ, then

λ ∈ σ(T ) ∪ σe

(
(Tn)n∈N

)
.

Proof. By definition of Γ(1)
n , one has that

1
n

≥ ‖(λn − Tn)−1‖−1 ≥ dist(λn, σ(Tn))

for all n ∈ N. Hence, there exists a sequence zn ∈ σ(Tn) such that |zn −
λn| → 0 and consequently zn → λ. We conclude from [5, Th. 2.3] that
λ ∈ σ(T ) ∪ σe

(
(Tn)n∈N

)
. �

To conclude, we apply [3, Th. 6.1] to show that spectral pollution is
in fact absent for T ∈ Ω1. Indeed, let λn ∈ Γ(1)

n (T ) with λn → λ. Then by
Lemma 2.9 and [3, Prop. 5.6, Th. 6.1], we get

λ ∈ σ(T ) ∪ σe

(
(Tn)n∈N

)

⊂ σ(T ) ∪ We(T )

= σ(T ) ∪ conv(σ̂e(T ))\{±∞}
= σ(T ) ∪ σe(T )

= σ(T ).

It remains to prove spectral inclusion, i.e. nothing is missed by Γ(1)
n (T ).

Lemma 2.10. For every λ ∈ σ(T ) there exist λn ∈ Γ(1)
n (T ) such that λn → λ.
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Proof. Let λ ∈ σ(T ). A simple adaption of the proof of [11, Th. VIII.24]
shows that there exists a sequence (μn) with μn ∈ σ(Tn) and μn → λ.

For each n, there exists λn ∈ GR
n such that |μn − λn| < 1

n and hence
‖(Tn − λn)−1‖L(Hn) ≥ n which implies λn ∈ Γ(1)

n (T ). Since |μn − λn| → 0
and μn → λ, it follows that λn → λ. �

Conclusion We have shown that
(a) If λn ∈ Γ(1)

n (T ) and λn → λ, then λ ∈ σ(T ).
(b) If λ ∈ σ(T ), then there exist λn ∈ Γ(1)

n (T ) with λn → λ.
By Proposition 2.8, this implies Attouch–Wets convergence.

3. Relatively Compact Perturbations

In this section we show that Theorem 2.1 remains true for certain relatively
compact, bounded perturbations of selfadjoint operators. More precisely, we
have

Theorem 3.1. Define a computational problem by

Ω2 :=

⎧
⎪⎨

⎪⎩
H = T + V : dom(T ) → H

∣∣∣∣∣∣∣

T selfadjoint, semibounded,⋃
n∈N

Hn core for T,
σ(T ) = σe(T ), σ̂e(T ) convex,
V ∈ L(H) and V, V ∗ are T-compact.

⎫
⎪⎬

⎪⎭

For every H ∈ Ω2, choose a decomposition H = T +V as in the definition of
Ω2 and define the maps sT (H) := T and sV (H) := V . Then let

Λ2 := {fi,j,n ◦ sT | 1 ≤ i, j ≤ n, n ∈ N} ∪ {fi,j,n ◦ sV | 1 ≤ i, j ≤ n, n ∈ N} ,

where fi,j,n are the evaluation functions producing the (i, j)th matrix elements
(see (2.4)). Then one has SCI(Ω2,Λ2, σ(·)) = 1.

Remark 3.2. (i) Note that the information provided to the algorithm in
Λ2 includes the decomposition of H ∈ Ω2 into a selfadjoint part T
and a perturbation V . This means, that the algorithm does not have
to compute this decomposition. It gets it for free. This is a reasonable
assumption in many applications as we will see in Sect. 4.

(ii) In fact, the assumptions in the definition of Ω2 imply that σ(T ) is con-
vex. Indeed, for any selfadjoint operator with purely essential spectrum,
σ̂e(T ) is convex if and only if σ(T ) is convex.

Note the additional assumption σ(T ) = σe(T ) in the selfadjoint part
T . This will be needed later in order to exclude spectral pollution of the
algorithm.

3.1. Proof of Theorem 3.1

Spectrum of H. The proof of Theorem 3.1 is via perturbation theory. We
first focus on the spectrum of an operator H ∈ Ω2. Recall the definitions
of the essential spectra σe2, σe5 from Sect. 2. In the proof, we will need the
following results, which are classical.
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Theorem 3.3. [8, Th. IX.1.5] For any closed, densely defined operator H on
H, one has λ /∈ σe5(H) if and only if H −λ is Fredholm with ind(H −λ) = 0
and a deleted neighbourhood of λ lies in ρ(H).

In other words, if λ /∈ σe5(H), then λ is an isolated eigenvalue of finite
multiplicity. Furthermore, the following perturbation result is known.

Theorem 3.4. [11, XIII.4, Cor. 2] Let T be a selfadjoint operator on H and
V relatively compact w.r.t. T . Then
(i) H := T + V is closed on dom(T ) and
(ii) σe5(H) = σe(T ).

From Theorems 3.3 and 3.4 we immediately conclude that for all H ∈ Ω2

the spectrum of H is of the form

σ(H) = σ(T ) ∪ {λ1, λ2, . . .},

with isolated eigenvalues λi ∈ C.

Strong resolvent convergence Let Pn : H → Hn be defined as in Sect. 2 and
set Vn := PnV |Hn

.

Lemma 3.5. For Vn defined as above, we have the following
(i) (Vn)∗ = (V ∗)n (i.e. compression to Hn commutes with taking the ad-

joint) and
(ii) VnPn → V strongly in H.
(iii) V ∗

n Pn → V ∗ strongly in H.

Proof. Assertion (i) is easily shown by an analogous calculation to (2.7).
To see assertion (ii), let u ∈ H and note that then Pnu → u strongly.

By continuity of V , it immediately follows that V Pnu → V u in H. Hence,
from the definition of Vn we conclude that

VnPnu = PnV |Hn
Pnu = Pn︸︷︷︸

→I strongly

V Pnu︸ ︷︷ ︸
→V u

→ V u.

Assertion (iii) now immediately follows by combining (i) and (ii). �

The next lemma shows that even the perturbed operators Hn converge
in strong resolvent sense.

Lemma 3.6. For H ∈ Ω2 and Hn = PnH|Hn
, one has Hn → H and H∗

n →
H∗ in strong resolvent sense.

Proof. This follows from [4, Cor. 3.5], since

‖(T − z)−1‖−1, ‖(Tn − z)−1‖−1 ≥ dist(z,R),

which tends to ∞ as z → i∞, and ‖V ‖, ‖Vn‖ are uniformly bounded. �

The algorithm The algorithm for Ω2,Λ2 is defined analogously to that in
Sect. 2. Namely, we define GC

n := 1
n (Z + iZ) ∩ Bn(0) ⊂ C.

Γ(2)
n (H) :=

{
λ ∈ GC

n

∣∣∣∣ min
{
s(Hn−λ), s(H∗

n−λ)
} ≤ 1

n

}
∪ Γ(1)

n (T ). (3.1)
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Note that we have min{s(M −λ), s(M∗ −λ)} = ‖(M −λ)−1‖−1 for any n×n

matrix M (cf. [9]). Since we have already shown that Γ(1)
n approximates σ(T )

correctly and that σ(T ) = σe(T ) = σe5(H), we know that Γ(2)
n will not

miss anything in σe5(H). Thus, it only remains to prove absence of spectral
pollution and spectral inclusion for the discrete set σ(H)\σe5(H) for the
algorithm

Γ̃n(H) :=
{

λ ∈ GC

n

∣∣∣∣ min
{
s(Hn − λ), s(H∗

n − λ)
} ≤ 1

n

}

This will be done in the remainder of this section.
However, let us first take a moment to assure that Γ(2)

n defines a rea-
sonable algorithm. Clearly, each Γ(2)

n depends only on the matrix elements〈
Te

(n)
i , e

(n)
j

〉
and

〈
V e

(n)
i , e

(n)
j

〉
, 1 ≤ i, j ≤ kn. Moreover, by Lemma 2.4 it only

requires finitely many algebraic operations on these numbers to determine
whether λ ∈ GC

n belongs to the set
{
λ | min

{
s(Hn − λ), s(H∗

n − λ)
} ≤ 1

n

}
.

Finally, since Λ2 contains all matrix elements
〈
Te

(n)
i , e

(n)
j

〉
, it follows from

the comments made in Sect. 2 that Γ(1)
n is an admissible algorithm as well.

Remark 3.7. We note that the choice 1
n as an upper bound for s(Hn − λ)

in (3.1) is arbitrary. The proof below will show that one could equally well
have chosen

Ξn(H) :=
{

λ ∈ GC

n

∣∣∣∣ min
{
s(Hn − λ), s(H∗

n − λ)
} ≤ 3

n

}
∪ Γ(1)

n (T )

instead of Γ(2)
n (H). This fact will be used in Sect. 4.

Spectral pollution Let us prove that the approximation Γ(2)
n (H) does not

have spectral pollution for H ∈ Ω2. To this end, note that again Γ̃n(H) ⊂
σε(Hn) for ε > 0 fixed and n large enough. According to [5, Th. 3.6 ii)],
ε-pseudospectral pollution of the approximation Hn → H is confined to

σe

(
(Hn)n∈N

) ∪ σe

(
(H∗

n)n∈N

)∗ ∪
⋃

δ∈(0,ε]

Λe,δ

(
(Hn)n∈N

)
.

Hence, for any sequence λn ∈ Γ̃n(H) with λn → λ ∈ C we have

λ ∈
⋂

ε>0

⎛

⎝σε(H) ∪ σe(Hn)n∈N ∪ σe

(
(H∗

n)n∈N

)∗ ∪
⋃

δ∈(0,ε]

Λe,δ

(
(Hn)n∈N

)
⎞

⎠ .

(3.2)

We conclude with the following

Lemma 3.8. It follows from (3.2) that

λ ∈ σ(H) ∪ σe

(
(Hn)n∈N

) ∪ σe

(
(H∗

n)n∈N

)∗
.

Proof. Let (3.2) hold. Then
– Either there exists ε0 > 0 such that λ ∈ σε(T ) ∪ σe

(
(Hn)n∈N

) ∪ σe(
(H∗

n)n∈N

)∗ for all ε ∈ (0, ε0), or
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– there exists a sequence εk with εk ↘ 0 and λ ∈ ⋃
δ∈(0,εk] Λe,δ

(
(Hn)n∈N

)

for all k.

In the first case, it follows that

λ ∈
⋂

ε>0

(
σε(H) ∪ σe

(
(Hn)n∈N

) ∪ σe

(
(H∗

n)n∈N

)∗)

=

(
⋂

ε>0

σε(H)

)
∪ σe

(
(Hn)n∈N

) ∪ σe

(
(H∗

n)n∈N

)∗

= σ(H) ∪ σe

(
(Hn)n∈N

) ∪ σe

(
(H∗

n)n∈N

)∗
.

In the second case, we have

λ ∈
⋂

k∈N

⋃

δ∈(0,εk]

Λe,δ

(
(Hn)n∈N

)

⊂ σe

(
(Hn)n∈N

)
,

by Lemma 2.7 (ii). Next, by [3, Th. 6.1] we have σe

(
(Hn)n∈N

)∪σe

(
(H∗

n)n∈N

)∗

⊂ We(H) and hence λ ∈ σ(H)∪We(H). In order to exclude spectral pollution
it only remains to prove We(H) ⊂ σ(H).

Lemma 3.9. For H = T + V ∈ Ω2 one has We(H) ⊂ σe(H).

Proof. Let H = T + V with T selfadjoint, semibounded and V ∈ L(H) such
that V, V ∗ are T -compact. Then denoting Re(V ) := 1

2 (V +V ∗) and Im(V ) :=
1
2i (V −V ∗) we have that V = Re(V )+ i Im(V ) with Re(V ), Im(V ) relatively
compact w.r.t. T . Applying [3, Th. 4.5] we conclude that We(H) = We(T ).

But now by our assumptions on T , we can see from [3, Th. 3.8] that

We(T ) = conv
(
σ̂e(T )

)\{±∞} = σe(T ) = σe(H). �

Note that the previous lemma is the only place in which we need the semi-
boundedness assumption in the definition of Ω2. Overall we have shown that
for any sequence λn ∈ Γ̃n(H) which converges to some λ ∈ C we necessarily
have λ ∈ σ(H), in other words, spectral pollution does not exist.

Spectral inclusion It remains to show that the approximation (Γ(2)
n (H)) is

spectrally inclusive, i.e. that for any λ ∈ σ(H) there exists a sequence λn ∈
Γ(2)

n (H) such that λn → λ. As explained above, the existence of such a
sequence is already guaranteed for all λ ∈ σe5(H).

Lemma 3.10. For every λ ∈ σ(H)\σe5(H) there exists a sequence λn ∈ Γ̃(H)
with λn → λ.

Proof. First note that by Theorem 3.3 λ is an isolated point. Moreover, we
have seen in the proof of Lemma 3.9 that σe

(
(Hn)n∈N

) ∪ σe

(
(H∗

n)n∈N

)∗ ⊂
σe(H) and hence λ does not belong to this set either. From Lemma 3.6 and [5,
Th. 2.3 i)] we conclude that there exists a sequence μn ∈ σ(Hn) with μn → λ.

Now, by definition of GC
n, for each n there exists λn ∈ GC

n such that
|μn −λn| < 1

n and hence ‖(Hn −λn)−1‖L(Hn) ≥ n which implies λn ∈ Γ̃n(H).
Since |μn − λn| → 0 and μn → λ, it follows that λn → λ. �
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Conclusion Overall we have shown that

(a′) If λn ∈ Γ(2)
n (H) and λn → λ, then λ ∈ σ(H).

(b′) If λ ∈ σ(H), then there exist λn ∈ Γ(2)
n (H) with λn → λ.

By Proposition 2.8 this implies dAW

(
Γ(2)

n (H), σ(H)
) → 0.

4. Application to Schrödinger Operators

In this section we will apply the results of Sects. 2 and 3 to Schrödinger
operators on L2(Rd). More specifically, fix a continuous, monotone decreasing
function g : [0,∞) → [0,∞) with g(t) → 0 as t → ∞ and let M > 0. We
define

Ω3 :=
{−Δ + V

∣∣V ∈ C1(R,C), ‖∇V ‖∞ ≤ M, |V (x)| ≤ g(|x|)} . (4.1)

By the above definition, every H ∈ Ω3 is a relatively compact perturbation
of the free Laplacian with domain H2(Rd) (cf. e.g. [10, Ch. V, Lemma 5.8]).
In fact, our assumptions on V have been chosen such that every H ∈ Ω3 even
satisfies all conditions formulated in the set Ω2 in Theorem 3.1.

In order to define the computational problem, we choose a finite lattice
in R

d

Ln :=
{

i

n

∣∣∣∣ i ∈ Z
d, |i| < n

}
.

Moreover, let Hn denote the subspace of L2(Rd) spanned by all characteristic
functions of cubes of edge length 1

n with centres inside a ball of radius n:

Ĥn := span
{

χi+[0, 1
n )d

∣∣∣ i ∈ Ln

}

It is easily seen by smooth approximation that PĤn
→ I strongly in L2(Rd).

However, none of the basis functions χi+[0, 1
n )d are contained in the domain

of −Δ. In order to circumvent this, the space we will actually work with will
be

Hn := span
{

χ̂i+[0, 1
n )d

∣∣∣ i ∈ Ln

}
, (4.2)

where the hat denotes the Fourier transform in L2(Rd). For any enumeration
ik of the set Ln, we define

e
(n)
k := n

d
2 · χ̂ik+[0, 1

n )d ,

where the normalisation constant n
d
2 is chosen such that

∥∥e
(n)
k

∥∥
L2(Rd)

= 1 for

all n ∈ N. These are smooth functions in L2(Rd) and it is easily checked that
their first and second derivatives are again in L2(Rd).

Lemma 4.1. We have PHn
→ I strongly in L2(Rd) and for any n ∈ N the set

{e
(n)
k }#Ln

k=1 form an orthonormal basis of Hn.
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Proof. This follows immediately from the unitarity of the Fourier transform
and the equality

∥∥∥∥
∑

k

〈
f, n

d
2 χik+[0, 1

n )d

〉
n

d
2 χik+[0, 1

n )d − f

∥∥∥∥
L2(Rd)

=
∥∥∥∥
∑

k

〈
f̂ , e

(n)
k

〉
e
(n)
k −f̂

∥∥∥∥
L2(Rd)

�

We note that the functions e
(n)
k can be calculated explicitly. Indeed, one

has

e
(n)
k (ξ) =

( n

2π

) d
2

d∏

j=1

eiξj((ik)j+
1
n ) − eiξj(ik)j

ξj
,

where (ik)j denotes the j’th component of the vector ij and ξ = (ξ1, . . . , ξd) ∈
R

d. Using this explicit representation, it can be easily seen that we have the
following.

Lemma 4.2. For each n ∈ N one has
∥∥e

(n)
k

∥∥
∞,

∥∥∇e
(n)
k

∥∥
∞ ≤ (2π)− d

2 dn3− d
2

for all k ∈ {1, . . . , n}.
Proof. From the definition of e

(n)
k it follows by direct calculation that

∥∥e
(n)
k

∥∥
∞ < (2πn)− d

2 ,

∥∥∂je
(n)
k

∥∥
∞ < (2π)− d

2
n− d

2 +1

2

((
(ik)j + 1

n

)2 − (ik)2j
)

from which the assertion follows. Note that the bound in the second equation
can be made independent of k, because ik ∈ Ln ⊂ Bn(0) for all k. �

The information accessible to the algorithm will be the set

Λ3 := Λ(1)
3 ∪ Λ(2)

3 ∪ Λ(3)
3 ∪ Λ(4)

3 , (4.3)

with

Λ(1)
3 =

{
ρx |x ∈ R

d
}

Λ(2)
3 =

{
e
(n)
k (i)

∣∣∣ i ∈ l−1
Z

d, l ∈ N, k ∈ {1, . . . , n}, n ∈ N

}

Λ(3)
3 =

{
nδmk

3

d∑

j=1

((
(i)j + 1

n

)3 − (i)3j
) ∣∣∣ i ∈ Ln, m, k ∈ {1, . . . ,#Ln}, n ∈ N

}

Λ(4)
3 =

{
g
(
l

1
2d
) ∣∣∣ l ∈ N

}

where ρx(V ) = V (x) are the evaluation functionals and e
(n)
k (i) denote con-

stant functions that map V to the number e
(n)
k (i). The meaning of the con-

stants nδmk

3

∑d
j=1

((
(i)j + 1

n

)3 − (i)3j
)

will become clear later on.
Together, Ω3 and Λ3 define a computational problem (Ω3,Λ3, σ(·)). The

main result of this section is the following.
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Theorem 4.3. For Ω3 and Λ3 defined as above, we have SCI
(
Ω3,Λ3, σ(·)) =

1.

The proof of Theorem 4.3 will be by reduction to Theorem 3.1. In or-
der to accomplish this, we need to be able to compute the matrix elements
〈(−Δ + V )ei, ej〉 by performing only a finite number of algebraic operations
on a finite number of values of V . This will be the main difficulty.

4.1. Proof of Theorem 4.3

We first show that the spaces Hn defined in (4.2) are indeed a reasonable
choice for the problem at hand. More precisely, we have

Lemma 4.4. The union
⋃

n∈N
Hn is a core for −Δ.

Proof. By means of the Fourier transform the assertion is equivalent to the
space

⋃
n∈N

Ĥn being a core for the multiplication operator u �→ |ξ|2u in
L2(Rd). To verify this, we have to show that for every u ∈ dom(|ξ2|) there
exists a sequence un ∈ Hn such that

(i) ‖un − u‖L2(Rd) → 0,

(ii)
∥∥|ξ|2(un − u)

∥∥
L2(Rd)

→ 0

Point (i) is easily shown by choosing

un :=
∑

i∈Ln

〈
u, n

d
2 χi+[0, 1

n )d

〉
n

d
2 χi+[0, 1

n )d . (4.4)

Indeed, for smooth u the L2-convergence of un to u is standard, while the
general case follows by a density argument. We omit the technical details. To
show point (ii), let R > 0 and decompose the norm in (ii) as
∥∥|ξ|2(un − u)

∥∥2

L2(Rd)
=

∫
BR

∣∣|ξ|2(un − u)
∣∣2 dξ +

∫
Rd\BR

∣∣|ξ|2(un − u)
∣∣2 dξ,

(4.5)

where BR denotes the ball of radius R centered at 0. We first estimate the
second term on the right hand side. To this end, we let un be defined by (4.4)
and employ the shorthand notation χi := n

d
2 χi+[0, 1

n )d . On the whole space
we have

∥∥|ξ|2un

∥∥2

L2(Rd\BR)
=

∥∥∥∥∥|ξ|2
∑

i∈Ln

〈u, χi〉χi

∥∥∥∥∥

2

L2(Rd\BR)

≤
∑

i∈Ln\BR

|〈u, χi〉|2
∥∥|ξ|2χi

∥∥2

L2(Rd)

≤
∑

i∈Ln\BR

‖u‖2
L2(i+[0, 1

n )d)

∥∥∥n
d
2 |ξ|2

∥∥∥
2

L2(i+[0, 1
n )d)

,

where we have used the fact that supp(χi) ∩ supp(χj) = ∅ for i �= j.
The factor

∥∥n
d
2 |ξ|2∥∥

L2(i+[0, 1
n )d)

on the right hand side is clearly bounded
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relsöRknarF

|ξ|2

a|ξ|2 + b

Fn

1
n

Figure 1. Sketch of function Fn

by supξ∈i+[0, 1
n )d |ξ|2. Thus, if we define a function Fn by

Fn(ξ) :=
∑

i∈ 1
nZd

(
sup

η∈i+[0, 1
n )d

|η|2
)

χi,

then we will have (note that Fn is constant on each of the cubes i + [0, 1
n )d)

∥∥|ξ|2un

∥∥2

L2(Rd\BR)
≤

∑

i∈Ln\BR

‖u‖2
L2(i+[0, 1

n )d)Fn(ξ)2

=
∑

i∈Ln\BR

‖Fn(ξ)u‖2
L2(i+[0, 1

n )d)

≤ ‖Fn(ξ)u‖2

L2
(
Rd\B

R−
√

d
n

)

Next, we note that it is easy to see that there exist constants a, b > 0 such
that Fn(ξ) ≤ a|ξ|2 + b uniformly in n (see Fig. 1).

Overall we conclude that
∥∥|ξ|2un

∥∥2

L2(Rd\BR)
≤ ‖Fn(ξ)u‖2

L2
(
Rd\B

R−
√

d
n

)

≤ ∥∥(a|ξ|2 + b)u
∥∥2

L2(Rd\BR−1)
,

where the last term on the right hand side is finite because by assumption
u ∈ dom(|ξ|2). In fact, from this last inequality we can see immediately that

∥∥|ξ|2un

∥∥2

L2(Rd\BR)
→ 0
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as R → ∞ uniformly in n. Estimating the second term on the right hand side
of Eq. (4.5) is now straightforward. We get
∫

Rd\BR

∣∣|ξ|2(un − u)
∣∣2 dξ ≤ ∥∥|ξ|2un

∥∥2

L2(Rd\BR)
+

∥∥|ξ|2u∥∥2

L2(Rd\BR)

≤ ∥∥(a|ξ|2 + b)u
∥∥2

L2(Rd\BR−1)
+

∥∥|ξ|2u∥∥2

L2(Rd\BR)
.

Now let ε > 0 and choose R so large that
∥∥(a|ξ|2 + b)u

∥∥2

L2(Rd\BR−1)
+

∥∥|ξ|2u∥∥2

L2(Rd\BR)
< ε. From Eq. (4.5) we then see that

lim sup
n→∞

∥∥|ξ|2(un − u)
∥∥2

L2(Rd)
≤ lim sup

n→∞

∫

BR

∣∣|ξ|2(un − u)
∣∣2 dξ + ε

≤ lim sup
n→∞

R2

∫

BR

|un − u|2 dξ + ε

= ε,

because un → u in L2(Rd). Since ε was arbitrary, it follows that

lim sup
n→∞

∥∥|ξ|2(un − u)
∥∥2

L2(Rd)
= 0, �

Our strategy for proving Theorem 4.3 is as follows. By the assumptions
on V stated in the definition of Ω3 and Lemma 4.4 we know that we have
Ω3 ⊂ Ω2, if we choose H = L2(Rd) and Hn as in (4.2). Hence, we already
know from Theorem 3.1 that Γ(2)

n (H) → σ(H) for all H ∈ Ω3. However,
Γ(2)

n uses the matrix elements
〈
He

(n)
k , e

(n)
j

〉
, which we are not allowed to

access in Theorem 4.3. Therefore, we will define a new algorithm Γ(3)
n which

only accesses the information provided in Λ3 and which satisfies Γ(3)
n (H) ≈

Γ(2)
n (H) for H ∈ Ω3 in an appropriate sense.

The algorithm As described above, we need to approximate the matrix ele-
ments 〈−Δe

(n)
k , e

(n)
m 〉 and 〈V e

(n)
k , e

(n)
m 〉 using only a finite amount of informa-

tion provided in the set Λ3. We start with the Laplacian, which is the simpler
case. Indeed, we have

〈
−Δe

(n)
k , e(n)

m

〉
=

〈
|ξ|2n d

2 χik+[0, 1
n )d , n

d
2 χim+[0, 1

n )d

〉

= ndδmk

∫

ik+[0, 1
n )d

|ξ|2 dξ

=
nδmk

3

d∑

j=1

((
(ik)j +

1
n

)3

− (ik)3j

)
.

Note that these are precisely the terms in the third factor in Eq. (4.3).
Next, we will compute the matrix elements 〈V e

(n)
k , e

(n)
m 〉. Since any al-

gorithm can only use finitely many values of V , we will have to perform an
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approximation procedure. To this end, let l ∈ N and define a lattice Pl ⊂ R
d

by

Pl :=
1
l
Z

d ∩ Ql,

where Ql denotes the cube of edge length l
1
2d centered at 0. Next, let

Vl(x) :=
∑

i∈Pl

V (i)χi+[0, 1
l )d .

Lemma 4.5. For any function f ∈ C1(Rd) one has
∥∥∥∥f −

∑

i∈Pl

f(i)χi+[0, 1
l )d

∥∥∥∥
L∞(Ql)

≤ ‖∇f‖∞
l

,

Proof. This follows immediately from the identity

f(x) − f(i) =
∫

[i,x]

∇f(t) · dt,

where i ∈ Pl and [i, x] denotes a line segment connecting i to x ∈ i + [0, 1
l )

d.
�

In order to define our approximation of
〈
V e

(n)
k , e

(n)
m

〉
, we additionally

introduce the step function approximation

Ek,l(x) :=
∑

i∈Pl

e
(n)
k (l)χi+[0, 1

l )d .

Lemma 4.6. For −Δ + V ∈ Ω3 one has
∣∣∣
〈
V e

(n)
k , e(n)

m

〉
− 〈VlEk,l, Em,l〉

∣∣∣ ≤ 3
l
1
2
(M + g(0))(2π)− d

2 n3− d
2 d + g

(
l

1
2d
)
,

for all l ∈ N, where M is as in Eq. (4.1).

Proof. We calculate the error
∣∣∣
〈
V e

(n)
k , e(n)

m

〉
− 〈VlEk,l, Em,l〉

∣∣∣

=

∣∣∣∣∣
∑

i∈Pl

∫

i+[0, 1
l
)

V e
(n)
k e(n)

m dx −
∑

i∈Pl

∫

i+[0, 1
l
)

VlEk,lEm,l dx +

∫

Rd\Ql

V e
(n)
k e(n)

m dx

∣∣∣∣∣

≤
∑

i∈Pl

∫

i+[0, 1
l
)

∣∣∣V e
(n)
k e(n)

m − VlEk,lEm,l

∣∣∣ dx +

∫

Rd\Ql

∣∣V e
(n)
k e(n)

m

∣∣ dx

≤
∑

i∈Pl

∫

i+[0, 1
l
)

l−1
∥∥∥∇(

V e
(n)
k e(n)

m

)∥∥∥
∞

dx + g
(
l

1
2d
) ∫

Rd\Ql

∣∣e(n)
k e(n)

m

∣∣ dx

= l−1|Ql|
∥∥∥∇(

V e
(n)
k e(n)

m

)∥∥∥
∞

+ g
(
l

1
2d
)∥∥e

(n)
k

∥∥
L2(Rd)

∥∥e(n)
m

∥∥
L2(Rd)

≤ l−1l
1
2

(∥∥∥∇V e
(n)
k e(n)

m

∥∥∥
∞

+
∥∥∥V ∇e

(n)
k e(n)

m

∥∥∥
∞

+
∥∥∥V e

(n)
k ∇e(n)

m

∥∥∥
∞

)
+ g

(
l

1
2d
)

≤ 3

l
1
2

(M + g(0))(2π)− d
2 n3− d

2 d + g
(
l

1
2d
)
,

where we have used Lemma 4.5 in the third line and Lemma 4.2 and the fact
that ‖V ‖C1 ≤ M in the last line. �
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Corollary 4.7. If we denote Hn := Pn(−Δ+V )|Hn
and H l

n := Pn(−Δ)|Hn
+

W l, where W l denotes the operator on Hn defined by the n × n matrix with
elements (W l)km = 〈VlEk,l, Em,l〉 in the basis {e

(n)
k }#Ln

k=1 , then

∥∥Hn − H l
n

∥∥
L(Hn)

≤ 3d(M + g(0))(2πn4)− d
2

l
1
2

+ ng
(
l

1
2d
)
.

Proof. By Lemma 4.6 the matrix elements of Hn and H l
n satisfy

∣∣(Hn)km −
(H l

n)km

∣∣ ≤ 3

l
1
2
(M + g(0))(2π)− d

2 n3− d
2 d + g

(
l

1
2d
)
. Now note that for any two

matrices A = (Akm) and B = (Bkm) one has

‖(A − B)x‖2
Hn

=
n∑

k=1

∣∣∣∣∣

n∑

m=1

(Akm − Bkm)xm

∣∣∣∣∣

2

≤
(

sup
k,m

|Akm − Bkm|
)

n∑

k,m=1

|xm|2

= n

(
sup
k,m

|Akm − Bkm|
)

‖x‖2
Hn

.

This immediately implies the assertion. �

We are finally ready to define our algorithm. Let n ∈ N and choose
l(n) ∈ N large enough such that 3

l(n)
1
2
(M + g(0))(2π)− d

2 n3− d
2 d+ g

(
l(n)

1
2d
)

<

1
2n (note that this can be done by a computer in finite time). Define for
H = −Δ + V ∈ Ω3

Λ
Γ

(3)
n

(H) := Λ(1)

Γ
(3)
n

∪ Λ(2)

Γ
(3)
n

∪ Λ(3)

Γ
(3)
n

∪ Λ(4)

Γ
(3)
n

where

Λ(1)

Γ
(3)
n

=
{
ρi | i ∈ Pl(n)

}

Λ(2)

Γ
(3)
n

=
{

e
(n)
k (i)

∣∣∣ i ∈ Pl(n), k ∈ {1, . . . , n}
}

Λ(3)

Γ
(3)
n

=
{

nδmk

3

d∑

j=1

((
(i)j + 1

n

)3 − (i)3j
) ∣∣∣∣ i ∈ Ln, m, k ∈ {1, . . . ,#Ln}

}

Λ(4)

Γ
(3)
n

=
{

g
(
l

1
2d
) ∣∣∣ l = 0 . . . l(n)

}

and let

Γ(3)
n (H) :=

{
λ ∈ GC

n

∣∣∣∣
∥∥∥(H l(n)

n − λ)−1
∥∥∥

−1

≤ 2
n

}
∪ Γ(1)

n (−Δ)

with the convention that
∥∥(H l(n)

n − λ)−1
∥∥−1 = 0 when λ ∈ σ

(
H

l(n)
n

)
. Note

that Λ
Γ

(3)
n

(H) is a finite set for each H ∈ Ω3 and by Lemma 2.4 determining

whether
∥∥(H l(n)

n − λ)−1
∥∥−1 ≤ 2

n requires only finitely many algebraic op-
erations on the matrix elements of H

l(n)
n (which are contained in Λ

Γ
(3)
n

(H)).
Moreover, since Λ3 contains all matrix elements of the Laplacian, we conclude
that computing Γ(1)

n (−Δ) can also be done by performing a finite amount of
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algebraic operations on the information provided. Overall, we conclude that
each Γ(3)

n is an arithmetic algorithm in the sense of Definition 1.2.

Convergence It remains to prove that Γ(3)
n (H) → σ(H) in the Attouch–Wets

metric. To this end, let λ ∈ GC
n and note that by the second resolvent identity

we have

(H l(n)
n − λ)−1 − (Hn − λ)−1 = (H l(n)

n − λ)−1(Hn − H l(n)
n )(Hn − λ)−1.

(4.6)

From (4.6) we conclude that

∣∣∣‖(H l(n)
n − λ)−1‖−1 − ‖(Hn − λ)−1‖−1

∣∣∣ ≤ ∥∥Hn − H l(n)
n

∥∥. (4.7)

Indeed if λ ∈ ρ(Hn)∩ρ
(
H

l(n)
n

)
, this just follows by taking norms on both sides

and using the reverse triangle inequality, while for λ ∈ σ(Hn)∪σ
(
H

l(n)
n

)
it can

be seen by the following argument. W.l.o.g. assume that λ ∈ σ(Hn)\σ
(
H

l(n)
n

)
.

Then ‖(Hn − λ)−1‖−1 = 0 and ‖(H l(n)
n − λ)−1‖−1 > 0. Assume for contra-

diction that (4.7) is false, i.e.

∥∥Hn − H l(n)
n

∥∥ < ‖(H l(n)
n − λ)−1‖−1.

Then by a standard Neumann series argument (cf. [10, Sec. I.4.4]) it fol-
lows that Hn is boundedly invertible, which contradicts the assumption λ ∈
σ(Hn). This argument is obviously symmetric in Hn and H

l(n)
n .

Going back to (4.7) and recalling our specific choice of l(n), we conclude
that for all λ ∈ GC

n one has

∣∣∣‖(H l(n)
n − λ)−1‖−1 − ‖(Hn − λ)−1‖−1

∣∣∣

≤ ‖Hn − H l(n)
n ‖

≤ 3d(M + g(0))(2πn4)− d
2

l(n)
1
2

+ ng
(
l(n)

1
2d
)

≤ 1
2n

,

Now, if λ ∈ Γ(3)
n (H) the above inequality implies that

‖(Hn − λ)−1‖−1 ≤ ‖(H l(n)
n − λ)−1‖−1 +

1
2n

≤ 2
n

+
1
2n

≤ 3
n
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and hence λ ∈ Ξn(H) (cf. Remark 3.7). Similarly, if λ ∈ Γ(2)
n (H) then

‖(H l(n)
n − λ)−1‖−1 ≤ ‖(Hn − λ)−1‖−1 +

1
n

≤ 1
n

+
1
2n

≤ 2
n

and hence λ ∈ Γ(3)
n (H). Thus, we have the inclusions

Γ(2)
n (H) ⊂ Γ(3)

n (H) ⊂ Ξn(H).

Since Γ(2)
n (H) → σ(H) and Ξn(H) → σ(H) by Theorem 3.1 and Remark 3.7,

we conclude that Γ(3)
n (H) → σ(H) as well. This completes the proof of The-

orem 4.3.
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Leitfäden. [Mathematical Textbooks]. B. G. Teubner, Stuttgart, 2000. Grund-
lagen. [Foundations]

Frank Rösler(B)

School of Mathematics
Cardiff University
Senghennydd Road
Cardiff CF24 4AG
UK
e-mail: RoslerF@cardiff.ac.uk

Received: March 14, 2019.

Revised: September 13, 2019.


	On the Solvability Complexity Index for Unbounded Selfadjoint and Schrödinger Operators
	Abstract
	1. Introduction
	2. Selfadjoint Operators
	2.1. Definition of the Algorithm
	2.2. General Results on Spectral and Pseudospectral Pollution
	2.3. Proof of Theorem 2.1

	3. Relatively Compact Perturbations
	3.1. Proof of Theorem 3.1

	4. Application to Schrödinger Operators
	4.1. Proof of Theorem 4.3

	Acknowledgements
	References




