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Abstract

Logistics companies are under increasing pressure to overcome operational challenges and sustain prof-
itable growth while dealing with the newest requirements of their customers. One of the remedies
designed to cope with a higher number of shipments is to use multi-compartment city vans to ensure all
forms of integration with deliveries. In the area of city logistics, the most common type of delivery in-
volves storing inventory in a central warehouse and to deliver customers’ orders with multi-compartment
vehicles. The problem under study is denoted as the vehicle routing problem with multi-compartment
vehicles which are to operate from a single depot to visit customers within the chosen time period
by minimizing major operational costs. We propose an enhanced adaptive large neighborhood search
algorithm for the investigated routing problem. The computational results highlight the efficiency of the
proposed algorithm in terms of both solution quality and solution time and also provide useful insights
for city logistics.

Keywords: City logistics, freight transport, vehicle routing problem, multi-compartment vehicles, time
windows, metaheuristic algorithm

1. Introduction

Freight logistics deals with the process of the flow of goods, information and other related resources
from an origin point to a destination to satisfy customers’ requirements (Christopher, 2016). Logistics
Service Providers (LSPs) manage and control such logistical activities to satisfy customers’ requirements
at the lowest possible cost and risk. It is also important to provide prompt delivery and environmentally-
friendly solutions to sustain profitable growth.

According to Ghiani et al. (2013), there are two types of freight transportation, namely long-haul and
short-haul transportation. In the first type of transportation, goods are transported over a relatively long
distance, ranging from at least hundreds to thousands of kilometers. The second type of transportation
refers to a relatively small distance within a city or small-sized country (Crainic et al., 2009). The core
operational-level problem in short-haul transportation is the finding of efficient routes for vehicles (Toth
and Vigo, 2014). When LSP has multiple customers and multiple requests at the same time, the problem
is referred to as the Vehicle Routing Problem (VRP), as introduced by Dantzig and Ramser (1959). The

Email address: reza.eshtehadi@sabanciuniv.edu,demire@cardiff.ac.uk, huangy66@cardiff.ac.uk (Reza
Eshtehadi†, Emrah Demir‡ι*, Yuan Huang‡)

* Corresponding author

Preprint submitted to Computers & Operations Research December 4, 2019



VRP is generally solved by designing collection or delivery routes for a set of vehicles, considering
several side constraints (Laporte, 2007).

With the increase in e-commerce delivery volumes, the role of customers has switched from a passive
position to an active one, whereby the ability to satisfy customers’ needs with regards to delivery times,
delivery costs and emissions (i.e., greenhouse gases and air pollutants) has become a very important
success factor in a highly competitive industry (Savelsbergh and Van Woensel, 2016). However, the
ever-increasing number of shipments and time pressure has put a strain on LSPs, especially in urban
environments. In order to tackle these challenges, city logistics has gained growing interest in the
last decade. In the operations research literature, city logistics is used to describe distribution which
takes place in urban (populated) areas and introduces new strategies and best practices that can help
to improve transport efficiency while reducing negative externalities of transportation. This paper will
investigate a real-life VRP where customers’ preferences are taken into account while operational costs
are minimized in an urban environment. We now briefly highlight the features of the routing problem
studied in this paper.

First, in city logistics, customers can purchase different types of products online, considering a wide
range of products that an online companies can sell (Taniguchi and Thompson, 2018a). Some of these
products might require temperature-controlled transportation. For example, food and drink, floricultural
industries might require vehicles with multiple compartments to ensure different temperature levels
for the goods being transported. This makes the problem at hand more challenging since it is not
just the capacity of a single vehicle that must be considered, but the capacity and volume of each
compartment (Muyldermans and Pang, 2010). Moreover, additional costs to allow vehicles to provide
certain temperature requirements from the loading of goods to the point of delivery should be taken into
account in the planning phase.

Second, customers’ delivery preferences and shopping habits heavily affect the success of distribution
because city logistics is generally customer driven (Lee and Whang, 2001). To this end, this study
considers three types of online customer profiles as broadly mentioned in Insight (2016). The first type
of customers place their order before midnight and expects delivery on the following day. In the second
category, customers place their orders on the day of delivery, from the midnight to noon, and can be
served in one of the planning periods (or cycles, i.e., morning, afternoon or evening). The last group
of customers place their orders on the day of delivery and these orders need to be served in the next
planning period. The delivery plan for customers should accommodate the requirements of customers
and therefore we study multiple delivery cycles in a single day. This dynamic behavior makes the VRP
more practical and relevant for city logistics.

Third, the standard objective in VRPs is generally to minimize the total cost which is based on
distance. However, in our case, we consider the minimization of the major operational costs in city
logistics (Taniguchi and Thompson, 2018b). These include fuel costs, driver wage(s) and temperature
costs, when products need to be kept at certain temperatures during transportation.

The studied routing problem is an extension of the classical VRP with time windows (VRPTW)
because it aims to find vehicle routes for customers with delivery time preferences. It is also more
complicated compared to the standard VRPTW because we propose three time planning periods for
three different types of customer group. We also consider the delivery of multiple products within
the same order from each customer. Therefore, the problem at hand concerns routing a fleet of multi-
compartment vehicles with each compartment having a finite capacity to satisfy the various order
preferences of customers.

The main contributions of this paper are the following: (i) we consider a realistic VRP for city logistics;
(ii) we propose an enhanced adaptive large neighborhood search (ALNS) algorithm. ALNS was used
in solving a variety of VRPs (see e.g. Hemmelmayr et al. (2012), Franceschetti et al. (2017)). We also
introduce new removal and insertion operators which can also be used for other types of VRP. New
operators are designed to consider the multiple compartment and periodic planning features of the
investigated routing problem, specifically tailored for the feasibility of the problem. And finally, (iii)
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we provide numerical results to highlight that our algorithm is fast and performing well under various
problem settings.

The rest of our paper is structured as follows: Section 2 provides the recent and related VRP literature.
The main features of the problem are presented in Section 3. In Section 4, we provide the details of ALNS
algorithm whereas Section 5 presents the computational experiments. Conclusions, insights and possible
future research directions are provided in Section 6.

2. Literature review

We now briefly discuss the recent literature on city logistics and Vehicle Routing Problems with
multi-compartment vehicles.

2.1. City logistics
As widely discussed in the literature, city logistics is the process to optimize all transportation

and logistics activities in an urban environment. Interested readers are referred to the review paper
of Savelsbergh and Van Woensel (2016) who discuss the importance of city logistics in the transport
community. In this review, the authors discuss the main trends impacting city logistics such as population
growth, urbanization, e-commerce growth, time flexibility, the sharing economy and sustainability. They
also mention digital connectivity, big data, automation, and automotive technology as the main advances
in technology that help to advance city logistics. In another work, different aspects of city logistics (i.e.,
the importance of reducing emissions) and research opportunities for future research are detailed by
Taniguchi and Thompson (2018a).

Sustainability, and particularly emissions, are the most discussed topics in city logistics. Several
authors have particularly focused on the environmental issues. For example, Yao et al. (2019) studied the
effect of collaboration in city logistics from the aspects of profit and CO2 emissions. The authors showed
that collaboration in city logistics could improve transportation costs and help reduce emissions at the
same time. In another study, Groß et al. (2019) proposed a city logistics VRP with uncertain travel times.
The authors proposed a robust VRP for city logistics with satellite locations and tested their methodology
with a case study in Stuttgart, Germany. In another case study, Wang et al. (2016) proposed a network
minimal cost flow problem for last-mile delivery problems in city logistics and used their approach for
Singapore and Beijing data sets. Their results showed that their proposed methodology could support
real-time last-mile delivery optimization on a large-scale network. In another study, Sampaio et al. (2019)
illustrated the characterizing features of crowd city logistics and discussed future research directions.

Xu et al. (2015) studied intermodal transportation auctions for the B2B e-commerce logistics problem.
The authors proposed efficient auctions to minimize the sum of intermodal service costs and transaction
costs (i.e., logistics chain cost). Later, Eshtehadi et al. (2017) studied demand and travel time uncertainty
in green transport planning by proposing several robust optimization techniques; soft worst case, hard
worst case and chance constraints.

2.2. VRP with multi-compartment vehicles
The presence of capacity constraints is an important factor for routing problems and is generally

studied under Capacitated VRP (CVRP) (Golden et al., 2008). The main assumption of the CVRP is that a
vehicle has a limited weight (or volume) capacity to ship goods from an origin to a destination location. In
multi-compartment VRPs, a vehicle can have more than one compartment and all compartments might
have different features (i.e., weight capacity, volume capacity, temperature-controlled environment etc.).
This makes the VRP even more challenging and practical at the same time, especially for city logistics.

The multi-compartment VRP (VRPMC or MCVRP) was first studied as a special variant of VRP by
Christofides et al. (1979). The authors highlighted several examples for a delivery vehicle which has two
distinct compartments for food transportation, namely refrigerated and non-refrigerated compartments,
and a tanker which transports different types of liquid products in separate compartments. In 2008,
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El Fallahi et al. (2008) studied a transportation problem to deliver various products to customers by
a fleet of identical vehicles, each with limited capacity. The authors used memetic and tabu search
algorithms for the solution of the problem. In 2010, Muyldermans and Pang (2010) investigated the
advantages of collaborative collection by multi-compartment vehicles and proposed a Guided Local
Search metaheuristic with various local search operators.

From the environmental perspective, Tassou et al. (2009) investigated road food transport refrig-
eration compartments and estimated their environmental impacts. They also investigated alternative
technologies for reducing energy consumption and emissions. Recently, Rai and Tassou (2017) com-
pared the use of a newer refrigeration system instead of a diesel engine for temperature control. They
considered two types of products, three delivery schedules and two types of vehicles, and analyzed the
emissions and cost of each technology. In 2018, Stellingwerf et al. (2018a) introduced a temperature-
controlled load-dependent VRP (TCDVRP) model to optimize vehicle routes and consider refrigeration
emissions in the VRP domain. The authors used their model for small numerical instances and com-
pared the results of three models. In a related study, Stellingwerf et al. (2018b) studied the environmental
and economic benefits of cooperation between different stake holders in a supply chain. The authors
tested their approach on a case study of cooperation between a number of supermarket chains in the
Netherlands, and analyzed the data of the case study to quantify both the economic and environmental
benefits of implementing cooperation.

In another study, Silvestrin and Ritt (2017) proposed an iterated tabu search algorithm for the MCVRP.
The authors also studied the effect of split demands. Ostermeier and Hübner (2018) proposed a model
and Large Neighborhood Search (LNS) algorithm for MCVRPs considering mixed fleets involving single-
and multi-compartment vehicles. The authors considered different fixed and operational costs for each
vehicle and tested their methodology on a real-life case. Their computational results showed that a mixed
fleet could reduce costs by up to 30%. Later, Alinaghian and Shokouhi (2018) introduced a mathematical
model and hybrid algorithm composed of adaptive LNS and variable neighborhood search (VNS) for
multi-depot multi-compartment VRPs.

3. Problem definition

The investigated problem can be formulated on a complete directed graph G = (N ,V) with N =
{0, 1, 2, ..,n} as the set of nodes with node 0 considered as the only depot. SetV = {(i, j) : i, j ∈ N , i 6= j}
shows all arcs and the distance from node i to node j is presented as di j. Set Nc = {N ∪ {0}} is used to
separate the customer set from the depot.

Each customer order includes a set of products which might need different transportation require-
ments to be transported (i.e., multi-compartment) (Tassou et al., 2010). Set C = {1, 2, .., c} represents
different vehicle compartments. The products can be categorized as refrigerated or non-refrigerated
products. For the refrigerated products, a certain level of temperature should be maintained during the
whole journey. For example, whereas shelf-stable (ambient) products can be safely stored at room tem-
perature in a vehicle compartment, chilled products require the temperature to be below 8 °C and frozen
products require a minimum storage temperature of -18 °C or colder at all times. In our research, we set
c = 3, which means only three separate compartments (e.g., ambient, chilled, frozen) is considered. All
type of products can be carried in one of these three compartments.

In our problem setting, the vehicle space consists of a number of compartments with individual
and independent temperature values (e.g., –18 °C to +18 °C ) which provide logistical flexibility for
transporting various types of products. We also assume that each compartment requires energy to
maintain the temperature for the total number of delivery crates inside a compartment. This means that
the temperature-related costs increase with the number of crates carried inside the compartment. The
number of multi-compartment homogeneous vehicles (i.e., city van) is a deterministic parameter and a
set of vehicles is denoted by K = {1, 2, ..,m}. Each customer order is defined based on its demand (number
of crate(s)) in each compartment c) qi

c and weight (payload) pi
c. The volume capacity of a vehicle for
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each type of compartment c is denoted as Qc (i.e., available space in each compartment). Moreover, we
assume hard time windows for satisfying customer deliveries. We also note that split delivery is not
considered in our problem setting.

In this city logistics application, customer profile is defined based on order arrival time and preferred
delivery service. The first group of customers must order before 24:00 on the previous day (i.e., for
Tuesday delivery the order should be received on Monday). These customers can pick, on the following
day, any 1–hour time slot or any 4–hour period (i.e, Period 1, Period 2, or Period 3) or do not declare
their preferences and are served based on the generated plan. The second group includes orders coming
on the execution day between 24:01 and 12:00 noon. These customers can be served in any possible
planning period with 1–hour time slot or 4–hour period preferences. The last group requests (i.e., same
day customers) are the ones which arrive on the execution day and wish to be considered in the first
planning period. These customers can also select any 1–hour time slot in the next available planning
period. The planning cut-off times of these periods are defined as 06:00 for the first period, 12:00 for
the second period and 18:00 for the third time period. Two hours difference from the dispatch time of
vehicles ensures sufficient time for planning of the vehicle routes and preparation of the orders (i.e.,
loading crates to vehicles).

To calculate daily operational costs, we consider the fixed vehicle costs and the variable costs such
as fuel consumption, wage of driver(s) and temperature running costs for keeping the temperature
at desired levels. An instantaneous fuel consumption rate is calculated with the CMEM introduced
by Barth et al. (2005). More specifically, CMEM follows, to some extent, the basic engine model of
Ross (1994). The CMEM is a microscopic model which requires a set of parameters related to vehicle
characteristics, environment and traffic conditions. Especially, vehicle-related parameters can easily
be adjusted for different types of vehicles. For this reason, we have used the CMEM model in our
research. Alternatively, up-to-date macroscopic models could also be used for a better estimation of
energy consumption, and emissions in particular. Such models can be found in the review of (Demir
et al., 2011) and (Demir et al., 2014b). We now briefly present the model as the following:

Fuel =λ
(
keNeVe + Wγα speed(v) + γα load( f ) speed(v) + βγ speed(v)3

)
distance(d)/speed(v), (1)

where τ,θ, and W denote acceleration, road gradient, and curb weight. Moreover, λ = ξ/(κψ) and
γ = 1/(1, 000nt fη) are defined as constants. Furthermore, α = τ + g sinθ + gCr cosθ and β = 0.5CdρA
are defined as vehicle-specific constants. The fuel and CO2equivalent emissions-related costs can be
calculated as Total Cost = Fuel ∗ fc, where fc is the sum of fuel and CO2e emissions costs. Finally, we note
that speed(v) is the speed of a vehicle, distance(d) is the distance, and finally load( f ) is the total payload
carried. All parameters are provided in Table 1.

We note that some of the values used in Table 1 are from the literature and the others are calculated
for a chosen specific city van which is applicable to our problem setting.

3.1. Mathematical formulation
We now introduce a mixed-integer linear programming model for the investigated problem. Since

the fuel consumption function introduced in the previous section is non-linear, we discretize the speed
variable by using a speed level r transformation to lineralize the fuel and travel time function as done
in Bektaş and Laporte (2011). Sets and parameters are defined in Table 2 whereas decision variables are
provided in Table 3.

The mathematical model of the investigated problem is shown below:
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Table 1
A list of parameters used in the fuel consumption model and the objective function:

Symbol Meaning Chosen value Reference
W Empty vehicle weight (kilograms) 2,300 The car manuala

P Payload (kilograms) 1,200 The car manual
ξ Fuel rate 1 Demir et al. (2011)
ke Diesel engine friction factor (kJ/rev/liter) 0.23 Demir et al. (2011)
Ne Diesel engine speed (rev/second) 35 Demir et al. (2011)
Ve Diesel engine displacement (liters) 3 Demir et al. (2011)
g Gravitational constant (meter/second2) 9.81 Bektaş and Laporte (2011)
Cd Aerodynamic drag coefficient 0.32 Bektaş and Laporte (2011)
ρ Air density coefficient (kilogram/meter3) 1.2041 Bektaş and Laporte (2011)
A The total frontal surface (meter2) 5 The car manual
Cr Rolling resistance coefficient 0.01 Demir et al. (2011)
nt f Drive train efficiency 0.4 Demir et al. (2014a)
η Diesel engine efficiency constant 0.9 Demir et al. (2011)
κ Heating value (kJ/gram) 45 Demir et al. (2014a)
ψ Conversion factor (gram/second to liter/second) 737 Demir et al. (2014a)
vl Lowest speed limit (meter/second) 11.1 Demir et al. (2014a)
vu Upper speed limit (meter/second) 22.22 Demir et al. (2014a)
fc Fuel cost per liter (pounds) 1.2 Approximate value
fd Driver wage per second (pounds) 0.0022 Approximate value
f f Fixed cost of vehicle (pounds) 20 Approximate value
tc1 Temperature cost to keep a product between 16°C and 20°C (per crate, pounds) 0.01 Approximate value
tc2 Temperature cost to keep a product between 0°C and 8°C (per crate, pounds) 0.05 Approximate value
tc3 Temperature cost to keep a product below –18°C (per crate, pounds) 0.1 Approximate value

aVehicle-related parameters are taken from the car manual of a city van.

Table 2
Sets and the rest of parameters used in the model:

Notation Description
N = {0, 1, 2, ..,n} Set of nodes which include all customer locations and the depot
V Set of arcs {(i, j) : i, j ∈ N , i 6= j}
Nc Set of customer nodes {N ∪ {0}}
T = {1, 2, 3} Time periods
R = {0, 1, 2, ..,R} Speed level r ∈ R
di j Distance between nodes i and j
K = {1, 2, ..,m} Set of homogeneous vehicles
C = {1, 2, 3} Compartment types
qi

c For customer i, the required number of crates which
need to be transported in compartment c

pi
c For customer i, the weight of products which

require to be transported in compartment c
Qc Available space in compartment c
st
∈ {08:00, 14:00, 20:00} The start (dispatch) time of each distribution period

pt
∈ {06:00, 12:00, 18:00} Cut-off planning time

[ai, bi] Customer time window
˜ Uncertainty parameter
¯ Nominal value
ˆ Uncertain part of uncertain parameter
t̃i Uncertain service time for each customer i ∈ Nc
t̄i Customer service time with nominal value
t̂i Uncertain part of service time
t̂ti j Uncertain travel time on an arc (i, j)
[t̄i − t̂i, t̄i + t̂i] Uncertainty interval
mt Available number of vehicles at time period t

minimize
∑

(i, j)∈N

fckeNeVeλdi j

∑
r∈R

zr
i j/v̄

r +
∑

(i, j)∈N

fcWγλαi jdi j

∑
t∈T

xt
i j (2)

+
∑

(i, j)∈N

fcγλαi jdi jei j +
∑

(i, j)∈N

fcβγλdi j

∑
r∈R

zr
i j(v̄

r)2 +
∑

(i, j)∈N

∑
c∈C

tcc f c
i j (3)

+
∑
i∈N

fdsi +
∑
t∈T

ut f f (4)6



Table 3
Decision variables used in the model:

Notation Description
xt

i j Binary variable - 1 if an arc is traveled by a vehicle, and 0 otherwise
f c
i j Continuous variable - the total number of crates in compartment on arc

ei j Continuous variable - the total payload on arc
y j Continuous variable - the start time at node j ∈ Nc
uvt Integer variable - the number of vehicles used at time period t
zr

i j Binary variable - a speed level r defined on each arc (i, j)

subject to ∑
i∈N

xt
0i ≤ mt

∀t ∈ T (5)∑
i∈N

xt
0i = uvt

∀t ∈ T (6)∑
j∈N

∑
t∈T

xt
i j = 1 ∀i ∈ Nc (7)∑

j∈N

∑
t∈T

xt
ji = 1 ∀i ∈ Nc (8)∑

j∈N

∑
t∈T

xt
i j −

∑
j∈N

∑
t∈T

xt
ji = 0 ∀i ∈ Nc (9)∑

j∈N

f c
ji −

∑
j∈N

f c
i j = qc

i ∀i ∈ Nc,∀c ∈ C (10)

qc
j

∑
t∈T

xt
i j ≤ f c

i j ≤ (Qc
− qc

i )
∑
t∈T

xt
i j ∀(i, j) ∈ V,∀c ∈ C (11)∑

j∈N

e ji −
∑
j∈N

ei j =
∑
c∈C

pc
i ∀i ∈ Nc (12)∑

c∈C

p j
c

∑
t∈T

xt
i j ≤ ei j ≤ (P −

∑
c∈C

pc
i )

∑
t∈T

xt
i j ∀(i, j) ∈ V (13)

y0 +
∑
t∈T

xt
0 j(s̄

t
− s̄0) − y j + t0 +

∑
r∈R

d0 jzr
0 j/v̄

r
≤ K0 j(1 −

∑
t∈T

xt
0 j) ∀ j ∈ Nc (14)

yi − y j + ti +
∑
r∈R

d0 jzr
i j/v̄

r
≤ Ki j(1 −

∑
t∈T

xt
i j) ∀i ∈ N ,∀ j ∈ Nc (15)

y j − s j −
∑
t∈T

xt
j0s̄t + t j +

∑
r∈R

d j0zr
j0/v̄

r
≤ L(1 −

∑
t∈T

xt
j0) ∀ j ∈ Nc (16)

a j ≤ y j ≤ b j ∀ j ∈ Nc (17)∑
r∈R

zr
i j −

∑
t∈T

xt
i j = 0 ∀(i, j) ∈ V (18)

xt
i j ∈ {0, 1} ∀(i, j) ∈ V,∀t ∈ T (19)

zr
i j ∈ {0, 1} ∀(i, j) ∈ V,∀r ∈ R (20)

f c
i j ≥ 0 ∀(i, j) ∈ V,∀c ∈ C (21)

ei j ≥ 0 ∀(i, j) ∈ V (22)
yi, si ≥ 0 ∀i ∈ Nc (23)

uvt
≥ {0, 1} ∀t ∈ T . (24)
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The objective cost (2)–(4) consists of fixed and variable (operational) vehicle costs. Fixed costs include
the vehicle capital cost, insurance cost, excise duty cost and maintenance cost and represented by f f .
Variable costs are related to fuel, driver wage and energy costs to keep the temperature at a preset value
during the whole journey. The objective function (2)–(3) is defined for fuel consumption. The first part
of objective (4) defines the total wage of drivers. The second component is for the total energy costs
required for multiple compartments. The last component of the objective function defines the fixed
vehicle costs. Constraints (5) state that the number of vehicles used in a solution cannot be more than
the available number of vehicles in each time period t. Constraints (6) define the number of vehicles
used in each time period t. Constraints (7)–(9) are the assignment constraints required for visiting each
and every customer in the right time period. Constraints (10) and (13) are used for arc flows. These
constraints ensure that compartment capacity in terms of crates and weight is not violated. Constraints
(14) and (15), where Ki j = max{0, bi + ti + di j/vl

− a j}, impose time window preferences. These constrains
accumulate the total travel time from the depot to the last customer of a route. Constraints (16) defines
the total driving time. These constraints are used to calculate the total traveling time for the whole
journey. The lower and upper bounds of each time window are ensured in constraints (17). Constraints
(18) limit to a single speed level on an arc in each time period t and zr

i j = 1 if xt
i j = 1. Constraints (19)–(24)

are used to describe non-negativity conditions.

3.1.1. Robust modeling formulation
In order to consider time uncertainty of the investigated problem, we also provide the required

changes with the well-known Hard Worst case approach proposed by Ben-Tal and Nemirovski (1998).
Travel time uncertainty is caused by many different factors such as traffic, weather situations, accident
or vehicle defect. Similarly, service time uncertainty can be caused by wasted time finding an address,
or delayed customer response. In response to these uncertainties, we adapt the following constraints
(instead of constraints (15)–(17)) as below:

y0 +
∑
t∈T

xt
0 j(s̄

t
− s̄0) − y j + t̄0 + t̂0 + t̂ti j +

∑
r∈R

d0 jzr
0 j/v̄

r
≤ K0 j(1 −

∑
t∈T

xt
0 j) ∀ j ∈ Nc (25)

yi − y j + t̄i + t̂i + t̂ti j +
∑
r∈R

d0 jzr
i j/v̄

r
≤ Ki j(1 −

∑
t∈T

xt
i j) ∀i ∈ N ,∀ j ∈ Nc (26)

y j − s j −
∑
t∈T

xt
j0s̄t + t̂ti j + t̄ j + t̂ j +

∑
r∈R

d j0zr
j0/v̄

r
≤ L(1 −

∑
t∈T

xt
j0) ∀ j ∈ Nc (27)

Our problem is NP-hard and only small-sized instances can be solved to optimality. In order to solve
larger-sized problem instances, we have proposed a metaheuristic algorithm.

4. Solution methodology

In this section, we present the solution methodology, namely ALNS algorithm. ALNS algorithm was
introduced by Ropke and Pisinger (2006) and has been widely used for many variants of the VRP. ALNS
includes many destroy and repair neighborhood structures (operators) to obtain a good-quality solution
and is a relatively fast algorithm, compared to other well-known metaheuristics algorithms.

4.1. A brief description of ALNS algorithm
To solve the investigated problem, we propose the enhanced ALNS algorithm proposed by Demir

et al. (2012). The steps of ALNS algorithm are provided in Algorithm 1.
Some notations used in the algorithm are discussed first. Variable Sbest is used for the best solution.

This solution is also the main output of the algorithm. Variable Scurrent refers to the current solution
used at the start of an iteration. Variable Snew is used for a temporary solution obtained at the end of an
iteration. The cost of a solution S is represented by cost(S). A new (feasible) solution Snew is accepted if
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cost(Snew) < cost(Scurrent), and can be accepted with a probability of e−(cost(Snew)−cost(Scurrent))/∆ if cost(Snew) >
cost(Scurrent), where ∆ is the temperature.

The initial temperature is set at cost(Sinitial)Pinitial where cost(Sinitial) is the first feasible objective function
value obtained with the Clarke and Wright (C&W) algorithm (Clarke and Wright, 1964). We note
that parameter Pinitial is an initialization constant used at the beginning of the algorithm. The current
temperature at each iteration is gradually reduced as ch∆, where 0 < ch < 1 is a constant as in Simulated
Annealing (SA) algorithm. We note that SA is widely used in ALNS algorithms (Ropke and Pisinger,
2006). We also refer interested readers to Aarts et al. (2005) for an overview of SA algorithms.

We have modified the C&W algorithm as follows: First, we calculate the savings as s(i, j) = d0i+d0 j−di j
for every pair (i, j) of locations. Then, we rank the calculated savings s(i, j) and list them in descending
order of magnitude. For the savings s(i, j), we include an arc (i, j) in a route if no side constraints are
violated through the inclusion of arc (i, j). We also look at the following conditions: (i) The two delivery
locations are not already on the same route, (ii) nodes are not interior to their routes, meaning that both
nodes can directly be connected to the depot, (iii) the capacity of each compartment and time window
constraints are not violated by the merged route. Finally, if the savings list s(i, j) has not been emptied,
we return to the previous step and continue with the next single largest saving s(i, j). If the list is empty,
the C&W algorithm stops.

Algorithm 1: An enhanced ALNS algorithm
Input : Instance data; The parameters of ALNS, including sets of removal (RO) and insertion (IO) operators,

variables ∆ and temperature T
Output: Sbest

1 Create a feasible initial solution using C&W savings heuristic (Clarke and Wright, 1964)
2 Initialize probability for Πt

r, r ∈ RO
3 Initialize probability for Πt

i , i ∈ IO
4 Set the values of ∆ and iteration number T
5 Set the initial values of variables Scurrent = Sbest = Sinitial

6 repeat
7 Apply a removal operator r∗ ∈ RO, considering Πt

r
8 Snew becomes the new partial solution after applying operator r∗ to Scurrent

9 Apply an insertion operator i∗ ∈ IO, considering Πt
i

10 Snew is the new temporary but feasible solution
11 if cost(Snew) < cost(Scurrent) then
12 Scurrent = Snew

13 Apply a local search to improve the current solution
14 else
15 Let ν = e−(cost(Snew)−cost(Scurrent))/∆

16 Pick a random number ε ∈ [0, 1]
17 if ε < ν then
18 Scurrent = Snew

19 Apply a local search to improve the current solution

20 if cost(Scurrent) < cost(Sbest) then
21 Sbest = Snew

22 Update the temperature ∆ ← ch ∆
23 Calculate new scores for removal operators
24 Calculate new scores for insertion operators T← T + 1
25 until The algorithm has been concluded.

The removal and insertion operators are chosen based on a roulette-wheel procedure. At the start of
ALNS algorithm, all operators are assigned with the same probability. A probability of an operator r at
iteration t is represented as Πt

r. The probability of each operator r is updated as Πt+1
r = Πt

r (1−rp) + rp πi/ωi,
where rp is a constant, πi is the score andωi is the number of times that the operator was called in the last
Nw iterations. If a new best solution is obtained, the score is raised by σ1. If the new solution is better
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than the current one, the total score is raised by σ2. If the new solution is not better than the current one
but it is still accepted, the total score is raised by σ3.

In order to improve the solution quality at each iteration, we have applied inter 2-opt algorithm on
the current solution. This is done due to the fact that ALNS requires further intensification around the
solution found at each iteration. At the end of the algorithm, the algorithm stops when the maximum
number of iterations (i.e.,25K) has been reached.

4.2. Neighborhood structures
This section discusses the ten implemented removal operators. In order to reflect the characteristics

of the investigated problem, these operators are either adapted from the literature (see e.g., Ropke and
Pisinger (2006), Shaw (1998), Demir et al. (2012)), or newly proposed.

4.2.1. A list of removal operators
1. Random (R1): This operator randomly selects s nodes (customers) and removes them from the

current solution. Any customer node can be chosen randomly by this operator. Making a random
selection of nodes helps diversify the solution search space and might lead to better solutions in
the subsequent iterations of the algorithm.

2. Worst fuel consumption (R2): The R2 operator removes customers with higher fuel consumption
costs. The total fuel cost is calculated as the sum of fuel costs from the previous customer to a
subsequent customer. For example, the operator selects node j∗ = argmax

j∈N
{| fi j + f jk|} each time. This

operator helps by removing the distant customer or the one with a higher demand. Eventually,
this operator leads to a lower amount of fuel consumption in the solution.

3. Worst time (R3): This operator calculates the time difference between the start time from the
depot and a lower bound of the time window a j. The operator selects the node with the largest
difference in each iteration. This operator is especially important from a cost perspective for
temperature-controlled compartments. This is due to the fact that total travel time will increase the
wage of driver and the costs required to keep the temperature at desired levels for compartments.
Mathematically, the operator calculates j∗ = argmax

j∈N
{|y j − a j|}.

4. Complete route (R4): This standard operator is used to empty the complete route(s). The operator
randomly selects a route from the set of routes in the solution. The operator continues selecting a
node j from the chosen route until all nodes are removed. Depending on the number of nodes in
the chosen route, this operator can empty more than one route.

5. Shaw (R5): This operator is similar to the mechanism proposed by Shaw (1998). The operator
removes related customers. It removes a node based on a formula j∗ = argmax

j∈N
{Φ1 fi j + Φ2|ai −

a j|+ Φ3li j + Φ4|qc
i − qc

j |}, where Φ1–Φ4 are weights and li j is equal to 1 if i, j ∈ N are included in the
same route.

6. Proximity (R6): This operator is similar to the previous one where Φ1 = 1, and other Φ values are
zero. More specifically, it removes a node that requires a similar amount of fuel to be visited.

7. Time (R7): This operator is also similar to R5 with Φ2 = 1, and other Φ values being equal to zero.
8. Demand (R8): The last removal operator is also similar to R5 with Φ4 = 1 and other Φ values being

equal to zero.
9. Compartment (R9): This operator removes customers that have the highest demand in the most

restricted compartments in all routes. We note that the type of compartment that is restricted in
each route may be different, and this operator calculates this value for each node based on its route
capacity.

10. Time slot (R10): This operator removes customers with the largest time window period (li–ei). If
the time window period is equal for some nodes, the node with the smallest number of crates is
chosen.
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4.2.2. A list of insertion operators
We now present six insertion operators suggested for the ALNS algorithm. During the insertion

process, a feasibility of the solution must be ensured. For example, the capacity of each compartment
and time windows of a customer must be ensured. At the end of this stage, all customers must be visited
and all constraints must be satisfied.

1. Greedy (basic) (I1): The I1 operator sequentially reinserts a removed node in the best position in
terms of fuel consumption. The cost of insertion is calculated as fi = f ji + fik − f jk for j = 1, ...,n
and i = 1, ...,n.

2. Regret (I2): The I2 operator considers a regret criterion defined in the literature. Let ∆ fi define the
change in objective value by reinserting a node i into its best and second-best position with respect
to fuel consumption fi. Let i∗= argmax

i∈L
{∆ fi2 - ∆ fi1}, where ∆ fi1 is the minimum fuel consumption

increase and ∆ fi2 refers to the second-lowest fuel consumption increase.
3. Greedy with noise (I3): The I3 operator considers a degree of freedom in deciding the best location

for a removed node. The new cost is calculated with the following formula for node i: C = C + d̄µ ε
where d̄ is the maximum distance, µ is the noise constant, and ε is the random number.

4. Regret with noise (I4): This operator is similar to the previous operator but considers the same
noise function in the I2 operator instead.

5. Period (I5): The I5 operator considers the time windows’ characteristics. It finds the best time
period for each node and tries to come up with a better delivery plan, considering the time
flexibility given by a customer.

6. Flexibility (I6): This operator calculates the flexibility score for each node and reinserts the removed
nodes by considering the order of lower scores. We define three indexes for this operator as
Score = W1 ∗ w f1 + W2 ∗ w f2 + W3 ∗ w f3, where w f1 is the number of possible feasible insertions
divided by total number of insertions in current routes. w f2 is the time window divided by 16,
and w f3 is the one divided by the total number of crates in the current route. We also note that
W1 + W2 + W3 = 1.

5. Computational study

In this section, we present the computational results of experiments on both benchmark and newly
generated instances.

5.1. Data setting and problem characteristics
To analyze the features of the investigated problem, we have generated eight sets of ten instances

with different characteristics. The instances range from ten to 200 nodes (excluding depot). Each instance
represents randomly selected postcodes located in London (United Kingdom) and is denoted by LonA–B,
where A is the total number of customers in an instance and B is the number of an instance (i.e., from
01 to 10). Time period preferences, demands and time slot preferences are randomly generated for each
customer. We assume that customers’ orders are received by the planning system independently and
the algorithm only considers the orders that had arrived by the cut-off time in each period.

In the generated instances, customers are categorized according to their preferences within their
order time frame. There are three time periods used as delivery time periods. These include the first
period (08:00–12:00), the second period (14:00–18:00), and the third period (20:00–24:00). The cut-off
times for these time periods are 06:00 for the first period deliveries, 12:00 noon for the second period
deliveries, and 18:00 for the third period deliveries. It is assumed that each customer who ordered before
24:00 in the evening is promised delivery in the following day. These customers have three options: (i)
selecting a 1–hour time slot in any time period, (ii) selecting a 4–hour time period (i.e., Period 1, Period
2, or Period 3), and (iii) or do not specify any time slots and will be served anytime during the day.
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The second customer group can place a delivery order by 12:00 noon on the planning day. We assume
that these customers can either select a 1–hour time slot or a 4-hour period, considering the availability
of time periods to be served. The third customer group is promised fast delivery; these customers can
order by 4pm in the afternoon and are assigned either a 1–hour time slot or do not provide a preference.

In our newly generated instances, we assume that 60 percent of the customers have opted for the
following day, 30 percent for the same day and 10 percent for fast delivery, as shown in Table 4. This
table also shows time windows (delivery slot) preference probabilities used (i.e., 1-hour time slot, time
period) for each customer type.

Table 4
Data characteristics - I: Customers’ time window preferences:

Customer type Ratio 1-hour time slot Time period No preference
(%) preference (%) preference

(%)
(%)

Type I 60 60 30 10
Type II 30 80 0 20
Type III 10 90 0 10

Another important feature of our study is the use of multi-compartment vehicles. This requirement
is an important factor in city logistics and many logistics companies tend to convert their vehicles to be
equipped with flexible or fixed multi-compartment features. In this regard, we generated our instances
based on three categories widely used in practice. This classification is especially valid for perishable
product transportation, such as food, meat and poultry, flower, and dairy industries. In this research,
we refer to these compartments as normal temperature-, low temperature- and very low temperature-
controlled compartments. Each compartment has a specific volume and weight capacity. Also, the
maximum payload that a vehicle can carry in all compartments is set to 1,200 kilograms. Customers’
order demands are shown in Table 5.

Table 5
Data characteristics - II: Customers’ demands:

Customer type The number of delivery crates per customer
Normal Low Very low

Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound

Type I 0 4 0 3 0 2
Type II 0 3 0 2 0 2
Type III 0 2 0 2 0 2

As shown in table, each customer can order a different number of products from each of three
categories defined by the LSP. We assume that these orders are carried in crates, ranging from zero to
four crates (maximum). All orders are carried within crates from the depot to each customer location.
The compartments’ capacities for normal, low and very low temperatures are set to 30, 30 and 20 delivery
crates. We also assume that each crate weighs between five and 15 kilograms and the weight of each
crate is randomly decided within the same interval. Service times of the customers are decided based
on a weighted sum of fixed (i.e., 5 minutes) and variable times (30 seconds for each crate). We use
the fuel consumption parameters provided in Table 1. Moreover, the algorithm is implemented with C
programming language and run on a personal computer with a Core i5 4200u 1.68GHz CPU and 8GB of
RAM.
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5.2. Analysis of the parameters used in the enhanced ALNS metaheuristic algorithm
The implementation of ALNS algorithm requires 15 parameters and they are provided in Table 6.

Parameters are divided into three groups as done in Demir et al. (2012) and Franceschetti et al. (2017).
Group (i) presents the parameters that control the roulette wheel and the selection of the operators.
Group (ii) presents the parameters that control ALNS algorithm. This is especially important for the
diversification of the solution space. Lastly, group (iii) provides all parameters used in operators. We
note that we have focused on certain parameters used in ALNS algorithm. These investigated operators
have big impact either on the solution quality or solution times.

Table 6
A list of parameters used in ALNS algorithm :

Group Symbol Meaning Chosen value
(i) rp Roulette wheel parameter 0.1

Nw Number of iterations needed for the roulette wheel mechanism 100
σ1 Score when a new best solution is found 10
σ2 Score when a new solution is accepted (better than a current solution) 5
σ3 Score when a new solution is accepted (worse than a current solution) 1

(ii) N Total number of iterations 25, 000
Pinitial Starting temperature parameter 100
ch Cooling rate 0.999

(iii) γ The upper bound for nodes to be removed blog10(N)c
γ The lower bound for nodes to be removed blog1.4(N)c
φ1 First Shaw parameter (i.e., fuel consumption) 0.5 or 1
φ2 Second Shaw parameter (i.e., time windows) 0.25 or 1
φ3 Third Shaw parameter (i.e., being on the same route) 0.15
φ4 Fourth Shaw parameter (i.e., demand) 0.25 or 1
µ Noise parameter 0.1

To have the best set of values for the parameters used in ALNS, we conducted parameter-tuning as
a starting point. All initial experiments are completed on a tuning set including 16 instances out of 80
(i.e., Lon10–01 & 02, Lon15–01 & 02, Lon20–01 & 02, Lon25–01 & 02, Lon50–01 & 02, Lon75–01 & 02
Lon100–01 & 02, and Lon200–01 & 02). For each parameter, we investigated multiple sets of values for
each tested instance and applied our ALNS algorithm to the tuning set of instances three times. The
outcome of the analysis is discussed in the following subsections. In order to guarantee comparison
fairness for the same instance, we have started with the same initial solution obtained with the C&W
savings algorithm in all runs.

It is important to note that one of the biggest advantages of ALNS is to allow diversification of the
solutions over all iterations. We have observed that the algorithm was able to find the best solution after
22,000 iterations due to the effective use of simulated annealing search framework.

5.3. The roulette wheel-related parameters
For the Group (i) parameters, i.e., σ1, σ2 and σ3, we have conducted numerical tests on the tuning

set instances. We considered the following four combination for (σ1, σ2, σ3): (i) (10, 5, 1), (ii) (10, 1, 5), (iii)
(10, 10, 10) and (iv) (1, 5, 10). The comparison of sigma values is provided in Table 7 below. Average(l) gives
average objective function value out of three runs for each combination. Dev(l) shows the percentage
deviation with regards to the smallest average solution. This value is calculated as follows Dev(l) =
(Average(l) −Average(l))/Avg(Best(l), where Avg is the smallest average value found out of all runs in all
combinations.

In Table 7, for each instance, we calculated the deviation between the average of all runs and the
average found in the current set of parameters. We can see that combination (10, 5, 1) performs the best
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Table 7
Parametric analysis for the roulette wheel (σ1, σ2, σ3):

Instance (σ1, σ2, σ3) = (σ1, σ2, σ3) = (σ1, σ2, σ3) = (σ1, σ2, σ3) = Avg
(10, 5, 1) (10, 1, 5) (10, 10, 10) (1, 5, 10)

Average Dev Average Dev Average Dev Average Dev
Lon10–01 155.5 0.6 155.3 0.5 154.5 0.0 155.0 0.3 154.5
Lon10–02 181.9 0.1 182.1 0.2 182.4 0.3 181.8 0.0 181.8
Lon15–01 167.8 0.2 167.7 0.2 167.4 0.0 167.9 0.3 167.4
Lon15–02 157.9 0.0 157.9 0.1 158.1 0.2 157.8 0.0 157.8
Lon20–01 200.2 0.2 200.4 0.3 199.8 0.0 200.3 0.3 199.8
Lon20–02 196.0 0.0 196.4 0.2 196.6 0.3 196.5 0.3 196.0
Lon25–01 234.9 0.3 234.7 0.2 234.1 0.0 234.4 0.1 234.1
Lon25–02 247.2 0.2 246.6 0.0 247.3 0.3 246.7 0.0 246.6
Lon50–01 371.7 0.0 372.7 0.3 372.5 0.2 373.4 0.5 371.7
Lon50–02 368.3 0.1 368.3 0.1 367.9 0.0 368.4 0.1 367.9
Lon75–01 487.1 0.0 487.6 0.1 487.2 0.0 488.5 0.3 487.1
Lon75–02 492.5 0.0 492.3 0.0 495.4 0.6 494.9 0.5 492.3
Lon100–01 633.9 0.0 635.9 0.3 635.9 0.3 636.3 0.4 633.9
Lon100–02 635.8 0.0 640.7 0.8 641.0 0.8 641.1 0.8 635.8
Lon200–01 1,114.5 0.0 1,133.8 1.7 1,118.3 0.3 1,130.7 1.5 1,114.5
Lon200–02 1,143.5 0.0 1,147.0 0.3 1,146.0 0.2 1,146.6 0.3 1,143.5
Average 0.1 0.3 0.2 0.4

and combination (1, 5, 10) performs the worst. According to this analysis, we have used σ1 = 10, σ2 =
5, σ3 = 1 for the rest of our numerical experiments.

In order to tune other roulette wheel parameters rp and Nw, we ran experiments on the tuning set
instances using four different combination values: (i) (0.1, 10), (ii) (0.1, 100), (iii) (0.2, 10), and (iv) (0.2,
100). We can note that if the rp value is high, it shows that the current performance is more valuable than
its past performance, leading to more diverse solutions at Nw iterations. Table 8 compares these four
combination values. We have similar columns as in the previous table.

The results show that it is better to use a combination of (0.1, 100) of rp,Nw values, since they usually
lead to the lowest total cost.

5.4. The upper and lower bounds for the removable nodes
We now tune the parameters related to the number of nodes to be removed at each iteration. This

interval is estimated with a logarithmic function as suggested by Franceschetti et al. (2017). We now
give Table 9 for different values on the tuning set. Similar to previous tables, we present Average(l) and
Dev(l) columns for each combination l.

As shown in Table 9, the best combination for the logarithmic bound function is (log10, log1.4) to
decide the number of nodes to be removed at each iteration. We have used this combination for the rest
of the experiments.

5.5. Analysis of the operators
This section shows the performance of operators both in terms of speed and the quality of solutions.

For each instance, we ran ALNS three times as in previous experiments. The first column in Tables 10
and 11 reports the name of the operators. The first part (top) of each table presents the percentage of
iterations that an operator has been used. The second part (bottom) of each table reports the normalized
CPU times.

From Tables 10 and 11, we see that operators are utilized in very similar proportions. This is because
our implementation is intended to promote diversification more than intensification at further iterations
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Table 8
Tuning of (rp) and (Nw) parameters:

Instance (rp,Nw) = (rp,Nw) = (rp,Nw) = (rp,Nw) = Avg
(0.1, 10) (0.1, 100) (0.2, 10) (0.2, 100)

Average Dev Average Dev Average Dev Average Dev
Lon10-01 154.5 0.0 154.5 0.0 154.5 0.0 154.5 0.0 154.5
Lon10–02 181.8 0.0 181.8 0.0 181.8 0.0 181.8 0.0 181.8
Lon15–01 167.1 0.0 167.1 0.0 167.1 0.0 167.1 0.0 167.1
Lon15–02 157.8 0.0 157.8 0.0 157.8 0.0 157.8 0.0 157.8
Lon20–01 199.5 0.0 199.5 0.0 199.5 0.0 199.5 0.0 199.5
Lon20–02 195.7 0.0 195.7 0.0 196.0 0.2 196.0 0.2 195.7
Lon25–01 234.0 0.0 234.0 0.0 234.0 0.0 234.0 0.0 234.0
Lon25–02 246.4 0.0 246.4 0.0 246.4 0.0 246.4 0.0 246.4
Lon50–01 371.1 0.0 371.4 0.1 371.3 0.0 372.7 0.4 371.1
Lon50–02 368.1 0.1 367.9 0.0 367.9 0.0 367.9 0.0 367.9
Lon75–01 486.3 0.0 486.4 0.0 487.0 0.2 486.9 0.1 486.3
Lon75–02 493.0 0.2 492.1 0.1 491.8 0.0 493.5 0.3 491.8
Lon100–01 637.8 0.6 633.8 0.0 635.2 0.2 637.8 0.6 633.8
Lon100–02 637.0 0.3 635.2 0.0 637.9 0.4 637.8 0.4 635.2
Lon200–01 1,123.2 0.9 1,113.6 0.1 1,117.2 0.4 1,124.0 1.0 1,112.9
Lon200–02 1,143.5 0.5 1,140.7 0.3 1,147.2 0.8 1,137.6 0.0 1137.6
Average 0.23 0.15 0.21 0.28

Table 9
Tuning of the number of nodes to be removed at each iteration:

Instance (min,max) = (min,max) = (min,max) = (min,max) = Avg
(log10, log1.4) (log10, log3) (log15, log1.4) (log15, log3)
Average Dev Average Dev Average Dev Average Dev

Lon10–01 154.5 0.0 154.5 0.0 154.5 0.0 154.5 0.0 154.5
Lon10–02 181.8 0.0 181.8 0.0 181.8 0.0 181.8 0.0 181.8
Lon15–01 167.1 0.0 167.1 0.0 167.1 0.0 167.1 0.0 167.1
Lon15–02 157.8 0.0 158.3 0.3 157.8 0.0 158.3 0.3 157.8
Lon20–01 199.5 0.0 199.5 0.0 199.5 0.0 200.2 0.3 199.5
Lon20–02 195.7 0.0 195.7 0.0 196.0 0.2 196.4 0.4 195.7
Lon25–01 234.0 0.0 234.2 0.1 234.0 0.0 234.9 0.4 234.0
Lon25–02 246.4 0.0 246.4 0.0 246.4 0.0 246.4 0.0 246.4
Lon50–01 371.4 0.0 372.6 0.3 371.4 0.0 371.9 0.1 371.4
Lon50–02 367.9 0.0 368.0 0.0 367.9 0.0 368.2 0.1 367.9
Lon75–01 486.4 0.0 487.0 0.1 487.0 0.1 487.9 0.3 486.4
Lon75–02 492.1 0.0 496.7 0.9 492.4 0.1 497.9 1.2 492.1
Lon100–01 633.8 0.0 643.9 1.6 634.7 0.1 637.8 0.6 633.8
Lon100–02 635.2 0.0 636.6 0.2 642.3 1.1 636.5 0.2 635.2
Lon200–01 1,113.6 0.2 1,127.3 1.5 1,110.9 0.0 1,121.5 1.0 1,110.9
Lon200-02 1,140.7 0.1 1,150.6 1.0 1,147.2 0.7 1,139.4 0.0 1,139.4
Average 0.0 0.6 0.3 0.5

of the ALNS. In terms of solution quality, it can be seen that the best-performing removing operator is
R3 followed by the R5 and R8 operators. Relatively few improvements have been achieved with the R4
removal operator. Among insertion operators, the best and the second-best performing operators are I3
and I1, respectively. The least-performing insertion operator is I5 operator, as expected.
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Table 10
Descriptive statistics for the ten removal operators:

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
The number of iterations (percentage (%) of 25K)

Lon10 10.66 8.56 11.20 6.67 10.82 10.27 10.57 10.42 10.56 10.28
Lon15 10.66 8.67 10.77 6.87 12.16 9.72 11.29 10.78 9.96 9.13
Lon20 10.70 11.72 9.63 4.86 10.68 9.72 9.98 11.00 10.79 10.93
Lon25 9.99 10.08 10.38 7.83 10.29 10.10 10.37 10.75 10.07 10.15
Lon50 10.50 10.32 10.84 7.28 10.40 10.05 9.68 9.70 10.15 11.08
Lon75 10.48 9.75 10.27 7.54 10.92 10.33 10.04 10.55 9.90 10.23
Lon100 10.82 10.28 11.48 4.95 10.44 10.39 10.06 11.05 11.03 9.50
Lon200 10.56 10.33 12.08 4.93 10.92 10.07 10.40 10.84 9.15 10.73

Average 10.55 9.96 10.83 6.36 10.83 10.08 10.30 10.64 10.20 10.25
CPU times required by each operator (seconds)

Lon10 0.002 0.002 0.003 0.001 0.013 0.001 0.003 0.003 0.002 0.003
Lon15 0.002 0.003 0.007 0.003 0.016 0.002 0.007 0.004 0.002 0.001
Lon20 0.001 0.004 0.008 0.001 0.015 0.001 0.005 0.003 0.004 0.006
Lon25 0.005 0.007 0.020 0.003 0.044 0.004 0.011 0.014 0.009 0.007
Lon50 0.003 0.007 0.015 0.002 0.033 0.003 0.011 0.009 0.006 0.003
Lon75 0.011 0.022 0.051 0.010 0.185 0.028 0.045 0.047 0.027 0.028
Lon100 0.017 0.025 0.070 0.006 0.227 0.024 0.051 0.058 0.032 0.040
Lon200 0.027 0.062 0.214 0.021 0.897 0.056 0.131 0.131 0.065 0.071

Average 0.008 0.016 0.048 0.006 0.179 0.015 0.033 0.034 0.018 0.020

Table 11
Descriptive statistics for the six insertion operators:

I1 I2 I3 I4 I5 I6
The number of iterations (percentage (%) of 25K)

Lon10 17.40 17.39 17.80 16.43 15.14 15.86
Lon15 15.81 15.77 19.68 19.23 15.39 14.13
Lon20 16.56 16.52 16.81 16.66 16.47 16.99
Lon25 16.94 15.76 16.67 16.71 17.10 16.82
Lon50 17.12 17.15 17.41 17.27 13.82 17.23
Lon75 17.08 18.13 15.57 15.41 16.32 17.49
Lon100 17.42 15.28 16.01 16.17 17.36 17.75
Lon200 17.14 18.48 16.19 13.25 17.50 17.44

Average 16.94 16.81 17.02 16.39 16.14 16.71
CPU times required by each operator (seconds)

Lon10 0.046 0.074 0.036 0.042 0.001 0.006
Lon15 0.068 0.095 0.058 0.058 0.002 0.006
Lon20 0.046 0.096 0.038 0.047 0.001 0.006
Lon25 0.177 0.355 0.195 0.208 0.006 0.018
Lon50 0.170 0.299 0.170 0.160 0.005 0.010
Lon75 0.856 1.694 0.867 0.831 0.037 0.084
Lon100 1.063 1.924 0.997 1.069 0.053 0.097
Lon200 4.571 7.616 4.032 4.242 0.081 0.529

Average 0.875 1.519 0.799 0.832 0.023 0.094

16



5.6. Comparison with the results of the mathematical model for small-sized benchmark instances
We now present the performance of our ALNS metaheuristic algorithm on the generated instances.

We solve small- and medium-sized instances (i.e., 10, 15, 20 and 25 nodes) using CPLEX solver of IBM
ILOG (2018).

Table 12 and 13 compares the algorithm with the mixed-integer linear programming (MILP) model.
Column CPLEX presents the total cost obtained with the MILP formulation. We note that we have tried
two speed level settings for the model. In the first setting, we have used a single speed level to reduce
the complexity (i.e., a lower number of decision variables). In the second setting, we have used nine
speed levels starting from 11.11 m/s to 22.22 m/s. Since the highest speed level is normally the chosen
speed, the objective function values obtained with both settings do not hugely differ. Column ALNS
presents the best solution found by our metaheuristic algorithm. Column ALNS with SOP presents the
best solution found by our metaheuristic algorithm with the speed optimization algorithm proposed by
Demir et al. (2014b). The columns GAP present the differences in objective function values. These values
are obtained with the formula of [Cost(SALNS

best ) − Cost(SCPLEX)]/Cost(SALNS
best ). The solver time limit for the

solution is set to 7,200 seconds in CPLEX. We note that the negative value occurs due to the lineralization
of speed variables.

Table 12
Comparison with CPLEX solver on 10- and 15-node instances:

Instance CPLEX ALNS GAP CPLEX ALNS with SOP GAP
(One speed level) (Nine speed levels)
(£) (£) (%) (£) (£) (%)

Lon10–01 155.10 155.10 –0.0001 154.52 154.52 –0.0004
Lon10–02 182.48 182.48 –0.0001 181.71 181.76 0.0278
Lon10–03 144.89 144.89 –0.0001 143.97 143.97 –0.0006
Lon10–04 164.81 164.81 –0.0001 164.01 164.11 0.0637
Lon10–05 158.14 158.14 –0.0001 157.10 157.10 –0.0007
Lon10–06 138.73 138.73 –0.0001 138.13 138.13 –0.0004
Lon10–07 163.90 163.90 –0.0001 162.52 162.52 –0.0008
Lon10–08 175.53 175.53 –0.0001 174.00 174.00 –0.0008
Lon10–09 150.61 150.61 –0.0001 149.51 149.50 –0.0100
Lon10–10 151.23 151.23 –0.0001 150.32 150.32 –0.0006
Lon15–01 168.00 168.00 –0.0001 167.05 167.12 0.0421
Lon15–02 158.65 158.65 –0.0001 157.82 157.80 –0.0161
Lon15–03 178.25 178.25 –0.0001 177.17 177.20 0.0185
Lon15–04 182.55 182.55 –0.0001 181.06 181.04 –0.0107
Lon15–05 176.67 176.67 –0.0001 175.77 175.76 –0.0052
Lon15–06 161.10 161.10 –0.0001 159.82 159.82 –0.0008
Lon15–07 160.84 160.84 –0.0001 159.84 159.85 0.0042
Lon15–08 182.33 182.33 –0.0001 181.24 181.24 –0.0006
Lon15–09 160.51 160.51 –0.0001 159.50 159.50 –0.0006
Lon15–10 174.14 174.14 –0.0001 172.73 172.72 –0.0046
Average 164.41 164.41 –0.0001 163.39 163.40 –0.0052

The results in Table 12 highlight that 10- and 15-node instances have small deviations between CPLEX
and ALNS algorithms. The maximum deviation is 0.06%, which is the worst-case performance for the
ALNS. The required CPU time for our algorithm is less than thirty seconds for 15-node instances. For
10-node instances, the CPU time required by CPLEX is less than one second. For 15-node instances,
average CPU times with one and nine speed levels are 12 and 28 seconds, respectively. We note that it
was not possible to get any optimal solution for 20- and 25-node instances with the solver regardless of
chosen speed level setting. Therefore, we only present feasible solutions obtained at 7, 200 seconds in
Table 13.
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Table 13
Comparison with CPLEX solver on 20- and 25-node instances:

Instance CPLEX* ALNS GAP CPLEX* ALNS with SOP GAP
(One speed level) (Nine speed levels)
(£) (£) (%) (£)* (£) (%)

Lon20–01 200.80 200.80 –0.0002 199.51 199.51 –0.0015
Lon20–02 197.34 197.34 –0.0002 195.69 195.69 –0.0035
Lon20–03 233.06 233.06 –0.0001 231.41 231.76 0.1494
Lon20–04 197.35 197.35 –0.0002 195.57 195.56 –0.0070
Lon20–05 185.36 185.36 –0.0001 183.80 183.80 –0.0008
Lon20–06 207.35 207.35 –0.0001 205.89 205.89 –0.0007
Lon20–07 200.21 200.21 –0.0001 198.29 198.29 –0.0009
Lon20–08 182.15 182.15 –0.0001 180.96 180.96 –0.0035
Lon20–09 185.58 185.58 –0.0002 184.53 184.50 –0.0138
Lon20–10 201.39 201.39 –0.0001 199.66 199.70 0.0221
Lon25–01 236.31 236.31 –0.0001 234.00 234.00 –0.0009
Lon25–02 247.73 247.73 –0.0001 248.49 246.36 –0.8573
Lon25–03 231.62 232.18 0.2422 231.17 231.65 0.2078
Lon25–04 246.34 246.34 –0.0001 245.63 245.62 –0.0062
Lon25–05 218.56 218.56 –0.0002 217.99 217.97 –0.0054
Lon25–06 211.49 211.49 –0.0001 210.00 209.99 –0.0054
Lon25–07 251.99 251.39 –0.2368 250.06 250.04 –0.0077
Lon25–08 213.46 213.46 –0.0002 211.89 211.86 –0.0156
Lon25–09 228.11 228.11 –0.0001 228.77 227.05 –0.7518
Lon25–10 284.47 267.35 –6.4035 286.75 265.89 –7.2730
Average 218.03 217.18 –0.32 217.00 215.80 –0.43
* could not be solved to optimality within 7,200 seconds.

5.7. Results of the algorithm on benchmark instances
This section provides the results on benchmark instances of Chen and Shi (2019). These instances

are generated based on well-known Solomon’s VRPTW instances Solomon (1987). In order to assess
the quality of our algorithm, we have solved sixteen instances, which come in two sets random and
randomly clustered with 100 and 2000 nodes. Chen and Shi (2019) provided two metaheuristic algorithms
for multi-compartment VRPTW, namely the conventional particle swarm optimization (PSO) and the
hybrid particle swarm optimization (HPSO).

Table 14 compares the results of the PSO, HPSO and ALNS algorithms. The comparisons are made
with regards to the best objective function values obtained through five runs of the ALNS algorithm
with 25,000 iterations. We present, for 16 instances, the value of the solutions found with PSO and HPSO
algorithms under column “PSO” and “HPSO”, respectively. The column “ALNS” provides the results
obtained with our ALNS algorithm. The CPU time with the ALNS algorithm is also presented in the
last column of Table 14. The columns titled “Gap PSO (%)" and “Gap HPSO (%)" present the percentage
deviation of PSO and HPSO algorithms from ALNS, respectively. The column titled “Gap Best (%)"
shows the percentage deviation of best obtained value from the ALNS algorithm.

As can be seen from Table 14, the enhanced ALNS algorithm performs very well on the MCVRPTW
instances of Chen and Shi (2019). For the majority of the instances, the ALNS is able to obtain the best
known solution (i.e., nine out of 16). For the rest of the instances, the percentage deviations are no greater
than 0.45%.

5.8. Analysis on travel and service time uncertainty
This section investigates the service and travel time uncertainty on each cost component (i.e., fuel

cost, driver wage, and temperature cost) as provided in Table 15. The first group provides the obtained
results with zero uncertainty level. The second group “10% uncertainty level" provides the details when
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Table 14
Results of the ALNS algorithm on MCVRPTW benchmark instances:

PSO HPSO ALNS Best Gap PSO Gap HPSO Gap Best CPU ALNS
(%) (%) (%) (seconds)

R101 1,660.63 1,692.29 1,657.62 1,657.62 –0.18 –2.09 0.00 83.16
R102 1,526.03 1,541.15 1,520.54 1,520.54 –0.36 –1.36 0.00 92.71
R103 1,288.22 1,255.60 1,243.33 1,243.33 –3.61 –0.99 0.00 90.90
R104 1,052.25 1,036.32 1,049.27 1,036.32 –0.28 1.23 1.23 91.41
R201 1,175.71 1,191.36 1,156.91 1,156.91 –1.63 –2.98 0.00 143.78
R202 1,106.84 1,084.14 1,074.70 1,074.70 –2.99 –0.88 0.00 89.58
R203 921.28 902.62 915.40 902.62 –0.64 1.40 1.40 89.68
R204 782.75 797.09 791.90 782.75 1.16 –0.66 1.16 102.17
RC101 1,711.29 1,702.69 1,676.69 1,676.69 –2.06 –1.55 0.00 68.91
RC102 1,572.96 1,581.29 1,559.88 1,559.88 –0.84 –1.37 0.00 60.50
RC103 1,363.25 1,376.89 1,369.01 1,363.25 0.42 –0.58 0.42 51.57
RC104 1,244.43 1,229.81 1,220.92 1,220.92 –1.93 –0.73 0.00 62.11
RC201 1,311.41 1,282.35 1,300.51 1,282.35 –0.84 1.40 1.40 124.54
RC202 1,163.48 1,108.01 1,125.17 1,108.01 –3.40 1.53 1.53 132.68
RC203 980.71 1,014.43 954.05 954.05 –2.79 –6.33 0.00 78.50
RC204 854.84 834.73 834.73 834.73 –2.41 0.00 0.00 50.60
Average –1.40 –0.87 0.45

the uncertainty level is 10%, and the last group “30% uncertainty level" gives the results when uncertainty
level is set to 30%. For all three groups, the columns provide details on total objective function value,
fuel, and temperature costs (all in pounds).

Table 15
Travel and service time uncertainty for 100-node instances:

Instance Zero uncertainty level 10% uncertainty level 30% uncertainty level
Sol. Fuel Temp. Sol. Fuel Temp. Sol. Fuel Temp.
value cost cost Value cost cost value cost cost
(£) (£) (£) (£) (£) (£) (£) (£) (£)

Lon100–01 633.78 109.25 122.59 696.63 128.17 112.08 801.13 154.51 88.39
Lon100–02 635.25 99.96 127.15 681.39 108.62 114.81 790.23 153.81 105.00
Lon100–03 627.50 106.41 117.54 696.41 117.91 94.07 800.11 147.58 84.73
Lon100–04 656.88 111.70 105.19 685.40 125.68 108.59 786.90 151.86 98.61
Lon100–05 638.56 103.93 113.53 673.78 115.60 105.93 770.14 149.66 104.49
Lon100–06 678.00 112.54 114.63 716.99 126.75 114.15 825.53 160.07 96.43
Lon100–07 630.94 97.55 128.99 667.07 107.21 120.18 726.28 131.57 117.15
Lon100–08 622.13 105.93 122.84 674.18 112.66 110.28 756.95 135.12 101.15
Lon100–09 635.33 106.07 117.50 693.01 117.83 97.75 762.57 149.46 96.51
Lon100–10 621.08 107.96 117.90 663.53 124.21 119.22 761.93 142.06 96.51
Average 637.95 106.13 118.79 684.84 118.46 109.71 778.18 147.57 98.90

Table 15 highlights that the service and travel time uncertainty increases the total costs and fuel
consumption. However, temperature costs decrease with the increase in uncertainty level. This can be
explained with the lower number of visits per each vehicle used in a solution. Shorter travel time leads to
a more efficient use of compartments, compared to deterministic solutions (i.e., zero uncertainty level).

5.9. Analysis on the use of multiple compartments
This section investigates the effect of multiple compartments on each cost component (i.e., fuel, driver,

and temperature costs). Table 16 presents the analysis on multi-compartment as explained in Section
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3. It is noted that these values are average values of all 100-node instances. The column “Sol. Value"
provides the best results of three runs (in pounds). The third “CPU time" and fourth “Dist." columns
provide the CPU time and total traveled distance values, respectively. The fifth column “Fuel cons."
provides the calculated fuel consumption in liters. We note that the total CO2equivalent emissions can
easily be calculated using the estimated amount of fuel and the corresponding conversion factor (i.e.,
3.13kg CO2e emissions per one liter of diesel fuel). The next three columns “Vehicle cost", “Driver wage"
and “Temp. cost" give the results of total vehicle cost, total driver wage and estimated temperature cost
for each instance. We also list the number of customers (and the number of vehicles used) in the table.

Table 16
Average results for all 100-node instances:

Compartment Sol. CPU Dist. Fuel Vehicle Driver Temp. Period Period Period
value time cons. cost wage cost 1 2 3
(£) (sec) (km) (L) (£) (£) (£) C(V) C(V) C(V)

All compartments 637.95 28.02 963.91 106.13 168 245.03 118.79 26.4(2.3) 32.5(2.7) 41.1(3.4)
Normal 545.57 20.38 964.35 106.62 168 243.50 27.45 26.4(2.3) 32.5(2.7) 41.1(3.4)
Low 652.86 21.59 957.22 105.29 172 247.08 128.50 26.4(2.3) 32.5(2.8) 41.1(3.5)
Very Low 777.07 22.06 955.21 104.53 176 255.83 240.71 26.4(2.3) 32.5(2.9) 41.1(3.6)
Normal and Low 585.92 21.44 971.25 107.39 168 243.99 66.54 26.4(2.3) 32.5(2.7) 41.1(3.4)
Normal and Very
Low

630.98 20.17 967.42 106.57 172 246.42 105.99 26.4(2.3) 32.5(2.8) 41.1(3.5)

Low and Very Low 689.60 24.11 968.03 106.83 170 249.11 163.67 26.4(2.3) 32.5(2.7) 41.1(3.5)

We note that for each category we only used the stated compartment(s), and other product de-
mands are converted to the chosen compartment(s). Table 16 highlights the difference of having one or
more compartments in a vehicle. It is evident that Low and Very Low compartments are more costly
than Normal-temperature compartments. There is only a slight difference for the availability of multi
compartments on the number of customers visited and the number of vehicles used in each period.

5.10. Analysis on customers’ time window preferences
We now look at various time period settings for two 100-node instances (i.e., Lon100–01 and Lon100–

02). We look at the original setting and five different variations of these two instances. We assume that
all customers are the first type of customers in these variants and they keep similar preferences in each
variant. First, we assume that all customers pick a 1–hour time slot from 8:00am in the morning to 24:00
in the evening (i.e., Lon100–01a and Lon100–02a). Second, we assume that all customers choose one of
the time periods, 08:00–12:00, 14:00–18:00, or 20:00–24:00 (i.e., Lon100–01b and Lon100–02b). Third, we
assume that all customers choose only the first period from 8:00am to 12:00 noon (i.e., Lon100–01c and
Lon100–02c). Fourth, all customers choose a time period from 8:00am to 18:00pm (i.e., Lon100–01d and
Lon100–02d). And finally, all customers can be served anytime between 8:00 and 24:00 (i.e., Lon100–01e
and Lon100–02e). Similar to previous Tables 18–21, we provide similar information for each variant per
instance in Table 17.

As seen in Table 17, we can observe that total costs increase with the flexibility in delivery time
preferences. The highest cost is achieved if all customers choose a 1-hour time slot for delivery, and the
cheapest cost is achieved when only a 4–hour time period is chosen. We also note that time flexibility
increases fuel consumption and the total traveled distance. We have similar results in part (c,d,e) because
all customers could be visited in four hours by the least number of vehicles. If there were more customers
(especially with higher demands), this would result in using more vehicles.

5.11. Solving the medium- and large-sized instances with the ALNS algorithm
We now solve all sets of instances with our ALNS algorithm. We ran the ALNS algorithm three times.

For medium- and large-sized instances, solving the MILP formulation is computationally expensive and
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Table 17
Computational results for 100–node instances with different delivery time preferences:

Instance Sol. CPU Dist. Fuel Vehicle Driver Temp. Period Period Period
value time cons. cost wage cost 1 2 3
(£) (sec) (km) (L) (£) (£) (£) C(V) C(V) C(V)

Lon100–01 633.78 28.17 982.39 109.25 160 241.94 122.59 27(2) 37(3) 36(3)
Lon100–02 635.25 29.26 917.74 99.96 160 248.14 127.15 27(2) 35(3) 38(3)

Lon100–01a 686.51 32.46 1,107.31 120.54 180 279.90 106.07 34(3) 31(3) 35(3)
Lon100–02a 684.41 29.24 957.61 104.90 200 268.87 110.64 35(3) 35(3) 30(4)

Lon100–01b 549.17 30.08 711.59 79.97 140 205.36 123.84 36(3) 31(2) 33(2)
Lon100–02b 546.25 29.27 668.08 74.88 160 200.14 111.23 37(3) 35(3) 28(2)

Lon100–01c 524.69 65.07 553.59 62.36 140 189.56 132.77 100(7) 0(0) 0(0)
Lon100–02c 506.44 41.80 501.67 56.65 120 183.50 146.29 100(6) 0(0) 0(0)

Lon100–01d 524.69 65.07 553.59 62.36 140 189.56 132.77 100(7) 0(0) 0(0)
Lon100–02d 506.44 41.80 501.67 56.65 120 183.50 146.29 100(6) 0(0) 0(0)

Lon100–01e 524.69 65.07 553.59 62.36 140 189.56 132.77 100(7) 0(0) 0(0)
Lon100–02e 506.44 41.80 501.67 56.65 120 183.50 146.29 100(6) 0(0) 0(0)

we, therefore, do not provide these values in the following tables. Table 18–21 provides the detailed
results on four sets of instances (i.e., Lon–50, Lon–75, Lon–100 and Lon–200). The column “Sol. Value"
provides the best values of three runs in pounds. The third column provides the “CPU time" information
for each instance. The next column in these tables “Fuel cons." provides the estimated fuel consumption
in liters. The next three columns “Vehicle cost", “Driver wage" and “Temp. cost" give the results of total
vehicle cost, total driver wage and estimated temperature cost for each instance. Finally, the last three
columns provide the number of customers served and the number of vehicles used in each corresponding
time period (i.e., Period 1, Period 2, or Period 3).

Table 18
Results of the 50–node instances:

Instance Sol. CPU Fuel Vehicle Driver Temp. Period Period Period
value time cons. cost wage cost 1 2 3
(£) (sec) (L) (£) (£) (£) C(V) C(V) C(V)

Lon50–01 371.37 6.18 63.25 120 136.40 51.72 15(2) 8(2) 27(2)
Lon50–02 367.87 5.93 63.18 120 142.55 42.14 15(2) 13(2) 22(2)
Lon50–03 351.44 5.95 65.33 100 129.96 56.15 13(1) 16(2) 21(2)
Lon50–04 364.53 8.77 57.19 100 140.98 66.36 15(2) 13(1) 22(2)
Lon50–05 387.14 6.35 66.54 120 155.67 44.93 16(2) 16(2) 18(2)
Lon50–06 383.66 7.46 63.73 120 152.80 47.13 12(2) 23(2) 15(2)
Lon50–07 386.08 5.33 62.29 120 163.53 40.27 15(2) 15(2) 20(2)
Lon50–08 369.12 6.14 71.17 100 139.96 57.99 15(2) 15(1) 20(2)
Lon50–09 377.69 6.28 72.08 120 141.70 43.90 17(2) 13(2) 20(2)
Lon50–10 350.83 5.93 70.82 100 131.40 48.61 12(2) 13(1) 25(2)

Table 18 presents the detailed results for 50-node instances. The average solution time is quite small
for solving a medium-size instance. This is especially important since we aim to provide quick and
good-quality solutions for the sake of city logistics. We see that more customers are visited in the last
period. Moreover, we observe that the second and third types of customers need to be visited next to
the first type of customers. The maximum number of vehicles is found to be two for all instances in this
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group.

Table 19
Results of the 75–node instances:

Instance Sol. CPU Fuel Vehicle Driver Temp. Period Period Period
value time cons. cost wage cost 1 2 3
(£) (sec) (L) (£) (£) (£) C(V) C(V) C(V)

Lon75–01 486.44 21.00 78.82 120 187.61 100.01 23(2) 26(2) 26(2)
Lon75–02 492.12 14.74 84.68 140 191.61 75.83 19(2) 24(2) 32(3)
Lon75–03 506.33 17.05 82.36 160 190.39 73.58 16(2) 24(3) 35(3)
Lon75–04 486.84 20.37 73.41 120 187.99 105.44 18(2) 30(2) 27(2)
Lon75–05 495.31 20.12 85.87 140 192.64 76.81 20(2) 21(2) 34(3)
Lon75–06 500.65 20.63 80.78 140 196.43 83.44 25(2) 19(2) 31(3)
Lon75–07 535.36 21.69 83.70 160 204.52 87.14 18(2) 20(3) 37(3)
Lon75–08 479.06 18.79 84.91 120 180.79 93.36 23(2) 26(2) 26(2)
Lon75–09 520.37 21.27 78.90 140 216.43 85.03 15(2) 31(3) 29(2)
Lon75–10 515.88 12.52 81.38 140 203.76 90.74 27(2) 23(3) 25(2)

Similar to Table 18, Table 19 lists the solution details for all 10 instances. The solution times are still
quite small and applicable for city logistics. We also highlight that there is only one extra vehicle needed
to serve an additional 25 customers. Since the total vehicle cost is part of the objective function, the
algorithm also aims to reduce the number of vehicles. This provides an opportunity for LSPs to decide
their fleet size for a given number of customers.

Table 20
Results of 100–node instances:

Instance Sol. CPU Fuel Vehicle Driver Temp. Period Period Period
value time cons. cost wage cost 1 2 3
(£) (sec) (L) (£) (£) (£) C(V) C(V) C(V)

Lon100–01 633.78 28.17 109.25 160 241.94 122.59 27(2) 37(3) 36(3)
Lon100–02 635.25 29.26 99.96 160 248.14 127.15 27(2) 35(3) 38(3)
Lon100–03 627.50 32.38 106.41 160 243.55 117.54 23(2) 37(3) 40(3)
Lon100–04 655.65 34.24 109.65 180 258.60 107.04 31(3) 33(3) 36(3)
Lon100–05 638.56 36.17 103.93 180 241.10 113.53 24(2) 30(3) 46(4)
Lon100–06 678.00 33.50 112.54 200 250.83 114.63 21(3) 31(3) 48(4)
Lon100–07 630.26 33.71 94.92 160 245.69 129.65 30(2) 34(3) 36(3)
Lon100–08 622.13 16.31 105.93 160 233.36 122.84 21(2) 30(2) 49(4)
Lon100–09 635.33 15.71 106.07 160 251.76 117.50 27(2) 31(2) 42(4)
Lon100–10 621.08 20.74 107.96 160 235.22 117.90 33(3) 27(2) 40(3)

Table 20 provides the results of 100-node instances. Average solution time for these instances have
increased to 27.3 seconds. We can also observe that fuel consumption is not too high since city van has
been used in the experiments. Based on this analysis, only four vehicles would be sufficient to serve
the customers located in London. Another interesting finding of the study is that more customers are
visited in the afternoon and evening periods than the morning one.

As can be seen from Tables 21, all instances up to 200 nodes can be solved within 1 minute and thirty
one seconds. This is one of the biggest advantages of using ALNS metaheuristic algorithms for VRPs.
There is clear evidence that temperature costs are an important part of the objective function and this
can be explained by the fact that a certain level of compartment temperature must be kept even when
the vehicle stops for a delivery. Shorter service times will minimize the temperature costs as expected.
Again, the number of vehicles needed for each period does not differ dramatically for each instance in
the same set.

22



Table 21
Results of the 200–node instances:

Instance Sol. CPU Fuel Vehicle Driver Temp. Period Period Period
value time cons. cost wage cost 1 2 3
(£) (sec) (L) (£) (£) (£) C(V) C(V) C(V)

Lon200–01 1,113.58 46.41 154.13 260 422.11 277.34 61(4) 60(4) 79(5)
Lon200–02 1140.74 104.04 158.35 300 419.04 263.35 63(5) 56(4) 81(6)
Lon200–03 1154.39 79.77 160.39 300 425.71 268.29 65(5) 64(5) 71(6)
Lon200–04 1104.91 99.65 156.03 260 415.34 273.54 63(4) 66(4) 71(5)
Lon200–05 1163.19 91.37 163.04 300 449.32 250.84 58(4) 64(5) 78(6)
Lon200–06 1153.33 80.11 154.12 280 437.84 281.37 43(3) 70(5) 87(6)
Lon200–07 1155.47 103.03 164.05 280 431.31 280.11 54(4) 71(5) 75(5)
Lon200–08 1197.15 87.63 171.28 300 457.82 268.05 55(4) 67(5) 78(6)
Lon200–09 1121.88 92.48 152.66 280 430.11 259.11 52(4) 65(4) 83(5)
Lon200–10 1164.48 72.82 159.10 300 443.60 261.78 62(4) 68(5) 70(6)

6. Conclusions

We have used the enhanced ALNS algorithm for the solution of a real-life vehicle routing problem
with multiple compartments. The proposed ALNS algorithm utilizes both new and existing removal
and insertion operators from the literature. All operators are fast and provide good solution quality for
the use of city logistics. This is especially important since the routing problem should be solved within
minutes, as in real-life applications.

To numerically evaluate the proposed metaheuristic algorithm, we have created various sets of
instances based on London geographic data. Additional analysis of various multiple compartments and
customer time window preferences has also been conducted for further insights. Moreover, we have
looked at service and travel time uncertainty to propose more robust solutions for the practical use of
the algorithm. The computational results on all types of instances highlight that the ALNS algorithm
is performing well in finding good-quality solutions on instances with up to 200 customers. From this
research, three important conclusions are deducted as follows.

First, for the use of multi-compartment vehicles, the complexity of the routing problem increases.
This does not come as a surprise. However, LSPs in urban areas need to carry different types of products
within the same vehicle. This will require more advanced algorithms to operate flexible and modular
vehicles. Among the costs defined in this research (i.e., fuel costs, driver wages, temperature-controlled
compartment costs), driver wages and temperature costs increase due to the need for multiple stops on
a route. Especially, driver wage is an important issue since customer preferences might lead to variable
driver costs for different time periods. Second, another finding is that LSPs need to use robust models
to consider travel and service time uncertainty. In urban areas, the speed of an vehicle is limited due
to traffic congestion. This can lead to infeasible solutions since some customers cannot be visited on
time. A little effort on incorporating robust modelling techniques into their planning systems can benefit
LSPs. Third, customers’ delivery preferences have big impact on operational costs. One option would
be to guide customers with more environmentally-friendly delivery slots. This is somehow done in
practice, but more efforts need to be put into showing customers with the actual impact of their delivery
preferences on the environment.

In order to extend the current analysis, two possible research areas can be considered for the future.
Logistics companies should consider their resources (i.e., vehicle fleet, driver portfolio) to offer last-
mile solutions. It is important to tailor delivery services by relaxing such resources. For example,
city logistics might offer crowdsourcing and the use of electric vehicles with modular compartments.
One future research direction will be to consider heterogeneous vehicle types, including both diesel-
and electric-powered vehicles. Especially, temperature-controlled compartments will be an interesting
research direction for electric vehicles as we know that current electric battery technology has certain
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limitations. Another future study would be on unavailability of customers during the delivery. This is
a real challenge for LSPs and therefore algorithms should consider stochastic approach to characterize
the behaviour of customers. We also aim to extend our research to look at this issue as a new research
direction.
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