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Memory of Chirality in Flow Electrochemistry: Fast Optimisation 

with DoE and Online 2D-HPLC 

Micol Santi, Jakob Seitz, Rossana Cicala, Tomas Hardwick, Nisar Ahmed and Thomas Wirth*[a]

Abstract: Amino acid derivatives undergo non-Kolbe electrolysis to 

afford enantiomerically enriched α-alkoxyamino derivatives through 

intermediate chiral carbenium ions. The products contain N,O-acetals 

which are important structural motifs found in bioactive natural 

products. The reaction is performed in a continuous flow 

electrochemical reactor coupled to a 2D-HPLC for immediate online 

analysis. This allowed a fast screening of temperature, electrode 

material, current, flow-rate and concentration in a DoE approach. The 

combination with online HPLC demonstrates that also stereoselective 

reactions can benefit from a hugely accelerated optimisation by 

combining flow electrochemistry with multidimensional analysis. 

One of the key steps in research and development is process 

optimisation which focuses on maximising efficiency and 

productivity by minimising waste and costs. This is often time-

consuming and does not always allow to comply with the twelve 

principles of green chemistry.[1 ] In the last decades, enabling 

technologies have offered a wide set of tools and time-saving 

devices such as continuous-flow systems[2] coupled with online 

analysis[3] and automated setups.[4] 

Flow-microreactor technologies[ 5 ] allow a miniaturisation of 

reactions and an intensive high throughput screening in little time 

to then scale it back up once optimised for a pilot plant.[6] 

Despite the many advantages, one of the main drawbacks of 

automated systems is the large amount of data that will be created 

in a short period of time. To overcome this issue, intelligent 

algorithms have been applied to self-optimising reactor systems[7] 

and modern statistical software for design of experiments (DoE) 

are now frequently used to perform such experiments.[8] Over the 

past 20 years DoE has found many applications in chemistry from 

reaction optimisation[9] to crystallisations,[10] and HPLC method 

development.[11] 

The optimisation of enantioselective transformations can be 

challenging, especially as single-enantiomer drugs rather than 

racemates are important for drug validation.[12] Herein, we report 

an efficient way to quickly optimise asymmetric transformations 

via a DoE approach using a flow electrochemical microreactor 

coupled to an online multidimensional HPLC (Scheme 1). 

Over the past decades, synthetic chemists have also renewed 

their interest in more “classic” areas of enabling technology such 

as electrochemistry as a more sustainable method to perform 

chemical transformations under mild reaction conditions.[13] Flow 

electrochemistry has recently also seen increased attention.[14] 

We explore the enantioselective electrochemical reaction of N-

arylcarbonylated amino acid derivatives to enantiomerically 

enriched alkoxylated amides. N-Acyl-N,O-acetals are important 

motifs present in natural products such as antiproliferative 

pederin[ 15 ] and psymberin.[ 16 ] They are also interesting 

intermediates since they are stable but can be readily activated in 

situ for further chemical transformations.[17] Several methods have 

been reported towards N,O-acetals[18] including the oxidation of 

α-amino acids.[19] 

 

  

Scheme 1. Electrochemical oxidation of N-arylcarbonylated amino acid 

derivatives to chiral alkoxylated amides in a flow electro-microreactor. 

The amino acid derivative shown in Scheme 1 undergoes a non-

Kolbe electrolysis via memory of chirality through an acyliminium 

ion intermediate affording an enantiomerically enriched α-

alkoxyamino compound. The first example of ‘memory of 

chirality’[20] in acyliminium ion chemistry was reported in 2000 by 

Matsumura for the electrochemical oxidation of N-aryl serine 

derivatives 1 in methanol to afford optically active N,O-ketals 2.[21] 

A change of the N-benzoyl group in 1a to a bulkier 2-phenyl 

benzoyl protecting group (1b) using Pt as cathode and graphite 

as anode at –30 °C improved the enantioselectivity up to 80%. 

Very recently similar compounds have been employed in radical 

C – C -bond forming reactions where good enantioselectivities 

have been observed.[22] 
 

 

Scheme 2. First example of ‘memory of chirality’ on N-aryl serine derivatives 1 

reported by Matsumura et al. [21] 

The electrolysis of N-(2-phenyl)benzoyl proline derivative 3a in a 

batch cell, however, afforded the methoxylated compound 4a with 

poor yields and enantioselectivities (Table 1). 

A large excess of base (10 equiv.) is needed to observe product 

4a, whereas without base the starting material 3a was recovered 

completely (Table 1, entry 4). The stereoselectivity depends on 

the type of anode and on the temperature. In particular, a platinum 

anode is preferred over graphite especially when the reaction is 

performed at –30 °C affording 4a in 40% ee (Table 1, entry 2). 

We envisioned that the unstable acyliminium intermediate could 

be generated and used in a more controlled manner utilizing an 

electro-microreactor combined with online multidimensional 
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analysis for faster optimisation. S-trans geometries for the 

acyliminium intermediate conformation have been suggested 

through substituent interactions[21b] and s-cis conformations have 

been calculated to be most stable in other cases,[21c] but on both 

occasions a shielding of the iminium moiety by the acyl 

substituent will cause the observed stereoselective reaction. 

Initial screening of reaction parameters for the flow setup involved 

different electrode materials for the anodic oxidation (Pt, C, Pt on 

Nb, glassy C, C on PTFE, BDD) as well as various concentrations 

of 3a and flow rates (see supporting information). Carbon-based 

anode materials showed better yields than platinum/platinum-

coated or boron-doped diamond (BBD) except for the carbon-

coated PTFE electrode. The glassy carbon electrode, despite the 

lower yield (37%), stands out for its impressive impact on the 

stereoselective nucleophilic attack leading to 4a in 65% ee. 

Several materials were also screened for the cathode but lower 

or no conversions were observed, therefore the study was carried 

out using platinum as cathode material. 
 

Table 1. Non-Kolbe electrolysis of 3a to amide 4a in an electrochemical batch 

cell (Volume: 5 mL). 

 

Entry 
Electrolyte 

(equiv.) 
Anode 

Temper

ature 

[ºC] 

Charge 

[F/mol] 

Yield 

4a [%] 

ee 

4a [%][a] 

1 NaOMe (10) Pt 25 2 47 30 

2 NaOMe (10) Pt –30 2 15 40 

3 NaOMe (10) graphite –30 2 1 18 

4 none Pt –30 2 -[b] - 

5 NaOMe (10) Pt –30 4 dec. - 

6 NaOMe (10) graphite –30 4 dec. - 

[a] Determined by HPLC, OD-H column; [b] Only starting material was recovered, 

no current observed. 

To identify the most significant parameters and two-factor 

interactions for this reaction a two-level fractional factorial design 

(FFD) 25-1 was used with four numerical factors (concentration of 

starting material 3a, flow-rate, charge and temperature), one 

categoric variable (type of anode) with yield and enantiomeric 

excess as responses. 
 

Table 2. Levels (-1, 0, +1) of the five factors in the two-level fractional factorial 

design used by the factor generator E = A • B • C • D. 

 Factor Type Unit Level –1 Level 0 Level +1 

A 
concentration 

of 3a numeric M 0.00625 0.00937 0.0125 

B 
anode 

material categoric - graphite - glassy C 

C flow rate numeric mL/min 0.1 0.15 0.2 

D charge numeric F/mol 2 3 4 

E temperature numeric °C –10 5 20 

 

The 24 experiments were run in a random order within 24 h with 

8 central points, 4 for each categorical level and through 2D-

HPLC online analysis both responses could be obtained within 15 

minutes (see supporting information).  

In theory, 2 F/mol of electricity should be sufficient for two 

consecutive single electron-transfer reactions. However, under 

these conditions the reaction did not go to completion (up to 76% 

HPLC yield, see Table S3 in the supporting information). When 4 

F/mol of charge was used, the desired methoxylated amide 4a 

was obtained in good (>80%) to quantitative yield with glassy 

carbon and graphite anodes. This is illustrated in the Pareto 

charts and 3D-surface plots shown in Figure 2. 

The Pareto chart for the first response highlights the strong effects 

of charge (D) and anode material (B) on the yield (Figure 2a). The 

sharp slope on the 3D-surface plot for glassy carbon indicates the 

improvement on the yield when the number of electrons is 

increased from 2 to 4 F/mol (Figure 2c), which further improves 

passing from glassy carbon to graphite (see supporting 

information). 

 

   

 

Figure 2. a) Pareto chart for the first response showing the effect of charge (D) 

and electrode type (B) on the yield of electrochemical oxidation of 3a into 4a; b) 

Pareto chart for the second response shows the effect of electrode type (B) and 

a moderate 2-factor interaction (BD) on the ee% of 4a; c) 3D surface plot 

showing the yield for 4a when glassy carbon is used at 20 °C and 0.2 mL/min; 

d) 3D surface plot showing the ee% for 4a when glassy carbon is used with 4 

F/mol on 0.0125 M solution of 3a. 

The cyclic voltammogram for 3a (5 mM) in 0.1 M solution of 

nBu4NClO4 in methanol is shown in Figure 3. 

b) 

c) 

d) 

a) 



          

 

 

 

 

 

Figure 3. Cyclic voltammogram of substrate 3a (5 mM) in 0.1 M nBu4NClO4/ 

MeOH electrolyte (10 – 50 mV/s scan rate). Working electrode: glassy carbon 

electrode tip (3 mm diameter); Counter electrode: platinum wire; Reference 

electrode: Ag/AgCl in 3 M NaCl. 

The oxidation peak of 3a (+2.05 V vs Ag/AgCl) it is very close to 

the solvent oxidation peak.[23] This might indicate a competition 

between the two oxidations that could explain the excess of 

current needed. 

Regarding the enantioselectivity, the most critical factor is the type 

of electrode used as anode (Figure 2b). In particular, when the 

reaction of 3a was performed using glassy carbon at higher flow 

rate (0.2 mL/min), 4a was afforded in moderate to good 

enantioselectivity (up to 70% ee, Figure 2d), whereas graphite 

showed only moderate selectivity (up to 31% ee). The unique 

ability of a carbon anode to promote the generation of carbenium 

ions in a Kolbe reaction is due to its paramagnetic centres which 

bind the initial radical and promote a second electron transfer.[24] 

Moreover, Matsumura et al. also observed an anode-dependent 

stereoselective non-Kolbe oxidation of L-threonine, suggesting an 

interaction between the carbenium ion and the anode surface.[21a] 

Interestingly, the temperature (E) did not appear to be significant 

itself on the enantiomeric excess of this transformation, however, 

a moderate two-factor interaction between electrode and 

temperature (BE) was observed (Figure 2b). 

Indeed, a different slope is observed for reactions performed at 

room temperature and at –10 °C using graphite and glassy carbon, 

respectively. This could be due to the non-linear behaviour of 

electrodes when other variables are changed. Graphite and 

glassy carbon behave differently at lower temperatures 

apparently influencing the stereocontrol of the nucleophilic attack. 

More experiments were performed to validate the observations 

and the best conditions were investigated with different anode 

materials as shown in Table 3. 
 

Table 3. Further investigation and optimisation studies for the anodic oxidation 

of 3a to amide 4a. 

Entry Anode Charge (F/mol) T (°C) 4a [%][a] 4a ee [%][b] 

1 glassy C 2 –10 60 70 

2 glassy C 2 20 55 66 

3 glassy C 4 20 77 60 

4 glassy C 4 –10 81 66 

5 Pt 4 20 4 49 

6 Pt 4 –10 13 51 

7 Pt on Nb 4 –10 14 48 

8 Pt on Ti 4 –10 12 54 

9 BDD 4 –10 54 60 

[a] HPLC yield with α,α,α-trifluorotoluene as internal standard; [b] Determined by 

chiral HPLC. 

When the reaction was performed at room temperature, product 

4a was obtained in similar yield and ee values than at a –10 °C, 

confirming the non-significance of the temperature itself (Table 3, 

entries 1 and 2). 

However, when the charge was increased to 4 F/mol, despite the 

better yield of 71% a small loss in selectivity was detected (60% 

ee, entry 3). Both responses were maximised running the reaction 

at 0.2 mL/min, with 4 F/mol at –10 °C affording 4a in 81% HPLC 

yield and 66% ee (entry 4). These optimised conditions were 

tested on Pt, Pt-coated and BDD anodes at both room 

temperature and –10 °C and similar ee-values were measured in 

all cases (see supporting information). 

The distances of the electrodes were altered by using PTFE 

membranes with different thickness. A decrease of the thickness 

from 0.5 to 0.125 mm improved the yield (up to 86%) with only a 

small loss in stereoselectivity (see supporting information). 

To better understand the effect involved into the stereoselective 

control, a full factorial model (FD) 23 was designed to study the 

electrolysis using glassy carbon as anode when only flow rate, 

charge and temperature were changed. A thin spacer (0.125 mm) 

was used to further reduce residence times and the voltage. In 

this full factorial design, a 3-factor interaction between charge, 

flow rate and temperature was observed for the enantioselectivity 

(see supporting information for all results). When the reaction was 

performed at 0.1 mL/min, the reaction was more difficult to control 

and to reproduce probably due to less efficient mixing. However, 

better enantioselectivities were obtained at higher flow rates, 

especially when the reactor was cooled to –5 °C suggesting a two-

factor interaction between flow rate and temperature. 

Once screening and optimisation steps were completed, the 

optimal conditions were used on a larger scale and the product 

collected over 1.5 h. The products 4b – 4i were isolated in 

moderate to good yields as shown in Figure 4. 
 



          

 

 

 

 

 

Figure 4. Substrate scope for the electrochemical oxidation of N-protected 

amino-acids. The stereochemistry of 4a was assigned according to literature.[25] 

The reaction were performed using a 0.013 M solution of 3a. (A) Pt as the 

cathode and glassy carbon as anode at –10 °C or (B) graphite as anode at 20 

ºC at 0.2 mL/min using 2 F/mol. [a] Reaction performed using a 0.05 M solution 

of starting material; [b] Reaction performed with 0.1 mL/min. [c] Product with (S)-

stereochemistry obtained as major enantiomer. 

A set of acyclic amino acid derivatives such as N-protected L-

alanine, L-valine, L-leucine and L-phenylalanine were prepared 

and subjected to the electrochemical oxidation. Generally, 

graphite anodes afforded the desired products in better yields 

than glassy carbon, while glassy carbon provided higher 

enantioselectivities, as expected. We were delighted to observe 

the memory of chirality on not-constrained acyclic amino acids, 

albeit only moderate (up to 14% ee). When the oxidation was 

performed with glassy carbon anodes using L-alanine and L-

leucine derivatives, the products 4b and 4d were isolated in low 

yields (22% and 13%, respectively) due to the formation of 5 as 

major side product (up to 30% yield). For L-valine and L-

phenylalanine substrates, compound 5 was only detected in 

traces (< 9% yield) and the desired products 4c and 4d were 

isolated in 43% and 52% yield, respectively. The electrochemical 

cyclisation of 2-arylbenzoic acids to benzocoumarin derivatives of 

type 5 has recently been described.[26] A second recrystallisation 

was necessary to remove any traces of 2-arylbenzoic acid from 

3b and 3d. The latter were then subjected to flow electrolysis 

(0.013 M) at 0.2 mL/min using glassy carbon as the anode. At 

room temperature products 4b and 4d were obtained in 80% and 

62% yield with 10% and 7% ee, respectively. 

For acyclic amino acids, the stereoselectivity increased with the 

steric demand of the side chain leading to 4b – e in 7% – 13% ee. 

Interestingly, when the electrolysis on 3b was performed with 

graphite as the anode, 4b with (S)-absolute configuration was 

detected as the major isomer in 8% ee. Otherwise all products 

show (R)-configuration as previously established.[25] This 

observation strengthening the hypothesis that an interaction 

between the acyliminium ion and the electrode surface might be 

also involved in the memory of chirality. For a further scale-up 

higher concentrated solutions (0.05 M) were used and it was 

possible to reproduce the same results without loss in reactivity 

or enantioselectivity. 

When the electrolysis of 3a was performed in ethanol or pro-

pan-2-ol instead of methanol, the desired products 4f and 4g were 

isolated in 57% and 42% yield with 61% and 67% ee, respectively. 

Finally, different protecting groups for amino acids were 

investigated. A more electron-rich biphenyl system as protecting 

group with a potential better stabilisation of the intermediate 

acyliminium ion did not lead to an improvement for the memory of 

chirality with 4h isolated in 28% yield and 50% ee. Finally, to 

prove the importance of the biphenyl on the memory of chirality, 

a reaction was performed with benzoyl L-proline. As expected, 4i 

was obtained as racemate irrespective of the type of anode used. 

 

In summary, the enantioselective electrochemical oxidation of 

N-arylcarbonylated L-proline to enantiomerically enriched 

methoxylated amides was optimised using a DoE-approach in a 

flow electro-microreactor coupled to an online 2D-HPLC. The 

short reaction times combined with fast analysis time made a 

rapid screening of charge, electrodes, flow rate, concentrations, 

temperature and thickness of the PTFE membrane possible. We 

established an efficient method to intensively screen several 

parameters to quickly optimised asymmetric transformations and 

obtain high yields (up to 100%) and enantioselectivities (up to 

70% ee) within a short period of time as well as reducing waste. 

Once optimised, the reaction was scaled-up and the products 

were isolated without loss in enantioselectivity. The optimal 

conditions were successfully tested on different alcohols and 

protecting groups. The methodology presented here might find 

useful application in the rapid optimisation of other stereoselective 

transformations. 

Experimental Section 

A solution of 3a in methanol (0.05 M) was pumped through a Vapourtec 

Ion Electrochemical flow reactor (reactor volume = 0.6 mL, spacer 0.5 mm) 

at 0.2 mL/min using 2 F/mol (32 mA). An undivided cell arrangement was 

used with glassy carbon as anode and platinum as cathode (working 

surface area: A = 12 cm2). The reactor was maintained constant at –10 °C. 

After reaching the steady state, the solution was collected for 90 min. The 

solvent was evaporated under vacuum, and the crude mixture was purified 

by flash column chromatography. The reaction stream was analysed 

online or offline using an Agilent 1290 Infinity 2D-LC. For the DoE Design 

Expert® 10 was used. 
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COMMUNICATION 

  Asymmetric transformations are quickly optimised using a DoE-
approach with an electrochemical flow reactor attached to a 2D-HPLC. 
Cyclic and acyclic N,O-acetals were obtained from moderate to good 
yields and enantioselectivities. The highly reactive acyliminium ion 
serves as a chiral intermediate leading to the desired product with 
‘memorised’ chirality (up to 70% ee) in a short reaction time. 
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