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Abstract—: Several decades of development in the fields of 

robotics and automation has resulted in human-robot-interaction 

being commonplace, and the subject of intense study. These 

interactions are particularly prevalent in manufacturing, where 

human operators have been employed in a number of robotics and 

automation tasks. The presence of human operators continues to 

be a source of uncertainty in such systems, despite the study of 

human factors, in an attempt to better understand these variations 

in performance.  

Concurrent developments in intelligent manufacturing present 

opportunities for adaptability within robotic control. This work 

examines relevant human factors and develops a framework for 

integrating the necessary elements of intelligent control and data 

processing to provide appropriate adaptability to robotic 

elements, consequently improving collaborative interaction with 

human colleagues. A neural network-based learning approach is 

used to predict the influence on human task performance and use 

these predictions to make informed changes to programmed 

behaviour, and a methodology developed to further explore the 

application of learning techniques to this area. The work is 

supported by an example case-study, in which a simulation model 

is used to explore the application of the developed system, and its 

performance in a real-world production scenario. The simulation 

results reveal that adaptability can be realised with some relatively 

simple techniques and models if applied in the right manner and 

that such adaptability is helpful to tackle the issue of performance 

disparity in manufacturing operations. 

 

NTP: This paper presents research into the application of 

intelligent methodologies to this problem and builds a 

framework to describe how this information can be captured, 

generated and used, within manufacturing production 

processes. This framework helps identify which areas require 

further research and serves as a basis for the development of a 

methodology, by which a control system may enable adaptable 

behaviour to reduce the impact of human performance variation 

and improve human-machine-interaction. The paper also 

presents a simulation-based case study, to support the 

development and evaluate the presented control system on a 

representative real-world problem. The methodology makes use 

of a machine learning approach to identify the complex 

influence of a number of identified human factors on human 

performance. This knowledge can be used to adjust the robotic 

behaviour to match the predicted performance of a number of 

different operators over a number of scenarios. The adaptability 

reduces performance disparity, reducing idle times and 

enabling leaner production through WIP reduction. Future work 
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proposed system to deal with uncertainty and improve decision-

making ability.  
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I. INTRODUCTION 

Automation has been the focus of advancement within the 

manufacturing industry for a number of decades, and the use and 

utilization of robotic operators to perform repetitive assembly tasks is 

ubiquitous [1]. The role of the human operator persists within these 

manufacturing processes, however, despite many successful 

applications some manufacturing tasks still require a level of dexterity 

or adaptability which robotic operators remain unable to perform. This 

has resulted in a period of transition whereby these robotic operators 

frequently perform tasks with human operators as colleagues. The 

continued presence of human beings in these highly automated 

systems introduces variation and uncertainty into an otherwise 

repeatable process; as human beings are subject to the influence of a 

number of factors which affect their performance in a number of 

complex and interconnected ways. These Human factors and their 

influence on performance have been studied for decades and this 

knowledge is frequently applied from a management perspective. 

However, limited work exists on how to best leverage intelligence 

when considering these human factors, and how to apply this 

knowledge to the study of Human-Machine-Interaction and the domain 

of autonomous systems. 

By studying established concepts within the field of intelligent 

manufacturing, this work examines the potential of developing robotic 

systems capable of intelligent data processing to enable adaptable 

behaviour which can be used to mitigate the effects of the variation in 

performance of human beings. This increased adaptability is necessary 

to enable changes in behaviour in response to the actions of others, 

facilitating collaboration with human colleagues. Consideration of the 

impact caused by human factors can be used to model the consequent 

variations in performance, and machine learning can be leveraged to 

enable the robotic agents to intelligently analyse the observed data, 

model the relationships between observed human performances, and 

respond properly to this contextual information.  

These human factors are complex, and the natural variation 

between human beings means that their effects are not consistent 

across a demographic, and their interactions and combined influence 
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quickly become an impossible task to model. However, by providing 

contextual knowledge based on these identified factors, and combining 

this with intelligent data analysis may potentially be used to predict 

and adapt in response to changes and variation; with the elimination of 

variation in performance between operations, enabling processes to 

achieve a more optimal and agile one-piece-flow, in line with modern 

application of lean-manufacturing methods [2]. 

The application of intelligence to robotic systems in such a 

manner is an area of work that is still in its relative infancy. This work 

seeks to answer how to capture task performance and the influence of 

human factors in a suitable manner, and how intelligence can be used 

to process this information so to improve and enable adaptability in 

robotic behaviour. In addition, it seeks to develop suitable methods for 

the contextual understanding of human performance and the factors 

which may influence it. Section 2 presents a comprehensive review of 

the current literature, covering a number of relevant areas from which 

knowledge will be amalgamated. Section 3 outlines the proposed 

framework which can be used to intelligently process observed data, 

and use the information obtained to effect an appropriate change in 

behaviour. Within this framework, we further develop the elements of 

intelligent processing to assess how such functionality can be 

achieved. Section 4 illustrates the developed methodology for 

developing a control system that functions in such a manner, and the 

simulation model to enable the implementation and on task assessment 

through the use of a case study. Section 5 presents the key results of 

both the learning model development, and the simulation evaluation, 

and these results, the key insights and implications are discussed fully 

in Section 6.  

II.  LITERATURE REVIEW 

A. Intelligent Manufacturing 

Intelligent Manufacturing is a wide-ranging field that is the result 

of the combination of a multitude of intelligent technologies and 

methodologies over the past decade, and which exists as a field of 

study in its own right. Large volumes of work are being done to 

develop the capabilities of manufacturing systems by utilizing these 

intelligent concepts to improve existing manufacturing processes and 

develop novel methodologies, making use of data and informatics [3].  

The most notable areas being: Control systems, making use of 

decentralization, virtualization, reconfiguration, and adaptability [4-

6]; Virtual and augmented reality systems, to enable knowledge and 

skill to be transferred easily between individuals and over distance [7]; 

and machine learning techniques for intelligent systems [8]. 

One of the most notable field to have arisen as a result is that of 

cyber-physical-systems(CPS) [9]; which combine digital processing 

and planning with physical manipulation. such systems on the 

utilization of data to generate knowledge about the process and 

environment, which can be used to influence the system control. These 

systems are capable of demonstrating a level of computational 

intelligence and are capable of autonomous: self-awareness & 

prediction; [10]; self-configuration [11]; and self-optimization [12]. 

Combined, these self-x capabilities enable improved adaptability; 

efficiency; functionality; reliability; safety; and usability [13]; Cyber-

Physical Systems are typically defined by their self-x capability and 

the degree to which they are able to generate knowledge from data, 

which in turn is used to provide different capabilities, with more 

advanced systems capable of autonomous planning, adaptation, and 

self-configuration [14, 15]. Current applications demonstrate success 

in system monitoring and control, but there is little work on applying 

these principles to improve human-machine-interaction, due in part to 

the sheer variety of potential applications. 

 

1) Decentralization of Control 
More recent advances in computer science have begun to enable 

advanced systems with a number of intelligent capabilities to be 

realized. The common factor which enables the emergence of these 

self-x capabilities is the decentralization of control. Existing control 

structures are bound by their centralized nature, as centralized control 

architectures employ a hierarchal structure. As production processes 

become increasingly complex, hierarchal structures present a number 

of problems and challenges when faced with enabling intelligent 

systems to behave in an autonomous and adaptable manner [16, 17].  

The distribution of control divides the computational demands, and 

reduces the overall system complexity, by dividing the control problem 

down into multiple tasks distributed to a number of agents, which 

coordinate their actions to achieve the given goal. Recent applications 

of intelligence to these autonomous agents have made use of machine 

learning (typically a neural network-based approach) to automate each 

agent's individual control and analytical processes and to control 

decision-making processes [18].  

What is key, is that the agents are autonomous, and able to receive 

individual sensory input, and are governed by individual beliefs and 

goals. Individual perceptive ability enables awareness of distinct 

internal and external environments, which in turn provides 

embodiment. The goals and beliefs of each agent govern the control of 

each agent, and internal functions can provide intelligent processing of 

observed information, to coordinate behaviour with other agents. 

Embodiment is a term used to describe each agent being aware of only 

the information that is individually observed or received. This enables 

different agents with an identical internal control structure, to respond 

to observed in different ways based on their individual cumulative 

experiences [19, 20]. Decentralizing control in this way necessitates 

the consideration of collaborative behaviour, which has itself been a 

key aim of robotics research for several years. Many examples of 

robots capable of displaying adaptive collaborative behaviour exist, 

however, the applications are typically physically oriented, and direct 

interactions, such as handling of unwieldy components, and for 

advanced manufacturing tasks. The intelligent agents which form these 

intelligent systems can be purely virtual, or a logical unit consisting of 

a combination of hardware and software capable of virtualization akin 

to elements of a CPS [21]. The structure of these agents further 

facilitates virtualization and simulation, as the necessary structure 

closely resembles that of Object-Oriented programming languages. 

Individual agents can be generated and represented by instances of an 

object within the model or simulation, each with protected and distinct 

internal and external structures and functions to facilitate their 

behaviour. The variation in behaviour that distributed control enables 

place simulation as a critical tool in developing distributed control 

systems, as the simulation is a powerful tool enabling the design, 

evaluation and subsequent optimization of intelligent agent 

performance on the representative and varied tasks in a repeatable 

environment [22]. A detailed overview of intelligent agents can be 

found in [23, 24].  
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2) Agent structure & Design  
To enable intelligent processing of sensory data, consideration 

must be given to how the control system governing the agent should 

be structured to enable an adaptable and appropriate response. Studies 

aiming to understand cognitive processes as they occur in humans, and 

to replicate these cognitive processes, have led to the development of 

a number of cognitive architectures, which define the structure of 

control systems which enable intelligent behaviour. A number of these 

architectures exist, notable examples including ACT [25], SOAR [26], 

and C4 [27], but a common feature among many is a modularized 

structure, with multiple interacting separate elements responsible for 

different aspects of cognition. These architectures are dated and were 

conceptualized before the current capabilities of computational 

systems were fully understood, despite this, the insights with regards 

to structure and interaction are still valid today. The constituent 

modules are often structured around a centralized control unit, either a 

shared space or a module responsible for inter-module communication, 

which manages the internal thought processes. This thought process is 

then extended by the other modules to facilitate necessary behaviours; 

such as Perception, Learning, Decision-Making, and Memory. The 

modular structure additionally facilitates the integration of low-level 

perceptual and motor control systems with higher-level knowledge 

extraction and decision-making processes [28]. Isolating these areas of 

processing enables established control techniques for image capture 

and robotic motion planning to be used for control alongside higher-

level processing without interference. This separation is analogous to 

the distinction between two types of cognitive processing; Type 1 and 

Type 2. The former fast and intuitive; the latter slower, analytical and 

contemplative [29]. The relative reliance on each of these two types of 

cognitive processing is situationally dependent. Type 1 processing is 

typical in familiar situations where rapid response time is required, and 

where a large number of points of observation exist simultaneously. 

Conversely, situations where Type 2 processing is dominant, are those 

where response time is non-critical and focus on the specific 

relationships between a relatively small number of observations. These 

situations are typically unfamiliar, and analytical reasoning is used to 

identify relationships, to form appropriate behaviours [30, 31]. 

Multiple frameworks exist to implement intelligent computational 

features to achieve a level of cognition, although there are little 

consensus and a wide variance in their application and capability.  

 

3) Machine Learning 
Machine learning continues to gain traction and interest as a 

useful tool in the generation of knowledge from data [32, 33], 

particularly within the field of manufacturing [34]; as the use of 

machine learning techniques enables complex, non-linear and 

temporal relationships to be modelled easily through the use of 

historical data reserves. Neural networks have been successfully 

implemented in a number of applications and provide a non-

deterministic method of matching a number of input variables to an 

output, and for approximating relationships between multidimensional 

data. Their recent successes owing to capacity for analytics and pattern 

recognition; the ability to be abstracted and manage a large number of 

data inputs; and their adaptability to suit a wide variety of applications.  

Recent developments have resulted in a wide range of network 

structures. Recurrent networks include consideration of temporal 

patterns, and are used to process time-series data for pattern 

recognition; convolutional networks introduce multiple layers of 

abstractions and have been applied successfully to a number of vision-

based learning and recognition tasks; and deep reinforcement learning 

is used to produce optimal policy generation based on simulation and 

experience [35-38]. A thorough study of the topic can be found in [39-

41]. The utilization of neural networks as a learning model overlaps 

significantly with the field of cognitive computing a branch of 

computer science focused on replicating thought processes as they 

occur in the human brain. Typically, this is through the utilization of 

combinations of neural networks, to replicate cognitive processes [42, 

43]. This has potential implications for the facilitation of collaborative 

behaviour and the improvement of human-machine-interaction. 

Recent work on social cognition and social intelligence suggests that 

providing intelligent robots with social understanding, and human-like 

cognitive processes and structures, will better enable natural and 

intuitive behaviour when interacting with humans [44, 45].  

 

4) Collaborative Robotics 
Collaboration presents several problems for conventional 

computer architectures which traditionally have centralized and 

hierarchal structures. Systems based on the principles of distributed 

control have been proposed to overcome these challenges, as they 

enable adaptability through a reduction in the system complexity, by 

dividing complex problems such as task planning, into several smaller 

problems, which are distributed to a network of multiple intelligent 

agents, which collaborate with one another. The use of decentralized 

control to provide robotic entities with agency and a level of 

intelligence can facilitate collaborative interactions as the agents can 

autonomously adapt their behaviour in response the behaviour of 

others and coordinate their actions to achieve a common goal [15, 21, 

46, 47]. These agents require the capability to autonomously 

communicate and negotiate with one another in real-time, to align the 

behaviours of all constituent operators and processes to successfully 

complete the task [24, 48, 49]. Providing robotic operators with agency 

presents additional benefits for Human-Machine-Interaction by 

providing a sense of embodiment, which influences the way agents 

interact due to the unique nature of each agent’s cumulative 

experience. It enables agents with the same control structure to be more 

adaptable, and better select appropriate behaviours for multiple 

situations, as their responses are based on their own experiences. [19, 

50]. As the capability of autonomous systems increases, there is the 

suggestion that autonomous systems should begin to be treated as 

collaborators, as opposed to tools [51, 52] with appropriate attention 

given to implementing intelligence in a human-focused manner, with 

human ideals and constraints.  

As discussed, the extension of collaborative robotics and 

intelligent control to human collaboration is well studied in terms of 

physical tasks. Robotic operators are frequently employed in handling 

tasks to increase human strength, enabling the handling of large and 

unwieldy components [53]. These tasks have been improved through 

coordination of robotic and human operator motion, to facilitate safety 

in a shared work area through advanced collision detection. Learning 

methods have also been used for Direct-Teaching of robotic operators, 

combining the flexibility of human with the accuracy and repeatability 

of their robotic counterparts. This has enabled advanced 

manufacturing processes such as composite layup and welding 

fabrication to be automated and to achieve a similar finish and quality 

to human professionals [54-57]. There are other modes of 

collaboration which are more passive, whereby knowledge of others, 
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combined with context, can be used to inform behaviour [58, 59]. The 

knowledge and contextual information can be sampled from the 

environment, or observed directly, as used in techniques such as 

gesture control which is increasingly used for robotic control in 

human-machine-interactions [60]. Comprehensive analysis of the state 

of the art in computational HMI can be found in [61].  

Human operators are a source of disturbance to manufacturing 

systems and render most optimization techniques ineffective due to 

variation. No two operators will perform a task the same way, and there 

are multiple factors which influence human task performance. 

Knowledge of these factors and their influence on task performance is 

crucial to informing collaborative decision-making, as it captures the 

contextual information required to predict their influence. Once this is 

known, behaviour can be adjusted, facilitating collaborative control of 

the robotic system elements.  

B. Human Factors/Ergonomics 

Unlike their robotic counterparts, a multitude of factors exists 

which may affect human performance. The influence of these factors 

is typically expressed through the lack of repeatability, accuracy, and 

a variation in performance ability under different environmental and 

contextual conditions.  

Consequently, Human Operators are often a source of significant 

disruption to a system. This influence also extends the variation 

between different human operators, as the aforementioned factors 

influence behaviour and prevent consistent human performance to 

varying degrees depending on the individual. A large body of research 

has been conducted on human-factors from a business management 

perspective to investigate and model the influence of these factors on 

human operators in the manufacturing context. Current models use a 

finite reserve of cognitive resources, which are consumed in order to 

complete cognitive tasks [62]; and the mechanisms by which these 

resources are consumed are influenced by a number of different 

factors. This section discusses several of these identified human factors 

and their influence on task performance.  

The Type of Task, and how it can be characterized by its demands 

and nature is perhaps the largest source of human performance 

variability. The NASA developed ‘TLX’ framework [63] identifies a 

number of task types characterized by differing combinations of 

physical and mental demands. These task demand characteristics will 

influence the way in which a number of factors, such as the task 

duration, influence the perceived workload; with increased workload 

perception associated with decreased task performance. [63, 64]. 

Assembly tasks requiring manual and dexterous manipulation of 

components are influenced heavily by fatigue, as they require a 

combination of mental and physical demand. This fatigue will, in turn, 

influence task performance. Fatigue is a well-studied and complex 

phenomenon, which is commonly understood to exist in two distinct 

types: Physical, or motor fatigue, involving fatigue of the muscle; and 

cognitive, or mental fatigue resulting in the deterioration of cognitive 

functions [65]. The two types also do not occur independently, and are 

not entirely distinct, however, and there are known relationships 

between motor fatigue and increased nervous loading, which is in turn 

responsible for poorer response times in decision-making tests, and a 

decrease in motor control and physical function [66]. This relationship 

implies that dexterity can be detrimentally affected by increased 

cognitive loading.  In addition to the load requirements of the task, the 

time-on-task is another factor which influences the effects of fatigue. 

Fatigue is a cumulative phenomenon, and repeat demands will have a 

cumulatively greater effect on task performance [67]; additional 

factors, including the interstitial period of rest and their duration, 

further affect the fatiguing mechanism [68].  

Using the more traditional definition, fatigue also describes 

tiredness and the effects of sleep deprivation. Both the immediate and 

cumulative effects of sleep deprivation on performance have been 

studied, and both have a significant influence on performance [69, 70]. 

Human sleep patterns are governed by circadian rhythms which dictate 

periods of physiological activity and are closely linked to the time of 

day [71]. A number of patterns in these variations have been identified, 

termed chronotypes, with active periods in these rhythms are linked 

with increased motivation and task performance. There is a typically a 

preference for either morning (larks) or night (owls) activity; with 

corresponding decreases when task performance is measured at a non-

preferential time of day [72].  These circadian activity periods can 

often be influenced by light levels, with higher levels of illumination 

linked to improved task performance [73] and by satiety, which 

dictates many of the bodies physiological processes [74, 75] and is, in 

turn, influenced itself by a number of other factors. Other work has 

demonstrated the existence of an observable day-of-the-week effect, 

with decreased performance on Mondays, rising through the week to 

optimal performance on Thursdays [76]. A number of environmental 

factors, particularly temperature and noise, can all influence task 

performance if the level is excessive or susceptible to variation, and 

the impact of which is often to limit the ability to perform tasks 

concurrently [77, 78]. 

The last key contributing influence on human task performance, 

the impact of an individual's emotional state, is perhaps the most 

abstract. Whilst the influence of emotion on behaviour is generally 

well understood it is often overlooked from a human management 

perspective. The most influential emotional state is one of stress, the 

cause, and effects of which are some of the best-studied of these 

emotional factors [79]. Stress, like fatigue, is cumulative and is 

consistently found to have a significant and detrimental impact on task 

performance [80]. There is a close link between stress and frustration, 

a contributing factor to the perceived task workload [63], as a stressed 

mental state or a stressful task generate frustration which in turn 

propagates additional stress. Recent work in the field of social 

intelligence and cognition aims to use learning techniques to predict 

emotional states from the observation of actions and behaviours [31, 

81], which can be used to identify and account for these emotional 

states.  

C. Summary 

The preceding section has examined much of the recent literature 

within the scope of intelligent manufacturing. What is clear, is that 

there is substantial opportunity for the increased capability of modern 

computer systems and computer science techniques to improve 

manufacturing. Less obvious is how such opportunities can be 

capitalized upon, and there remains, crucially, no agreed upon methods 

or systems for achieving the theoretical benefits of intelligent systems. 

This is due in part to the relative infancy of the field, and the effectively 

limitless number of applications and their associated problems. 

Theoretical studies of thought and how autonomy and adaptability can 

be replicated through the use of computation are abundant in 

overlapping fields, and many of the insights and methods from both 

the fields of cognitive computing and multi-agent-systems are valid. 
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Much of this work is outdated, however, and the capability of modern 

systems far exceeds those for which these frameworks were designed. 

A key aim of such systems is to enable adaptability within the robotic 

elements of manufacturing systems, a goal which great steps have 

already been taken to achieve. However, despite the ubiquity of human 

workers and the obvious disruption that is associated with human 

performance is an area that remains to be addressed. The benefits that 

adaptation can provide within the manufacturing setting are clear, and 

consequently, there is justification to apply these methods to the 

problem of human performance variation and the associated problems 

this can introduce to these systems. 

III. DEVELOPMENT OF RESEARCH FRAMEWORK  

The literature review provides numerous insights into how the 

incorporation of intelligence into manufacturing systems can facilitate 

adaptable behaviour of robotic operators. Decentralization of 

manufacturing control systems to individual robotic operators can 

enable intelligent analysis of their observations. Such analysis can 

improve collaborative behaviour, through the appropriate selection of 

action based on the observed state of the process. 

By considering a typical manufacturing control process, two 

independent disciplines can be seen: Data collection, concerned with 

data generation, collection, transfer and storage; and Robotics, that 

accounts for the elements of robotic control, connecting the virtual to 

the physical, through traditional methods. These disciplines exist 

separately, but are ever more closely linked, as data-driven robotics 

systems become more commonplace. In such systems, control systems 

receive binary signals from sensors (data collection), which are passed 

to a PLC, triggering the appropriate response logic (robotics). The use 

of the information generated by this data can be seen in the framework 

illustrated in Figure 1. 

To enable the intelligent processing of this data, the authors 

propose the following framework, which aims to outline the necessary 

interactions between these different systems, in a fashion suitable to 

enable adaptability and collaborative behaviours. The presented 

framework illustrates the flow of data and information necessary to 

effectively collect, store, interpret, and act on data generated by a 

control process. This is primarily achieved by the addition of an 

intermediary Cognitive Layer which contains its own modular 

elements (illustrated in Figure 2), to implement the necessary data 

processing steps in an efficient manner. Such processing will enable 

intelligent response to changes in the perceived environment and 

facilitate agency in the robotic systems.  

Within the presented framework, three distinct stages now exist. 

The first of these encompasses the methods and processes associated 

with data collection, a vast topic in its own right, with many inherent 

problems. The available methodology for data collection is application 

specific, and the framework identifies the critical processes and 

capabilities that the data collection method must possess. The robotic 

operators’ data controller must minimally have the capacity to gather, 

store and transfer multiple data instances in a manner that enables 

compatibility with the computational components. 

Data generated within a typical manufacturing process can 

additionally be defined as being from one of two sources: Process 

data; The data elements directly related to the parameters of the 

process; and Environmental data; any supplementary data which can 

be used to extract information deemed relevant to the application. 

Notable consideration must be given to capturing and appropriately 

recording the relevant data at this stage, which can be generated from 

a combination of these sources. 

Figure 1. Existing information processing systems illustrated in terms 

of information flow through the system. 

Figure 2.  The proposed framework illustrated in terms of 

information flow through the system. Divided into three functional 

layers. 

Critical to enabling the use of machine learning methods is the 

capability to store and collate historical data. The historical data 

reserves must also be available to the controller, and able to be passed 

through to the cognitive layer for processing.  

The intermediary stage is the proposed cognitive layer which 

enables intelligent processing of the data. The layer is based on the 

modular structure seen in existing cognitive architectures. Each of the 

modules combines a number of functions and processing steps and is 

responsible for a different area of cognition. Three of these modules 

are proposed initially, covering key areas of processing. The first 

receives data from the data collection system through an appropriate 

interface before additional functions perform the necessary pre-

processing transformations for the data to be useful to the application. 

This is analogous to Perception, whereby the observed data and the 

information it contains is affected by the beliefs and aims of the 

observer. Such processing enables deduction of more useful data 

instances, for example, establishing a cycle time by looking at the 

timestamp separation of execution of two different sensor activations.  

The analytics module isolates the learning and analytical 

processing of the cognitive layer. This isolation of these more focused 

cognitive processes more easily enables the integration with low-level 

control; the responsibility of the cognitive controller. The learning 

mechanism here can be used to build a predictive model to associate 

patterns seen in the observed data with the relevant value. This 

observed data is supplemented here by additional knowledge, which is 
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not directly observable by the agent. This may include additional 

contextual information, such as shift patterns or production targets.  

The Perception and Analytics modules are supported by an 

underlying Cognitive Controller, which manages the information flow 

through the cognitive layer. It manages exchanges of relevant data 

between the different modules and uses the predictions of the analytics 

module to dictate the operations and parameters of the robot to exhibit 

the necessary functionality. The cognitive layer is additionally 

responsible for passing the relevant command instructions via an 

appropriate I/O interface to the robotics controller where they can be 

enacted.  

The final stage of the framework isolates those stages concerned 

with traditional robotics. The control signal generated by the cognitive 

controller is passed through the I/O interface (to convert the 

information to the application-specific format) where it is received by 

the traditional Robotic Controller. In many robotics applications, the 

interface will send instructions to a Programmable Logic Controller 

(PLC) for execution. The PLC is then responsible for generating the 

necessary command signal for the motors and actuators to affect the 

relevant motion of the robot. The operation of the robot results in an 

action, which influences the system, which will affect the recorded 

environmental and process data, forming a feedback loop. Separating 

these steps provides a clear distinction between the digital and physical 

domains of the system, and isolates the elements of control planning 

(an additional element of cognition identified in existing cognitive 

architectures) which are necessary to effect the correct motion of the 

robotic operator. This separation facilitates the division of cognition 

into higher-level reasoning and preserves necessary elements of 

reactive action. This action can still be enacted by sensors directly 

connected to the robot controller (i.e. in the case of kill-switches and 

collision/fault-detection), in addition to reducing the computational 

load of the processing. Using established techniques and technology 

from more traditional automation will facilitate implementation and 

compatibility.  

The architecture proposed in this section demonstrates how an 

intermediary cognitive layer, can be utilized within the control systems 

of robotic elements of the manufacturing process, to provide adaptive 

functionality, based on knowledge of human factors, and real-time 

contextual information observed from the environment. The presented 

case study is intended to demonstrate the potential feasibility of 

inclusion of knowledge of human factors and to further understanding 

of how the analysis of generated data may be used to predict and 

account for the uncertainty caused by human beings and improve 

production processes through adaptability. Within the framework, 

knowledge of how the decision-making module can process and 

interpret generated data, to extract this knowledge remains to be 

established.  Preliminary work suggests that machine learning 

techniques can be used to provide a learned policy to associate 

observed contextual data which captures the influence of human 

factors with the appropriate impact on performance.  

IV. METHODOLOGY 

To investigate the intelligent analysis of the generated data 

several tasks must first be accomplished. As discussed, the focus of 

this investigation is how to appropriately generate knowledge from 

data typically captured from manufacturing processes. The following 

section outlines the methodology for approaching this work.  

To enable exploration, a simulated environment was developed 

using the AnyLogic simulation platform [82], a Java-Based simulation 

platform designed for Agent-based, Discrete Event and System 

Dynamics simulation approaches. This combined functionality, and 

the ease of integration with external Java Libraries, best suited the 

applications of this work. The simulation environment was designed 

to replicate the collaborative interactions between a single Robotic 

Operator (RO) and a Human Operator (HO), working to achieve the 

common goal of product assembly as part of a production line. The 

simulation by design enables exploration of these interactions in a 

generalized manner. This is achieved by discretizing specific sub-

operations into logical ‘cells’, which enables the methodology to be 

applied to a non-specific manufacturing operation defined only by its 

duration or Cycle Time (CT) at each position. The interaction 

dynamics are then reduced to an upstream and downstream position, 

which are in turn defined as their own logical combination of sub-

operations discretized into a cell. The cells of each operator are 

separated by some form of transport method for the partially completed 

products (typically a conveyor), which often doubles as a buffer zone. 

Design is typically seen in production processes between operations. 

This formation of the problem in this way is illustrated in Figure 3. 

Such interaction also bears similarity to fetch-and-deliver type 

interactions more traditionally studied in the field of human-machine 

interaction, where one agent must provide the other with an object for 

them to perform their task. 

Figure 3.  The model developed and the corresponding Anylogic 

simulation, each cell contains a delay and data capture function. 

A. Human Factors Modelling 

Whilst the simulation environment primarily functions as a 

platform to evaluate on-task robotic performance, it is also used to 

generate data for training the learning algorithms. To achieve this, the 

components of the simulation representing human operators are 

parameterized to replicate both the variation between different 

operators and the effects of human factors on their performance. As 

the number of potential human factors is significant, in this study, a 

number of human factors relating to fatigue are considered, as this has 

the most significant influence on human performance across almost all 

types of task. To achieve this, a number of variables were used to 

modify the human task performance during simulations runs to 

represent different aspects of fatigue. The Cycle Time, calculated as 

the total time duration between products leaving each cell, was 
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selected to represent the task performance within the simulation. This 

value could be manipulated through the use of the defined variables to 

represent the effect on task performance.  

The Shift Duration (SD), was monitored and used to influence the 

task performance, by increasing the Cycle Time gradually over the 

duration of the simulation. This decrease in task performance enables 

the effects of fatigue resulting from time-on-task to be represented. To 

replicate the effect of the time-of-day and the improved performance 

seen in afternoon shifts, A Shift Modifier was also included and used 

to influence the set Cycle Time Value. This was incorporated using a 

variable value set to 1.0 representing no effect or (100%), which can 

be reduced and multiplied by the set CT value to reduce by the desired 

percentage. Additionally, a Weekday Modifier was included to 

reproduce the effects that weekday variation has on performance. This 

was achieved in the same manner as the shift-modifier, with a value 

which agreed-upon between simulation runs. These values reflect the 

effect of the identified human factors, but these will influence 

individuals to a varying degree. To account for this, the relevant 

parameters used for each operator can be set as required to replicate a 

variety of influence and susceptibility.  These values are arbitrary in 

the presented case study but will hypothetically enable our learning 

model to track and account for these influences. The influence of 

environmental effects was not considered as their impact on 

performance is comparably negligible if maintained at suitable levels. 

 

B. Dataset Construction 

The generated data is collated and used to form a dataset to train 

the neural network. For all machine learning tasks, initial consideration 

must be given to the dataset. The dataset generated consists of four 

input features, the Operator Number (ON), Shift Number (SN), Shift 

Duration (SD), and Weekday (WD) values forming each data instance 

with the corresponding cycle time as the label. Consideration of these 

data points will allow for the prediction of the performance of the HO 

by the RO based on historical performance. Additionally, patterns in 

performance that are independent of an individual HO are more easily 

established by aggregating the performance data for each operator into 

one singular dataset. To achieve this, a total of fifteen simulation runs 

were performed using a static behaviour for the robotic operators, as 

seen in existing automation applications.  The data from each of these 

simulation runs are collated to form a dataset containing a total of 

approximately 7500 data instances. Each of these simulation runs 

represents one day of operation, and consists of three shifts, am, 

midday, and pm, each performed by a different human operator. The 

operator assigned to each shift was varied to represent the performance 

of each operator across the full range of working conditions; this was 

done every 5 simulation runs representing a working week. Generating 

the dataset in this way enables performance to be analysed and patterns 

to be resolved over multiple timescales. 

 

C. Simulation Integration 

Developing a machine learning model to model the relationships 

between the observed information and the resulting performance 

impact is a key aim of this research. A neural network approach was 

selected to achieve this, due to their wide applicability and use as 

function approximators, given the complex nature of these 

relationships. The neural network development was done using the 

Java-based DeepLearning4j (DL4J)[83] library due to its proven 

capability and to provide integration with the Java-based simulation 

platform. This integration enables evaluation in a dynamic task 

environment. To initially assess the feasibility of the approach, a 

simplistic single-layer-perceptron type network was defined, to 

perform a multidimensional regression and provide a predicted 

numerical value for the CT of the human operator when provided with 

an observed data instance. This value can then be used to inform the 

speed of movement, or the potential order of operations to reduce the 

disparity in performances, minimizing the idle times, and consequently 

improving the fluency of the interaction.  

For all machine learning tasks, initial consideration must be given 

to the dataset. The dataset generated as detailed in the previous section 

consisted of data instances containing the observed cycle times as 

labels, and four input features associated with human task 

performance. The data instance is input to the network, passed through 

the hidden layers which encode the input/output mappings, and a result 

is received at the output node in the value for the human cycle time. 

Standard techniques for data pre-processing to improve accuracy were 

considered, and the dataset was collected and divided into a training 

set and an isolated test set and shuffled. 

Sigmoid activation functions were chosen to enable the combined 

input of discrete and continuous data. To do this, each attribute was 

normalized according to its type. The SD attribute, a continuous value, 

was normalized over a range of -1 to 1, to prevent saturation of the 

sigmoid activation functions. Categorical values were encoded with a 

‘one-hot’ normalization, which treats each category as a set of binary 

input nodes, resulting in 11 total input nodes: 3 values for the ON, and 

SN attributes, and 5 values for the WD attribute. For the output layer, 

a RELU activation was chosen, to output a corresponding real value 

that could be interpreted using the same normalization weights as the 

training data and used as a prediction based on an input observation. 

Additionally, dropout with a rate of 1 was added to the hidden layer to 

help prevent overfitting.  

The Java classes which define the Neural Network behaviour can 

be packaged using Maven to produce a Java Archive file (.jar), which 

can be included in the AnyLogic model as a Dependency to allow 

access to both the defined classes, and the larger DL4j library. The 

simulation was further developed by including these packaged libraries 

as dependencies and enabling the functionality to obtain a predicted 

value for the CT based on the observed environment using the trained 

neural network. Function calls can then be made at runtime to the java 

class containing the neural network passing information about the 

current simulation state to the Network through the function 

parameters to receive in return a predicted value. 

 

D. Performance Metrics 

In addition to evaluating the accuracy of the neural network 

during training, integration of the learning element into the simulation 

environment was necessary to evaluate the performance when faced 

with a representative task. This enables a more accurate assessment of 

the developed model in terms of how well such an approach can be 

used for real-time adaptive control. Whilst the analytical module is 

only a small part of the larger framework, developing the functionality 

to enable intelligent processing and adaptable behaviour is key to 

realizing the potential of intelligent manufacturing systems. 

Developing a model which is able to provide accurate predictions 
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based on observation will contribute to further understanding of the 

suitability of the approach.   

Training of the neural network was done using a backpropagation 

approach to iteratively determine appropriate weights for each node. 

The use of backpropagation requires multiple passes through the 

dataset referred to as epochs, and the specification of a learning rate, 

to effectively train the network. Additionally, the number of nodes to 

include in the hidden layer remained to be determined. A learning rate 

of 0.01 was selected to mitigate vanishing gradients at the expense of 

training time; as the output range was relatively small. The Epoch and 

Number of Hidden Node parameters were evaluated using an 

exhaustive search approach. The DL4J library provides functionality 

for evaluation, for the hyperparameter optimization, each evaluation 

used the isolated test set, and the Root-Mean-Squared-Error (RMSE) 

was selected as the loss function, calculated using Equation.1: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �(�(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2)/𝑛𝑛) 

𝑛𝑛
𝑖𝑖=1                             (1) 

This network configuration was then evaluated using a cross-fold 

validation, percentage split, and the previously isolated test dataset. 

Expectedly, evaluation of the isolated test set was the poorest, despite 

the test data being of similar form to the training data.  

The predictions made by the module will be used to dictate and 

inform the larger decision-making processes performed by the 

respective agent, and consequently must be available in real-time. 

Within the simulation, these predictions will be used to modulate the 

RO’s speed parameter with respect to the predicted human 

performance, to match its own cycle time to that of the current HO in 

the downstream position. As a result, the interstitial buffer zone will 

remain clear, the number of Workpiece-In-Progress (WIP) will be 

reduced, and the observed idle time will decrease, indicating improved 

interaction fluency. 

V. CASE STUDY 

To evaluate the methodology the simulation model was 

parameterized to match an example real-world scenario, which 

involves the assembly of disposable surgical devices. The process 

takes place in a clean room, and a number of robotic operators 

constitute the production line. Within the operation, there are several 

cells where tasks are completed by human operators. Individual 

manufacturing cells are separated by transport conveyors with a 

limited number of fixed positions, and consequently a low and 

definable capacity. The production line has been generally well 

designed and optimized, but the presence of human operators remains 

a source of disturbance, due to their variation in their respective cycle 

time. Baseline measurements were taken of typical cycle and process 

timings from the production process, which was used to 

representatively parameterize the simulation model based on an 

average HO CT of 45 seconds for the observed operation. 

In the first instance, the simulation run using static RO behaviour, 

to act as a control case, and to generate useable performance data in 

sufficient quantity, based on the identified human factors. Based on a 

nominal observed cycle time for the specific manufacturing operation 

of 45 seconds, three HO’s were then defined to represent a range of 

susceptibility to the impact of the identified human factors. This was 

achieved by adjusting this value using the model parameters. Operator 

1 is intended to be an experienced operator, with a faster than nominal 

CT of 40 seconds. Performance is decreased by 20% however over the 

shift duration to account for fatigue and the likelihood that the effect 

is increased due to faster repeat action. Operator 2 is intended to 

represent an average case, with a nominal base CT of 45 seconds based 

on process timings taken from the physical production line. No fatigue 

influence was included. Operator 3 represents a new operator, who is 

slower in operation, with a CT of 50 seconds, and a reduced fatigue 

influence of 10%.  The influence of the time of day was also 

considered, and the simulation parameterized accordingly. Operators 

1 and 3 were considered Owls and are susceptible to decreased 

morning performance represented by a 10% increase in cycle time 

during morning shifts, reducing to 0% in the afternoon. In a similar 

manner, the weekday modifier was set to decrease performance by 10% 

on Monday, and the influence gradually shifts to a 10% performance 

increase on Thursday, to replicate observed working patterns. 

Assuming a linear evolution over the shift duration from no fatigue 

effect to maximum effect, the fatigue modifier is calculated by 

considering the elapsed shift duration vs the total shift duration (7200 

seconds) and the percentage increase in cycle time, as per Equation 2. 

This enables the calculated cycle time for each human operator to be 

obtained via equation (3): 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝑀𝑀 = �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆 � ×  (1 +
%𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸100 )         (2) 

 𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀 𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑀𝑀𝑁𝑁𝐹𝐹𝑛𝑛𝐹𝐹𝐶𝐶 𝐶𝐶𝐶𝐶 ∙  𝑊𝑊𝑅𝑅 ∙  𝑅𝑅𝑅𝑅 ∙  𝐹𝐹𝑅𝑅            (3) 

 

Where, WM, SM, and FM, are the corresponding weekday, shift 

and calculated fatigue modifiers respectively. The relevant modifiers 

used for each of the identified human factors can be seen for each 

operator in Table.1.  

Table 1.  Breakdown of the values used to modify the CT for each 

operator for given states. 

Operator Number 1 2 3 

Base Cycle Time 40 45 50 

Fatigue Modifier (End of shift) 1.2 1.0 1.1 

Shift Modifier AM 1.0 1.0 1.0 

Shift Modifier Midday 0.95 1.0 0.95 

Shift Modifier PM 0.9 1.0 0.9 

Weekday Modifier Monday 1.0 1.1 

Weekday Modifier Tuesday 1.0 1.05 

Weekday Modifier Wednesday 1.0 1.0 

Weekday Modifier Thursday 1.0 0.95 

Weekday Modifier Friday 1.0 1.0 

  

The data is sampled by the robotic operator from the simulation 

environment to form a data instance each time a product is completed 

by the HO. This instance contains the identity of the operator currently 

working, the previous Cycle Time, the elapsed shift duration, the shift 

number, and the day of the week. These data instances are initially 

collated into a dataset (as is commonly done by data acquisition 
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systems), as described in section 4.2. This dataset is then subsequently 

used to train the neural network, allowing the value of a number of 

hyperparameters to be established. Once the neural network is trained, 

models of HO performance can be generated by the network, as 

presented in the methodology.   

To evaluate the performance of the control system, the trained 

network was integrated into the simulation model, and the additional 

analytical capacity robotic operator's control system used to predict the 

optimal RO operation speed based on the observed values of the HO. 

Upon completion of each task, the robotic operator makes an 

observation of the simulation environment as described above. This 

instance is then passed to the neural network and a prediction received 

in real-time. The RO speed is then adjusted to match the returned 

prediction. These combined processes can be related to the functional 

elements of the framework presented in Figure.2. The task completion 

event triggers an observation which is passed by simulation to the 

agent. This instance is pre-processed as relevant before the internal 

logic of the agent provides the instance to the neural network, which 

functions here as the Data-Analytics module identified in the 

framework. The network returns its prediction, and the agent’s logic 

determines the resultant action. In this implementation, to adjust the 

speed of the action to adjust its own cycle time to match that predicted 

for the collaborating HO. 

The capacity of the interstitial buffer was limited to 10 products, 

to replicate the real-world system, although this value is essentially 

arbitrary. Each human operators’ shift lasts for two hours, and the Shift 

changes occur for the HO’s at 7200 seconds and 14400 seconds. Upon 

each shift change, the parameters controlling the human operator 

within the simulation are updated, without resetting the simulation 

environment.  

Given the great success of neural networks at such function 

approximation tasks, it is hypothesized that using the generated dataset 

to train the machine learning model should enable the robotic operator 

to effectively predict the effect of the human factors on the 

performance, based on the observed values. As with most machine 

learning applications, this is likely to require refinement for optimal 

performance.  

If the learning model is able to successfully make these 

predictions and effect changes in the robotic behaviour in such a 

manner, it is hypothesized that using these predictions to adjust the 

operation speed to match that of the human operator will reduce or 

possibly completely eliminate the time which the robotic operator 

spends idle awaiting the completion of the human operators’ task. This 

will facilitate collaborative behaviour, in these kinds of human-

machine interactions by reducing the observed idle time of the robotic 

operator, improving the interaction fluency.  

As the developed learning model is still relatively simplistic, it is 

unlikely the predictions made will be accurate to a degree which will 

enable perfect one-piece flow, and as such, the continued use of 

interstitial buffers between operations may eliminate most of the 

observed idle times from the manufacturing process.  

It is also hypothesized that the capacity of these buffers may be 

greatly reduced from existing levels, as any disparity is likely to be 

minimised and these buffer zones to remain unfilled. This will 

additionally reduce the number of workpieces in progress at any given 

time, without reducing the total throughput of the system.  

 

VI. RESULTS 

A. Neural Network Training 

The neural network was trained using a backpropagation 

approach to determine suitable node weights, as discussed in the 

methodology section. The use of backpropagation requires multiple 

passes through the dataset referred to as epochs, and the specification 

of a learning rate, to effectively train the network. Additionally, the 

network configuration, including the number of hidden layers, and the 

number of nodes in these layers needed to be established. A learning 

rate of 0.05 was selected to mitigate vanishing gradients at the expense 

of training time; as the range of the output variable was relatively 

small. This minimal output range proved to be a problem during early 

development, as the gradients would often converge and become stuck 

at local minima. The inclusion of dropout to the hidden layers, (with a 

100% certainty rate, to randomly remove one connection at each 

parameter update) proved to reduce this occurrence and improve the 

predictive ability greatly. The Epoch and Number of Hidden Node 

parameters were evaluated using an exhaustive search approach which 

was repeated for each of the layer configurations, runs were performed 

for one and two hidden layers to determine whether there is an 

advantage in increasing the depth of the network. The DL4J library 

includes a number of evaluation functions. To evaluate the 

hyperparameters, the Root-Mean-Squared-Error (RMSE) was selected 

as the loss function, and each evaluation used an isolated test set. The 

results are presented in Figure 4. 

Figure 4.  heatmap of RMSE scores, from red (highest) to blue 

(lowest) for the number of hidden nodes against the number of 

epochs trained.  For a) 1 hidden layer and b) two hidden layers. 
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From the heatmap, the variations in performance can be 

visualized, and a number of conclusions drawn.  The networks can all 

be seen to converge within a small number of epochs, as a continuous 

range of output variables is quickly reduced to the observed range. As 

the out range is relatively small, a large number of iterations is needed 

to reduce the error to a level where differentiation between instances 

is possible. Increasing the number of training epochs may eventually 

lead to overfitting, although this is unlikely the case in this application 

as the feature set is relatively small compare to the number of data 

instances. The heatmaps also show that training past ~500 epochs leads 

to minimal improvements in accuracy at the expense of considerable 

training time. The additional hidden layer can be seen to add 

significant complexity, as the errors are initially higher and converge 

slower, with a minimal gain in predictive accuracy. The single hidden 

layer networks can be seen to introduce less error and train more 

consistently, whilst benefiting from lower training times. As such, a 

number of potential network configurations can be identified from the 

heatmap: the 15-hidden-node, 18 hidden-node, and the 22 hidden-node 

configurations all look viable and result in comparatively low RMSE 

scores after 500 training epochs. The learning rate of the 15-node 

configuration is the most stable; with a low initial error that shows 

progressive improvement as the training progresses in contrast to both 

the 18 and 22 node configurations, in addition to reducing the network 

complexity and computation demands. Consequently, the design of a 

single-layer and 15 hidden-node was selected for use in the simulation, 

despite the 18 and 22 node configurations lower RMSE scores. 

B. Simulation Results 

Once the optimal parameters were established, the simulation was 

again run using the trained network. In the static simulation case, the 

RO cycle time was fixed at 40 seconds, the result of which is a 

cumulative idle time of more than 4000 seconds over the total duration 

of the simulation due to the interstitial buffer being filled, and the RO 

having to wait for space to become available.  

Figure 5a) plots the idle time and workpieces in progress, against 

time; for the total duration of the simulation run, for the static 

simulation case. When the RO follows a static behavioural routine, the 

cumulative idle time can be seen to be influenced by the number of 

workpieces in progress, as once the buffer zone is fully occupied (10 

products in the presented simulation) the RO must wait for space to 

become available within the buffer, clear before it is able to resume 

operation. The interstitial period prior to the available buffer space is 

represented as the plateau before the idle time begins to increase. 

Figure 5b. plots the buffer contents for the dynamic behaviour case, 

using the neural network predictions to inform the operator's speed. 

The buffer contents never exceed 5 units, and there is no resultant idle 

time observed. 

Figure 6 plots the simulated human operator cycle times against 

the neural network's predictions used to govern the cycle time of the 

robotic operator. The results are shown for simulation runs over a 

working week and contains several features. Comparing the predicted 

values to those observed enables several insights about the 

performance of the neural network on identifying the influence of each 

of the human to be observed. The sharp distinctions in the Robotic 

Operator cycle times in Figure 6 suggest that the neural network is able 

to successfully identify the performance of the multiple operators, and 

the proportional increases of both the predictions and observed cycle 

times suggest that the influence of the task duration is also able to be 

approximated. Combined, Figures a) through e) illustrate the network 

predictions for each day of the first working week simulated. Operator 

2, in this case, the central set of cycle time measurements, is 

susceptible to this influence only. By considering the plotted values, 

the range and predictions can be seen to decrease over the week 

duration proportionally to the influence of this modifier, suggesting the 

network is able to distinguish successfully this influence. 

Figure 5. Cumulative idle time and buffer contents against shift 

duration for static behaviour case; b) Buffer contents against time for 

dynamic behaviour contents for each weekday. 

Figure 6. RO CT and HO CT over time for a) Monday, b) Tuesday, c) 

Wednesday, d) Thursday, e) Friday. Random element seeds are 

changed between runs, ensuring appropriate variability when the 

same conditions are imposed. 

Figure 7 plots the same values as Figure 6 but highlights how the 

shift order influences the predictive capability. What can be seen is that 

the neural network error varies proportionally to the variation 

introduced by the weekday modifier, for operators 1 and 3 whom it 

effects, suggesting that the network is able to follow the changes in 

performance based on time of day preference, as the predictions and 

errors can be seen to move consistently when comparing am and pm 

a
a) 

b) 

a) b) 

c) d) 

e) 
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shift performance. Additionally, there appears to be no influence on 

the networks ability to predict the performance of operator 2 who is 

not susceptible to the influence of the shift modifier.  

 

Figure 7. RO CT and HO CT over time for Monday shift of three 

weeks and corresponding shift orders a) 123, b) 231, and c) 312. 

These results suggest that the neural network is able to account 

for the influence of the human factors which were modelled and that 

there is likely an unaccounted for factor preventing the network from 

resolving values more accurate to the performance level of operators 2 

and 3. Operator 1 consistently occupies an output range of 

performance that has limited overlap with the performance of 

operators 2 and 3. As such, the offset could be a result of the output 

range having significant overlap, and the contradictory influences of 

the multiple factors. To determine if the network breadth would lead 

to increased predictive ability, a 22-node network was configured and 

trained and used to inform the simulation for a number of similar 

scenarios. Figure 8 illustrates some of these, and comparison to the 15-

node network case suggests that the network structure is not 

responsible for the loss of accuracy, and in fact, the 22-node 

performance is subjectively worse for the extreme cases.  

Figure 8. RO CT and HO CT over time for a) Monday 123, b) 

Monday 312, c) Thursday 123, d) Thursday 312, illustrating the 

predictions of the 22-hidden-node network. Results are mostly 

consistent with 15 node network for all scenarios. 

 

Crucially, the neural network is able to reduce the observed 

disparity and reduce the overall idle time of the system, however, 

significantly more work is needed to move towards a system capable 

of perfect one-piece-flow. These trends in predictive capability can be 

seen to remain consistent across the order of operators and different 

timescales. 

VII. DISCUSSION 

What can be seen for the results most clearly is that adaptation of 

the robotic operator behaviour leads to an overall reduction in the idle 

time of the robotic operator accumulated over the duration of the three 

shifts. The reduced idle time can be said to improve the fluency of the 

interaction, consequently improving the collaborative abilities of the 

robotic element. The findings demonstrate that systems capable of 

understanding the variations in the performance of human operators 

enable behaviours to be adapted, based on the observed actions of the 

human counterpart. This adaptability has the potential to be usefully 

leveraged by reducing the disparity in performance. This supports the 

authors’ hypothesis that the integration of intelligent manufacturing 

concepts can be used to alleviate the uncertainty caused by the human 

element of these systems; that such an approach is well suited to aiding 

collaborative task performance; and is achievable with simple, proven 

methods and available hardware.  

The presented methodology may also further understanding of 

how simulation can be used to explore the efficacy of machine learning 

algorithms, by enabling functional, application-based testing in a 

controlled environment. Simulation environments can be designed 

using powerful tools and established methodologies of discrete event 

simulation to replicate any number of manufacturing processes. By 

using the integration methodology detailed, bespoke machine learning 

solutions can be tested in an isolated and yet detailed and 

representative environment. Discrete event simulation models are 

frequently used to inform engineering and business decisions and 

expanding the capability of these models may allow for novel 

solutions. 

The work highlights the value of pursuing adaptability in robotic 

control systems and improves knowledge as to how machine learning 

and principles of intelligent manufacturing should be used to overcome 

uncertainty within production processes. Reducing disparity in these 

applications can be seen to reduce the demand for buffer space to 

manage one-piece-flow like production, and adaptability applied in 

this fashion may enable improvement to processes where one-piece-

flow is currently not able to be implemented, due to buffer or time in 

system restrictions.  

Furthermore, the work also highlights the importance of making 

use of information from a number of disciplines, specifically, and in 

contrast to existing Human-Machine-Interaction approaches, how 

knowledge of the influence human factors on performance can be used 

to inform adaptable behaviour in robotic operators and enable 

collaborative behaviours to be enacted in response to observed human 

behaviours. The authors hope that the presented findings will further 

exploration of the application of intelligence to human-machine 

interaction in this way and contributes to knowledge that is required as 

machines and computers in all aspects become more capable, 

intelligent, and responsive; and their interactions with humans become 

more common. Methodologies to ensure that these machines are able 

to interact and process information in an appropriate manner are 

essential to developing alongside the technological capability to do so. 

From neural network development, additional insights can be 

revealed. It can be seen that the network structure has a significant 

impact on the training process and achievable accuracy. This suggests 

a) b) 

c) d) 

a) b) 

c) 
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that the network structure is a crucial factor in enabling efficient and 

effective intelligent data processing and that bespoke structures ad 

investigation are likely to be required depending on the available 

dataset, its contents and its structure. Increasing the depth of the neural 

network could be seen to minimally improve the network accuracy, at 

the cost of decreasing the stability and performance during training. 

The networks take longer to converge, and are more susceptible to 

local phenomena, due to the increased number of constituent nodes. 

Whilst the presented neural network can be seen to enable a 

reduction in performance disparity, there remain sources of 

inaccuracy. Additional consideration must be given to factors 

associated with processing real-world data, noise, missing values, and 

additional randomness associated with Human-Beings as yet 

unaccounted for improvement to performance and predictive ability 

could result from re-structuring or division of the dataset. Training of 

networks on multiple datasets containing information describing 

individual days, shifts, or the performance associated with each 

individual operator may influence how the network is able to 

approximate the influence of human factors.  

The application of machine learning techniques is not an exact 

science, and a certain level of iterative development is necessary to 

develop networks capable of accurate and reliable prediction. Further 

work on more advanced network architectures should enable 

increasingly accurate and capable models to be developed, in line with 

more demanding learning tasks, and to overcome the challenges 

associated with real-world data. In addition, multiple networks can be 

combined to include multiple other factors in the decision-making 

process. Other intelligent functions, including memory and perception, 

share the modular nature of analytical thinking. Further work is 

planned to further investigate how reconcile the strengths of multiple 

types of network, such as convolutional neural networks, which enable 

information to be extracted from visual systems, or recurrent networks, 

which provide the capacity for memory, enabling the network to more 

accurately determine temporal patterns in the dataset without the need 

to extrapolate global patterns.  

It is important to discuss the fact that whilst the presented case-

study is thoroughly explored, a full validation of the proposed 

framework requires substantially more work and consideration of a 

number of different applications, a task that is ongoing. This remains 

one of the crucial challenges in intelligent manufacturing and human-

machine-interaction, as no established standards for validation exist. 

Developing such standards is no small task, as almost all solutions 

require a bespoke set of components and processes to achieve their 

own required functionality; additionally, the sheer possibility of 

variation between human beings and different manufacturing scenarios 

compounds the difficulty of such a validation task. The next stage of 

this work will begin training these models and conducting an 

evaluation using real-world data and developing simulations to further 

validate this method across a wider range of tasks and scenarios that 

may potentially be encountered.  

VIII. CONCLUSIONS  

The aim of the presented research was to further understanding of 

how to better enable collaborative, intelligent behaviour in human-

robot-interaction within the manufacturing context. A crucial element 

of this is the ability to understand how associated human factors may 

lead to an unstable and varied performance in human colleagues. The 

presented solution demonstrates that a simplistic model is able to make 

appropriate predictions to inform decision-making, which in turn 

enables adaptable, and autonomous behaviour for working with 

different human individuals; and to do so in a real-time setting. The 

work highlights the benefits in terms of collaborative behaviour that 

the application of intelligence within manufacturing facilitates. 

This work represents a portion of a larger and ongoing project on 

the application of learning to facilitate intelligent behaviour in human-

machine-interactions, and further research is planned to investigate 

these topics. 
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