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Identification of clinical and urine 
biomarkers for uncomplicated 
urinary tract infection using 
machine learning algorithms
Amal A. H. Gadalla  1*, Ida M. friberg2, Ann Kift-Morgan2, Jingjing Zhang2, 
Matthias eberl2,3, Nicholas topley2,3, Ian Weeks3,4, Simone cuff2,3,4, Mandy Wootton5, 
Micaela Gal1, Gita parekh6, Paul Davis6, Clive Gregory1, Kerenza Hood7, Kathryn Hughes1, 
Christopher Butler1,8,10 & Nick A. francis1,9,10

Women with uncomplicated urinary tract infection (UTI) symptoms are commonly treated with 
empirical antibiotics, resulting in overuse of antibiotics, which promotes antimicrobial resistance. 
Available diagnostic tools are either not cost-effective or diagnostically sub-optimal. Here, we 
identified clinical and urinary immunological predictors for UTI diagnosis. We explored 17 clinical and 
42 immunological potential predictors for bacterial culture among women with uncomplicated UTI 
symptoms using random forest or support vector machine coupled with recursive feature elimination. 
Urine cloudiness was the best performing clinical predictor to rule out (negative likelihood ratio 
[LR−] = 0.4) and rule in (LR+ = 2.6) UTI. Using a more discriminatory scale to assess cloudiness 
(turbidity) increased the accuracy of UTI prediction further (LR+ = 4.4). Urinary levels of MMP9, NGAL, 
CXCL8 and IL-1β together had a higher LR+ (6.1) and similar LR− (0.4), compared to cloudiness. Varying 
the bacterial count thresholds for urine culture positivity did not alter best clinical predictor selection, 
but did affect the number of immunological predictors required for reaching an optimal prediction. We 
conclude that urine cloudiness is particularly helpful in ruling out negative UTI cases. The identified urinary 
biomarkers could be used to develop a point of care test for UTI but require further validation.

Most guidelines for uncomplicated UTI recommend treatment with empirical antibiotics. However, when urine 
is cultured, approximately only one in three women with UTI symptoms are found to have a UTI as defined by 
a positive bacterial culture1. Therefore, prescribing empirically may result in antibiotic overuse and contribute 
to development of antimicrobial resistance. Clinicians generally base treatment decisions on symptoms, urine 
appearance, urine dipstick results, risk factors for development of complications and patient preference2,3. Some 
of these features have been combined into clinical prediction rules, but the predictive values remain suboptimal4. 
Therefore, the development of better diagnostic tools for UTI is essential for improving antimicrobial stewardship.

Exploratory approaches to aid UTI diagnosis have been based on serum and urinary biomarkers. The specific-
ity of blood immune markers is limited by the possibility of cross-reactivity due to other infections or inflamma-
tory responses. Urinary biomarkers that might reflect local immunological responses by the bladder epithelium 
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include nerve growth factor (NGF), chemokines including IL-8/CXCL85,6 and antimicrobial peptides (AMPs), 
human α-defensin 5 (HD5)7 and neutrophil gelatinase-associated lipocalin (NGAL)8. However, there is a lack of 
comprehensive biomarker screening studies for UTI.

With an expansion in the list of potential UTI biomarkers, it is also important to identify the most useful and 
readily available clinical information that could assist UTI diagnosis and guide prescribing decisions at the point 
of care. Many studies have implemented multivariate statistical models such as logistic regression to identify 
UTI clinical predictors2,4. These models are bound by relationship assumptions between predictors and outcome 
variables. In this study we aimed to use a machine learning-based approach, in which random forest (RF) and 
support vector machines (SVM) were implemented to allow fewer assumptions and more complex relationships 
between predictors. We combined these algorithms with recursive feature elimination (RFE) to extract the best 
predictor(s) for uncomplicated UTI using clinical information and potential biomarkers present in urine. These 
analytical approaches have been widely used in medical applications, such as drug discovery, biomarker selection 
and early diagnosis9–16. SVM, for instance, is a supervised learning model based on statistical learning for classi-
fication and regression analysis, which finds the separating hyperplane with the maximal margin between data 
from different groups. RF is an ensemble learning method that constructs a multitude of decision trees17 and is a 
popular approach for diagnosis18 and medical decision support systems19. Both SVM and RF outperform other 
machine learning methods for discriminant problems20. In this study, the aim was to find the best biomarker for 
UTI diagnosis, thus the classification ability was an important factor in differentiating UTI groups. Also, consid-
ering the complexity of the raw data required for biomarker discovery, the ability to cope with high-dimensional 
data was another criterion in choosing machine learning methods. In RF, the trees are decorrelated at each split 
on a small subset of features rather than all features, thus it is a strong candidate algorithm for high dimensional 
data. For SVMs, the separate hyperplane relies on the support vectors not all data, thus giving it independent 
advantages in dealing with high-dimensional data.

Results
Clinical information to predict UTI. Our study cohort included 183 women who participated in the 
POETIC (Point of care testing for urinary tract infection in primary care) trial21. They ranged in age from 18 to 
85 years, and the key UTI symptoms of urgency, frequency and dysuria were present in 84.2%, 91.8% and 77.0% 
of patients, respectively. The frequency of other symptoms is presented in Table 1. Following urine culture and 
according to the POETIC protocol22, 79 (43.2%) and 104 (56.8%) patients were classified as UTI positive and neg-
ative, respectively. Data from 128 patients (70%) were used for model training while data from 55 patients (30%) 
were used for testing model performance.

Using only the clinical data recorded during the initial consultation, urine cloudiness was the best clinical 
predictor for UTI with an area under the ROC curve (AUC) of 0.72 (95% CI 0.60–0.85), positive predictive value 
(PPV) 0.65, negative predictive value (NPV) 0.79, positive likelihood ratio (LR+) 2.55, negative likelihood ratio 
(LR−) 0.37 and F1 score of 0.69 on the test data subset (Table 2). We then substituted cloudiness (measured as 
a binary yes/no) with a more discriminatory assessment of cloudiness (turbidity score with three categories; 
Table 1). This substitution resulted in a similar AUC of 0.73 (95% CI 0.60–0.85) and improved PPV 0.76 and 
LR + 4.38 (Table 2). No other clinical features or age added to the predictive value of cloudiness/turbidity. RF and 
SVM algorithms produced similar results, except that SVM selected age plus turbidity (Table 2).

Urinary biomarkers to predict UTI. We previously reported correlations between bacterial infection and 
defined immune signatures (‘immune fingerprints’) in other scenarios23,24. To apply this knowledge to the diag-
nosis of uncomplicated UTI we conducted a comprehensive analysis of 42 inflammatory biomarkers in urine 
samples. In line with earlier observations, we found positive correlations between many of the immunologi-
cal biomarkers measured (Supplementary Figure S1). As a consequence, RFE was employed to select the best 
biomarkers for predicting UTI. Using the RFE coupled with RF algorithm (RF + RFE), IL-1β and MMP9 were 
selected as the best predictors with AUC of 0.82 (95% CI 0.69–0.94) and F1 score of 0.67 on the test data subset 
(Table 2). The diagnostic relevance of IL-1β and MMP9 was corroborated in an independent analysis using the 
SVM + RFE algorithm, which resulted in the selection of the same urinary biomarkers alongside NGAL and IL-8/
CXCL8, with a similar AUC and improved LR+ and F1 score, compared to the RF + RFE selection (Table 2). 
Adding the selected immunological biomarkers to the model with clinical features (including cloudiness or tur-
bidity) did not improve the predictive properties (Table 2). We conclude that while urine cloudiness was the most 
useful clinical predictor to rule out negative cases, urinary biomarkers were particularly helpful to predict the 
presence of UTI in symptomatic women.

Variable UTI classification guidelines. Finally, we explored whether changing the bacterial count thresh-
old (based on different national and European UTI guidelines) would affect the selection of clinical and immu-
nological predictors. Using the Public Health England (PHE) guidelines25,26 to interpret urine culture results, 
99 (54.1%) and 84 (45.9%) patients were UTI positive and negative, respectively. The European Association of 
Urology (EAU) guidelines27 classed 118 (64.5%) and 65 (35.5%) as positive and negative, respectively.

Cloudiness/turbidity remained the best clinical predictor when using the PHE or EAU definitions of UTI 
positivity (Supplementary Table S1). However, the selection of immunological markers varied with UTI clas-
sification and the type of machine learning algorithm employed. Using PHE classification, the best predicting 
model included a combination of urine cloudiness and NGAL, which resulted in a LR+ and LR− of 4.94 and 0.25 
respectively, and a good F1 score of 0.82 (Table S1). Using the EAU classification, the combination of turbidity, 
feeling unwell, foul smell in urine, NGAL and MMP9 resulted in a model with the best predictive properties 
(Table S1).
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UTI
NO (n = 104) YES (n = 79) (n = 183)

Patient characteristics, symptoms and urine sample appearance
n (%a) n (%a) Total (%b)

Age category in years 18–49 69 (64.5) 38 (35.5) 107 (58.5)
50–64 26 (60.5) 17 (39.5) 43 (23.5)

>65 9 (27.3) 24 (72.7) 33 (18)

Urgency Absent 18 (62.1) 11 (37.9) 29 (15.8)
Present 86 (55.8) 68 (44.2) 154 (84.2)

Frequency Absent 7 (46.7) 8 (53.3) 15 (8.2)
Present 97 (57.7) 71 (42.3) 168 (91.8)

Dysuria Absent 29 (69) 13 (31) 42 (23)
Present 75 (53.2) 66 (46.8) 141 (77)

Cloudiness Absent 65 (75.6) 21 (24.4) 86 (47)
Present 39 (40.2) 58 (59.8) 97 (53)

Turbidityc 1 85 (77.3) 25 (22.7) 110 (60.1)
2 10 (20.4) 39 (79.6) 49 (26.8)
3 9 (37.5) 15 (62.5) 24 (13.1)

Severity of feverd

0 63 (59.4) 43 (40.6) 106 (57.9)
1 5 (35.7) 9 (64.3) 14 (7.7)
2 15 (62.5) 9 (37.5) 24 (13.1)
3 12 (54.5) 10 (45.5) 22 (12)
4 5 (38.5) 8 (61.5) 13 (7.1)
5 4 (100) 0 (0) 4 (2.2)

Severity of pain on the sides

0 48 (57.8) 35 (42.2) 83 (45.4)
1 7 (70) 3 (30) 10 (5.5)
2 15 (60) 10 (40) 25 (13.7)
3 9 (45) 11 (55) 20 (10.9)
4 8 (47.1) 9 (52.9) 17 (9.3)
5 15 (68.2) 7 (31.8) 22 (12)
6 2 (33.3) 4 (66.7) 6 (3.3)

Severity of blood in urine

0 78 (55.7) 62 (44.3) 140 (76.5)
1 4 (66.7) 2 (33.3) 6 (3.3)
2 10 (66.7) 5 (33.3) 15 (8.2)
3 8 (66.7) 4 (33.3) 12 (6.6)
4 1 (25) 3 (75) 4 (2.2)
5 3 (50) 3 (50) 6 (3.3)

Severity of urine foul smell

0 44 (62.9) 26 (37.1) 70 (38.3)
1 6 (60) 4 (40) 10 (5.5)
2 18 (60) 12 (40) 30 (16.4)
3 20 (66.7) 10 (33.3) 30 (16.4)
4 8 (42.1) 11 (57.9) 19 (10.4)
5 5 (55.6) 4 (44.4) 9 (4.9)
6 3 (20) 12 (80) 15 (8.2)

Severity of dysuria

0 34 (69.4) 15 (30.6) 49 (26.8)
1 4 (66.7) 2 (33.3) 6 (3.3)
2 8 (40) 12 (60) 20 (10.9)
3 18 (64.3) 10 (35.7) 28 (15.3)
4 11 (44) 14 (56) 25 (13.7)
5 19 (57.6) 14 (42.4) 33 (18)
6 10 (45.5) 12 (54.5) 22 (12)

Severity of urgency

0 13 (68.4) 6 (31.6) 19 (10.4)
1 5 (71.4) 2 (28.6) 7 (3.8)
2 9 (45) 11 (55) 20 (10.9)
3 22 (61.1) 14 (38.9) 36 (19.7)
4 21 (60) 14 (40) 35 (19.1)
5 20 (55.6) 16 (44.4) 36 (19.7)
6 14 (46.7) 16 (53.3) 30 (16.4)

Severity of day time frequency

0 9 (60) 6 (40) 15 (8.2)
1 1 (20) 4 (80) 5 (2.7)
2 10 (62.5) 6 (37.5) 16 (8.7)
3 21 (58.3) 15 (41.7) 36 (19.7)
4 25 (58.1) 18 (41.9) 43 (23.5)
5 23 (60.5) 15 (39.5) 38 (20.8)
6 15 (50) 15 (50) 30 (16.4)

Continued
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UTI
NO (n = 104) YES (n = 79) (n = 183)

Severity of night time frequency

0 20 (57.1) 15 (42.9) 35 (19.1)
1 11 (91.7) 1 (8.3) 12 (6.6)
2 12 (70.6) 5 (29.4) 17 (9.3)
3 20 (52.6) 18 (47.4) 38 (20.8)
4 17 (50) 17 (50) 34 (18.6)
5 16 (69.6) 7 (30.4) 23 (12.6)
6 8 (33.3) 16 (66.7) 24 (13.1)

Severity of abdominal pain

0 33 (55.9) 26 (44.1) 59 (32.2)
1 7 (41.2) 10 (58.8) 17 (9.3)
2 15 (75) 5 (25) 20 (10.9)
3 25 (56.8) 19 (43.2) 44 (24)
4 14 (58.3) 10 (41.7) 24 (13.1)
5 7 (50) 7 (50) 14 (7.7)
6 3 (60) 2 (40) 5 (2.7)

Severity of restricted activity

0 40 (58) 29 (42) 69 (37.7)
1 12 (63.2) 7 (36.8) 19 (10.4)
2 12 (63.2) 7 (36.8) 19 (10.4)
3 18 (60) 12 (40) 30 (16.4)
4 10 (43.5) 13 (56.5) 23 (12.6)
5 9 (60) 6 (40) 15 (8.2)
6 3 (37.5) 5 (62.5) 8 (4.4)

Severity of feeling generally unwell

0 29 (65.9) 15 (34.1) 44 (24)
1 10 (52.6) 9 (47.4) 19 (10.4)
2 21 (63.6) 12 (36.4) 33 (18)
3 23 (63.9) 13 (36.1) 36 (19.7)
4 12 (42.9) 16 (57.1) 28 (15.3)
5 6 (46.2) 7 (53.8) 13 (7.1)
6 3 (30) 7 (70) 10 (5.5)

Median (Min- Max) Median (Min- Max)
TEMP 36.7 (35.2–39.1) 36.7 (35.3–38)
Immunological markerse

IL-1α 0.9 (0–2.4) 1.4 (0.2–3.4)
IL-1β 1.1 (0–2.5) 1.9 (0–3.1)
IL-2 0.2 (0–2) 0.4 (0–1.7)
IL-4 0.1 (0–0.4) 0.1 (0–0.6)
IL-5 0 (0–0.4) 0.1 (0–0.4)
IL-6 0.5 (0–2.7) 1.1 (0–3.1)
sIL-6R 2.8 (0–3.9) 3.1 (0–3.9)
IL-7 0.3 (0–1.2) 0.4 (0–1.4)
IL-10 0.1 (0–0.8) 0.2 (0–1.1)
IL-12p70 0.2 (0–0.7) 0.3 (0–1)
IL-12p40 0.1 (0–1.2) 0.5 (0–1.9)
IL-13 0.7 (0–1.6) 1 (0–2)
IL-15 0.1 (0–0.8) 0.2 (0–1.6)
IL-16 0.6 (0–2.7) 1.7 (0–3.8)
IL-17A 0.2 (0–4.2) 1.4 (0–4.2)
IFN-γ 0.5 (0–2) 0.7 (0–1.8)
GM-CSF 0.2 (0–2.5) 0.4 (0–2.5)
TNF-α 0.1 (0–1.5) 0.4 (0–2.3)
TNF-β 0 (0–0.3) 0 (0–0.7)
CCL2 2 (0.6–3.4) 2.4 (0.6–3.6)
CCL3 0.8 (0–2.3) 1.2 (0–3.2)
CCL4 1.1 (0–3) 1.5 (0–3.5)
CCL11 1 (0–2.3) 1.2 (0–2.6)
CCL13 0.9 (0–2.1) 1.1 (0–2)
CCL17 0.5 (0–1.8) 1 (0–2.8)
CCL22 1.2 (0–2.5) 1.8 (0–3.1)
CCL26 0.8 (0–1.8) 0.9 (0–2.2)
CXCL8 2 (0–3.9) 3.1 (0.8–4.6)
CXCL10 1.1 (0–4.3) 2.4 (0–4.7)
Creatinine 8.6 (0–9.6) 8.8 (4.1–9.5)
Cystatin C 4.4 (0–5.4) 4.6 (0–5.4)
Desmosine 4.7 (0–6.1) 4.8 (3.1–6.5)
Fibrinogen 4.2 (0–5.5) 5.2 (0–5.6)
FMLP 3.7 (0–4.4) 3.9 (2.7–4.3)
Continued
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Discussion
This is one of the first studies to use machine learning methods to select clinical features and urinary immunolog-
ical markers to predict culture results for uncomplicated UTI in primary care. We found that cloudiness of urine 
samples was the best clinical predictor of microbiologically confirmed UTI among symptomatic women, and that 
assessing cloudiness using a categorical turbidity scale improved the predictive properties further, particularly in 
identifying positive UTI. We identified a set of four urinary immunological markers (MMP9, NGAL, IL-8/CXCL8 
and IL-1β), which performed slightly better than cloudiness/turbidity when used independently. Changing the 
definition of UTI positivity to that used by PHE and the EAU standards, and using both RF and SVM algorithms, 
resulted in some changes to predictors, but urine cloudiness/turbidity, and the immunological markers MMP9, 
IL-1β and NGAL continued to be important predictors, thereby confirming their relevance in UTI diagnosis.

While normal urine samples are usually clear, white blood cells (WBCs), red blood cells, epithelial cells, pro-
teins, crystals, drugs and microorganisms can cause the urine to become cloudy. In uncomplicated UTI, the 
presence of WBCs and/or bacteria in urine can lead to urine cloudiness. This is consistent with the findings of our 
study where urine cloudiness/turbidity consistently came out as the best predictor of UTI. This finding is in keep-
ing with previous studies that investigated urine appearance as part of clinical rules to predict UTI in community 
settings4 and catheterized patients28.

UTI
NO (n = 104) YES (n = 79) (n = 183)

HNE 5 (0–6.4) 5.8 (0–6.5)
HAS 6.7 (0–7.4) 7.3 (5.4–7.5)
MMP8 0 (0–5.6) 4.6 (0–5.6)
MMP9 0.9 (0–5.1) 2.3 (0–5.3)
NGAL 4.5 (0–5.9) 5.5 (0–5.9)
Ac-PGP 5.6 (0–6.5) 5.6 (0–6.3)
RBP4 4.9 (0–6) 5.1 (0–6.3)
VEGF 2 (1.1–3.2) 2.4 (1.3–3.4)

Table 1. Frequency of clinical and immunological predictors. aPercentage out of row total. bPercentage out 
of total patients (183). c1 = clear or slightly turbid, 2 = moderately turbid and 3 = very turbid. dSeverity of 
symptoms measured on a scale from 0 (not affected) to 6 (as bad as possible). Please note that none of the 
patients reported a score of 6 for severity of fever and severity of blood in urine eMeasured in Pg/ml and values 
was transformed to log2. IL: interleukin. CC or CXC: chemokines. IFN-γ: interferon-γ. TNF: tumor necrosis 
factor. GM-CSF: granulocyte-macrophage colony-stimulating factor. VEGF: vascular endothelial growth factor. 
MMP: matrix metalloproteinase. HNE: human neutrophil elastase. RBP4: retinol binding protein 4. NGAL: 
neutrophil gelatinase-associated lipocalin. HSA: Human Serum Albumin. FMLP: N-Formylmethionine-leucyl-
phenylalanine. Ac-PGP: N-acetyl Proline-Glycine-Proline.

Data set Algorithm AUC PPV NPV LR+ LR− F1 score1 Selected predictors
POETIC UTI classification, UTI prevalence 42.6%
Clinical markers with 
cloudiness RF + RFE 0.72 (0.60–0.85)2 0.65 (0.44–0.82) 0.79 (0.59–0.91) 2.55 (1.4–4.6) 0.37 (0.18–0.75) 0.69 (0.57–0.81) Cloudiness

Clinical markers with 
turbidity RF + RFE 0.73 (0.60–0.85) 0.76 (0.50–0.92) 0.73 (0.56–0.86) 4.38 (1.6–11.7) 0.49 (0.31–0.80) 0.65 (0.52–0.78) Turbidity

Immunological markers RF + RFE 0.82 (0.69–0.94) 0.68 (0.45–0.85) 0.75 (0.56–0.88) 2.88 (1.41–5.92) 0.45 (0.25–0.80) 0.67 (0.54–0.80) IL-1β and MMP9
Selected clinical with 
cloudiness + selected 
immunological markers

RF 0.82 (0.70–0.95) 0.75 (0.51–0.90) 0.76 (0.58–0.89) 3.82 (1.72–9.52) 0.42 (0.23–0.73) 0.70 (0.58–0.82) Cloudiness, IL-1β and 
MMP9

Selected clinical with 
turbidity + selected 
immunological markers

RF 0.76 (0.63–0.90) 0.67 (0.43–0.85) 0.73 (0.54–0.86) 2.61 (1.30–5.59) 0.52 (0.30–0.86) 0.64 (0.51–0.77) Turbidity, IL-1β and 
MMP9

Clinical markers with 
cloudiness SVM + RFE 0.73 (0.61–0.85) 0.65 (0.44–0.82) 0.79 (0.59–0.91) 2.55 (1.4–4.6) 0.37 (0.18–0.75) 0.69 (0.57–0.81) Cloudiness

Clinical markers with 
turbidity SVM + RFE 0.86 (0.76–0.96) 0.76 (0.50–0.92) 0.73 (0.56–0.86) 4.38 (1.6–11.7) 0.49 (0.31–0.80) 0.65 (0.52–0.78) Turbidity and age category

Immunological markers SVM + RFE 0.81 (0.68–0.94) 0.82 (0.55–0.95) 0.76 (0.58–0.88) 6.29 (2.04–19.36) 0.43 (0.26–0.73) 0.70 (0.58–0.82) MMP9, NGAL, IL-8/
CXCL8 and IL-1β

Selected clinical with 
cloudiness + selected 
immunological markers

SVM 0.82 (0.70–0.94) 0.79 (0.54–0.93) 0.77 (0.59–0.89) 5.00 (1.93–13.23) 0.40 (0.23–0.71) 0.71 (0.58–0.83)
Cloudiness, MMP9, 
NGAL, IL-8/CXCL8 and 
IL-1β

Selected clinical with 
turbidity + selected 
immunological markers

SVM 0.79 (0.66–0.92) 0.70 (0.47–0.86) 0.77 (0.58–0.90) 3.04 (1.52–6.24) 0.39 (0.31–0.74) 0.70 (0.58–0.82)
Turbidity, age category, 
MMP9, NGAL, IL-8/
CXCL8 and IL-1β

Table 2. Performance of selection and merged models on test data subset. 1F1 score: harmonic mean of precision 
and recall. 295% confidence interval of the performance metric. AUC: Area under the curve. PPV: Positive 
predictive value. NPP: Negative predictive value. LR+ and LR−: positive and negative likelihood ratio. SVM: 
support vector machine. RF: random forest. RFE: recursive feature elimination. IL: interleukin. MMP: matrix 
metalloproteinase. NGAL: neutrophil gelatinase-associated lipocalin. CXCL: the chemokine (C-X-C motif) ligand.
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Visual assessment of urine cloudiness by health care staff is recommended in some guidelines as a step in the 
process of diagnosing uncomplicated UTI (for example PHE)29. Our results highlight the importance of imple-
menting this guideline in ruling out negative UTI cases, which is helpful for antibiotic stewardship activities. 
Furthermore, the improvement on positive UTI prediction by using a turbidity score, instead of binary cloudi-
ness, indicates that the assessment of the degree of cloudiness could improve the diagnosis of uncomplicated UTI 
within a consultation. In our study, turbidity scores were assessed by the microbiology laboratory after samples 
were transported from GP practices by standard post at room temperature. As urine turbidity may decrease or 
increase with prolonged transportation due to WBC lysis or bacterial growth, respectively, our samples were 
preserved in boric acid to protect WBCs and prevent bacterial growth during transportation30,31. Of note, we 
found no correlation between transportation time and turbidity score, indicating that boric acid preservation was 
sufficient to stabilise the samples (data not shown).

Cloudiness has not yet been used in other studies using machine-learning for UTI prediction. Heckerling and 
colleagues used neural networks with genetic algorithm feature selection to examine 212 women with suspected 
UTI32. While they found that cloudiness was associated with increased LR+, their genetic algorithm did not 
retain it for the creation of the neural network. It is possible that this reflects differences between neural net-
works and RF models. Alternatively, it may reflect differences in the cohort, since the ratio of cloudy:clear urines 
differed significantly between the two cohorts (current study cloudy:clear ratio 1.13:1, Heckerling et al. 5.84:1), 
suggesting an underlying difference in the data informing the model. Taylor et al. also recently used machine 
learning to predict UTI33. They employed the XGBoost machine learning approach with 211 clinical variables to 
develop models predicting UTI in an emergency department setting. These were reduced to 10 variables (includ-
ing urine analysis WBCs, bacteria, blood and dysuria) based on expert knowledge and literature reviews. While 
this approach worked well, it is not suitable for use in primary care given the number of recommended predictors. 
These studies, along with ours, demonstrate the potential of machine learning algorithms to enhance diagnosis. 
They also show that the context of the model is vitally important for its utility and that models may need to be 
customised for end users’ settings.

Predictor selection methods provide an advanced statistical tool to identify markers for infectious diseases but 
have not yet been widely used24. Using a RFE method coupled with either RF or SVM enabled us to simultane-
ously screen 17 clinical and 42 immunological biomarkers to identify predictors of UTI in symptomatic women 
in primary care. Nevertheless, we acknowledge that the relatively small sample size of our study in relation to the 
number of screened predictors may result in some instability of estimates and overfitting. While RFE is known 
to be particularly robust against overfitting34, we minimised this risk by using cross-validation in addition to a 
good hyperparameter search strategy within each model. During cross-validation, the model was trained on the 
training set and validated on a subset of the training data at each iteration, which ensured the generalization per-
formance of the model for unseen data35. Furthermore, the classifier was trained on all possible combinations of 
features including the full feature set and the best combination of features (depending on the generalization per-
formance of the model through cross validation) was selected as the searching space for the next step. Moreover, 
models were tested on an unseen test data set, which was randomly split prior to model training, indicating model 
generalizability to an independent data set.

The most promising immunological biomarkers identified were MMP9, NGAL, IL-8/CXCL8 and IL-1β 
as selected by SVM + RFE, while RF + RFE selected only IL-1β and MMP9 but with lower LR+ compared to 
SVM + RFE. In general, RF identifies the strongest predictors while SVM tends to produce stronger models based 
on a larger number of weaker predictors. The fact that we used two machine learning algorithms for predictors 
selection increased the confidence in markers that were selected by the two algorithms. There might be a potential 
for improvement in the future by using ensemble methods other than RF, however given that both RF and SVM 
found turbidity/cloudiness, MMP9 and IL-1β to be the best predictors of UTI it is likely that these predictors 
will remain as the most important markers. Ideally, we would be able to verify these as predictors using a large 
independent cohort, and we encourage further large studies to validate our findings. It is also interesting to note 
that the identified immunological markers interact with each other during urological infection by restricting 
bacterial growth and mediating trans-epithelial movement of neutrophils36. IL-1β induces renal production of 
NGAL in mice model experiments37, and NGAL modulates MMP9 activity by protecting it from degradation38. 
MMP-9, NGAL and some interleukins, have been previously studied as potential biomarkers for UTI, particularly 
in infants and children, however, conclusions were contradictory39–44.

Urine culture is an imperfect gold standard to identify UTI. Bacterial pathogens may die during transport, 
may not grow using conventional culture techniques or may be rendered unidentified due to contamination of 
urine samples during collection. There are also differences in opinion on the threshold used to identify significant 
growth, reflected in different microbiological guidelines. This has a direct impact on the reported prevalence of 
the disease and subsequently on the evaluation of new tools for UTI diagnosis. This has been shown in this study, 
as variable numbers of immunological markers were required to reach the optimum prediction depending on the 
underlying threshold guidelines applied.

This study involved women who participated in the POETIC trial, and who had excess urine samples available 
following the microbiological analyses included in the POETIC study protocol. No other selection criteria were 
applied and therefore this should be a relatively representative sample of women presenting in primary care with 
UTI. We found a slightly higher prevalence of positive UTI (43%) in our study compared to the full trial pop-
ulation (35%), but this is likely to be a chance finding and is unlikely to affect the generalisability of our results. 
Unfortunately, we were not able to compare urine cloudiness/turbidity or immunological markers with the point 
of care urine dipstick most commonly used in primary care, as dipstick results were not recorded in the POETIC 
trial. However, previous studies with similar uncomplicated UTI inclusion criteria, found that dipsticks predicted 
UTI culture results with a PPV between 0.63 and 0.94 and NPV between 0.20 and 0.81 depending on the diag-
nostic rule used (presence of nitrite, leukocytes esterase or both) and urine culture colony count threshold4,45. 
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When dipstick results were based on leukocytes esterase results only, the maximum PPV and NPV was 0.86 and 
0.72, respectively45. In our study, cloudiness achieved a comparable NPV of up to 0.79, while MMP9, NGAL, IL-8/
CXCL8 and IL-1β achieved PPV of 0.82.

In conclusion, we found that urine cloudiness was the best clinical predictor of UTI among symptomatic 
women, and that grading cloudiness using a turbidity score may improve the predictive value further. We also 
found that MMP9, NGAL, IL-8/CXCL8 and IL-1β in urine may be useful predictors of UTI. These biomarkers 
could be used to develop a new point of care test for UTI, subject to validation of our findings in a larger popula-
tion, across different age groups, using freshly collected urine and a stringent determination of cut-off levels for 
the individual biomarkers.

Methods
Patient population and clinical data. Clinical information and urine samples were collected as part of 
a two-arm randomized controlled trial, POETIC (Trial number: ISRCTN65200697)21,46. The current analysis 
included participants from England and Wales who had excess urine sample following the initial POETIC micro-
biology experiments. The POETIC study included women who presented in primary care with at least one key 
UTI symptom (dysuria, urgency and frequency) that had been present for up to 14 days. Exclusion criteria were 
pregnancy, signs of complicated UTI, current use of antibiotics and functional or anatomical genitourinary tract 
abnormalities21,46. Clinical data were collected by general practitioners (GPs). Main UTI symptoms were recorded 
as present/absent and on a scale from 0 (not affected) to 6 (as bad as possible) to measure its severity. Severity of 
other symptoms such as fever, flank or abdominal pain, blood in urine, unpleasant urine smell, restricted activity 
and feeling unwell were also measured (Table 1). Urine cloudiness (clear/cloudy) was reported by GPs following 
sample examination.

Ethics. Informed consent was obtained from each patient involved in the study as part of the POETIC clini-
cal trial (number: ISRCTN65200697). Ethical approval was given by the Research Ethics Committee (REC) For 
Wales recognised by the United Kingdom Ethics Committee Authority (UKECA), REC reference 12/WA/0394. 
This study was conducted in accordance with the principles of the Declaration of Helsinki.

Sample collection, processing and culture. Mid-stream urine samples were collected at the GP clinic 
in a universal container containing boric acid and sent to the microbiology laboratory (Specialised Antimicrobial 
Chemotherapy Unit, University Hospital of Wales, Cardiff) by post. Average time from sample collection to process-
ing in the laboratory was 2.2 [SD = 1.4] days. Urine turbidity was scored by microbiology staff, and for the current 
analysis, it was categorised as: 1 (clear or slightly turbid), 2 (moderately turbid) and 3 (very turbid). Urine samples 
were then analysed microscopically and cultured on Columbia Blood Agar (CBA) and CHROMagar UTI Orientation 

Figure 1. Urinary tract infection definitions according to POETIC study22, EAU27 and PHE25,29.

https://doi.org/10.1038/s41598-019-55523-x


8Scientific RepoRtS |         (2019) 9:19694  | https://doi.org/10.1038/s41598-019-55523-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

media (E&O) at 34–36 °C for 18–20 hrs46. Total and species-specific colony counts were enumerated from CBA and 
chromogenic agar, respectively. UTI culture positivity was defined as per the POETIC study protocol (Fig. 1).

Urinary immune biomarker procedure. Cell-free urines were analyzed on a SECTOR Imager 6000 (Meso 
Scale Discovery) using the V-PLEX Human Cytokine 30-Plex Kit to measure levels of IL-1α, IL-1β, IL-2, IL-4, IL-5, 
IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-16, IL-17A, IFN-γ, TNF-α, TNF-β, GM-CSF, VEGF, CCL2, 
CCL3, CCL4, CCL11, CCL13, CCL17, CCL22, CCL26, CXCL8 and CXCL10, and using an ultrasensitive single-plex 
assays for sIL-6R. Conventional ELISA kits were used to measure creatinine, cystatin C, HSA, MMP8, MMP9 and 
RBP4 (R&D Systems) as well as fibrinogen (Abcam). HNE was measured using a B.I.T.S. ELISA kit (Mologic); acti-
vated PGP, desmosine, FMLP and NGAL were measured using validated in-house developed ELISA kits (Mologic).

Statistical analysis. Data. Our cohort included 183 women with uncomplicated UTI symptoms. For these 
patients we matched 17 clinical and 70 immunological predictors using patient ID, date of birth and sample ID. 

Figure 2. Flowchart of data analysis. RFE: recursive feature elimination. SVM: support vector machine. RF: 
random forest.
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There were no missing data on the outcome variable (UTI classes) or the clinical data, however, 28 immunological 
predictors had missing data of >5% and were therefore removed from the subsequent analysis. Missing data <5% 
were imputed using Multiple Imputation by Chained Equations in R package “mice” using all variables except the 
outcome. Imputation methods were predictive mean matching, logistic regression and proportional odds model 
for numeric variables, binary variables and ordered factor variables, respectively47. UTI classes were defined based 
on the POETIC guidelines22 for UTI classification (Fig. 1). Alternative UTI classification guidelines by PHE25,26 
and the EAU27 were used in sensitivity analyses to explore if changing bacterial count threshold for positive UTI 
would change the marker selection.

Analysis approach. We used the RFE Algorithm 2 on “caret” R package platform48, which was coupled with 
either RF49 or SVM (radial basis function kernel in “kernlab” R package)50 algorithms to select the best clinical 
and immunological predictors. RF + RFE and SVM + RFE models were trained on the clinical and immuno-
logical predictors separately (Fig. 2). Models were trained on all possible combinations of features including 
the full feature set and the best combination of features was selected (Supplementary Figure S2). Following the 
selection of the best clinical and immunological predictors, we aimed to evaluate the additive predictive value 
of the selected immunological markers on the selected clinical predictors. Thus, we merged the selected clinical 
and immunological predictors and used them to train RF and SVM models (Fig. 2). Merging the selected clinical 
and immunological markers was conducted only when a small number of immunological markers were selected.

Data pre-processing. For SVM, which does not recognize nominal variables, both binary and ordinal categorical 
variables were transformed by integer encoding, in which naturally ordered integer numbers were assigned to the 
levels of the categorical variables to keep the natural order of the clinical data. In addition, continuous data were 
standardized to a mean of 0 and a variance of 1 for SVM models51. For RF models, categorical variables were not 
transformed because RF can learn directly from categorical data with no data transformation required.

Model training and testing. Our data included 183 cases that were randomly split into training (70%) and test 
(30%) subsets while maintaining the proportion of cases with positive UTI. For all training models, three repeats 
of 10-fold cross-validation were used to avoid overfitting. During cross-validation, the model was trained on 
the training set and validated on a subset of the training data at each iteration (cross-validation ROC curves are 
provided in Supplementary Figure S3). The random search method in the caret package51 was implemented to 
select the optimum hyperparameters (RF: number of features randomly selected for splitting at each tree node 
[mtry]; SVM: sigma and Cost soft margin [C]; Supplementary Table S2). Model performance was examined on 
the unseen test data subset. Model performance was compared using the following metrics: AUC, PPV, NPV, 
LR+, LR−52 and F1 Score (harmonic mean of the precision and recall, which range between 0 and 1 where higher 
value indicates higher performance)53. For calculating AUC, the probability threshold for a positive UTI class was 
set to 0.5. All analyses were performed using R software version 3.4.254.

Data availability
Anonymised clinical and immunological data will be available upon request. The corresponding author or the 
senior authors (Nick Francis: francisna@cardiff.ac.uk and Chris Butler: christopher.butler@phc.ox.ac.uk) can 
receive email requests.
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