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Abstract— The tidal energy industry is progressing rapidly, but there are still barriers to overcome to 

realise the commercial potential of this sector. Large magnitude and highly variable loads caused by 

waves acting on the turbine are of particular concern. Composite blades with in-built bend-twist elastic 

response may reduce these peak loads, by passively feathering with increasing thrust. This could 

decrease capital costs by lowering the design loads, and improve robustness through the mitigation of 

pitch mechanisms. In this study, the previous research is extended to examine the performance of bend-

twist blades in combined wave-current flow, which will frequently be encountered in the field. A scaled 

3 bladed turbine was tested in the flume at IFREMER with bend-twist composite blades and equivalent 

rigid blades, sequentially under current and co-directional wave-current cases. In agreement with 

previous research, when the turbine was operating in current alone at higher tip speed ratios the bend-

twist blades reduced the mean thrust and power compared to the rigid blades. Under the specific wave-

current condition tested the average loads were similar on both blade sets. Nevertheless, the bend-twist 

blades substantially reduced the magnitudes of the average thrust and torque fluctuations per wave 

cycle, by up to 10% and 14% respectively.  

 

Keywords—Composite blades; dynamic loading; laboratory flume; passively adaptive blades; tidal turbine; wave-

current interactions   



2 
 

NOMENCLATURE 

BT                               Bend-twist  

CM Current tests with wave maker installed 

CO Current tests (undisturbed) 

CMM        Coordinate measuring machine  

CP Power coefficient 

CT  Thrust coefficient  

FFT Fast Fourier transform 

HATT                      Horizontal axis tidal turbine 

LDV Laser Doppler velocimeter 

PSD Power spectral density 

Re Reynolds number 

RPM Revolutions per minute 

TGC Torque generating current (A) 

TI Turbulence intensity (%) 

TF Frictional torque (Nm) 

TM Motor torque (Nm)  

TR Rotor torque (Nm) 

TSR                             Tip-speed ratio 

t Time (s) 

V Average streamwise flow velocity (m/s) 

WC Wave-current test series 

η Surface elevation (m) 

σTI Standard deviation turbulence intensity (%)  

σV Standard deviation flow velocity (m/s) 

 

 

1 INTRODUCTION 

With a global push towards clean and sustainable electricity production, the marine renewable energy 

industry has seen increased growth in recent years. Unfortunately, tidal energy technology has not yet 

reached commercial viability due to high capital and operational costs associated with the challenges 

of designing, deploying and maintaining turbines in hostile subsea environments. The reliability and 

durability of devices in these somewhat unpredictable conditions are primary concerns for the industry 

[1].  

Tidal currents vary approximately sinusoidally over time, so the turbine design must take into account 

the forces associated with the peak current. However, it is most economical to set the peak performance 

point at a level beneath the maximum current velocity to ensure optimal power capture for a longer 

portion of the tidal cycle. Variations in the flow speed over shorter time scales will also occur in the 

field for example due to bed-generated turbulence and ocean waves which can be in the order of 6 s and 

in a range of 4 to 10 s, respectively [2] [3].  
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 To cope with these continually changing conditions it is desirable for the turbine to be able to shed 

excess loads (i.e. during peak tidal currents and extreme wave events), to bring the design loads closer 

in-line with the optimum operational condition. Smoothing of the dynamic loading patterns will also 

improve the fatigue life of the turbine components and reduce the requirements on the power 

conditioning system 

One way in which this might be accomplished is through the use of passively adaptive (flexible) blades 

with a built-in coupled bend-twist elastic response under increasing load. This temporarily alters the 

blade pitch angle, reducing the thrust and torque transferred to the drivetrain, so that excess power is 

shed once the design conditions are exceeded. The bend-twist mechanism can be manufactured into 

blades made of composite materials, which are constructed from a number of layers of either woven or 

unidirectional fibers (i.e. carbon or glass) set in resin. By selecting a suitable orientation of each ply 

layer in the stack the desired bend-twist response can be achieved ( [4], [5]).  

There are a number of advantages to this load-shedding solution. Firstly, composite materials are 

already widely used in the industry to construct rigid blades for prototype tidal turbines. This is due to 

their high fatigue tolerance, high strength-to-weight ratio, corrosion resistance, and higher damage 

tolerance compared to commonly used metal materials [6], i.e. composites are well suited to the marine 

environment [7]. By using this same material, bend-twist blades will retain all of these advantages, 

without inducing significant alterations to existing manufacturing procedures. 

Passive systems have the key advantage of mitigating the need for moving parts (i.e. pitch mechanisms) 

which are difficult to maintain at sea. Passively adaptive blades should be able to vent the loading peaks 

dynamically, enabling the design loads for the various turbine components throughout the system to be 

reduced. This will decrease capital costs, firstly by allowing the technical specifications of the 

components to be downgraded, and secondly through weight reduction, particularly with regards to the 

support structure which currently contributes a large percentage of the capital cost [4]. A lower system 

weight will also lessen the equipment requirements to transport, deploy, and retrieve the device at the 

tidal site [8].  

Ultimately, any perceived benefits of the bend-twist blades must be weighed against any increases in 

design and manufacturing costs. As the design changes are restricted to re-orientating the angles of the 

ply layers, it is not envisaged at this stage that this would cause a significant increase in the cost of 

manufacture or the cost of the blades themselves. In any case, a full economic analysis cannot be 

completed until the behavior of the bend-twist blades over a full range of hydrodynamic conditions is 

understood, and their bend-twist response and structural design have been fully optimised for this 

application. 

Investigations into the use of passively adaptive composite blades in the tidal energy industry are 

ongoing, and previous research has already demonstrated their potential for load regulation in steady 
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flow conditions. Through towing tank testing of 360 mm long bend-twist composite blades Murray [9] 

showed that an 11% reduction in the mean thrust loads at design conditions could be achieved. Using a 

fluid structural interaction (FSI) design tool, verified against the towing tank test results from [9], it was 

predicted that a 10.4 m diameter full scale turbine with pre-twisted bend-twist blades would have 

reduced loads and regulated power at flow speeds above design conditions [10]. Nicholls-Lee [11] 

reported up to a 12% reduction in the thrust loads and up to 5% increase in the power coefficient for an 

8 m blade with a bend-twist composite spar using an FSI model. Furthermore, Motley and Barber [12] 

showed that passively adaptive bend-twist blades could increase annual energy capture by delaying the 

onset of cavitation, thus enabling the utilisation of larger blades operating at higher rotational speeds 

[13].  

Present understanding of turbine performance in combined wave-current flow is much less 

comprehensive than that in steady flow. To the authors’ knowledge bend-twist blades are yet to be 

tested in wave-current, and only a small number of researchers have investigated the performance of 

rigid i.e. non-adaptive blades in these conditions [14], [15], [16], [17], more recently [18], [19], [20] . 

Importantly, these studies have shown experimentally that wave-current flow can induce significant 

cyclic variations in the rotor power and thrust at the frequency of the waves. Tatum et al. [21] used a 

computational model to investigate the wave induced variation in bending moments acting at the roots 

of rigid blades and how these are translated through the drivetrain, causing fluctuating loads on 

components such as the bearings and seals. Nevalainen et al. [22] showed numerically that fluctuating 

wave loads have the potential to reduce the lifespan of rigid rotor blades and the drivetrain components. 

Similarly Galloway et al. [17] concluded that cyclic loading from waves is likely to result in accelerated 

fatigue of non-adaptive blades.  

The research concerning rigid blades in wave-current flow has revealed significant alterations to the 

loading patterns, and these dynamic effects are likely to result in more complex interactions with bend-

twist blades due to their higher flexibility compared to non-adaptive blades. Moreover, the elastic 

response and stability of bend-twist blades in dynamic flow conditions will be critical to the blade 

structural design [23]. With turbine blades having a high risk of failure [24], it is imperative that the 

blade behavior in these conditions is fully quantified so that it can be appropriately considered in the 

design process.  

As stated previously bend-twist composite blades also have the potential to mitigate the transfer of peak 

wave loads through the drivetrain, thereby alleviating wear on the turbine components. However, the 

extent to which the blades can damp the hydrodynamic loading fluctuations is currently uncertain. With 

this in mind, and considering the prevalence of waves at sites deemed suitable for the installation of 

tidal energy devices [21], the objective of this work is to investigate experimentally the effects of wave-

current loading on bend-twist composite blades. 
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2 METHODOLOGY 

Composite bend-twist and aluminium blades of identical geometry were tested sequentially as part of a 

three-bladed horizontal axis tidal turbine (HATT) in the wave-current recirculating flume at IFREMER 

(French Research Institute for Exploitation of the Sea), Boulogne-sur-Mer. The flume specifications are 

described in [25]. The experiments were conducted at a scale of approximately 1:20, equating to a 

turbine diameter of 828 mm. In this section the experimental set-up, measurement techniques and test 

program are described.  

 Experimental setup 

Figure 1 shows the turbine and support structure designed and manufactured at Cardiff University [26]. 

The turbine stanchion of 71 mm of outside diameter was fixed with two brackets to a steel frame 

mounted on a crossbeam over the flume at IFREMER. The center of the turbine hub was positioned 1 

m below the free water surface and the rotor was operating upstream of the supporting structure, as it 

can be observed in Figure 1. The flume is 18 m long, 4 m wide and 2 m deep, resulting in a blockage 

ratio of 6.7% based on the rotor swept area. According to the analysis of [9] this blockage ratio did not 

warrant the application of any corrections to the data. Furthermore, the study presented in [27]  suggests 

that the turbine’s optimum location should follow a submergence of more than half the turbine radius 

(> 0.5xR) and one turbine radius above the floor (>1xR). In the case of these experiments, both 

recommendations have been fulfilled by setting the turbine at 2.4xR from the free surface and bottom 

of the tank. Thus, the size of the flume compared to the rotor also means that the flume walls should 

not influence the current profile across the rotor swept area. However, the velocity profile is expected 

to vary with depth once waves are added to the current. This is discussed further in Section 3. 

The rotor dimensions and blade geometry are shown in Table 1 and Figure 1. The composite blades 

were constructed from unidirectional graphite epoxy composite skins with a Sicomin PB 250 closed-

cell foam core with a density of 250 kg/m3. The composite skins on the working section of the blades 

had fibers oriented at 26.8º from the long axis of the blade with a mirrored layup, as detailed in [9], to 

induce bend-twist coupling. The root section had 6 additional layers of 0.2 mm thick composite with 

alternating ply angles of 15º and -15º, and a 316 stainless steel cylinder was inserted at the root for 

added strength. This was extended with a stepped down diameter to connect the blades to the hub (see 

Figure 1), which was held in place by a 4.5 mm diameter grub screw that slotted into a corresponding 

notch in the blade root. The mass distribution per section of the composite blades can be found in Table 

1.  

The aluminium blades were manufactured using a 5-axis CNC machine and based on the measurements 

obtained from scanning the composite blade with a coordinate measuring machine. The mass 

distribution of the solid metal blade is also found in Table 1.  
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The surface roughness of the blades was measured with a Renishaw Equator™ 300 gauging system. 

The composite blade had a roughness average value of 0.8 + 0.02 µm compared to an average value of 

0.93 + 0.4 µm measured for the aluminium blade. 

Table 1 Geometry of the aluminium and composite blades  

Radius 

(mm) 

Blade 

length  

(mm) 

Blade twist 

(Deg) 

Blade chord 

(mm) 
Airfoil shape 

Blade weight 

Aluminium 

(g) 

Blade weight 

Composite  

(g) 

0 
      

50 
      

54 4 N/A 15.0 Root insert 15.5 43.0 

92 42 N/A 29.0 Circular root 67.8 159.8 

112 62 N/A N/A Lofted 

(elipse) 

27.6 5.7 

123 73 0.0 64.3 NREL S814 16.9 1.2 

137 87 3.0 62.8 NREL S814 21.2 3.2 

166 116 8.3 61.0 NREL S814 41.9 4.1 

196 146 12.4 59.0 NREL S814 39.7 3.6 

225 175 15.4 55.5 NREL S814 34.3 3.1 

254 204 17.5 50.9 NREL S814 30.0 3.0 

283 233 18.9 46.3 NREL S814 25.9 2.7 

312 262 19.8 42.9 NREL S814 22.1 2.4 

342 292 20.3 40.6 NREL S814 19.2 1.9 

371 321 20.6 37.6 NREL S814 15.1 1.6 

400 350 20.9 29.4 NREL S814 13.0 1.3 

414 364 21.1 21.3 NREL S814 4.3 0.7 

421 371 21.1 13.0 Rounded tip 1.1 0.3 

 

The blade root pitch was fixed at the optimum angle for power capture with respect to the chosen blade 

geometry, at 28.89°. As discussed in Section 1, passive control of excess loads is built into the blades 

via the bend-twist response, rather than employing an active pitching mechanism to perform this 

function.  
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Note that the blade design in [9] focused on creating robust blades for proof of concept laboratory 

testing. Optimisation of the blade layup to tailor the bend-twist response for the actual design conditions 

should be conducted once a more complete understanding of the blade behavior has been gained from 

the scaled experiments, and validated computational models have been developed.  

To enable comparison of the bend-twist blades with a set of rigid blades, aluminium blades were 

manufactured using a 5-axis CNC machine from a CAD drawing based on 3-D scans of the composite 

blades. Further details of the blade geometry (including pre-twist and chord), as well as the blade design 

and material properties are given in [9]. 

For each test condition the turbine was operated at a constant rotational velocity using a Bosch Rexroth 

motor [28] with a rated power of 0.6 kW, rated torque of 22.5 Nm, and rated speed of 350 RPM. An 

encoder mounted at the end of the driveshaft monitored the rotational velocity and position, providing 

dynamic feedback for the motor speed control. The motor and encoder outputs were logged using a 

National Instruments LabVIEW data acquisition system. 

The flow velocity was measured at hub height during the tests using a laser Doppler velocimeter (LDV) 

located 3.6 m upstream of the rotor. The average resolution was greater than 45 Hz across all test cases. 

The LDV measurements were initiated by a trigger from the LabVIEW system.  

A resistance type wave probe installed on the carriage and positioned in-line with the rotor blades 

measured the surface elevation during the wave-current tests. Prior to testing, the probe height in still 

water was adjusted to a number of known positions to convert the output voltage to units of length. The 

probe was connected directly to the LabVIEW data acquisition system so that its output was 

synchronised with the other data streams. 

To quantify the turbine performance under the applied hydrodynamic loads, the rotor torque (derived 

from the tangential force component with respect to the rotor plane) and rotor thrust (normal force 

component with respect to the rotor plane) were monitored.  
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a)  b)  

 

 

 

Figure 1 a) Cardiff University turbine with composite bend-twist blades in the wave-current flume at IFREMER, 

b) Rotor blade and hub dimensions and c) the experimental set-up (photo credit Dr Allan Mason-Jones). 
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Figure 2 Measured motor torque at different turbine rotational velocities without the blades attached to 

the hub 

The rotor torque was obtained from the motor torque generating current (TGC) recorded in the 

LabVIEW system at a resolution of 16.67 Hz. The TGC is the electric current required by the motor to 

drive and maintain the selected turbine rotational velocity. It is related to torque by a torque constant, 

specified by the manufacturer as 6.66 Nm/A for this motor. The magnitude of the TGC depends on the 

hydrodynamic torque contribution from the turbine blades, and the friction generated in the drive shaft 

which varies with the set turbine rotational velocity. To determine this frictional contribution, the motor 

was calibrated in still water by measuring the TGC without the blades attached to the hub at a range of 

rotational speeds, see Figure 2. The scatter in the calibration data in Figure 2 is discussed in Appendix 

1, and was taken into account when calculating the error bars shown in Section 4. The rotor torque was 

determined from the measured TGC and the polynomial regression equation for the frictional 

component (shown in Figure 2) as follows: 

𝑇𝑅 = 𝑇𝐹 − 𝑇𝑀         (1) 

𝑇𝐹 = −0.0000034 ∗ 𝑅𝑃𝑀2 + 0.0029101 ∗ 𝑅𝑃𝑀 + 0.8660455     (2) 

𝑇𝑀 = 6.66 ∗ 𝑇𝐺𝐶        (3) 

where T is torque; subscript R denotes the rotor (hydrodynamic) component, subscript F denotes the 

frictional component and subscript M denotes the motor component.  

To measure the rotor thrust the turbine stanchion was instrumented with a 5 mm long, Y11-FA-5-120 

strain gauge, with a 119.9 Ohm resistance and 2.01 ± 1% gauge factor, which was located 1.5 m from 

the turbine hub center (0.5 m above the free water surface), see Figure 1. This was also connected to 

the LabVIEW data acquisition system and the data was sampled at 250 Hz. The strain gauge was 

calibrated by measuring the voltage output for a set of known applied loads acting on the hub in the 

streamwise direction. With the blades removed from the hub, the thrust acting on the stanchion was also 

measured in a range of flow speeds. The value of the stanchion thrust (without blades attached) at the 
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appropriate flow velocity was then subtracted from the measured value during testing to obtain the 

thrust associated with the rotor blades. 

 Test program 

The test program consisted of similar test series for the aluminium and composite blades. Firstly these 

were conducted under current of constant average velocity, denominated the CO test series. The same 

current settings were then employed with the wave makers installed in the flume but inactive to check 

for any influence of their presence on the average current speed and turbulence intensity (CM test 

series). Finally, the same current settings were applied with the waves switched on, generating co-

directional wave-current flow; i.e. the waves were propagating with the current (WC test series). A 

number of repeat tests were included in the program to enable an uncertainty analysis to be completed 

(Appendix 1).  

Current speeds of 0.8 m/s, 1.0 m/s and 1.2 m/s were employed in the current only (CO) testing. These 

values were selected based on the scaling considerations, and the limitations of the flume and 

turbine/blade design. Testing at different flow velocities enables the effect of Reynolds number on the 

results to be assessed (see Section 4). Although, taking into account the results of previous tow tank 

experiments and computational model predictions [9], it is anticipated that the influence of Reynolds 

number will be small over this parameter range.  

The rotational speed of the turbine was varied from 45 to 110 RPM, to include tip speed ratios between 

2-6 at each current speed. Due to the limitations of the flume facility waves were constrained to a height 

of approximately 0.15 m in conjunction with a 0.8 m/s current. The wave period was set to 2 s to produce 

close to the largest wave induced velocities that the wave machine was capable of, to encourage the 

maximum possible bend-twist response in the composite blades. Using Froude scaling laws these waves 

would be equivalent to a height of 3 m and a period of 9 s in a water depth of 40 m at the full scale. 

These wave parameters would be expected to occur at least annually at typical marine energy sites [29]. 

3 FLOW AND WAVE CHARACTERISTICS 

Before examining the measured torque and thrust acting on the turbine (Section 4), it is important to 

quantify the flow and wave characteristics recorded by the LDV and wave probes. The streamwise flow 

velocity, V, is presented as the average measured value at the depth of the turbine hub center, and also 

as the average velocity profile with depth across the turbine diameter. The turbulence in the flow is 

evaluated in terms of the turbulence intensity parameter, TI, which is defined as the root-mean-square 

of the turbulent velocity fluctuations divided by the mean velocity of a time series. Note that the phase 

averaged velocity was used in these calculations for the wave-current tests, so that the sinusoidal 

variation in the signal due to waves was not counted as turbulence. The water surface elevation 

measurements during wave-current testing are also discussed in this section in terms of both the time 

and frequency domains. 
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Table 2 Measured flow velocity and turbulence intensity averaged across the rotor diameter, and measured in-

line with the hub center averaged across all test runs for each flow condition. Standard deviation values given 

relate to the average velocity and average turbulence intensity between test runs. 

Case 
Upstream point measurement 

Velocity profile (depth 

averaged across turbine 

diameter) 

V (m/s) TI (%) σV (m/s) σTI (%) V (m/s) TI (%) 

0.8 m/s CO 0.80 1.85 0.00 0.11 0.81 1.83 

0.8 m/s WC 0.79 8.41 0.00 0.74 0.73 10.74 

0.8 m/s CM 0.75 8.65 0.01 2.59 0.70 12.87 

1 m/s CO 1.00 1.85 0.00 0.04 - - 

1.2 m/s CO 1.20 1.88 0.00 0.06 - - 

 

In Table 2 the velocity and TI measured at hub height upstream of the rotor are given. These have been 

averaged across all available test runs for each of the flow conditions. The 1.2 m/s, 1 m/s and 0.8 m/s 

current only (CO) test series are in close agreement with their design values, with the low standard 

deviation between tests demonstrating excellent repeatability of the flow conditions. The TI is 

consistent between the three flow velocities, and at less than 2% is not anticipated to greatly influence 

the results.  

Due to operational constraints of the flume facility where the utilisation of waves was restricted to flow 

speeds of 0.8 m/s, a full assessment of the flow across the turbine was not undertaken for the studies 

presented without waves; i.e, 1.0 and 1.2 m/s. This practice was considered acceptable since [14] 

showed that the variation of the flow across the water column at the Ifremer facility produces uniform 

and almost unidirectional axial flows with mean vertical velocities close to zero when the wave makers 

are not operational and not immersed in the flume.  

The results for the CM test series (current only but with wave makers sitting in the flume) shown in 

Table 2 indicate that the presence of the wave maker has affected both the average velocity and 

turbulence intensity. The wave maker was located downstream of the current inlet, triggering flow 

disturbances that persisted along the flume. This has resulted in a reduction in the average velocity and 

an increase in the turbulence intensity compared to the 0.8 m/s CO series which utilised the same current 

settings but without the wave makers sitting in the flume. Furthermore, the variability in V and TI 

between individual test runs is more significant in the CM series (see standard deviation, Table 2) 

signifying that the conditions were less repeatable than in the CO series.  

 



12 
 

 

 

Figure 3 Time histories and power spectral densities of flow velocity measured upstream of turbine in-line with 

hub center in current with a nominal velocity of 0.8 m/s a) CO series (current alone without wave makers 

installed in flume) velocity signal, b) CM series (current alone with inactive wave makers installed) velocity 

signal with inactive wave makers installed c) CO series PSD d) CM series PSD (examples shown are for 

composite blade tests at 65 rpm (1.08 Hz))  
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Figure 4 Wave-current flow characteristics a) LDV record of flow velocity at hub height b) wave probe 

record of surface elevation compared to linear theory (examples shown are for composite blade tests at 

65 rpm (1.08 Hz)) 

 

Figure 5 Power spectral density of wave probe record in wave-current flow (composite blade test at 65 

rpm (1.08 Hz))  

In Figure 3a and 3b typical velocity records from the 0.8 m/s CM and CO test series (current alone with 

and without the inactive wave makers installed respectively) are compared. The higher level of 

turbulence due to the wave makers is evident in the CM data (Figure 3b). In Figure 3c and 3d the 

turbulence spectra are shown for the CO and CM cases respectively. Both demonstrate similar spectra 

despite the differences in TI. They are broadly in agreement with Kolmogorov turbulence theory, with 

both cases following the expected -5/3 gradient in the inertial range (Figure 3c and 3d), although there 

is considerable noise in the spectra at higher frequencies due to the relatively low measurement 

resolution. Comparison of the tests in these two flow conditions could provide insight into the influence 

of turbulence on the hydrodynamic loads acting on the turbine. However, the difference in average flow 

velocity between these two conditions must be taken into account. 

In Table 2 the average velocity in the wave-current tests is slightly higher than in the case without waves 

running (CM series) and the TI is similar. This indicates that direct comparison between the wave-

current (WC) and current (CM, i.e. wave maker switched off but still installed in flume) cases is 

appropriate to discern the effects of wave-current loading on the turbine.  
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Example time series of the wave-current flow characteristics are presented in Figure 4. The LDV data 

is shown in Figure 4a and the surface elevation is given in Figure 4b. The 2 s wave period is evident in 

both data sets. There is notable variation in the amplitude of the velocity fluctuations and wave height, 

due to the variability in the underlying current as demonstrated when running the current alone (Figure 

3b). This level of variability was not present when running the waves alone. While, the wave recreated 

in the flume corresponds to a 2nd order wave, insignificant non-linearities of the wave mechanics are 

shown in Figure 4, which compares the surface elevation and the horizontal component of the wave 

velocity with the superimposed current velocity with predictions obtained from linear theory. The 

wavelength for this wave characteristics is of 8.3 m. 

The average wave height in the combined wave-current flow was approximately 0.15 m. The average 

horizontal velocity range per wave cycle at hub height across all wave-current tests was 0.31 m/s (39% 

of the average velocity) with an average maximum velocity per wave cycle of 0.93 m/s and average 

minimum velocity per wave cycle of 0.63 m/s.  

Figure 5 shows the wave probe signal in the frequency domain for a typical wave-current test, 

establishing the presence of the dominant wave frequency at 0.5 Hz. To a smaller extent the wave 

harmonics are also present, primarily at twice the wave frequency as a result of wave non-linearity. The 

presence of these higher frequencies in the waveform is important to note as they may influence the 

frequency response of the turbine, as discussed in Section 5.  

Additional velocity measurements were taken to determine the variation in the streamwise flow velocity 

with depth through the water column. These were collected once the turbine had been removed from 

the flume. Figure 6 shows the average velocity profiles recorded in the comparable current alone cases 

with and without the wave makers installed (CM and CO series respectively) and in the wave-current 

condition. There is only a small change in the velocity and TI profiles with depth for the current alone 

case without wave makers installed, indicating that the turbine was situated above the flume bottom 

boundary layer. The CM series (current alone with inactive wave makers installed) has decreasing 

velocity and increasing turbulence intensity in the upper section of the profile, coinciding with the draft 

of the wave maker which spanned the upper part of the water column. The wave-current case (WC 

series) also has decreasing velocity and increasing turbulence intensity towards the water surface in 

Figure 6. However, this is to be expected in co-directional wave-current flow, see [30], [31], [32].  
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Figure 6 Variation in flow characteristics with depth for the current only cases with and without inactive wave 

makers installed in the flume (CM and CO series respectively) and the wave-current (WC) test series at a 

nominal current velocity of 0.8 m/s a) velocity profile b) turbulence intensity 

In Table 2 the velocity measured at the hub center and the velocity averaged across the turbine diameter 

are compared. These are in close agreement for the current alone (CO) case without wave makers 

installed, as both the velocity and TI were reasonably constant with depth (see Figure 6). For the CM 

(inactive wave makers installed) and wave-current cases there is a greater difference between the 

average velocity measured at the turbine centerline compared to that averaged over the rotor diameter, 

with lower average velocity and higher turbulence intensity when the velocity profile is taken into 

account. This demonstrates the importance of quantifying the inflow velocity over the full turbine swept 

area in order to accurately assess turbine performance characteristics. However, in practice this is 

difficult to achieve during testing without interfering with the experiments, and further consideration of 

suitable measurement techniques is needed to ensure the necessary information is captured in 

subsequent laboratory studies. The way in which the velocity is defined will influence the coefficients 

of power and thrust and this is discussed in terms of the results in Section 4.2.  

4 MEAN TURBINE PERFORMANCE CHARACTERISITICS 

The average thrust and power measured at each turbine rotational velocity selected for the wave-current 

(WC) test series and current alone cases with and without inactive wave makers installed (CM and CO 

series), are shown in Figure 7. For clarity the thrust and power results are presented separately for each 

blade type. Both the thrust and power increase with flow velocity in Figure 7, and for each flow 

condition the power and thrust vary similarly with RPM. There is a peak coinciding with the optimal 

angle of attack, with torque and thrust reducing at slower and faster turbine rotational speeds. The 

position of the peak moves to the right (higher RPM) at higher flow velocities to maintain the same 

relative velocity between the turbine and the incoming flow. 

The bend-twist behavior of the composite blades can be quantified through comparison with the 

performance of the aluminium blades. The tests run in the three uniform current (CO) cases, without 

the wave makers installed in the flume, are considered first in Section 1.1. These results are then 
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compared with the current alone tests with the inactive wave makers installed in the flume (CM series) 

in Section 4.2. The wave-current (WC) series is discussed with respect to the CM series in Section 4.3. 

The error bars shown in Figure 7 and Figure 11 were computed based on the uncertainty in the 

measurement calibrations, manufacturers’ specifications, and repeated test data, as discussed in 

Appendix 1.    
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Figure 7 Variation in thrust and power with turbine rotational velocity for each flow condition and blade type a) thrust, aluminium blades b) thrust, composite blades c) 

power, aluminium blades d) power, composite blades  
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 Uniform current tests (CO series) 

The performance characteristics of the composite and aluminium blades are compared in Figure 8 and 

Figure 9 for the current only (CO) test conditions (i.e. without wave makers present in the flume). The 

data is presented in the form of the thrust and power coefficients, CT and CP, as a function of the tip 

speed ratio, TSR. These parameters represent the actual rotor thrust, power and rotational velocity 

normalised by the available thrust, power and free-stream velocity, as detailed in [33]. Non-

dimensionalising the parameters in this way facilitates direct comparison of the data collected under the 

different flow velocities.  

The CT values for the aluminium and composite blade tests in 0.8 m/s current are shown in Figure 8a. 

While there is scatter in the data, the polynomial regression lines are in close agreement and the error 

bars overlap (Figure 7), indicating that the magnitude of the thrust acting on the composite and 

aluminium blades is similar.  

In Figure 8b the CT values for the aluminium and composite blade tests conducted at the 1 m/s and 1.2 

m/s current velocities are compared. There is a noticeable difference in the loads on the two blade types 

at higher TSR values, with a reduction in thrust on the composite blades. This is not evident in the 1 

m/s current tests at lower TSR values (i.e. lower RPM) where the curves for the two blades are in close 

agreement. At the 1.2 m/s current velocity the reduction in thrust associated with the composite blades 

is greater compared to that in the 1 m/s set at the same TSR value, indicating that the magnitude of the 

thrust reduction increases with flow velocity. The maximum reduction in CT is approximately 11%, 

which is in close agreement with the results of Murray et al. [34], providing confidence in the test 

methodology. This indicates that, at least in this context, the 2% difference in TI between the present 

study and that of [34] has not affected the behavior of the blades in this respect; however higher 

turbulence intensities may affect the operation of devices considerably, as shown in [35]. These results 

have also been replicated to a reasonable degree by the two-way coupled BEMT-FEM computational 

model in [34].  

Similarly to the CT data, the CP values for the two blade types, shown in Figure 9, are in close agreement 

at lower TSR values. The CP measurements for the composite blades then begin to reduce compared to 

those for the aluminium blades as TSR and flow velocity increase. This amounts to a significant 

reduction in CP at the highest TSR values tested (35% reduction in the 1 m/s case). The peak value of 

CP is also reduced due to the composite blades, by nearly 7% for the 1 m/s case and by approximately 

14% in the 1.2 m/s case. Even at the lowest flow speed of 0.8 m/s there is a small reduction of 3% at 

peak power which increases to a notable 26% at the maximum TSR value. While passive power 

reduction is beneficial above rated conditions, these results demonstrate the need for careful design of 

bend-twist blades so that power capture is not diminished during normal operating conditions. As 

mentioned in Section 2 the primary design objective for the blades at this stage was to demonstrate the 
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potential of the concept, rather than attempting to hone the bend-twist response to generate optimal 

performance curves. Therefore, these results are encouraging because they show, as hypothesised, that 

both the thrust and power transmitted to the turbine can be reduced passively by the bend-twist blades.  

The differences between the aluminium and composite blades in terms of both thrust and power are 

more significant at higher values of RPM and flow velocity because as these parameters increase, so 

will the forces acting on the blades. This will cause a greater degree of bend-twist in the composite 

blades, shedding more power and thrust relative to the characteristics of the aluminium blades. At the 

lowest flow velocity and turbine rotational velocities tested the forces are small enough not to induce a 

significant bend-twist response in the composite blades, hence the loads on the composite and 

aluminium blades are similar under these conditions. 

When comparing the results for the aluminium blades in Figure 8 and Figure 9 at the three current 

velocities, there is only a small increase in the peak CP and peak CT values with increasing flow velocity. 

As the data has been normalised, this implies that the influence of Reynolds number (Re) is small over 

this range. The critical Reynolds number to achieve Reynolds independence (based on the turbine 

diameter) was found by Mason-Jones [36] to be 5105, and the effect of Reynolds number was 

insignificant for Re>2x105. The Reynolds number for the turbine in the present study at a current speed 

of 0.8 m/s and similar to Mason-Jones [36] based on the turbine diameter, is 6.6105. While a different 

blade geometry was used in the present study to that in [36], this should not affect the critical Reynolds 

number at least in terms of its order of magnitude. Therefore, the test conditions in the present study 

are thought to be approaching independence.  

 

Figure 8 Comparison of variation in the thrust coefficient with tip speed ratio for the two blade types, current 

only (CO) test series, without wave makers installed a) 0.8 m/s b) 1 m/s and 1.2 m/s. Polynomial regression 

lines for each data set are shown to aid comparison. 
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Figure 9 Comparison of variation in the power coefficient with tip speed ratio for the two blade types, current 

only (CO) test series, without wave makers installed a) 0.8 m/s b) 1 m/s and 1.2m/s. Polynomial regression lines 

are shown for each data set to aid comparison. 

 Comparison of current tests at a nominal velocity of 0.8 m/s  (CO and CM series) 

In Section 3 it was found that in the current alone (CM) series with inactive wave makers installed in 

the flume the presence of the wave makers altered the characteristics of the current, reducing the average 

velocity and increasing the turbulence intensity. It is interesting to consider the effect of this on the 

turbine performance. 

As shown in Figure 7, the lower average velocity (and possibly the increased turbulence intensity) in 

the CM condition with inactive wave makers installed has resulted in a reduction in both thrust and 

power compared to the same blade type in the 0.8 m/s CO test series without the wave makers present. 

The peak thrust and peak power have been reduced by approximately 26% and 28% respectively. 

To understand the influence of turbulence, first the effect of the difference in average velocity must be 

removed, by plotting the data in non-dimensional form. In Figure 10 this is done using two different 

definitions for velocity. In Figure 10a and 10b the coefficients of thrust and torque plotted against the 

tip speed ratio were computed using the average velocity measured at hub depth during each test run. 

In Figure 10c and 10d the velocity profiles measured after testing are utilised to estimate the average 

velocity across the rotor swept area, following the method of [37]. Note that this velocity parameter is 

very similar to the depth averaged velocity across the rotor diameter in this study as velocity 

measurements were not collected in the cross-stream direction due to time constraints. By taking into 

account the velocity across the full rotor swept area close agreement is achieved between the curves for 

the two blade types (Figure 10c and 10d), despite the increased scatter due to these measurements not 

being related to specific test runs. Whereas, using the point measurements of velocity the coefficients 

of thrust and torque are smaller in the CM test series (Figure 10a and b). 
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Figure 10 Comparison of turbine performance in the CM and CO test series with and without inactive wave 

makers installed at a nominal velocity of 0.8 m/s, aluminium and composite blades a) thrust coefficient using 

point measurement velocity for each test b) power coefficient using point measurement velocity for each test c) 

thrust coefficient calculated from estimate of velocity averaged over turbine area from velocity profiles, Figure  

d) power coefficient calculated from estimate of velocity averaged over turbine area from velocity profiles. 

Polynomial regression lines are shown for each data set to aid comparison. 

The Reynolds number based on the average velocity for the CM condition is still above the critical 

Reynolds number defined by [36]. Therefore, it is likely that the influence of Reynolds number is small, 

and hence agreement between the CO and CM cases is to be expected, as in Figures 10c and 10d. This 

implies that the increased turbulence intensity (Table 2) once the wave makers were installed in the 

flume (CM series) has had little effect on the average values of either CP or CT.  

In Figure 7 the thrust and power curves for the two blade types are similar for the CM case with inactive 

wave makers installed in the flume, and are within the measurement uncertainty. When plotting this 

data in terms of the coefficients of thrust and torque in Figures 10c and 10d, there is also little difference 

between the coefficient of thrust for the two blade types. For the coefficient of power, Figure 10d, the 

expected trend of reduced CP in the composite blades at higher tip speed ratios is somewhat evident. 

Nonetheless, the results indicate that, as with the 0.8 m/s CO test series, the forces associated with the 

CM flow condition are not substantial enough to produce a considerable bend-twist response in the 

composite blades.  
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 Comparison of current and wave-current tests (CM and WC series) 

The aluminium and composite blade behaviors in the wave-current condition are presented in terms of 

average thrust and torque in Figure 11. The results from the current alone case with wave makers present 

but inactive (CM series) are also included in Figure 11 for comparison. For the aluminium blades the 

wave-current (WC) and current (CM) cases are in close agreement, indicating that the average forces 

in wave-current and current are similar, as has been reported previously by [14] and [18].  

For the composite blades both the power and thrust are a little higher in the wave-current (WC) series 

compared to in the current (CM) tests. However, these differences are still within the measurement 

uncertainty based on the repeated tests (see Appendix 1), and so without conducting further testing it is 

not possible to conclude that this is a significant result. 

When comparing the wave-current results between the two blade types for both thrust and power these 

are also within the measurement uncertainty of the instrumentation. As with the tests in current (0.8 m/s 

CO and CM series) this indicates that the flow velocity is too low to induce much bend-twist in the 

composite blades, at least in terms of affecting the average loads. This does not mean that the bend-

twist blades do not respond dynamically to the fluctuating loads, and this is discussed in terms of the 

frequency and time domains in the following section. 

 

Figure 11 Comparison of variation in power and thrust with turbine rotational velocity for the current alone 

(CM) and wave-current (WC) test series and both blade types a) thrust b) power. Polynomial regression lines 

are shown for each data set to aid comparison. 

5 FREQUENCY DOMAIN ANALYSIS 

Further insight can be gained into the turbine loads by analysing the results in the frequency domain. 

This allows the amplitudes of vibrations induced in the turbine system at different frequencies to be 

quantified. These may be due to fluctuations in the incoming flow (turbulence or waves), or related to 

the rotational period of the turbine and interaction with the support structure. 
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 Uniform current tests (CO series) 

Figure 12 shows the spectral analyses, determined by fast Fourier transform (FFT), of the thrust and 

torque time series for both the composite and aluminium blades operating at optimum RPM in the 0.8 

m/s current tests without the wave makers installed (CO series). 

In terms of the thrust (Figure 12a) both blade types have similar spectra, with the most prominent 

frequency being equal to the rotational frequency of the rotor, at approximately 1.1 Hz (65 RPM) for 

the test case shown. There is also a smaller peak in the spectrum at three times the turbine rotational 

frequency which corresponds with the rate of the blades passing the stanchion. At this frequency the 

amplitude is slightly larger for the composite blades, implying they may be bending a little due to 

interaction with the tower. However, the magnitude of this fluctuation is small enough so as not to 

induce any change in torque (Figure 12b), and much lower than that at the rotor rotational frequency. 

Tower interactions were expected to be limited due to the fairly substantial distance between the rotor 

head and stanchion in the streamwise direction. The higher frequency peak at approximately 5.4 Hz is 

probably related to the natural frequency of the support structure and mounting frame.  

The amplitude of the fluctuations in the torque spectrum are an order of magnitude smaller than those 

in the thrust spectrum (Figure 12b). The frequencies associated with the turbine rotational period and 

the stanchion passing frequency are not distinguishable from the background noise associated with the 

measurement system. Vibrations due to the mounting structure may be more evident in the thrust 

spectrum because the thrust gauge was mounted directly on the stanchion, whereas the torque was 

monitored at the motor which was mounted behind a radial shaft seal and a single set of bearings. These 

drive shaft components are likely to have added damping to the system reducing the level of torsional 

fluctuations observed in these measurements.  

 

Figure 12 Comparison of the frequency spectra for the aluminium and composite blades, CO test series 

(current, no wave makers in flume) a) thrust b) torque (examples shown are from 0.8 m/s tests run at 65 rpm 

(1.08 Hz))  
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Figure 13 Comparison of the amplitude of the peak in the frequency spectrum at the turbine rotational velocity 

for the composite and aluminium blades, current only (CO) test series without wave makers installed a) thrust 

amplitude versus turbine rotational speed b) thrust amplitude versus tip speed ratio 

Any fluctuations in thrust and torque associated with the rotor blades should appear primarily at three 

times the turbine rotational frequency due to superposition of the responses of the three blades. In 

practice, however, fluctuations at the rotational frequency may occur due to small differences in the 

blade pitch settings, their geometry, weight or ply lay-up (when considering the composite blades). 

Fluctuations at this frequency may also be generated by the motor/control system or a small 

misalignment in the drivetrain. 

In Figure 13 the amplitude of the peak in the thrust spectrum at the turbine rotational velocity for each 

test in the current only (CO) series without wave makers present is shown. The magnitude of the thrust 

vibration increases with RPM and decreases with increasing flow velocity (Figure 13a). The effect of 

flow velocity is removed in Figure 13b, although with some scatter, by presenting the results in terms 

of TSR.  

The amplitude of the thrust is higher for the composite blades than for the aluminium blades in Figure 

13. This is in agreement with the results of [34]. The difference in blade weights was smaller between 

the three composite blades (±0.2%) than between the three aluminium blades (±0.9%), so this can be 

ruled out as the cause. Significant differences in pitch are also unlikely due to the locking mechanism 

employed. A small difference in deflection between one of the composite blades and the other two 

blades was identified from static loading tests in [10], probably resulting from differences in the ply 

layup during manufacture. This may account for the increased fluctuation size at this frequency. 

Alternatively the higher fluctuations could be a result of vibrations set up by the motor/drivetrain being 

transferred more so to the composite blades due to their increased flexibility.  

While the frequency response in this study is specific to the scaled drivetrain design, at full scale it is 

possible that vibrations could be induced in flexible blades by the response of other components in the 

drivetrain or the support structure. Therefore, this is important to consider in the structural design and 

assessment of the fatigue life of composite blades. However, it should be noted that the actual variations 
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in thrust (< 3 N) are small relative to the average values of thrust shown in Figure 7 (50-200 N depending 

on flow speed and RPM), and so would not be expected to be of major concern. 

 Current tests with wave maker installed in flume (CM series) 

Figure 14 shows the thrust and torque frequency spectra for the optimum case in the current alone (CM) 

test series with inactive wave makers installed in the flume. As with the CO case of current alone 

without wave makers in the flume (Figure 12), there are peaks in the thrust spectrum associated with 

the rotational frequency of the rotor and the natural frequency of the mounting system. However, it is 

difficult to distinguish a peak at the blade passing frequency. This is due to the greater level of noise in 

the spectrum which is probably related to the higher turbulence in the CM condition. The amplitude of 

noise in both the thrust and torque spectra is an order of magnitude greater than in the CO case. Similarly 

to the CO case, the peaks associated with the turbine rotational period and blade passing frequency are 

indiscernible in the torque spectrum (Figure 14b).  

 

Figure 14 Comparison of the frequency spectra for the aluminium and composite blades, CM test series a) 

thrust b) torque (examples shown are from tests run at 65 rpm (1.08 Hz) and a flow velocity of 0.8 m/s)  

 Wave-current tests (WC series) 

Figure 15 shows the spectral analyses of the thrust and torque time series for both the composite and 

aluminium blades for the optimum case in wave-current flow. The dominant frequency in the thrust 

spectrum (Figure 15a) correlates to the wave frequency of 0.5 Hz. While significantly smaller in 

magnitude, the rotational period of the turbine is also clearly defined with a peak of similar amplitude 

to that in the CM case (wave makers inactive, Figure 14a). The amplitude associated with this frequency 

is slightly larger for the composite compared to aluminium blades, for the same reasons as discussed in 

terms of the CO tests in Section 5.1. As with the CM case the contribution that relates to the blades 

passing the stanchion at three times the turbine rotational frequency is not visible in Figure 15a. The 

natural frequency of the stanchion is present at around 5.4 Hz as in the CM and CO cases.  
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Figure 15 Comparison of the frequency spectra for the aluminium and composite blades, wave-current (WC) 

test series a) thrust b) torque (examples shown are from tests run at 65 rpm (1.08 Hz) and a flow velocity of 0.8 

m/s)  

There is a small peak in the thrust spectrum at twice the wave frequency which is linked to the presence 

of this harmonic in the wave signal, see Figure 5a. The wave frequency and its first harmonic are evident 

similarly in the torque spectrum (Figure 15b). There is also a small peak at 1.58 Hz in the thrust, and to 

a lesser extent in the torque spectrum which is equal to the sum of the wave frequency and the turbine 

rotational frequency. This superposition indicates an interaction effect between the turbine rotational 

period and the wave period, which was demonstrated and discussed with respect to the loads on a single 

blade in [38]. Seeing some interaction in terms of the response of the full rotor is interesting as it 

indicates that the individual blade interactions do not fully cancel each other out in this respect.  

In Figure 16 the amplitude of the fluctuations in thrust and torque at the wave frequency are shown for 

the two blade types for each of the wave-current tests. The amplitude of both the thrust and torque is 

consistently larger for the aluminium blades than for the composite blades, revealing that the composite 

blades damp out the oscillatory forces generated by the waves. Significantly, this will moderate the 

loading fluctuations that are transferred to the drivetrain components at this frequency, thereby reducing 

their likelihood of failure.  

 

Figure 16 Comparison of the amplitude of the peak in the frequency spectrum at the wave frequency for the 

composite and aluminium blades in the wave-current (WC) test series a) thrust b) torque 
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6 TIME DOMAIN ANALYSIS 

To quantify the size of the fluctuations in thrust and torque and the damping associated with the 

composite blades under wave-current loading, the results are investigated in the time domain where the 

contributions from all of the frequencies discussed in Section 5.3 are combined. Figure 17 shows the 

average range in thrust and torque per wave cycle.   

The magnitude of both the thrust and torque fluctuations are reduced for the composite blades compared 

to the aluminium blades in Figure 17, corresponding with the results associated with the dominant wave 

frequency in Section 5.3. The composite blades reduce the size of the thrust fluctuations by up to 10% 

and the torque fluctuations by up to 14%. The fluctuating forces due to the waves result in increased 

bend-twist being induced during part of the wave cycle, shedding peak thrust and power.The size of the 

thrust and power fluctuations for the aluminium blades and the level of damping by the composite 

blades increases with the rotational speed of the turbine, due to the larger forces induced at higher 

RPMs, and consequently the greater bend-twist response of the composite blades.  

The low flow velocity and relatively small wave height set for the wave-current condition mean that 

the bend-twist response in the composite blades was fairly limited. If the size of the waves or the current 

speed was increased, it is likely that the damping of the fluctuating forces would be much more 

significant, and the average values of thrust and power may also be affected. Moreover, it has been 

demonstrated by [9] that ideal pre-twisting conditions can be obtained iteratively to produce coupled 

BT blades that will provide thrust loads reductions close to 9% with power losses of only 5%. Thus, 

these BT blades can be designed according to the set specifications. 

The application of load shedding techniques to the offshore industry provides beneficial properties to 

the structures such as the reduction of stress range and intensity on a particular area allowing the 

interruption of crack propagation. However, it has also been noted that greater stresses may be produced 

elsewhere causing additional damage it [39] [40]. These effects should then be properly studied in the 

marine renewable energy sector as fatigue failure is not only related to the lowering of load, it is also 

(and probably more) related to the number of load cycles that these structure are exposed to along with 

the strain range of the material. It should be noted therefore that further investigations are required to 

investigate low frequency cyclic loading such as tidal loading (diurnal, semi-diurnal and mixed) and 

higher frequencies from turbulence, velocity profile and blade support structure interaction along with 

wave-current interaction exposure. Therefore, this is an area for further work, the first stage of which 

would be to conduct tests in a facility where wave-current combinations with higher average velocity 

and larger velocity fluctuations can be tested, i.e. higher current speed, longer wave period and larger 

wave height, to gain greater insight into the bend-twist blade behavior and support optimisation of the 

bend-twist blade structural design. 
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Figure 17 Magnitude of average maximum minus minimum load per wave cycle in wave-current (WC) test 

series a) thrust range per wave cycle for composite and aluminium blades b) torque range per wave cycle for 

composite and aluminium blades 

 

7 CONCLUSIONS 

The aim of this study was to investigate experimentally the performance of a 1:20 scaled three bladed 

horizontal axis tidal turbine under current and co-directional wave-current conditions. The turbine was 

tested with composite bend-twist coupled blades and rigid aluminium blades to characterise, through 

comparison, the bend-twist response in these flow conditions. The turbine thrust and power were 

considered as time-averaged quantities and by analysing the dynamic behavior of the turbine in the 

frequency and time domains. 

The main conclusions are as follows: 

- Considering the time-averaged data, in uniform current (CO test series) the peak value of CT 

was reduced by up to 10% and the peak CP was reduced by up to 14% due to load shedding 

caused by the bend-twist response of the composite blades compared to the aluminium blades.  

- The size of this load reduction increased with TSR i.e. with flow velocity and with turbine 

rotational velocity as both of these increased the magnitude of the forces acting on the blades, 

thereby inducing greater bend-twist in the composite blades. Consequently at the slowest flow 

velocity and turbine rotational speeds tested the loads on the two blade types were similar.  

- Under wave-current conditions the mean loads on the composite and aluminium blades were 

similar, in agreement with the results in current alone at the same average flow velocity.  

- In wave-current flow when considering the time domain the amplitude of the average loading 

range per wave period was significantly reduced when operating the turbine with the composite 

blades compared to the rigid aluminium blades. The thrust and torque fluctuations were reduced 

by up to 10% and 14% respectively.  
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- These reductions in the average loading range per wave period increased with the rotational 

speed of the turbine, and hence the loads acting on the blades increased inducing a greater bend-

twist response. 

- The magnitude of the thrust fluctuations associated with the frequency of rotation of the turbine 

was greater for the composite blades compared to the rigid aluminium blades in all conditions 

tested (current and wave-current) due to their higher flexibility. However, the magnitude of 

these fluctuations was small compared to both the average value of thrust, and to the 

fluctuations associated with waves, and hence the fluctuations at the wave frequency dominated 

the overall blade response in wave-current flow. 

This study has demonstrated the potential for bend-twist blades to passively damp fluctuations in 

power and thrust due to waves. Shedding of excess thrust loads will help to increase blade fatigue 

life and reduce the probability of failure of the blades and drivetrain components. It may also lead 

to a reduction in the cost of components through tailoring of the design load specifications. 

Damping of the power fluctuations will be of benefit to the design of the generator and power 

conditioning unit, increasing their cost effectiveness due to the reduction in peak loads and 

improved power smoothing.  

Continuing research into the performance of bend-twist blades is needed to fully optimise them for 

the tidal energy application at full scale so that the desired power and thrust curves are realised in 

tandem with a suitable structural design. Following this the cost of manufacture of this type of blade 

compared to more conventional options needs to be determined so that the potential for capital and 

maintenance cost reductions can be properly assessed.  

To move towards this goal, in the nearer term future work will investigate the bend-twist 

performance of composite blades in a wider range of wave and current conditions, including 

extreme events, so that bend-twist is induced for a greater portion of the wave cycle and faster flow 

velocities where the benefits of bend-twist blades can be further visualised. The axial loads on the 

rotor plane and on individual blades will also be compared with the rotor loads discussed in this 

study to better understand the blade structural performance and interaction effects between the wave 

period and turbine rotational period. Blade deflections will be measured during testing to directly 

monitor the bend-twist response, similar to the work presented in [18]. Moreover, blade 

deformations in non-uniform flow fields should be taken into account by performing a hydro-elastic 

deformation study.  Alongside this, the numerical modelling work presented in [34] will be 

extended to include wave-current conditions and compared with the experimental results from this 

study, so as to develop a more comprehensive design tool for composite bend-twist tidal turbine 

blades. 



30 
 

ACKNOWLEDGEMENTS 

This research was funded under the EPSRC Supergen UKCMER Grand Challenges project 

‘Reducing the costs of marine renewables via advanced structural materials’ [grant EP/K013319/1]. 

Thank you to the team at IFREMER for their support during the testing period. The authors also 

thank Airborne Marine (Netherlands) for blade manufacturing, Natural Sciences and Engineering 

Research Council of Canada, Killam Trust, Offshore Energy Research Association of Nova Scotia, 

United Kingdom Science and Innovation, and Scottish Development International for funding. 

REFERENCES 

 

[1]  G. Evans, "Maintaining marine turbines," 2013 . [Online]. Available: http://www.power-

technology.com/features/feature-maintaining-marine-turbines-tidal-energy/. [Accessed 02 06 

2017]. 

[2]  I. A. Milne, R. N. Sharma, R. G. J. Flay and S. Bickerton, "Characteristics of the turbulence in the 

flow at a tidal stream power site.," Phil Trans R Soc A 371: 20120196., 2013.  

[3]  T. Nevalainen, The effect of unsteady sea conditions on tidal stream turbine loads and 

durability. PhD Thesis., Glasgow, UK: The University of Strathclyde, 2016.  

[4]  J. King and T. Tryfonas, Tidal stream power technology - state of the art, IEEE, 2009.  

[5]  H. Kooijman, "Bending-torsion coupling of a wind turbine rotor blade, Report no. ECN-I--96-

060," École Centrale de Nantes (ECN), Nantes, 1998. 

[6]  J. R. Xiao, B. A. Gama and J. W. Gillespie, "Progressive damage and delamination in plain weave 

S-2 glass/SC-15 composites under quasi-static punch-shear loading," Composite Structures, vol. 

78, pp. 182-196, 4 2007.  

[7]  D. M. Grogan, S. B. Leen, C. R. Kennedy and C. M. Ó Brádaigh, "Design of composite tidal 

turbine blades," Renewable Energy, vol. 57, pp. 151-162, 9 2013.  

[8]  M. Mohan, "The advantages of composite material in marine renewable energy structures," in 

RINA Marine Renewable Energy Conference, 2008.  

[9]  R. Murray, Passively adaptive tidal turbine blades: design methodology and experimental 

testing, PhD thesis, Dalhousie : Dalhousie University, 2016.  

[10]  R. E. Murray, T. Nevalainen, K. Gracie-Orr, D. A. Doman, M. J. Pegg and C. M. Johnstone, 

"Passively adaptive tidal turbine blades: Design tool development and initial verification," 

International Journal of Marine Energy, vol. 14, pp. 101-124, 6 2016.  

[11]  R. F. Nicholls-Lee and S. R. Turnock, Enhancing Performance of a Horizontal Axis Tidal Turbine 

using Adaptive Blades, IEEE, 2007.  

[12]  M. R. Motley and R. B. Barber, "Passive control of marine hydrokinetic turbine blades," 

Composite Structures, vol. 110, pp. 133-139, 4 2014.  



31 
 

[13]  R. B. Barber and M. R. Motley, "A numerical study of the effect of passive control on cavitation 

for marine hydrokinetic turbines," in 11th European Wave and Tidal Energy Conference, 

Nantes, France, 2015.  

[14]  B. Gaurier, P. Davies, A. Deuff and G. Germain, "Flume tank characterization of marine current 

turbine blade behaviour under current and wave loading," Renewable Energy, vol. 59, pp. 1-12, 

11 2013.  

[15]  N. Barltrop, K. S. Varyani, A. Grant, D. Clelland and X. P. Pham, "Investigation into wave--

current interactions in marine current turbines," Proceedings of the Institution of Mechanical 

Engineers, Part A: Journal of Power and Energy, vol. 221, pp. 233-242, 3 2007.  

[16]  T. A. Jesus Henriques, S. C. Tedds, A. Botsari, G. Najafian, T. S. Hedges, C. J. Sutcliffe, I. Owen 

and R. J. Poole, "The effects of wave-current interaction on the performance of a model 

horizontal axis tidal turbine," International Journal of Marine Energy, vol. 8, pp. 17-35, 12 2014.  

[17]  P. Galloway, L. Myers and A. A. Bahaj, "Quantifying wave and yaw effects on a scale tidal 

stream turbine," Renewable Energy, vol. 63, pp. 297-307, 2014.  

[18]  S. Ordonez-Sanchez, M. Allmark, K. Porter, R. Ellis, C. Lloyd, I. Santic, T. O’Doherty and C. 

Johnstone, "Analysis of a Horizontal-Axis Tidal Turbine Performance in the Presence of Regular 

and Irregular Waves Using Two Control Strategies," Energies, vol. 12, no. 3, 2019.  

[19]  R. M. Mejia, G. S. Payne and T. Bruce, "The effects of oblique waves and currents on the 

loadings and performance of tidal turbines.," Ocean Engineering, vol. 164, pp. 55-64, 2018.  

[20]  S. Draycott, G. Payne, J. Steynor, A. Nambiar, B. Sellar and V. Venugopal, "An experimental 

investigation into non-linear wave loading on horizontal axis tidal turbines," Journal of Fluids 

and Structures, pp. 199-217, 2019.  

[21]  S. Tatum, M. Allmark, C. Frost, D. O’Doherty, A. Mason-Jones and T. O’Doherty, "CFD modelling 

of a tidal stream turbine subjected to profiled flow and surface gravity waves," International 

Journal of Marine Energy, vol. 15, pp. 156-174, 9 2016.  

[22]  T. M. Nevalainen, C. M. Johnstone and A. D. Grant, "A sensitivity analysis on tidal stream 

turbine loads caused by operational, geometric design and inflow parameters," International 

Journal of Marine Energy, vol. 16, pp. 51-64, 12 2016.  

[23]  Y. L. Young, M. R. Motley and R. W. Yeung, "Three-Dimensional Numerical Modeling of the 

Transient Fluid-Structural Interaction Response of Tidal Turbines," Journal of Offshore 

Mechanics and Arctic Engineering, vol. 132, p. 011101, 2010.  

[24]  P. Liu and B. Veitch, "Design and optimization for strength and integrity of tidal turbine rotor 

blades," Energy, vol. 46, pp. 393-404, 10 2012.  

[25]  IFREMER, "Le laboratoire comportement des structures en mer (in French),," IFREMER, 2015. 

[Online]. Available: http://wwz.ifremer.fr/manchemerdunord/Technologie-marine. [Accessed 

02 06 17]. 



32 
 

[26]  M. Allmark, R. Grosvenor and P. Prickett, "An approach to the characterisation of the 

performance of a tidal stream turbine," Renewable Energy, vol. 111, pp. 849-860, 2017.  

[27]  N. Kolekar and A. Banerjee, "Performance characterization and placement of a marine 

hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects," 

Applied Energy, vol. 148, pp. 121-133, 2015.  

[28]  Bosch Rexroth AG, "Rexroth IndraDyn T Synchronous-Torquemotors, Project Planning Manual, 

Document no. 120-1500-B315-03/EN," Bosch Rexroth AG, Lohr am Main, Germany, 2005. 

[29]  M. R. Hashemi, S. P. Neill, P. E. Robins, A. G. Davies and M. J. Lewis, "Effect of waves on the 

tidal energy resource at a planned tidal stream array," Renewable Energy, vol. 75, pp. 626-639, 

3 2015.  

[30]  J. GROENEWEG and G. KLOPMAN, "Changes of the mean velocity profiles in the combined 

wave-current motion described in a GLM formulation," Journal of Fluid Mechanics, vol. 370, 

pp. 271-296, 9 1998.  

[31]  M. Umeyama, "Changes in Turbulent Flow Structure under Combined Wave-Current Motions," 

Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 135, pp. 213-227, 9 2009.  

[32]  P. H. Kemp and R. R. Simons, "The interaction between waves and a turbulent current: waves 

propagating with the current," Journal of Fluid Mechanics, vol. 116, pp. 227-250, 3 1982.  

[33]  T. Burton, N. Jenkins, D. Sharpe and E. Bossanyi, Wind energy handbook, Chichester: John 

Wiley & Sons Inc., 2001.  

[34]  R. E. Murray, S. Ordonez-Sanchez, K. E. Porter, D. A. Doman, M. J. Pegg and C. M. Johnstone, 

"Towing tank testing of passively adaptive composite tidal turbine blades and comparison to 

design tool," Renewable Energy, vol. 116, pp. 202-214, 2 2018.  

[35]  P. Mycek, B. Gaurier, G. Germain, G. Pinon and E. Rivoalen, "Experimental study of the 

turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," 

Renewable Energy, vol. 66, pp. 729-746, 6 2014.  

[36]  A. Mason-Jones, D. M. O'Doherty, C. E. Morris, T. O'Doherty, C. B. Byrne, P. W. Prickett, R. I. 

Grosvenor, I. Owen, S. Tedds and R. J. Poole, "Non-dimensional scaling of tidal stream 

turbines," Energy, vol. 44, pp. 820-829, 8 2012.  

[37]  J. McNaughton, S. Harper, R. Sinclair and B. Sellar, "Measuring and modelling the power curve 

of a commercial-scale tidal turbine,," in 11th European Wave and Tidal Energy Conference, 

Nantes, France, 2015.  

[38]  S. Ordonez-Sanchez, K. Porter, C. Frost, M. Allmark, C. Johnstone and T. O’Doherty, "Effects of 

wave-current interactions on the performance of tidal stream turbines,," in 3rd Asian Wave 

and Tidal Energy Conference, Singapore, 2016.  

[39]  Y. H. Zhang and A. Stacey, "Review and assessment of fatigue dara for offshore structural 

components containing through-thickness crack," in MAE 2008 27th international Conference 

on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008.  



33 
 

[40]  T. Xu and R. Bea, "Load Shedding of Fatigue Fracture in Ship Structures," Marine Structures, 

vol. 10, pp. 49-80, 1997.  

[41]  T. McCombes, C. Johnstone, B. Holmes, L. Myers, A. Bahaj and J. Kofoed, "Best practice for tank 

testing of small marine energy devices, Deliverable D3.3," Equitable Testing and Evaluation of 

Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact 

(EquiMar), 2010. 

[42]  ITTC, "Guide to the expression of uncertainty in experimental hydrodynamics," ITTC – 

Recommended Procedures and Guidelines, 25th International Towing Tank Conference, 

Fukuoka, Japan, 2008. 

 

 

 

APPENDIX 1 UNCERTAINTY ANALYSIS 

The error bars shown in Figure 7 and Figure 11 in Section 4 were computed following the guidelines 

for conducting an uncertainty analysis produced by EquiMar [41] and the ITTC [42]. The precision, 

bias, and combined expanded uncertainty values for the measured variables are given in Table 3. 

The bias uncertainties were obtained from manufacturer specifications, measurement equipment 

resolution, or calibration of the test equipment and are given in [34].  

The precision uncertainty given in Table 3 equates to the standard deviation between the average 

values of each parameter from repeated test runs. The highest standard deviation in the thrust and 

torque occurred in the repeat set conducted with the aluminium blades at 75 RPM. Because of the 

low uncertainty in the current only (CO) flow condition with wave makers uninstalled (Table 3), 

the errors from this test set can be primarily attributed to those inherent in the thrust and torque 

measurement techniques. Therefore, these values have been taken as the precision uncertainty to be 

applied to all test cases. The combined expanded uncertainty in Table 3 is the square root of the 

sum of the precision and bias uncertainties squared, multiplied by a coverage factor of 2.2. The 

error bars in Figure 7 and Figure 11 in Section 4 represent this parameter.  

Table 3: Precision, bias and combined expanded uncertainty values based on the 0.8 m/s CO repeated test 

set with the highest standard deviation (four repeated runs at 75 rpm, aluminium blades). The uncertainty 

in the current only (CO), current with inactive wave makers installed (CM) and wave-current (WC) flow 

velocities calculated across all test runs is also given.   

Uncertainty values Mean 

value 

Precision Bias Combined 

expanded 

Percent of 

mean 

value (%) 

Power (W) 35.42 2.03 N/A 4.47 12.62 

Thrust (N) 79.68 2.82 0.02 6.20 7.78 
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Rotational speed (RPM) 74.97 0.02 0.20 0.44 0.59 

CO flow velocity (m/s)  0.80 0.0014 0.0013 0.0042 0.53 

WC flow velocity (m/s)  0.79 0.0014 0.0013 0.0042 0.53 

CM flow velocity (m/s) 0.75 0.0100 0.0013 0.0222 2.96 

In Table 3 the error in the torque is slightly higher than that in the thrust due to the greater variability 

in the calibration data (Figure 2). This is probably a consequence of employing an indirect method 

to obtain the rotor torque via the motor TGC. It is recommended in future test programs to install a 

torque transducer on the drive shaft to reduce this uncertainty. The higher uncertainty in the CM 

flow velocity compared to in the CO and wave-current cases is a direct result of the flow 

disturbances set-up by the inactive wave-maker positioned in the flume. 

 


