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A risk-mitigation model driven from the level of forecastability of Black 

Swans: prepare and respond to major Earthquakes through a dynamic 

Temporal and Spatial Aggregation forecasting framework  

 

 

Abstract 
 

Major earthquakes are black swan, or quasi-random, events capable of disrupting supply chains to an 

entire country, region or even the whole world as the case of the Fukushima disaster profoundly 

demonstrated. They are amongst the most unpredictable types of natural disasters, and can have a 

severe impact on supply chains and distribution networks. This research develops a supply chain risk 

management model in the anticipation of such a black swan event. The research considers major 

earthquake data for the period 1985 – 2014, and temporal as well as spatial aggregation is undertaken. 

The aim is to identify the optimum grid size where forecasting variance is minimized and 

forecastability is maximized. Building on that a risk-mitigation model is developed. The dynamic 

model – updated every time a new event is added in the database - includes preparedness, 

responsiveness and centralization strategies for the different levels of time and geographical 

aggregation.  

 
Keywords: Risk, Black Swans, Forecastability, Statistical Aggregation, Disaster Relief 

 

 

  



3 

 

A risk-mitigation model driven from the level of forecastability of Black 

Swans: prepare and respond to major Earthquakes through a dynamic 

Temporal and Spatial Aggregation forecasting framework  

 

 

1. INTRODUCTION 

The prediction per se, but most importantly the degree of predictability, of major earthquakes has long 

been the subject of intensive research. The seminal works of Lane (1966) and Whittow (1980), for 

example, highlight the semi-predictability of earthquakes, showing that they occur intermittently over 

long periods of time with a tendency not to cluster into short time periods. Nevertheless, the intensity 

of particular earthquakes, or of an individual earthquake, is very hard to predict (McKenna, 2011). 

Nonetheless, the models we have at our disposal offer opportunities to significantly improve our 

understanding of risk mitigation and to drive research in the best possible direction to anticipate 

earthquake events. This is an essential topic in Humanitarian Logistics and OR/MS can help by 

providing models to help take informed decision before and when such situations arise. These models 

need to be dynamic so as to be fed with data as and when they become available – more data for pre-

specified observable variable, but also data for more dimensions than originally envisaged. (He and 

Zhuang, 2016) 

Major humanitarian challenges are usually driven by catastrophic, and, to a large extent, unexpected 

events. These events are quasi-random and, as such, their occurrence has been likened to the 

principles of black swan events (Taleb, 2007). Taleb’s book “The Black Swan” starts with: 

‘Before the discovery of Australia, people in the Old World were convinced 

that all swans were white, an unassailable belief as it seemed completely 

confirmed by empirical evidence’ (2007, pp. xxix) 

In forecasting, three types of ‘swan’ can be identified. First, normal events, usually referred to as 

‘white swans’, represent the mainstream of the data and their occurrence is more or less predictable 

using well-established statistical models. However, “the normal is often irrelevant…” (Taleb, 2007, 

pp. 36), the greater costs and opportunities are usually associated with the abnormal. So, there are the 

‘grey’ swans, which are rare but expected. “Somewhat predictable, particularly to those who are 

prepared for them and have the tools to understand them” (ibid, pp. 37). Last, there are the ‘black 

swans’: the unexpected and almost unpredictable "fewer remote events, but more and more extreme in 

their impact" (ibid, pp. 38). In trying to predict the appearance of black swans, three questions are of 

particular importance: 
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 When is the next black swan going to be observed? 

 Where will the next black swan occur? 

 What will be the impact of the next black swan event on the probability of subsequent 

sightings? 

But are black swans truly unexpected, or is it all a matter of perspective and perception (Taleb, 2007)? 

Black swans might be just ‘peaks over threshold’ (Leadbetter, 1991). However, what is critical is the 

form and quality of data available for identifying these peaks, in other words maximizing prediction 

power? The problem therefore is to identify the appropriate lens through which data should be 

explored and analyzed. The forecasting horizon and width (how far ahead organizations look or plan 

and over how broad a horizon they scan, and for which geo-region) are usually parameters imposed 

by the internal or external environment. But is this the horizon and width where the forecasting 

accuracy is maximized, and thus the uncertainty that prevail in our forecasts and therefore in our 

decision-making is minimized?  

If this argument is followed, the forecasting/foresight horizon and width can be rethought and 

considered in the model application, in other words, re-thinking the when and where of strategic 

planning. One obvious solution would be to match the when and where of strategic decisions to the 

forecasting horizon and width that minimizes the respective uncertainty and maximizes the 

forecasting performance. This becomes more important in the presence of black and grey swans, 

where uncertainty is confronted and even the slightest improvements in forecasting accuracy could 

prove to be critical (Powell et al, 2016). 

A particular case of black swans with considerable potential impact is the case of earthquakes. Can 

earthquakes be predicted or, taking the focus of this research, can a better forecast be made of areas 

where earthquakes are most likely to occur? Questions such as these have been asked for the last 

2,500 years, since Archimedes described the intermittent nature of earthquake occurrences. It is 

currently contended that the exact timing, location or impact of an earthquake cannot be predicted 

(McKenna, 2011). Provision of categoric earthquake forecasts to a specific location (city/region) and 

a narrow time interval (week or even day) is impossible. However, while there are regions that are 

more seismically active, for example based on plate tectonic movements, it is much more probable 

that an earthquake of magnitude 5 or greater will occur in Greece compared to UK, even if such areas 

are focused on, it is still not possible to accurately predict the exact timing or the impact of an 

earthquake. Therefore, if the exact location and timing of an earthquake cannot be predicted, what 

actions can be taken? In summary, at which scale are earthquakes the least predictable, and 

conversely, at which scale are they most predictable?  

In recent years there have been several developments in the area of data aggregation. These 

developments have been in both a temporal context (Nikolopoulos et al. 2011; Kourentzes et al., 

2014; Petropoulos and Kourentzes, 2014; Petropoulos and Kourentzes, 2015; Athanasopoulos et al., 
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2015), and a spatial context using hierarchies of data, and respective forecasting approaches 

(Hyndman et al., 2011). Thus models now exist that could help to identify the most predictable 

temporal and spatial windows that could then drive our respective strategic decisions. The most useful 

property of this family of models is that they are dynamic in nature as they are driven by responsive, 

continuous updates of the empirical databases. Thus the impact of such events can be addressed by a 

vector of variables that can suggest more options for what drives the decisions. 

With reference to impact, one approach is to try and improve existing response systems so that 

communities are better prepared should an earthquake occur. In order to improve such systems, it 

might therefore be possible to use aggregation in terms of both time and geographical regions in order 

to establish the optimal levels of positioning and stock volumes that are used for strategic planning. In 

this research, various temporal and spatial aggregation scales are evaluated with specific reference to 

earthquake event prediction. Section 2 provides a literature review focused on earthquake 

preparedness and disaster response. In Section 3 the experimental design and empirical results of a 

forecasting exercise employing real-life data and various aggregation strategies are presented. In 

Section 4 the proposed model is discussed while in Section 5 the implications for theory and practices 

of RM/MS and humanitarian logistics are demonstrated Lastly, in Section 6, broader inferences 

concerning emergency decision-making and strategic planning are made, conclusions are drawn and 

insights into possible areas of future research are provided. In this sense, the research is intended to 

inform the relevant organizations, in broad terms, when and where to pre-plan, and in which situations 

to invoke a response strategy, the key question being: which strategy is likely to be more effective 

overall? 

 

2. LITERATURE REVIEW 

In recent years, academic reviews of humanitarian aid and emergency relief logistics have been 

elevated from essentially descriptive and observational (Pettit and Beresford, 2009; Kunz and Reiner, 

2012; Kovacs and Spens, 2011) to methodological and analytical (Naji-Azimi et al, 2012; Paul and 

MacDonald, 2016; Powell et al, 2016). The rapid growth in academic interest in the applied field of 

humanitarian aid and emergency relief logistics, as well as adding energy to the debate, has increased 

its scale and scope.  

The frequency of occurrence of natural disasters in recent decades has led to a growing awareness of 

their impact on communities and society in general. This, in turn, has triggered increased interest in 

modelling the predictability of the events themselves, and assessing the degree to which impact can be 

mitigated by improved levels of preparedness or better responsiveness. Galindo and Batta (2013) and 

Gutjahr et al (2016), for example, have reviewed the growing body of literature in the operational 

research field which has focused on humanitarian aid distribution or emergency relief provision. It is 
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suggested that, although modelling has become more sophisticated and increasingly granular, the 

underlying pattern of research has not significantly changed. Management of disasters in general 

terms has persisted as one of the main research threads (see, for instance Edrissi et al, 2013) and a 

second thread has followed a case approach looking at, for example, Brazil (Alem et al, 2016), Iran 

(Tofighi et al, 2016) or Turkey (Kilci et al, 2015). A third branch of research embraces cross-cutting 

studies such as that by Ozdamar and Ertem (2015). These embrace several dimensions which include 

organizational as well as operational parameters. They typically focus on the importance of taking an 

integrated approach in order to fully understand uncertainty. The papers referred to above, endeavour 

to make sense of, and parameterize, a range of challenges which are either implicitly, or explicitly, an 

integral part of the humanitarian logistics problem in different circumstances.  

 

2.1. Earthquake Preparedness 

The goal of emergency response is to provide shelter and assistance to the victims of disasters as soon 

as possible after an emergency occurs. Pre-positioning of key supplies at strategic locations is 

essential in ensuring their availability both when required and for faster response (e.g. Rawls and 

Turnquist 2010; Balcik et al. 2010). It has been suggested that in the long run such an approach aids 

in the reduction of the cost of deliveries to those locations due to regular replenishment (Gatignon et 

al. 2010). Many studies have addressed the importance of the preparedness phase and the need for 

pre-positioned warehouses in humanitarian relief logistics, whereas only a small number of papers are 

related to the specifics location decision (e.g. Rawls and Turnquist 2010; Campbell and Jones 2011; 

Roh et al, 2015). Gatignon et al. (2010) illustrate the implementation of a decentralized model at the 

International Federation of the Red Cross using the pre-positioned warehouse concept. Campbell and 

Jones (2011) use a cost model to examine the prepositioning of supplies and the volume of goods in 

preparation for a disaster. Nevertheless, where the above studies discuss the optimal location based on 

a single criterion (e.g. minimum total costs), the assessment process for strategic decision-making 

often involves several attributes, and it is usually necessary to make compromises among possibly 

conflicting tangible and intangible factors (Onut and Soner 2007).  

The multi-criteria decision-making (MCDM) approach has been widely adopted as a tool for 

optimizing the location of stocking points for emergency relief goods (see, for example Roh et al, 

2015). However, where and when an emergency event might occur has been considered less 

frequently, yet is a very important part of effective emergency response. Prediction of major events in 

terms of their timing, location and intensity form the focus of the research in this paper. In specific 

terms, therefore, the research gap is addressed by specifically considering the overall pattern of 

humanitarian relief organizations’ strategic stock locations in both international (macro) and local 

(micro) contexts in relation to the historic pattern of earthquake occurrence at a global scale. 
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Distribution/logistics centre attributes have been discussed by, for example, Li et al. (2011) who 

highlight the importance of parameters such as accessibility, security, connectivity, costs, and 

proximity to customers and suppliers as key to successful logistics. Although this research was in the 

context of commercial operations, in principle all of these measures are transferrable to the 

humanitarian sector. If these measures are superimposed on robust event forecasts, their value is 

maximized.  

Locating a pre-positioned warehouse near to the beneficiaries and potential disaster location 

potentially reduces delivery time and cost, but more importantly, it has the potential to save lives. The 

geographical location of the warehouse does not have to be near the disaster prone area, but rather it 

could be in the headquarter country or next to a regional office for strategic reasons. Proximity to 

beneficiaries for a potential warehouse is thus one of the important considerations and can be viewed 

in a similar way with proximity to disaster prone areas. Critical to the question of locating emergency 

response depots, and hence materials, is having the best possible understanding of the probability of 

earthquake occurrence as measured by its location, timing and intensity. This can be viewed as a 

three-dimensional construct involving X, Y and Z variables which can be assembled into a three-

dimensional model.  

There is substantial literature on probability forecasting which, though mostly outside earthquake 

prediction, is useful for improving understanding of such three-dimensional models. In the context of 

weather forecasting, for instance, three-dimensional models are common and outcomes are in the 

form of probability forecasts (Palmer, 1999). Central to the application of probability is the level of 

aggregation of data on both temporal and spatial scales. An example of this is the UK Meteorological 

Office which has developed techniques to understand such uncertainties, called ensemble forecasts. In 

this forecasting procedure, simulations are run many times rather than just once, with very slight 

differences in the inputs in order to slightly vary the starting conditions. The range of outcomes thus 

generates a measure of confidence or certainty in the overall forecast (Met Office, 2016). While using 

ensembles gives an indication of certainty / uncertainty it also creates a problem in communicating the 

results. The main issue being: how high is the confidence about certain (likely) outcomes in relation to 

the low confidence in (unlikely) outcomes of low probability?  

The key measures in the case of earthquakes, and therefore the parameters of concern for forecasting 

them, are: location of occurrence (epicentre), magnitude (or power), duration, depth of the disturbance 

and proximity to areas of population; this last parameter largely determines the impact of the event 

expressed in terms of material damage or loss of life. The United States Geological Survey (USGS) 

National Earthquake Information Center (NEIC) estimates that over a million earthquakes occur in the 

world each year (NEIC, 2016). Many have no impact because they occur in remote areas which are 

virtually uninhabited and beyond the reach of detecting mechanisms. Table 1 details the estimated 

frequency of earthquakes worldwide by annual average, according to magnitude, while Table 2 details 

the number of earthquakes recorded annually from 2000 to 2012 according to magnitude.  

http://www.metoffice.gov.uk/
http://www.metoffice.gov.uk/
http://www.metoffice.gov.uk/research/areas/data-assimilation-and-ensembles/ensemble-forecasting
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Table 1. Annual estimate of earthquake occurrence by magnitude 

Descriptor Magnitude Annual average 

Great 8 or higher 1 

Major 7–7.9 17 

Strong 6–6.9 134 

Moderate 5–5.9 1,319 

Light 4–4.9 c. 13,000 

Minor 3–3.9 c. 130,000 

Very minor 2–2.9 c. 1,300,000 

Source: NEIC (2016) 

 

Clearly, as the scale of earthquake analysis reduces, the more challenging the forecast of ‘when, 

where and how strong’ becomes. That is to say, the more precisely the location of a potential 

earthquake is stipulated, the less likely the event forecast is likely to be correct. At a global scale, the 

total number of earthquakes is reasonably constant, but the predictability of the major earthquakes, 

especially at a granular level where approximate locations are specified, is low. Although earthquakes 

of magnitude and 6 and above are relatively predictable by annual average frequency, earthquakes of 

magnitudes from 2 to 5.9 are much more variable in terms of frequency per annum. Earthquakes of 

below 2 magnitude are so small that they are often not detected; these can be neglected and omitted 

from any analysis as their impact is negligible.  

 

Table 2. Number of Earthquakes Worldwide for 2000 - 2012 Located by the US Geological 

Survey 

Magnitude 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

8.0 to 9.9 1 1 0 1 2 1 2 4 0 1 1 1 2 

7.0 to 7.9 14 15 13 14 14 10 9 14 12 16 23 19 11 

6.0 to 6.9 146 121 127 140 141 140 142 178 168 144 150 185 96 

5.0 to 5.9 1344 1224 1201 1203 1515 1693 1712 2074 1768 1896 2209 2276 1295 

4.0 to 4.9 8008 7991 8541 8462 10888 13917 12838 12078 12291 6805 10164 13315 8710 

3.0 to 3.9 4827 6266 7068 7624 7932 9191 9990 9889 11735 2905 4341 2791 2174 

2.0 to 2.9 3765 4164 6419 7727 6316 4636 4027 3597 3860 3014 4626 3643 2721 

1.0 to 1.9 1026 944 1137 2506 1344 26 18 42 21 26 39 47 34 

0.1 to 0.9 5 1 10 134 103 0 2 2 0 1 0 1 0 

No 

Magnitude 
3120 2807 2938 3608 2939 864 828 1807 1922 17 24 11 6 

Total 22256 23534 27454 31419 31194 30478 29568 29685 31777 14825 21577 22289 15049 

Source: NEIC (2016) 
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In order for aid agencies to be as well prepared as possible to implement relief operations, it is clear 

that any improvement in the understanding of where and when events are likely to occur would 

improve both locations of pre-positioned warehouses, and, from that, the speed of response. Agencies 

such as the United Nations High Commission for Refugees (UNHCR) already have pre-positioned 

warehouses which respond to all forms of crisis (UN, 2015). While this paper only considers the most 

important locations and only in relation to earthquakes, it is recognized that further development of 

the research to include other disaster types will improve the locational precision of the work and 

widen the value of the research.  

 

3. EMPIRICAL EVALUATION OF AGGREGATION STRATEGIES 

3.1. Experimental design 

In order to identify the optimal aggregation levels for predicting earthquakes, the Significant 

Earthquake Database2 is used. This database contains information on destructive earthquakes which 

meet at least one of the following criteria:  

 Moderate damage (approximately $1 million or more) 

 10 or more deaths 

 Magnitude 7.5 or greater 

 Modified Mercalli Intensity X or greater 

 The earthquake generated a tsunami 

This research focuses on earthquake events of the 30 year period, 1985-2014. The focus is on three 

primary variables to evaluate the forecast accuracy of different aggregation levels: the occurrence of 

an earthquake, and the number of deaths and injuries caused. At the time the data were extracted from 

the database it was only partially complete in respect of data about the exact epicenter (longitude and 

latitude) of an earthquake, and the number of deaths and injuries. Thus a manual search for the 

missing data was conducted in order to populate the missing fields in the database. On completion of 

this exercise the dataset now offers the best opportunity for analysis as the information is consistent, 

containing exact latitude and longitude of earthquake epicenters and precise dates of occurrence. At 

this stage, account is not being taken of the respective earthquakes’ magnitudes other than by setting 

the threshold as detailed above; the earthquake magnitude therefore acts as a ‘qualifier’ for the 

dataset. Similarly, account is not being taken of earthquake duration or depth below surface, although 

these have long been acknowledged as major determinants of the severity of earthquakes and of their 

impacts, especially as judged by the number of casualties (see, for example, Whittow, 1980; Carter, 

                                                 
2 Accessed through: https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1 
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1999, UN, 2006). More recent work, e.g. the research of Paul and MacDonald (2016), also highlights 

the importance of earthquake magnitude, and number of foreshocks and aftershocks, as key 

determinants of material damage and the number of casualties.  

Five temporal and five geographical levels of aggregation are considered. These are depicted in Table 

3. The data are then re-aggregated in order to take into account all possible combinations for temporal 

and geographical aggregation levels. In total, therefore, there 25 different aggregation levels. The data 

(earthquake events) are visually depicted in Figures 1 to 5 for different levels of geographical 

aggregation. Regions shaded in grey indicate that at least one earthquake has occurred over the thirty-

year period. Degrees of latitude and longitude are used to fix the size of the geographical grids. 

 

Table 3. Earthquake event aggregation levels 

Temporal Aggregation Geographical Aggregation 

degrees (o) 

Monthly 10o x 10o 

Quarterly 30o × 30o  

Yearly 60o × 60o  

Three-yearly 90o × 90o  

Five-yearly 180o × 180o  

 

To evaluate the suitability of these aggregation strategies, a small-scale forecasting exercise is 

performed. The first 25 years of data (corresponding to 5 upto 300 data points, depending the level of 

temporal aggregation) are used to produce forecasts for the next 5 years (60 months). Forecasts are 

produced using the Simple Exponential Smoothing method where the parameters (alpha smoothing 

parameter and initial level) are optimized. The occurrence of an earthquake, the number of deaths and 

the number of injuries for a region (as specified by the geographical aggregation windows) are 

forecast. Forecasts are generated at the respective aggregation level; e.g. we use the quarterly – 60 x 

60 degree (60o × 60o) data to produce 20 (5 years × 4 quarters) point forecasts referring to predictions 

of earthquake events over geographical areas of 60o × 60o. Subsequently, all predictions are then 

disaggregated to the most granular level considered in this study (monthly frequency - 10o x 10o 

regions) so as to be able to evaluate all strategies equally.  

Temporal disaggregation takes place assuming equal weights. For example, the yearly forecast is 

equally distributed in 12 monthly forecasts. This assumption makes sense, as it would not be expected 

that earthquakes event occurrences have seasonal and/or trend patterns. Geographical disaggregation 

is employed using the top-down hierarchical approach (e.g. Gross and Sohl, 1990; Fliedner, 1999). 
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Disaggregation weights that are directly calculated from the historical averages of the bottom-level 

series are selected. 

 

 

Figure 1. Empirical data aggregated in 10o × 

10o geographical regions 

 

Figure 2. Empirical data aggregated in 30o × 

30o geographical regions 

 

Figure 3. Empirical data aggregated in 60o × 

60o geographical regions 

 

Figure 4. Empirical data aggregated in 90o × 

90o geographical regions 

 

Figure 5. Empirical data aggregated in 180o × 180o geographical regions 

The forecasts are then contrasted with the withheld actual events of the remaining 5 years of data. The 

comparison of the different strategies is based on the scaled Mean Absolute Error (sMAE), which is 

appropriate for measuring accuracy. This measure is based on the absolute scaled error, which is the 

absolute error scaled by the arithmetic mean of the in-sample data: 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑐𝑎𝑙𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =  
|𝑌𝑡+ℎ − 𝐹𝑡+ℎ|

1
𝑛

∑ 𝑌𝑖
𝑛
𝑖=1
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where 𝑌𝑡+ℎ is the actual h-steps-ahead from the forecast origin and 𝐹𝑡+ℎ is the respective point 

forecast. sMAE is derived as the simple average (arithmetic mean) over horizons (months, 1 up to 60) 

and series (regions of area 10o x 10o). 

 

3.2. Empirical results 

Figures 6, 7 and 8 present the empirical results of the forecast accuracy for earthquake events, the 

number of deaths and the number of injuries respectively. For each figure, the accuracy is presented in 

25 different panels representing the 25 combinations of temporal and geographical aggregation levels 

that have been considered. The results are presented visually using a grey scale gradation as follows: 

black - least accurate, dark grey – less accurate, light grey – more accurate and lightest grey – most 

accurate. Areas of white on the maps signify no data i.e. where no earthquakes have been recorded, or 

where the data are so scarce or fuzzy that the level of confidence in the data approximates to zero3.  

Each row presents the accuracy for the forecasts produced at different geographical levels (10o x 10o, 

30o × 30o, 60o × 60o, 90o × 90o, 180o × 180o) while each column presents the accuracy for the forecasts 

produced at different temporal aggregation levels (monthly, quarterly, yearly, three-yearly and five-

yearly). As all the forecasts are disaggregated to the most granular level, the accuracy of all the 

forecasts are represented in 10o x 10o geographical areas. Thus, it is possible to directly compare and 

identify where different strategies perform better or worse than others.  

Based on the grey scale gradation described above, an initial scan of the maps suggest that the 

following key observations can be made: 

 There is no single aggregation level that is better than all other aggregation levels across 

all geographical regions. Different temporal and geographical levels can bring superior 

forecasting performance in the various continents. 

 For most of the regions and for all variables of interest, temporally aggregating the 

results in three-yearly or five-yearly bucket windows does not seem to offer advantages 

over higher frequencies (monthly, quarterly and yearly). 

 There is a significant deviation of the results in terms of the variable of interest. If a 

strategy performs best in certain regions when measuring the accuracy of, for example, 

forecasting earthquake occurrences, it cannot be assumed that the same strategy will 

result in the best performance when forecasting either the number of deaths or injuries.  

 There are a few regions where there is little to distinguish between the performance of 

the different strategies. 

                                                 
3 Siberia, Arctic Canada, Greenland and the Antarctic are notable examples of ‘white’ areas, as are most open 

ocean areas. 
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It should be noted that as this set of results is based on a single evaluation window of 5 years of data, 

it is quite possible that results for different geographical regions might change when various 

aggregation strategies on new data are evaluated. But this is part of the beauty of this approach as the 

methodology and respective models is fully dynamic: every time a new data point is added – for every 

new earthquake – or any natural disaster in principle – the maps would be updated respectively. Also, 

new shorter or larger evaluation windows could be prescribed and that would give new maps while 

also, obviously, a different database would give a new model as well. Finally, if the decision maker 

decides to add a new variable that captures the desired decision outcomes, then yet again a new 

database is formed and that would create in, itself, new maps.  

We do in fact cherish this dynamic aspect of the whole endeavor. We do not expect however to 

change very often as only very major events could influence immediately the predictability of the 

underlying forecasting model within the aggregation framework – that this could be changed as well 

at any time. So, in practice these are expected to be observed and updated frequently but not to an 

extent that plans are redrawn all the time rather than only when a major event has happened or when 

decision makers decide ot shift the decision variable.  
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Figure 6. Forecast accuracy results on earthquake events for the various aggregation levels. 
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Figure 7. Forecast accuracy results on deaths for the various aggregation levels. 
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Figure 8. Forecast accuracy results on injuries for the various aggregation levels. 
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3.3. Interpretation of results 

In order to consider the data systematically, and in greater detail, the prediction matrix is interpreted 

under the three headings suggested above: events, deaths and injuries. While these are not necessarily 

the only aspects of disaster events for which some form of prediction could be made, they are the 

primary aspects which can be measured for any earthquake and which therefore need to be 

considered. Thus, the results presented in grid form in Figures 6, 7 and 8, for events, deaths and 

injuries respectively can be usefully discussed in more detail as below.  

 

3.3.1. Events prediction 

For overall patterns across all spatial scales, some broad observations can be made. Using the finest 

grid (10o × 10o), there is a general tendency for less predictability as the time period is extended, 

implying that earthquake event forecasts are rather more accurate over monthly and quarterly 

timescales than they are over periods of 1,3 or 5 years. This reflects the robustness of the record with 

lower levels of time-aggregation which allows repeat patterns or trends to be evidenced more clearly. 

With longer time periods, repeat patterns cannot emerge as the overall dataset itself, in this instance, 

spans only thirty years. For such patterns to be identified at annual, 3 yearly or 5 yearly levels, a much 

longer data period would be required.  

 

Using a 30o × 30o grid, there is a consistent low to medium level of accuracy of predictability in all 

regions. However, in Europe and the Mediterranean, the data appear to yield the best forecasts at this 

level of spatial aggregation. At the 60o x 60o scale, monthly and quarterly time periods appear to yield 

the best predictions. Annual, 3 year and 5 year aggregation appear to weaken the forecast accuracy. At 

the 90o x 90o scale, there is low forecast accuracy so the forecasts at this level of spatial aggregation 

are of limited value except for earthquake forecasts in the Andean chain which are noticeably more 

accurate than elsewhere on a 60o x 60o grid. The 180o x 180o scale of aggregation is of least value as 

the data are simply too spatially aggregated to make any meaningful predictions.  

 

Elsewhere, forecasts in North America appear to be relatively accurate in terms of general 

predictability at the 180o x 180o scale, but as location precision increases, prediction accuracy 

decreases. For Africa, the main earthquake events most commonly occur in eastern and southern 

Africa, as well as in the Maghreb and Mediterranean belt. The highest levels of predictability are 

observed at 30o × 30o for monthly and quarterly timescales. However, overall, no matter what the grid 

scale, and no matter what the time-period, predictability of earthquakes for eastern and southern 

Africa is still low. Forecasts for southern Africa perform better than for eastern Africa at 180o x 180o 

for all time periods while forecasts for eastern Africa perform better than southern Africa at 90o x 90o 

for monthly and quarterly time periods. For Central America and the Caribbean, 60o x 60o aggregation 

at monthly and quarterly time periods are the best performing prediction scales. Lastly, for the south 
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Pacific and New Zealand, the lowest levels of prediction accuracy are at 3 yearly, 90o x 90o, while all 

other spatial scales and timescales perform better.  

 

3.3.2. Deaths prediction 

The best predictions are achieved at monthly and quarterly time-scales for an 180o x 180o grid, all 

other time and spatial scales yield much weaker forecasts.  

 

For Africa, there are reasonable levels of prediction at monthly and quarterly timescales. Less 

predictable patterns of deaths from earthquake events are at 10o × 10o, 30o × 30o, 90o x 90o and 180o x 

180o. More predictable patterns are at a spatial aggregation scale of 60o x 60o , implying that the 

pattern is U shaped with prediction accuracy decreasing both above and below the 60o scale. All other 

timescales and grids for Africa yield poor results i.e. prediction is inaccurate. For the Far East and 

Central Asia, the best forecasts appear to be at the spatial scales of 90o x 90o, while for South America 

the best prediction scale for deaths arising from earthquakes is at the 180o x 180o scale. While these 

appear to give relatively accurate forecasts, again they are of limited value as they are spatially too 

vague to be useful.  

 

For west and central Europe, a grid of 60o x 60o at a monthly timescale produces the best forecasts. 

This is similar for Africa where the results are U shaped i.e. the accuracy of predictions of earthquake 

deaths is highest using a 60o x 60o grid, but significantly worse using both finer grids (10o × 10o and 

30o × 30o) and larger grids (90o x 90o and 180o x 180o). 

 

3.3.3. Injuries prediction  

The overall patterns for injuries are rather different vis-a-vis the patterns for earthquake events and 

deaths. At the 5 yearly time-scale, while more data are used in the computation, the forecasts become 

less accurate, particularly moving from the 60o x 60o through to 180o x 180o grids.  

 

The best prediction scales for South America are at 60o x 60o and 180o x 180o with the value of the 

forecasts over longer time periods again reducing. However, the longer time periods are essentially 

too vague to be of any meaningful use due to the reduced opportunity for patterns to repeat. 

Furthermore, all forecasts are inaccurate at all levels of spatial aggregation for both 3 and 5 year 

periods. For Asia, the best forecasts are yearly at all levels of spatial aggregation, the worst are the 3 

yearly on a 90o x 90o grid.  
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4. A SUPPLY CHAIN PLANNING AND RISK-MITIGATION MODEL FOR 

HUMANITARIAN LOGISTICS  

The logic of the development of the model is visualized in Figure 9. The model is dynamic as it is 

based on live data which is updated each time a new earthquake data point is inserted into the 

database and the model can then be rerun to provide decision-making graphs as presented at the end 

of this section. The model is also dynamic in terms of the variable space on which decisions are 

taken: in the model as presented here, the frequency of earthquakes number of casualties and number 

of injuries are considered and recorded in the respective dynamic database; but this can be expanded 

at any time so that policy makers can decide on their strategies based on the variable they are 

interested in most. For example, chief consideration could be given to: resources allocated, economic 

impact, time to return to normal, and so on; furthermore, a multiple criteria decision analysis 

(MCDA) approach could also be followed, as well as considering all available variables with 

different (or equal) weights. 

The model is also empirical and evidence-based as it is not driven from deductive theory, rather by 

actual data that could be live-fed into the database enabling the model to be rerun if needed, even as 

each new data point becomes available. This can be therefore be done on a rolling basis (by keeping 

the width of the rolling window fixed) or by expanding the dataset by including all available 

historical data. 
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Figure 9. Model development 

 

The logic of the model is quite simple, but at the same time it is intuitively appealing: 

 When earthquake predictability is relatively high, as derived from the models and 

respective graphs in Section 3, a preparedness strategy is encouraged, and thus 

preparedness is promoted from the model. On the other hand, when earthquake 

predictability is relatively low, then responsiveness is suggested as the better impact 

mitigation strategy. This is highlighted by the grey (preparedness) and dark grey 

(responsiveness) in the respective decision maps in Figure 10. This essentially suggests 

that taking a resource optimization approach could be fruitful in order to evaluate the 

relative effectiveness of expenditure on pre-event mitigation measures versus spend on 

post-event disaster relief (He and Zhuang, 2016).  

 The degree of strategic centralization is determined by the identification of the 

maximum number of neighboring areas with common characteristics – these are the 

same shade of grey in the decision maps in Figure 10. This gives a sense of ‘which 

area should be working with which’ or, more specifically, ‘who should we be working 

with whom’ in responding to major humanitarian situations. The key areas are not 

necessarily the areas where frequency of earthquakes is greatest, as neighbouring 

countries (e.g. Mexico and USA) have different response infrastructures and thus 

different levels of exposure to the aftermath of earthquakes in the decision space 

(casualties, injuries, etc.). The level of temporal and geographical aggregation which 

provide the most accurate forecast of a cluster of earthquakes can determine the degree 

of centralisation or localisation of the distribution operation responding to that cluster 

of earthquakes.  

 The temporal dimension can either be a strategic decision (based on financial 

budgetary periods, for example) or selected so as to change the predictability levels 

and shift strategies from a responsiveness model to a preparedness model, or vice 

versa. 

 In most cases, i.e. over most time-scales and in most regions at most scales, a hybrid 

strategy which combines a fair degree of preparedness with a reasonable degree of 

responsiveness can be the most educated approach. 
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Figure 10. Decision maps for various aggregation levels for earthquake occurences. 
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5. IMPLICATIONS FOR THEORY AND PRACTICE 

The general principle underlying this analysis is that the greater the level of aggregation of 

earthquake events, the more likely the forecast is to be at least broadly correct; but at the same 

time the more spatially aggregated the forecast, the lower its value because the higher the degree 

of spatial aggregation, the more vague is the location of any potential earthquake event. 

Essentially, earthquake forecasting hinges on a trade-off between accuracy and value (McKenna, 

2011). In some cases, however, the result patterns follow a U-shape such that, for example, below 

a certain level of aggregation, forecasts worsen and above that level of aggregation the forecasts 

also worsen. This hints at an optimum scale for forecasting which varies depending on region, 

and this is irrespective of whether consideration is being given to events, deaths or injuries. This 

is an important finding of this research. 

 

With the initial forecasts consistently over-estimating earthquake frequency, this suggests that 

the prediction technique used in this research could be refined further to narrow the gap between 

forecasts of earthquake frequencies and actual earthquake events. As the 3-year and 5-year 

forecast aggregations are generally the weakest, the more focused monthly, quarterly and yearly 

forecast aggregations are more appropriate for determining the best locations for the 

prepositioning of aid. Agencies will need to preposition aid in areas where the highest accuracy 

forecast is, which is generally the case for 90o x 90o and 60o x 60o forecast aggregations. Also, it 

is appropriate that yearly levels of aggregation outperform more granular levels of aggregation as 

it is more likely to be the case that one major event will occur in a yearly time period than that 

one event would occur within a specific month. In order to show the practical relevance of the 

forecasting procedure to the question of aid pre-positioning, a model is devised (Figure 11) 

combining levels of responsiveness, degree of stock centralisation, level of stock holding and the 

preparedness related to each forecast.  

 

Localised
Responsiveness

More prepared

More responsive

Central-
isation

LessLess

More More

Stock

Localised
Preparedness

Centralised
Preparedness

Centralised
Responsiveness

 
 

Figure 11. Decision maps for various aggregation levels. 

 

Each level of temporal and geographical aggregation can be placed into the model to show which 

disaster relief strategy is the most relevant to respond to a particular disaster depending on the 

accuracy of temporal and geographical aggregations of the region where the earthquake occurs. 

The most appropriate geographical scale is regional (generally, the 90o x 90o and 60o x 60o 

forecast aggregations) and the best temporal scale is yearly. Thus, if the model is populated with 

a particular level of temporal and geographical aggregation, generally the most robust levels of 

aggregation are 90o x 90o and 60o x 60o, with the 10o × 10o and 30o × 30o forecast aggregations 
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having the lowest accuracy. This suggests that the appropriate strategy to be adopted is to be 

prepared at regional level, but to be responsive at country and local levels. 

 

This has implications for disaster relief supply chain strategies adopted by decision makers. The 

research found that for the 10o × 10o scale at all temporal aggregation levels, the earthquake data 

used in the paper required more responsive and localized strategies; however, for the forecasts 

run at the 60o x 60o scale with the monthly, quarterly and yearly aggregations are the most 

accurate forecast of all the combined temporal and geographical aggregations used in the paper, 

so it could be argued that a region-based preparedness strategy is required at this level of 

aggregations with a fair degree of stock centralization. The 90o x 90o aggregation levels have 

generally more accurate forecasts; this also seems to be an indication of the need for a more 

prepared and centralized stockholding strategy. The 30o × 30o aggregation levels seem to have 

lower forecast accuracy for monthly and quarterly and yearly temporal aggregations and 

medium earthquake forecast accuracy for yearly and 3-year temporal aggregations, which could 

mean that the most appropriate strategy to be taken is to be responsive at local and country 

levels, but with increasing stock quantity held at regional level when temporal aggregation is 

extended. This suggests that a hybrid preparedness-responsiveness strategy is required, and the 

balance between preparedness and responsiveness should vary somewhat from region to region. 

Just as important is the suggestion that the optimum scale for mitigation planning also varies 

from region to region 

 

 

6. CONCLUSIONS AND FUTURE RESEARCH 

 

There is a clear argument for aid pre-positioning and such strategies are already followed by a 

range of organisations, for example the UN and the IFRC. There are, however, a number of 

factors which need to be considered in the overall picture when making decisions on warehouse 

location, for example facility operations, fixed overheads, staffing and stock levels which will all 

add costs. From a supply chain perspective, there is also the need to balance the number of 

facilities against the increase in inventory holding costs associated with more facilities. A parallel 

debate therefore relates to how many facilities and which are the most effective locations for 

them. Earlier modelling based simply on macro patterns of population distribution suggested that 

six facilities in Southern Europe, South Central Asia, East Asia, South America, Eastern Africa, 

and South eastern Asia would be most appropriate (Akkihal, 2006). Western USA, Central 

America and the southwest Pacific are examples of regions which are conspicuously absent from 

this list. However, this paper provides new light which could be used for decision making on 

network redesign of regional disaster relief operations, if other kind of disasters are included in 

the database and the model is re-run with those disasters. 

 

The model developed in this paper can guide policymakers and the third (non-governmental) 

relief sector in terms of the range of supply chain risk mitigation strategies which can be adopted 

in the context of disaster relief distribution. The paper argues that an improvement in the 

prediction of earthquake events through temporal and geographical data aggregation could 

influence the location and size of disaster relief distribution facilities positioned in different world 

regions, the stock policy adopted to supply areas affected by disasters, and how disaster relief 

supply chains respond to such black swan events. The research can be improved further by adding 

data for additional natural disaster types such as tsunami, flooding, storm and drought. 

Aggregating across all disaster types would produce a more robust, although not necessarily 

different, network configuration. A combination of hazard type, magnitude, and regional 

characteristics such as population and infrastructure, could improve the disaster "footprint" and 

assist in predicting inventory locations, ultimately improving the relief system (Akkihal, 2006). 
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This points towards building a composite natural disaster ‘heat map’ or three-dimensional model 

as being a natural ‘next-step’ for this research.  

 

One thing must be made crystal clear. This research is not for the method to be used per se used 

when forecasting earthquakes; it is more for the strategy that follows once we realize our 

predictability limits, so it is about the risk mitigation model that comes after. One could argue that 

maybe we could forecast better if we use extreme value theory or even maybe other 

computational intensive methods – but this is not what we are trying to do here. We have seen 

evidence in the respective literature that temporal aggregation works well in an intermittent 

demand context, and we use it without having an empirical forecasting competition in mind to set 

– we leave that as future research. What we strongly argue however is that temporal and spatial 

aggregation can give the geographic areas and timeframe within which centralization of resources 

should take place; and that you cannot achieve through the other alternative forecasting methods 

that do not consider aggregation. This latter contribution plus the responsiveness/preparedness 

risk mitigation model built on that, we consider to be the fundamental contribution of this 

research; and we are sure it will create the necessary discourse and discussion on the development 

of similar models, and we do cherish and anticipate such activity. 
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Several questions arise when considering the outcomes of this data-driven modelling exercise 

compared to existing strategies. The UN network, for example, is based on all types of disaster 

not just earthquakes. However, would alternative locations for response strategies to different 

disaster types perform better, or does one network covering all disaster types provide a sufficient 

level of coverage to ensure an effective response at all times? In respect of future research, a 

systematic evaluation of this forecast method against alternative forecasting tools and against 

current in practice in disaster relief would be fruitful.  
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